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Abstract

In the evolving landscape of energy systems, microgrids have emerged as a key solution
for enhancing energy efficiency and sustainability. Capable of operating independently or
alongside the main power grid, microgrids integrate renewable energy sources and ensure local
energy distribution. This makes them instrumental in reducing dependencies on centralised
power supplies and improving resilience against disruptions. This research addresses the
unit commitment problem, a mathematical optimisation challenge where the objective is to
coordinate a group of energy production units to meet demand at minimal cost. We model
the microgrid as a mixed logical dynamical (MLD) system, incorporating both the continuous
and discrete variables involved in the microgrid. model predictive control (MPC) is selected
as the control strategy due to its suitability for controlling hybrid systems and its ability to
handle complex constraints.

However, the application of MPC is challenged by the need to solve computationally demand-
ing mixed-integer linear programming (MILP) problems at each control iteration, which are
combinatorial. To address this challenge, this research proposes integrating a learning-based
method to enhance MPC in microgrids. We propose using transformers to learn and predict
the binary decisions in MILP problems, thereby reducing the problem to a more tractable
linear programming (LP) problem. Transformers are chosen for their ability to recognise
patterns in sequential data, a key aspect of the decision-making process in MPC. Further-
more, their capability for parallel processing allows for more efficient training and scalability
to larger problems, making them highly suitable for handling the dynamic and complex op-
timisation tasks found in microgrid control. Simulation experiments show that integrating
transformers in the decision of the discrete variables reduces the overall computation with
only a slight loss of optimality and, therefore, improves the online applicability of MPC in
microgrid control.
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Chapter 1

Introduction

1-1 Background

As global energy demands continue to rise and environmental sustainability becomes an in-
creasingly critical concern, microgrids have emerged as a key solution within the energy sector
[1],[2]. These decentralised networks, capable of operating both independently and in con-
junction with the traditional centralised electrical grid, excel in integrating renewable energy
sources such as solar and wind power, thereby enhancing grid resilience and minimising carbon
footprints. The significance of these systems is underscored by a report from the International
Renewable Energy Agency (IRENA), which suggests that renewable energy could potentially
meet up to two-thirds of the total global energy demand [3]. The capacity of microgrids for
high renewable energy integration is crucial for reducing greenhouse gas emissions. It is in-
strumental in global efforts to meet temperature increase targets set by the Paris Agreement
on climate change [4]. Additionally, microgrids ensure energy security and reliability, espe-
cially in areas susceptible to extreme weather or those geographically isolated from central
power grids [5]. Overall, by minimising dependencies on centralised power supplies, microgrids
support the stability of the power grid and contribute to reducing global carbon emissions.

A significant challenge within microgrid management is the unit commitment problem. This
complex mathematical optimisation task involves coordinating a group of energy production
units to meet demand at minimal cost [6]. In this context, model predictive control (MPC)
can be a practical approach to managing the complexities of microgrids. MPC is particularly
valued for its predictive nature [7]. It bases the control strategy on future system behaviours
and predictions, which are crucial in environments that greatly depend on demand forecasts
and variable renewable energy generation. Furthermore, MPC relies on a feedback mechanism
that enhances system resilience against uncertainties, making it highly effective in environ-
ments with unpredictable energy supply. Also, MPC is capable of handling various power
systems constraints such as generator capacity and ramp rate limits, ensuring the micro-
grid operates within its optimal parameters while maintaining safety and efficiency [8],[9].
These features of MPC make it a highly suitable choice for addressing the unit commitment
problem within microgrids. It involves the complex coordination of energy production units
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2 Introduction

to meet demand efficiently and cost-effectively. The inherent interaction between continu-
ous and discrete variables in microgrids is well-modelled by mixed logical dynamical (MLD)
systems and formulated as mixed-integer linear programming (MILP) problems within the
MPC framework [9]. By optimising operations based on current conditions and anticipated
future scenarios, MPC can significantly enhance the microgrids’ economic and environmental
performance.

However, the application of MPC in microgrids faces significant challenges due to the com-
putational intensity of solving MILP problems at each control iteration, which is time-
consuming and computationally demanding. To address this challenge, researchers have
adopted learning-based methods to enhance the online applicability of MPC in microgrids,
e.g. [10]. Our research explicitly explores the use of transformers—a machine learning model
renowned for recognising patterns in sequential data and capability for parallel processing
[11]. The decision-making process in MPC is inherently a sequence modelling problem, as
control actions are based on past and present data, which aligns well with the capabilities
of transformers to process such sequences efficiently. By learning and predicting the bi-
nary decisions in MILP problems, transformers can potentially simplify these decisions to
more tractable linear programming problems, thereby enhancing the real-time applicability
of MPC in microgrid control.

1-2 Problem Description

The unit commitment problem within microgrids is a complex mathematical optimisation
challenge that requires the coordination of various energy production units to meet energy
demands efficiently while minimising operational costs. This problem is particularly challeng-
ing due to the hybrid nature of the energy resources involved, which includes both continuous
variables, such as power outputs, and discrete decisions, such as generators’ on/off status.

This research identifies MPC as an effective control strategy for addressing the unit com-
mitment problem. MPC’s ability to predict future system states and its robust handling of
multivariable constraints make it highly suited for managing the intricacies of hybrid systems.
However, the effectiveness of MPC relies on the solution of MILP problems at each iteration
of the control process. These MILP problems, essential for determining the discrete decisions
inherent in microgrid operations, are computationally intensive and belong to the class of
NP-hard problems, posing significant challenges for real-time applications [12].

To overcome these challenges, this research proposes a novel approach by integrating trans-
formers into the MPC framework. Transformers, known for their exceptional capability to
process sequential data through self-attention mechanisms, offer a promising solution for
learning and predicting the binary decisions required in MILP. This strategy aims to trans-
form the computationally demanding MILP problems into more tractable linear programming
(LP) problems, thereby reducing the computational burden and enhancing the scalability and
speed of MPC implementations in real-time microgrid control.

This innovative approach leverages the parallel processing capabilities of transformers, which
could lead to more efficient training, making it feasible to handle more extensive and complex
microgrid systems data. The proposed research explores whether transformers can maintain
the decision-making accuracy of MPC while significantly reducing the computational load
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1-3 Thesis Outline 3

involved in solving MILP problems. The following research question is addressed in this
research:

How can transformers be applied to predict the optimal binary solution of Mixed-Integer
Linear Programming problems, specifically within the context of Mixed Logical Dynamical

systems and learning-based Model Predictive Control?

This study will first assess the suitability of the transformer architecture for this unique ap-
plication to address the question. It is expected that the transformer model needs to be
adapted from its original use in natural language processing to suit the specific characteris-
tics of microgrid data. The effectiveness of the transformer-based MPC model is evaluated
against existing techniques by comparing training complexity and operational performance
in simulations. This report details the methodologies employed and outlines the structure of
the investigation, setting the stage for an in-depth exploration and analysis.

1-3 Thesis Outline

The structure of the thesis is given in this section. Chapter 2 provides an in-depth background
and literature review that explores the foundational concepts of microgrids and the challenges
of controlling these systems. It elaborates on the system model used for microgrids, discusses
the pivotal role of MPC, and dives into the complexities of solving MILP problems. The
literature on learning-based methods within MPC is reviewed, highlighting the innovative
potential of transformers in this field.

Following the foundational background, Chapter 3 progresses into the methodology, where
the approach to implementing transformer models for binary sequence prediction in MILP
problems is detailed. This section covers everything from data collection and preprocessing
to the specific integration steps with MPC frameworks and the evaluation metrics necessary
for validating the methodology.

In Chapter 4, the practical application of the transformer-based MPC in microgrid control
is examined through detailed simulations. This part describes the experimental setup and
the assumptions made. It also critically analyses the performance results of the transformer
model, discussing the implications and challenges encountered during the simulations.

The thesis concludes in the Conclusion and Future Work Chapter 5, which summarises the
insights gained through the research and reflects on the contributions made. It outlines the
potential directions for future research that could further refine the use of advanced machine-
learning techniques in the realm of MPC for microgrids.

Supplementary details, including mathematical formulations, elaborations and a paper draft
on the topic, are provided in the Appendices. The codes used in this thesis are provided in
[13].
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Chapter 2

Background and Literature Review

This chapter provides an overview of the complexities inherent in microgrid systems and
the advanced control strategies essential for their effective management. It introduces mixed
logical dynamical (MLD) systems, which model the interplay between continuous and discrete
variables within microgrids. The control problem within these MLD systems can be effectively
formulated as mixed-integer linear programming (MILP) problems, enabling the use of model
predictive control (MPC) to determine optimal control strategies.

However, implementing MPC in real-time is challenging due to the combinatorial nature of
MILP problems, which involve complex binary decision-making processes. These computa-
tional challenges make online MPC challenging, impacting its effectiveness and efficiency in
operational scenarios.

This chapter delves into integrating machine learning techniques within the MPC framework
to overcome these computational challenges to enhance real-time optimisation capabilities.
Exploring existing machine learning applications in similar contexts provides insights into
the potential of learning-based MPC, encouraging further investigation into other advanced
learning-based techniques. Specifically, it underscores the potential of transformers, a se-
quence modelling technique renowned for its capabilities in handling sequential data, to im-
prove predictive accuracy and computational efficiency. By learning the binary components
of MILP formulations in hybrid MPC, transformers could significantly enhance the scalability
and practicality of deploying MPC in real-time scenarios.

2-1 System Model: Microgrids

This section describes the modelling of microgrids, which is central to this thesis. It discusses
its main components and explains how to model and control them effectively. Microgrids
represent an evolution in electricity distribution networks, aiming to sustainably address the
increasing energy demand. They are essentially subsystems of the distribution grid, incorpo-
rating generation capacities, storage devices, and controllable loads. These elements work in
unison to operate as a single controllable entity that can be connected to or isolated from the
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6 Background and Literature Review

utility grid. The operation of microgrids introduces a complex interplay of various compo-
nents and dynamics, necessitating advanced control strategies to optimise their performance
effectively.

The significance of microgrids lies in their capability to enhance the decentralised management
of distributed energy resources, including distributed generators and renewable energy sources,
thereby reducing the reliance on the centralised grid. This decentralised approach promotes
the efficient use of renewable energy and improves the resilience of the electricity supply, e.g.
in grid outages or peak demand periods [9].

One of the main challenges in microgrid management is the unit commitment problem. This
complex mathematical optimisation task involves coordinating a group of energy production
units to meet demand at minimal cost [6]. This is particularly challenging due to the inherent
uncertainty in energy demand, renewable energy generation, and energy prices. These uncer-
tainties require advanced modelling and control strategies to anticipate future conditions and
adjust operations accordingly to maintain stability and efficiency. MPC emerges as a highly
effective solution in this context, with its ability to anticipate predictions of future system
behaviour to optimise microgrid operations [9]. Section 2-1-2 delves deeper into the MPC
problem of microgrids. First, a general system description of the microgrid is given. This
system description is based on the elaborate system description of microgrids in [10] and [9].
This description is used as the basis throughout this thesis report.

2-1-1 System Description

This section outlines the problem of power dispatching in a microgrid environment, integrat-
ing storage elements (e.g., batteries and ultracapacitors), local generators, a bidirectional
connection to the main grid, and uncontrollable loads.

Dynamic Modeling of Energy Storage Systems

In this study, we limit our analysis to microgrids where the energy storage system is modelled
as a battery that adheres to the following hybrid dynamical law, earlier described in [10]:

xb(k + 1) =
{

xb(k) + Ts
ηd

Pb(k) if Pb(k) < 0
xb(k) + TsηcPb(k) if Pb(k) ≥ 0

(2-1)

where xb(k) represents the energy level at step k, ηc and ηd denote charging and discharging
efficiencies, Pb(k) is the power exchanged with the energy storage system, and Ts is the
sampling interval.

Using an MLD approach, we introduce a binary variable δb(k) to indicate the storage system’s
mode (charging or discharging), enabling a compact representation exploitable for control
applications [10]:

xb(k + 1) = xb(k) + Ts

(
ηc −

1
ηd

)
zb(k) + Ts

ηd
Pb(k), (2-2)
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2-1 System Model: Microgrids 7

with δb = 1 ⇐⇒ Pb(k) ≥ 0 denotes charging mode or vice-versa discharging mode. Fur-
ther, the term zb(k) = δb(k)Pb(k) modulates the effect of power exchange on the energy
level, depending on the mode of operation. The logical correlation between δb(k) and Pb(k),
along with the formulation of zb(k), can be reformulated into a series of mixed-integer linear
inequalities as described in [14].

Generator Units

The microgrid features two types of generation units: renewable sources (zero-cost, uncon-
trollable power) and dispatchable generators, which can be controlled within bounds and are
therefore considered control variables. The output power of dispatchable units, represented
by P dis(k), is adjustable. Let P dis(k) be the vector representing the power produced by
dispatchable generators, defined as

P dis(k) =


P dis

1 (k)
...

P dis
Ngen(k)

 , (2-3)

where P dis
i (k) denotes the power produced by dispatchable unit i at time step k, and Ngen

is the total number of dispatchable units. Binary variables are used to determine which
dispatchable generators are turned on or off (δon

i = 1, and δoff
i = 0 ).

Prices of Energy

The energy flows within the microgrid have different associated energy costs. We assume
three types of prices: cbuy(k) for purchases, and csale(k) for sales from and to the main grid.
Further, cprod(k) is the cost for local energy generation with the dispatchable units. It is
further assumed that estimates of these prices are known over a certain horizon in the future.

Grid Interaction

The microgrid can supplement the central grid or operate independently, engaging in energy
transactions dictated by demand, generation capacity, and economic considerations. These
transactions are captured through the power exchange variable Pgrid(k), with the binary
decision variable δgrid(k) indicating the microgrid’s operational state relative to the main
grid—either importing (δgrid(k) = 1) or exporting energy (δgrid(k) = 0). The economic
impact of these transactions, whether cost or revenue, is modelled by Cgrid(k):

Cgrid(k) =
{

cbuy(k) · Pgrid(k) if δgrid(k) = 1 (importing)
csell(k) · Pgrid(k) if δgrid(k) = 0 (exporting)

(2-4)

where δgrid(k) = 1 represents the importing case (buying energy) and δgrid(k) = 0 denotes the
exporting case (selling energy). The decision to import or export is determined by current
demand, generation capacity, and economic factors. This model ensures the microgrid’s
operations align with both internal needs and external market conditions, optimising the
economic benefits of grid interaction.
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8 Background and Literature Review

2-1-2 Control of Microgrids using MPC

MPC utilises a model-based strategy, using predictions about system behaviour and inputs to
determine optimal control actions over a defined horizon. Many research efforts have focused
on applying MPC to scenarios involving both continuous and discrete constraints [14]. This
exploration has naturally extended MPC’s application to hybrid systems characterised by
the interaction between continuous dynamics and discrete events. Such advancements have
broadened MPC’s applicability across various domains, including the complex operational
dynamics of microgrids.

The adaptation of hybrid MPC formulations for microgrids is well-established in the literature,
with notable successes in, for example, [9], [15] and [16]. These successes underscore the
methodology’s ability to balance operational constraints with cost optimisation, giving it
a compelling strategy for microgrid control. Given the inherent continuous and discrete
variables within microgrid systems, framing the microgrid control problem within a hybrid
MPC formulation is a reasonable choice.

As observed in 2-1-1, the dynamics within the microgrid are well-suited for representation in
an MLD formulation. This formulation can seamlessly be translated into a MILP problem
and function as constraints in the hybrid MPC formulation. This conversion facilitates the
practical application of MPC to the microgrids, ensuring both operational integrity and cost
efficiency.

To formulate the MPC problem, we first define the objective function. The objective is to
minimise economic costs while satisfying load demands and operational constraints. The cost
function comprises economic costs from local energy production via dispatchable units and
the energy exchanged with the main grid. The objective function is formulated as:

min
P dis(k),Pgrid(k),Pb(k),δ(k),z(k)

J(P dis(k), Cgrid(k), cprod(k)) (2-5)

where the cost function is defined as:

J(P dis(k)), Cgrid(k), cprod(k) =
Np−1∑
j=0

(Cgrid(k + j) + cprod(k + j)
Ngen∑
i=1

P dis
i (k + j)) (2-6)

where Np is the prediction horizon. The objective function is subjected to the constraints of
the microgrid. The system dynamics of the microgrid model can be represented in the MLD
formulation as mixed integer constraints. These are formulated in [10] as follows:

B,W.C. van der Woude Master of Science Thesis



2-2 Related Work 9

E1δ(k) + E2z(k) ≤ E3u(k) + E4 (2-7a)

Pb(k) =
Ngen∑
i=1

P dis
i (k) + Pres(k) + Pgrid(k)− Pload(k) (2-7b)

P b ≤ Pb(k) ≤ P̄b (2-7c)
P grid ≤ Pgrid(k) ≤ P̄grid (2-7d)
δon

i P grid ≤ Pgrid(k) ≤ δon
i P̄grid (2-7e)

xb ≤ xb(k) ≤ x̄b (2-7f)

u(k) = [P ⊤
dis(k), Cgrid(k), Pb(k)]⊤

for i = 1, . . . , Ngen

for k = 0, . . . , Np − 1

constraint (2-7a) follows from the earlier described MLD formulations of the microgrid. Con-
straint (2-7b) ensures power balance by specifying that all generated power must be consumed
within the system, stored, or sold to the main grid at each time step. Constraints (2-7c) to
(2-7f) define physical constraints on components of the microgrids: (2-7c) constrains the
power exchanged with the battery, (2-7d) the power exchange with the main grid, (2-7e) the
produced power production per power unit and (2-7f) defines the physical bounds on the state
of charge of the battery.

The MPC-MLD formulation is a promising approach to control the microgrid system effec-
tively. However, applying the MPC in MLD systems remains challenging. As each iteration
requires solving an MILP problem, as described above. MILP problems are combinatorial
problems in nature, with computational complexity growing exponentially as the number of
discrete decision variables increases. Hence, MILP problems belong to the NP-hard class,
which means that there are no algorithms known to guarantee the solution of the prob-
lem within polynomial time [12]. Therefore, several recent works developed approaches to
overcome this issue of computational complexity to make MPC applicable to MLD systems.
Particularly, learning-based approaches have demonstrated great success over the past few
years in hybrid MPC, e.g. [17], [18], [19]. The upcoming Section 2-2 gives an overview of
research works that addressed this challenge.

2-2 Related Work

This section overviews recent approaches to solving the challenge of solving MILPs for MPC
in an online setting. Section Section 2-2-1 first briefly discusses the problem and challenges
of MILP, after which Section 2-2-2 discusses research works that integrated machine learning
and MPC to overcome the challenges inherent in hybrid MPC.
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10 Background and Literature Review

2-2-1 Mixed-Integer Linear Programming

Mixed-integer linear programming is a mathematical optimisation technique that solves prob-
lems involving continuous and discrete decision variables. The main goal of an MILP problem
is to optimise a given linear objective function while satisfying a set of linear constraints [20].
Effectively solving MILP problems is crucial in numerous applications, e.g., finite horizon
optimal control of hybrid systems. However, since MILP problems involve discrete deci-
sion variables, the problem becomes combinatorial. In combinatorial problems, the size of
the problem grows exponentially with an increasing number of discrete (decision) variables,
making them belong to the NP-hard class [20].

Due to several factors, MILP problems are more complex than linear programming (LP).
Firstly, the presence of discrete decision variables transforms MILP into a combinatorial
problem, where the objective is to find the optimal arrangement or selection of objects from a
finite set, making the problem inherently complex as the problem size increases [21]. Secondly,
MILP’s integer variables make the problem non-convex, complicating the search for a global
optimum compared to the convex nature of LP problems, where efficient algorithms exist for
finding the global optimum. Furthermore, the combinatorial and non-convex characteristics
of MILP require specialised algorithms, such as branch-and-bound, cutting plane methods, or
heuristics, to navigate these challenges. These challenges are further compounded by the ex-
ponential growth in complexity with increased problem size, emphasising the need for efficient,
sometimes problem-specific, algorithms to manage computational demands while maintain-
ing solution quality [20]. Machine learning introduces a new dimension to this landscape by
offering simplifications or speed improvements through machine learning. An example of this
is demonstrated in [17], where machine learning is applied to warm-start branch and bound,
which achieves significant speed improvements without compromising solution quality.

In optimal control, MILP problems must be solved within time limits to make the controller
applicable in online settings. Recent research has explored leveraging machine learning to
overcome these challenges, given the computational challenges associated with MILP in real-
time MPC applications. The following section delves into how supervised and reinforcement
learning techniques can be applied to streamline MPC operations, thereby enhancing the
efficacy and responsiveness of microgrid control.

2-2-2 Learning-based MPC

Incorporating learning methodologies within MPC marks a considerable progression in con-
trol systems, especially for those defined by MLD systems. This integration facilitates the
application of MPC in online scenarios, which is a challenge due to the complexity and com-
putational demands of solving MILP problems inherent in MLD systems. The literature
reviewed outlines two effective learning-based approaches: supervised learning-based MPC
and reinforcement learning-based MPC, referred to as SL-based MPC and RL-based MPC.

Reinforcement Learning Based MPC

Reinforcement learning in control is the subfield of machine learning that studies how past
data can be used to enhance future manipulation of a dynamical system by an agent [22].
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The agent interacts with its environment and receives feedback through rewards and punish-
ments, which it uses to learn a policy that maps states to actions. Two key aspects of RL
are exploration and exploitation. Exploration involves the agent trying out new actions to
discover their outcomes. In contrast, exploitation consists of choosing actions that the agent
believes will yield the highest rewards based on current knowledge. This approach allows
for continual improvement in handling complex, variable environments, as demonstrated in
various applications documented in the literature [23].

In RL-based MPC has been applied in several ways. RL has been used to learn and improve
the model used in MPC. Learning a better and more accurate model effectively enhances the
performance of the MPC-controlled system. A more precise model will lead to more accurate
predictions of the system’s future state, allowing the MPC to make better decisions about
future control actions. Another application of RL in combination with MPC can also be to
speed up calculations over the horizon of MPC. In this case, RL can approximate the optimal
control policy, which can then be used to quickly compute the control actions for each time
step. This can be a significant advantage for MPC problems with a long horizon, as the
computational time required to solve the MPC problem can be significantly reduced or when
online MPC requires fast solutions [22]. In many applications, it is advantageous to use MPC
as a primal controller and RL as a secondary controller since one can exploit guarantees on
safety and stability with MPC in these scenarios [24]. However, using RL to take over the
MPC as primal controller is also possible. Here, the use of RL in combination with MPC
can lead to stability and safety challenges since the main objective in the field of RL, i.e.
optimising the reward function, is not primarily similar to the main objectives in control, i.e.
stability and safety. Integrating MPC into RL practices allows for enforcing stability and
adherence to constraints. This integration helps direct the learning process towards feasible
and safe policies. This approach leverages the structured control strategy of MPC, with its
established ability to handle dynamic constraints and predict system behaviour accurately,
to inform and guide the learning algorithms of RL [24].MPC can benefit from the contrasting
properties of RL; RL is model-free, adaptive, and has low online complexity. On the other
hand, RL can also benefit from the properties and majority of knowledge connected to MPC
in terms of stability, feasibility and robustness theory. RL encounters stability and safety
challenges, particularly when agents need to interact with real-world systems [24].

Integrating RL methodologies into MPC has led to innovative developments. The work pre-
sented in [25] proposes an RL-enhanced MPC approach to leverage RL’s adaptability while
addressing its safety challenges using robust MPC as a safety mechanism. This approach effec-
tively balances performance improvement with safety guarantees despite potential limitations
in exploration, conservatism, and controller generalisability.

Similarly, [26] introduces a Predictive Safety Filter to ensure safety in RL-based control
inputs, allowing RL more freedom in operation by filtering out unsafe suggestions. This
method combines MPC’s reliability with RL’s adaptability, though it introduces additional
complexity and demands careful coordination.

Contrastingly, [27] focuses on simplifying MPC through RL by optimising the prediction hori-
zon, demonstrating significant performance improvements in simpler systems such as inverted
pendulums. This approach highlights the potential for efficiency and challenges in applying
it to more complex systems and ensuring safety and stability.

These studies illustrate the potential of RL-based MPC approaches to enhance optimal control
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systems, giving a blend of performance, adaptability, and safety. However, the complexities
and computational challenges of implementing these strategies in practical, real-world appli-
cations should be acknowledged. Further, in this thesis, the main emphasis is on simplifying
the MILP problems to make MPC more applicable in online applications. Applications in
supverised learning (SL)-based MPC have shown more successful techniques for accomplishing
this.

Supervised Learning based MPC

The literature on SL-based MPC contains several examples that simplify the hybrid MPC
problem, improving its applicability in online environments. Supervised learning is a machine
learning framework where models are trained to recognise patterns and relationships within
data based on labelled examples. The dataset for training includes input data paired with
corresponding output labels, serving as the ground truth. This training process aims to es-
tablish a mapping from inputs to outputs, enabling the model to predict outcomes accurately
on new, unseen data. In the context of hybrid MPC, particularly discussed in 2-2-1, the pre-
dictive power of SL could simplify the challenging part of MILP problems. Researchers have
explored whether SL can learn and predict the binary variables in MILP offline, transform-
ing the problem’s complexity into a computationally tractable LP problem. This adaptation
holds significant potential for enhancing the online applicability of MPC [28]. It offers the
possibility, though not a guarantee, that the controller will function effectively online. Several
research examples underscore the potential of such approaches.

The SL-based controllers presented in [12], [29] and [18] exemplify a common strategy for
achieving efficient online control of MPC problems in MLD systems, where MILP problems are
inherently involved. By solving several MILP instances offline, these approaches leverage SL
and classification techniques to identify and simplify the binary components of the problems.
This simplification transforms complex MILP problems into more manageable LP problems
or reduces the number of binary variables involved, significantly reducing the computational
time required for online applications.

While promising, the researchers highlight a crucial trade-off between solution optimality and
computational complexity. While the SL-based controllers do not provide strict optimality
guarantees, they significantly reduce the computational burden, enhancing such methods’
practical utility. This trade-off is vital in real-world scenarios where the need for timely and
adaptable decision-making often outweighs the pursuit of theoretical perfection.

Another essential consideration for the effectiveness of these SL-based MPC controllers is the
balance between the volume of training data and the computational resources available. Al-
though a more extensive dataset can lead to more reliable predictions, it also demands greater
computational power. Data collection and binary variable prediction typically occur offline,
mitigating potential issues during online operations. However, as computational capabilities
continue to evolve, the impact of data volume on computational resources is expected to
lessen.

Interestingly, current SL-based MPC methods often overlook the inherent temporal struc-
ture of MPC sequences. Given that the primary objective of SL-based MPC is to forecast
binary sequences resulting from system decision-making—influenced by previous and future
decisions—it stands to reason that recognising and leveraging this temporal structure could
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be beneficial. The sequential nature of MPC typically generates patterns in binary inputs,
offering critical insights that could significantly enhance solution techniques. Techniques like
long short-term memory (LSTM)s have demonstrated potential in exploiting these temporal
dynamics, as shown in [18]. However, recent advancements in sequence modelling have in-
troduced new architectures, notably transformers, which have surpassed the performance of
LSTMs in various domains. Given their proven efficacy in handling sequential data, exploring
whether transformers could similarly enhance SL-based MPC would be interesting. This will
be further investigated in the upcoming chapters.

2-2-3 Conclusions from the Literature

This literature review highlights the significant challenges and advancements in applying MPC
in MLD systems, specifically microgrids. It has delved into key strategies such as supervised
learning and reinforcement learning, which enhance MPC’s real-time applicability. While
RL offers adaptability and potential speed enhancements, it raises concerns about stability
and safety. Conversely, SL-based methods have proven effective in simplifying the complex
components of MILP, rendering MPC more computationally tractable in online environments.
These methods notably reduce the computational burden by learning to predict the binary
decision variables, thus enhancing the system’s operational performance.
The review also highlights a research gap: current SL-based MPC methods often do not
take into account the inherent temporal structure of MPC sequences. Integrating advanced
sequence modelling techniques can possibly further enhance SL-based MPC. While LSTMs
have shown utility in capturing temporal dynamics within MPC, transformers have demon-
strated superior performance in various other fields by effectively handling sequential data.
This suggests their potential for enhancing MPC, which will be a focus of further investigation
in this thesis.

2-3 Transformers

The evolution of sequence modelling techniques has been crucial in advancing machine learn-
ing applications, particularly in natural language processing (NLP) and handling time-series
data. While Recurrent Neural Networks (RNNs) and long short-term memory LSTM net-
works marked significant milestones by effectively capturing temporal dependencies, they
faced limitations in parallel computation and long-range dependency modelling [30]. These
challenges prompted the development of the transformer architecture, which has significantly
influenced the landscape of deep learning.
The transformer architecture was first introduced in the seminal paper "Attention is all you
need" [11]. Unlike traditional sequence models that rely on recurrent operations, the trans-
former eliminates the need for sequence-aligned operations. Transformers rely on a mechanism
known as self-attention to compute representations of its input and output. This shift facil-
itates parallel processing and enhances efficiency in handling sequences. The architecture
consists of two main components: an encoder that processes the input sequence and a de-
coder that generates the output sequence. For a visual representation of this architecture,
we refer to Figure 2-1, which schematically outlines the encoder-decoder structure and its
components. The figure is based on the figure presented in [11].
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Self-Attention Mechanism

The core component of the transformer model is the self-attention mechanism, which allows
the model to dynamically evaluate and assign relevance to different parts of the input sequence
for output generation. This mechanism significantly improves the learning of long-range de-
pendencies compared to RNNs and LSTMs, where the computation of each output element
depends sequentially on previous elements, a process prone to vanishing and exploding gra-
dients.

The self-attention process involves computing three vectors for each token in the input: a
query vector, a key vector, and a value vector. These vectors are derived through training
and are essential for attention computation. The process computes the attention as a weighted
sum of the values, where the weights are determined by the compatibility of the query with
the corresponding keys:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2-8)

here Q, K and V represent the matrices formed by stacking the query, key, and value vectors
of all input tokens, respectively. Further,

√
dk is a scaling factor that helps stabilise the

learning process. This scaled dot-product attention is central to the transformer’s ability to
prioritise information from different parts of the input sequence, regardless of their positions.

The self-attention mechanism improves dependency recognition and facilitates parallel pro-
cessing of data, a significant difference compared to previous sequence modelling techniques.
This parallelism is critical for the transformer’s ability to process all sequence parts simultane-
ously, dramatically boosting computational efficiency and making the architecture well-suited
for handling large datasets.

Furthermore, multi-head attention enables running several attention processes in parallel, each
with its own set of parameters, further enhancing the architecture. Multi-head attention, also
shown in Figure 2-1, allows the model to simultaneously capture various relationships from
different representational spaces at various sequence positions. This capability boosts the
model’s accuracy and flexibility and enhances its ability to comprehensively address multiple
aspects of the input data, thus improving the overall effectiveness of the attention process.

Multi-Head Attention

The multi-head attention mechanism, a central component of the transformer architecture,
is vital for handling the complex, multi-faceted data streams in microgrid control. This
mechanism has been designed to enhance its ability to process and interpret the temporal
and spatial relationships within our application of microgrid data, ensuring the system can
effectively respond to real-time demands and forecast future needs.

In the dynamic environment of microgrid control, data elements such as energy prices, power
demands, and system states are interdependent and exhibit complex patterns of interaction.
The multi-head attention mechanism navigates these complexities by allowing the model to
focus on different data segments concurrently. This capability is critical for understanding
how various variables influence each other over time and under different conditions.
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2-3 Transformers 15

The multi-head attention allows the transformer to handle the various aspects of the microgrid
source data, such as energy consumption patterns, pricing statistics and the current battery
state of the system, by focusing on different segments of the data concurrently. This enables
the model to understand the deeper relationships between all aspects of the data and how
the decisions within the MPC arise.

Positional Encoding

Another crucial component of the transformer model is positional encoding, which compen-
sates for the architecture’s lack of inherent sequence processing capability. Unlike RNNs and
LSTMs, transformers do not process data sequentially by default. Therefore, they require a
method to incorporate information about the order of the sequence. Positional encodings are
added to each input embedding to provide this sequence context. The positional encoding
function often uses sine and cosine functions of different frequencies [11]:

PE(pos,2i) = sin(pos/10002i/dmodel)
PE(pos,2i+1) = cos(pos/10002i/dmodel)

(2-9)

in this formula pos is the position within the sequence and i is the dimension index. Each
dimension of the positional encoding corresponds to a sinusoidal function, allowing the model
to learn relative positions.

Additional Architectural Components

Each transformer layer features a feed-forward neural network that applies the same linear
transformation to each position. This uniform processing ensures consistent transformation
across all sequence positions. The architecture also incorporates residual connections and
layer normalisation (referred to as ’Add & Norm’) after each sub-layer, which are critical
for maintaining training stability and preventing performance degradation in deeper network
structures.

The initial step in processing involves embedding the input tokens and converting discrete
input features into dense vectors that are optimally formatted for subsequent processing by
the model’s neural layers. These embeddings are especially crucial in transforming the input
into a structure amenable to the self-attention layers. This step is particularly relevant in
language models, which were the primary focus of the original transformer paper [11].

Applications and Implications

Transformers have rapidly become a dominant architecture in sequence modelling, particularly
within natural language processing (NLP). They have set benchmarks in machine translation,
text summarisation, and sentiment analysis tasks. Moreover, transformers have extended
their applicability beyond NLP to fields like image recognition. For instance, the Vision
Transformer approaches image analysis by treating images as sequences of patches, applying
Transformer encoders in a method analogous to text processing [31]. This strategy has shown

Master of Science Thesis B,W.C. van der Woude



16 Background and Literature Review

Figure 2-1: Transformer architecture Diagram, based on [11]
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remarkable success, achieving or surpassing the best performances in image classification
tasks. This adaptability and robust performance underline the potential of transformers to
revolutionise other fields, including potentially enhancing MPC systems by simplifying MILP
problems, which is the main focus of this thesis.

Motivations for Using Transformers in Microgrid MPC

The implementation of transformers in MPC for microgrids has several motivations. First,
transformers, known for their parallel processing capabilities, offer a promising solution to the
computational challenge in microgrids. By enabling fast and accurate computations, trans-
formers can significantly reduce the time required for training and decision-making processes,
which is essential for the dynamic operating environments of microgrids.

Secondly, research has shown the great potential of transformers in different fields regarding
prediction accuracy compared to other learning-based techniques. The self-attention mech-
anism in transformers allows for a more nuanced understanding of long-range dependencies
within data sequences. This could lead to better forecasting accuracy of load demands and
resource availability, thus optimising operational strategies.

Further, since the primary goal of SL-based MPC is to forecast binary sequences that emerge
from decision-making, which are influenced by past and anticipated future decisions. Recog-
nising and harnessing this temporal structure is critical. The sequential nature of MPC can
be assumed to reveal patterns in binary inputs that provide essential insights. Transformers,
known for their excellence in sequence modelling, are considered to be well-suited for this
task.

Lastly, the transformer architecture is well suited to scale for larger problems. This scalability
makes transformers ideal for application in growing microgrid networks.

2-4 Summary

This chapter overviews the operational complexities and control challenges inherent in mi-
crogrid systems. By using MLD systems, we can effectively model the interplay between
continuous and discrete variables that characterise the dynamic environment of microgrids.
The discussion underscored the pivotal role of MPC in controlling these systems through
advanced optimisation techniques, specifically MILP.

While MPC provides optimal control solutions for MLD systems, its online application of-
ten faces significant challenges due to the computational demands of solving MILP problems.
These challenges arise primarily from the combinatorial nature of MILP in the MPC problem.
This becomes particularly relevant in microgrids, where rapid and effective decision-making
is crucial for responding to fluctuating conditions and maintaining system stability and effi-
ciency.

Recognising the limitations of current computational resources in traditional approaches,
integrating machine learning techniques into MPC frameworks presents a promising avenue
to overcome these challenges. Specifically, this thesis focuses on supervised learning to reduce
the computational burden of MPC in MLD systems. With the application of transformer
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models, renowned for their effectiveness in sequence modelling tasks across various fields,
we may be able to learn and predict sequences in MPC problems. The main goal of the
proposed approach is to learn the binary components of MILP problems, thereby reducing
the computational load offline and enhancing the applicability of applying MPC in online
microgrid settings while keeping optimality loss as minimal as possible.

The potential of transformers to improve the predictive accuracy and operational efficiency
of learning-based MPC systems offers exciting prospects for more adaptive and resilient mi-
crogrid management. The upcoming chapters delve deeper into the specific methodologies
employed, the experimental setup, and the empirical validations that underscore the effective-
ness of transformers in this novel application. The goal is to demonstrate how this innovative
integration can address the challenges of online MPC implementation.
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Chapter 3

Methodology: Transformers for Binary
Sequence Prediction

This chapter describes the methodology for developing and implementing a transformer to
predict binary decisions in MILP problems related to the operation of microgrids. The goal
is to reduce computation time using the transformer.

The transformer architecture employed in this study is based on the architecture originally
designed for natural language processing but adapted for sequence modelling of binary deci-
sions in microgrid operations [11]. The transformer’s ability to handle sequences efficiently
makes it ideal for predicting the binary sequences in MILP problems for MPC, where each
decision point can significantly affect subsequent outcomes in a control sequence.

3-1 General Overview Methodology

The methodology for integrating a transformer into the MPC framework involves several key
steps:

1. Data collection and preprocessing: collecting and preparing synthetic and real-world
data to accurately model microgrid operations.

2. Transformer training: training the transformer to predict binary sequences representing
control actions in the microgrid.

3. From predictions to control actions: converting the binary sequences predicted by the
transformer into actionable control decisions within the MPC framework.

After the transformer predicts binary sequences, these sequences must be interpreted as con-
trol actions within the MPC framework. The transformation process involves converting the
integer sequences produced by the trained transformer into binary decisions. Each binary
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Figure 3-1: Overview methodology: training and inference Phase

value corresponds to a specific control action, such as activating or deactivating generators or
exchanging with the grid. By accurately predicting these binary decisions, the transformer
allows the MPC to focus solely on the continuous variables, thus converting a complex MILP
problem into a simpler LP problem. Figure 3-1 overviews the training and prediction phase.

3-2 Data Collection and Preprocessing

In the context of MPC for microgrids, the inputs are essentially determined by current and
future data on prices, load demands, and the system states. This dependency underscores the
importance of accurate and comprehensive data collection and preparation for learning-based
methods.
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3-2-1 Data Collection

This research utilises a combination of synthetically generated and real-world data to effec-
tively model microgrid operations and determine the efficacy of the learning-based approach.

Price Data Microgrid

Due to the unavailability of actual price data for energy transactions within microgrids, the
price profiles — specifically the costs of producing (cprod), buying (cbuy), and selling ( csell)
energy — were synthetically generated. These profiles were created using three distinct normal
distributions guided by the principle that, on average, producing energy is less costly than
purchasing it from the main grid and more expensive than selling it back. This synthetic
generation incorporates a degree of randomness to emulate real market conditions, where the
relative costs of these actions can vary. Also, the variability allows the microgrid operator
to capitalise on certain market situations, such as generating and selling surplus power at a
profit when production costs drop below selling prices.

Load Data Microgrid

The renewable energy generation and load profiles are based on actual data from the Dutch
main grid operations, which is publicly available [32]. Given the scale discrepancy between
the national grid and the microgrid scenario considered in this study, the real power data was
linearly downscaled to match the capacity of our microgrid setup. This scaling adjustment
ensures that the fundamental patterns and fluctuations in the energy generation and load
profiles remain intact.

3-2-2 Data Preprocessing

After collection, data underwent several preprocessing steps to ensure compatibility with the
transformer architecture. These steps included normalising continuous features and encoding
categorical variables, preparing the data to reflect real operational scenarios and enhancing
the learning efficacy of the transformer.

The transformer used in this study is a sequence-to-sequence (seq2seq) model, commonly
employed in natural language processing to, for example, translate sequences, [33]. Our study
processes operational data to predict binary decisions, where the source sequence includes
operational parameters, and the target sequence represents binary outcomes.

Preprocessing for microgrid data involves feature embedding techniques crucial for handling
inherently sequential and continuous variables like energy prices and power demands. By
transforming these variables into a standardised feature dimension, the data is enriched while
retaining essential information, making it suitable for the transformer framework [34].

These adaptations are vital for the transformer to effectively manage the sequence-to-sequence
modelling required for MILP problems, leveraging its ability to capture temporal dependencies
and relationships within the microgrid data.
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Generating Training and Validation Data

To generate the training data for the transformer, the following process is used:

We start by establishing the number of MILP problems to solve, reflecting various operational
scenarios over a predetermined prediction horizon. This ensures the transformer is trained on
a diverse set of data, including realistic microgrid scenarios. Data collection entails acquiring
real-time operational data from the microgrid, such as energy prices, power demands, and the
system states, as described in the previous chapter. The optimisation problem is described in
Section 2-1-2 in (2-5) and (2-7). Notably, the storage level is randomly chosen, and a random
day/time is selected for the prices, load, and renewables profiles to enhance the realism and
variability of each scenario. This data forms the basis of each mixed-integer linear program-
ming (MILP) problem’s constraints and conditions. Each MILP problem is solved to obtain
the optimal set of binary decisions involving the control of generators, load switches, and
other binary-operated components. These decisions aim for operational efficiency and cost-
effectiveness. Optimal binary decisions are then extracted and paired with their respective
data, forming a dataset where each entry consists of input features and the desired binary
outputs.

The steps taken for data generation are as follows:

1. Formulate Nsim exemplary MILP problems as described in Section 2-1-2, incorporating
randomly chosen storage levels and varied operational conditions based on random
selections of day/time for pricing and load profiles.

2. For each problem, extract the relevant parameters:

ZN =
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3. Solve the optimisation problems using Gurobi [35].

4. Retrieve the binary decision tuples from the optimisation:
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}

With the MILP problems defined and solved, the next phase involves preprocessing the ob-
tained data for effective learning by the transformer. This transition into preprocessing ad-
dresses the specific needs of transforming continuous and categorical variables into a struc-
tured form that supports transformer predictions.
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Incorporating State Information to the Source Sequence

Most of the data we present to the transformer is already in sequential form, i.e. the price
data, load data, and binary decisions. In contrast, the current state of the microgrid, which
essentially describes the battery level of the system, is not sequential but remains crucial
information for decision-making. We have considered two potential strategies to effectively
incorporate this information into the source sequence for the transformer training.

The first strategy involves repetitively including the current state data as a vector with the
length of the data sequences. This approach leverages the transformer’s attention mechanism,
which can discern and weigh the relevance of the current state information throughout the
sequence. By presenting the state repeatedly, it is anticipated that the transformer can learn
to use this information contextually at each step of the sequence prediction.

Alternatively, the current state could be included only once at the beginning of the sequence,
followed by zero-padding for the remainder of the prediction horizon. Padding in transformers
and other sequence models is a standard technique to equalise the lengths of sequences without
introducing extraneous data, ensuring consistent processing across different inputs. This
method would rely on the transformer’s ability to carry forward the state information across
the sequence through its internal memory mechanisms. Both methods ensure that the static
state information is formatted as sequential data, accommodating the sequence-to-sequence
architecture of the transformer.

For our implementation, we chose the repetitive inclusion approach, assuming that the atten-
tion mechanism within the transformer can understand the ongoing relevance of the current
state across different stages of the sequence. This choice is motivated by the desire to max-
imise the transformer’s ability to utilise available state information without assuming inherent
memory capabilities and losing important information.

We have now chosen a method to transform all relevant microgrid data into sequences that are
uniform in length and contain all relevant information required for the transformer prediction.
Each sequence includes time-step-aligned data on energy prices, power demands, and the
repeated inclusion of the current state data. This structured format ensures the transformer
receives a consistent view of the microgrid’s operational dynamics at each prediction step.
The source sequence is presented as a tensor to the transformer as in (3-1):

Sk =


cprod(k) cbuy(k) csell(k) Pload(k)− Pres(k) x0

cprod(k + 1) cbuy(k + 1) csell(k + 1) Pload(k + 1)− Pres(k + 1) x0
...

...
...

...
...

cprod(Np) cbuy(Np) csell(Np) Pload(Np)− Pres(Np) x0

 (3-1)

here cprod(k), cbuy(k), csell(k) represent the production, buying, and selling prices at time step
k, respectively; Pres(k) − Pload(k) captures the net power available; and x0, the initial or
current state of the microgrid, is repeated in every row to maintain its significance across the
prediction horizon, NP . This standardised sequence format is crucial for the transformer’s
training and inference phases, as it allows the transformer to apply its sequence-to-sequence
processing capabilities effectively. The uniformity in sequence length and the inclusion of all
relevant information ensure that the transformer can learn to predict the binary decisions
accurately, which are critical for effective MPC in microgrids. By aligning the data in this
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manner, we maximise the transformer’s potential to capture and utilise temporal relationships
and dependencies across the sequence of inputs, thus enhancing the predictive accuracy and
reliability of the MPC system. Further, by ensuring that all sequences have consistent lengths,
we eliminate the need for padding tokens in the transformer, reducing its complexity and
streamlining the processing.

Preprocessing Continuous Features

The continuous and discrete features are preprocessed differently to fit properly for the trans-
former architecture. The continuous features in the data are normalised to have a zero mean
and a standard deviation of one to ensure they are on a similar scale. This normalisation
is important for efficiently training neural networks. The normalisation is mathematically
represented as:

normalised_feature = feature− µ

σ + ϵ
(3-2)

where µ and σ represent the mean and standard deviation of the feature, respectively, and ϵ
(a small number) ensures numerical stability by preventing division by zero. This formula is
applied to continuous data before feeding them into the transformer. Normalisation can be
applied across the entire dataset or within smaller batches, depending on the training strategy
and variability of the data.

To handle the continuous nature of microgrid data, we introduce the SourceFeatureEmbedder.
This component of the transformer-based architecture transforms the raw microgrid data into
a format that the transformer can process effectively. Unlike traditional transformers that
operate on tokenised text data, our transformer requires a nuanced understanding of real-
valued input features. The SourceFeatureEmbedder linearly transforms these input features
into a higher-dimensional space, preparing them for the subsequent layers of the transformer
architecture. Further elaboration on this component is given in Section 3-3, where design
choices and practical aspects of the transformer architecture are elaborated.

Preprocessing Binary Decisions

In the process of preparing data for the transformer, special attention is given to the binary
decisions that represent operational commands within the microgrid, such as turning genera-
tors on or off. These decisions are critical as they directly impact the microgrid’s operational
effectiveness and efficiency. These sequences of binary decisions are the target sequences we
provide to the transformer.

Binary decisions within the dataset consist of five binary values at each decision point, each
corresponding to a specific action or state within the microgrid system. These values must
be accurately processed before being inputted into the transformer. For each time step k, the
binary decisions are represented as follows:

δ(k)⊤ =
[
δb δgrid δon

1 δon
2 δon

3

]
where δb determines charging or discharging of the system, δgrid the connection to the main
grid, and δon

i whether the dispatchable generators are active or not.
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Table 3-1: Conversion of binary representations to integer values

Binary Representation Integer
00000 0
00001 1
00010 2
00011 3
00100 4
00101 5

...
...

11011 27
11100 28
11101 29
11110 30
11111 31

We utilised a binary encoding strategy, which manages the binary decisions efficiently. This
encoding converts each time step’s binary decision vector into a single integer value, creating a
fixed vocabulary size. We establish 2nbinary as the total number of unique combinations. This
encoding reduces the dimensionality of the target sequence, transforming it into a streamlined
series of integer values for the transformer. Also, employing a fixed vocabulary is desirable
in standard transformer architectures as it optimises processing in the transformer architec-
ture. Table 3-1 gives an overview of how the binary decisions are transformed into integer
representations.

This approach streamlines the training process by reducing the complexity of the target data.
Using a fixed vocabulary for the transformer aligns with traditional natural language process-
ing techniques, facilitating more straightforward implementation and potentially improving
the transformer’s learning efficiency. Furthermore, retrieving the binary decisions from the
transformer predictions is straightforward using this encoding method.

Mini Batch Processing

To optimise the transformer training, we use mini-batch data processing. Mini-batch training
is a common approach in deep learning that balances computational efficiency with the ability
to effectively converge on an optimal solution. It involves dividing the entire dataset into
smaller subsets or "batches" that are processed sequentially during the training of a neural
network. Each mini-batch consists of a specified number of samples from the dataset. The
transformer’s parameters are updated after processing each mini-batch rather than after the
entire dataset or just one sample. This method offers a balanced approach, incorporating the
advantages of both batch and stochastic gradient descent methods [34].

The choice of mini-batch processing has several advantages. First, it enhances computational
efficiency because the number of simultaneously processed samples is reduced. This limits
the memory overhead while leveraging the benefits of parallel processing on modern hard-
ware. Furthermore, it helps smooth the gradient during training and often leads to better
generalisation [36].
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For practical implementation, the dataset is segmented into mini-batches using a DataLoader,
which automates the process of sampling, shuffling, and providing batches to the transformer
during training. This study chooses a mini-batch size of 32 based on empirical evidence
suggesting it offers a good trade-off between training speed and system memory constraints
[37].

3-3 Transformer Architecture for MILP in Microgrids

This section delves deeper into the specialised architecture of the transformer tailored for
predicting binary sequences in mixed integer linear programming problems for MPC.

Source Sequence Feature Embedder

Transformers, originally designed for natural language processing, typically handle discrete
input data processed as tokenised integers within a fixed vocabulary. Adapting transformers
to effectively process non-discrete, continuous inputs—such as energy prices, power demands,
and system states—is essential for applications like microgrid management within MPC.
Drawing inspiration from advancements in other fields, we propose the source feature em-
bedder. Vision transformers, for instance, adapt to the continuous nature of image data by
segmenting images into patches and encoding these as positions in a sequence, with each
position embedded to maintain spatial relationships— a method essential for sequence recog-
nition tasks. Similarly, we parallel this approach by embedding microgrid data linearly into a
higher-dimensional vector space, thereby maintaining the dimensional consistency necessary
for leveraging the transformer’s powerful attention mechanisms and making the continuous
data usable within the architecture [34].
The transformation applied by the source feature embedder is defined as follows:

y = Wx + b (3-3)

where x represents the input feature vector composed of continuous data variables such as
energy prices and power demands. W represents the weight matrix that projects the input
features into a higher-dimensional space suitable for processing by the transformer’s attention
mechanisms. The bias b aids in adjusting the output vector y, aligning it precisely with the
transformer model’s requirements.
By transforming raw feature data into dense vectors, the source feature embedder aligns
input sequences with the structural expectations of the transformer, facilitating uniform di-
mensionality and scale across all input features. This standardisation is crucial as it allows
the transformer to apply its attention mechanisms and positional encodings uniformly across
the entire sequence, enhancing the detection of subtle patterns and dependencies in the data.

Positional Encoding

In the transformer architecture, positional encoding is essential for introducing temporal
context into the data. Transformers, by design, do not have any inherent mechanism to
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recognise the input data order. Knowing the temporal context within the data is critical for
applications like microgrid control, where understanding the temporal sequence of data, such
as energy prices and load demands, is crucial for effectively understanding and learning the
decision-making of the MPC.

Positional encoding works by adding a vector to each input embedding. These vectors follow
a specific pattern the transformer learns to associate with time steps in the data sequence.
The purpose is to provide the transformer with a means of discerning the order of events
within the input data, which is not naturally possible with the standard architecture due to
its reliance on self-attention mechanisms that treat each input independently of its position
in the sequence.

Because we preprocessed the data effectively and used the source sequence embedder, it is
possible to use a relatively standard formula from [11] to apply positional encoding. Imple-
menting positional encoding involves generating sine and cosine functions of different frequen-
cies, where each frequency corresponds to a different position in the sequence. This can be
mathematically represented as:

PE(pos, 2i) = sin
(

pos

10000
2i

dmodel

)

PE(pos, 2i + 1) = cos
(

pos

10000
2i

dmodel

) (3-4)

where pos represents the position in the sequence, i is the dimension, and dmodel is the total
number of dimensions in the transformer (which is the same as the embedding size).

This pattern of sine and cosine functions is designed so that each position in the sequence
has a unique combination of these values, which helps the transformer identify the relative or
absolute positioning of the tokens in the input sequence.

3-4 Training and Prediction of the transformer

This section describes the transformer’s training process and the prediction of the binary
variables for the MPC controller.

3-4-1 Transformer Training

Training the transformer is a critical step in preparing it for deployment in microgrid control.
This section discusses the training process, including the configuration, optimisation, and
validation stages, ensuring the transformer performs optimally.

Training Setup

The training uses the cross-entropy loss function, which is appropriate for classification tasks
where the output is a probability distribution across the target classes [38]. The optimisation
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of the transformer parameters is handled by the Adam optimiser, which is noted for its
efficiency in handling sparse gradients and its adaptive learning rate capabilities.
Training involves multiple epochs where each epoch processes the entire dataset through the
transformer in batches:

1. Batch processing: each batch of source data is normalised before being fed into the
transformer. This normalisation standardises the data, ensuring that the transformer
does not become biased or sensitive to the scale of input features.

2. Loss computation: for each batch, the transformer predicts the output and the loss is
calculated by comparing these predictions against the actual targets. The loss is then
back-propagated through the transformer to update the weights.

3. Optimisation Step: The optimiser updates the transformer parameters based on the
computed gradients to minimise the loss function.

Several strategies ensure the transformer generalises well to new, unseen data and does not
merely memorise the training set. Dropout and early stopping were successful approaches
to prevent the transformer from overfitting prematurely. Integrated at various points in
the transformer architecture, dropout randomly omits a subset of features in each training
iteration. This method helps prevent becoming overly dependent on any single set of features
and promotes the development of more robust internal representations. Further, by using
early stopping, one can monitor when the performance improvement seems to halt. This
indicates that the transformer is overfitting on training data and, hence, is over-training. For
some measure, we can, therefore, stop the training process.

Validation and Performance Monitoring

After each training epoch, evaluation is performed using a validation dataset to monitor its
performance and ability to generalise. This process mirrors the training phase but includes
critical distinctions to ensure accurate performance assessment:

1. Validation loss computation: the validation loss is calculated in a manner similar to
the training loss but with the transformer set to evaluation mode. This mode disables
training-specific operations such as dropout and fixes parameters, ensuring no updates
or learning occurs during this phase. This approach ensures that the validation per-
formance reflects the transformer’s generalisation ability rather than memorising the
training data.

2. Loss analysis: validation and training losses are compared after each epoch. A stag-
nation of improvement in validation loss, accompanied by continued improvement in
training loss, typically indicates overfitting. This signals that while the transformer is
becoming increasingly accurate on training data, it is not performing better on unseen
data.

Keeping track of the validation loss during training is crucial for the transformer’s prediction
accuracy. The validation loss gives us great insights into how well the transformer generalises
on unseen data instead of overfitting.
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3-4-2 Transformer Prediction

The transformer-based MPC prediction process involves two primary stages. First, the trans-
former generates a sequence using the trained transformer. Secondly, the predicted sequence
is transformed into the binary configuration of the MPC.

Generating Predictions

The trained transformer is first set to evaluation mode to generate the predictions. In this
mode, training-specific operations like dropout are deactivated. It then follows a systematic
procedure for binary decision sequences in microgrid control:

1. Source feature embedding and positional encoding: Initially, the raw input data of the
microgrid is processed through the source feature embedder, which adapts the contin-
uous microgrid data into a format suitable for the transformer’s sequential processing.
This embedding is then enhanced with positional encoding to inject temporal context
into the data, which is crucial for acknowledging the sequence order in the subsequent
processing stages. This is similar to what was done in the training phase, making it
consistent and understandable for the transformer architecture.

2. Encoder processing: The encoded input then traverses the transformer’s encoder layers,
in which the input data is refined and enriched through the different layers. The output
from the encoder represents a comprehensive contextual representation of the input
sequence, which sets the stage for predicting sequences accurately.

3. Sequence Generation: the sequence generation starts with an empty list which is filled
iteratively:

• Embedding and positional encoding: embeds the current sequence tokens and ap-
plies positional encoding.

• Target mask generation: a mask is created to ensure causal decoding, preventing
the transformer from accessing future sequence elements not yet generated, thus
preventing future data leakage.

• Decoder processing: processes the data through multiple decoder layers, inter-
preting and predicting based on the current and broader context provided by the
encoder.

• Logit calculation and token selection: generates logits from the final layer of the
decoder to determine the probability distribution over possible next tokens, repre-
senting the binary configurations with the highest probability. The most probable
next token is identified using arg max, appended to the sequence. This process
repeats until the sequence reaches the predefined maximum length.

Using these logits from the decoder, the transformer identifies the most probable next token,
appending it to the ongoing sequence. This loop repeats until the sequence is fully generated,
adhering to the predefined maximum length to ensure completeness and relevance of the
output.
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Table 3-2: Conversion of integer values to 5-bit binary representations

Integer Binary Representation
0 00000
1 00001
2 00010
3 00011
4 00100
5 00101
...

...
...

...
27 11011
28 11100
29 11101
30 11110
31 11111

The result is a complete sequence of tokens representing the transformer’s prediction for the
binary decision-making process, ready to be transformed into actionable binary configurations
for microgrid control.

Transform Predictions in binary configurations

To enable the practical application of the MPC, the integer values generated by the trans-
former must be converted back into a format that suits within the MPC framework. As
outlined in Section 3-2, binary decision representations within the microgrid are initially rep-
resented as integers to simplify the data for the transformer during training. These integers
are then converted back to their corresponding 5-bit binary representations, which directly
map to operational commands such as turning generators on or off.

Table 3-2 illustrates this conversion process from integers to binary decisions. Appendix A
shows a complete conversion chart. This step is essential for translating the transformer’s pre-
dictions into the binary sequences necessary for simplifying MILP problems into LP problems
within the hybrid MPC framework.

The entire integration of the transformer into the MPC for microgrid operations is discussed
in Section 3-5.

3-5 Integration with MPC

This section details the integration of the transformer-based binary decision predictions into
the MPC to simplify MILP problems into more manageable LP problems, enhancing the
online applicability of the MPC in microgrids.
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Figure 3-2: Transformer-based MPC

Closed-Loop MPC Implementation

The integration begins with the transformer’s ability to predict binary sequences from the
source inputs: pricing data, predicted load demands, and the microgrid’s current state to the
trained transformer. These predictions are then seamlessly fed into the MPC controller.

Upon receiving these binary sequences, the MPC incorporates them as fixed parameters within
its optimisation framework. The model predictive control (MPC) problem is described in
Section 2-1-2 in (2-5) and (2-7). Fixing these binary values reduces the problem to an linear
programming (LP) problem. This is a crucial shift from the typical MILP problem-solving
process to a simplified LP approach. By treating the binary decisions as known quantities,
the MPC can now only focus on optimising the continuous variables of the microgrid’s opera-
tion. This simplification removes the computational burden typically associated with binary
variables in MILP, allowing for faster decision-making. Once the LP problem is solved, the
MPC controller applies the first set of inputs of the computed control sequence to the system
based on the optimised outcomes.

Following the application of the control signal, the microgrid system’s state is updated, in-
corporating changes in energy prices and load demands. This updated information feeds into
the transformer, predicting new binary sequences for the next cycle. The MPC then recalcu-
lates the control actions based on these new predictions, completing the loop. A schematic
overview of the MPC control scheme is given in Figure Figure 3-2.

Through this integration, the transformer and MPC enhance microgrids’ operational effi-
ciency, streamlining the decision-making process and adapting in real-time to the evolving
energy demands and operational conditions. The upcoming section details how the perfor-
mance of the transformer-based MPC can be evaluated and how well the transformer-based
MPC performs compared to the optimal controller.
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3-6 Evaluation Metrics and Validation

This section outlines the methods used to evaluate and validate the performance of the
transformer-based MPC compared to traditional and learning-based MPC approaches.

Loss Metrics During Training

To ensure effective and stable training, the transformer training is monitored by comparing
training loss against validation loss after each epoch. The data is partitioned into an 80 : 20
split for training and validation. The training loss assesses the transformer’s fit to the training
data, while the validation loss gives insight into generalisation by evaluating performance on
a separate set. Frequent monitoring helps adjust the hyperparameters effectively. Signs
of overfitting are indicated when validation loss stagnates or increases while training loss
decreases, indicating the need for adjustments in training strategy, such as modifying learning
rates or early stopping.

Optimality Gap Measurement

When the transformer is trained, the transformer’s performance is further evaluated through
the optimality gap metric. This involves solving the MILP using a standard solver like Gurobi
to obtain an optimal objective value, which is then compared against the value achieved using
the transformer-predicted binary sequences. Calculating this gap across numerous simulations
provides insights into the accuracy of the transformer’s predictions and its consistency in
yielding feasible solutions. A low optimality gap signifies high predictive accuracy. The
optimality gap is computed using the following:

optimality_gap = ctf − copt
copt

(3-5)

where ctf is the average cost of the transformer and copt the average cost of the optimal
controller.

MPC Operation

Operational efficiency is tested by implementing the transformer-based MPC in a simulated
microgrid environment, as described in section 3-5. The simulation tests the transformer-
based approach in realistic operational scenarios to evaluate its applicability and flexibility.
This simulation helps determine how well the transformer-based MPC adapts to changes and
manages grid operations, providing a practical measure of its utility in dynamic conditions.

Benchmark LSTM

A comparative analysis is conducted against a benchmark LSTM-based MPC, established
under similar training conditions to ensure a fair comparison. This is particularly significant
as LSTM is also a sequence-modelling technique, allowing for similar data preprocessing
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methods and the same dataset. This approach ensures a direct and fair performance contrast
between the transformer and an established learning-based approach, as highlighted in [18].
Performance metrics such as computation time, prediction accuracy, and feasibility rates
comprehensively evaluate each approach’s strengths and weaknesses in MPC applications.
In Chapter 4, the results of simulations and experiments are shown and evaluated elaborately.
This chapter shows how well the described transformer works in practice and aims to unveil
the strengths and weaknesses of applying transformers in MPC for microgrids as described in
this chapter.

3-7 Conclusion

This chapter has detailed developing and implementing a transformer tailored for predicting
binary decision sequences within MILP formulations for microgrids. The transformer, tradi-
tionally used in natural language processing, aims to enhance the computational efficiency
of MPC systems by simplifying the decision-making process. By effectively translating pre-
dicted binary sequences into actionable control decisions within the MPC framework, the
transformer facilitates a transition from MILP to simpler LP problems.
The transformer has been specifically adapted to process microgrid operational data, inte-
grating continuous and discrete data types into one learning framework. This adaptation
includes developing data preprocessing techniques that convert operational parameters into
a sequence format conducive to transformers. Central to these innovations is the source
feature embedder, which effectively handles continuous inputs such as energy prices, power
demands, and system states. Inspired by advancements in fields like vision transformers and
other machine learning applications, this component linearly transforms these inputs into a
higher-dimensional vector space, aligning them with the transformer’s architecture to enhance
its capability to leverage powerful attention mechanisms. This ensures dimensional consis-
tency and facilitates the detection of subtle patterns and dependencies critical for microgrid
decision-making, mirroring techniques used across different technological domains to handle
continuous data effectively.
Further preprocessing of the microgrid data involved incorporating the microgrid’s current
state information into the sequence prediction was introduced. By repetitively including state
information rather than padding, we assumed the transformer’s ability to utilise its attention
mechanisms dynamically, thereby improving prediction accuracy and responsiveness to state
changes in MPC operations.
We established a method for generating training and validation data, which is crucial for the tr
transformer’s ability to learn and generalise across varied microgrid operations. Enhanced by
mini-batch processing, this methodology is expected to improve computational efficiency and
strengthen the model’s ability to generalise, which is crucial for its application in real-world
microgrid management.
We proposed measures to validate and measure the efficacy of the transformer-based MPC
approach. The following Chapter Chapter 4 delves into detailed simulations and empirical
validations of the transformer. These simulations showcase the practical applications of the
methodologies developed in this chapter and evaluate the transformer’s performance in various
scenarios.
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Chapter 4

Results and Simulations:
Transformer-Based MPC for

Microgrids

This chapter presents the results and analyses from the simulations conducted to evaluate
the performance of the transformer developed for predicting binary decisions in MPC of
microgrids. The implementation aims to address the computational challenges associated
with MILP by leveraging the predictive power of transformers.

Following a detailed description of the experimental setup, this chapter outlines the process
and outcomes of various simulation scenarios designed to test the transformer’s efficacy un-
der different operational conditions. These simulations assess its ability to accurately forecast
binary decisions and its impact on the optimisation and efficiency of model predictive con-
trol (MPC) in microgrids. Key aspects of this evaluation include the analysis of training
and validation performance, optimality gap measurement, and reliability in finding feasi-
ble solutions. Additionally, the chapter compares the prediction time of the transformer to
benchmarks, which gives insightful data on its practical viability and potential integration
into existing microgrid control systems.

Through testing and validation, we aim to demonstrate the capabilities of the transformer
and its practical implications in improving the computational efficiency of MPC.

4-1 Overview of Experimental Setup

This section details the experimental setup used to evaluate the transformer designed for MPC
in microgrids. The experiments are designed to replicate real-world operational scenarios that
microgrids encounter, aiming to test the approach’s reliability, speed, and accuracy under
diverse conditions. We also discuss the choice of hardware and software, which is crucial for
meeting the demands of advanced machine learning algorithms.
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4-1-1 Simulation Environment

The simulations were conducted on a MacBook Pro equipped with an M1 Pro chip, utilising
Python and PyTorch as the machine learning library. While the M1 Pro includes an integrated
GPU, it does not support CUDA, a critical framework for accelerating computing operations
on NVIDIA GPUs, widely recognised for enhancing transformer computations. Due to the
absence of CUDA, the experiments in this chapter were conducted on the CPU, which is
less optimal for the parallel processing demands of transformers. This limitation contributed
to longer than desirable inference times. To address this, we performed an experiment that
optimised prediction time with the available resources by implementing the transformer in
ONNX runtime. ONNX allows for creating serialisable and optimisable models from PyTorch
code, and by transitioning to ONNX, the transformer is compiled into a graph representation
that runs more efficiently at Runtime. This optimisation proved crucial for deploying machine
learning models in production, where execution speed is as important as accuracy. Further
details of this experiment are given in Appendix Section B. This step is part of ongoing efforts
to refine the transformer approach’s applicability and effectiveness in operational settings,
ensuring that the transformer predicts accurately and responds swiftly to dynamic operational
conditions.

4-1-2 System Model and Assumptions

This section establishes the theoretical and operational framework used throughout our ex-
periments. As detailed in Chapter 2 and further elaborated in Appendix C, the system model
provides the foundational MLD formulation upon which our transformer operates. Under-
standing this model is essential for interpreting the training results and their applicability to
real-world scenarios. The key assumptions that hold for the simulations chapter are given
below:

• Data availability: we assume complete knowledge of predicted price and load data for
the microgrid system over the prediction horizon. This assumption allows us to focus on
the accuracy of binary decision predictions without the added variability of uncertain
input data. The details of how the data is gathered are elaborated in Chapter 3.

• Power generated by renewable energy Sources: we assume that the power generated by
renewable energy sources within the microgrid system is known. Although this is not
precisely known in practice, this would significantly complicate the MPC problem. This
assumption simplifies the complexities we need to manage in our simulations. However,
it’s important to note that this assumption is not fundamental to the applicability of our
approach. The methodologies and strategies we discuss could also be used in scenarios
where only predicted prices, loads, and renewable generation values are available, which
is more reflective of real-world conditions where exact future generations cannot be
precisely predicted.

• Consistent system configuration: a fixed number of generators are assumed, simplifying
the control problem’s complexity and ensuring that the training data reflects consistent
operational conditions.
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These assumptions are pivotal for structuring our experiments and are designed to isolate
the performance in controlled conditions. By maintaining a consistent system model and set
assumptions, we can accurately assess the impact of different hyperparameter configurations
on the transformer’s ability to learn and generalise effectively.

4-2 Training Results

With the system model and foundational assumptions laid out, this section delves into the
outcomes of the training phase for the transformer. We explore configurations and their
effects on the transformer’s training time and loss computation in a controlled simulation
environment.

4-2-1 Hyperparameter Configuration and Training Process

The development of the transformer begins with careful tuning and setting up of hyperparam-
eters, crucial for optimising the learning dynamics specific to microgrid control applications:

• Vocabulary sizes: we use a target vocabulary size of 32, reflecting the transformer’s
capability to predict 32 unique binary outcomes. This parameter is critical because it
specifies the possibilities in the output space that the transformer can predict. The
source vocabulary does not have a specified size due to the continuous nature of the
input data.

• Architectural configuration:

– Model dimensionality: Refers to the size of the transformer’s hidden layers and
embeddings. This affects the transformer’s overall architectural configuration and
impacts each part of the architecture’s processing pipeline, from input handling
to producing final outputs. It is a core attribute that determines the capacity of
the transformer to process and represent data, influencing both the computational
power required and the depth of data representation achievable.

– Number of heads: this parameter controls how many different parts of the se-
quence are attended to independently in multi-head attention mechanisms. More
heads allow the transformer to capture a wider range of dependencies but increase
computational complexity.

– Number of layers: each layer allows the transformer to learn another level of ab-
straction in the data. More layers typically enable deeper understanding but also
increase the risk of overfitting and the computational burden.

– Dimension of feedforward network: this defines the size of the feedforward layers
within each transformer block. A larger dimension can enhance the transformer’s
capability to understand complex relationships but may lead to overfitting and
extended training durations.

• Sequence handling and regularisation:
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– Maximum sequence length: corresponds to the fixed prediction horizon length,
with longer sequences increasing task complexity and computational demand as
the transformer’s attention mechanism needs to span wider data stretches.

– Dropout: a regularisation method to prevent the transformer from overfitting by
not overly depending on any single feature. Higher dropout rates can aid general-
isation, though excessive rates might impede learning

• Optimisation parameters:

– Learning rate: dictates the speed at which the transformer updates its weights
during training. A lower rate might slow down learning but can lead to more
stable convergence.

– Number of epochs: represents how often the training algorithm works through the
entire training dataset. More epochs allow for more thorough learning but can lead
to overfitting without adequate stopping criteria.

We began the training process by collecting data as outlined in Section 3-2-2. After solving
16,000 mixed-integer linear programming (MILP) problems, we partitioned the data into a
training and validation set in an 80-20% ratio. This ensures sufficient data volume for training
and reliable validation, aligning with other studies performing similar tasks, e.g. in [10] and
[18].
The transformer was trained using a batch-based approach, normalising each batch using
global statistics from the training set to maintain consistent input feature scaling. Adjust-
ments to hyperparameters, including changes to model dimensionality, number of heads,
dropout rates, and learning parameters, were evaluated to discern their trade-offs between
enhancing the transformer’s representational capacity and the required computational time.
This calibration aimed to find a good balance, ensuring that the transformer achieves high
precision in predicting binary sequences for microgrid control and maintains computational
efficiency, which is crucial for real-time applications

Training Outcomes

After adjusting and testing various hyperparameters, we can distinguish two approaches for
configuring the transformer. First, we can prioritise higher complexity with increased model
dimensionality, number of heads, and layers. The other takes a more minimalist approach
with fewer layers and reduced complexity, aiming for faster training times but potentially
less accuracy. We also performed experiments with two different sequence lengths to see the
effect of longer sequences and whether the transformer still performs well for a longer sequence
length.

High Complexity Configuration

The first configuration includes high dimensionality, multiple attention heads, and several
layers. This setup is expected to capture intricate dependencies within the data, thereby
improving the transformer’s ability to generalise and make accurate predictions in new, un-
seen scenarios. However, this high complexity carries the risk of overfitting, and it can be
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Figure 4-1: Training and validation loss of higher complexity configuration, total training time:
158.4 minutes

expected that inference will take longer with a more complex configuration. This complexity
is reflected in the substantial number of trainable parameters— precisely, 23,168,544. This
large scale of parameters can significantly impact computational load, potentially leading to
longer inference times, which are less desirable for real-time applications. Despite these con-
cerns, it is beneficial to compare the higher complexity to the lower complexity configuration
to see how prediction accuracy is affected by the configuration of hyperparameters.

The hyperparameter configuration is depicted in Table 4-1. Figure 4-1 shows the training and
validation results of the higher complexity transformer. It can be seen that the training and
validation loss initially decrease, which implies that the transformer learns and generalises
well. However, after 20 epochs, the validation loss is platooning while the training loss is still
decreasing. This indicates that the transformer is starting to overfit the training data, so the
training has been stopped. The training time of this configuration is 158.4 minutes. This is
significantly higher than when compared to a transformer of lower complexity. However, we
assume that the transformer may learn more intricate dynamics in the data since the losses
are lower than the final loss in the other configuration. This makes the training time possibly
worthwhile.

Low Complexity Configuration

The second configuration uses fewer layers and a reduced number of dimensions and heads.
Although it is expected that this will significantly decrease training time, it is possible that
the transformer will not be able to learn the most intricate dependencies in the data and,
therefore, generalise in new unseen scenarios. However, using a less complex configuration
may have several advantages. First, the training time will be significantly reduced due to the
lower complexity, primarily because the number of trainable parameters is lower, specifically,
1,261,344 parameters. This reduction in complexity speeds up training and benefits infer-
ence performance. We use the trained transformer to predict sequences for the MPC in the
inference phase. A lower complexity means that the source sequence passes through a less
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Figure 4-2: Training and validation loss of lower complexity configuration, total training time:
14.9 minutes

complex transformer, which speeds up the prediction time—a critical advantage in the online
control of the MPC.

Figure 4-2 shows a training and validation loss plot for the lower complexity trained trans-
former. The plot illustrates an initial significant decrease in training and validation losses,
indicating effective learning and generalisation. However, the validation loss platoons as train-
ing progresses, suggesting the start of overfitting. This configuration significantly reduced
training time to 14.9 minutes, which is beneficial for scenarios requiring quick deployment or
limited computational resources. While the reduced complexity accelerates training and in-
ference, potentially enhancing real-time applications like MPC, it may struggle with complex
data dependencies, highlighting a trade-off between accuracy and inference time. This under-
scores the need to balance complexity against specific application demands and constraints.
Further investigation into this trade-off must be done before conclusions can be drawn on
prediction accuracy.

Preliminary Conclusions Training Phase

The training results indicate a strong start with relatively low initial loss values and a steep
decline, suggesting that the transformer can quickly learn the underlying patterns in the mi-
crogrid data. However, the tendency towards overfitting, as indicated by the platooning of
validation losses, suggests that while the transformers capture the training data well, they
may not generalise as effectively to new, unseen data without further adjustments to prevent
overfitting. Further, we see that the number of epochs needed for training is relatively low
compared to other learning-based methods. Results over extended training periods showed
that prolonged training did not yield improvements, as the validation loss consistently pla-
tooned or even increased, indicating primarily overfitting rather than learning to generalise
from new, unseen data.

High and low-complexity configurations demonstrate the transformer’s adaptability to dif-
ferent operational demands. While potentially offering better generalisation in complex sce-
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Table 4-1: Transformer configuration parameters

Parameter Low complexity High complexity
Source Vocabulary Size - -
Target Vocabulary Size 32 32
Model Dimension (dmodel) 128 256
Number of Heads 8 16
Number of Layers 1 8
Dimension of Feedforward Network (dff ) 2048 2048
Feature Dimension 5 5
Maximum Sequence Length NP NP

Dropout 0.1 0.2
Number of Epochs 30 20
Learning Rate 0.0001 0.0001

Training Time 14.9 minutes 158.4 minutes
Nr. Trainable Par. 1,261,344 23,168,54

narios, the higher complexity configuration requires careful management due to its longer
training times and a greater risk for overfitting. On the other hand, the lower complexity
configuration promises quicker training and inference times, making it more suitable for online
applications, though possibly at the expense of capturing more complex data relationships.

These findings will guide future iterations of tuning, particularly in exploring combined ap-
proaches that balance complexity with computational efficiency. The subsequent sections
will delve deeper into how these configurations affect prediction accuracy and the practical
deployment of the transformer in microgrid management.

4-3 Prediction Accuracy of Transformer-Based MPC in Open Loop

With multiple transformers trained under varying configurations, this section evaluates their
prediction accuracy. Critical to our analysis is the optimality gap, a key measure that quan-
tifies the performance of the transformer. The optimality gap measures the percentage dif-
ference between the optimal solution and the solution derived from the transformer’s binary
predictions for different MILP parameterisations.

Alongside the optimality gap, we also use the success rate of the transformer as an impor-
tant metric. Defined as the percentage of instances where the transformer produces feasible
solutions in MILP, this metric gives insight into the reliability and practical utility of the
novel approach. Another essential aspect of the evaluation is the solution time, which bench-
marks the speed of our transformer-based approach against conventional solvers. This section
will help understand transformer-based MPC ’s real-world applicability and effectiveness in
controlling microgrids. This section evaluates the performance in open-loop. Feedback is
included in Section 4-4.
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4-3-1 Experimental Setup

We initially examine the accuracy of predictions in open-loop scenarios to evaluate the effec-
tiveness and reliability of the transformer-based MPC for microgrids. Given that MPC within
mixed logical dynamical (MLD) systems fundamentally involves solving MILP problems to
determine optimal control strategies—which this study aims to simplify—our focus here is
primarily on this aspect of control. We redefine the MILP used in this simulations and refer
to Section 2-1-1 and Appendix C for further details:

min
P dis(k),Pgrid(k),Pb(k),δ(k),z(k)

J(P dis(k), Cgrid(k), cprod(k))

subject to:
E1δ(k) + E2z(k) ≤ E3u(k) + E4,

Pb(k) =
Ngen∑
i=1

P dis
i (k) + Pres(k) + Pgrid(k)− Pload(k),

P b ≤ Pb(k) ≤ P̄b,

P grid ≤ Pgrid(k) ≤ P̄grid,

δon
i P grid ≤ Pgrid(k) ≤ δon

i P̄grid,

xb ≤ xb(k) ≤ x̄b,

u(k) = [P ⊤
dis(k), Cgrid(k), Pb(k)]⊤,

for i = 1, . . . , Ngen,

for k = 0, . . . , Np − 1.

(4-1)

Accordingly, we assess how accurately the transformer-based approach predicts outcomes and
its ability to find feasible solutions consistently. The experiments include solving (4-1) for
various realistic states, pricing, and load conditions typical of microgrids. By conducting a set
of these MILPs, we seek to cover a wide range of potential operational challenges the system
might encounter.

Each MILP problem is first solved using the commercial solver Gurobi to establish a bench-
mark for the optimal solution [35]. These solutions serve as a baseline against which the
solutions utilising the transformer predictions are compared. Subsequently, the same MILPs
are processed using the transformer to predict the binary decisions, δ, in (4-1), which simpli-
fies the problems into linear programming (LP) problems. This reduces their computational
complexity and potentially speeds up solution times. The primary measures for evaluation
include the optimality gap, the success rate and the solution time.

This experimental framework tests the transformer’s predictive accuracy and highlights its
efficiency and reliability in practical conditions. The outcomes of these experiments are
expected to provide insights into the capabilities of transformer-based MPC in microgrid
settings. In the following sections, we present the results of these experiments, analysing them
in the context of the established metrics and discuss their implications for future applications
in microgrid management.
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4-3-2 Performance Evaluation of Transformer-Based MPC

This section delves into the evaluation of the transformer-based MPC. The single trans-
former refers to the initial approach where one trained transformer was used to make all
predictive decisions. Subsequently, we analyse the cascaded transformer, which uses multiple
transformers in transformer-based MPC.

Performance Evaluation with Single Transformer

The system’s initial configuration employed a single transformer, assuming this would be suf-
ficient for managing the diverse and dynamic conditions typical of microgrid operations. This
section explores the outcomes and challenges encountered with this setup. Several hyper-
parameter configurations have been tested to evaluate the single transformers. Further, the
transformers have been assessed on two different horizon lengths, i.e. 25 and 48, representing
12h and 24h, respectively.

To evaluate the performance of our single transformer, we solve 1000 open-loop problems from
the validation dataset representing different microgrid scenarios. The core of our evaluation
involves two key steps: first, solving the MILP problem to optimality to establish a benchmark
for optimal outcomes; second, assessing the transformer’s predictions and solving the problem
using the transformer’s predictions. We measure performance primarily through three metrics:
the success rate, the optimality gap, and the average solution time. These metrics directly
indicate the transformer approach’s reliability and precision in a practical setting.

Table 4-2 and Table 4-3 show the results of several experiments run using different hyperpa-
rameter configurations for two prediction horizon lengths. From Table 4-2, it can be deduced
that the transformer can give accurate predictions for the optimisation during the majority
of the time for NP = 25. The optimality gap is consistently low, while the success rate is
also higher than 90%. However, the optimisation time required for the transformer-based ap-
proach is higher than the time it takes to use a commercial solver. This result was not initially
expected since we have used the trained transformer to simplify the problem from a MILP
problem to an LP problem. This indicates that the time required for the transformer-based
predictions exceeds that of solving the problem directly with a commercial solver. This is
substantiated further when we solely analyse the Runtime of the LP problem. This Runtime
is only 0.00063s, which means that predicting the binary values for the optimisation problem
is the bottleneck.

The prediction time problem is especially visible when we use a more complex configura-
tion, which increases the inference time even further. The prolonged inference time can be
attributed to the higher complexity of the transformer. Transformers, by design, are com-
plex constructs with potentially millions of parameters, necessitating a substantial number of
computations, especially during the sequence-building phase of prediction. Each prediction
requires the transformer to process through its extensive network to generate the sequence
iteratively. This significantly impacts the overall efficiency of the solution process. Further
optimisation of the transformer is necessary to address the inefficiencies in inference time.
Appendix B further examines an exemplary approach.

When we analyse Table 4-3, we observe that the transformer struggles to achieve similar
performance over longer horizons (NP = 48). First, it can be seen that the success rate
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Table 4-2: Performance evaluation of transformer for different configurations, Horizon = 25

Model Success Rate [%)] Optimality Gap [%] Avg. Time [s] Gurobi [s]
Low complexity 92.30 1.09 0.0469 0.0039
High complexity 76.80 0.66 0.3272 0.0039

Table 4-3: Performance evaluation of transformer for different configurations, Horizon = 48

Model Success Rate [%)] Optimality Gap [%] Avg. Time [s] Gurobi [s]
Low complexity 23.5 1.14 0.1141 0.0068
High complexity 61.30 0.59 0.4921 0.0068

has dropped significantly, especially for those with lower complexity. This indicates that the
transformer of low complexity cannot accurately generalise to achieve accurate predictions
over the majority of time. However, if the transformer predicts a feasible solution, it predicts
with only a slight optimality gap. We can see that the success rate and optimality gap
improved when using the higher complexity, which comes at the cost of severe prediction
times. This indicates that further tuning is required alongside computational optimisation of
the transformer to achieve better and online applicable results over longer horizons.

From the experiments over longer and shorter horizons, it can be deduced that while the
transformer generally provides accurate predictions for optimisation, achieving consistently
low optimality gaps, the success rate is disappointingly lower than anticipated. The success
rate is relatively low in too many cases, indicating that the transformer often fails to produce
feasible optimisation solutions. Given the undesirably low success rate, we implement a
fallback strategy involving multiple transformers, as will be discussed further in the upcoming
section. This strategy employs several transformers trained under slightly varying conditions
to provide backup predictions when the primary transformer fails to yield a feasible outcome.
This approach aims to enhance the reliability of the MPC system.

Performance Evaluation of Cascaded Transformers

Given the challenges encountered with the single transformer configuration—particularly its
relatively low success rate in producing feasible solutions—a more robust approach is as-
sumed to be necessary. Hence, we have implemented a cascaded fallback strategy involving
multiple transformers to enhance the reliability of the predictive control system. This section
explores the performance of this modified system architecture, where multiple transformers,
each trained using slightly different hyperparameter configurations, are employed sequentially.
The single transformer evaluation concluded that the shorter horizon could use lower com-
plexity configurations while the longer prediction horizon required higher complexity config-
urations. This cascade setup is designed to provide backup predictions whenever the primary
transformer fails to deliver a feasible solution, thereby increasing the overall success rate of
the system.

The decision to adopt a cascaded approach stems from initial observations that, while the
transformer generally delivered accurate predictions for optimisation with consistently low
optimality gaps, the overall success rate is insufficient for effective MPC operation; we would
require fallback strategies too often when only using one transformer. This discrepancy was
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mainly observed when dealing with more complex configurations and longer prediction hori-
zons, where the single transformer often struggled to maintain performance consistency.

In this fallback strategy, control is passed to the next transformer in the cascade if the pri-
mary transformer fails to predict a feasible solution. Each subsequent transformer in the
sequence offers a slightly different interpretative perspective on the input data, potentially
capturing nuances that the previous one missed. This layered approach increases the likeli-
hood of obtaining a feasible solution and enhances the system’s robustness against the diverse
operational challenges encountered in microgrid management. We chose a configuration with
a high success rate as the first transformer in the cascade and hope the other transformers
will increase the success rate.

While we anticipate that the cascaded approach will improve the success rate of feasible solu-
tions, it comes with the inherent drawback of potentially requiring more predictions in some
scenarios. Each additional prediction step adds to the total computation time, increasing
the overall solution time. This trade-off between increased success rates and prolonged solu-
tion times is a critical factor that must be considered when evaluating the effectiveness and
efficiency of the cascaded transformers.

The performance of these cascaded transformers is assessed using the same measures previ-
ously applied: success rate, optimality gap, and average solution time. Special attention is
given to comparing the success rates before and after implementing the fallback strategy to
quantify the improvements this approach brought about explicitly.

The forthcoming analyses and results will detail the effects of additional transformer layers
on the MPC’s ability to handle increasingly complex scenarios without sacrificing operational
efficiency or decision-making speed. These insights are crucial for validating the fallback
strategy’s effectiveness and for informing future enhancements to the transformer-based MPC
framework. Algorithm 1 shows the cascaded transformer prediction approach.

Results of Cascaded Transformers

Implementing a cascaded strategy involving multiple transformers shows a clear improvement
in the success rates of feasible solutions as more transformers are added to the system. The
plot below (Figure 4-3) and the accompanying table (Table 4-4) illustrate how the success
rates increase with each additional transformer in the cascade.

As shown in the figure, the success rate initially starts at 89.5% with a single transformer
and increases to 98.10% with four transformers. This significant improvement underscores
the benefit of the fallback strategy, where each subsequent transformer in the cascade can
potentially correct the shortcomings of its predecessors. The optimality gap remains low
across different configurations.

We see similar results for the longer horizon open-loop MPC, where NP = 48. Again, the
success rate increases by including more transformers. However, the final success rate is
significantly lower than the shorter horizon’s success rate, as seen in Table 4-5. Also, the
average solution time for this application has increased. This is due to multiple factors: first,
since the success rate is lower overall, we need to predict for all four transformers more often
than the other experiment. Second, since the transformer predicts the sequences iteratively,
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Algorithm 1 Cascaded transformer prediction
1: Input: microgrid_sequences, transformer_list[]
2: Output: feasible_solution, total_inference_time
3: Initialise:
4: feasible_solution ← NULL
5: total_inference_time ← 0
6: model_count ← 0
7: for each model in transformer_list do
8: Start timer
9: prediction ← model.predict(input_sequence)

10: Stop timer
11: total_inference_time += timer.duration
12: model_count += 1
13: optimisation_result ← run_optimisation(prediction)
14: if optimisation is feasible then
15: feasible_solution ← optimisation_result
16: break
17: end if
18: end for
19: if feasible_solution is not NULL then
20: return feasible_solution, total_inference_time
21: else
22: Log: "No feasible solution found after {model_count} models."
23: return NULL, total_inference_time
24: end if
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Figure 4-3: Success rate with increasing number of transformers for NP = 25

Table 4-4: Success rates for cascaded transformers, NP = 25

Number of Transformers Success Rate Run 1 (%) Success Rate Run 2 (%)

1 transformer 89.50 91.00
2 transformers 95.20 96.50
3 transformers 96.50 96.80
4 transformers 98.10 98.40

Optimality gap 1.30% 1.19%

Average MILP time: 0.0040

Average LP time: 0.0729 seconds

a longer sequence will logically lead to longer prediction times and, thus, longer optimisa-
tion times. What should be noted is that the average optimality gap of the longer horizon
transformer-based MPC is very low, which indicates that when a solution is found for the
transformer, the prediction is very accurate. This is also because we needed to transformers
of higher complexity compared to shorter horizons to achieve good results. We saw in the
previous section that this can reduce the optimality gap.

Especially the success rate is concerning, as this is significantly lower than for the shorter
horizon MPC. The lower success rate for the longer horizon MPC suggests limitations in
the transformer’s scalability and ability to handle complex, extended sequences. This de-
crease in success rate may stem from several specific challenges. First, the training dataset
may not adequately capture the complexities of longer-duration dynamics, lacking sufficient
scenarios that mimic extended operational sequences encountered in real-world settings. We
used the same amount of data for both horizons while increasing the horizon might require
more data. Future enhancements could include diversifying the training scenarios to better
encompass these extended periods by increasing the amount of training data to improve out-
comes. Moreover, further tuning of the transformers to find a more optimal configuration of
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the transformers for longer horizons would be beneficial.

Table 4-5: Success rates for cascaded transformers, NP = 48

Number of transformers Success Rate Run 1 [%]

1 transformer 58.50
2 transformers 69.20
3 transformers 74.30
4 transformers 76.00

Optimality gap 0.50%

Average MILP time: 0.0068

Average LP time: 0.5044 seconds

In the shown experiments, the number of transformers was not increased further than four.
Other experiments on expanding the cascaded transformers have indicated diminishing re-
turns in success rate improvements with adding more transformers. While the number of
transformers initially significantly boosted the success rates, subsequent additions have shown
only marginal gains. These minimal improvements do not compensate for the potential in-
crease in computation time required, suggesting a point of diminishing returns in the cascad-
ing strategy. Given these findings, alternative approaches must be considered for scenarios
requiring a feasible solution, such as closed-loop MPC. We discuss two potential strategies.

When the transformer fails to deliver a feasible solution, reverting to solving the MILP directly
with a commercial solver might be advisable despite the high computational demand. This
approach guarantees a solution but at a higher computational cost. The direct solution of
MILPs should be reserved for exceptional cases where the transformer-based approach fails
to meet the required thresholds of feasibility and efficiency. From Figure 4-3, this will only
be the case in less than 2% of the time.

Another viable strategy involves implementing a simple, rule-based fallback system. This
system would activate when predictions fail to achieve a solution quickly. Rule-based sys-
tems, while less sophisticated and potentially less optimal than model-based predictions,
have the advantage of consistency and reliability. They can provide a straightforward, pos-
sibly costlier, solution in terms of operational efficiency but ensure that the control system
remains functional in all scenarios. This approach has been described successfully in [10],
where a rule-based algorithm is used as a fallback when the learning-based MPC does not
yield a feasible solution.

These alternatives, while effective in ensuring system operation under all conditions, come
with their own set of trade-offs:

• Direct MILP solution: higher computational costs and longer solution times, which
could be prohibitive in real-time operational scenarios.

• Rule-based strategy: Potential loss in optimality but increased reliability and simplicity
in implementation.
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Figure 4-4: Transformer-based MPC diagram for microgrid

Deciding on the best approach depends on specific operational criteria, including the criticality
of decision speed, acceptable levels of operational costs, and the typical complexity of the
scenarios encountered. Further research and testing may be required to balance these factors
optimally for the microgrid application.

In this section, it became apparent that despite high accuracy and a satisfactory success rate,
the computation time required by the transformer poses a significant challenge. Addressing
this requires exploring optimisation strategies to mitigate inference time and enhance system
performance. In Appendix B, we explore a method to address this computation time and
discuss other potential strategies to address the computational challenges encountered.

4-4 Closed Loop MPC Simulations

In this section, we detail the outcomes of closed-loop MPC simulations, designed to compare
the traditional hybrid MPC approach with the transformer-based MPC technique. In the
previous sections, the simulations were performed in open-loop under fixed conditions. In
contrast, the closed-loop approach dynamically updates the microgrid’s state based on system
feedback, directly responding to the inputs applied during each simulation step. This approach
adjusts the state with each time step and progresses through the microgrid data over time,
thereby incorporating an additional future time step at each iteration. This setup offers
a more authentic simulation environment, designed to mirror actual operational conditions
closely, thereby allowing us to evaluate the transformer-based optimisation’s performance in
realistic scenarios. Figure 4-4 depicts the control scheme used in this section.

Simulation Transformer-Based MPC

We first analyse the performance of the transformer-based MPC over a shorter horizon. Dur-
ing the evaluation, we focused on average costs, average computational time, and the number
of infeasible configurations during operations (the success rate). When the MPC predicts an
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Table 4-6: Comparison of closed Loop MPC simulations

Metric Optimal MPC Transformer-based MPC
Avg. Costs 3786.50 3801.53 [0.3%]
Avg Computation Time [s] 31.38 87.33
Avg. Infeasible [%] 0% 19%

infeasible configuration, we fall back to the optimal MPC to ensure the simulation runs to
completion as detailed in Section 3-5.

For the simulation of the transformer-based MPC, we use the same trained transformers
described earlier in this chapter and the data we used earlier. We use the validation dataset
of 3200 samples based on realistic microgrid data as described in Section 3-2-1 to ensure
that the transformer-based MPC cannot predict directly based on training samples. The
simulations are performed over 150 time steps, and the average results are taken over all
simulations. In total, we perform 150 simulations with different initial states and price and
load profiles to get a good insight into the performance of the transformer-based MPC. We
use a prediction horizon of: NP = 25, corresponding to approximately 12h. Table 4-6 displays
the results of the MPC simulations.

From Table 4-6, it can be seen that the transformer-based MPC works mostly as expected
when we consider the earlier conducted experiments. The transformer-based MPC has a
slightly higher cost on average, which should be expected as we compare it to an optimal
controller using Gurobi. The optimality gap is lower than that found in open-loop, which is
to be expected since the optimal controller has taken over as a fallback in part of the time
steps, reducing the optimality gap.

The percentage of time that the transformer-based MPC is infeasible is higher than in the open
loop case, which was not particularly expected. One explanation can be that the feedback
MPC computes states that were underrepresented or not represented in the training data.
This can make predictions more difficult for the transformer-based MPC and lead to infeasible
solutions. During the training phase, the range of the initial battery state inputted into the
transformer varies from 25 to 250 kWh. However, we observe that the battery state can extend
outside these predefined ranges in simulation scenarios. During closed-loop simulations, we
use the current system state as state input to the transformer. This may affect the predictive
performance of the transformer-based MPC’s predictions in the closed-loop MPC. One way
to resolve and test this issue would be to make a more diverse set of (initial) states for
the transformer during training, including more varied operational situations and retrain the
transformer.

Further, a notable aspect observed during simulations is that when the transformer-based
MPC fails to predict an optimal state for a specific timestep, it often generates infeasible
solutions for subsequent timesteps. This may be because the data differs only slightly from
time step to time step. This trend, where slight variations in state, price, and load data occur,
can increase the number of consecutive infeasibilities and yield a higher infeasibility rate.

Lastly, we observe a discrepancy between the computation times of the closed-loop MPC and
open-loop MPC, primarily due to differences in how we measured these times during simu-
lations. For the open-loop MPC, computation time was explicitly recorded for the runtime
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and inference time directly associated with solving the MILP. In contrast, for the closed-
loop MPC, we measured the computation time for the entire sequence of time steps, which
includes additional processing beyond just solving the MILP. This methodological difference
explains why computation times reported for the closed-loop MPC are not directly compa-
rable to those from the open-loop MPC. Despite this, we note that the transformer-based
MPC consistently shows longer computation times than the optimal MPC, aligning with our
expectations based on previous results. This longer processing time reflects the inherent com-
putational complexity introduced by the transformer’s sequence processing, especially when
adjusting to dynamic system states in real-time.

4-5 Comparison of Transformer-Based MPC Against Benchmark
LSTM

Progressing from evaluating cascaded transformers, we assess the performance of the transformer-
based MPC to another leading sequence modelling technique. Both transformers and long
short-term memory (LSTM) have excelled in sequence modelling tasks over recent years, mak-
ing them prime candidates for a comparative analysis in the context of MPC. The relevance
of LSTMs in similar applications is shown in [18], where LSTMs are also used to predict
binary sequences in MILPs for different applications in a similar manner.

One significant advantage in comparing transformers to LSTM approaches is that they can
handle similar data preprocessing methods and formats. This uniformity allows for a focused
comparison primarily based on the differences in their architectures rather than variations
in input handling. By maintaining consistent data treatment, we ensure that any observed
performance differences can be attributable to the intrinsic qualities of each approach rather
than external factors. This approach allows for a clearer assessment of which architecture
might better suit the complex needs of microgrid management under the MPC framework.

LSTMs, a specific variant of recurrent neural networks, were developed to address the chal-
lenge of vanishing and exploding gradients in sequence modelling with remarkable results. For
an in-depth discussion of the LSTM architecture and its operational mechanisms, we refer to
[30].

Experimental Setup

We have chosen to use an open-loop setting to evaluate the predictive accuracy of transformer-
based MPC versus LSTM-based MPC. This approach allows us to directly compare the
prediction capabilities of the different approaches without external influences from feedback
mechanisms.

The LSTM and MPC are trained on the same amount of data using the same dataset, ensur-
ing any performance differences are due to the approaches themselves and not variations in
training data. Also, we can use the same data preprocessing and representation, i.e. making
tensors of the relevant data, normalising the data and splitting it into mini-batches for effi-
cient training. The hyperparameters of the LSTM are tuned based on empirical results and
are tuned to achieve good performance to make the comparison as fair as possible.
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Table 4-7: Performance comparison of LSTM and transformer

Metric LSTM Transformer Gurobi
Training Time [s] 1796.84 891.88 -
Success Rate [%] 99.80 99.40 100
Optimisation Time [s] 0.0021 0.0487 0.0037
Optimality Gap [%] 0.18 0.76 -

To evaluate the performance of both, we use several measures. First, we assess the training
time. This gives insight into the computation efficiency during training. After training, both
models are tested with new sequences from a validation set to measure their performance and
see how well both models generalise. The models are compared regarding prediction time,
optimality gaps, and success rate during prediction.

Evaluation of LSTM vs Transformer in Open Loop

Table 4-7 provides a comparative overview of the key performance measures for both models.
Note that we use the cascaded transformer setup and that, from experience, we do not expect
that it is necessary that the LSTM requires a cascaded setup.

From the table, it can be seen that training an LSTM takes longer compared to a transformer.
This could be expected as the transformer architecture, in general, is very efficient in training
due to its parallel processing capabilities and self-attention mechanism, which requires simple
computations. However, it should be noted that the entire transformer-based MPC takes
longer to train, as we chose to train multiple transformers for the cascaded setup. We can train
multiple transformers with different configurations in parallel, so we compare the training time
of the single transformers in this evaluation.

When comparing the performance of the transformer-based MPC to the LSTM-based MPC,
we observe that our transformer-based method cannot outperform the benchmark LSTM.
Both perform adequately in the open-loop setting; the success rates are similar, and the
optimality gaps are also low. Although the LSTM outperforms the transformer in both
metrics. The main difference between the two is the average time required for optimisation.
As we observed earlier, the current transformer is inefficient in prediction and, therefore, takes
too long, which causes the transformer-based MPC to take significantly more time than the
LSTM and Gurobi.

Conclusion of the Benchmark Comparison

The evaluation of LSTM and transformers for predicting sequences in microgrid applications
reveals the distinct strengths and limitations of each approach. Although transformers do not
match the LSTM in prediction efficiency, they achieve comparable success rates and optimality
gaps. This indicates that while the fundamental architecture of transformers holds promise,
the extended prediction time—primarily due to the current computational setup—presents a
significant bottleneck. Unlike LSTMs, which are less parameter-dense and do not rely heavily
on parallel computing, transformers are more susceptible to performance inefficiencies in
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environments that do not fully leverage their parallel processing capabilities, such as typical
CPU-based systems, which were available for this experiment.

Future efforts should focus on optimising the computational aspects of transformer inference
to enhance the practicality of using transformers in microgrid data prediction. Streamlin-
ing these processes could potentially elevate the transformer to a more competitive position
relative to the LSTM, especially when rapid prediction capabilities are crucial.

Moreover, considering that LSTMs inherently manage fewer parameters and thus operate
more effectively within CPU-constrained environments, it becomes essential to adapt trans-
formers to be less resource-intensive or shift computational strategies to platforms capable of
fully exploiting their architecture. The insights from this benchmark evaluation suggest that
while LSTMs currently excel in efficiency and adaptability to less powerful computational
environments, transformers—with targeted optimisations—could eventually harness their in-
herent capabilities for parallel processing to deliver enhanced performance.

4-6 Discussion

This section delves into the implications and significance of the findings presented in this
chapter. By analysing the outcomes of various simulation scenarios, this discussion aims
to interpret the performance of the transformer in microgrid control, assessing its practical
viability and potential integration into existing systems. We evaluate the transformer’s ability
to meet the operational demands of microgrids, considering the computational challenges
and the comparative effectiveness against other advanced machine learning techniques and
traditional methods.

Transformer prediction time
The transformer has demonstrated its capability in accurately predicting binary decisions,
which is crucial for the optimisation and efficiency of MPC in microgrids. However, its
computational efficiency, particularly in prediction times, faces challenges when compared
directly with commercial solvers like Gurobi or benchmarks such as LSTMs. The implemen-
tation in ONNX runtime in Appendix B has notably improved the transformer’s inference
time, enhancing its potential for real-time applications and demonstrating that strategic im-
plementation changes can significantly impact prediction speed. These improvements suggest
that the model’s efficiency could substantially increase under optimised conditions.

Moreover, the comparison between the transformer and Gurobi requires careful consideration.
Gurobi shows superior computational efficiency, particularly due to the optimised resources
used in the study. We are evaluating a transformer developed in Python with PyTorch, which
contrasts with Gurobi —a highly optimised commercial solver ideally suited for CPU applica-
tions. The transformer’s computations would greatly benefit from parallel processing in GPU
units or more optimised computational environments than Python. This discrepancy in the
underlying technology can significantly influence performance, especially in computational ef-
ficiency. Therefore, while insightful, these comparisons must be critically evaluated to ensure
a fair and meaningful assessment of the transformer’s potential in real-world applications.
With further consideration of the implementation and environment, it is expected that we
can improve the prediction time of the transformer and create a fairer comparison.
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Longer Prediction Horizons
Challenges observed with longer horizon predictions underscore model enhancements’ need
to handle extended sequences effectively. The transformer demonstrated high accuracy and
reliability over shorter horizons but faced significant performance drops for longer horizons.
This issue highlights a potential oversight in our initial approach — we assumed that the same
amount of data would suffice for both short and twice-as-long prediction horizons. However,
longer horizons likely involve more complexities and dynamics, suggesting that a larger or
more diverse dataset might be necessary to improve model training and performance.

The lower success rate of the low-complexity transformer configuration in longer horizon pre-
dictions highlights the need for model tuning. Increasing the model’s complexity led to sig-
nificant performance improvements, demonstrating its potential to handle complex, extended
sequences better. However, this benefit must be balanced against increased computational
demands, as greater complexity can prolong prediction times, limiting the model’s real-time
application. Therefore, future refinements should include strategic adjustments to the model
architecture and the training data’s volume and diversity. This ensures the transformer re-
mains effective and efficient for real-world use, where accuracy and operational speed are
crucial.

Cascaded Transformer Strategy
Adopting a cascaded model approach has significantly addressed the reliability issues previ-
ously noted in success rates. By employing multiple trained transformers in sequence, we’ve
seen a substantial improvement in the success rate, enhancing the online applicability of the
transformer in MPC. This strategy could also be tailored to train transformers for specific
operational scenarios within the microgrid, e.g. periods of low renewable energy generation,
further increasing the reliability. However, it is important to note that while this approach
enhances success rates, it can also increase computational demands. Specifically, if the MPC
frequently needs to fall back on backup transformers, this can result in higher overall predic-
tion times, potentially impacting the system’s efficiency.

Closed-Loop MPC Performance
Evaluating the transformer within a closed-loop MPC setting highlighted its adaptability
to dynamic operational conditions. This testing phase crucially assessed how system feed-
back influences subsequent predictions and how the model manages continuous state updates.
Challenges such as the occurrence of infeasible solutions and their propagation through mul-
tiple time steps were observed, which critically impacts the system’s reliability. Fallback
strategies, like switching to an optimal MPC or a rule-based system, played a significant role
in maintaining operational continuity. Despite these strategies, the transformer displayed a
higher infeasibility rate than open-loop scenarios, suggesting the need for broader training
datasets that include more variable operational states, making the transformer more adept
in dynamic changes in the microgrid. Lastly, the optimality gap of the closed-loop MPC
is considered slightly too low since the fallback controller produced optimal solutions when
fallback was needed.

By adopting these strategies, future research can aim to overcome the current limitations and
fully exploit the potential of transformers in energy management systems. Specific recom-
mendations are given for further research in Chapter 5.
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4-7 Conclusion

Reflecting on the simulations and analyses conducted, this chapter concludes by exploring
the potential of utilising transformers for microgrid control within an MPC framework. The
conclusions drawn from this chapter highlight both the potential and the challenges of imple-
menting transformers in this specific application. The predictive capabilities of transformers
have shown high accuracy and reliability, particularly for shorter prediction horizons, promis-
ing significant enhancements in microgrid operations. However, the extended prediction times
in their current configuration present substantial challenges for their practical application in
real-time MPC settings.

These findings indicate that while transformers can deliver precise predictions for discrete con-
trol actions, transformers exhibit extended prediction times in their current configuration that
challenge their practicality for real-time applications in MPC. The time required to predict
binary sequences using the transformers is too lengthy, making their direct implementation in
online MPC for MILP problematic. Despite these initial setbacks, substantial improvements
appear feasible through alternative implementations. In Appendix B, we showed that im-
plementing the transformer to an ONNX format could streamline the computation process,
significantly reducing prediction times. Additionally, deploying the transformer on GPU-
accelerated hardware or exploring other advanced computational environments is expected
to enhance performance, making the use of transformers more viable for these applications.
Such strategies hold promise for achieving the full potential of transformers in online MPC
scenarios.

From the longer horizon MPC simulations we conclude that further research is needed to
assess the transformer’s effectiveness with longer sequences. Transformers are known for their
ability to handle longer, more complex sequences well. However, our experiments applying
the transformer in longer horizon MPC indicate a higher rate of infeasible solutions and
long prediction times. We observed that further hyperparameter tuning is crucial to improve
performance for the longer-horizon MPC and conclude that revising the diversity and amount
of data can be beneficial. Addressing this is particularly relevant because computational
demands typically increase with longer horizons, making learning-based methods specifically
needed for these scenarios.

With further development and implementations in different computation environments, trans-
formers can potentially enhance predictive control strategies in microgrids, making them more
efficient. Continued research into computational optimisations and tuning is essential to make
transformers applicable for online MPC.
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Chapter 5

Conclusion and Future Work

This chapter covers the main contributions of this thesis and the conclusions that can be
drawn from the thesis. We conclude with suggestions for future work.

5-1 Contributions

The research question central to this thesis is formulated as:

How can transformers be applied to predict the optimal binary solution of Mixed-Integer
Linear Programming problems, specifically within the context of Mixed Logical Dynamical

systems and learning-based Model Predictive Control?

To address this question, we adapted the transformer architecture—originally designed for
natural language processing—to predict binary solutions of MILP problems within MPC.
This adaptation faced considerable challenges due to microgrid data’s continuous nature,
which significantly differs from the discrete and static data typically processed in natural
language tasks.

The first contribution of this research is the development of data preprocessing techniques
that transform real-time, variable energy data streams into a format suitable for transformer
processing. This required applying feature embedding techniques, which were inspired by
advancements in fields such as vision transformers and different machine learning applica-
tions. It enabled us to effectively handle the unique characteristics of energy data within the
microgrid system with the transformer.

Another contribution is the application of the transformer to simplify complex mixed-integer
linear programming (MILP) problems into more tractable linear programming (LP) prob-
lems. By accurately predicting binary decision sequences, the transformer substantially re-
duced the dimensionality and complexity of the decision space, which leads to an increase in
computational efficiency and scalability of model predictive control (MPC) operations. This
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simplification enables more responsive and cost-effective energy management in microgrids.
We further showed how the transformer predictor can seamlessly be integrated into the MPC
framework.

We also introduced the cascaded transformer strategy, an approach that significantly improved
the reliability and success rate of the predictions. By employing multiple trained transformers
in sequence, this strategy improved the reliability of the transformer-based approach. It
demonstrated its potential to be customised for specific operational scenarios within the
microgrid, enhancing the online applicability of transformer-based MPC.

We set up various tests and validated our approach through a series of simulations against
traditional MPC methods and benchmark long short-term memory (LSTM)-based MPC.
These validations demonstrated the accuracy and efficiency of the transformer-based MPC
approach. They provided a benchmark for assessing the relative advancements contributed
by the transformers in managing the dynamic environments typical of microgrid systems. It
also highlighted the potential and challenges of transformers in the context of learning-based
MPC.

5-2 Conclusion

Reflecting on the studies and simulations conducted, this chapter synthesises the insights
gained and outlines the implications of employing transformers for microgrid control within
the MPC framework. The research explored in this thesis demonstrates the transformer’s
capacity for enhancing microgrid operations. It also identifies significant challenges that
must be addressed to achieve its full potential in practical applications.

Adapting the transformer architecture to microgrid management represents an advancement
in applying advanced machine-learning techniques to control energy systems, specifically mi-
crogrids. By effectively processing continuous, dynamically changing microgrid data and
converting complex MILP problems into more tractable LP problems, the transformer has
shown it can streamline the decision-making process within MPC. This capability enhances
the computational efficiency of MPC systems, potentially facilitating faster and more cost-
effective energy management solutions.

However, while the transformer has exhibited high accuracies of below 1% and reliability
of up to 99.4%, particularly for shorter prediction horizons, its application in online MPC
settings presents substantial challenges. The primary concern is the extended prediction times
observed during the experiments, which limit the transformer’s applicability for online MPC.
Through an example, we suggested potential pathways to mitigate these issues, including
adopting ONNX runtime to improve computational efficiency. Other ways could be exploring
GPU-accelerated hardware or other advanced computational environments since we used CPU
and Python during the research, which is not optimal for the application.

Moreover, the research highlighted the need for further studies to optimise the transformer’s
performance with longer prediction horizons and closed-loop MPC. The issues of increased in-
feasible solutions and lengthy prediction times for extended sequences suggest that additional
model tuning and a more diverse training dataset are needed to enhance the transformer’s ef-
fectiveness. Addressing these challenges is crucial as computational demands typically escalate
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with longer horizons, precisely the scenarios where learning-based methods like transformers
could provide significant benefits.

Through developing and refining transformers for microgrid control, transformers can be
promising for predictive control strategies. Further research into computational optimisa-
tions, model tuning, and integrating transformers in different computational environments
is essential. These efforts will ensure that transformers can meet the dynamic demands of
modern energy systems, providing a tool for microgrid MPC.

5-3 Recommendations for Future Work

As this research concludes, it is evident that while transformers hold promise in enhancing
MPC in microgrids, several challenges and opportunities for advancement remain. The fol-
lowing suggestions for future work aim to build upon the achievements of this thesis, address-
ing the identified limitations and exploring transformers further within MPC for microgrids.
These recommendations are to refine the capabilities of transformers further, enhance their
operational efficiency, and extend their applicability in real-time energy systems management:

1. Enhancing real-time capabilities: Investigate advanced computational techniques to re-
duce the prediction time of transformers without compromising accuracy. Explore hard-
ware acceleration options like GPU utilisation, and consider implementing the trans-
former in more suitable environments than Python.

2. Extending model complexity and Depth: experiment with increasing the complexity of
transformer models to improve their capability for longer horizon predictions. Assess
the trade-offs between model complexity and computational efficiency to find an optimal
balance that maximises prediction accuracy and operational speed.

3. Cascaded transformer exploration: further refine the cascaded transformer strategy to
improve efficiency and reduce the need for fallbacks. Develop adaptive mechanisms
that dynamically select the most appropriate transformer model based on the current
operational context (e.g. weather and available resources). This would not only increase
reliability but is expected to reduce the optimality gap further as well.

4. Data diversity and training enhancements: expand the training datasets to include a
wider range of operational scenarios. Implement advanced data augmentation tech-
niques to enhance the diversity of training data artificially, improving the models’ gen-
eralisability. This is expected to be explicitly beneficial for the longer horizon MPC
applications.

These areas for future research are aligned with the work presented in the thesis, aiming to
enhance the integration of advanced transformers into microgrid control.
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Appendix A

Binary Decision Conversion Data
Preprocessing

Table A-1: Conversion of Integer Values to 5-bit Binary Representations

Integers 0 to 15

Integer Binary Representation
0 00000
1 00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000
9 01001
10 01010
11 01011
12 01100
13 01101
14 01110
15 01111

Integers 16 to 31

Integer Binary Representation
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111
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Appendix B

Computational Optimisation: ONNX
Runttime

In Section 4-3, it became apparent that despite high accuracy and a satisfactory success rate,
the computational time required by the transformer poses a significant challenge. Addressing
this requires exploring optimisation strategies to mitigate inference time and enhance overall
system performance.

Open Neural Network Exchange (ONNX) Runtime, an open-source scoring engine for ONNX
models, offers a potential solution. Supporting a broad spectrum of optimisation techniques,
including hardware acceleration and pre-trained optimisations, ONNX Runtime is particu-
larly effective in enhancing transformer inference across diverse platforms, thus significantly
reducing inference times [39]. Research works further support this, e.g. [40].

Implementing ONNX Runtime for Transformer-Based model predictive control (MPC)

To address the computational efficiency of the transformer for microgrid control, we imple-
mented ONNX Runtime to see the effects on inference time. The first step involved exporting
the trained transformer to the ONNX format. This conversion process maintains data prepro-
cessing consistency, ensuring consistency in predictions. We then assessed the performance of
both single and cascaded transformers implemented in ONNX against their PyTorch coun-
terparts and traditional mixed-integer linear programming (MILP) approaches, focusing on
success rates, optimality gaps, and computation times.

Performance Evaluation

The evaluation aimed to highlight the computational benefits brought by the implementation
of ONNX Runtime. Significant improvements were noted, especially in computation time,
which is crucial for real-time operations.
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Table B-1: Comparison of ONNX Runtime, single transformer, and Gurobi

Metric Regular Transformer Transformer in ONNX Gurobi
Success Rate [%] 88.30 87.10 100
Optimality Gap [%] 0.36 1.28 -
Avg Computation Time [s] 0.0571 0.0025 0.0041

Table B-2: Comparison of ONNX Runtime, cascaded transformer, and Gurobi using fallback

Metric Regular Transformer Transformer in ONNX Gurobi
Success Rate [%] 97.10 96.60 100
Optimality Gap [%] 0.91 1.76 -
Avg Computation Time [s] 0.0508 0.0024 0.0041

Although the transformers implemented in ONNX show a slightly lower success rate and a
higher optimality gap than their regular counterparts, the reduction in computation times
is remarkable, particularly when employing cascaded transformers. This underscores the
efficiency gains achieved through ONNX Runtime, supporting the feasibility of using trans-
formers without substantial delays.

The tables show slight differences in success rates and optimality gaps compared to the reg-
ular transformers. This was not as expected since the adoption of ONNX Runtime primarily
involves differences in implementations of the same transformers. These discrepancies could
be due to ONNX Runtime’s optimisation processes. While designed to enhance computa-
tional efficiency, modifications such as graph optimisation and layer fusion can subtly alter
the transformer’s behaviour. Fixed execution paths and changes in numerical precision in-
tended to boost processing speeds might affect the transformer’s output, leading to variations
in performance metrics. Furthermore, ONNX runtime is an open-source API that is continu-
ously being developed. Therefore, although unlikely, faults or inaccuracies may need further
development, causing the performance to differ slightly.

Implications and Alternative Strategies

This ONNX case study is just one example of computational optimisation and how imple-
mentation can greatly affect the prediction time of the transformer strategy. Other strategies,
such as code optimisation or more efficient programming languages like C#, could further
reduce computational demands. Advanced compilation techniques or frameworks might also
offer additional benefits.

This demonstration proves that substantial computational improvements are achievable, which
is crucial for integrating transformer-based MPC into real-time applications. Future research
might explore combining these strategies to find the best balance between accuracy and ef-
ficiency, tailoring solutions to the specific operational needs within microgrid management
systems.
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Appendix C

System Equations

This appendix describes the MLD formulation used for the microgrid in the thesis [10]:

C-1 Energy Storage System (ESS)

xb(k + 1) =
{

xb(k) + Ts
ηd

Pb(k) if Pb(k) < 0
xb(k) + TsηcPb(k) if Pb(k) ≥ 0

(C-1)

• xb(k): energy stored in ESS

• ηc,ηd: charging and discharging efficiencies

• Pb(k): Power exchanged with ESS

• Ts: Sampling interval

With the introduction of an auxiliary variable, we obtain:

xb(k + 1) = xb(k) + Ts

(
ηc −

1
ηd

)
zb(k) + Ts

ηd
Pb(k), (C-2)

• zb = δb(k)Pb(k)

• δb(k) = 1↔ Pb(k) ≥ 0

C-2 Variables

δ =


δb

δgrid

δon
1

δon
2

δon
3

 , z =
[

zb

zgrid

]
u =


Pb

Pgrid

P dis
1

P dis
2

P dis
3


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Table C-1: Microgrid Parameters

PARAMETER VALUE
Maximum ultracapacitor energy level xuc 50 [kWh]
Minimum ultracapacitor energy level xuc 2 [kWh]
Maximum battery energy level xb 250 [kWh]
Minimum battery energy level xb 25 [kWh]
Battery charging efficiency ηc,b 0.90
Battery discharging efficiency ηd,b 0.90
Ultracapacitor charging efficiency ηc,uc 0.99
Ultracapacitor discharging efficiency ηd,uc 0.99
Maximum interconnection power flow limit Pgrid 1000 [kW]
Minimum interconnection power flow limit Pgrid -1000 [kW]
Number of generators Ngen 3
Maximum power providable by the battery Pb 100 [kW]
Maximum power injectable to the battery Pb -100 [kW]
Maximum power providable by the ultracapacitor Puc 25 [kW]
Maximum power injectable to the ultracapacitor Puc -25 [kW]
Maximum power level of the dispatchable generators Pdis 150 [kW]
Minimum power level of the dispatchable generators Pdis 6 [kW]

C-3 MLD Constraints

MLD form constraints:

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (C-3)

, where δ ∈ Z5, z ∈ R2, u ∈ R5 x ∈ R1

• State, initial condition


1
−1
1
−1


︸ ︷︷ ︸

E4

xb(k) ≤


x0
x0
250
−25


︸ ︷︷ ︸

E5

• Input

B,W.C. van der Woude Master of Science Thesis



C-3 MLD Constraints 67



1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 −1


︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3

 ≤



100
100
1000
1000
150
−6
150
−6
150
−6


︸ ︷︷ ︸

E5

• Continuous Auxiliary Variables



−Mb 0 0 0 0 0
mb 0 0 0 0 0
−mb 0 0 0 0 0
Mb 0 0 0 0 0
0 −Mg 0 0 0 0
0 mg 0 0 0 0
0 −mg 0 0 0 0
0 Mg 0 0 0 0


︸ ︷︷ ︸

E2


δb

δgrid

δon
1

δon
2

δon
3

+



1 0
−1 0
1 0
−1 0
0 1
0 −1
0 1
0 −1


︸ ︷︷ ︸

E3

[
zb

zgrid

]
≤



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0


︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3

+



0
0
−m
M
0
0
−m
M


︸ ︷︷ ︸

E5

, where mb = −100 kW , Mb = 100 kW , mg = −1000 kW , Mg = 1000 kW .

• Discrete Variables

ESS and Grid:


−mb 0 0 0 0 0

−(Mb + ϵ) 0 0 0 0 0
0 −mg 0 0 0 0
0 −(Mg + ϵ) 0 0 0 0


︸ ︷︷ ︸

E2


δb

δgrid

δon
1

δon
2

δon
3

 ≤


1 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0


︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3

+


−mb

−ϵ
−mg

−ϵ


︸ ︷︷ ︸

E5

, where mb = −100 kW , Mb = 100 kW , mg = −1000 kW , Mg = 1000 kW .

Master of Science Thesis B,W.C. van der Woude



68 System Equations

Generators:

0 0 −mgen 0 0
0 0 −(Mgen + ϵ) 0 0
0 0 0 −mgen 0
0 0 0 −(Mgen + ϵ) 0
0 0 0 0 −mgen

0 0 0 0 −(Mgen + ϵ)


︸ ︷︷ ︸

E2


δb

δgrid

δon
1

δon
2

δon
3

+ ≤



0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 0 1
0 0 0 0 −1


︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3

+



−mgen

−ϵ
−mgen

−ϵ
−mgen

−ϵ



, where mgen = 6 kW and Mgen = 150 kW

• Power Balance

[
1 −1 −1 −1 −1
−1 1 1 1 1

]
︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3

+
[
Pload − Pres

Pres − Pload

]
︸ ︷︷ ︸

E5

≤
[
0
0

]

• Generator constraint



0 0 6 0 0
0 0 0 6 0
0 0 0 0 1
0 0 −150 0 0
0 0 0 −150 0
0 0 0 0 −150


︸ ︷︷ ︸

E2


Pb

Pgrid

P dis
1

P dis
2

P dis
3

 ≤


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


︸ ︷︷ ︸

E1


Pb

Pgrid

P dis
1

P dis
2

P dis
3


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Learning-Based Control of Microgrids with
Transformers and Model Predictive Control

Bob van der Woude MSc Student Systems and Control, Delft University of Technology

Abstract—Microgrids are pivotal for enhancing energy effi-
ciency and sustainability within modern energy systems. By inte-
grating renewable energy sources and operating independently or
alongside the main grid, microgrids reduce reliance on centralised
power supplies and improve resilience to disruptions. This
research addresses the unit commitment problem in microgrids,
modelled as mixed logical dynamical systems, through Model
Predictive Control (MPC). The challenge of MPC lies in its re-
quirement to solve computationally intensive mixed-integer linear
programming (MILP) problems. To address this, we introduce
transformers that learn the binary decisions of MILP problems
offline, allowing for the simplification of these problems to more
manageable linear programming problems during online MPC.
This integration enhances MPC’s computational efficiency and
scalability, with simulations demonstrating efficacy in predicting
the binary components of the MILP problems to find near-
optimal control decisions.

I. INTRODUCTION

A. Introduction

The pursuit of sustainable energy solutions remains a pivotal
challenge as the global demand for energy rises alongside
growing environmental concerns. Microgrids, as innovative
energy solutions, have shown promise by offering both a
mitigation of environmental impact and an enhancement of
energy resilience. These decentralised energy networks stand
out for their unique capability to integrate seamlessly with
renewable sources, such as solar and wind, and their ability
to operate connected and reconnected from the centralised
electrical grids. Key international reports, such as those from
the International Renewable Energy Agency (IRENA), un-
derscore the pivotal role of renewable energy, suggesting it
has the potential to satisfy up to two-thirds of the world’s
energy needs. This significant potential places microgrids at
the heart of strategies aimed at reducing global greenhouse
gas emissions to meet temperature increase targets set by the
Paris Agreement on climate change [1], [2],[3].

Microgrids contribute to environmental goals and ensure the
stability and security of energy supply, especially in regions
prone to extreme weather conditions or geographical isolation
from central power systems. By facilitating a more stable and
reliable energy distribution, microgrids help mitigate the vul-
nerabilities associated with energy production and distribution,
thus reinforcing the overarching framework of global energy
security [4].

Bob van der Woude is a master’s student at TU Delft, The Netherlands.

B. Problem Formulation

Within the operational dynamics of microgrids, the unit
commitment problem emerges as a significant challenge. This
problem involves a complex mathematical optimisation that
necessitates the coordination of diverse energy production
units to meet demand while minimising operational costs
efficiently [5]. Model Predictive Control (MPC) stands out as
a strategy due to its predictive capabilities and robust mech-
anism for managing variable constraints, making it suitable
for handling the complexities inherent in microgrid operations
[6]. Despite its advantages, the real-time application of MPC
in systems such as microgrids is hindered by the need to solve
computationally intensive Mixed-Integer Linear Programming
(MILP) problems at each control iteration due to the presence
of continuous and discrete variables. These NP-hard prob-
lems introduce considerable computational burdens, posing
formidable challenges for real-time microgrid management
[7].

This study proposes an innovative learning-based approach
to the MPC framework to navigate these challenges. In several
works, learning-based methods have shown successful results
in MPC, e.g. [8], [9]. Since MPC relies on sequential decision-
making to predict and adjust the system’s decisions over
time, transformers can be particularly well-suited for this
context. Renowned for their efficiency in processing sequential
data through advanced self-attention mechanisms, transform-
ers provide a promising avenue for simplifying the combi-
natorial MILP decision-making processes [10]. By effectively
learning these binary decisions, transformers can reduce com-
plex MILP problems into more tractable linear programming
(LP) problems, significantly reducing computational intensity.
This adaptation enhances the feasibility of deploying MPC
in real-time control of microgrids. It leverages the sequential
nature of data within the MPC framework to improve decision
accuracy and system responsiveness.

The paper begins with a detailed description of microgrid
systems in Section II, focusing on their components and dy-
namics. Section III explores using MPC for microgrid manage-
ment. The role of transformers in improving MPC’s efficiency
is examined in Section IV. Sections V and V-F cover method-
ological details for implementing the transformer. Simulation
results comparing traditional and transformer-based MPC are
analysed in Section VI. The paper concludes in Section VII
with key findings and future research directions, emphasising
the impact of machine learning on energy management. The
programming codes used in this study are provided in [11].
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II. SYSTEM DESCRIPTION

This section outlines the microgrid system’s dynamics and
operational parameters based on the formulation established in
previous research [8]. This setup includes energy storage, local
generation units, a bidirectional connection to the main grid,
and uncontrollable loads, which are essential for addressing the
complexities of power dispatch in a microgrid environment.

A. Dynamic Modeling of Energy Storage Systems

The energy storage within the microgrid is modelled pri-
marily as a battery system. It follows a hybrid dynamical
law that monitors energy levels based on power exchange,
whether charging or discharging. The state of charge at each
step k, denoted by xb(k), is adjusted for efficiency losses
during charging (ηc) and discharging (ηc) and the sampling
interval, Ts [8]:

xb(k + 1) =

{
xb(k) +

Ts

ηd
Pb(k) ifPb(k) < 0

xb(k) + TsηcPb(k) ifPb(k) ≥ 0
(1)

here zb is an auxiliary variable that modulates the power effect
based on the storage system’s mode of operation, indicated
by the binary variable δb(k). This integration of binary and
continuous variables is crucial for capturing energy storage
dynamics and is described within the framework of Mixed-
Logical Dynamical (MLD) systems [12].

B. Generator Units

The microgrid includes both renewable (zero-cost, uncon-
trollable) and dispatchable generators. Dispatchable generators
provide adjustable power outputs, essential for responsive
microgrid control, represented by the vector:

Pdis =
[
P dis
1 (k) . . . P dis

Ngen
(k)

]T

C. Prices of Energy

The economic model of the microgrid incorporates distinct
costs for energy: cbuy(k) for purchasing from the main grid,
csale(k) for selling to it, and cprod(k) for local generation by
dispatchable units. These prices are forecasted over a known
horizon to assist in strategic planning.

D. Grid Interaction

The microgrid’s interaction with the central grid is con-
trolled through Pgrid and the binary decision δgrid, which
dictate whether the microgrid imports or exports energy. The
economic implications of these interactions are calculated by
Cgrid(k):

Cgrid(k) =

{
cbuy(k) · Pgrid(k) ifδgrid(k) = 1(importing)

csell(k) · Pgrid(k) ifδgrid(k) = 0(exporting)
(2)

III. CONTROL OF MICROGRIDS USING MPC

MPC employs a model-based strategy that utilises predic-
tions about future system behaviour and input variables to
optimise control actions over a defined horizon. It is well
suited for the hybrid nature of microgrids, which feature
continuous dynamics and discrete events since MPC has been
extensively documented for its effectiveness in managing com-
plex operational dynamics [12]. The adaptation of hybrid MPC
formulations for microgrid control capitalises on MPC’s ability
to balance operational constraints with cost optimisation, pro-
viding a robust framework for the unit commitment problem
which aims to manage the interplay of power generation,
storage, and consumption in microgrids at minimal costs [13],
[14],[15]. This highlights the strategic benefits of MPC in
microgrid control and specifically addresses the challenges of
the unit commitment problem.

A. Mathematical Formulation of the Control Problem

The objective of the MPC framework is to minimise the eco-
nomic costs associated with energy production and exchange
while satisfying load demands and operational constraints.
This is formulated through the following objective function,
which aims to minimise the combined costs of local energy
production and grid interaction over a predictive horizon NP :

min
P dis(k),Pgrid(k),Pb(k),δ(k),z(k)

J(P dis(k), Cgrid(k), cprod(k))

(3)
The cost function J is defined as:

J(P dis(k), Cgrid(k), cprod(k)) =

Np−1∑

j=0

(Cgrid(k + j)+

cprod(k + j)

Ngen∑

i=1

P dis
i (k + j)




(4)

where Np is the prediction horizon. The objective function
is subjected to the constraints of the microgrid. The system
dynamics of the microgrid model can be represented in the
MLD formulation as mixed integer constraints.

B. System Constraints and MLD Formulation

The microgrid dynamics are encapsulated within an MLD
system that converts the hybrid system behaviour into an MILP
problem, serving as constraints within the MPC framework.
These constraints are pivotal for ensuring that the microgrid
operates within safe and efficient parameters:
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E1δ(k) + E2z(k) ≤ E3u(k) + E4 (5a)

Pb(k) =

Ngen∑

i=1

P dis
i (k) + Pres(k) + Pgrid(k)− Pload(k)

(5b)
P b ≤ Pb ≤ P̄b (5c)
P grid ≤ Pgrid ≤ P̄grid (5d)

δoni P grid ≤ Pgrid ≤ δoni P̄grid (5e)

xb ≤ xb ≤ x̄b (5f)

u(k) = [P⊤
dis(k), Cgrid(k), Pb(k)]

⊤

for i = 1, . . . , Ngen

for k = 0, . . . , Np − 1

Constraint (5a) derives from the MLD formulation of the
microgrid, ensuring the integration of logic and dynamics.
Constraint (5b) maintains power balance, requiring all gen-
erated power to be either used within the system, stored,
or exported. Constraints (5c) through (5f) specify operational
limits: (5c) limits the power interactions with the battery; (5d)
governs power exchanges with the main grid; (5e) regulates
output from dispatchable generators; and (5f) sets the bounds
on the battery’s state of charge. These constraints collectively
ensure the microgrid operates within its designed physical and
operational parameters.

The challenges of implementing MPC within MLD systems
include the NP-hard nature of the MILP problems required
to be solved at each control interval [16]. Addressing these
computational challenges through advanced algorithms and
machine learning techniques remains an active area of re-
search, as MPC’s potential for enhancing microgrids’ oper-
ational efficiency and economic performance continues to be
explored in depth, e.g. [8].

While the MPC framework provides a systematic approach
to microgrid control, the computational demands of solving
MILP problems at each control iteration pose significant chal-
lenges for real-time applications. To address these complexi-
ties, the integration of transformers is proposed. By leveraging
their capability to process and predict sequences efficiently,
transformers can simplify the computational tasks involved
in MILP, potentially enhancing the real-time operational ca-
pabilities of MPC. This approach promises to streamline
the computational process and retain the precision required
for effective microgrid management. The subsequent section
delves into how transformers can be applied to improve the
scalability and efficiency of MPC in microgrid environments.

IV. TRANSFORMERS

Transformers have revolutionised sequence modelling, par-
ticularly within fields like natural language processing (NLP),
by addressing the limitations of earlier architectures such as
Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks. Vaswani et al. introduced the
transformer architecture in ”Attention is all you need” [10].
Transformers eliminate the need for sequential data process-
ing, relying instead on self-attention mechanisms that allow

parallel computation and have shown more effective and
accurate handling of long-range dependencies.

A. Key Components of the Transformer Architecture

B. Key Features of the Transformer Architecture

The key components of the transformer architecture are
described below. We refer to [10] for further elaboration on
their exact functioning.

Self-Attention Mechanism: This mechanism enables the
transformer to weigh the importance of different parts of
the input sequence independently, enhancing the transformer’s
ability to process sequences in parallel. It calculates attention
as a function of queries, keys, and values, significantly im-
proving the efficiency and scalability of sequence modelling.

Positional Encoding: Unlike RNNs and LSTMs, trans-
formers do not inherently process temporal data in sequence.
Positional encodings are used to inject information about the
order of the sequence into the transformer, allowing it to
consider the position of data points within the sequence.

Multi-Head Attention: This extends the transformer’s ca-
pability to focus on different parts of the sequence simultane-
ously, enabling it to capture various aspects of the sequence
context more comprehensively.

C. Implications for Transformer-Based MPC in Microgrids

In MPC in microgrid systems, transformers potentially
offer significant computational benefits due to their parallel
processing capabilities, enhancing offline training and online
control. During offline training, transformers rapidly handle
large datasets, speeding up the training process. In online
applications, transformers reduce decision-making times by
predicting binary decisions, which is crucial for responding
to fluctuating conditions in microgrids.

The self-attention mechanism in transformers enables pre-
cise prediction of binary decision sequences in MPC based
on inputs like load demands, generation capacities, and costs.
This improves the accuracy of operational decisions. Their
scalability allows them to handle larger datasets and more
complex networks without performance loss, supporting sys-
tem expansion.

Further, the primary goal of our learning-based MPC ap-
proach is to forecast binary sequences that emerge from
decision-making processes, influenced by past and anticipated
future decisions and data. Recognising and harnessing this
temporal structure is critical. The sequential nature of MPC
typically reveals patterns in binary inputs that provide essential
insights, making transformers, known for their excellence in
sequence modelling, particularly well-suited for this task.

Integrating transformers into MPC frameworks leverages
these advantages, transforming complex MILP problems into
more manageable formats. This integration enhances the ef-
ficiency and responsiveness of energy management systems,
facilitating quicker and more effective decision-making in real-
time operations.
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V. METHODOLOGY: TRANSFORMER FOR BINARY
SEQUENCE PREDICTION

This section describes the methodology for developing and
implementing a transformer to predict binary decisions in
MILP formulations for microgrids. The goal is to enhance
the computational efficiency of MPC by predicting the binary
decision-making processes within MILP, utilising the trans-
former.

A. Data Collection and Preparation

Effective microgrid operation using MPC depends signifi-
cantly on the accuracy of the input data, which reflects current
and forecasted conditions like prices, load demands, and sys-
tem states. We collect real-world and synthetically generated
data to model these aspects. Synthetic data for energy costs
are generated using normal distributions, reflecting realistic
market variability. In contrast, actual load and generation data
are sourced from Dutch main grid operations, scaled to fit
microgrid capacities [17].

The following steps describe the method to collect data for
the transformer:

1) Formulate Nsim exemplary MILP problems as described
in Section III.

2) For each problem, extract the relevant parameters:

ZN =

{(
x
(i)
0 ,

{
c
(i)
buy(k), c

(i)
sell(k), c

(i)
prod(k),

P
(i)
load(k), P

(i)
res(k)

}NP

k

)
| i = 1, . . . , Nsim

}

3) Solve the optimisation problems using Gurobi [18].
4) Retrieve the binary decision tuples from the optimisa-

tion:

∆j
N =

{(
δ
on(i)
1 (k), . . . , δ

on(i)
Ngen

(k), δ
(i)
grid(k), δ

(i)
b (k)

)

| ∀i = k + j,∀k = 1, . . . , Nsim, j = 0, . . . ,

Np − 1

}

5) Conduct data preprocessing to tailor the data for the
transformer.

In our methodology, we utilise the microgrid data ZN as
source sequences for the transformer, with the corresponding
binary decision tuples serving as target outputs. The source
sequence consists of price and load sequences, and the state
information is included repetitively over the prediction horizon
to fit into the sequential format. It is assumed that the trans-
former can discern and weigh the relevance of the current state
information throughout the sequence. This setup trains the
transformer to predict operational decisions, reducing the need
for iterative MILP solving. The following section details the
specific data preprocessing steps required to facilitate effective
learning by the transformer.

B. Data Preprocessing and Transformer Architecture

The preprocessing stage transforms raw data into a format
suitable for the transformer, involving the normalisation of
continuous features and encoding categorical variables to en-
sure uniformity and optimise the learning process. We employ
sequence-to-sequence (seq2seq) architecture for processing
and predicting binary decisions.

1) Source Feature Embedding: Inspired by vision trans-
formers, which handle continuous image data by segmenting
it into patches, we employ our source feature embedder
for continuous operational parameters like energy prices and
power demands [19]. This technique projects these inputs
into a higher-dimensional vector space, standardising feature
dimensions while preserving essential information. The trans-
formation is defined as:

y = Wx+ b (6)

where x is the input feature vector, W is the weight
matrix, and b is the bias. This method ensures dimensional
consistency, allowing the transformer’s attention mechanisms
to process the data uniformly, thereby enhancing pattern
recognition in microgrid management applications [20].

2) Binary Decision Processing: The binary decisions are
encoded into integer values to simplify the target sequence
for the transformer. This encoding facilitates the transformer’s
training by reducing the complexity of the output space.

3) Mini-Batch Processing: The training data are processed
in mini-batches, enhancing computational efficiency and gen-
eralisation. This approach leverages batch normalisation to
standardise inputs across each mini-batch, smoothing the
learning process and stabilising the neural network training
dynamics [20], [21].

C. Transformer Architecture

The transformer architecture employed in this study is
specifically adapted to handle the unique characteristics of
microgrid management data. Among the various components
of the transformer, the source feature embedder stands out
as a novel adaptation, enabling the transformer to effectively
process continuous input data, a necessary departure from the
typical usage of embedding in transformers in natural language
processing:

• Positional Encoding: Adds temporal context to the in-
puts, compensating for the transformer’s lack of inherent
sequence recognition capability. Our data preprocessing
enables a similar positional encoding technique as in [10],
ensuring our data aligns seamlessly with the transformer
architecture.

• Multi-Head Attention: Allows the transformer to focus
on different parts of the input sequence simultaneously,
enhancing the transformer’s ability to capture complex
dependencies and relationships within the data.

D. Transformer Training and Prediction

The transformer is trained using a cross-entropy loss func-
tion appropriate for classification tasks [22], with the Adam
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optimiser managing the optimisation of the transformer param-
eters. Training involves several epochs of processing data in
batches, with validation to ensure the transformer generalises
well to new data and monitor overfitting. Predictions are
generated by processing input data through the trained trans-
former, converting the output sequences into actionable binary
configurations using a predefined mapping, thus facilitating
their integration into the MPC framework.

E. Cascaded Transformers

We introduce a cascaded transformer approach to address
the infeasibility of predictions in transformer-based MPC,
enhancing robustness and reliability. This method uses mul-
tiple transformers in sequence, beginning with a primary
transformer that processes initial predictions and draws from
a diverse dataset to manage a broad range of microgrid
operations. If the primary transformer’s output is infeasible,
secondary transformers with different hyperparameters are
activated to provide alternative predictions.

This setup ensures continuous adaptation and solution vi-
ability by sequentially engaging transformers until a feasi-
ble solution is found. It mitigates the limitations of single-
transformer configurations, especially in complex and ex-
tended scenarios, by increasing system adaptability and fault
tolerance. Further, in practice, secondary transformers can
be tailored to specific operational scenarios, boosting system
responsiveness and accuracy.

As shown in two example runs in Table II, introducing addi-
tional transformers significantly improves feasibility. While a
single transformer achieves feasibility in 89.50% to 91.00% of
cases, employing four transformers raises this to 98.10% and
98.40%, demonstrating the cascaded approach’s effectiveness
in maintaining operational feasibility across multiple runs.

TABLE I
FEASIBILITY CASCADED TRANSFORMERS

Feasibility Run 1 (%) Feasiblity Run 2 (%)
1 transformer 89.50 91.00
2 transformers 95.20 96.50
3 transformers 96.50 96.80
4 transformers 98.10 98.40

F. Implementation Transformer-Based MPC

Predicted binary sequences are integrated into the MPC
framework, simplifying the MILP problems into more man-
ageable LP problems. By learning these sequences offline, we
aim to reduce the online computational demands, enhancing
the system’s responsiveness and allowing for real-time oper-
ational adjustments in microgrid management. Figure 1 pro-
vides a schematic overview of the transformer implementation.

The methodology presented effectively leverages advanced
machine learning techniques to improve the operational ef-
ficiency of MPC systems in microgrids, demonstrating the
potential of transformers in energy control applications.

Fig. 1. Control Scheme Transformer-based MPC

VI. SIMULATIONS

This section presents detailed results from simulations
conducted to evaluate the transformer for microgrid control
using MPC. These simulations aimed to test the efficacy of
transformers in forecasting binary decisions, which is crucial
for reducing the computational load in MPC for microgrids.

A. Experimental Setup

The experimental setup aims to closely emulate typical
microgrid operations to test the transformer under diverse
conditions. The simulations utilised a MacBook Pro with an
M1 Pro chip, running Python and PyTorch. Due to the lack
of CUDA availability on this device, which is beneficial for
enhancing transformer computations, all tests were conducted
on the CPU.

B. System Model and Assumptions

The experimental foundation relies on the MLD system
model detailed in section III, with the following assumptions
made for simulation purposes:

• Predicted price and load data are fully known over the
simulation horizon.

• The power generated by renewable sources within the
microgrid is assumed to simplify the MPC problem.
Our strategies remain relevant for scenarios using only
predicted prices, loads, and renewable generation values,
reflecting more realistic conditions.

• A consistent system configuration maintains a fixed num-
ber of generators.

These assumptions are pivotal in isolating the transformer’s
performance from external variability, focusing on the impact
of hyperparameter configurations on its learning and general-
isation.

C. Training Transformers

Training the transformer requires balancing hyperparame-
ters for computational efficiency and prediction accuracy. We
explored configurations with varying complexities. With its
deeper layers and increased attention heads, the higher com-
plexity setup effectively captured complex data relationships
but was prone to overfitting and demanded more computing
power. This led to longer training and prediction times, making
it less applicable for real-time applications. Conversely, the
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lower complexity transformers performed adequately, espe-
cially for shorter prediction horizons, and are therefore prefer-
able due to their reduced training time and quicker predictions,
which are essential for real-time decision-making in microgrid
management. In simulations, these transformers demonstrated
an adequate balance between speed and accuracy, managing
computational loads effectively.

D. Open Loop Simulations

To evaluate the transformer’s effectiveness compared to
other microgrid MPC strategies, we conducted open-loop
simulations comparing three distinct approaches: a cascaded
transformer, an LSTM-based MPC, and the optimal solution
achieved using the Gurobi solver [18]. The prediction horizon
of the MPC is set to 25, with a sampling time of Ts = 30min,
which is equal to ≈ 12h. The results are summarised in Table
II:

TABLE II
PERFORMANCE COMPARISON OF TRANSFORMERS TO LSTM AND

OPTIMAL CONTROLLER

Metric LSTM Transformer Gurobi
Training Time [s] 1796.84 891.88 -
Success Rate [%] 99.80 99.40 100
Optimisation Time [s] 0.0021 0.0487 0.0037
Optimality Gap [%] 0.18 0.76 -

In the open-loop simulation comparison, the LSTM-based
MPC demonstrated superior performance over the transformer
in terms of optimisation time and accuracy. While both
transformers showed high success rates close to Gurobi’s,
the LSTM’s optimality gap was narrower, indicating a closer
approximation to Gurobi’s optimal solutions. Though efficient
in training, the transformer lagged in prediction speed, high-
lighting a critical bottleneck in its deployment for real-time
applications.

This analysis underscores the need for further enhancements
in the transformer approach to reduce prediction times and im-
prove accuracy, making them more viable for energy manage-
ment systems that demand rapid decision-making capabilities.
Meanwhile, the LSTM’s performance in this setting suggests
it may be more suited for integration into such systems, where
operational efficiency is critical.

E. Closed Loop Simulations

Following the open-loop analysis, we conducted closed-
loop simulations to evaluate how the transformer-based MPC
performs under dynamic conditions that mimic real-world
operational feedback. These simulations adaptively updated
the system’s state, incorporating real-time system feedback and
progressing iteratively through the microgrid data over time.

The closed-loop simulations were again conducted over a
prediction horizon of NP = 25, corresponding to approxi-
mately 12h, since each simulation cycle has a real-time step
of Ts = 30min. We utilised a diverse set of initial conditions
and external factors across 150 simulations to assess the
robustness and reliability of the transformer-based MPC under
varied operational scenarios. Performance was assessed based

on average costs, computation times, and infeasibility rates.
An infeasible configuration triggered a fallback to a standard
optimal MPC strategy to ensure continuity. The results from
these simulations are summarised in Table III.

TABLE III
COMPARISON OF CLOSED LOOP MPC SIMULATIONS

Metric Optimal MPC Transformer-based MPC
Avg. Costs 3786.50 3801.53
Avg. Computation Time [s] 31.38 87.33
Avg. Success Rate [%] 0 81

The transformer-based MPC generally displayed slightly
underperformance compared to the optimal controller, with
higher average costs and infeasibility rates. These results
indicate the transformer sometimes struggles with dynamic
state adjustments that are not well represented in the training
data. Such scenarios reveal a need to enhance the diversity
of the training datasets and possibly retrain the transformer
to handle a broader range of operational dynamics more
effectively.

This evaluation underscores the necessity for iterative de-
velopment and testing of the transformer within closed-loop
MPC. The insights gained from these closed-loop simulations
will guide further refinements to improve the predictive ac-
curacy and operational feasibility of transformer-based MPC
systems in practical microgrid applications.

VII. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated the potential of using trans-
formers to optimise microgrid MPC by accurately predicting
binary decision sequences in MILP. We adapted transformer
architecture to suit the characteristics of microgrid data and
proposed methods to integrate cascaded transformers in the
MPC framework effectively.

However, the real-time application of transformers in mi-
crogrid management presents substantial challenges. The ex-
tended computational times and increased infeasibility in
closed-loop MPC experiments have underscored the need for
further optimisation. These issues are partly attributed to
our experimental setup, conducted using Python and CPU
environments—configurations not optimised for high-speed,
large-scale data processing.

Despite these limitations, our testing against traditional
and LSTM-based MPC methods highlighted the accuracy and
reliability of the transformer-based approach. However, the
practical application of transformers is currently hindered by
extended prediction times and the increased occurrence of in-
feasible solutions, especially with longer prediction horizons.

Future work should, therefore, focus on enhancing real-
time capabilities by exploring more suitable computational
environments, such as GPU-accelerated hardware, and refining
the transformer models to handle the complexities of microgrid
data better, particularly for longer-horizon MPC. Addition-
ally, expanding the training datasets and further developing
cascaded transformer strategies could improve transformers’
reliability and accuracy.
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These next steps are critical for advancing the integration of
sophisticated machine learning strategies into the energy sec-
tor, aiming to significantly improve the operational efficiency
and decision-making processes within microgrid predictive
control systems.

REFERENCES

[1] E. De Cian and I. Sue Wing, “Global energy demand in a warming
climate,” 2016.

[2] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and
R. Gorini, “The role of renewable energy in the global energy trans-
formation,” Energy strategy reviews, vol. 24, pp. 38–50, 2019.
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Glossary

List of Acronyms

LP linear programming
LSTM long short-term memory
MILP mixed-integer linear programming
MLD mixed logical dynamical
MPC model predictive control
RL reinforcement learning
SL supverised learning
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