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Abstract
Byzantine-robust Federated Learning (FL) aims to counter mali-
cious clients and train an accurate global model while maintaining
an extremely low attack success rate. Most existing systems, how-
ever, are only robust when most of the clients are honest. FLTrust
(NDSS ’21) and Zeno++ (ICML ’20) do not make such an honest
majority assumption but can only be applied to scenarios where
the server is provided with an auxiliary dataset used to filter mali-
cious updates. FLAME (USENIX ’22) and EIFFeL (CCS ’22) maintain
the semi-honest majority assumption to guarantee robustness and
the confidentiality of updates. It is, therefore, currently impossi-
ble to ensure Byzantine robustness and confidentiality of updates
without assuming a semi-honest majority. To tackle this problem,
we propose a novel Byzantine-robust and privacy-preserving FL
system, called MUDGUARD, to capture malicious minority and ma-
jority for server and client sides, respectively. Our experimental
results demonstrate that the accuracy of MUDGUARD is practically
close to the FL baseline using FedAvg without attacks (≈0.8% gap
on average). Meanwhile, the attack success rate is around 0%-5%
even under an adaptive attack tailored to MUDGUARD. We further
optimize our design by using binary secret sharing and polynomial
transformation, leading to communication overhead and runtime
decreases of 67%-89.17% and 66.05%-68.75%, respectively.

CCS Concepts
• Computing methodologies→Machine learning; • Security
and privacy→ Privacy-preserving protocols; Distributed sys-
tems security.
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1 Introduction
Thanks to its privacy properties, Federated Learning (FL) [9] has
beenwidely applied in real-world applications, e.g., prediction of the
future oxygen requirements of symptomatic patients with COVID-
19 [4]. Despite its attractive benefits, FL is vulnerable to Byzantine
attacks. For example, attackers may choose to deteriorate the test-
ing accuracy of models in an untargeted attack. Alternatively, they
might fool models into predicting an attack-chosen label without
downgrading the testing accuracy in a targeted attack. Many re-
search works [6, 15, 17] have proved the vulnerability of FL via
well-designed attack methods, e.g., poisoning training data or ma-
nipulating updates. Other studies [1, 3, 8, 10, 11, 13, 18, 19] have
been dedicated to strengthening FL assuming that a minority of
the clients can be malicious and that the server is honest.

Beyond Byzantine attacks, FL could put clients at high risk of
privacy breach [7, 20] even if clients’ datasets are maintained locally.
Several studies [11, 13, 14] have applied secure tools, e.g., Additive
Homomorphic Encryption (AHE) [12], Differential Privacy (DP) [5,
16], and Secure Multiparty Computation (MPC), to protect clients’
updates1. However, these works only guarantee security when all
servers are (semi-)honest and when a minority of the clients are
malicious.

To the best of our knowledge, there does not exist any FL sys-
tem that is capable of withstanding the presence of a majority of
1Note AHE and MPC require onerous computation over ciphertexts so that the com-
putational complexity could naturally increase.
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Byzantine clients, as well as malicious servers, while also guaran-
teeing the confidentiality of updates. One may think that existing
Byzantine-robust solutions could be trivially extended to address
the above challenge. However, that is not the case because they
either violate privacy preservation requirements or are only ef-
fective in the honest majority scenario. For example, FLTrust [3]
and Zeno++ [18] require an auxiliary dataset that is independently
and identically distributed (iid) with the clients’ training datasets
to rectify malicious updates, which evidently violates the clients’
privacy. As for FLAME [11], it clusters updates and considers the
smallest cluster as a malicious group, which makes sense in the
malicious minority context. However, in the case of a malicious
majority, it is difficult to assert if a given large/small-size cluster is
malicious. EIFFeL [13] shows similar infeasibility, since it combines
existing Byzantine-robust methods (e.g., FLTrust [3]) with secure
aggregation [2].

We propose a practical and secure Byzantine-robust FL system,
MUDGUARD, that defends against malicious entities (i.e., malicious
minority for servers andmalicious majority for clients) with privacy
preservation.

2 MUDGUARD Overview and Design
2.1 Overview
The first goal of this work is to maintain the Byzantine robustness
such that malicious updates should be excluded properly. To do so,
the serversmust separate themalicious clients from the semi-honest
clients. DBSCAN helps the servers to perform clustering. Since the
main difference between the malicious and the benign is in the
direction and magnitude of the updates, we use the adjusted cosine
similarity of updates as feature extraction to obtain better clustering
accuracy. Under the (semi-)honest majority, the clustering result
directly links to the group size. However, for a dynamic malicious
majority, we cannot judge if a cluster is malicious only based on its
size. To address this issue, we propose Model Segmentation. Unlike
traditional FL generating “a unique" global model, our proposed
algorithm can yield multiple aggregation results. It does not require
the servers to know whether a given group is malicious or not.
Moreover, it only aggregates the updates within the same cluster
and then returns the results to the corresponding clients. We thus
guarantee that the semi-honest will not be aggregated with the
malicious.

As far as fighting against inference attacks is concerned, we
should protect the confidentiality of the updates. For this, we use
SS to wrap the updates into a secret shared format in the sense that
individual secret shares cannot reveal the underlying information
of the updates. By doing so, we guarantee that the updates are se-
cured from eavesdroppers, semi-honest, or even malicious servers
and can further be used on secure multiplication, comparison, and
aggregation via cryptographic tools. However, using Secret Sharing
(SS) alone is not sufficient to defend against differential attacks.
To thwart the attack, we apply DP to prevent the attackers from
extracting benign updates from the semi-honest group. Since inject-
ing noise has a negative influence on the accuracy of the training
model, we enable clients to perform denoising before wrapping
the results into shares. Note that this does not invalidate DP due
to the post-processing nature [5]. We also consider the malicious

minority servers and thus leverage the Homomorphic Hash Func-
tion (HHF) to prevent malicious servers from performing incorrect
aggregation, e.g., merging the gradients from two different groups.

2.2 System Design
Assume client 𝑖 ∈ [𝑛] holds a horizontally partitioned dataset D𝑖

satisfying D =
𝑛⋃
𝑖=1
D𝑖 , at 𝑡-th round, MUDGUARD works as follows.

Protocol MUDGUARD
➊ Local Training. For each local minibatch, each client con-
ducts SGD and takes gradients g𝑖𝑡 as updates.
➋ Noise Injection. Each client adds noise into g𝑖𝑡 to satisfy DP:
g̃𝑖𝑡 ← g𝑖𝑡/max(1, ||g𝑖𝑡 ||2/Δ) + N (0,Δ2𝜎2).
➌ Denoising. To improve accuracy, each client denoises g̃𝑖𝑡 by
ĝ𝑖𝑡 ← KS(g̃𝑖𝑡 ,N) · g̃𝑖𝑡 , where KS(·) is the KS distance.
➍ SS. Each client splits g𝑖𝑡 ← ECD(sign(ĝ𝑖𝑡 )) into 𝑆 shares by
binary SS with Tiny Oblivious Transfer (OT) and sends the
shares to 𝑆 servers: [[g𝑖𝑡 ]]

𝑆𝑆←− g𝑖𝑡 . Besides, by running HHF,
all clients broadcast H𝛿,𝜙 (sign(ĝ𝑖𝑡 )).
➎ Feature Extraction. After receiving 𝑛 shares, each server lo-
cally computes a pairwise adjusted cosine similarity matrix by
bit-XOR: [[CosM𝑖 𝑗 ]] ← [[g𝑖𝑡 ]] ⊕ [[g

𝑗
𝑡 ]], 𝑖, 𝑗 ∈ [𝑛]. To further

compute 𝐿2 distance, all servers convert Boolean shares to
arithmetic shares by correlated randomness.
➏ 𝐿2 Distance Computation. After conversion, deriving mul-
tiplicative SS, each server uses HE or OT to produce a triple,
satisfying further multiplications. Therefore, each server
takes [[CosM]] as the inputs of DBSCAN and then com-
putes [[EucM]] by (a) pairwise subtraction: [[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]] ←
[[CosM𝑖 ]] − [[CosM𝑗 ]], 𝑖, 𝑗 ∈ [𝑛], (b) dot product: [[𝑥𝑖 𝑗 ]] ←
[[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]] · [[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]], and (c) approximated square root:

[[EucM𝑖 𝑗 ]] ← 1 + [[𝑥𝑖 𝑗 ]]−12 − ( [[𝑥𝑖 𝑗 ]]−1)
2

8 + ( [[𝑥𝑖 𝑗 ]]−1)
3

16 .

➐ Element-wise Comparison. By comparing each element of
EucMwith density parameter 𝛼 , each server can derive shares
of indicator matrix [[IndM]], {IndM𝑖 𝑗 = 1 | EucM𝑖 𝑗 ≤ 𝛼}.
➑ Reconstruction. All servers run a reconstruction algorithm
to reveal IndM: IndM

recon←− [[IndM]] and broadcast it to the
client side. By DBSCAN, one can derive cluster labels. Based
on these labels, the clients learn about clustering information
to perform aggregation verification in step ➓.
➒ Model Segmentation. The servers aggregate shares (based
on the number of labels 𝑐) with the same labels after decoding:
{[[G𝑗

𝑡 ]] ←
∑
𝑖∈𝑐 𝑗 DCD( [[g

𝑖
𝑡 ]]) | 𝑐 𝑗 = {𝑖 | 𝑖 ∈ [𝑛]}, 𝑗 ∈ [𝑐], }

and send to the corresponding clients.
➓ Aggregation Verification. After reconstructing aggregation,
according to cluster labels, each client verifies aggregation
by

∏
𝑖∈𝑐 𝑗 H𝛿,𝜙 (sign(ĝ𝑖𝑡 ))

?
= H𝛿,𝜙 (G

𝑗
𝑡 ) . If the equation holds,

clients accept the aggregation results; otherwise, reject and
abort.
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3 Evaluation
We set the baseline as a “no-attack-and-defense" FL, which means
it excludes the use of any cryptographic tools as well as Byzantine-
robust solutions but only trains with fully honest parties. This
reaches the highest accuracy and fastest convergence speed for FL
training. We then set #clients participating in the baseline train-
ing equal to the number of semi-honest clients in the malicious
existence case. We conduct each experiment for 10 independent
trials and further calculate the average to achieve smooth and pre-
cise accuracy performance. We evaluate MUDGUARD’s accuracy and
ASR by varying the total number of clients, the proportion of mali-
cious clients, and the degree of non-iid; and further compare the
performance with the baseline.

Under Gaussian Attack (GA), Adaptive Attack (AA), Backdoor
Attack (BA), and Edge-case Attack (EA), the testing accuracy is on
par with the baseline (with only a 0.008 gap on average) in MNIST.
However, compared with the baseline, the results of MUDGUARD
under LFA, Krum, and Trim attacks show slight drops (on average,
0.025 in MNIST). This is so because MUDGUARD has slow convergence
and large fluctuation. This is incurred by two factors. To reduce the
overheads of secure computations, we apply binary SS in SignSGD.
SignSGD could cause negative impacts on clustering. Only taking
the signs of the gradients can ignore the effect of the magnitudes
of the malicious gradients. This makes the clustering a bit prone to
inaccuracy. The other factor is that the LFA and Krum/Trim attacks
either poison the training data and further poison updates or the
local model to optimize the attacks. In the early stage of training,
the malicious models do not perfectly fit the poisoned training data
and local models yet. Thus, the semi-honest and malicious clients
could be classified into the same cluster.

Semi-honest clients can obtain comparable accuracy to the base-
line at the end of the training. The accuracy of the semi-honest
group and the baseline sharply increases from 0.1 at epoch 0 to
around 0.95 at epoch 25, then gradually converges to 0.97. In the
GA, since the malicious group can only receive aggregation of noise,
their accuracy always fluctuates around 0.1, equalling a random
guess probability. As for LFA, the model accuracy gradually drops
from 0.1 (at the beginning) to 0. This is because their models are
trained on label-flipped datasets, while the labels of the testing set
are not flipped. If the testing set is used to detect a poisoned model,
the result should be flipped labels and failing to match the labels in
the testing set, which results in 0. Since semi-honest and malicious
clients can be classified into the same cluster at the beginning of
the training, the accuracy of their models, w.r.t. malicious clients,
is larger than 0.1 in some trials.

The accuracy of the semi-honest group under these attacks con-
verges slightly slower than the baseline. Label Flipping, Krum, and
Trim attacks aim to either train poisoned data or optimize local
poisoned models to deteriorate the global model’s testing accuracy.
Due to the attacks being relatively slow and not as direct as GA,
malicious updates cannot deviate 100% from benign updates at the
beginning of the training (which means that malicious and semi-
honest clients could be clustered together). However, with more
training rounds, the deviation becomes clearer. Thus, MUDGUARD
separates the two groups easily.
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