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Abstract. This paper introduces different numerical strategies in computational elec-
trophysiology, based on the Finite Element Method to handle the space discretization of
the governing equations. The long-term goal is to apply these computational techniques
to study the three-dimensional electrical propagation in patient-specific ventricular geome-
tries, having in mind not only to understand the process, but also to use the simulation
tools to improve the diagnosis accuracy.

The electrical response of cardiac tissue is modeled by combining Bidomain (BD) and
FitzHugh-Nagumo (FHN) models. The BD model uses two coupled diffusion PDEs to
handle the electrical potential in the intra- and extracellular domains of cardiac tissue
taking into account the anisotropic conductance of the muscle fibers. The FHN equations
add a non-linear reaction term to a transient diffusion equation in order to represent the
ion current flows, which drive the depolarization and repolarization processes through the
intra- and extracellular domains. The FHN model also includes an ODE to account for
the recovery potential contribution responsible of the excitable media repolarization.

The proposed methodology is illustrated with numerical simulations both in academic
simple geometries and in patient-specific cardiac ventricular. The latter have been re-
constructed by using automatic three-dimensional medical image segmentation and mesh
generation tools.
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1 INTRODUCTION

Cardiovascular diseases (CVD) made up 29.2 percent of total global deaths according
to a recent World Health Report [4]. It is estimated that by 2010, CVD will be the
leading cause of death in industrialized countries. The major CVD include coronary
(or ischaemic) heart disease (heart attack), cerebrovascular disease (stroke), hypertension
(high blood pressure), rheumatic heart disease and heart failure. Damage to the heart
tissues from CVD or from heart surgery can disrupt the natural electrical impulses of the
heart and result in cardiac arrhythmia [1, 3].

Theoretical studies into the mechanisms of cardiac arrhythmias form a well-established
area of electrophysiology but, despite decades of research, their causes are still poorly un-
derstood [24]. Experimental and clinical studies involving the in-vivo human heart are
possible and often available in cardiac electrophysiology, but they are expensive and very
limited. Therefore, well-defined mathematical and numerical modeling (computational
models) of cellular electrophysiology and action potential propagation are becoming of
great importance for understanding the developing and propagation mechanisms of ar-
rhythmias and other pathologies. Nowadays, a challenge is to design tools for using such
models in concrete medical applications, such as realistic simulations for prevention, di-
agnosis and therapy of cardiac diseases [5]. This is the main motivation for the work in
progress that is presented in this paper.

From the early sixties, generic models of single-cell (microscopic level) have been cre-
ated for a wide range of species and cardiac cell types (a detailed list is given in reference
[22]). These models have achieved a high degree of detail in the description of cellular ionic
currents and dynamics of several intracellular structures. They have been used to advance
the understanding of processes influencing in specific patho-physiological responses, and
have also been successful in describing cell properties. Despite all these advantages, it is
impracticable to derive a whole heart (macroscopic level) by modeling every single cell
that it contains [15]. The most obvious reason of this impossibility is the huge computing
requirements, although the inaccuracy in determining both geometrical and physiological
cardiac parameters represent nowadays a major problem to deal with real cases.

Since the mid-forties, several methods have been developed in order to simulate the
electrical propagation of excitable media (at macroscopic or multicellular level) such as the
cardiac tissue: reaction-diffusion systems, cellular automata, hybrid models [22]. Initially,
they were used to reproduce excitation propagation in two-dimensional sheets of cardiac
muscle. In the last years, several works have shown that these models can also be applied
to describe three-dimensional phenomena [16, 20]. These models do not take into account
microscopic cellular behaviour, which constitutes main limitations in their realism and
applications.

During the past two decades, different modeling approaches have been developed for
bridging in an efficient and realistic way the physical scales corresponding to different
levels of anatomy (structural description) [6, 27]. This process is part of a general one
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called integrative biological modeling, which is currently an active research topic that
includes structural, functional and data integrations [15]. Currently, the most employed
methods for bridging scales correspond to cellular automata and reaction-diffusion sys-
tems. The former are based on two components: discrete network of cells representing
the spatial structure, and a priori definition of simple communication rules between cells
in order to reproduce the propagation wave. The latter are based on conservation laws
and use systems of partial and ordinary differential equations to describe the excitation
and propagation process in cardiac tissue (excitable media). The present paper is based
on this second line of action.

The paper introduces a new scheme to stabilize spurious effects due to non-linear terms,
which eliminates non-physical numerical oscillations. Besides, a proper treatment of the
non-linearities allows larger time steps in implicit schemes. Time discretization is handled
either using a fully explicit Forward-Euler scheme or an implicit Crank-Nicholson scheme.
Space discretization scheme is based on the Finite Element Method (FEM), particularly
well suited for the involved complex cardiac geometries. An additional reason for us-
ing such a space discretization strategy is to apply FEM-bred consistent shock capturing
techniques (SCT) to tame a major source of numerical instabilities: the steep electri-
cal propagation front. The proposed SCT is inspired in computational fluid dynamics
schemes.

The remaining of the text is organized as following. Section 2 gives a description of the
model used for the simulations. Numerical schemes are explained in Section 3. Results are
presented in Section 4. Finally, Section 5 closes the work with conclusions and suggestions
for future research.

2 MODEL DESCRIPTION

2.1 Overview of Cardiac Electrophysiology

The origin of the electrical activity of the heart are the myocytes (cardiac cells), which
form what is called an excitable media [2, 7]. In a normally functioning heart the electrical
impulse starts in the sinoatrial node, located at the top of the right atrium (Figure 1).
This node is the natural pacemaker of the heart, and consists of specialized cells which
generate spontaneous and regular electrical action potentials. These action potentials
spread throughout the right atria to the atrioventricular node and via the Bachmann
bundle to the left atrium. The atrioventricular node delays the propagation, which is nec-
essary for an appropriate and synchronized contraction of atria and ventricles. Thereafter
the conductivity system of the ventricles, formed by the His bundle and the subendocar-
dially located Purkinje fibers, is activated. Finally, the excitation passes to the ventricular
myocardium, wherefrom it propagates to epicardial surface.

3



A.M. Rosolen, S. Ordas, M. Vázquez and A.F. Frangi

Figure 1: Heart Conduction System (taken from www.texasheartinstitute.org/HIC/Anatomy/).

2.2 Physical Model

Cardiac electrophysiology is modeled from both the macroscopic (cardiac tissue as a
composite material) and the microscopic (cell-to-cell propagation) points of view. The
global view can be condensed in a system of transient diffusion PDEs, which include terms
that injects microscopic contributions in the macroscopic model. The canonical way of
dealing with the macroscopic propagation of an action potential wave in the myocardial
tissue is the bidomain model. Its main idea is to consider intra- and extracellular domains
separated by a membrane, modeling their mean behavior. This allows taking into account
the different conductivities of both media. There are several ways of treating the micro-
scopic flow of ionic currents that drive the propagation process. In this paper (considered
as a starting point for future research) we have chosen the FitzHugh-Nagumo model for
leading this role. Both models are briefly explained below.

2.2.1 The Bidomain Model

The Bidomain Model treats the myocardial tissue as a continuum medium consisting
of the intra- and the extracellular domains, which are separated by a membrane. A
third domain, known as extramyocardial space, may be also defined and corresponds to
any region outside of the heart [12]. Electrical propagation occurs along the membrane
situated between the intra- and extracellular spaces. Solution of full bidomain equations
is known to be important when modeling the efects of electric field stimulation on cardiac
electrical responses [27].

The bidomain equations are derived by applying conservation of charge between the
intra- and extracellular domains, which are characterized by conductivity tensors Di and
De, respectively. Between these two domains a current density Im flows (Figure 2). The
mathematical formulation of the bidomain model depicts the mutual dependency of in-
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Figure 2: Schematic representation of one-dimensional bidomain model.

tracellular Ui, extracellular Ue, and transmembrane Vm potentials [6, 22]:

∇ · (Di∇Vm) +∇ · (Di∇Ue) = Im (1)

∇ · ((Di + De)∇Ue) = −∇ · (Di∇Vm) (2)

Vm = Ui − Ue (3)

The bidomain model is completely defined by equations (1,2). The transmembrane
potential is the coupling variable when defining the microscopic contribution, as shown
in the following section.

2.2.2 The FitzHugh-Nagumo Model

There are several methods [14, 18, 22] for modeling the current density Im specified on
equation (1). The FitzHugh-Nagumo Model represents the cellular response (excitability,
threshold, depolarization, plateau, repolarization) to a stimulus in a compact and simple
way. This model is a good tradeoff between complexity and computational efficiency,
having been, for that reason, chosen in the present work. Its main disadvantage is the
purely ad-hoc character of its derivation, not at all a consistent bridging scale model to
connect micro and macroscopic scales. However, this model should be considered as the
first step on the way of an accurate simulation of cardiac behaviour.

The FitzHugh-Nagumo model derives from the Hodgkin-Huxley equations [11]. The
cellular electrical activity is controlled by transmembrane Vm and recovery W potentials
[8] through the following equations:

Iion = c1Vm(Vm − α)(Vm − 1) + c2W (4)

∂W

∂t
= ε (Vm − γW ), (5)

which leads to the definition of Im as

5



A.M. Rosolen, S. Ordas, M. Vázquez and A.F. Frangi

Im = Sv (Ic + Iion + Ist) = Sv

(
Cm

∂Vm

∂t
+ c1Vm(Vm − α)(Vm − 1) + c2W + Ist

)
(6)

where Ic, Iion and Ist are the capacitive, ionic and stimulation currents, respectively. The
parameters Sv and Cm correspond to membrane surface-to-volume ratio and membrane
capacitance, respectively. The constants c1, c2, α, ε and γ are related with the duration
and amplitude of action potential [16, 20].

2.3 Geometry

Electrical propagation is computed in three different geometries. First, a square of
cardiac tissue is used for simulations (Figure 3, left). Although this is an academic
geometry, it is useful for studying the behavior and dynamics of cardiac wave propagation.
Later, simulation is performed on a geometry corresponding to a three-dimensional holed
block of cardiac tissue (Figure 3, center). Finally, simulation is computed in left cardiac
ventricle (Figure 3, right). This kind of geometry is more realistic, and it can be generated
automatically from medical images by using segmentation techniques [19, 25].

Figure 3: Geometries used for simulations of electrical propagation: a square (left), a 3D holed block of
cardiac tissue (center), and the left cardiac ventricle (right).

2.4 Initial Conditions

The heart is polarized at the beginning of cardiac cycle. It means that intracellular,
extracellular and transmembrane potentials correspond to resting state. Then, a good
approximation for initial conditions can be done by using resting values of potentials for
every point x that belongs to the heart:

Vm(x, 0) = Vm0(x) (7)

Ue(x, 0) = Ue0(x)

The resting state changes when the impulse originated in the sinoatrial node starts the
depolarization process. The responsible for the transmission of this activation potential
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to the left ventricle is the system formed by Purkinje fibers. This system of ventricular
activation is included in the model through the stimulation current Ist of equation (6).
Unfortunately, the orientation and position of such fibers is unknown. Then, any criterion
has to be defined for the activation process. In the present work, a punctually excitation
will be applied in the ventricular apex.

2.5 Boundary Conditions

Although the heart is not an isolated organ, we assume no electrical interaction with
other parts of the body. This condition is reasonable for the sort of electrophysiology
models addressed here [6, 16, 22]. For that reason, boundary conditions are set as

n · (De∇Ue) = 0 (8)

n · (Di∇Ue) = −n · (Di∇Vm) ,

which are the so called natural boundary conditions of the FEM-based formulation.

3 COMPUTATIONAL IMPLEMENTATION

Combining the macroscopic model equations (1,2,3) with those of the microscopic FHN
(4,5,6) leads to the complete set of equations to be modeled:

Sv

(
Cm

∂Vm

∂t
+ c1Vm(Vm − α)(Vm − 1)

)
− ∇ · (Di∇Vm) =

= ∇ · (Di∇Ue)− Sv (c2W + Ist) , (9)

∇ · ((Di + De)∇Ue) = −∇ · (Di∇Vm) , (10)

∂W

∂t
= ε (Vm − γW ) , (11)

to be solved providing the proper boundary and initial conditions.
The FEM-based space-discretized weak form of the first two equations, combined with

a finite differences based time discretization of the full set, leads to the following:
[
cT

M

∆t
+ θKi + Iimp

NL

]
Vm

n+1 = fm
n (12)

KtotUe
n+1 = fe

n (13)

W n+1 = W n + ∆tε(Vm
n+1 + γW n), (14)

where bold face characters represent the nodal discretized variables, vectors (like Vm or
W ) or matrices (like Ktot or M ). The right hand sides fm

n and fe
n include all the terms
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evaluated at the previous time step and coming from the discretized equations. The factor
0 ≤ θ ≤ 1 is the trapezoidal rule parameter that discriminates between explicit (θ = 0) or
implicit (0 < θ ≤ 1) algorithms, notably θ = 0.5 for second order Crank-Nicholson. Ktot

represents the total diffusion matrix, which is computed with Dtot = De +Di. The matrix
M is the mass matrix, lumped using closed integration rules to make it diagonal and
very convenient in explicit schemes or consistently (non-diagonal) computed for implicit
schemes.

The non-linear term coming from the FitzHugh-Nagumo model c1Vm(Vm − α)(Vm − 1)
deserves a special treatment, explained in the following section. Finally, shock capturing
techniques are addressed.

3.1 Special scheme for Non-linear FitzHugh-Nagumo terms

Differential equation (9) presents a non-linear term, which can produce numerical in-
stabilities. These can generally be removed by using small time steps, but sometimes
this is computationally expensive. Then, it is convenient to design schemes with more
robustness that can admit longer time steps. Next, a new scheme inspired in reference [9]
is explained.

The basic idea is to combine different discrete linearizations of the diffusion-free model
(6) in order to obtain a new scheme that improves numerical approximation for non-linear
term. The proposed discrete linearizations DLi are the following:

DL1 = −c1aVmn+1 + c1(1 + a)V 2
mn
− c1V

3
mn

(15)

DL2 = −c1aVmn + c1(1 + a)V 2
mn
− c1V

2
mn

Vmn+1 (16)

DL3 = −c1aVmn + c1(1 + a)VmnVmn+1 − c1V
3
mn

(17)

where Vmn and Vmn+1 are the values for steps n and n + 1, respectively.
If local truncation errors of equations (6,15,16,17) are combined in order to satisfy an

specific equation, a more robust and better order method for non-linearities treatment
can be constructed (see reference [21] for more details):

Vmn+1 =
2− c1a∆t + c1∆tV 2

mn

2 + c1a∆t− 2c1(1 + a)∆tVmn + 3c1∆tV 2
mn

Vmn (18)

The new scheme is built by replacing equation (18) in the corresponding term of equa-
tion (12).

3.2 Shock capturing techniques

The choice of the finite element spaces where the approximated solutions are sought
to conditionate the behavior of those solutions facing some special terms present in the
equations. Particularly, non-linear terms are very likely to produce solutions with very
strong gradients. The FEM spaces, spanned by compact support functions centered in
the nodes, will then introduce spurious numerical oscillations localized around the strong
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gradients, which are artifacts of non-physical character. Examples of these cases are the
numerical oscillations around the shock waves in supersonic flows simulations. In order
to damp them, a consistent numerical diffusion must be added. Consistent means that it
cannot modify the physics, acting only where it is needed to damp the spurious errors.

This feature is also observed in electrophysiology. The action potential wave is a steep
front that propagates through the cardiac tissue, followed by a smooth decaying stage and
terminated by a sharp depolarization. We have adapted the Anisotropic Shock Capturing
(ASC) technique proposed in works like [10, 17, 26].

Suppose a diffusion-reaction equation like that of Vm. Let us simplify it and re-write
it as:

∂V

∂t
− ν

∂2V

∂xk∂xk

+ S(V ) = 0,

where we have denoted S(V ) the non-linear term coming from the FitzHugh-Nagumo
Model and ν as a generic diffusion coefficient. The Einstein summation convention on
repeated indexes is used. According to the aforementioned method, a numerical shock
capturing diffusion νsc is computed elementary, at the Gauss points level:

νsc =
1

2
αsch

|R(V h)|
|∇V h| . (19)

This numerical diffusion is properly added in the corresponding (discretized weak form)
diffusion terms. The supraindexed V h represents the projection of the continuous action
potential on the discretized space. R(V h) is the space-time (discretized weak form) equa-
tion residual, and h is a characteristic length of the discretization element, typically the
radius of the inscribed sphere (or circle in 2D). When there is no convection terms (as it is
the case) αsc = 0.7, a constant coming from numerical analysis. Note that the numerical
diffusion νsc is only present when the discrete equation residual rises.

4 RESULTS

The system defined by equations (12,13,14) is here solved by using both implicit and
explicit algorithms. Simulations are also performed applying different combinations be-
tween the proposed shock capturing technique (SCT), by a certain number of non-linear
iterations (NLI), and a special scheme for the non-linear treatment (SNLT). All the sim-
ulations were computed by using values of parameters taken from references [16, 20].
A time step of 0.1 ms was used for comparison reasons and because it is a value that
falls below the critical time step coming from stability conditions of explicit schemes. A
summary of the experiments carried out is specified in Table 1.

Results obtained by using the explicit method are shown in Figure 4. It can be observed
that non-physical numerical oscillations (red and blue lines) only appear when standard
algorithm is used. These oscillations are eliminated applying the SCT (green and magenta
lines). The SCT diffusion depends on the discretized (space-time) residual of the equation,
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Label SCT NLI SNLT Algorithm
01 No 0 No X-I
02 Yes 0 No X-I
03 No 10 No X
04 Yes 10 No X-I
05 Yes 10 Yes I

Table 1: Summary of performed experiments. The first column corresponds to the number specified in
labels of Figures 4 and 5. The second column indicates if shock captures technique (SCT) is used or not.
The number of non-linear iterations (NLI) is shown in third column. The fourth column indicates if the
scheme for non-linear treatment (SNLT) is applied or not. The last column denotes if the algorithm used
is implicit (I) or explicit (X).

which must be computed as accurately as possible. We have observed that this fact is
critical when considering the non-linear terms contribution to the residual, yielding to over
diffusion. This is easily solved by some internal iterations done at each of the time steps
(magenta line). In any case, it is worth to mention the advancing time step of explicit
algorithms must fall below the causality limit. In the present problem, the critical time
step has always been taken from the diffusivity limit.
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Figure 4: Numerical solutions obtained by using Explicit Method. Each line is the result of a simulation
performed according to the numerical scheme specified in Table 1.

Results shown in Figure 5 correspond to those computed by using the implicit method.
Just like in the results of the explicit algorithm, non-physical numerical oscillations (green
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line) only appear when the standard algorithm is used. These oscillations are eliminated
adding the SCT (blue, magenta and cyan lines). Again, the best results come when
applying non-linear internal iterations (magenta and cyan lines). Due to the implicit
character of the algorithm, the non-linear terms must be specially treated in order to damp
the remnants of the spurious oscillations in the propagation front. This final correction
is tamed by using SNLT (cyan line).
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Figure 5: Solutions obtained by using Implicit Method (red line is only kept like reference). Numerical
scheme used for computation of each curve is specified in Table 1.

Results shown in Figures 4 and 5 were obtained for a specific point of the square
geometry indicates in Figure 3 (left). Temporal evolution of the electrical wave front
corresponding to the holed block (Figure 3, center) is shown in Figure 6.

Results of simulation performed on a patient-specific ventricular geometry (Figure 3,
right) are shown in Figure 7. It can be observed that three-dimensional cardiac elec-
trical propagation is isotropic, which is not physiologically realistic. This problem can
be corrected by using anisotropic diffusion tensors which depends on the cardiac fiber
orientation. Future works will describe how this is implemented.

5 DISCUSSION AND CONCLUSIONS

The propagation of cardiac electrical activity was computed in three examples: a
square, a holed block and a cardiac ventricular geometry by using a combination of
FitzHugh-Nagumo and Bidomain models. The model equations were solved numerically
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Figure 6: Three-dimensional electrical propagation in a holed block of cardiac tissue.

Figure 7: Three-dimensional cardiac electrical propagation in a patient-specific ventricular geometry.

by using FEM-based algorithms for the space discretization. Time was discretized us-
ing a finite differences scheme, allowing both implicit and explicit algorithms. Different
numerical schemes were introduced in order to improve the behavior of non-linear terms.

These first results are promising and encourage the authors to face new research lines
in order to improve in different aspects. The main points to attack are at what extent the
physiological models used are realistic, how to improve the models by coupling mechanics
and blood flood or how to include the indidual patients modeling parameters. Another
important issues come from the pure computing side of the problem, like how to efficiently
parallelize the schemes or how to deal with dynamic geometries.

Orientation of cardiac fibers was considered isotropic. This assumption can be used as a
first approach, but it is far from being realistic. It means that an anisotropic orientation
must be included, which could be done by mapping experimental measurements or by
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creating a synthetic model according to literature [13, 23].
FitzHugh-Nagumo model approximately reproduces several features of the action po-

tential. However, if we would like to study the relationship between a specific pathology
and the observed electrical variations, a better ionic model would be necessary. A more
detailed ionic model would also be necessary for a precise description of the electrical po-
tential in function of information at microscopic level. Initial excitation has to be changed
for taking into account Purkinje fibers. Unfortunately, there is not data available due to
the technical difficulties inherent to the measure procedure. Although this fact condition-
ates any work that can be done, it must not refrain computational mechanics researchers
from going ahead with their work to get the best possible simulation strategies and tools.

Results of the simulations should be compared with experimental measurements in
order to adjust the parameters of each model. Such comparison is also necessary for
patient-specific model characterization and validation.
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