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ABSTRACT

During a rocket launch a spacecraft is, among other loads, exposed to a potentially dam-
aging acoustic load. Prior to space flight, ground tests are performed to determine whether
a spacecraft, or a specific part thereof, can withstand the acoustic load. These tests take
place in a reverberation chamber. An acoustic feedback control algorithm shapes the
sound field to specified third octave band levels which, are characteristic to individ-
ual launch vehicles. When applying feedback control, one faces two challenges. For
one, the reverberant room introduces a large time constant resulting in slow transient
behaviour, i.e. slow test start-ups. Furthermore amplitude fluctuations are introduced
when analysing white noise with third octave band analysis due to its stochastic nature.
This causes a lack of precision in steady state operation.

This thesis studies acoustic phenomena taking place in a reverberation chamber.
These include non linear sound propagation. The presence and significance of this non
linearity will be evaluated. Subsequently, it is aimed to derive an input-output relation,
describing the acoustic room response. To extend this relation, the third octave band-
pass filters will be studied.

After a physical model is formulated, different feedforward control algorithms are
studied to improve both the build-up time of the sound field and the accuracy of the
sound field after the steady state is reached. These will first be applied to a single third
octave. Thereafter the control system will be extended to multiple third octave bands.
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1
INTRODUCTION

During a rocket launch a spacecraft is, among other loads, exposed to a potentially dam-
aging acoustic load. Prior to space flight, ground tests are performed to determine whether
a spacecraft, or a specific part thereof, can withstand the acoustic load. These tests take
place in a reverberation chamber. typically equipped with large horns for sound gener-
ation. See for example figure 1.1.

Figure 1.1: ESA’s Large European Acoustic Facility. Photo: ESA

1.1. ACOUSTIC TESTING
A sound pressure field is generated within the reverberation chamber to simulate the
rocket launch. The acoustic load is huge in terms of energy, i.e. extremely high sound
pressure levels are reached. Besides, the sound has a specific spectral pattern. Therefore
the desired sound pressure level is specified per third octave frequency band [2]. In figure

1
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1.2 an example of a typical spectral pattern is visualized. The blue line indicates the ref-
erence sound pressure level per third octave. The red line indicates the measured sound
pressure and the green lines indicate the maximum tolerated deviation. Throughout the
test, one aims to generate a sound field with sound pressure levels as close as possible to
the reference levels.

Figure 1.2: Sound pressure levels per third octave bands

A schematic overview of the conventional test facility can be seen in figure 1.3. First
Gaussian white noise is generated. Thereafter the white noise is filtered by third octave
band pass filters. The resulting signals are then separately amplified, such that the de-
sired spectral pattern is achieved. The signals are then added up, the spectrally shaped
signal flows into the acoustic noise generators1. In the high reflective room the direct
sound field and the powerful reflections form a high energy sound field. The sound pres-
sure in the room is measured by microphones, placed on different locations in the room.
The microphone signals are analysed with third octave band filters and thereafter spa-
tially averaged. The sound pressure level per third third octave band is then compared
with the reference level. Based on the found error the controller computes new gains.

The controller of this type of testing faces (among other) challenges such as:

1. The control system is a Multi-Input-Multi-Output (MIMO) system, as the sound
pressure level has to be controlled in different third-octaves simultaneously. An
ideal third octave band filter would attenuate all the frequencies outside its own
band. Since ideal filters do not exist in practice, adjacent band pass filters have an
overlap in the frequency domain. These overlaps cause interactions between the
different third octaves, i.e. exciting only one third octave band, yields output on
adjacent third octave bands as well.

2. The sound source generates uncorrelated white noise, which when using third oc-
tave band filters, yield a continuous fluctuation of the third octave band ampli-

1The noise generators are modulators, they modulate an air or nitrogen flow[1]



1.2. GOAL

1

3

White noise
generator

Third octave
filtering

Gain

Acoustic noise
generators Reverberant room

Third octave an-
alyzers

Averaging

Controller

Reference levels

Sound Mic signals

-ErrorNew gains

Figure 1.3: Schematic overview of the test

tudes around an average value. In consequence, these fluctuations are also ob-
served in the measurement of the sound pressure field. Feedback controllers can
only try and counteract these fluctuations while already happening.

3. The reverberant room introduces a large time constant. The time constant is di-
rectly linked to the reverberation time2. Reverberation rooms typically have re-
verberation times well above 10 seconds in practice. Indeed, even when the con-
troller introduces an instant output level increase, it will take time for the sound
pressure field to reach a steady state level due to the reverberation room character-
istics. Taking into account that overshoot is not allowed in acoustic testing, feed-
back controllers furthermore do hard on fast transient amplitude steps in the first
place. Both phenomena result in long start up times prior to reaching the steady
state amplitudes.

1.2. GOAL
Taking the control challenges into account, a controller for these tests should be de-
signed. Conventional acoustic control systems use feedback controllers, for instance:
[15]. This thesis focuses on applying feedforward control to acoustic testing. The con-
trol algorithm is required to improve the performance of the tests in terms of:

1. Rise time

2. Precision & accuracy

2The principle of reverberation time will be treated in chapter 3
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1.3. THESIS OUTLINE
Designing a controller, requires good understanding of the physics taking place. There-
fore basic principles of acoustics are introduced in chapter 2. Thereafter acoustical phe-
nomena taking place in a reverberation chamber are discussed in chapter 3. First the
sound field is described by the acoustic Eigenmodes in the room. Thereafter the limita-
tions of this approach will be shown and the principle of the diffuse sound field will be
introduced. Furthermore the presence of non linear acoustic phenomena is evaluated.
Based on the knowledge of the physics learned from chapter 3, a state space represen-
tation of the system is derived in chapter 4. Definition of the input-, output- and state
variables is determined here. The bandpass filters introduce interactions between the
state variables, these are quantified and included in the equations. An identified input-
output relation enables decision making for control. In chapter 5 the control problem
will first be simplified to a single input single output (SISO) problem. In consequence,
different control methods will be designed and evaluated. Their performances is tested
in a small reverberation room. Those experimental results are discussed. Thereafter the
controller is extended to a MIMO controller. For this purpose a decoupler will be de-
signed. The thesis will be finished with conclusions.



2
BASIC PRINCIPLES OF ACOUSTICS

In order to make this report accessible to those who are not very familiar with acoustics,
a short overview of some basic acoustical principles and definitions will be given in this
chapter. Basic knowledge of the relations between propagation speed, the wavelength,
the wavenumber and frequency is assumed throughout this report. The described rela-
tions in this chapter are found in [5] ,unless stated differently.

2.1. SOUND PRESSURE
A graphical representation of a propagating sound wave can be seen in figure 2.1a. It
shows the longitudinal behaviour of the wave. Particles move to and fro in the direction
of the wave propagation. As a result the medium density and pressure fluctuate around
ambient level. The corresponding pressure over distance is represented in figure 2.1b.
The sound pressure (p throughout this report) is defined by the difference between the
instantaneous pressure and the atmospheric pressure. To express the sound pressure
level , the RMS value over time of this difference is computed. The unit of sound pressure
level is therefore Pascal. Though, the sound pressure level is more often expressed as the
mean square value in a decibel scale. The reason for this, is that this scale corresponds
better with the human experience of sound.

2.2. ADDITION OF SOUND PRESSURE
Sound pressure is often caused by multiple sources simultaneously. To compute the
collective sound pressure level of different sounds , a careful approach is required. When
the frequencies of the different sounds are close to each other, the phase has to be taken
into account, the different sound fields interfere in a phase dependent way. When the
sounds are incoherent, the square of the total rms pressure can be calculated as follows:

p2
totalrms =

N∑
n=1

p2
nrms (2.1)

Here pn is the sound pressure level corresponding to the n’th sound of N sounds in total.

5
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H

Figure 2.1: Illustration of a wave propagation [7]

2.3. SOUND INTENSITY
Sound intensity is a vector quantity. It indicates the amount of power transmitted through
a surface normal to the Intensity vector. The magnitude of the sound intensity in a free
field can be calculated as follows.

I = p2
rms

ρc0
(2.2)

Here prms, ρ, and c indicate the root mean square of the sound pressure, the density of
the medium and the speed of sound respectively. Sound intensity is expressed in decibel.

2.4. SOUND POWER
The sound power of a source is the rate of acoustical energy emitted by a sound source.
When attenuation losses in the medium are neglected, the sound power can be mathe-
matically defined as the sound intensity normal to an encompassing surface surround-
ing the source, integrated over this surface:

Ẇ =
∫

A

I ·n dA (2.3)

2.5. VOLUME VELOCITY
A source is can also be characterized by its volume velocity Q. The volume velocity is
a flow of air through a surface. In terms of acoustics it is the surface area of the source
multiplied by the normal surface particle velocity. When the volume velocity is known,
the sound power of the source can be determined:

Ẇ = ρω2Q2

8πc
(2.4)

2.6. PLANE WAVE MODEL VERSUS SPHERICAL WAVE MODEL
Throughout this report the sound waves are considered to be plane waves. For now
only small perturbations of pressure density and velocity around the steady state are as-
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sumed. The linearised conservation of mass, the linearised conservation of momentum
and the linearised adiabatic relations can be derived by substituting those small pertur-
bations in the conservation of mass, conservation of momentum and equation of state,
while neglecting the higher orders in the perturbations. Furthermore it is assumed that
the perturbations are so fast and small that no heat will be transferred.

∂p

∂x
+ρ0Ou = 0 (2.5a)

ρ0
∂u

∂t
=−Op (2.5b)

p = c2
0ρ (2.5c)

Those equations can be combined in the linearised plane wave equation [4]..

∂2p

∂t 2 = c2
04p with 4p = ∂2p

∂x2 + ∂2p

∂y2 + ∂2p

∂z2 (2.6)

The sound pressure for a propagation plane wave can be described by

p(x, y, z, t ) = pe i (−kx x−ky y−kz z+ωt ) (2.7)

Here p is an arbitrary amplitude and ω represents the radial frequency of the harmonic
motion. Substituting equation 2.7 into equation 2.6 yields the relation:

ω2 = c2
0 (k2

x +k2
y +k2

z ) (2.8)

In combination with the definition of the wavenumber:

k = ω

c0
(2.9)

A constraint can be derived:
k2 = k2

x +k2
y +k2

z (2.10)

By integrating the equations of the linearized conservation of momentum [4] over time
and distance we can find the relation between the particle velocities u in the different
directions and the sound pressure:

∂p

∂x
+ρ0

∂ux

∂t
= 0 → ux = kx

ωρ0
p (2.11a)

∂p

∂y
+ρ0

∂uy

∂t
= 0 → uy =

ky

ωρ0
p (2.11b)

∂p

∂z
+ρ0

∂uz

∂t
= 0 → uz =

kz

ωρ0
p (2.11c)

The acoustic impedance Za is the ratio of the sound pressure and the particle velocity. It
can be seen that for a plane wave travelling in a single direction the acoustic impedance
yields:

Za = p

u
= ρ0c0 (2.12)

The impedance for a plane wave in a single direction is also called the characteristic
impedance of air Z0.
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THE SPHERICAL MODEL

In the spherical model the sound source is treated as a point source. This approach
requires the physical dimensions of the sound source to be much smaller than the wave-
length of the produced sound. The spherical wave equation is [5]:

∂2p

∂r 2 + 2

r

∂p

∂r
− 1

c2
0

∂2p

∂t 2 = 0 (2.13)

Here r is the distance from the point source. An expression for the sound pressure now
is:

p(r, t ) = p

r
e i (−kr+ωt ) (2.14)

The derivation of the acoustic impedance takes place in an equivalent way as in equa-
tions 2.11a and 2.12:

ur =
p

ρ0c0

(
1− i

c0

2π f r

)
(2.15)

Za = ρ0c0

1− i c0
2π f r

(2.16)

From eq 2.16 we can conclude that the acoustic impedance for spherical waves approxi-
mates the characteristic impedance of air 2.12 when 2π f r >> c0. Throughout the project
this restriction holds. The errors, due to the assumption of plane waves, are mostly in-
significant in comparison with the errors accumulated from other assumptions. [5]

2.7. ( THIRD) OCTAVES
A third octave is a set of frequencies forming a frequency band. The octave scale is de-
fined as follows: The upper band frequency is exactly twice the lower band frequency.
Hence, every third octave has twice the bandwidth of its lower adjacent octave. The
upper- fu and lower band fl of a third octave always have the ratio:

fu

fl
= 2

1
3 (2.17)

The frequency bands of some relevant third octaves are defined in table 2.1.
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Lower Band Limit (Hz) Center Frequency (Hz) Upper Band Limit (Hz)

11.2 12.5 14.1
14.1 16 17.8
17.8 20 22.4
22.4 25 28.2
28.2 31.5 35.5
35.5 40 44.7
44.7 50 56.2
56.2 63 70.8
70.8 80 89.1
89.1 100 112
112 125 141
141 160 178
178 200 224
224 250 282
282 315 355
355 400 447
447 500 562
562 630 708
708 800 891
891 1000 1122

Table 2.1: Frequency limits for third octave bands





3
REVERBERATION CHAMBER

ACOUSTICS

In this chapter the Reverberation chamber will be identified. Of interest is the response
of the room, i.e. the sound pressure level per frequency band, when the room is excited
by a sound source with a certain sound power per frequency band. First a modal analysis
will be done. Thereafter the frequency range where the modal analysis is applicable will
be determined. Then the diffuse field model will be discussed. finally non linear acoustic
phenomena will be identified and quantified.

3.1. MODAL ANALYSIS
A reverberation chamber has highly reflective walls. Not much energy is absorbed during
a sound wave reflection. As a result, the sound field in the room is a comprises the direct
sound field from the source and a lot of its reflections. It is known that a room resonates
at certain frequencies. This occurs when for instance a certain amount of wavelengths
fits exactly between two walls. The initial wave and its reflections interfere in such a way
that a standing wave develops. Those standing waves are called the room modes.

3.1.1. ROOM MODES AND RESONANCE FREQUENCIES

A boundary condition for the chamber is that the fluid or particle velocity normal to the
rigid wall is zero at the wall. This boundary condition implies the assumption of zero
absorption in the walls. Mathematically this can be stated for the wall in the yz-plane
(figure 3.1).

ux (x = 0, t ) = 0 (3.1)

Implementing the boundary condition into the linearised momentum equation (equa-
tion 2.5b) yields [4]:

ρ0
∂ux

∂t
=−∂p

∂x
→ ∂p

∂x

∣∣∣
x=0

= 0 (3.2)

11
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Figure 3.1: Room in coordinate system

This boundary condition can be generalized for the six walls, with the width, length and
height of the room being lx , ly and lz .

∂p

∂x

∣∣∣
x=0, x=lx

= 0
∂p

∂y

∣∣∣
y=0, y=ly

= 0
∂p

∂z

∣∣∣
z=0, z=lz

= 0 (3.3)

Here it can already be seen that the room modes will be standing waves. In a travelling
wave the particle velocity is at its maximum at a pressure peak, whereas here the particle
velocity is zero at the peaks.

An harmonic solution for the linear plane wave equation (2.6) is:

p(x, y, z, t ) = p̃(x, y, z)cosωt (3.4)

Inserting equation 3.4 in equation 2.6 leaves to solve:

c2
0

(
∂2p̃(x, y, z)

∂x2 + ∂2p̃(x, y, z)

∂y2 + ∂2p̃(x, y, z)

∂z2

)
+ω2p̃(x, y, z) = 0 (3.5)

This equation can be seen as an eigenvalue problem. A solution for equation 3.5 which
satisfies the boundary conditions at x = 0, y = 0 and z = 0 is:

p̃N (x, y, z) = P N cos(kx x)cos(ky y)cos(kz z) (3.6)

Here P N is amplitude of N ’th the mode. The magnitude of this amplitude is such that it
normalizes the mode. To satisfy the boundary conditions at x = lx , y = ly and z = lz the
following restrictions hold for every positive integer nx , ny and nz :

kx = nxπ

lx
(3.7a)

ky =
nyπ

ly
(3.7b)

kz =
nzπ

lz
(3.7c)
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Frequency (Hz) nx ny nz

10.46 0 0 1
15.60 0 1 0
18.78 0 1 1
19.06 1 0 0
20.92 0 0 2
21.74 1 0 1
24.63 1 1 0
26.10 0 1 2
26.76 1 1 1
28.31 1 0 2

Table 3.1: Computed first 10 Eigenfrequencies at LEAF

Ideally every sound pressure field can now be described by a combination of modes
(shape of the field) and their amplitudes (strength of the field).

p(x, y, z, t ) = AN p̃N (x, y, z)cosωt (3.8)

For every combination of positive integers nx , ny and nz equation 3.6 gives the spatial
shape of the particular Eigenmode of the room. An Eigenmode can be interpreted as a
combination of interfering travelling plane waves resulting in a standing wave. There are
three types of Eigenmodes. The types are defined by the integers nx , ny and nz .

• Axial modes represent a standing wave parallel to the x, y , or z-axis. Two of the
integers nx , ny and nz equal zero.

• Tangential modes represent a standing wave oblique to two planes of the three
planes (x y , xz and y z). One of the integers nx , ny and nz equals zero.

• Oblique modes represent a standing wave oblique to all planes. In this situation,
all of the integers nx , ny and nz are non-zero.

The corresponding radial Eigenfrequency or resonance frequencyωN can be determined
by equation 2.8. Using the specification of the reverberation room in the Large European
Acoustic test Facility (LEAF), the first ten eigenfrequencies of this room can be found
(table 3.1) The sound pressure in field in a room can always be described by a combina-
tion of all Eigenmodes. One can imagine that for a limited frequency range only a finite
amount of modes ’ fit’ in the room. Furthermore it can be seen that when a ratio between
the room dimensions is an integer ( lx

ly
= 3 for instance), different modes will coincide. 1

3.1.2. GREEN’S FUNCTION
The goal is now to describe the sound pressure at a certain point in the room due to a
sound source at another location. Since the pressure field is a harmonic function of time,

1In this case the the frequency response will be less uniform. therefore a well-designed reverberation chamber
does not have dimensions related in such a way. Peaks in the frequency response are not desired, because the
frequency response of open air (during a rocket launch) is approximately flat
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equation 2.6 can be written as[5]:

4p +k2p = 0 (3.9)

Now a solution for the sound pressure of the sound pressure field at every location a(x, y, z)
caused by a source located in b(x, y, z) with a volume velocity Q [10].

4p(a,b)+k2p(a,b)+ iωρQδ(a−b) = 0 (3.10)

Green’s function [6] g (a,b) expresses the shape of the sound pressure field caused by a
source with a frequency independent volume acceleration. (ωQ = constant)

4g (a,b)+k2g (a,b)+δ(a−b) = 0 (3.11)

As g (a,b) represents a certain sound field it can be expressed by a combination of modes:

g (a,b) =
∞∑

N=1
AN p̃N (a) (3.12)

Equivalently the source term can be expressed by a combination of modes

δ(a−b) =
∞∑

N=1
BN p̃N (a) (3.13)

It can be shown that Eigenmodes are orthogonal with respect to each other [3]
∫

V

p̃N p̃M dV = 0 for every M 6= N (3.14)

Whereas, ∫

V

p̃N p̃N dV = 1 (3.15)

Multiplying both sides of equation 3.13 with an arbitrary mode and integrating over the
room volume V , while using the mode properties of equations 3.14 and 3.15 yields:

∫

V

δ(a−b)p̃M (a) dV =
∫

V

∞∑

N=1
BN p̃N (a)p̃M (a) dV (3.16a)

p̃M (b) =BM V (3.16b)

BM = p̃M (b)

V
(3.16c)

Equation 3.16c can be substituted into equation 3.13:

δ(a−b) = 1

v

∞∑

N=1
p̃N (a)p̃N (b) (3.17)

Now that BN is known, an expression for AN can be found. Therefore equations 3.12,
3.13 and 3.16c are filled in equation 3.11.

4
∞∑

N=1
AN p̃N (a)+k2

∞∑

N=1
AN p̃N (a)+

∞∑

N=1

p̃M (b)

V
p̃N (a) = 0 (3.18)
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Rearrangement gives:

(4+k2
N −k2

N +k2)
∞∑

N=1
AN p̃N (a)+

∞∑

N=1

p̃M (b)

V
p̃N (a) = 0 (3.19)

Here k is the wavenumber of the harmonic excitation and kN is the wavenumber corre-
sponding with the N ’th eigenfrequency. From equation 3.5 can be concluded that every
mode satisfies the linear wave equation:

(4+k2
N )p̃N = 0 (3.20)

This definition can be used to rewrite equation 3.19:

(k2 −k2
N )

∞∑

N=1
AN p̃N (a)+

∞∑

N=1

p̃M (b)

V
p̃N (a) = 0 (3.21)

Now AN can be derived:

AN =−
∞∑

N=1

p̃M (b)

V (k2 −k2
N )

(3.22)

This expression can be substituted into equation 3.12. Now we can write Green’s function
as a function of the Eigenmodes.

g (a,b) =−
∞∑

N=1

p̃M (b)p̃M (a)

V (k2 −k2
N )

(3.23)

3.1.3. DAMPING
Using Green’s function the sound pressure field can be determined for a source at a
known location with a known volume velocity. Though, Green’s function does not yet
take the effect of damping in account. As a result the response will be infinite when the
the system is excited at a resonance frequency. In this section damping will be added
to the function under the assumption that the mode shape does not change due to the
damping. Since the damping in a reverberation room is weak, the interfering waves still
have approximately the same amplitude and spatial distribution of the undamped field.

AIR ATTENUATION

Acoustical energy is absorbed in both the air and the walls of the room. Stokes law of
air attenuation states that the amplitude of a sound wave travelling through a medium
decreases exponentially with the distance travelled [11] at a rate α:

αatn = 2ηω2

3ρc3 (3.24)

Here η is the dynamic viscosity of air. The decrease in pressure amplitude over a distance
x can be seen in:

ppeak(x) = ppeak(0)e−αatnx (3.25)

The average distance a sound wave travels in the room between two successive re-
flections, i.e. the ’mean free path’ (subsection 3.2.3) is approximately 5 m for the room.
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Furthermore, in subsection 3.2.1 will be reasoned that the modal approach can only be
used for low frequencies. As ρ >> η for air and c3 >>ω2 for the frequency range where a
modal analysis can be used, αatn will be very small. Therefore, if the decrease in sound
pressure due to air attenuation is compared with the decrease in sound pressure due to
the wall admittance, we can conclude that the sound energy absorbed by the air, during
one free mean path, is negligible compared to the sound energy absorbed by the wall,
during a reflection.

WALL ADMITTANCE

The specific acoustic impedance is a measure of the opposition to the acoustics flow. It is
defined as the ratio between the complex sound particle velocity and the complex sound
pressure [5]:

Za =
p

u
(3.26)

The acoustic surface impedance is the impedance observed by a wave impinging on a
surface. When this impedance approaches infinity, the wave will be fully reflected. The
rigid wall assumption in the last section implied an infinite impedance at the walls. The
acoustic surface impedance represents the dynamics of a surface.

Za,n = p

un
(3.27)

in equation 3.27 p is the complex sound pressure at the surface and un is the component
of the complex sound particle velocity, normal to the surface. The specific acoustic wall
impedance is obtained by dividing by the characteristic impedance of air (equation 2.12)

Za,s =
Za,n

ρ0c0
(3.28)

To determine the amount of energy absorbed by the walls, it is convenient to use the
inverse of the acoustic surface impedance: the acoustic surface admittance:

βa,s =
1

Za,s
or βa,n = 1

Za,n
(3.29)

This admittance is a measure for the amount of sound energy that is allowed to flow
into the wall. As the local flexibility of the walls is small and the modal analysis is only
useful a limited bandwidth (which will be shown in subsection 3.2.1), one can assume
that the wall admittance and impedance are real [4]. The phase change is in practice so
small that it does not affect the interference pattern. Note that βa,s as well as Za,s are
dimensionless. Now can be stated that, at the wall, the interface acoustical pressure and
the particle velocity, orthogonal to the wall, are related as follows:

p = unρ0c0

βa,s
(3.30)



3.1. MODAL ANALYSIS

3

17

Taking the time derivative and using the linearised momentum equation results in a
non-zero left-hand-side of the boundary conditions:

∂p

∂x

∣∣∣
x=0, x=lx

=−βa,nρ0
∂p

∂t
(3.31)

∂p

∂y

∣∣∣
y=0, y=ly

=−βa,nρ0
∂p

∂t
(3.32)

∂p

∂z

∣∣∣
z=0, z=lz

=−βa,nρ0
∂p

∂t
(3.33)

From the boundary conditions we can be concluded that a time variation of the pres-
sure absorbs energy from the system. Hence, the walls act like dampers. With the given
boundary conditions taken into account, the harmonic function of equation 3.5 is not a
solution to the linear wave equation (2.6) anymore. The solution has to contain a damp-
ing term that decays the amplitude exponentially, when the source is turned off:

p(x, y, z, t ) = p̃(x, y, z)e−δt cos(ωt ) = Re (p̃(x, y, z)e iωt ) (3.34)

Now that damping is added, the resonance frequency ω is a complex quantity.

ω=ω+ iδ (3.35)

To find δ it is useful to seek for an expression of the energy in the room. The acoustic
energy in a volume consists of a time averaged kinetic and potential part [8].

dEa

dV
= dEp

dV
+ dEk

dV
= 1

4ρ0c2 p2
peak +

ρ0

4
u2

peak (3.36)

For a mode, i.e a standing wave, the instantaneous energy in a volume only consists of
potential energy, when the pressure amplitude reaches its maximum. To visualize this
consider the relation of momentum:

ρ0
∂u

∂t
=−∂p

∂x
(3.37)

When the mode is at its peak pressure in time, the spatial pressure gradient ∂p
∂x is at its

maximum. From equation 3.37 one can see that the particle acceleration is at its maxi-
mum at this moment as well. Since the particle velocity is a harmonic function of time,
the particle velocity is zero at this instant. Therefore the instantaneous energy only con-
sist of potential energy:

Ea,N =
∫

V

p2
peak,N

2ρc2 dV =
∫

V

A2
N p̃2

N

2ρc2 dV (3.38)

The amount of acoustical energy in the room is the difference between the energy added
to and absorbed by the walls. Differentiated in the time domain and applied on a single
mode this yields:

Ẇsource,N −Ẇabsorbed,N = Ėa,N (3.39)
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When the source is suddenly turned off this becomes:

−Ẇabsorbed,N = Ėa,N (3.40)

The rate of energy absorbed is equal to the rate of energy flowing into the walls, i.e. the
sound intensity integrated over the total wall surface. Another way of expressing the
sound intensity is [5]:

I =

T∫
0

pundt

T
(3.41)

Using the relation of equation 3.30 and integrating over the total surface yields:

Ẇabsorbed,N =
∫

ST

T∫
0

p2
N dt

T

1

ρ0c0
βa,s dST =

∫

ST

A2
N p̃2

,N

2ρ0c0
βa,s dST (3.42)

Note that the factor 2 in the denominator appears as the pressure in the nominator is
described by the mode peak pressure instead of the time averaged pressure (rms). The
next step is to find the time derivative of the energy contained in the volume Ėa, when
a sound field is decaying. I.e. no energy is added by a sound source. Combining the
expression of the instantaneous energy (equation 3.38) and the damped solution for the
sound pressure field (equation 3.34) yields:

Ea,N = e−2δt
∫

V

A2
N p̃2

N

2ρ0c2
0

dV (3.43)

Ėa,N =−2δe−2δt
∫

V

A2
N p̃2

N

2ρ0c2
0

dV (3.44)

Now consider the moment the source is turned off (t=0). Substituting equations 3.42 and
3.44 into equation 3.40 results in an expression for δ:

1

2ρ0c0

∫

ST

A2
N p̃2

,Nβa,s dST = 2δ
1

2ρ0c2
0

∫

V

A2
N p̃2

N dV (3.45)

Rearranging,

δ= c0

2

∫
ST

p̃2
,Nβa,s dST

∫
V

p̃2
N dV

(3.46)

Since the shapes of the modes are not affected by the introduction of damping, equa-
tion 3.6 will be used to derive the volume and surface integral. The normalized modes
integrated over the total volume equals V for every mode. The outcome of the surface
integral depends on the mode. To generalize an outcome for all axial, tangential and
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Figure 3.2: Green Function: Single receiver

oblique modes we assume lx ≈ ly ≈ lz . While maintaining the total surface area as cal-
culated with the original dimensions. The expressions for δ are.

δaxial =
2

3V
c0STβa,s (3.47a)

δtangential =
5

6V
c0STβa,s (3.47b)

δoblique =
1

V
c0STβa,s (3.47c)

As can be seen δaxial < δtangential < δoblique. As a result the axial and tangential modes are
damped out at a slower rate than the oblique modes. In subsection 3.1.5 will be shown
that the oblique modes are more dominant in high frequency bands. Therefore the re-
verberation time (further explained in subsection 3.3) will be longer in lower frequency
bands.

Now that δ is known we can implement ω (equation 3.35) into the Green function
(equation 3.23). As the absorption at the walls is small in a reverberation room we neglect
the second order damping term (δ2). The Green function with damping included is:

g (a,b) =−
∞∑

N=1

p̃M (b)p̃M (a)

V (k2 −k2
N − i kN

2δ
c0

)
(3.48)

The damped frequency response of the room up to 100 Hz is shown in figure 3.2. The
source is placed at the wall and approximately a meter above the ground. The receiver is
placed close to the centre of the room.
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Figure 3.3: Green Function: 8 receivers versus spatially averaged

3.1.4. MULTIPLE RECEIVERS
A spatial average gives a better indication how the sound pressure level depends on fre-
quency. A single receiver could be close to nodes of particular modes. In this case, these
modes would not be visible in the frequency response. In figure 3.3 the blue line is the
averaged frequency response of eight receivers. Compared to figure 3.2 more modes are
visible. This indicates indeed a more uniform observability of the different modes. Es-
pecially around 35 Hz a clear difference can be observed. Apparently the modes in this
frequency range are not strongly observed by the receiver as chosen in figure 3.2.

To determine the frequency response generalized for the complete room, the receiver
location dependence is removed from equation 3.48. The source dependence remains,
because in practice the source(s) is/are localized on a fixed position:

g (b) =−
∞∑

N=1

p̃M (b)

V (k2 −k2
N − i kN

2δ
c0

)
(3.49)

The corresponding frequency response can be seen in figure 3.3. It can be concluded
that eight microphones already give an accurate indication of the spatially averaged fre-
quency response.

3.1.5. MODAL DENSITY
The modal density is an indication of the number of modes per unit bandwidth. In order
to compute the modal density the eigenvalues should be ordered in such a way that the
amount of eigenvalues in a certain frequency range can be counted easily. In order to
visualize this problem Kuttruff [6] designed a raster in a three dimensional space. In this
raster the wavenumbers kN or knx ,ny ,nz are located in the raster at location ( nxπ

lx
,

nyπ

ly
,

nzπ
lz

). Hence every Eigenvalue has its own cube with the volume π3

lx ly lz
= π3

V . The amount



3.2. THE DIFFUSE SOUND FIELD

3

21

of Eigenvalues in a frequency band up to a certain frequency f with a corresponding
wavenumber k is equal to the number of eigenvalues contained in a 1

8 sphere centered
in the origin with radius k. Consequently, by dividing this volume by the Eigenvalue cube
volume, the amount of oblique modes yields:

Nobl(k) ≈ k3V

6π2 (3.50)

This expression also accounts for 25% of the axial modes and 50% of the tangential
modes. The other half of the tangential modes can be determined by:

Ntang, 50% =
πk2/4

π2/(lx ly+lx lz+ly lz )

2
= k2ST

16π
with ST = 2(lx ly + lx lz + ly lz ) (3.51)

This amount includes another 50% of the axial modes. The last 25% of the axial modes
can be determined by:

Naxial, 25% =
k

π/(lx+ly+lz )

4
= klT

16π
with lT = 4(lx + ly + lz ) (3.52)

The number of modes under a certain frequency f (corresponding to the wavenumber
k) yields:

N (k) = k3V

6π2 + k2ST

16π
+ klT

16π
(3.53)

From this relation it can be concluded that the amount of oblique modes per unit band-
width increases at a higher rate than the axial and the tangential modes. Therefore the
oblique modes are dominant at higher frequency bands.

To compute the modal density in modes per Herz, We substitute k = 2π f
c0

in equation
3.53 and we derive with respect to f . the modal density yields:

n( f ) = d N ( f )

d f
= 4π f 2V

c3
0

+ π f ST

2c2
0

+ LT

8c0
(3.54)

3.2. THE DIFFUSE SOUND FIELD
Ideally every sound field can be described by the modes derived last section. Though,
in practice this is not possible. As can be seen from equation 3.54 the mode density
increases rapidly. This can be seen in figure 3.4. When huge amounts of modes are accu-
mulated to represent a sound field, the computation becomes very sensitive to errors. A
slight deviation in temperature would for instance affect the speed of sound and there-
fore the computed sound field would be completely arbitrary. To avoid these problems,
from a certain frequency the sound field will be considered to be diffuse. In a diffuse
sound field the phase and direction of the sound waves is random. As a result the differ-
ent sound waves are incoherent and the sound pressure can be added as in equation 2.1.
Reverberation chambers are designed to generate a diffuse field, even for low frequen-
cies.
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Figure 3.4

3.2.1. THE CUT OFF FREQUENCY
To what extend the different modes overlap is dependent on the modal density and the
sound absorption in the room. The modal overlap can be used to determine above which
frequency the assumption of a diffuse sound field is justified [3]. Schröder determined
that a above a certain modal overlap factor a modal analysis loses its strength. The cor-
responding frequency at which this happens is called the Schröder cut off frequency and
can be determined by:

fS = 2000

√
T60

V
(3.55)

Here T60 is the reverberation time, which is described in section 3.3. Experiments show
that this frequency is a good estimate for transitioning from the modal analysis into the
diffuse sound field approach [12]. Though, blindly using the Schröder cut off frequency
has it drawbacks, as it is a generalized relation based on assumptions, plausible if applied
in architectural room acoustics, the Schröder frequency for the LEAF room appears to be
approximately 210 Hz. In a reverberation chamber, the cut off frequency is expected to
be lower than Schröders frequency, because the room is designed to generate a diffuse
sound field. Furthermore the high energy level during a test might amplify the errors
introduced by the linear assumptions. Therefore data gathered by a measurement in the
LEAF reverberation room in Noordwijk was analysed. The coherence of two signals, x
and y is defined as [25]:

|Gx y ( f )|2
Gxx ( f )Gy y ( f )

(3.56)

where Gx y ( f ) is the Cross-spectral density between x and y, and Gx y ( f ) and Gx y ( f ) the
autospectral density of x and y respectively. The coherence of the sound pressure lev-
els measured by two microphones at different locations in the room can be seen in fig-
ure 3.5. From this analysis it can be seen that above 150 Hz the coherence is always
small. Therefore, in this report the diffuse sound field approach will be applied for the
frequency domain above 150 Hz.
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(a) A large frequency band (b) Zoomed in on the cut off area

Figure 3.5: Coherence of two microphone signals
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3.2.2. SOUND PRESSURE AND SOUND INTENSITY
In a certain frequency band the sound waves have an amplitude p. In a diffuse sound
field the waves are incoherent and travelling in every direction. Each plane wave can be
described by: (identical to equation 2.7).

p(x, y, z, t ) = pe i (−kx x−ky y−kz z+ωt ) (3.57)

The direction of the waves in the three dimensional space can be described by the spher-
ical coordinates θ and φ:

kx = k sinθcosφ (3.58a)

ky = k sinθ sinφ (3.58b)

kz = k cosθ (3.58c)

Taking the squared rms value of a wave in a single direction and integrating in every
direction yields the rms value of the sound pressure in the room.

p2
rms =

p2

2

2π∫

0

π∫

0

sinθdθdφ= 2πp2 (3.59)

This value is only reliable sufficiently far from the walls. In this project the sound pres-
sure close to the walls is not relevant, as long as it does not affect the sound pressure in
the rest of the room. To determine the sound intensity in a certain direction the particle
velocity has to be found in this direction. Consider for example the x-direction. Equation
2.11a can alternatively be written:

ux = kx

kc0ρ0
p(x, y, z, t ) (3.60)

Determining the product of the particle velocity and the sound pressure and taking the
magnitude yields the sound intensity in x-direction of a wave:

Ix =
kx p2

2kc0ρ0
(3.61)

Substituting the relation of equation 3.58a yields the single wave x-direction intensity as
a function of θ andφ. In the perfectly diffuse sound field model the net sound intensity is
zero everywhere in the room. The sound intensity incident on a wall can be determined
by integrating over a unit hemisphere with radius r = 1p

π
(πr 2 = 1).

Iwall,x =
p2

2ρ0c0

π∫

0

π∫

0

sinθcosφsinθdθdφ= πp2

4c0ρ0
= p2

rms

4c0ρ0
(3.62)

This relation between the sound intensity per unit area incident to a wall and the rms
value of the sound pressure holds for every wall in the room.
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3.2.3. MEAN FREE PATH
The mean free path is the average distance an arbitrary sound wave travels between two
successive reflections. For any enclosed volume the mean free path is [5]:

dmfp = 4V

ST
(3.63)

To derive this relation the total surface is divided in X →∞ surfaces dST. In each surface
a mean free path starts in a particular direction. The surfaces are divided in such a way
that the mean free paths are equally divided in space. Now every surface dST is projected
on a projection plane perpendicular to the particular mean free path direction. The total
projection is called apparent surface area SA. The volume of the enclosure equals the
product of the mean free path in a single direction d mfp and the corresponding apparent
surface area:

V = SAd mfp (3.64)

The mean free path is the average of the mean free path in every single direction N
weighted by the corresponding apparent surface area:

dmfp =
∑∞

N=1 SA,N d mfp,N∑∞
N=1 SA,N

(3.65)

The apparent surface area is:

SA = 1

2

∫

S

|cosθ|dST (3.66)

The apparent surface area averaged over every theta yields:

SA = ST

4
(3.67)

Substitution of equations 3.67 and 3.64 into equation 3.65 yields equation 3.63.

3.2.4. ABSORPTION AREA
The reflection coefficient describes the magnitude and phase change of a wave during a
reflection:

R = |R|e iγ (3.68)

In a diffuse sound field the phase of the waves is random. As a consequence the phase
change during reflection is irrelevant. Therefore only the magnitude of the reflection
coefficient is considered. The absorption coefficient is defined as:

α= 1−|R|2 (3.69)

The reflection and absorption coefficient are dependent on the angle of incidence of
the impinging wave. In a diffuse sound field the angle of incidence is random with an
equally probability distribution. In this report the absorption coefficient is the statistical
absorption coefficient:

α=
π
2∫

0

αθ sin(2θ)dθ (3.70)
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In subsection 3.1.3 the specific acoustic admittance βa,s was introduced. In a diffuse
sound field the absorption coefficient α is more often used. From the definition of the
reflection coefficient it can be shown that α and βa,s are related [5]:

α= 8βa,s (3.71)

A wall with a surface S has an absorption area:

Awall = Swallα (3.72)

The absorption area indicates the fraction, of the sound intensity incident to the wall, ab-
sorbed by the wall. Not only the walls absorb energy. Objects in the room (the specimen)
and air inside the room absorb sound energy as well. Note that air absorption becomes
significant as frequency increases. Therefore air absorption cannot be neglected in the
high frequency analysis. For the reverberation room the total absorption area roughly
yields:

AT = Awalls + Aspecimen + Aair (3.73)

A total absorbtion area of 1 m2 is equivalent to a room with a fully absorbing 1 m2 wall.

3.3. TRANSIENT ACOUSTIC ROOM BEHAVIOUR
The phenomenon of reverberation is well known. The perception of music played by an
orchestra in a concert hall is different from the perception in open air. A measure for the
amount of reverberation is the reverberation time. When a source in a room is suddenly
turned off the sound field in the room decays. The reverberation time T60 is defined as
the time required for the sound pressure level to decay 60 decibel.

3.3.1. THE DIFFUSE SOUND FIELD
To derive an expression for the reverberation time the sound pressure as a function of
time must be described as a time dependent function p(t ) of the instantaneous sound
pressure when the source if turned off p(t = 0)

p2
rms(t ) = p2

rms(t = 0)(1−α)N (3.74)

Here N is the amount of reflections of an arbitrary wave in time t . By using the mean
free path (section 3.2.3) N can be determined:

N = c0t

dmfp
(3.75)

The time required for the sound pressure level to decay 60 decibel can be obtained by
solving:

p2
rms(t )

p2
rms(t = 0)

= (1−α)N = 10−6 (3.76)

A solution for t can be found by using equations 3.75 and 3.63.

T60 =
−24V ln10

c0ST ln(1−α)
(3.77)
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As α << 1 (especially in reverberation rooms) one can assume: α ≈ ln(1−α). As a re-
sult the reverberation time can be described by the absorption area Awall of the walls.
Since not only the walls absorb energy, the reverberation time is a function of the total
absorption area AT.

T60 =
−24V ln10

c0 AT
(3.78)

Measuring the reverberation time is a powerful method to determine the total absorp-
tion area of a room. Though, energy absorption is frequency dependent. In consequence
the reverberation time only provides information about the absorption in the frequency
band it is measured.

RISE TIME

Transient behaviour does not only appear when a source is turned off. When a source
is turned on the sound pressure level needs time to approach the equilibrium sound
pressure. The rise time is normally not a subject in acoustics, whereas the reverberation
time is one of the most important characteristics in room acoustics. The reason is that
the human ear is not as sensitive for sound build up as it is for reverberation. In this
project the Rise time is of the essence. The equilibrium sound pressure is reached when
the sound power added to the room equals the sound power absorbed by the room:

Ẇsource = Ẇabsorbed (3.79)

When the absorption area AT is determined by measuring the reverberation time, the
absorption power can be determined. The he amount of absorbed energy is equal to the
energy incident (equation 3.62) on a part of a wall with a surface area AT. The equilib-
rium sound pressure level prms,eq can now be found:

Ẇsourde =
p2

rms,eq

4c0ρ0
AT (3.80)

The energy density in the room is proportional to the sound pressure. Substituting the
particle velocity equations 2.11a, 2.11b and 2.11c in equation 3.36, while remembering
the k number constraint (equation 2.10), yields the acoustical energy density as a func-
tion of the rms pressure [9]:

dEa

dV
= p2

rms

c2
0ρ0

(3.81)

In consequence the rate of change of the energy in the room can be described by a dif-
ferential equation:

˙dEa

dV
V = Ẇsource −

dEa

dV

c

4
AT (3.82)

As can be seen the rate of change is the difference between the acoustical energy flow-
ing in and out of the room. The solution for this equation when the source is suddenly
turned on is:

dEa

dV
= dEa,eq

dV
(1−e

−c AT t
4V ) (3.83)
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A general equivalent to the 60 dB reverberation time cannot be found, because this
equivalent would be dependent on the strength of the source. Though, a time constant
describing the required time to reach a percentage of the equilibrium sound pressure
can be found, 90 % for example.

T90% = −4V ln0.1

c0 AT
(3.84)

With other initial conditions the expression for the reverberation time (equation 3.78)
can be derived. Furthermore the time response of the room due to a change of sound
power can be found by adapting the initial conditions for equation 3.82. The control
algorithm will have to take into account that a change in sound power is only sensed
after a time delay.

3.3.2. THE MODAL APPROACH

The mean square sound pressure level in the room after the source is switched of is al-
ready described by equation 3.34.

p(x, y, z, t ) = p̃(x, y, z)e−δt cos(ωt ) = Re (p̃(x, y, z)e iωt ) (3.85)

Of the essence is that from the definition of δ it can be seen that axial modes damp out
at a slower rate than tangential and oblique modes. The energy balance can be specified
per mode by using equations 3.43 and 3.44:

˙dEa

dV n
= Ẇsource,n

V
− dEa

dV n
2δn (3.86)

As explained in subsection 3.1.3 axial modes respond slower to changes in sound power
than tangential and oblique modes respectively. This is mainly caused by the fact that
a propagating wave reflecting between two walls has a longer free path than an oblique
wave reflecting between the six room walls. After all most of the energy is absorbed dur-
ing reflections.

3.4. NON LINEAR ACOUSTICS
The linearised plane wave equation (equation 2.6) forms the basis of describing almost
every field of acoustics. The linearisation has its limitations, when describing high sound
pressure fields. At high sound pressure levels or after long propagation distances non lin-
earities can be observed. There are two main non linear phenomena in acoustics. The
first one occurs at extremely high sound pressure levels. As was shown in figure 2.1, a
sound wave can be seen as a harmonic pressure fluctuation around the ambient pres-
sure. Now consider the amplitude above and below the ambient pressure separately. The
’above amplitude’ is not bounded and can in theory have a value of p0. The ’below am-
plitude’, on the other hand, is limited. Its amplitude cannot be higher than p0, since the
local pressure cannot be lower than zero. Consequently, the pressure profile of a sound
wave becomes non symmetric around the ambient pressure line when the sound pres-
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sure amplitude approaches the ambient pressure2. In a reverberant room the maximum
sound pressure level is around 154 dB. At this level the amplitude of sound pressure is
only 1.4 % of the ambient pressure (at mean sea level and 20 degrees Celsius). There-
fore this non linear phenomenon is not significant and will not be taken into account
throughout the report.

The other non linear phenomenon is caused by the fact that high particle veloci-
ties propagate faster than low particle velocities. This, in combination with a pressure
dependent speed of sound (c instead of c0) results in distortion of the travelling sound
wave. Subsequently higher harmonics will appear in the wave. The significance of this
non linear propagation will be evaluated in this section.

3.4.1. ADIABATIC RELATIONS
To understand non linear acoustics a part of the derivation of the linear wave equation
has to be taken into account. The linear wave equation can be derived when the con-
servation of mass, the conservation of momentum and the adiabatic relations are com-
bined.

The derivation of the linearised adiabatic relations is taken from Ricksen [4]. Con-
sider a small perturbation of pressure p and density ρ around an equilibrium state p0,
ρ0. Sound propagation in air takes place sufficiently rapidly to assume constant entropy,
therefore pressure and density have an adiabatic thermodynamic relation.

p

ργ
= constant (3.87)

Where γ is the ratio of the volume- and pressure specific heat (cv and cp) The perturba-
tion can be included in this relation:

p0 +p = constant(ρ0 +ρ)γ = p0

ρ
γ
0

(ρ0 +ρ)γ (3.88)

The right hand side can be written in a Taylor series expansion:

p0 +p = p0

ργ
(ργ0 +γρ

γ−1
0 ρ+O(ρ2)) (3.89)

For the linear wave equation the higher order terms are dropped and the relation yields:

p = p0

ρ
γ
0

(γργ−1
0 ρ) =

(
γ

p0

ρ0

)
ρ = c2

0ρ with c2
0 = γp0

ρ0
(3.90)

At a sound pressure of 154 dB, acoustics quantities are still small compared to the ambi-
ent ones. The Mach number in air at this sound pressure level is:

M = u

c0
≈ 0.01 (3.91)

2A sound pressure level of 191 dB would have peaks of approximately p0 Sound pressure levels in this order
of magnitude are only reached under extreme circumstances (for example: atomic bombs, earthquakes and
meteors)
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Even though a linear approach can be inaccurate at this sound pressure level, second
order equations are sufficient to describe the non linear acousti propagation[13]. A more
direct way of writing the equation of state in a Taylor series is:

p =
(
∂p

∂ρ

)
(ρ)+ 1

2

(
∂2p

∂ρ2

)
(ρ)2 + 1

6

(
∂3p

∂ρ3

)
(ρ)3... (3.92)

This can be rewritten to get a linear and quadratic coefficient called:

A = ρ0

(
∂p

∂ρ

)
and B = ρ2

0

(
∂2p

∂ρ2

)
(3.93)

The ratio between those coefficients is an indication of the non linearity of the medium.

3.4.2. THE COEFFICIENT OF NON LINEARITY
In linear acoustics it is assumed that a perturbation of pressure propagates, in the prop-
agation direction x, with a velocity c0.

dx

dt
= c0 (3.94)

The definition of the speed of sound is based on neglecting the change of entropy [14]:

c2 =
(
∂p

∂ρ

)
(3.95)

c0 is the linearisation of this function in p0 and ρ0. In reality the perturbation propaga-
tion velocity consists of the local speed of sound and the particle velocity:

dx

dt
= c +u (3.96)

c contains the non linearity of the medium. A second order approximation of the non
linearity is

dx

dt
= c0 +βu (3.97)

Here β is the coefficient of non linearity, it is related to the constants of A and B of equa-
tion 3.93 as follows [16]:

β= 1+ B

2A
(3.98)

The 1 is present to take the part of the travelling speed, constituted by the particle ve-
locity, into account. The second term represents the second order approximation of the
non linearity of the medium. The particle velocity cannot be taken constant at every
point in the wave. Using equations 3.87 and 3.93 leads to the expression:

β= γ+1

2
(3.99)
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3.4.3. NON LINEAR PROPAGATION
From the non-linearised conservation of mass and momentum and the equation of state
another wave equation (3.101) in terms of the particle velocity can be found for a single
direction:

∂ρ

∂t
+u

∂ρ

∂x
+ρ ∂u

∂x
= 0 (3.100a)

∂u

∂t
+u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0 (3.100b)

p = p(ρ) (Taylor Series) (3.100c)

∂u

∂t
+u

∂u

∂x
+ c2

ρ

∂ρ

∂x
= 0 (3.101)

For single direction waves another relation holds [17]:

∂u

∂x
= c

ρ

∂ρ

∂x
(3.102)

Combining this relation with equation 3.101 yields:

∂u

∂t
+ (u + c)

∂u

∂x
= 0 (3.103)

To include the non linearity of the medium, equation 3.97 is substituted in this equation.

∂u

∂t
+ (c0 +βu)

∂u

∂x
= 0 (3.104)

An implicit solution for this function is:

u(x, t ) = f
(
x − (c0 +βu)t

)
(3.105)

The particle velocity of a wave, shortly after generation, can be written as:

u(x = 0, t ) = upeak sinωt (3.106)

This wave can be taken as an initial condition. With this initial condition, the implicit
solution yields:

u

upeak
= sin

(
ωt −kx

(
1+βM

u

upeak

))
(3.107)

Here the acoustical Mach number appears M = ua
c0

. Fubini found a solution, written in
an explicit form, using the Bessel functions Jn [14].

u

upeak
= 2

βMk

∞∑
n=1

Jn(βMknx)

nx
sinn(ωt −kx) (3.108)

As can be seen the solution consists of higher harmonics. The amplitude of the harmon-
ics will from now on be called:

Bn = 2

βMknx
Jn(βMknx) (3.109)
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(a) (b)

Figure 3.6

The ratio 1
βMk is a distance called xshock. The solution of equation 3.108 only holds up

to this distance. Note that xshock is frequency dependent (k), as well as sound pressure
dependent, since the Mach number is sound pressure dependent. For convenience the
dimensionless distance σ is introduced. Which is defined as:

σ= x

xshock
(3.110)

Here x is the travelled distance of the wave. Using the relation ppeak = ρ0c0upeak
3 equa-

tion 3.108 can be rewritten to show the solution for the sound pressure:

p

ppeak
= 2

∞∑
n=1

Jn(nσ)

nσ
sinn(ωt −kx) (3.111)

The sound pressure profile for three wavelengths at the shock distance (i.e. σ = 1) is
shown in figure 3.6aThis solution holds, in theory, for every frequency and sound pres-
sure level. Because the shock distance is frequency and sound pressure dependent.4

Note that the signal originally was a pure sine wave. It can be seen that after a propaga-
tion of xshock the signal tends to the shape of a sawtooth wave. The high pressure parts of
the wave travel faster, because the particle velocity is positive in these areas. The result-
ing shape can be described by a sum of higher harmonics (equation 3.111). The growth
of the amplitudes of the first five harmonics is shown in figure 3.6b. Note that first the
amplitude n = 1 belongs to the frequency of the initial sine wave.

In figure 3.7a the frequency dependence of the shock distance is shown. This graph
corresponds to a sound pressure level of 154 dB. As this is the maximum sound pressure

3Note that this is a linear approximation of the sound pressure. Though, this is approximation is valid, since
the sound pressure is still small enough to assume a symmetric pressure profile around the atmospheric
pressure.

4In practice the shock distance at low sound pressure levels or low frequencies the shock distance too long to
neglect the decrease of energy density due to divergence. In other words, the accumulated error, caused by
describing a spherical wave with a plane wave model, is not acceptable anymore
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(a) (b) graph taken from [14]

Figure 3.7

level in the reverberation room. As can be seen, in the low frequency range, the shock
distance is large in comparison with the mean free path (subsection 3.2.3). As a result
the higher harmonics do not get the chance to develop, since relatively much energy is
absorbed during a reflection. Therefore the non linear propagation can be ignored in the
modal analysis, which is applied in the low frequency range.

3.4.4. PROPAGATION AFTER THE SHOCK DISTANCE

As mentioned, the solution of equation 3.111 is only valid up to a travelled distance of
xshock. After this distance the losses of energy in the medium cannot be neglected. To
properly describe the development of the higher harmonics, one should add a term,
describing the thermoviscous losses, to equation 3.104. The resulting equation is the
Burger equation [13]:

∂u

∂t
+ (c0 +βu)

∂u

∂x
− 1

2
δ
∂2u

∂x2 = 0 (3.112)

Hereδ, the diffusivity of sound, is a property of the medium and determines the damping
coefficient for a certain frequency:

α= δk2

2c0
(3.113)

The development of the harmonics can be seen in figure 3.7b. Since energy dissi-
pation is progressively frequency dependent, the development of higher harmonics is
small after a travelled distance of xshock. Furthermore, the solution of the Burgers equa-
tion becomes multivalued after this distance. The resulting change spectral density can
not be detected by microphones with the actual sampling rate. Therefore, in this project
the non linear propagation of the waves will only be considered up to the shock distance.
From there on the propagation will be treated as being linear.
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(a) Initial generated Gaussian white noise (b) Upsampled white noise

Figure 3.8

3.5. NON LINEAR ACOUSTICS APPLIED ON A DIFFUSE FIELD

The interference of non linear sound waves cannot be described by superposition, be-
cause the different waves affect each others propagation speed. As a result it is hard
to describe the interference of two non linear waves propagating in the same direction
algebraically. One can imagine that describing the non linear acoustics in a stochastic
diffuse sound field algebraically, is impossible. To encounter this problem, the non linear
propagation of sound in a diffuse sound field will be simulated to obtain a quantification
of the change in frequency content.

3.5.1. SIMPLIFIED EXPLANATION OF THE SIMULATION

The principle is as follows: A sequence of white noise will be generated and filtered by a
third octave filter. In small time steps the non linear propagation of this acoustic noise
will be simulated using the second order approximation of the non linear propagation
(equation 3.97). The propagation will also be influenced by the interfering diffuse sound
field. The particle velocity of the interfering waves will be simulated by adding a stochas-
tic value to the propagation velocity of the noise. After a propagation of approximately
the shock distance, the propagated noise will be analysed in the frequency domain and
the increase of energy in the high frequency range will be evaluated.

3.5.2. EXTENSIVE EXPLANATION OF THE SIMULATION

As mentioned in subsection 3.2, a diffuse sound field can be described by plane waves
in every direction with random phase. In order to find the contribution of the particle
velocity to the propagation speed of a perturbation, the particle velocity of the wave, as
well as the particle velocity of the interfering waves has to be taken into account.

Assume an overall sound pressure level of prms,overall. The sound pressure in a single
point is assumed to be equivalent to the sound pressure at a point uniformly surrounded
by sources. These sources produce acoustic Gaussian white noise. According to equation
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3.59 the peak pressure of a single sine wave, in a diffuse sound field then yields.

p2 =
p2

rms,overall

π
(3.114)

The power P (rms value) of the white noise travelling in a single direction is therefore:

P =

√
p2

rms,overall

2π
(3.115)

A source produces a sequence of Gaussian white noise, with power P in Matlab. The
noise is filtered by a third octave filter. For convenience the filtered signal will from now
on be referred to as ’the monitored noise’.5 Initially the monitored noise has a sample
frequency of fs = 215. The correlation time of the noise is: tcorr = 1

fs
. Since an interpola-

tion will take place later on, the noise is upsampled with a factor 10. This will increase
the accuracy of the numerical approximation. The noise is up sampled by adding ze-
ros between the original samples and then applying an IIR filter [21]. The result can be
seen in figure 3.8 6 As the noise represents a sequence of perturbations in pressure, the
particle velocity corresponding to the perturbation can be calculated by:

u = p

c0ρ0
(3.116)

The propagation speed of every perturbation is now determined by equation 3.97. In
order to visualize and quantify the distortion of the noise, the propagation is simulated.
In time steps of dt = 1

215
7 the propagated distance of every sample is updated. The

propagated distance is determined by:

dx =
(
c0 +β

p

c0ρ0
+uinterf

)
dt (3.117)

Here uinterf is the contribution of the diffuse sound field to the propagation speed of the
monitored noise. The derivation of this random variable is given in the next subsubsec-
tion.

PARTICLE VELOCITY OF THE DIFFUSE SOUND FIELD

In the diffuse field acoustic white noise is travelling in every direction. The acoustical
power of the noise travelling in one particular direction, in terms of the overall sound
pressure level, is given in equation 3.115. Hence, the sound pressure of noise in one

5The name monitored noise is chosen, because the propagation of a sequence of noise through a diffuse sound
field will be simulated. The frequency content of this sequence will be ’monitored’ to determine the distortion
of the noise.

6Here, only a small amount of samples is used, for the sake of visibility.
7The correlation time of the generated white noise is equal to this time step, as a result uinterf can be generated

as a random value every step. Since the different samples are close to each other in the time domain, the
contribution of the diffuse sound field for a certain sample is related to the contribution to its neighbour
samples
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Figure 3.9: Picture taken from Wikipedia - Spherical coordinate system

direction p(µ,σ) is a Gaussian distributed quantity with a mean value of zero (µ= 0) and
a standard deviation of [19]:

σ=
√

P (3.118)

The definition of θ and φ can be seen in figure 3.9 (Note that a similar definition is used
in section 3.2.2. Though, for another purpose.) Assumed is that the monitored noise is
travelling in x-direction.

The particle velocity of noise propagating in an arbitrary single direction u(µ,σ) can
be found by using the relation u = p

c0ρ0
. The component of this particle velocity in the

direction of the monitored noise (x-direction) can be determined by:

û(µ̂, σ̂) = u(µ,σ)sinθcosφ (3.119)

Integrating over a sphere yields the total contribution of the diffuse field to the particle
velocity in the x-direction.

uinterf =
2π∫

0

π∫

0

û(µ̂, σ̂)sinθdθdφ (3.120)

The standard deviation û(µ̂, σ̂) is related to the standard deviation of the sound pressure
of noise propagating in one direction (equation 3.118)[20]:

σ̂= sinθcosφ

c0ρ0
σ (3.121)

The distribution still has a mean value of µ̂= 0.
In the summation normally distributed random variables are added up. Since the

mean value is zero, only the addition of the standard deviations has to be considered.
When two normal distributions A(µA,σA) and B(µb,σB) are added up, the standard de-
viation of the resulting distribution can be determined by [20]:

σ2
A+B =σ2

A +σ2
B (3.122)
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To determine the standard deviation of uinterf, while taking equation 3.122 into account,
σ̂2 is integrated over a full sphere.

σ2
interf =

2π∫

0

π∫

0

sin3θcos2φ

c2
0ρ

2
0

σ2dθdφ (3.123)

yielding:

σinterf =
√

8π

3

σ

c0ρ0
→ uinterf(0,σinterf) (3.124)

Hence, uinterf is a stochastic value with a normal probability distribution. Since integrat-
ing normally distributed random variables might be rather counter intuitive, the double
integral is alternatively approximated by setting up the Riemann sum [18]:

uinterf =
m∑

j=1

n∑

i=1
û

(
0,

sinθ∗i cosφ∗
j

c0ρ0
σ

)
sinθ∗i ∆θi∆φ j =

m∑

j=1

n∑

i=1
û

(
0,

sin2θ∗i cosφ∗
j ∆θi∆φ j

c0ρ0
σ

)

(3.125)
Using the relations:

∆θi =θi−1 −θi =
π

n
(3.126)

∆φ j =φ j−1 −φ j =
2π

m
(3.127)

θ∗i =1

2
(θi +θi−1) (3.128)

φ∗
j =

1

2
(φ j +φ j−1) (3.129)

With increasing n and m the same result is gathered.

THE MEASURED SIGNAL

Now that the variables of equation 3.117 are determined, the propagation of the moni-
tored noise will be simulated. for every single sample the travelled distance per time step
is accumulated.

x =
n∑

i=1
d xi (3.130)

Here n is sufficiently large to assume x > xmeas. xmeas is the distance from the source to
the receiver. I.e. by choosing the amount if simulation step it is assured every sample
will travel past the receiver.

For each sample the travelling time from the source to the receiver is determined.

ttravel = i dt +dtinterp (3.131)

Since xmeas is never reached exactly after i steps, dtinterp is introduced. It is determined
by linear interpolation. The travelling time of each sample is then stored in a vector.
From the initial upsampled signal the departure times of the samples are known. Hence,
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(a) Measured signal (b) Measured signal, interpolated

Figure 3.10

the arrival times at the receiver can be determined. These values in combination with
the amplitudes of the samples give a discrete received signal with a fluctuating sampling
rate. I.e. the samples are not equally spaced in time any more. To determine the fre-
quency content of the signal, the signal will be filtered. Therefore a constant sampling
rate is required. This is achieved by a cubic interpolation at points in time according to a
fixed sampling rate (10 fs). In Matlab the interpolation method called ’pchip’ is used, as
it uses only four data points to determine the interpolation [21].

The resulting signal can be seen in figure 3.10. It can be seen that the shape of the
noise has changed. The left flanks of the positive peaks have steepened, whereas the
right sides have flattened. This is a result of the non-linear propagation. The distortion
introduces higher harmonics. By filtering the measured signal and analysing the energy
change per third octave, the significance of the non-linearities can be quantified.

RISETIME AND RINGING

In figure 3.11 a time signal is shown. It is the result of applying the lowest third octave
filter on Gaussian white noise. As can be seen in the time signal the bandpass filter needs
some time to settle. This phenomenon is taken into account in the simulation. In every
signal, only the data after trise is used for the energy calculation.

Due to the sudden change in input, an oscillation in the upsampled signal can be
seen at the beginning and end of the signal. This is called ringing. In figure 3.12 the
time signal corresponding to the lowest third octave is shown. Zooming in on the end
of the dataset shows the unwanted oscillations. To let this phenomenon not affect the
energy calculations the first and last 200 samples of the monitored signal is ignored in
the energy calculation.
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Figure 3.11: Effect of the risetime of a filter

(a) white noise filtered by the lowest third octave band
pass filter

(b) white noise filtered by the lowest third octave band
pass filter. Zoomed in

Figure 3.12: Ringing

3.5.3. SIGNIFICANCE

The simulation has been performed multiple times, varying the third octave being ex-
cited. However, the general conclusion yields that no significant increase of of energy
can be observed in other higher third octaves due to non linear sound propagation. Con-
sider for instance the results of table 3.2. Here initially the 1 kHz third octave was excited.
In the high third octaves a increase of sound pressure level can be observed. Although
88 dB in the 10 kHz is loud, added to a typical reference level of 115 dB in this third oc-
tave it is not significant. (115 dB +88 dB= 115.008 dB)8 The biggest absolute increase of
sound pressure level can be observed in the 1995 Hz third octave. This is expected, since
the first overtones of the 1000 Hz third octave appear in this frequency range. The main
conclusion drawn from this simulation is that the non linear propagation does not cause
significant leakage of energy into higher third octaves.

8In chapter 5 it will be found that a precision of 0.01 dB is not realisable.
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Centerfrequency third octave (Hz) Initial SPL (dB) Resulting SPL (dB)
1000 141.769099 141.762353
1259 133.952763 133.957141
1585 113.259773 113.238544
1995 100.705792 103.778909
2512 91.7174641 94.6825464
3162 84.0515063 86.2409866
3981 77.6669181 84.8913998
5012 71.1945619 84.8415287
6310 64.9596133 86.5050523
7943 59.0274854 87.0601316
10000 54.5334763 88.0828912

Table 3.2: Simulation results: Excitation of the 1000 Hz third octave

3.6. SUMMARY
In this chapter the reverberation room acoustics are identified. First, a modal analysis
is performed. The modal approach is only valid in the lower frequency range. The fre-
quency response can be determined by the Green’s function. At higher frequencies the
modal solution gets to sensitive for small errors. Therefore, above 150 Hz the sound field
is assumed to be diffuse. In this model the sound field consists of incoherent sound
waves travelling in every direction. This model leads to powerful relations between the
sound power of the source and the equilibrium sound pressure level. Furthermore the
transient behaviour of the room can easily be described in this way. Describing the
acoustics in a linear way might lose accuracy in the higher frequency range. A numerical
model is designed in order to quantify the change in frequency content due to non lin-
ear acoustical phenomena. From the simulation it can be concluded that the non linear
propagation does not cause significant leakage of energy into higher third octaves.
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MODELING

In this chapter a input-output-relation between the filter gains and the measured sound
pressure levels will be derived. The knowledge about the acoustics taking place in the
reverberation chamber, learned in chapter 3, will be used to derive this model. Since
multiple third octaves have to be controlled, the system has multiple inputs and multiple
outputs (MIMO). Therefore the system will be described by a State space model.

4.1. STATE SPACE REPRESENTATION

A state space model is a time domain representation of a system [23]. The state model
can be written in a vector-matrix form:

ẋ = Ax+Bu (4.1a)

y = Cx+Du (4.1b)

Since the sound pressure levels of 21 individual third octaves are controlled, the system
has 21 states. The number of states is called the order of the system. The state x of the
system can be described by the mean acoustical energy density, per third octave, in the
room. The acoustical energy density in the n’th third octave is from now on referred to
as1:

Dn = dEa,n

dV
(4.2)

The inputs u of the system are the squared2 gains, or amplification factors, computed by
the algorithm. The outputs y of the system are the computed mean square values of the

1Dn is not to be confused with D
2The relation between voltage and power is a quadratic relation

41
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measured sound pressure averaged over the different microphones:

ẋ =





Ḋ1

Ḋ2
...

Ḋ21





x =





D1

D2
...

D21





u =





g 2
1

g 2
2
...

g 2
21





y =





p2
rms,1

p2
rms,2

...
p2

rms,21





(4.3)

4.2. IDENTIFYING A, B, C, AND D
In order to find the entries of A and B the linear state equations have to be written out.
These equations are derived from the relations found in chapter 3.

4.2.1. LINEAR STATE EQUATIONS

As shown in subsection 3.2.1, the sound field can assumed to be diffuse in the frequency
range above 150 Hz. Therefore the state equations for the third octaves 9-21 (n = 9...21)
can be derived from the diffuse sound field relations. Equation 3.82 can be rewritten in
the form:

Ḋn = Ẇsource,n

V
−Dn

c AT,n

4V
(4.4)

From this equation the relation between ẋ and x (Ḋn and Dn) can be seen. Furthermore
this equation contains the sound power of the source Ẇsource,n . Note that the transfer
function from u to Ẇsource is not included in the linear state equation yet. This part of
the transfer function is determined by filtering and amplification of the signal.

The first eight state equations represent the state of the eight lowest third octaves.
In the frequency domain of those third octaves the sound field is not diffuse. In section
3.1 is shown that Green’s function can be used to determine the response in this range.
Furthermore the transient behaviour of the sound pressure level is characterized by the
parameter δ. A relation between the acoustical energy density and the sound power of
the source (equivalent to equation 4.4) can be derived from equation 3.42 and 3.39(n =
1,2..,8) :

Ėa,n =Ẇsource,n −Ẇabsorbed,n (4.5)

Ḋn =Ẇsource,n

V
−Dn2δn (4.6)

The value δn determines the rate of energy dissipation for the n’th third octave. Its
value depends on the amount of axial, tangential and oblique modes present in the third
octave. The decay rate of a mode is characterized in equations 3.46 and 3.47. δn is de-
fined as:

δn =
ioblique,nδoblique,n + itangential,nδtangential,n + iaxial,nδaxial,n

in
(4.7)

With in indicating the amount of modes in the n’th third octave. This formula accounts
for the fact that axial modes are less exposed to damping than tangential and oblique
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modes. Writing the linear state equations (4.5 and 4.4) in the state space representation
(4.1) directly yields the diagonal matrix A.

A =





−2δ1 0 · · · 0

0
. . . 0

0 −2δ8 0
...

... 0 − c AT,9
4V 0

0
. . . 0

0 . . . 0 − c AT,21
4V





(4.8)

4.2.2. SHAPED SIGNAL TO SOUND POWER
The matrix B does not directly follow from the linear state equations. Because the inputs
of the system u are not directly included in the state equations. Instead the sound power
of the source per third octave Ẇsource,n comes up. Therefore a relation between the filter
gains and the sound power of the source will be derived. As described in chapter 5, even-
tually experiments will be performed. These tests will take place in a reverberation room
with a amplifier/ loudspeaker combination. Throughout this report a linear relation is
assumed between the electrical power dissipated in the noise generators and the sound
power they generate.

Ẇsource,n = ηPn (4.9)

Here Pn represents the power dissipated in the n’th third octave of the signal and 0 < η<
1 represents the efficiency of converting electrical power into sound power. The relation
between the voltage of the amplified and filtered signal and the dissipated power is:

Pn = U 2
n

R
(4.10)

Here U stands for the rms value of the voltage Summarizing the preceding formulas: The
modulators are modelled as a linear electrical resistance R where a portion of the energy
η is converted into sound energy.

4.2.3. FILTERS
Every third octave band-pass filter in the system is a sixth order Butterworth IIR filter.
The magnitude response of the filters are shown in figure 4.1. Note that the frequency
axis is scaled logarithmically. From the picture it can be seen that the different filters
overlap. This causes interaction in the different octave bands. Actuation of the n’th third
octave will also affect the n +1’th and the n −1’th third octave.

In figure 4.2a the magnitude response of the 7’th third octave filter is shown. Further-
more the relevant third octave bands are drawn. When white noise is filtered, frequency
content belonging to the adjacent third octaves, will also be present in the filtered signal.
The purpose is now to quantify the interaction caused by the imperfection of the filters.

Consider the white noise after it has been filtered by the n’th third octave filter. The
amount of electrical power in the m’th third octave of this signal should be determined.
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Figure 4.1: Magnitude response of the third octave filters

(a) Magnitude response of the 7th third octave filter
(center frequency 100 Hz)

(b) Intrepertation of G7,8

Figure 4.2

The white noise has a certain power spectral density PSD. The definition of white noise
is an equal amount of energy in every frequency band ∆ f . In theory, the signal in every
1 Hz frequency band has an equal rms voltage U∆ f =1,wn

3. After filtering by the n’th third
octave filter (|Gn( f )|)4 and amplification (gn), this value is:

Un,∆ f =1( f ) = gn |Gn( f )|U∆ f =1,wn (4.11)

The rms voltage in a third octave m, after filtering by the n’th third octave filter can be

3Note that it is impossible to exactly extract a certain frequency band out of a signal. A filter always has a finite
steepness in the frequency domain. Furthermore, this value is stochastic as the white noise is Gaussian in our
case.

4|Gn ( f ) is the filter gain of the n’th filter at frequency f
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described by summing up every single 1 Hz frequency band in the third octave:

Umn =
√

Un,∆ f =1( fm,1)2 +Un,∆ f =1( fm,2)2 + ...+Un,∆ f =1( fm,bwm )2 (4.12)

Since [26]:

RMSTotal =
√

RMS2
1 +RMS2

2 + ...+RMS2
n (4.13)

Combining and rewriting equations 4.11 and 4.12 gives:

U 2
mn = g 2

nU 2
∆ f =1,wn(|Gn( fm,1)|2 +|Gn( fm,2)|2 + ...+|Gn( fm,bwm )|2) (4.14)

For convenience the following notation is defined:

Gmn = |Gn( fm,1)|2 +|Gn( fm,2)|2 + ...+|Gn( fm,bwm )|2 (4.15)

G =





G1,1 · · · G1,21
...

. . .
...

G21,1 · · · G21,21





(4.16)

The entry Gmn is a measure for the overlap of the n’th filter with the m’th third octave.
The interpretation of G8,7 can be seen in figure 4.2b. The conclusion of these two sub-
sections can be written down in a formula:

w =





Ẇsource,1

Ẇsource,2
...

Ẇsource,n





=
ηU 2

∆ f =1,wn

R
Gu (4.17)

Substituting equation 4.17 into the linear state equations yields the relation:

ẋ = Ax+ 1

V
w = Ax+

ηU 2
∆ f =1,wn

RV
G

︸ ︷︷ ︸
B

u (4.18)

Finally B can be written:

B = γG with γ=
ηU 2

∆ f =1,wn

RV
(4.19)

γ is a constant determined by some properties of the plant.

4.2.4. MODEL OUTPUT
The output of the system is defined in equation 4.3. The outputs are the measured mean
square sound pressure levels. The sound field is measured by microphones, which are
assumed to be linear 5. The inputs do not have a direct influence on the output6. There-
fore we can conclude that D = 0. The measured mean square sound pressure levels are

5The microphone has a constant sound-pressure-to-signal factor over the relevant frequency range
6The inputs u only influence the output y via the state x.
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not equal to the physical levels, since the signal is again filtered by imperfect third octave
filters. The transformation from the sound pressure levels in the room to the measured
values is described by C.

y = Cx+Du with D = 0 (4.20)

Here yn is determined by the amount of energy in the signal filtered by the n’th third
octave. As has been shown in subsection 4.2.3, part of the energy of adjacent third oc-
taves will pass through the filter. The quantification of this phenomenon is captured in
G. Though, G was designed to compute the energy transfer from a linear power spectrum
to an octave power spectrum. The transfer from x to y is from an octave- to an octave
power spectrum. Therefore the rows of G have to be normalized, yielding: G̃ The relation
between the sound pressure levels in the room and the measured ones is:

y = G̃T x → C = G̃T
(4.21)

4.3. TRANSFER FUNCTION OF THE MODEL
The state space model is a useful time domain representation. However, to design a
controller, a transfer function matrix in the Laplace domain is more helpful. The transfer
function matrix is given by the ratio of the Laplace-transformed output to the Laplace-
transformed input:

H(s) = y(s)

u(s)
(4.22)

Laplace transformation of the state space representation (D=0) yields:

sx(s) =Ax(s)+Bu(s) (4.23a)

y(s) =Cx(s) (4.23b)

Rearranging of equation 4.23a gives:

x(s) = (sI−A)−1Bu(s) (4.24)

Substituting this into equation 4.23b results in an input-output relation:

y(s) = C((sI−A)−1B)u(s) (4.25)

The transfer function matrix then becomes:

H(s) = C((sI−A)−1B) (4.26)

4.4. ANALYSIS OF THE STATE SPACE MODEL
From the state space model it is notable that A is a diagonal matrix, confirming that
no interactions are caused by the acoustics. Nonetheless, the filters do cause interaction
between the third octaves. The linear interactions are contained in B an C. The non diag-
onal entries of H are small in comparison with the diagonal entries. Indicating that the
interactions are small. The controllability and observability matrices of equation 4.11



4.5. SUMMARY

4

47

are column full rank and row full rank respectively. Hence, the system is both observable
and controllable.

C =





B
AB

A2B
...

An−1B





T

O =





C
CA

CA2

...
CAn−1





(4.27)

Bringing back the MIMO problem to a SISO problem, i.e. considering only a single third
octave, yields the input output relation:

H(s) = y(s)

u(s)
= K

sτ+1
with K = 4γac0ρ0

AT
and τ= 4v

c0 AT
(4.28)

It can be concluded that the reverberation room is a first order system. K is the steady
state gain of the system and τ is the time constant. Hence, the SISO system exposes
behavior analog to a RC-circuit with a voltage source or a mass damper system with an
actuator or an insulated room with a heater. When a constant sound power source is
turned on for example, the sound pressure level will build up towards an equilibrium
level. One can see the MIMO system as 21 first order systems with small linear interac-
tions.

4.5. SUMMARY
The purpose of this chapter is to formulate a state space representation of the system.
The inputs are the squared filter gains, the states are the sound pressure levels in the
room and the outputs are the measured sound pressure levels. The linear state equa-
tions are based on the knowledge gathered in chapter 3. Besides linear behaviour of the
acoustic nose generators as well as the microphones is assumed. Furthermore, the filter
overlap in the frequency domain is quantified. This quantification determines the non
diagonal entries in the transfer function of the system. I.e. the interactions between the
third octaves are identified. It is shown that only a single third octave is considered, the
system is a first order system. The discoveries from this chapter will be used to choose
the control approach in chapter 5.





5
CONTROL

In the previous chapter the transfer function for the system is derived. The purpose of
this chapter is to come up with methods to control the plant. As stated in the introduc-
tion, conventional feedback control of an acoustic tests faces three main challenges:

1. The control system is a Multi-Input-Multi-Output system, as the sound pressure
level has to be controlled in different third-octaves simultaneously. An ideal third
octave band filter would attenuate all the frequencies outside its own band. Since
ideal filters do not exist in practice, adjacent band pass filters have an overlap in
the frequency domain. These overlaps cause interactions between the different
third octaves, i.e. exciting only one third octave band, yields output on adjacent
third octave bands as well.

2. The sound source generates uncorrelated white noise, which when using third oc-
tave band filters, yield a continuous fluctuation of the third octave band ampli-
tudes around an average value. In consequence, these fluctuations are also ob-
served in the measurement of the sound pressure field. Feedback controllers can
only try and counteract these fluctuations while already happening.

3. The reverberant room introduces a large time constant. The time constant is di-
rectly linked to the reverberation time1. Reverberation rooms typically have RT60
times well above 10 seconds in practice. Indeed, even when the controller intro-
duces an instant output level increase, it will take time for the sound pressure field
to reach a steady state level due to the reverberation room characteristics. Taking
into account that overshoot is not allowed in acoustic testing, feedback controllers
furthermore do hard on fast transient amplitude steps in the first place. Both phe-
nomena result in long start up times prior to reaching the steady state amplitudes.

1The principle of reverberation time will be treated in chapter 3

49
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Figure 5.1: Precision versus accuracy

5.1. CONTROL TARGETS
During a test a rocket launch is simulated, the test can only start when the sound pres-
sure level in every third octave is at its reference level. Prior to the test, the sound pres-
sure levels increase towards the reference levels. this start up time can already be a signif-
icant acoustic load to which the specimen is exposed. Especially when some of the third
octaves already reached their reference level. In this case the specimen is ’overtested’.
It is therefore desired that the reference sound pressure levels are reached as fast as
possible, minimizing the rise time. Though, overshoot of the sound pressure level is
strictly not allowed. Overshoot is another, potentially more damaging type of overtest-
ing. Throughout the test, when the reference levels are reached, the sound pressure lev-
els should be as close as possible to the reference levels. Any deviation would cause
either over- or under testing. The output has to be both precise and accurate:

• The measure of precision in this thesis is defined as the maximum absolute de-
viation from the mean sound pressure level in steady state. Thus in this sense, a
good precision implies that the sound pressure level does not vary significantly
over time.

• The accuracy is the difference between the mean sound pressure level and the
reference level in steady state.

The difference between accuracy and precision is visualized in figure 5.1.
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5.2. FEEDFORWARD CONTROL
To overcome the mentioned problems of feedback controllers in acoustic testing, the ap-
plication of feedforward control to will be evaluated. Ideally a plant is only influenced by
the controller outputs. However, many physical systems have unwanted yet unavoidable
other inputs. These inputs are called disturbances. In feedforward control the distur-
bances are measured and those measurements are taken into account, when the control
signal is determined [23]. A block diagram of this working principle is shown in figure
5.3. In this scheme feedforward control is combined with feedback control. The terms
and their definitions are summarized in table 5.1.

∑
Controller Plant

u

Measurement
for feedback

Measurement
for feedfor-
ward

r e y

−

d

Figure 5.2: Control scheme with both feedback- and feedforward control

Control symbol Meaning

r Reference signal: reference sound pressure level.
e Control error.
u System input: squared filter gain.
d Disturbances.
y Output: mean square sound pressure level.

Plant Sound generation and the reverberation room.

Table 5.1: Nomenclature of the control schemes

When a very accurate model of the plant is available, the plant can be controlled
without measurement of the output. In this situation one fully relies on the knowl-
edge about the plant, contained in the controller. With this added knowledge, feed-
forward controllers can easily outperform feedback control when it concerns transient
behaviour. Because feedback controllers have to find a the steady state input by trial-
and-error, whereas feedforward controllers compute it instantly.

Pure feedforward controllers do not control error-based though, meaning the true
system response might be different than computed, potentially yielding inaccurate re-
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Controller Plant
u

Measurement
for feedfor-
ward

r y

d

Figure 5.3: Pure feedforward control scheme

sults. It will for our application therefore be researched if feedforward control can serve
as a replacement of feedback control or only as an addition to feedback control.

In figure 5.4 an alternative way to generate control signal is shown. This control
scheme can be used when the model, derived in chapter 4, appears to be not accurate
enough to use for pure feedforward control. Here the feedforward controller typically
contains an inverse model of the plant. The benefit is a fast transient behaviour. The
input is brought close to its steady state level instantaneously by the feedforward con-
troller. The feedback controller then measures the error (due to the model inaccuracy)
and compensates for it.

∑ Feedback
controller

∑
Plant

Feedforward
controller

Measurement
for feedback

r e u y

−

Figure 5.4: Alternative generation of a feedforward control signal

5.3. SINGLE INPUT SINGLE OUTPUT
The initial focus is on improving challenge 2 and 3 by the application of feedforward
control. Therefore, first only one third octave band is studied. This is done to circumvent
octave band interactions as stated in challenge 1, which would possibly falsify this study.
In chapter 4 it was found that the SISO transfer function is a first order system:

H(s) = y(s)

u(s)
= K

sτ+1
with K = 4γac0ρ0

AT
and τ= 4v

c0 AT
(5.1)
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In this section different control schemes will be designed and thereafter tested.

5.3.1. MEASUREMENTS

The different control approaches will be tested in a small reverberation room at MBBM.
The properties of the room are listed in table 5.2.

Property Value

Volume V (m3) 200
Absorption area A at 1000 Hz (m2) 6.3
Reverberation time T60 at 1000 Hz (s) 5.11
Diffuse frequency domain (Hz) > 100 Hz
Amount of microphones 3

Table 5.2: Nomenclature of the control schemes

The acoustic noise generators are linear loudspeakers. The control algorithms op-
erate in Simulink® Real-Time™ and communicate with the loudspeakers and micro-
phones via a sound card. First the microphone signals are analysed separately and there-
after added. The controlled third octave band has a centre frequency of 1000 Hz. The
reference level for this test will be 92 dB.

5.3.2. OPEN LOOP CONTROL

This subsection describes the modelling and testing of the open loop scheme shown in
figure 5.5. As stated in section 5.2, a pure feedforward controller requires a very accurate
model. By testing the open loop controller, the accuracy of the physical model (equation
5.1) is tested. Furthermore, open loop control will give a first indication how significantly
disturbances affect the output.

Controller Plant
ur y

Figure 5.5: Open loop control scheme

Since the reverberation room is a first order system, a prediction on its response can
easily be made. From equation 5.1 it can be derived that the steady state gain of the
system (s → 0) is K . Therefore the steady state output of the system will be y = K u. With
the controller gain in steady state Css , the transfer function from reference to output in
steady state can be derived:

Yss = rCss K (5.2)

In order to let the output of the system match with the reference level in steady state the
controller should have a transfer function of:

C = K −1 (5.3)



5

54 5. CONTROL

RESULTS

As can be seen in figure 5.6 the sound pressure level moves towards the reference level
quickly. After reaching steady state an error of approximately -1 dB remains though. One
can therefore conclude that the model is not accurate enough. The open loop controller
furthermore has a precision of 1.2 dB.

One might think that a slight adjustment to the transfer function amplitude would
be sufficient to compensate for the error. Though, it was found that the room response
can differ from test to test, the open loop control model does not take that into account.

(a) (b)

Figure 5.6: Performance of the open loop control

5.3.3. FEEDBACK CONTROL

Since the model of the plant is shown to be not accurate enough for open loop control,
feedback control is required to eliminate the steady state error of 1 dB. Therefore a con-
ventional feedback controller is designed. The control scheme can be seen in figure 5.7.
The controller is a PI controller. A derivative action is omitted as it accounts for future
values of the error. As a result it is sensitive for noise signals. The controller is first tuned
using the Ziegler-Nichols method. Thereafter it is further manually tuned such that over-
shoot is prevented.

∑
Controller Plant

u

Measurement
for feedback

r e y

−

Figure 5.7: Feedback control scheme
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RESULTS

In comparison with the open loop control, the steady state error has disappeared (see
figure 5.8. Since the controller is tuned to both prevent overshoot and not overreact on
small perturbations, it needs some time to settle. In terms of precision the feedback
control is not superior to the open loop control. The precision is about 1.1 dB, e.g. in
steady state, the controller output has a considerable variance. The controller tries to
compensate for the fluctuations in the sound signal, but seems to lack speed. As will be
shown in subsection 5.3.4, a large portion of this fluctuation is due to the way the sound
pressure field is excited and evaluated: usage of third octave band filters on true random
noise.

(a) (b)

Figure 5.8: Performance feedback controller

5.3.4. FEEDFORWARD CONTROL: MEASURING DISTURBANCES
In this subsection disturbances will be measured and accounted for to improve perfor-
mance in terms of precision. The electrical signal flowing into the loudspeakers is third
octave band filtered and amplified Gaussian white noise. Although the white noise has
a certain power spectral density on average, the amount of energy in a short sample of
the signal varies. When the white noise is analysed by a third octave filter, this variation
increases most significantly in the lower third octaves as there are fewer oscillations in
the fixed time window. The fluctuations in the 1000 Hz third octave band found in our
study are shown in Fig 11. The maximum deviation from the mean value is about 1.5 dB.

In the plant model the signals have a constant power spectral density. Therefore the
difference between the actual (instantaneous) signal power and the model signal power
can be seen as a disturbance on the plant and taken into account by feedforward control.
The amount of energy in the drive signal is measured and amplified such that every fixed
time block ∆t contains the same amount of energy. This compensation is added to the
feedback controller found in subsection 5.3.32 The two controllers operate in series. As

2The feedback controller is a slightly more aggressively tuned I-controller, to make sure, to make sure that po-
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Figure 5.9: Energy fluctuation in 1000 Hz third octave band

a result, the controller output is the product of the feedforward controller output and
the feedback controller output. In figure 5.10 both controllers are covered by the block
‘Controller’.

∑
Controller Plant

u

Measurement
for feedback

Measurement
for feedfor-
ward

r e y

−

d

Figure 5.10: Combined feedforward- and feedback control scheme

RESULTS

The feedforward control improved the performance considerably as can be seen in fig-
ure 5.11. The precision is smaller than 0.4 dB with approximately zero error. The signal

tential improvements are not only due to renewed feedbackcontroller, the I-controller was also applied with-
out disturbance measurement. The results can be found in appendix A. Here it is shown that the I-controller
does not outperform the PI-controller in a pure feedback control scheme.
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being more stable in steady state, allows a faster feedback controller to be used. As a
consequence, the start up time is slightly shorter. Since the controllers work in series,

(a) (b)

Figure 5.11: Performance after addition of disturbance measurements

their gains can be shown separately. The feedback controller gain is applied on the drive
signal with an approximately constant energy level. The feedback controller gain is sta-
ble in steady state, whereas the feedforward output varies rapidly over time throughout
the whole test. As the controller compensates the continuous variation of the stochastic
excitation signal, the controller output was indeed expected to be a stochastic signal as
well. Note that the energy in the signal is corrected at a frequency of 64 Hz. Hence, the
timeblocks have a duration of: ∆t = 1

64

(a) (b)

Figure 5.12: Disturbance compensation gains (linear scale)
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5.3.5. FEEDFORWARD CONTROL: STEADY STATE INVERSE MODEL
The controller of the previous subsection performs well in terms of precision but still
has a long rise-time. This is inherent to the feedback controller, when overshoot is not
allowed. This subsection therefore introduces the open loop controller from subsection
5.3.2 in feedforward fashion to improve rise time. figure 5.13 shows the resulting control
scheme. Notice that it also includes the previous feedforward controller and the feed-
back controller found in the previous section.

∑ Feedback
controller

∑
Plant

Feedforward
controller

Disturbance
measurement

Measurement
for feedback

d

r e u y

-

Figure 5.13: Combined feedforward- and feedback control scheme

At the test start the feedforward controller output immediately steps up to the esti-
mated (final) gains. As such, the feedback controller only needs to compensate for the
(small) error caused by the feedforward inaccuracy.

RESULTS

The sound pressure and gain3 are shown in figure 5.14. In steady state the results are
equivalent to those of subsection 5.3.4. The filter gain starts close to its steady state
value at test start immediately due to the added feedforward controller. The feedback
controller thereafter reduces the remaining error. Overall the steady state sound pres-
sure level is reached much faster. This can be seen in figure 5.15. The start-up time is
reduced from approximately 7 to 2 seconds.

5.3.6. FEEDFORWARD CONTROL: ELEVATED INITIAL GAINS
In the previous subsection the feedforward controller was the inverse model in steady
state. As a result the start up time of the test was approximately equal to the rise time of
the plant step response.

3Note that this again after the disturbance compensation has taken place
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(a) (b) u without disturbance compensation

Figure 5.14: Performance

(a) steady state inverse model (b) disturbance compensation only

Figure 5.15: Transient behaviour output

TRANSIENT RESPONSE

Since we are interested in the transient response, the transfer function of equation 5.1
is considered to derive the system response to the feedforward controller output u(s).
The feedforward controller output depends on the product reference signal r and the
feedforward controller, K −1 in this case. When the test is started the controller output
is immediately at this value, as such the signal is a step function. The response can be
found by multiplying the system transfer function with the controller output:

y(s) = H(s)u(s) = K

sτ+1

r

K s
(5.4)

Partial fraction expansions and transformation to the time domain yields:

y(t ) = r − r e−
t
τ (5.5)
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The steady state output (t →∞) is indeed the reference level r . To describe the expected
transient behaviour the rise time is defined as the amount of time required for the re-
sponse to go from 10% of its final value to 90% of its final value. Substituting these values
in equation 5.5 yields an expression for the rise time:

tr = τ(ln0.9− ln0.1) (5.6)

Note that the rise time is not dependent on the reference level. It only depends on the
systems time constant τ, which is defined in equation 5.1. In other words, the feedfor-
ward controller will always take the same amount of time to reach a target sound pres-
sure level, no matter what level is selected.

ELEVATED INITIAL GAINS

In order to decrease the test start up time even below the rise time of the room, the noise
generators should shortly produce a (somewhat) higher sound power than the steady
state sound power. This can be achieved by manipulating the reference signal in the
control scheme of the previous subsection. When the control algorithm is initialized,
the reference signal is increased with 20% for a fixed period of time T1.2. From equations
5.5 and 5.5 the sound pressure level after this period of increased sound power can be
found:

y(T1.2) = 1.2r (1−e−
T1.2
τ ) (5.7)

Rewriting yields an expression for the amount of time required to reach the reference
sound pressure level:

T1.2 = τ ln0.2 (5.8)

Note that this fixed period of time is again independent of the reference level. To mini-
mize the risk of overshoot a shorter period than computed T1.2 is applied.

To generalized the formula we introduce the elevation factor x (in our case 1.2). This
factor can be chosen freely, provided that the direct sound field does not exceed the ref-
erence level. The elevation period then yields:

Tx = τ ln1−x (5.9)

Theoretically, to reach the reference level instantly (Tx = 0), an infinite elevation factor
would be required. If one is willing to take some risk, the rise time is either limited by
the maximum producible sound power or by the maximum allowable direct field sound
pressure level.

RESULTS

In terms of steady state precision and accuracy the performance does not differ from
the previous two algorithms. The start-up time has decreased, as can be seen in figure
5.17. The elevation of the reference signal has reduced the start up time from 2 to 1
second. Although this is a nice result, the principle of elevated gains is not expected to
be applied. Since the benefits of a slight rise time improvement do not counterbalance
the risk of overshoot inherent to this method.
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(a) (b)

Figure 5.16: Performance elevated gains

Figure 5.17: Transient behaviour

5.4. MULTIPLE INPUT MULTIPLE OUTPUT
The feedforward control appears to be an added value to conventional feedback con-
trol. Though, in the experiments an important simplification was applied. Only a single
third octave was controlled. In this section the problem will be extended from a SISO-
to a MIMO system. The control method of subsection 5.3.5 will be extended to a MIMO
control method.

5.4.1. DECOUPLING
The goal is to control each third octave as shown in the scheme of figure 5.18 simultane-
ously. Writing down the relation between the inputs and output of this system yields
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∑ Feedback
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Figure 5.18: Control scheme of subsection 5.3.5

u =
(
(

ki

s
+kp)(r − y)+ r

K

)
d 2 (5.10)

Here kp and ki are the proportional and integral term of the feedback controller. The
disturbance is defined as the factor difference between the expected energy level in the
drive signal and the measured energy level in the drive signal. A reduced flow diagram of
the MIMO system is shown if figure 5.19. if the diagonal entries of the operation matrix
K(s) now all contain the operation of equation 5.10, all third octaves are simultaneously
controlled by the scheme of figure 5.18. The main challenge of the extension to MIMO

K(s) H(s)
r u y

d

Figure 5.19: MIMO control scheme

control, is dealing with the interactions of the system. As shown in chapter 4, the inter-
actions exist due to filtering. In consequence, control of a third octave is also observed
in the measured values of adjacent third octaves. To counteract these interactions one
can design a decoupling matrix X(s). In figure 5.20 the role of this decoupling matrix is
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K(s) X(s) H(s)
r u ud y

d

Figure 5.20: MIMO system with a decoupler

shown. The inputs u are computed as if they control an individual third octave. Hence,
the interactions due to filtering are not taken into account. The decoupler counteracts
those interactions resulting in a shaped plant

X(s)H(s) (5.11)

which is diagonal and easier to control. In the decoupler the interactions are compen-
sated in advance. As a result, the decoupled inputs ud are computed. The interactions in
the transfer function of the plant (H(s)) are contained in the state matrices B and C. The
interactions are counteracted by:

X = (BC)−1 (5.12)

From another point of view one could say: the decoupler compensates for the filter over-
lap by adjusting the inputs in advance, such that after filtering the intended frequency
content is fed into the acoustic noise generators

5.4.2. SIMULATION
The performance of the decoupler is tested in Simulink. The following third octaves
where considered:

• Third octave number 1 : Centre frequency of 630 Hz

• Third octave number 2 : Centre frequency of 800 Hz

• Third octave number 3 : Centre frequency of 1000 Hz

• Third octave number 4 : Centre frequency of 1250 Hz

• Third octave number 5 : Centre frequency of 1600 Hz

It is aimed to excite the third octaves at different amplitudes. They all start at an ampli-
tude of 500. After 25 seconds number 3 is excited to 2500. 15 seconds later its value is
brought back to 1000. Furthermore number 5 is pushed up to an amplitude of 1500 after
45 seconds. Those values are the inputs u. The simulation can be described in steps:

1. White Gaussian noise is generated.
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2. The white noise is separately filtered by third octave bandpass filters.

3. The decoupled inputs are computed

4. The filtered signals are amplified with the corresponding ud.

5. The five amplified signals are added, forming a single signal.

6. This signal is separately filtered by third octave bandpass filters.

7. The amount of energy per third octave is computed and is displayed as output.

Note that during a real test, between step 5 and 6, the electric energy will be transformed
to acoustic energy in the acoustic noise generators and thereafter transformed back to
electric energy by the microphones in the room. The amplifications in the noise gen-
erators and electric energy are assumed to be independent of frequency. Besides, the
damping in the room at MBBM has a very small frequency dependence (see appendix
B).

If one of these assumptions does not hold at ESA’s LEAF (for example, the modula-
tors can introduce additional non linearities.) the decoupler should be the inverse of
the complete transfer function. One can then decide whether a dynamic decoupling is
required or a steady state decoupling suffices.

X(s) = H(s)−1 or X(0) = H(0)−1 (5.13)

The advantage of the latter is that it is computationally cheaper.

RESULTS

The outputs can be seen in figure 5.21. Note that the energy level in the signals is aver-
aged over a period of 10 seconds. This is done to avoid significant fluctuations in due
to the stochastic nature of the signals. These fluctuations would hinder observing the
performance of the decoupler. For comparison the same simulation is performed with-
out the decoupler. In other words: the filtered signals are amplified with u instead of ud.
Those outputs can be seen in figure 5.22. Here it can be seen that, without decoupling,
the third octaves 2 and 4 are quite significantly influenced by excitation of third octave 3.
Whereas the outputs after decoupling are barely affected by adjacent third octaves. Fur-
thermore it can be seen that the excited decoupled outputs have a higher energy level
during excitation. During the filtering more energy leaks from the excited third octaves
to their neighbours. This phenomenon is also compensated for in the decoupler. At last
there is a shortcoming of the decoupler visible as well. When the first 15 seconds of the
two figures are compared, it can be observed that the five energy levels are closer to each
other when the decoupler is not used. This indicates a small inaccuracy in the decou-
pler. However, the inaccuracy is sufficiently small to be compensated by the feedback
controller.
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Figure 5.21: Simulation outputs with decoupler

Figure 5.22: Simulation outputs without decoupler
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5.5. SUMMARY
During a test the sound pressure level is aimed to be precise and accurate. The measure
of precision in this paper is defined as the maximum absolute deviation from the mean
sound pressure level in steady state. Thus in this sense, a good precision implies that
the sound pressure level does not vary significantly over time. The accuracy is defined as
the difference between the mean sound pressure level and the reference level in steady
state. Furthermore the sound pressure levels should be approached as fast as possible.
Though, the sound pressure level may not overshoot the reference level.

To meet these targets feedforward control will be used. To make a proper compari-
son with feedback control, the MIMO problem is reduced to a SISO problem. The per-
formance of different control methods on the 1000 Hz third octave is tested in a small
reverberation room with linear.

A steady state inverse model of the plant is the first tested controller. This controller
is tested in a open loop fashion. The accuracy of this method appears to be limited.
However, the steady state sound pressure level is reached in a short period of time.

From the open loop test it can be concluded that the model is not accurate enough
for pure feedforward control. feedforward control can only be used in addition to feed-
back control. Therefore a feedback controller is designed. In comparison with the open
loop control the steady state error has disappeared. This improvement is made at the ex-
pense of the short rise time. In terms of precision no progress was booked with respect
to the open loop control.

To improve precision, feedforward control is added to the feedback control. The en-
ergy fluctuation in the stochastic drive signal is measured and compensated. In conse-
quence the precision is improved.

To improve the rise time the steady state inverse model controller of the open loop
control is used again. The inputs are computed, purely based on the model of the plant.
The disturbances are still compensated. This approach improved the rise time.

The last method of elevated initial gains further improves the rise time. It uses the
same control scheme as the previous method. However, the reference levels are in-
creased for a short period of time. As a result the sound power will be higher in the
transient time.

The performance of the different control methods are summarized in table 5.3. Here
feedforward control I, II and III are the methods of measured disturbances, Steady state
inverse model and the elevated initial gains respectively.

Approach Rise time (s) Accuracy (dB) Precision (dB)

Open-loop control 2.5 0.8 1.1
Feedback control 10 ∼ 0 1.1
Feedforward control I 7.5 ∼ 0 0.4
Feedforward control II 2.5 ∼ 0 0.4
Feedforward control III 1.5 ∼ 0 0.4

Table 5.3: Summarized results
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Taking the performance and application possibilities into account, it is chosen to ex-
tend the SISO control method of section 5.3.5 to a MIMO control method. To counteract
the interactions in the plant, a decoupler is designed. First, the inputs not taking the
filter overlap into account. Thereafter these inputs are corrected by the decoupler, such
that the energy leakage into other third octaves is compensated. As a result, the third
octaves can be controlled independently.





6
CONCLUSION AND FUTURE WORK

In the final stage of this thesis alternative control approaches were evaluated. The main
conclusions can be drawn from the measurements. The final product of this thesis is not
yet a control algorithm, applicable on an acoustic test facility. Therefore future work is
to be done.

6.1. CONCLUSION
Describing the sound field in the reverberation room with a model analysis loses its
power as frequency increases. It is shown that the LEAF’s reverberation chamber the
diffuse sound field approach is justified above 150 Hz. From both the modal analysis
and the diffuse sound field model acoustic energy relations can be derived. Those can
be formulated in a state space representation.

With an assumed maximum overall sound pressure level of 154 dB the sound waves
are still approximately symmetric around the ambient pressure of the medium. At this
sound pressure level non linear propagation of the sound waves occurs. However, the
resulting amount of energy leakage in other third octaves is negligible.

From the open loop test it can be concluded that the first order model captures most
of the reverberation room characteristics already. Variations due to room temperature
and others, do clearly show feedback control is also needed to compensate for any steady
state errors though. Replacing the open loop system by a feedback controller eliminates
the steady state error from open loop system. The feedback controller does not yield
more precision in steady state though and also greatly compromises on rise time.

One can improve on steady state precision by adding a feedforward controller. In
specific this feedforward controller should compensate for the continuous variation of
the stochastic excitation signal. In our study, adding this time of feedforward improved
the precision in our test from 1.1 dB to 0.4 dB.

One can furthermore improve on rise time by adding another feedforward controller.
One can do so by exploiting the open loop model. As such, at test begin, instant initial
gain estimates for steady state operation are set, requiring the feedback controller to only
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compensate for the remaining error. In our study application of this control yielded near
theoretical rise times for a reverberation room.

To reduce the rise time even further, elevated gain levels compared to the open loop
model may also be used. It was shown that this approach reduces the rise time even
further, i.e. in our study from 2 seconds to 1 second only. It was also shown that the
rise time is independent on sound pressure level increase and may therefore be applied
safely.

The interactions in the MIMO transfer function are caused by the filter overlap in the
frequency domain. It has been shown that those interactions can be counteracted by a
decoupler. In consequence, the system can be controlled by a purely diagonal control
matrix.

Overall it can be concluded that feedforward control adds value to the conventional
feedback control of acoustic testing. Measuring the power of white noise and compen-
sating for that by means of feedforward control has shown to improve performance in
terms of precision. Furthermore, feedforward control has shown to be capable of reduc-
ing the start-up time of the test significantly.

6.2. FUTURE WORK
The experiments in this thesis took place in a small reverberation room with linear loud-
speakers. In the LEAF, for example, the sound power is generated by modulators and
horns. An air/nitrogen flow is spectrally modulated ([2]) and flows through the horns
into the room.

The input-output relation of the noise generation can possibly be very non linear.
Consequently, the linear model of the plant, used for control does not hold any more.
Furthermore, the acoustic noise generation can cause additional interactions in the trans-
fer function.

Therefore the acoustic noise generation of a real test facility should be identified and
the possible findings should be included in the model of the plant, as well as in the de-
coupler.
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A
PI VS I IN FEEDBACK CONTROL

In figure A.1 the output of two measurements is displayed. Here to different feedback
controllers are tested in a pure feedback control scheme. The I controller is the feedback
controller of subsection 5.3.4 and the PI controller is the one from subsection 5.3.3. As
can be seen the PI controller has a slightly better precision. This comparison is made
to confirm that the improved precision of the control method in subsection 5.3.4 can be
assigned to the disturbance compensation, rather than the renewed feedback controller.

(a) I (b) PI

Figure A.1: Pure feedback performance: I vs PI
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B
REVERBERATION TIMES

Third octave centre frequency (Hz) Reverberation time (s)

50 4.65
63 4.22
80 4.71

100 4.64
125 4.97
160 5.09
200 5.52
250 5.13
315 4.99
400 5.19
500 5.27
630 5.09
800 4.94

1000 5.11
1250 5.28
1600 5.29
2000 4.88
2500 4.29

Table B.1: Revereration times, reverberation room at MBBM. These values are experimentally determined as
described in ISO 354.
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