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Abstract
In biological cells, information from the external environment of the cell is used to make survival related deci-
sions. For these decisions, it is important that signals are accurately transduced from the outside to the inside
of the cell. In Dictyostelium discoideum, two opposing mechanisms using G-protein coupled receptors are
used for this signalling: the precoupling mechanism, where second messenger molecules bind to the receptor
before a ligand binds to it, and the collision coupling mechanism, in which the ligand binding comes first. In
this paper, we investigated both models by analyzing how accurately they detect ligand bindings when differ-
ent receptors are able to interact with each other. A similar analysis is done for returning messenger molecules.
We found that the influence of receptors upon each other is low if the receptors operate under the same con-
ditions. However, when the conditions are heterogeneous, the influence of receptors on each other is huge.
The main reason for this influence is that ligand binding receptors which are more likely to get detected by
messenger molecules will receive more of those messengers, because of their high diffusion rate. The effect
of returning messenger molecules on the receptor signal was that ligand detection became possible at times
where they otherwise would not be able to be detected anymore, given a replace rate which is low compared
to the rate of binding and unbinding of a ligand to a receptor.
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INTRODUCTION

1.1. CHEMOTAXIS

Environmental sensing is extremely important in cellular decision making. The sensing allows an organism
to observe their external environment, and base their decision making upon it. This makes sensing systems,
functioning in a noisy envorinment, an essential network in living organisms. Typically, networks in signal
transduction should be robust, only allowing for small errors [2, 3]. Unicellular organisms, like Dictyostelium
Discoidum, use a combination of membrane-bound receptors and a downstream signalling network which
takes input from multiple receptors, to influence the movement of the cell [4]. This process of cellular move-
ment, driven by the chemical gradient in which a cell finds itself is called chemotaxis, and has been studied
widely [5–8]. In these studies it is mostly assumed that the outside ligand concentration is known inside the
cell as well. The signal transduction fidelity, which is the quality with which the external signal, consisting of
receptor activation by ligand binding, is converted into an internal signal with messenger molecules, has been
studied less. In this paper we will add to the work of Hille and Dubbeldam [1], whose work consists of analyzing
the conversion of the external signal of ligand molecules binding and unbinding, through the cell-membrane,
to an internal signal in terms of activated messenger molecules.

The model for transmembrane signal transduction used in this paper is based upon a class of important G-
protein coupled receptors in eukaryotic cells. The ligand molecules outside the cell can bind to and unbind
from the receptors of the cell, which will activate and deactivate the receptors. Meanwhile the messenger
molecules which are diffusing over the membrane, will occasionally pass receptors, and depending on the
model that is being used, they will interact with either activated or unactivated receptors. After such an inter-
action the messenger molecule itself will become activated, carrying the information that a ligand has bound
to a receptor. For the most favourable movement, as many bound ligand molecules as possible should be
detected by the second messenger system. For this detecting, two opposing mechanisms will be used: ‘pre-
coupling’ and ‘collision coupling’ [9, 10].

In this model we use parameter values obtained by studies of the behaviour on cyclic adenosine-monophospate
(cAMP) receptors of type 1, (cAR1) in Dictyostelium Discoidum, an organism known for its ability to sense
chemical concentration gradients with high accuracy [11, 12], even under high thermal and stochastic fluctu-
ations. This makes its signalling system highly suitable for research.

In this paper we extend the models from Dubbeldam and Hille [1], by comparing the precoupling model and
collision coupling model in non-homogeneous environments and by reviewing the influence of returning
messenger molecules. The results will thus add to the discussion of which of the two mechanisms is the main
mechanism for signal transduction in the class GPCRs.

1.2. SECOND MESSENGER SYSTEM

As mentioned before, we will compare two second messenger mechanisms to each other. Both of these mech-
anisms contain G-protein coupled receptors (GPCRs), which are membrane bound proteins. One of the recep-
tor’s ends is outside of the membrane, ligand molecules are able to bind and unbind at this end. The other end,
located in the interior of the membrane, is able to react with membrane bound G-proteins Gαβγ, the messen-
ger molecules. Upon interacting with the receptor, the messenger molecule will split into two parts: Gα and
Gβγ, the first of which diffuses in the cytosol, the other will stay membrane-bound. These two subunits are the
active parts in the downstream signalling [2, 15–17]. In figure 1 a sketch of both mechanisms can be found.
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Figure 1: A sketch of the two different mechanisms. On the left, the precoupling mechanism is sketched. First a messenger molecule
needs to bind the receptor at the inside of the membrane (top). When a ligand binds the receptor on the outside of the membrane, the

messenger molecule splits into its subunits (bottom). On the right, we find the collision coupling mechanism. Here, first a ligand binding
a receptor is necessary (top). Now, when a messenger molecule reaches the receptor site, the messenger molecule will split into its

subunits (bottom).

One of the two models is the precoupling model. In this model, if a messenger molecule reaches the receptor
site of an unbound receptor, it will have a certain chance of coupling to this receptor. After this molecule is
coupled to the receptor, no other messenger molecule can interact with this receptor. At the moment a ligand
reaches the receptor and binds to it, the messenger molecule will almost immediately react and split in the two
subunits. However if no messenger molecule was precoupled to the receptor the moment the ligand reaches
the receptor, no detection will be made. During the time that the ligand is bound to the receptor, no messenger
molecule can interact with the receptor.

The other model discussed in this paper, is the collision coupling model. Here the messenger molecules will
only be able to interact with a bound receptor. If the receptor is unbound, the messenger molecules cannot
undergo any interaction with the receptor, however as soon as the receptor binds a ligand, a passing messenger
molecule will have a certain probability to interact with the receptor, splitting in the two sub-units.

In figure 2, you can find a visualization of both mechanisms. In these schematics, we use the following abbrevi-
ations: R, L, R∗ and LR for successively the receptor, the ligand, the precoupled receptor and the ligand-bound
receptor.
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Figure 2: A schematic for both the precoupling and collision coupling mechanism. The black box in the collision coupling mechanism,
implies that the LR is not used up in the reaction, but that it’s just necessary as a catalyst.

The chemical reactions for the precoupling mechanism in these schematics are:

GαGβγ+R → R∗ (1)

L+R∗ → LR+Gα+Gβγ (2)

LR ←→ L+R (3)

Note that equation 3 states that it is possible for a ligand to bind a receptor that hasn’t been precoupled by a
messenger molecule, but that this ligand will not be measured.

For the collision coupling we still have equation 3, but now we need to add:

LR+Gαβγ → LR+Gα+Gβγ (4)

In this reaction, LR is a catalyst, which makes the messenger molecule split into its subunits.

A reaction we will add later in both models, is the returning of the messenger molecules. Gα diffuses through
the cytosol, and Gβγ diffuses across the membrane, until they find each other and bind again. The rate with
which this reaction occurs is so far unknown, but it is guessed to be low.

Gα+Gβγ → Gαβγ (5)

Comparing the two models, some fundamental differences can be found. The most obvious one being that in
the precoupling model the messenger molecules can only interact while no ligand is bound to the receptor,
on the other hand for the collision coupling model a interaction is only possible while a ligand is bound. This
gives the prediction that the precoupling model will be more accurate when little ligand molecules are present,
making the typical times of the receptor being unbound large. And that the collision coupling will be more
accurate when there is plenty of ligand, because then the receptor will be ligand bounded more often.
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Another difference, which is visible in reactions 2 and 4, is the way a messenger molecule splits into its sub-
units, which is important, since these are the molecules carrying the information of the present ligand molecule.
In the precoupling method, a R∗ and a L are necessary for a messenger molecule to split, however when reac-
tion 2 takes place, the receptor R∗ will lose its precoupled status and bind with the ligand instantly, creating a
ligand-bound receptor, which means no second messenger molecule is able to split, creating a maximum of
one messenger molecule activation per bound ligand. In the collision coupling case, a bound receptor (LR) is
needed for the messenger molecules to get activated. When reaction 4 takes place, this LR is preserved, mean-
ing that if a second messenger molecule arrives at the receptor site before the ligand unbinds the receptor, it
is possible that it will get activated as well. No maximum of messenger molecules absorbed per bound ligand
is present, except for the trivial maximum which is all the messenger molecules in the system. This raises the
expectation that initially the collision coupling model will absorb a lot more of its messenger molecules than
the precoupling model. At later times the collision coupling model will have less messenger molecules left,
making detecting the binding of new ligand molecules harder, while the precoupling model will have a bigger
reserve of messenger molecules.

Both these predictions are also seen in the results of the work of Dubbeldam and Hille.
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NUMERICAL MODEL

2.1. RECEPTOR STATISTICS

Because the numerical model in this report is an extension of the numerical model from Dubbeldam and Hille
[1], we will first briefly discuss this model. In this model the activation state of the receptor R : IR+ → {0,1}
follows a periodic pattern, if we take time so that at t = 0 the state of the receptor just switched to on, then it
will stay on for a given period of time Ton (the time it will typically take for a ligand molecule to let go of the
receptor), thereafter the state will be switched to off for Toff (the time it typically takes for a ligand molecule to
bind the receptor).
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Figure 3: The three different receptor states that will be modeled. The parameters in this model are Ton = 2
3 s, Toff = 1

3 s. (a) The receptor
has a fixed periodicity. (b) The state of the receptor is modeled with a Poisson distribution. When the receptor is switched on, the time it

will stay on will be randomly chosen via a Poisson distribution with mean Ton. When it turns off, the period it will stay off will be
randomly chosen by a Poisson distribution with Toff as parameter, the dotted line in this figure represents the receptor with a fixed

periodicity. In (c) the receptor is always partially on, when a messenger molecule arrives at the receptor site, it has a probability of p of
being activated.

This periodicity of the receptor is not something you would expect in reality. A better approximation would be
the Poisson distribution. In this model a random time-period will be generated upon the receptor switching its
state to on. This random time-period will be generated by a Poisson distribution with mean Ton, the receptor
will then stay on for this time, after which it will turn off. At this moment, another random time-period will be
generated, again by a Poisson distribution, this time with mean Toff. Now the receptor state R : IR+ → {0,1} will
turn into a random process, which represents the receptor state used in other research (for example [5, 8]).
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In [1] it was found that the ratio of Ton to Toff was important for deciding which of the two models would be
more accurate. That’s why in this report we will use a parameter which describes that ratio:

p = Ton

Ton +Toff
(6)

This value of p, together with the parameter T = Ton +Toff, gives us the possibility to model the receptor in a
slightly different method. Instead of its state being first on, then off for a certain period of time, it will always
be in the same state, it will be on with probability p at all times. The R-function, describing the above will turn
into a very straightforward function. R : IR+ → [0,1] can now be described as R(t ) = p, so R in this model is
constant.

All three receptor states discussed above are shown in figure 3.

2.2. MESSENGER MOLECULES

The messenger molecules (M) are able to move along the entire cell membrane. Although there are multiple
receptors on this membrane, in order to keep the model as simple as possible, we will consider just one recep-
tor. To accomplish this, we first divide the membrane up in equal patches, so that each receptor has an equal
amount of membrane surrounding it. We assume that the messenger molecules are spread equally, meaning
that every patch has one receptor R and an equal amount of messenger molecules Mi (where i ∈ {0,1, ..,NM},
with NM the number of messenger molecules per patch) in it.

All of these patches will now be simulated as if they are independent of each other. Because the geometry of
the system is very simple, a patch can be seen as a bounded domain Ω ∈ IR2. All messenger molecules will
move trough this domain. There are two areas in this domain worth mentioning: ΩR ∈Ω, the receptor site and
δΩ, the boundary of the domain. When a messenger molecule is located somewhere else in the domain, that
is: M ∈Ω/ΩR, it will move uninfluenced by the receptor or other messenger molecules, diffusing freely.

When a messenger molecule reaches δΩ, it is about to leave the patch. In this model, another messenger
molecule will be randomly placed somewhere else on δΩ, this random distribution will be uniform over the
entire boundary. This process of relocation over the boundary of the patch, will model the exchange of mes-
senger molecules between the different patches, without changing the total number of messenger molecules
per patch. An example of this can be seen in figure 4.

Figure 4: An example of a patch, the moment a messenger molecule leaves the patch (right edge), another messenger molecule will enter
(top edge). The location at which the messenger molecules enter, is uniformly chosen over the edge.
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The most interesting part of the domain, is ΩR (the receptor site). When a messenger molecule reaches this
receptor site, the molecule will have a certain chance of being absorbed (activated) by the receptor. When a
messenger molecule gets absorbed, it gets relocated to the absorbed position, which we will call *. The mes-
senger molecule Mi , whose location will be notated as Xi will thus travel inΩ∪δΩ∪ {*}. The exact probability
of a messenger molecule being absorbed depends on which model is being used.

For the collision coupling model, this probability is simple to determine. In the Ton,Toff model it is just pabs,
the absorption chance, while the receptor is in its on state, and 0 while the receptor is in its off state, this is
exactly the same for the model with the random switching times. For the T, p model the receptor is always
partially on, this means that the probability of absorption will become pabsp. This can all be visualized by
multiplying all the receptor functions as shown in figure 3 by pabs.

For the precoupling method, determining the probability of a messenger molecule being absorbed will be-
come more complicated. Because a bound messenger molecule will block other messenger molecules from
binding, only one messenger molecule can be absorbed per time-period T . This means that in the Ton,Toff

and random switching time models the absorption chance will be pabs from the moment the receptor turns
off, until the first absorption is made. It will then be 0 until the receptor switches to its off state the next time. To
model this principle of a maximum of one messenger molecules per bound cAMP-particle in the p,T model,
we let the probability of activation while at the receptor site be pabs(1−p) initially. As soon as a absorption oc-
curs, this probability is set to 0. Then at t = mT ∀m ∈ N . The probability will reset to pabs(1−p), independent
of what it was before.

2.3. QUANTITIES FOR ANALYSIS

To analyze the results this model will give, some parameters will be defined. First of all, we will define Ik as
the k-th phase of the receptor, one phase during T = Ton +Toff. Which gives us Ik = [kT ; (k +1)T ). This means
that the length of each Ik is the typical time of binding and unbinding of a ligand molecule. To now know if a
detection was made during a given Ik , the absorption time Ti for each messenger molecule Mi is introduced.
To find Ti we will look for the time that a messenger molecule is placed fromΩR to *:

Ti = inf{t > 0 : Xi (t ) = *} (7)

Now all that’s left is to determine the probability that a detection is made in this Ik , which leads to:

Ak = P(∃i : Ti ∈ Ik ) (8)

Physically this means that Ak is the probability for the k-th ligand molecule that binds to be detected by a
messenger molecule. Keep in mind that this quantity will only tell us the probability that at least one detection
is made in a given time period, it does not give any information about the quantity of the detections during
this time period.

The return of messenger molecules from the absorbed state * toΩ∩δΩ generally will not be possible, however
in section 2.6 the effects of replacing messenger molecules will be looked into.
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Figure 5: Visual representation of the model used to simulate the influence of patches on each other. Messenger molecules will be able to
cross borders separating patches freely, the boundary conditions are periodic. In this visual representation we take NR = 25

2.4. INDEPENDENT PATCHES

In the first paragraph of section 2.2, it is mentioned that the membrane of the amoeba will be divided into
patches, and that all patches will be simulated independently from each other. However a check if this as-
sumption holds up will be done as well. In figure 5 a sketch of the model which will be used for this check
is shown. In this model, we will insert NM messenger molecules per patch in the system and we will let the
messenger molecules move back and forth between patches freely. The boundary conditions will be periodic
in this model. This way, the conditions for each patch are exactly the same. To make sure that messenger
molecules absorbed by different receptors are distinguishable from each other, some more absorbed states
are defined. First we will label each patch, starting with R1 for the patch in the top-left, R2 for the one next
to it (to the right), all the way to RNR for the receptor in the bottom-right. The different absorbed states will
be called {*1,*2, ...,*NR } so that a messenger molecule absorbed in R j will go to * j . In this model, equation 7
and 8 need to be altered slightly so that the information of which receptor absorbed the messenger molecule
is included:

Ti , j = inf{t > 0 : Xi (t ) = * j } (9)

Ak, j = Pr(∃i : Ti , j ∈ Ik ) (10)

Now for any given j , Ak, j should have a similar form to Ak in the case where a single patch is simulated.

2.5. INFLUENCES ACROSS THE MEMBRANE

The model as described in section 2.4 can also be used for the amount of influence a receptor with different
statistics from the receptors in its environment has on those receptors in the environment and vice versa.
To accomplish this, one receptor will get a different p-value from the other receptors. Because of the torus-
like shape of the system, the receptor that is chosen does not matter for the results. Now suppose R j0 is the
receptor with the different p value. Ak, j0 will be analyzed and compared to an independently simulated Ak

with a receptor which has the same statistics as R j0 . Also for any j 6= j0 a comparison can be made between
Ak, j and a independently simulated Ak with a receptor with the same characteristics as R j , it is expected that
for this result the distance of R j to R j0 does not matter, since the diffusion constant is high. This way the
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influence of receptors on each other can be seen, however we are also interested in the differences between
the different Ak, j along the membrane. By comparing Ak, j0 to Ak. j for j 6= j0 we will be able to see which kind
of differences in p along the membrane are notice-able. In [13, 14] we find that in experiments differences as
small as 1% across the cell are noticeable.

2.6. REPLACING MESSENGER MOLECULES

The last addition to the model we are going to introduce is the addition of replacing the messenger molecules
back on the membrane. In section 1.2 we have seen that at some point after the activation of a messenger
molecule, the Gα will rejoin with the Gβγ and become a messenger molecule again. To model this, we will
add a possibility from a messenger molecule Mi with Xi = * to get back to Ω, which was not possible in all
other models. We again need to redefine equation 7, first we will define N : IR+ → IN as the amount of times a
molecule is absorbed before a certain time.

N (t ) = #[∃τ< t : [∃ε> 0 : ∀r < ε : X (τ) =∗∧X (τ− r ) 6= ∗]] (11)

Where the # in equation 11 stands for the amount of times a certain condition is met.

Ti ,n = inf{t > 0 : Xi (t ) = *∧N (t ) = n −1} (12)

So Ti ,n denotes the n-th time Mi gets absorbed. The placing back of the molecules will be by selecting a
random position onΩ∪δΩ at t = Ti ,n +Tr, where Tr is the time of replacement. Now the equivalent equation
to equation 8 will be:

Ak = Pr(∃i ,n : Ti ,n ∈ Ik ) (13)

9



ANALYTICS

3.1. EXPRESSIONS FOR DETECTING PROBABILITIES

In the following section, we will discuss Ak from a probabilistic perspective. The expressions we will get this
way, should help us understand the behaviour of Ak when changing the values of p or k. In section 4, we will
compare this expected behaviour to the behaviour we see in the simulations.

Collision Coupling

To determine the receptor signal of the collision coupling model analytically, we need to know what the proba-
bility is for a given k that at least one messenger molecule is absorbed in Ik , the k-th phase, by basic probability
theorems we find an alternate form for equation 8:

Ak = 1−P(∀i : Ti ∉ Ik )

Which, by realizing that all Mi are independent of each other, can be rewritten as:

Ak = 1− (1−P (Ti ∈ Ik ))NM (14)

Now we see that to determine Ak we only need to calculate P (Ti ∈ Ik ). We regard the entire patch as one
trap, where the total probability of being absorbed will be determined by multiplying its 3 components: The
probability that the messenger molecule is in the receptor: Arec

Apatch
, the probability that the receptor is ligand-

bound: p, and the absorption probability: pabs.

We use a discrete model, where each Ik consists of NT time units (the chosen time units are motivated by the
diffusion constant of the messenger molecules). Therefore we find that for the first phase, by the same proba-
bility theorems as before, P(Ti ∈ Ik ) becomes the probability that the messenger molecule does not survive all
time units of one phase, which we will call b:

b(p) = 1−
(
1−pabsp

Arec

Apatch

)NT

(15)

For any later phase, the messenger molecule must first survive all previous k-1 phases, and given that it has
survived those first k-1 phases, the probability that it will get absorbed in the k-th phase is the same as the
probability of the messenger molecule getting absorbed in the first phase initially was, this gives us:

P (Ti ∈ Ik ) = b

(
1−

k−1∑
j=1

P (Ti ∈ I j )

)
(16)

Equations 14, 15 and 16 give an analytic expression for Ak by themselves, however by further analyzing 16 we
find that it can be rewritten as equation 17. A proof that equation 16 and 17 are equal can be found in appendix
A.

P (Ti ∈ Ik ) = b(1−b)k−1 (17)

In the appendix, we show by induction that equation 16 is always equal to the binomial expansion of 17. Using
this result we find the following expression for Ak :

Ak = 1− (1−b(p)(1−b(p))k−1)NM (18)

In this equation we find that Ak is only dependent on b, which is a function of p, pabs, Arec, Apatch and NT,
however we will assume all those variables constant except for p. In figure 6 we plot equation 18 for p = 0.5.
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Figure 6: The expected receptor signal for p = 0.5, parameters used cam be found in table 1 in section 4

Precoupling

For the precoupling model we will follow a different strategy. First we define a variable which is only dependent
on p, similarly to the collision coupling model:

b(p) =
(
1−pabs(1−p)

Arec

Apatch

)NT

(19)

Now if at the start of phase k∗ we have n active messenger molecules we will have:

Ak∗ = 1−bn (20)

So the only problem that remains is determining how many messenger molecules are on average active for a
given k. For k = 1, we can fill in n = NM in equation 20 to get A1, since we start with NM messenger molecules.
Now because a maximum of one M gets absorbed in the first phase, we will have a probability of A1 that there
are NM −1 messenger molecules left, and a probability of 1− A1 that still NM are left. This results in:

A2 = A1(1−bNM−1)+ (1− A1)(1−bNM ) (21)

We continue for A3, now there is a probability of A1 A2 that 2 messenger molecules are absorbed, there are two
possibilities that 1 M gets absorbed: It gets absorbed in I1 or it gets absorbed in I2, resulting in a probability of
A1(1− A2)+ (1− A1)A2. The probability that no M get absorbed will be (1− A1)(1− A2). Giving us the following
expression:

A3 = A1 A2(1−bNM−2)+ (A1(1− A2)+ (1− A1)A2)(1−bNM−1)+ (1− A1)(1− A2)(1−bNM ) (22)

A pattern emerges! In general we have:

Ak =
k−1∑
i=0

Bk,i (1−bNM−(k−1)+i ) (23)
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Where Bk,i is the probability that (k−1)−i absorptions have taken place, after k−1 phases. This factor depends
on A1, A2, ...Ak−1, and defined for k ∈ IN and i = 0,1, ...,k −1. An expression for this factor:

Bk,i =
k−i+1∑

j1=1

k−i+2∑
j2= j1+1

...
k−1∑

ji−1= ji−2+1

(
k−1∏
l=1

Al

)
(1− A j1 )(1− A j2 )...(1− A ji−1 )

A j1 A j2 ...A ji−1

(24)

The total amount of sums in equation 24 is i −1, the equation gives the total probability of all possible com-
binations of (k − 1)− i molecules getting absorbed combined, thus it is the probability that the system has
NM − (k −1)+ i messenger molecules at the start of Ik .

Combining A1 = 1−bNM with equation 19, 23 and 24 gives us an analytic expression for what will be simu-
lated. Unfortunately, the expressions are not very practical and do not help us with analyzing behaviour of the
receptor signal for the precoupling model.

3.2. STEALING PARTICLES

In section 2.5 the model in which multiple connected patches are simulated is introduced. Here all but one
patch have receptors with identical p-values, the patch that has a receptor with a different p-value will be
called Rin, all other patches will be referred to as Rout. What will happen in this model, is that the patches will
exchange messenger molecules. However, if a patch has a receptor with a higher p-value than its neighbours,
it will generally have less messenger molecules leaving the patch, than entering it. This is because it will absorb
more of its messenger molecules, thus leaving less of them to leave the patch. Effectively it is stealing messen-
ger molecules from its neighbours. That is, more messenger molecules will be absorbed into the receptor with
the higher p-value than the NM that originally were inserted into that patch, on the other hand, its neighbours
will absorb slightly less messenger molecules than those initial NM. We define the following set of parameters:

pin = pinpabs
Arec

Apatch

pout = poutpabs
Arec

Apatch

Bin = 4p
Apatch

Bout = 4
#Rout

p
Apatch

Here pin denotes the p-value of Rin, while pout is the p-value of all other receptors Rout. We write #Rout for
the amount of receptors Rout. Physically, the meaning of the variables are respectively: The probability of a
messenger molecule getting absorbed while in the patch with Rin, the chance of an absorption while in any
other patch, the probability for a messenger molecule to go away from the patch with Rin, the probability to
get into the patch with Rin. In figure 7 a visual representation of the parameters is added.

The main thing we are interested in is the amount of messenger molecules absorbed per receptor, when start-
ing with a uniform distribution over the entire membrane. This will give us an idea of the influence receptors
have on each other.

Because of the different absorption mechanisms of the precoupling and the collision coupling model, both
models will be treated separately.

Collision coupling

With the definitions in the table at the top of this page, we can set up a set of differential equations for nin,act

the amount of active messenger molecules inside the patch with receptor Rin, and nout,act for the amount of
messenger molecules outside this patch:

dnin,act

d t
=−(pin +Bin)nin,act +Boutnout,act (25)

dnout,act

d t
=−(pout +Bout)nout,act +Binnin,act (26)

12
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Figure 7: Visual representation of the parameters defined for the differential equations to model the absorption of messenger molecules
and the exchange of the messenger molecules between patches. The P variables picture the probability of absorption when in the patch

with that receptor. Bin is the probability of leaving the patch with the receptor with Pin when in that patch, Bout is the probability of
entering that patch when not in it.

Equation 25 and 26 model the change in the amount of messenger molecules due to crossing the border or
getting absorbed both in and out of the special patch. To remember how many of the messenger molecules
get absorbed inside Rin we introduce nin,abs, nout,abs will be used for messenger molecules absorbed in any of
the other receptors.

dnin,abs

d t
= pinnin,act (27)

dnout,abs

d t
= pout

NR −1
nout,act (28)

In equation 28 we average out over all receptors, so that we will get the amount of messenger molecules that
typically get absorbed in one Rout. Now since equation 25, 26, 27 and 28 are all linear, they can be written in
matrix form. However, since equation 27 and 28 are not independent from the other two, they are not included
in the matrix.

[
dnin,act

d t
dnout,act

d t

]
=

[−(pin +Bin) Bout

Bin −(pout +Bout)

][
nin,act

nout,act

]
(29)

As initial conditions, we will add NM messenger molecules per patch:

[
nin,act(0)

nout,act(0)

]
=

[
NM

(NR −1)NM

]
(30)

Such a matrix equation can be solved analytically. The solution is plotted in figure 8(a).
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Precoupling model

The border crossing probabilities, Bin and Bout only depend on the size of a patch, so they do not change when
we change models. The absorbing probabilities however do change. To calculate the amount of messenger
molecules that will get absorbed per time unit, ˙nin,abs and ˙nout,abs, we realize that over one k-phase the total
amount of messenger molecules absorbed should be equal to the probability a single messenger molecule
getting absorbed, since after this one molecule is absorbed, it will block the receptor for further absorptions.
So we will calculate the total chance of a messenger molecule getting absorbed in one k-phase, then spread
this out equally over all time units of this phase, resulting in:

dnin,abs

d t
=

1−
(
1−pabs(1−pin) Arec

Apatch

)nin,actNT

NT
(31)

We follow this routine for all other receptors:

dnout,abs

d t
=

#Rout

(
1−

(
1−pabs(1−pout)

Arec
Apatch

) nout,act
NR−1 NT

)
NT

(32)

Now the change in active molecules in the patch with Rin is just adding the amount of molecules entering
the patch and subtracting those leaving and those getting absorbed. The same analysis holds for the other
receptors. This leads to the following differential equations:

dnin,act

d t
=−

1−
(
pabs(1−pin) Arec

Apatch

)nin,actT

T
−Binnin,act +Boutnout,act (33)

dnout,act

d t
=−

#Rout

(
1−

(
pabs(1−pout)

Arec
Apatch

) nout,act
#Rout

T
)

T
−Boutnout,act +Binnin,act (34)

In contrary to the collision coupling case, unfortunately the set of differential equations we obtained for the
precoupling model is not linear, the equations can only be solved numerically. The solution is plotted in figure
8(b).
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Figure 8: The amount of M in Rin and the average amount of M per Rout are shown for the first 100 k-phases. In (a) the results for the
collision coupling model can be seen and in (b) the results for the precoupling model are shown. The values for the parameters used can
be found in table 1 in section 4, further we used pin = 0.75 and pout = 0.5 for the collision coupling model and pin = 0.33 and pout = 0.5

for the precoupling model.

In figure 8 we see the solution of the two sets of differential equations. Here we plot the total amount of mes-
senger molecules inside and outside the patch (nin = nin,act+nin,abs,nout = nout,act+nout,abs). A further analysis
on these solutions can be found in section 4.4.

3.3. LONG TERM LIMITS IN THE REPLACE-RATE MODEL

For the messenger molecule replace model (as described in section 2.6), messenger molecules will constantly
leave and re-enter the system. This will happen until an equilibrium is found. In this section we will look for
this equilibrium. The two models are again treated separately.

Collision coupling model

For the amount of molecules that get absorbed per time-unit we find:

M− = pabsp
Arec

Apatch
n (35)

Where n is the amount of active messenger molecules. For the amount of messenger molecules coming back
on the patch per time-unit we have:

M+ = NM −n

TrNT
(36)

Where Tr is the amount of phases Ik between absorption and replacement of a messenger molecule. An equi-
librium is settled when M− = M+, which gives us the following expression for the amount of active messenger
molecules at equilibrium:

ne = NM

TrNTpabsp Arec
Apatch

+1
(37)

Per Ik , a total of NTpabsp Arec
Apatch

x messenger molecules will get absorbed when there are x molecules present in

the system, so the amount of k-phases it will take for the first NM −ne to get absorbed is:
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ke = 1

NTpabsp Arec
Apatch

∫ NM

ne

1

x
d x (38)

After simplifying equation 38 and using our results from equation 37, we find:

ke = 1

NTpabsp Arec
Apatch

ln

(
TrNTpabsp

Arec

Apatch
+1

)
(39)

Using this ke in equation 18 will give us a prediction to the value of Ake we would get in the long term limit.

Precoupling model

In the precoupling model, we follow the same procedure. First we calculate the average amount of messenger
molecules getting absorbed in one phase, given that there are n messenger molecules left in the patch. Since
it’s not possible in the precoupling model for more than one messenger molecule to get absorbed per phase.
This average amount of messengers absorbed will be equal to probability of one messenger getting absorbed
in a phase given that n messenger molecules are left. This probability will be spread out over all the time units
of such a phase:

M− =
(1−pabs(1−p) Arec

Apatch
)nT

NT
(40)

The way in which messenger molecules are replaced, does not change with the model being used, equation 36
is still valid here, again we continue by putting M− = M+ to get ne, however due to the term n appearing both
linearly and exponentially, this time an analytic expression cannot be found. We advance with the numerical
result for ne. Similar to equation 39 we calculate the amount of phases this usually takes in the model without
replacements. In the precoupling model, since the integral of Ak from 0 to k∗ is the amount of absorbed
messenger molecules in the first k∗ phases, we need the following infimum:

ke = inf

{
k :

∫ k

0
Ax d x ≥ NM −ne

}
(41)

Using found ke in the equations found in the precoupling section of section 3.1 will give us an approximation
for the equilibrium value Ake .
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SIMULATION RESULTS

In this section we will use the following numerical values for earlier introduced parameters for the amount of
time units per k-phase, the amount of messenger molecules, the area of the receptor, the area of the patch and
the absorption probability:

Table 1: Simulation Parameters

Parameter NT NM Arec Apatch pabs

Value 200000 tu 40 1 nm2 40000 nm2 0.06453

The tu in table 1 denotes the time unit in our model, which is chosen to be the average time it takes for a

messenger molecule to diffuse 1 nm2. With D = 1.5∗105 nm2

s we find 1 tu = 3.3∗10−6s. Each k-phase will take
200000 tu = 0.67 s. [18]

The size of the patch we are going to analyze is 200nm by 200nm with a receptor of 1 nm2 in the middle. The
patch will have 40 messenger molecules, the value of pabs is motivated by the binding rate of a messenger
molecule to a receptor and the time units used. [1]

4.1. P-VALUES

Collision Coupling Model
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Figure 9: Comparison between the model using Ton and Toff as parameters and the model using p and T as parameters for the collision
coupling model. The corresponding values for Ton and Toff can be calculated by Ton = pT and Toff = (1−p)T . On the left the results for

both models are displayed, on the right the differences between the model and the standard deviation of the data are shown.
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Because the Ton and Toff variables from the model in [1] got replaced by T and p, we will first check the as-
sumption that changing those variables would not have an impact on Ak . In the left half of figure 9, the results
of simulation using both models are shown. In the right half of the figure it is shown that the difference of
the value of Ak produced by the different models is almost always smaller than two standard deviations. The
standard deviations in this figure are calculated by:

σk =
√

Ak (1− Ak )

N
(42)

This standard deviation is calculated independently for every k. The N in equation 42 is the number of runs
used in the simulation of the data. Every data point for Ak is interpretable as a Bernoulli variable; in a single
run, the k-th event of binding is either detected or undetected, so equation 42 is simply the standard deviation
of a Bernoulli variable after N tries. The value for Ak used in this equation is the average value of the Ton,Toff

and P, t model. We find that for 90% of the data-points, the difference between the results for Ak in the models
is below 2 standard deviations. Given these results, the swap of variables is acceptable for the collision coupling
case.

Precoupling Model

For the precoupling model, exactly the same is done as for the collision coupling model, both the Ton,Toff and
the T, p variants of the model are used for simulations and the results again will be compared in figure 10. In
this figure we haveσk defined the same way as before (equation 42). Again, the differences between the results
seem to be due to chance rather than method. The difference between the two results for Ak is smaller than
2 standard deviations for 85% of the data, also making the swap of variables acceptable for the precoupling
model.
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Figure 10: Comparison between the model using Ton and Toff as parameter and the model using p and T as parameter for the
precoupling model. The corresponding values for Ton and Toff can be calculated by Ton = pT and Toff = (1−p)T . On the left the results

for both models are displayed, on the right the differences between the model and the standard deviation of the data are shown.
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4.2. POISSON DISTRIBUTED ON AND OFF TIMES

Implementing Poisson distributed switching times for the receptor instead of a periodic receptor with static
on and off times did not have a significant impact on Ak , the figures containing the results of this section
can be found in appendix B. For all generated data points only 14 % had a difference larger than 2 standard
deviations using the precoupling model, and only 11% using the collision coupling model. If we compare this
to two different sets of runs, generated with the same model, still 13% of the data-points are further apart
than 2 standard deviations. The little difference between fixed switching times and switching times chosen
via a Poisson distribution tells us that the simple model of choosing fixed switching times is sufficient for
determining the receptor signal.

Since the assumption that the differences in Ak are small when switching between the 3 receptor functions
described in section 2.1 holds up, we will continue with the p,T -versions of the models.

4.3. SCALING

Upon analyzing the results in figure 9 all three Ak -curves seem to have a similar shape, which raises hope for
the possibility of a scalable k-axis. The same can be said for the different plots in figure 10. The importance of
this scaling is that once we find a way of scaling the k-axis, we can disregard the p-value of the receptors and
just do simulations for one p-value.

Note that for the collision coupling model we already found an expression that should describe the data. The
problem with this equation is that the k-parameter and the free p-parameter have an exponential relation, so
that it isn’t suitable for scaling.

Collision Coupling

An expression that represents the results of Ak (motivated by the data following a Gaussian decaying shape):

A(k) = exp

(
−

(
k

c

)2)
(43)

In figure 11 the best fit for equation 43 is shown for 8 different p values:
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Figure 11: Fit of equation 43 to simulated data for various values of p, simulated data is generated with the collision coupling model.

With the exception of the p = 20 simulation, the fit seems to perform well. However small details get lost with
this fit, one of those details being for k ≤ 4. Here, the fit is forced to start at one and then move away from it
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exponentially, however for low p it was seen that in the simulations, the first ligand was not detected with a
100% accuracy, and for high p the exponential of Ak does not start immediately. Another detail which misses
in the fits is in the region that 0.02 < Ak < 0.15 , here the fits will typically sustain the decay they had in the
region before Ak < 0.15, however the simulated data shows that the decay slowed down more.

Although the fit is not perfect, it will work for the goal we have: finding a scaling parameter. In figure 12(a) the
fitting parameter c from equation 43 is plotted against the p-value of the receptor, in this plot, error bars with
the size of a standard deviation are added as well.
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Figure 12: Scaling in the collision coupling model, in (a) the best fit-parameter to equation 43 is shown for different p-values. In (b) the
simulation results are shown for different p-values and (c) shows the same results, after scaling the k-axis with the c corresponding to the

used p-value.

In figure 12(b) the graphs of Ak are shown for all different p-values shown in figure 11, before scaling k, figure
12(c) shows what happens after this scaling, the graphs of the different Ak now overlap, in this figure, the
line for p = 20 is dotted, because the fit for this value was not good, which means that in that region the
approximation of Ak with equation 43 might not be valid.

The simulations showed that for p ≥ 0.33, Ak will look the same after scaling the k-axis with a parameter which
depends on p, a question rises: Can this dependency be explained? In figure 12(a) it is clear that c drops when
p rises. To explain this we will look at the analytically derived equation of Ak (14) with k

c instead of k. b rises
as p rises (equation 15). We see that for k > 1, P(T ∈ Ik ) decreases with increasing p, and with increasing k
(equation 17). By increasing c we decrease k

c , so that this decrease and the increase of p together will cancel
each others effects for P(T ∈ I k

c
), resulting in the same Ak .

The exact relation between p and c isn’t clear, a best guess can be made:

c(p) = a

p
+b, with a = 3.7±0.4 and b = 9±1 (44)

The analytic equation 18 we found in section 3.1, should approximate the simulated data even better. A fit of
the same simulation data as in figure 11 to this equation is shown in figure 13.
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Figure 13: Best fit of equation 18 to simulated data, generated with the collision coupling model.

Here we see that for every p-value a good-performing fit to equation 18 can be found. Furthermore, this fit
produces a measured value for p: the p used in equation 18 which yields the best fit for the simulated data.
This measured p will be compared to the p used in the simulations in figure 14.
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Figure 14: A comparison between the best fit of p to equation 18 and the p-value used to simulate the data.

In this comparison, we see that, especially for low p the measured and used p are close to equal. For higher p
the errors get higher, but they never exceed 7%. This tells us that the analytic model from section 3.1 for the
collision coupling mechanism does indeed model the collision coupling mechanism very accurately.

The reason for the higher errors for high p is that effectively less data is available, since more messenger
molecules get absorbed per k-phase, resulting in less nonzero data-points.

Fundamentally the analytic expression 14 and the scaling fit 43 should behave differently. To look into the
differences, a comparison of the two has been added in appendix C.
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Precoupling

In figure 10 we see that Ak for the precoupling model all follow a general pattern as well, this pattern is differ-
ent from the pattern in the collision coupling model. It consists of staying close to 1 for the first few k, then
decreasing exponentially around k = 40 until it gets close to 0. Depending on the p-value of the receptor, both
the amount of k-phases it stays ’close’ to 1 and the rate of increasing change, however these two events are
correlated. We compare the simulation results to the following equation (motivated by [19]):

A(k) = 1

1+exp( k−NM
c )

(45)

In this equation the term exp( k
c ) in the enumerator determines the rate of decay, while the exp(−NM

c ) term
accounts for the amount of k-phases that A(k) stays close to 1.

Note that in equation 45 A(NM) = 0.5 always holds, which won’t be true in general. For p → 1 the probability of
the receptor being in its off state becomes small, which makes the chance of a messenger molecule precoupling
small. Simple evaluation of equation 20 shows that for p ≥ 0.95, A1 < 0.5, Ak is a monotone decreasing function
so for p-values above 0.95 the condition A(NM) = 0.5 will never hold. However for the largest part of the domain
we are interested in, this condition held up. Further analysis on this equation shows that it integrates to:

I = clog

(
e

NM
c +1

)
(46)

In this expression, I should be equal to the total amount of messenger molecules NM. Again, in general this
is not true, however as long as NM

c stays big, the equation will approximate NM. For NM
c ≥ 4 the difference

between NM and I will not be more than 2%.

In figure 15, the simulation data is shown, together with the best fit of equation 45 to this data.
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Figure 15: Fit of equation 43 to simulated data for various values of p, simulated data is generated with the precoupling model.

As with the collision coupling model, the fit performs well except for one case, p = 90. Although the simulated
data do seem to follow the shape of the fit, the data doesn’t comply with the A(NM) = 0.5 criteria, thus this fit is
not suitable for p-values of 90 and higher.

In figure 16(a), the fitting parameter c of equation 45 is plotted against p, again with error bars with the size of
one standard deviation.
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Figure 16: Scaling in the precoupling model, in (a) the best fit-parameter to equation 45 is shown for different p-values. In (b) the
simulation results are shown for different p-values and (c) shows the same results, after scaling the k-axis with the c corresponding to the

used p-value.

In this plot it’s visible that only for p = 75,90, c is too big to make the error in I in equation 46 over 2%. We have
NM

c = 3.2 and 1.3 respectively, which makes the errors in I 2.2% and 8.8%

In figure 16(b) all graphs of figure 15 are shown in one figure, after offsetting and scaling the k parameter, the
plots overlap fairly well, this can be seen in figure 16(c). Note that although the fit for p = 90 was not great, the
found scaling parameter still makes Ak behave similar to the others.

For the same reason that c was decreasing when p is increasing in the collision coupling model, we see that c
decreases when p increases here. We again give a best guess for the relation between c and p:

c(p) = exp(ap2)+b, with a = 4.04±0.03 and b = 3.5±0.2 (47)

4.4. INFLUENCES ACROSS THE MEMBRANE

For the next section, the analyses are done based on the equations from section 2.4 and 2.5. We will take p = 0.5
as the standard value.

Collision Coupling

In figure 17(a) we see a comparison between the results of the model as described in section 2.4, the impact of
receptors with the same statistics on each other, and the model from 2.3, the independent simulated patches.
The results overlap as expected, just 6% of the data points are more than 2 standard deviations apart from each
other (with only 1% over 3 standard deviations apart), which means that the assumption that patches could be
modeled independently is confirmed.

In figure 17(b) we see a comparison between the signal of the receptor Rin with the higher p-value and the
signal of a receptor in its environment (a receptor from Rout, located as far as possible from Rin). Normally
Ak drops more quickly as the p-value of the receptor rises (see figure 12(b)), when the patches with different
p-values are connected this isn’t true anymore. In figure 17(b), Ak for the receptor Rin is higher for almost all
k. This is a consequence of the ’stolen particle - principle’ as described in section 3.2. The main reason that Ak

drops more quickly with a higher p in the isolated patches model, is because too many messenger molecules
are used for detecting the first few ligand molecules. Upon connecting the patch to an environment where less
messenger molecules per time unit are absorbed, it will steal those molecules, resulting in a higher detecting
probability.
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Figure 17: Simulations on the influence of the environment outside a patch to the signal inside it using the collision coupling model, in
(a) a isolated patch is compared to a patch who has neighbours with exactly the same receptor statistics. In (b) Rin and one of the

receptors from its environment Rout are compared. In (c) we compare a isolated p = 75 receptor to a p = 75 receptor in an environment
of only p = 50 receptors. In (d) we compare a isolated p = 50 receptor to a receptor with p = 50 in an environment of 23 other p = 50

receptors and one p = 75 receptor.

The differential equation from section 3.2 predicts that the total amount of messenger molecules absorbed in
Rin would be n = 58.8 = 1.47NM, the simulation results were that n = 56.7 = 1.41NM.

In figure 17(c) we see that a big difference is visible between two receptors (with p = 75) in different environ-
ments. Due to a stream of extra messenger molecules, the receptor which is surrounded by receptors with
lower p-values is able to detect more accurately for a longer period of time. However the reverse influence
(figure 17)(d)) of the one higher p-value to its environment is not noticeable at all. The reason for this is that
the messenger molecules which are being stolen are from all surrounding patches, in figure 8(b) the effective
amount of messenger molecules per receptor Rout is n = 39.2 = 0.98NM. Resulting that per patch almost no
difference in Ak can be seen. The diffusion rate is high enough that analyzing a patch closer to the the patch
with Rin will make little difference.

Precoupling

For a fair analysis between the two models, we again want the probability of an absorption in receptor Rin

1.5 times as high as the probability of an absorption in all other receptors (given that the receptor site is not
occupied). To accomplish this, we set the p-value of receptor Rin to p = 33.
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Figure 18: Simulations on the influence of the environment outside a patch to the signal inside it using the precoupling model, in (a) a
isolated patch is compared to a patch who has neighbours with exactly the same receptor statistics. In (b) Rin and one of the receptors
from its environment Rout are compared. In (c) we compare a isolated p = 33 receptor to a p = 33 receptor in an environment of only

p = 50 receptors. In (d) we compare a isolated p = 50 receptor to a receptor with p = 50 in an environment of 23 other p = 50 receptors
and one p = 33 receptor.

In figure 18 we have 4 plots similar to the plots in figure 17. Plot (a) again confirming that the patches can be
simulated independently in homogeneous environments. And figure 18(d) shows that also for the precoupling
case the influence of one different receptor is not measurable in its environment.

Figure 18 shows that Ak will be higher for the receptor Rin for all k, which is not what we saw when the patches
were simulated individually. In figure 16 the trend is, that for lower p, Ak is higher for k < 40 and lower for
k > 40, upon connecting patches with different receptor statistics, this crossover at k = 40 disappears.

In figure 18(c), we find again that the environment of a receptor has a big influence on the receptor signal (Ak )
it produces, if a receptor is connected to other receptors with in this case higher p-values, it will detect more
accurately for a longer period of time than when it’s connected to other receptors with the same p-value.

The reason for this is again, if the receptor is connected to other receptors with higher p-values, they will
exchange messenger molecules. This will lead to a net-gain in total absorbed messenger molecules for the
receptor with the lower p-value. In figure 8(b) in section 3.2, it can be seen that the effect of the stealing of
particles is smaller for the precoupling model, it will only result in a net gain of about 5% of NM. This smaller
effect can be explained by less possibilities for stealing. In the collision coupling model, Rin can always absorb
messenger molecules. In the precoupling model absorbing a messenger molecule is just possible when Rin is
not occupied. Typically at the start all receptors are occupied, so absorbing and thus stealing is not possible.
This also explains why the stealing doesn’t start immediately for the precoupling model (in figure 8(a) nin starts
to rise immediately, while in figure 8(b) it starts to rise at k ≈ 20).

For both models we found that the signal obtained from the receptors is both dependent on the p-value of the
receptor and the p-values of the receptors in its environment. This means that the independent patches used
in our model are valid just for analyzing under homogeneous circumstances, that is circumstances in which
all receptors have similar p and T .

In the collision coupling model we find that more messenger molecules are stolen, which was also seen analyt-
ically (figure 8). As a result, the receptor signal shows a bigger difference when surrounded by receptors with
different p-values, compared to a receptor surrounded with receptors with identical p in the collision cou-
pling model (we see a bigger difference in figure 17(c), than in figure 18(c)). However, across the membrane
the difference seem to be of similar size (figure 17(b) and 18(b)).
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4.5. RETURNING MESSENGER MOLECULES

As the amount of time it takes for messenger molecules to get back to the membrane is unclear, a few different
orders of Tr will be analyzed. In this section we will again use p = 0.5 for all simulations.

Region (1): Tr ≤ 1

This region of Tr is straightforward. As the messenger molecules come back so quickly that there will always
be just below NM messenger molecules on the membrane. As the amount of messenger molecules on the
membrane is the only variable that makes Ak go down with time, this means that Ak will be constant from the
start.

Evaluating equation 37 and solving equation 36 when it’s equated to 40 for Tr = 1, tells us that an equilibrium is
reached with ne = 39.0 in the precoupling model and ne = 34.4 in the collision coupling model. The expected
long term limits for Ak in the precoupling and collision coupling model are both 0.997. This equilibrium is
reached almost immediately.

Region (2): 1 < Tr ≤ 10

After evaluation of the same equations as in region 1, we expect region 2 to be more interesting. For Tr = 6, the
analytic expressions tell us that an equilibrium is expected with ne = 34.0 and ne = 20.3, for the precoupling
and collision coupling model respectively. With Ak nearing 0.993 and 0.94 at equilibrium.

This equilibrium is still reached quickly. The numeric results for the precoupling model agree with the ana-
lytic results. We find Ak = 0.995. However for the collision coupling model we find Ak = 0.965. The figures
corresponding to this region can be found in the appendix D.

The standard deviations in the simulated values for Ak are 0.001 for the precoupling model and 0.002 for the
collision coupling model. Which tell us that the simulated results in the collision coupling model are too far
from what we analytically expected.

Region (3): 10 < Tr ≤ 100

The most interesting region, is the region in which the replacement time is from the order 10, here the re-
placement time is such that equilibrium isn’t found immediately, which means that for small k the features we
found in section 4.3 can be seen, and for large k an equilibrium will be found.

We take Tr = 60 and we follow the same procedure of first analyzing the analytic expressions. For the pre-
coupling model we find the equilibrium at ne = 5.3 and Ak = 0.511, while for the collision coupling model we
find ne = 3.8 and Ak = 0.476. The numeric results give that for the precoupling model Ak = 0.569 and for the
collision coupling model this equilibrium is found at Ak = 0.463.

With an standard deviation of 0.007 for both the precoupling model and the collision coupling model. In
this region the difference between the analytic result and the simulations is over 2 standard deviations for the
precoupling method.

In figure 19(a) and 19(b) you can see that the initial response for both models is the same as the models without
the replacing of the messengers. However a little after k = 60, the first messenger molecules are being replaced
on the membrane, creating a new peak. Which is less high and broader than the first peak. This process will
repeat at k = 120,180, ... with each peak getting less high and broader, until the system reaches its equilibrium.
Which is depicted in figure 19(c) and figure 19(d).

Region (4): Tr ≥ 100

In this region, you will just get the same figures as in figure 11 and 15 for the initial response. The time it will
take for messenger molecules to get replaced is so long that in our analysis, which contains the first 100 bound
ligands, it will not be seen.

We make an estimate for the equilibrium values in this region. We take Tr = 600 and analyze the analytic ex-
pressions of section 3.3 again. We find that for the precoupling model we expect an equilibrium with ne = 0.42
and Ake = 0.064. For collision coupling we find ne = 0.41 and Ake = 0.062. Which means that at equilibrium for
used parameters only 6% of the ligand will get detected in both models.
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Figure 19: Influence of replacing messenger molecules with a replacing time of 60 k-phases. In (a) the initial response is visible for the
precoupling model, which means that the patch has all messenger molecules in its system when suddenly its receptor starts binding

ligand with p = 50, in (c) we see what happens at equilibrium. (b) and (d) show the same responses as (a) and (c) respectively, but for the
collision coupling model. In (c) and (d) the results to the analytic equations discussed in section 3.3 are added as well.

In the 4 regions, we saw that when the replacement time is too low, the features discussed in earlier sections
are lost. Independent of the p-value, Ak will stay close to 1, making it harder to determine the outside ligand
concentration. Further, we saw that the equilibrium is both higher and reached earlier in the precoupling
model. This means that for higher replace times, Ak will still always be close to 1 in the precoupling model,
while different p-values can already be distinguished from each other for the collision coupling model (see
region 2).

27



DISCUSSION

5.1. CONCLUSION

In this research, we built upon the model from Hille and Dubbeldam [1], after concluding that a simpler way of
modelling the receptor state did not influence the receptor signals for the independent patches, we extended
the model to research both the influence of surrounding receptors and the influence of returning messenger
molecules to the membrane.

For the influence of surrounding patches, we conclude that the statistics of receptors in patches in the envi-
ronment of a given receptor are as big of a influence to the receptor signal as the statistics of the receptor itself.
The two main variables that determine the receptor signal at a given time, are the p-value of the receptor and
the amount of messenger molecules close to the receptor. The latter of the two is determined by a combination
of the receptor itself and the receptors in neighbouring patches, giving those neighbouring receptors a crucial
role in determining the receptor signal of the given receptor. In the collision coupling model, the influence of
the neighbouring receptors to the receptor signal was slightly larger. Therefore, this model is more accurate at
detecting differences in p-values of different receptors.

The exact influence of returning messenger molecules remained unclear, since the replace rate with which the
messenger molecules returned is unknown. However because this rate is thought to be a few orders larger
than the typical bind and unbind time of a ligand molecule, we expect that the returning of the messenger
molecules will at first cause the receptor signal to fluctuate heavily, creating multiple peaks with the height (in
detecting probability) decreasing and width (in time) increasing until it finally reaches an equilibrium. This
equilibrium will in general be higher and reached more quickly for the precoupling model, which means that at
low replace rates it will become harder for the precoupling model to determine where the ligand concentration
is the highest.

5.2. SCALING

The scaling parameters we found in section 4.3 perform as desired and they seem to follow a certain pattern
in both models. Still the questions remain: What pattern do the scaling parameters follow exactly and why do
they follow these patterns? In section 4.3 we give a guess of the relation between p and c, but we do not explain
why this pattern is followed. Only an explanation on the decreasing form of the relation between p-value and
scaling parameter in the collision coupling model and the increasing form of this relation in the precoupling
model is made.

5.3. AMBIGUITY IN PRECOUPLING METHOD

In section 4.4 we find that in the precoupling model that the receptor signal can be interpreted in multiple
ways, depending on conditions of ligand molecules outside of the membrane. To see this, we will sketch two
scenarios.

If we assume concentrations as in this report, so that receptors are occupied on average for half the time. To
find where on the membrane receptors are typically bound the most, we would pick the part of the membrane
with the lowest receptor signal, which was also found in the precoupling part of section 4.4. In contrary, if
we assume extreme low concentrations, so that only very occasionally receptors are bound. Then the only
receptor signal generated will be by those occasional bindings. In this case the receptors generating the most
signal will have the highest receptor occupation.

Because of this, the precoupling method is expected to only operate in low concentrations, detecting the re-
ceptors which are unbound a large fraction of time. This is especially important when combining the precou-
pling and collision coupling mechanisms so that they cooperate, the receptors which are able to precouple
messenger molecules are then responsible for detecting the low ligand concentrations.

28



5.4. FURTHER RESEARCH

An possible extension to the model from section 2.5 is the movement of receptors. We know that the messenger
molecules are not the only moving particles on the membrane, the receptors are also moving, although this
movement is slower. A reaction with a messenger molecule slows the receptor down. This would result in
receptors moving with high speed in zones where little ligand is available, and low speed in zones where the
ligand molecules are more concentrated. Resulting in higher concentrations of receptors at the part of the
membrane with higher ligand concentration. With this model, the part of the membrane with the highest
receptor concentration would give us the direction in which the cell should move.

Throughout this entire report, when discussing the collision coupling model, we neglected the amount of
messenger molecules activated per ligand bound, since the measure we analyzed did not take this in account.
It is clear that no extinction can be made between the messenger molecule that first detected a ligand or other
messengers who detected it later. Which might mean that an analysis on this topic would give us some insight
in the chemotaxis of Dictyostelium discoideum.

Another obvious research topic this paper would benefit from is an estimate to the replace rate of the messen-
ger molecules, that is the time it will take Gα to get back to the membrane, meet with a Gβγ and combine to a
Gαβγ. In section 4.5 we saw that if the replace rate is small (Tr ≤ 10) an equilibrium is reached quickly and the
details seen in 4.3 are not relevant anymore.

A last possible extension is a model in which the precoupling model and the collision coupling model are
combined. As discussed in the ambiguity of the precoupling method (section 5.3), cells have a combination
of precoupling and collision coupling receptors. In this extension, the precoupled receptors will detect ac-
curately in low concentrations of ligand, while the collision coupled receptors will detect accurately in high
concentrations.
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A
PROOF REGARDING THE ANALYTIC

EXPRESSIONS FOR THE COLLISION

COUPLING MODEL

We will proof that equation:

P (Ti ∈ Ik ) = b

(
1−

k−1∑
j=1

P (Ti ∈ I j )

)
(A.1)

Is equal to equation:

P (T ∈ Ik ) = b(1−b)k−1 (A.2)

By realizing that according to the binomial theorem we find that equation A.2 can be rewritten as:

P (Ti ∈ Ik ) = b
k−1∑
j=0

((
k −1

j

)
(−b) j

)
(A.3)

We will continue by proving that A.1 and A.3 are equal by induction. In this section we will shorten P (T ∈ Ik )
by Pk .

Base case: For k = 1, we have for A.1: P1 = b and for A.3 P1 = b, so for k = 1, the two equations yield the same
result: The base case is confirmed.

Induction hypothesis: Assume that for all j <= k equation A.3 holds.

Induction step: We now need to proof that equation A.3 also holds for k+1. We will evaluate Pk+1 by equation
A.1 which gives us:

Pk+1 = P1

(
1−

k∑
j=1

Pk

)

By applying our induction hypothesis:

Pk+1 = b

(
1−

k∑
j=1

b
j−1∑
i=0

((
j −1

i

)
(−b)i

))

By taking the minus-sign in front of the first sum and the b-term in front of the second sum into both the sums,
and by substituting m = i +1 we find:

Pk+1 = b

(
1+

k∑
j=1

j∑
m=1

((
j −1

m −1

)
(−b)m

))
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Now we will evaluate the coefficient of each power of b in the double sum individually. By selecting an arbitrary
m0 ∈ {1, ...,k −1}. In the second sum, this term will only occur when j => m0, and for those values it will only
occur if m = m0, so if we denote the coefficient of (−b)m0 by cm0 we get:

cm0 =
k∑

j=m0

(
j −1

m0 −1

)

We know from the Hockey-stick identity that:

cm0 =
k∑

j=m0

(
j −1

m0 −1

)
=

(
k

m0

)

Applying these results to our expression for Pk+1 gives us:

Pk+1 = b

(
1+

k∑
j=1

(
k

j

)
(−b) j

)

The final step is realizing that 1 = (k
0

)
(−b)0 and thus can be brought under the sum for j = 0 to get:

Pk+1 = b
k∑

j=0

(
k

j

)
(−b) j

So equation A.3 also holds for k + 1 and by induction it is valid for every value of k, now we have seen that
equation A.3 is just the binomial expansion of equation A.2. We conclude that A.1 and A.2 are indeed equal.
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Figure B.1: Comparison between the model using fixed switching times and the model using Poisson distribution generated switching
times as parameter for the collision coupling model. The corresponding values for Ton and Toff can be calculated by Ton = pT and

Toff = (1−p)T . On the left the results for both models are displayed, on the right the differences between the model and the standard
deviation of the data are shown.
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Figure B.2: Comparison between the model using fixed switching times and the model using Poisson distribution generated random
switching times as parameter for the precoupling model. The corresponding values for Ton and Toff can be calculated by Ton = pT and

Toff = (1−p)T . On the left the results for both models are displayed, on the right the differences between the model and the standard
deviation of the data are shown.
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C
COMPARISON OF EQUATIONS COLLISION

COUPLING MODEL

Ak = 1−
(
1−b(1−b)k−1

)NM
(C.1)

A(k) = exp

(
−

( x

c

)2
)

(C.2)

Since an analytic comparison is not possible due to the complexity of equation C.1, we will compare the two for
3 values of p. For this we use the same constants as in section 4. We will compare the equations by normalizing
both of them, treat them as probability distributions and then compare their first 3 moments.

Table C.1: Moment comparison of the analytic expression for Ak for the collision coupling model, and the equation used for the scaling
of the data

p b c M a
1 M f

1 M a
2 M f

2 M a
3 M f

3
0.33 0.101 21.3 13.1 12.0 294 226 9100 5420
0.50 0.149 18.1 9.47 10.2 147 164 3100 3360
0.67 0.194 14.9 7.52 8.38 90.9 110 1463 1850

In table C.1 the M s
i denotes the i -th moment of the analytic equation (C.1) when s = a, and the i -th moment of

the fit-equation (C.2) when s = f . In this table we would like M s
i = M f

i for all i , for them to be equal. However,
we see that this does not hold up, in fact the errors in the 3rd-moments of the fitted curve can get as large as
40% of the analytic moments. We conclude that the expressions show some similarity in form, but details are
not preserved. This was also seen in the graphic visualizations from figure 11 and 13. The similarity showed to
be enough for the purposes in this research.
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HIGH REPLACE RATES
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Figure D.1: Influence of replacing messenger molecules with a replacing time of 6 k-phases. In (a) the initial response is visible for the
precoupling model, which means that the patch has all messenger molecules in its system when suddenly its receptor starts binding

ligand with p = 50, in (c) we see what happens at equilibrium. (b) and (d) show the same responses as (a) and (c) respectively, but for the
collision coupling model. In (b) and (d) the results to the analytic equations discussed in section 3.3 are added as well.

In figure D.1 almost no difference is visible between the initial response and the response at equilibrium. The
replace rate is high enough that messenger molecules come back before the receptor detecting probability
drops significantly. This means that in this region, the p dependent dropping receptor responses we have seen
so far will not occur in neither the precoupling nor the collision coupling model.
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