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The spin-wave spectrum of a ferromagnetic stripe placed above a metallic layer with finite
conductivity is studied by using the magnetostatic Green’s function formalism. It is shown that the
frequency and linewidth of the resonances are uniquely determined by complex, mode-dependent
demagnetization factors. The formalism developed is used to analyze the resonance characteristics
of the magnetic stripe as a function of its width and separation from the metallic layer. © 2008
American Institute of Physics. �DOI: 10.1063/1.2937211�

I. INTRODUCTION

The resonance spectrum of spin waves in thin, finite fer-
romagnetic �FM� patterns has been intensively studied over
the last decade.1–7 Such studies are particularly important in
view of the potential application of FM elements in magnetic
data storage and microwave devices.8–11 In many cases, how-
ever, magnetic elements do not stand alone, but are �par-
tially� surrounded by metallic conductors. One, for instance,
can think of microwave transmission lines with FM cores9–11

or inductive techniques utilizing coplanar waveguides for
probing magnetization dynamics in thin films.12,13 Neverthe-
less, the effect of neighboring metallic layers on the spin-
wave spectra of confined magnetic samples has not been in-
vestigated, although the former’s influence on the dispersion
relation of spin waves in infinite films is well known.14,15

This paper presents an analysis of the spin-wave spec-
trum of a magnetic stripe placed above a metal layer. The
analysis is carried out by using the thin-film approximation
of the magnetostatic Green’s function formalism.4,16 It is
shown that the presence of the metal ground increases the
overall effective anisotropy of the magnetic stripe, shifting
the spin-wave resonances to higher frequencies. Our results
agree with experimental data obtained from thin Permalloy
�NiFe� stripes built on top of a dielectric/metal substrate.
Furthermore, we show that the finite conductivity of the
metal ground yields a mode-dependent extrinsic damping
constant, in addition to the intrinsic damping constant of the
film. Finally, by using the formalism developed, we study the
dependence of the resonance frequency and damping of spin-
wave modes on the stripe-ground plane separation and stripe
width.

II. THEORY

Consider the structure shown in Fig. 1, consisting of a
FM rectangular stripe placed above a metallic ground plane
�infinitely extended in the x-z plane� covered by an isolating
�e.g., dielectric� layer with the thickness d. The width �w�,

thickness �t�, and length �L� of the magnetic stripe are de-
fined along the x-, y-, and z-directions, respectively. For sim-
plicity, we assume uniformity along the z-direction.

For a FM stripe magnetized along its length �z-direction�
the ac-magnetization m=mxx̂+myŷ gives rise to an ac-
demagnetization field hm=hm,xx̂+hm,yŷ inside the stripe,
where

hm�r� = − ��
S

��G�r,r�� · m�r��dS . �1�

Here r= �x ,y�, �= ��x ,�y�, and S is the cross section of the
magnetic strip in the x-y plane. In the above equation G is
Green’s function for the magnetic potential in two dimen-
sions in the presence of a conductive ground plane and is
given by �see Appendix�

G�r,r�� = G0�r,r�� + F��� + F��*� ,

G0�r,r�� = −
1

4�
ln��x − x��2 + �y − y��2� ,

F��� = −
1

4�
ln � +

�

2��
�H1���� − Y1����� −

1

�2�2 ,

� = �x − x�� + i�y + y� + 2�d + t/2�� , �2�

where �=�i��0�, with � the �angular� frequency, �0 the
vacuum permeability, and � the electrical conductivity of the
ground layer. In the above equation, H1 and Y1 are the Struve
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FIG. 1. Cross section of a FM stripe with a width w and thickness t, placed
at a distance d above a metallic ground plane.
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and Bessel functions of the first kind, respectively. Note that,
in the limit of a perfectly conducting ground plane ��→��,
Eq. �2� is reduced to

G�→��r,r�� = −
1

4�
ln��x − x��2 + �y − y��2�

−
1

4�
ln��x − x��2 + �y + y� + 2�d + t/2��2� ,

�3�

which is the free space field of a magnetic line charge at
x� ,y�, plus the field of its image �with the same sign� at
x� ,−y�−2�d+ t /2�. Therefore, a perfect ground actually in-
creases the demagnetization field inside the stripe. As we
shall see later, this conclusion remains valid for imperfect
grounds where � is finite.

The excitation spectrum of the magnetic stripe can be
determined by solving Eq. �1� together with the linear-
response equation,17

m�r� = �� · hm�r� ,

�� =
�M

�H
2 − �2	 �H i�

− i� �H

 ,

�H = �H + i	� ,

�M = 
M,�H = 
Ha, �4�

where 
 is the gyromagnetic constant, M is the saturation
magnetization, Ha is the static �dc� anisotropy field along the
z-direction, and 	 is the Gilbert damping constant. For a thin
FM strip �t�W�, the variation of the magnetization along the
film thickness �y-direction� can be neglected. Hence, one can
formulate the problem in terms of the average magnetization
vector,4

m̃�x� =
1

t
�

−t/2

t/2

m�x,y�dy . �5�

Upon combining Eqs. �1� and �4�, and performing averaging
over the film thickness t, one arrives at the one-dimensional
matrix integral equation,

Q� · m̃�x� + �
−W/2

W/2

G� �x,x�� · m̃�x�� = 0, �6�

where

Q� = �� −1 =
1

�M
	�H − i�

i� �H

 , �7�

and G� is matrix Green’s function,

G� �x,x�� = 	��x − x�� − g1�x,x�� ig2�x,x��
ig2�x,x�� g1�x,x��


 , �8�

where ��x−x�� is the Dirac delta function. The functions g1

and g2 are symmetric, i.e., g2�x ,x��=g2�x� ,x� and g1�x ,x��
=g1�x� ,x� so that G� ij�x ,x��=G� ji�x� ,x� for i , j=1,2. �The ex-
pressions for g1 and g2 are quite complicated and, therefore,
are given in the Appendix.�

Equation �6� possesses nontrivial solutions only for cer-
tain frequencies, i.e., the magnetostatic resonance frequen-
cies of the stripe. However, before trying to solve Eq. �6� let
us first consider the eigenvalue problem,

�
−W/2

W/2

G� �x,x�� · k�x�� = �kk�x� ,

k�x� = 	�k
1�x�

�k
2�x�


 . �9�

Because of the special form of G� �Eq. �8��, it can be shown
that if an eigenvalue �k and eigenfunction k�x� satisfy Eq.
�9�, then so do the combination

�̄k = 1 − �k,̄k�x� = 	 �k
2�x�

− �k
1�x�


 . �10�

Returning to Eq. �6�, we next try a solution of the type

m̃�x�=Akk�x�+Bk̄k�x�, where Ak, Bk are constants. This
yields the equation

	�H + �k�M − i�

i� �H + �1 − �k��M

 · 	Ak

Bk

 = 0, �11�

which allows a nonzero solution only for

�2 = �k
2 = ��H + �1 − �k��M���H + �k�M� , �12�

i.e., the spin-wave resonance frequencies of the stripe. Note
that �k and 1−�k can be interpreted as mode-dependent de-
magnetization factors in the x- and y-directions,
respectively.16

The solutions of Eq. �6� correspond to standing spin
waves caused by the reflection of the waves by the lateral
edges of the stripe. Figure 2 shows the distribution of the
in-plane magnetization m̃x�x� for the first four modes �k
=1,2 ,3 ,4� of a 50-�m-wide and 0.1-�m-thick Permalloy
stripe, placed 1 �m above a conducting ground plane. Like
in the case of a free magnetic stripe,1 the distribution of
m̃x�x� for different modes roughly resembles standing sinu-
soidal waves arising from imposing the quantization condi-

FIG. 2. The �real part of the� in-plane magnetization m̃x for the first four
eigenmodes �k=1,2 ,3 ,4� of a 50-�m-wide and 0.1-�m-thick Permalloy
stripe, placed 1 �m above a conducting ground plane. The conductivity of
the metal ground is �=3.3�107 S /m. The corresponding eigenvalues were
�1=0.003 96+0.000 23i, �2=0.008 77+0.000 67i, �3=0.012 78+0.001 18i,
and �4=0.016 33+0.001 67i. The results were obtained by the numerical
solution of Eqs. �6�–�9�.
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tion kx=k� /w on spin waves propagating with a wave num-
ber kx along the x-direction in an unbounded magnetic film.

Although expression �12� for the resonance frequency is
identical to that of a free magnetic stripe, i.e., in the absence

of a ground plane4,16 one should bear in mind that G� and,
therefore, its eigenvalues �k depend on the stripe-ground
plane distance d, the conductivity � of the ground, and even
the frequency � �through the parameter ��. The dependence
of �k on the frequency � implies that Eq. �12� should be
viewed as a self-consistent equation for the resonance fre-

quencies �k. Furthermore, because the components of G� are
complex quantities, �k are complex as well. Note that the
imaginary part of �k=�k�+ i�k� is, in fact, induced by the finite
conductivity of the ground. A perfect ground conductor

would yield a real matrix G� and, through symmetry proper-

ties of G� , real values of �k.
The imaginary part of �k contributes to the imaginary

part of the resonance frequency �k=�k�+ i�k�. If both �k� and
the Gilbert damping constant 	 �representing the intrinsic
magnetic relaxation loss of the stripe� are small, then it fol-
lows from Eq. �12� that

��k��
2 � ��H + �1 − �k���M���H + �k��M� , �13�

�k� � ��H +
�M

2
	 +

�1 − 2�k���M
2

2�k�
�k�. �14�

Note that in an actual experiment �k� corresponds to the cen-
tral frequency of the resonance observed while the resonance
linewidth is given by ��k�2�k�.

16 Thus, the Ohmic losses in
the ground conductor cause additional absorption of electro-
magnetic energy, increasing the magnetostatic resonance
linewidth by an amount proportional to �k�. In analogy with
the intrinsic magnetic loss, the extra loss induced by the
ground plane can be expressed in terms of the mode-
dependent, extrinsic damping constant

	k
ex =

�1 − 2�k���M
2

�k��2�H + �M�
�k�. �15�

The overall damping constant for any given mode is then
simply 	+	k

ex.
To obtain an experimental verification of the model pre-

sented, we measured the resonance frequency of the lowest
mode �k=1� Permalloy �NiFe� stripes with a width of
100 �m and thicknesses of 100 and 200 nm. The stripes
were built on top of a 2-�m-thick aluminum layer with a
conductivity of �=3.3�107 S /m, covered by a 1-�m-thick
SiO2 layer for isolation. A second SiO2 layer was next de-
posited to cover the stripes, followed by the fabrication of
microstrip probe lines on top of the structure. High-
frequency impedance measurement of the microstrip lines
was performed by using a vector network analyzer. Magnetic
parameters �saturation magnetization, intrinsic magnetocrys-
talline anisotropy� of the Permalloy film were found from
M-H loop measurements performed by using a Princeton Mi-
cromag 2900 AGM. Based on the values obtained �M
=1.15 T,Ha=25 Oe�, we calculated the first spin-wave reso-

nance frequency of the stripes. The results, given in Table I,
are in good agreement with the experimental values.

III. NUMERICAL EXPERIMENTS

In this section, we use the formalism discussed in Sec. II
to numerically study the dependence of the magnetostatic
resonance spectra of FM stripes on their width and distance
from a conducting ground plane. For our simulations we use
a saturation magnetization of M =1 T and an intrinsic �mag-
netocrystalline� anisotropy field of Ha=5 Oe �these are the
most common values reported for Permalloy films in the
literature�. The electrical conductivity of the ground plane is
taken to be �=3.3�107 S /m.

Figure 3 shows the resonance frequency �k� /2� and the
extrinsic damping constant 	k

ex �k=1,2 ,3 ,4� of the first four
spin-wave resonances calculated as function of the ground
plane separation d, for a 50-�m-wide and 0.1-�m-thick FM
stripe. The resonance frequency increases if the ground plane
is brought closer to the stripe by reducing d. This is because,
as mentioned in Sec. II, the ground plane strengthens the
ac-demagnetization field induced by the magnetization dis-
tribution on the stripe. This leads to larger values of the
demagnetization coefficient �k and, in turn, higher resonance
frequencies. In fact, it can be shown than if the magnetic
stripe is directly put on top of a perfect ground �d=0�, then
the resulting demagnetization factors are twice larger than
that of a free magnetic stripe. Reducing the distance d also
leads to an increase in the effective extrinsic damping con-
stant 	k

ex which is also shown in Fig. 3. This, of course, is
due to the increase in the flow of eddy currents in the ground
plane caused by the ac magnetic field around the stripe.

By increasing the distance d, the resonance frequencies
saturate to their “free space” values, as one would have ex-
pected. The saturation occurs earlier for modes with higher
numbers. This result can be understood by noting that the
magnetic field accompanying a spin-wave decays exponen-
tially outside the magnetic film in the y-direction �Fig. 1�. A
ground plane at a distance larger than this decay length is not
“felt” by the stripe. For spin waves propagating with a wave
number kx in an unbounded film, the decay length is given by
�=1 /kx. Since the eigenmodes of the stripe roughly corre-
spond to standing waves formed by imposing the quantiza-
tion condition kx=k� /w �see previous section�, the decay
length corresponding to the kth resonance is �k�w /k�.

TABLE I. Measured and calculated values of the frequency of the first
spin-wave resonance of a 100-�m-wide Permalloy stripe. The �vertical�
distance between the stripes and the aluminum ground plane was 1 �m. For
the calculation we used a saturation magnetization of M =1.15 T and an
internal anisotropy of Ha=25 Oe, as obtained from M-H loop measurements
on nonpatterned magnetic films. An experimentally obtained gyromagnetic
ratio of 
�1.84�1011 rad /s T was used in the simulations. For compari-
son, results of the calculation for free magnetic stripes are also included.

Film
thickness

�nm�
Measured frequency

�GHz�

Calculated frequency �GHz�

Strip above Al ground Free stripe

100 2.15–2.38 �16 devices� 2.19 1.92
200 2.75–2.90 �8 devices� 2.69 2.23
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Thus, fields associated with higher modes decay faster in the
vertical direction and start to behave as free-stripe modes at
smaller values of d. To provide an independent verification
of our method we also calculated the resonance frequency
and linewidth of the stripe of Fig. 2 for d=1 �m using AN-

SOFT HFSS, a commercial full-wave electromagnetic simula-
tor. The results are shown as circles in Fig. 3.

Figure 4 presents the dependence of the first spin-wave
resonance frequency �1� /2� and its associated extrinsic
damping constant 	1

ex, on the width of a FM strip. The most
interesting feature of this figure concerns the behavior of 	1

ex.
For the particular configuration considered, the value of 	1

ex

reaches a maximum at w�8 �m and becomes zero as w
→0 or w→�. This result can be qualitatively understood as
follows. The extrinsic damping of spin waves is caused by
the electric currents induced on the surface of the ground
conductor. Those currents flow in the z-direction with a sheet
density equal to the tangential magnetic field Hx on the con-
ductor surface. The total loss induced in the conductor is
Pl= �1 /2�Rs�Hx�2, where Rs=Re�Zs� is the surface resistance
of the conductor �see Eq. �A10��. As spin waves are bound to
the magnetic film, the magnetic field decays exponentially

inside the dielectric layer as it reaches the ground surface.
Thus, for the lowest mode, Hx�exp�−d /�1�=exp�−�d /w�.
On the other hand, the surface resistance of the conductor is
given by Rs����1�0 /2��1/2. The observed maximum in 	1

ex

as function of W is due to the competition between Rs and
Hx. Increasing the stripe width leads to a lower resonance
frequency and, therefore, a smaller Rs. On the other hand, it
results in larger surface currents due to a larger magnetic
field Hx reaching the surface of the ground conductor. In-
creasing the distance d leads to less rapid rise in Hx as a
function of w, shifting the maximum observed to higher val-
ues of the width.

IV. CONCLUSION

The effect of the neighboring metal layer on the mag-
netic characteristics of a FM strip is analyzed by using mag-
netostatic Green’s function formalism. It is shown that the
metallic layer strengthens the demagnetizing field inside the
FM strip and, consequently, increases the frequency of the
spin-wave resonances. The finite conductivity of the metal
layer leads to extra broadening of the resonance peaks, which
is described in terms of a mode-dependent extrinsic damping
constant. The extrinsic magnetic damping increases by re-
ducing the distance between the metal ground and the FM
stripe. However, it shows a more complicated behavior as
function of the width of the stripe, reaching a maximum for
a particular value of the stripe width.
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FIG. 3. Resonance frequency �k� /2� �a� and extrinsic damping constant 	k
ex

�b� vs distance d for the first four spin-wave modes �k=1,2 ,3 ,4�. The
circles correspond to the results obtained from ANSOFT HFSS, a commercial
three-dimensional full-wave electromagnetic simulator. The saturation mag-
netization of the stripe is M =1 T and the internal anisotropy is Ha=5 Oe.
The width and the thickness of the stripe are w=50 �m and t=0.1 �m,
respectively. The conductivity of the metal ground is �=3.3�107 S /m.

FIG. 4. Resonance frequency �k� /2� and extrinsic damping constant 	k
ex vs

the width w for the first resonance mode �k=1� of a magnetic strip of
thickness t=0.1 �m, placed above a conductive ground plane at the distance
d=1 �m.
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APPENDIX
In what follows, we derive Green’s function G for the

magnetic potential in the presence of a ground conductor. In
the regions of space filled with media with zero electric con-
ductivity �e.g., air, dielectrics, nonconductive magnetic ma-
terials�, one can employ the magnetostatic approximation
and represent the magnetic field h as

h = �� , �A1�

where � is the magnetic potential. This approximation is
justified if electromagnetic propagation effects are negli-
gible, i.e., if the dimension of the structure to be studied is
far less than that of the electromagnetic wavelength. From
Maxwell’s equation � ·b=0, where b=�0�h+m� is the mag-
netic induction, one then arrives at the equation

�2� = − � · m . �A2�

The magnetostatic approximation looses its validity in-
side the conductive ground layer. Therefore, we solve Eq.
�A2� outside the ground conductor only, taking into account
the latter by imposing appropriate boundary conditions on �
at its surface. To obtain those conditions, we first note that
the time-dependent variation of the magnetic field induces an
electric field which, assuming uniformity along the stripe,
only has a component ez in the z-direction. Using Faraday’s
law and Eq. �A1� just above the conducting plane �inside the
dielectric layer�, we have

�ez

�x
= i��0hy = i��0

��

�y
. �A3�

Furthermore, the tangential components of the electric and
magnetic fields are continuous across the dielectric-ground
plane interface and are related by

ez = − ZShx, �A4�

where ZS is the surface impedance of the conductor.18 Com-
bining Eqs. �A1�, �A3�, and �A5�, we arrive at the boundary
condition at the metal surface,

�2�

�x2 = −
i��0

ZS

��

�y
, y = − d − t/2. �A5�

For any distribution of magnetization m, the solution of
Eq. �2� can be expressed in terms of Green’s function G
satisfying the equation

�2G�r,r�� = − ��r − r�� . �A6�

The function G can be evaluated by applying a Fourier trans-
form in the x-direction,

��y,y�;kx� = �
−�

�

G�x,y ;0,y��exp�ikxx�dx , �A7�

which results in

�2�

�y2 − kx
2� = − ��y − y�� . �A8�

The boundary condition for � reads

kx
2� =

i��0

ZS

��

�y
, y = − d − t/2, �A9�

where the surface impedance in the Fourier domain is given
by

ZS =
i��0

�kx
2 + i��0�

. �A10�

Solving Eqs. �A8�–�A10� yields

��y,y�;kx� = �2�kx��−1�exp�− �kx�y − y����

+ R exp�− �kx��y + y� + 2d��� , �A11�

where

R =
�kx

2 + i��0� − �kx�
�kx

2 + i��0� + �kx�
. �A12�

Green’s function �4� in the space domain is finally deter-
mined by applying the inverse Fourier transform,

G�r,r�� = �
−�

�

��y,y�;kx�exp�− ikx�x − x���
dkx

2�
. �A13�

The one-dimensional matrix Green’s function G� in Eq.
�8� is computed from

G� �x,x�� =
1

t
�

−t/2

t/2 �
−t/2

t/2

� ��G�r,r��dydy� �A14�

which results in the elements

g1�x,x�� =
1

t
�

−t/2

t/2 �
−t/2

t/2 �

�y

�

�y�
G�r,r��dydy�

=
1

t
� 1

2�
ln	 �x − x��2

�x − x��2 + t2
 + U�x − x��

+ V�x − x���
g2�x,x�� =

1

t
�

−t/2

t/2 �
−t/2

t/2 �

�x

�

�y�
G�r,r��dydy�

=
1

t
�U�x − x�� − V�x − x��� , �A15�

where

U�x − x�� = F��1� + F��2� − 2F��3� ,

V�x − x�� = F��1
*� + F��2

*� − 2F��3
*� ,

�1 = x − x� + i2�d + t� ,

�2 = x − x� + i2d ,

�3 = x − x� + i2�d + t/2� . �A16�

The function F is defined by Eq. �2�.
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