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1 Preface

Random variables can be described as functions from an outcome space to a number, with
a probability measure, measuring the size of subsets of the outcome space and therefore the
probability of any outcome in that subset happening. Most simple examples are discrete ones
which you can use to describe throwing a six-sided dice, which has 6 outcomes each connected
to a number 1 to 6, where every outcome has probability 1

6 .

The Brownian Motion can analogously be seen as a function from an outcome space to
a space of real valued functions satisfying specific conditions with a specific probability mea-
sure, so for every outcome you don’t just get a number but an entire function (or in other
words uncountably many random variables which are correlated in a specific way).

It’s mathematical construction is significantly more complex than the construction of ran-
dom variables, which will not be treated in this thesis. Same for certain Lemma’s which
hold for the Brownian Motion (like Doob’s submartingale inequality). There are many books
written and a course in the Master of Applied Mathematics at the TU Delft which treat the
Brownian Motion in detail. While reading you can assume the Brownian Motion exists and
is welldefined.

The Brownian Motion describes many things from movements of stockprices to the move-
ment of particles within liquid, firstly described by the botanic Robert Brown around 1827 by
examining grains of pollen suspended in water. After which it was mathematically formalized
by multiple mathematicians, one of whom is Norbert Wiener (which is why the Brownian
Motion is also referred to as the Wiener process). After adding a downward quadratic drift
we will prove the maximum exists, is assumed at a unique location almost surely and we
will derive an algorithmic method to express it’s moments in complex integrals of the Airy
function and specific polynomials.
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2 Introduction

The location of the maximum of a two-sided Brownian Motion with downward quadratic drift
is a random variable V , it’s distribution was called Chernoff’s distribution by Groeneboom
and Wellner [9] since it apparently first appeared in Chernoff [4]. It has been studied by
several authors, in particular, Groeneboom [6], [7] gave a description of the distribution and
Groeneboom and Wellner [9] give more explicit analytical and numerical formulas; see also
Daniels and Skyrme [5]. It has many applications in statistics, see for example Groeneboom
and Wellner [9] and the references given there, or, for a more recent example, Anevski and
Soulier [3]. The descriptions of the distribution of V in [6], [7] and [9] are rather complicated
and do not yield simple formulas for the moments of V , therefore we will prove that V can
be expressed in the following form:
For any even n ∈ N:

E[V n] =
1

2πi

i∞∫
−i∞

pn(z)

Ai(z)2
dz (1)

1. pn is a specific polynomial of at most order n
2

2. Ai the Airy function, which is the solution y of:

d2

dx2
y(x) = xy(x)

y(0) =
3−

2
3

Γ(2
3)

y′(0) =
3−

1
3

Γ(1
3)


For odd n the moments are zero because V is symmetric, which we will show later. The
proof of this theorem, which is what the thesis is about, is based around the article by Svante
Janson, [10].
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3 Moment formula of V

3.1 Defining V

As I’ve said earlier the Brownian Motion can be seen as a function from an outcome space to
the space of real valued functions, analogously it can be seen as a function from the Carthe-
sian product of Ω and R to R.

Notation:
For Z : A×B → C a function by Z(a, ·) I mean the implicit function Za : B → C such that
∀a ∈ A : ∀b ∈ B : Za(b) = Z(a, b).

Firstly the one-sided Brownian Motion:

Definition 3.1.1. Let (Ω,A,P) a probability space.
Z : Ω × [0,∞) → R is a one-sided Brownian Motion if and only if it has the following
properties:
(1): Z(·, 0) = 0.
(2): Z(ω, ·) is continuous.
Note: for any t ∈ [0,∞) that Z(·, t) is a random variable from Ω to R.
(3): ∀t, s ∈ [0,∞) : Z(·, t)− Z(·, s) ∼ N(0, |t− s|).
(4):

(
Z(·, t0), ..., Z(·, tn)

)
has a multivariate normal distribution for any set {t0, ..., tn} ⊆

[0,∞).

The multivariate normal distribution is described in the appendix, Definition 5.2.4.
The two sided motion motion is constructed from the one-sided ones the following way:

Definition 3.1.2. Let (Ω,A,P) a probability space.
A two-sided Brownian Motion W : Ω× R→ R is defined by the following property:

W (·, t)
∣∣∣
t≥0

and W (·,−t)
∣∣∣
t≥0

are one sided and independent Brownian Motions.

Assume for the rest of the thesis the two-sided Brownian Motion exists and is welldefined
(as mentioned in the introduction).

Note from the third condition of the one sided motion follows, for t ∈ [0,∞):
W (·, t) = W (·, t)−W (·, 0) ∼ N(0, t), therefore E[W (·, t)] = 0.
Also W (·,−t) = W (·, 0)−W (·,−t) ∼ N(0, t).

For a some positive number. The Brownian Motion Wa with ’downward’ quadratic drift
is defined by the property:

∀t ∈ R : Wa(·, t) = W (·, t)− at2. (2)
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The following is a plot of a realisation of Wa where a is chosen to be 0.01 where t is
between -100 and 100. The chosen timesteps are of width 1. The red line represents the drift,
defined by the polynomial p such that p(t) = −at2.

Define Ma as:
Ma(·) = max

t∈R
(Wa(·, t)). (3)

Let ω ∈ Ω. It’s location Va (which is a random variable, which we will prove later) is defined
implicitly the following way:

Wa(ω, Va(ω)) = Ma(ω) (4)

or equivalently:
Va(ω) = argmax

t∈R
{Wa(ω, t)}.

It can be shown that Ma exists and Va is unique almost surely (on events of size 1), therefore
limitting Ω to the intersection of the events for which this holds makes both Ma and Va wellde-
fined functions. They are also random variables which follows from Borel-A-measurability,
which is another theorem later in the thesis. Note the following Corollary holds for the
Brownian Motion:

Corollary 3.1.3. Doob’s submartingale inequality
For W a one-sided Brownian Motion and any n ∈ N the following holds:

P
({
ω : sup

k∈[n,n+1)
|W (ω, k)| ≥ c

})
= P

(
sup

k∈[n,n+1)
|W (·, k)| ≥ c

)
≤

E[W (·, n+ 1)4]

c4
. (5)
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The next Proposition tells us about the almost sure existence of Ma, this can be intuitively
justified considering a downward quadratic drift goes faster to −∞ as |t| increases than W (t)
can possibly increase.

Proposition 3.1.4. P(Ma <∞) = 1

Proof. Let n ∈ N. Let (εn)∞n=1 be the sequence defined by:

εn =
1

n
1
8

.

The following inequality holds:

P
(

sup
t∈[n,n+1)

(W (·, t)
t

)4
≥ ε4n

)
≤ P

(
sup

t∈[n,n+1)
W (·, t)4 ≥ n4ε4n

)
≤

E[W (·, n+ 1)4]

n4
(

1

n
1
8

)4

=
3(n+ 1)2

n3 1
2

≤ 4
1

n
3
2

.

The second inequality follows from Corollary 3.1.3. The equality follows from the 4-th moment
formula for normal distributions (Lemma 5.2.3 in the appendix), because W (·, n + 1) ∼
N(0, n+ 1). From Borel-Cantelli (view appendix) follows:

P
( ∞⋂
n=1

∞⋃
m=n

{
sup

t∈[m,m+1)

(W (·, t)
t

)4
≥ ε4m

})
= 0.

Define:

Λ =

∞⋂
n=1

∞⋃
m=n

{
sup

t∈[m,m+1)

(W (·, t)
t

)4
≥ ε4m

}
.

Note:

Λc =
∞⋃
n=1

∞⋂
m=n

{
sup

t∈[m,m+1)

(W (·, t)
t

)4
< ε4m

}
P(Λc) = 1.

Let ω ∈ Λc and look at W (ω, ·), which we will write as W (·) for the rest of the proof, note
ω being in Λc implies:

∀n > N : sup
t∈[n,n+1)

(W (t)

t

)4
< ε4n

for some N ∈ N depending on ω. This implies:

∀n > N : sup
t∈[n,n+1)

W (t) < (n+ 1)εn.

9



This implies:

∀n > N : sup
t∈[n,n+1)

Wa(t) < (n+ 1)εn − an2. (6)

Note for some C ∈ R+:

∀n ∈ N : (n+ 1)εn − an2 < (n+ 1)− an2 < Ca.

Therefore Wa is bounded from above on [N,∞) and from continuity follows it is bounded
from above on the closed interval [0, N ] therefore also on [0,∞). Proof is analogous for n
negative which proves Wa is bounded from above with probability 1 on (−∞, 0] for ω from
an event of size 1. Taking the intersection of the events tells you Wa is bounded from above
with probability 1 on R, therefore P(Ma <∞) = 1, proving the Proposition.

Let ω ∈ {ω : Ma(ω) < ∞}. We have proven Wa(ω) is bounded from above, because
Wa(ω, ·) is continuous over the closed set R it’s maximum exists and is taken at one or more
points, so Ma(ω) exists. The next step is proving the uniqueness of this point for any ω from
a subset of {ω : Ma(ω) <∞} which is also of size 1. Before proving this Proposition we will
need a few Lemma’s.

Lemma 3.1.5. Let t0 ∈ R\{0}, t1 ∈ R : |t0| > |t1|. Define:

H(t0, t1) = Cov(Wa(t0),Wa(t1)).

Then the following properties hold:
(1):

H(t0, t0) > H(t1, t0). (7)

(2): H(·, t0) is continuous.

Proof. (1): Note:
Var(W (t0)) = E[W (t0)2] = |t0|.

Now note:
H(t1, t1)− 2H(t1, t0) +H(t0, t0) > 0. (8)

There are 2 cases to consider in the proof of this inequality.
Case 1: t1 and t0 are on the same side of 0:

|t1 − t0| = Var(W (t1)−W (t0))
= E[(W (t1)−W (t0)− E[W (t1)−W (t0)])2]
= E[(W (t1)−W (t0))2]
= E[W (t1)2]− 2E[W (t1)W (t0)] + E[W (t0)2]
= |t1| − 2E[W (t1)W (t0)] + |t0|,

from which follows:

E[W (t1)W (t0)] =
|t1 − t0| − |t1| − |t0|

−2
,
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from which follows:

E[Wa(t1)Wa(t0)] = E[(W (t1)− at21)(W (t0)− at20)]
= E[W (t1)W (t0)] + at20t

2
1

=
|t1 − t0| − |t1| − |t0|

−2
+ at20t

2
1,

from which follows:

H(t0, t1) = E[Wa(t1)Wa(t0)]− E[Wa(t1)]E[Wa(t0)]

=
|t1 − t0| − |t1| − |t0|

−2
+ at20t

2
1 − at20t21

=
|t1 − t0| − |t1| − |t0|

−2
,

(9)

from which follows:

H(t0, t0)− 2H(t1, t0) +H(t1, t1) = |t0|+ |t1|+ |t1 − t0| − |t1| − |t0|
= |t1 − t0|,

which proves equation 8 in case 1.
Case 2: t1 and t0 are on different sides of 0, clearly H(t1, t0) = 0 since the positive and
negative sides are independent Brownian Motions, which implies:

H(t0, t0)− 2H(t1, t0) +H(t1, t1) = |t0|+ |t1|. (10)

Proving equation (8) in case 2, therefore entirely, note this implies:

H(t0, t0) +H(t1, t1) > 2H(t1, t0). (11)

Note inequality |t0| > |t1| implies:

H(t0, t0) > H(t1, t1),

combining this inequality with (11) implies:

H(t0, t0) > H(t1, t0)

proving (1).

(2): Note again equation (9), it holds if t1 is on the same side of 0 as t0, for t1 is 0 the
expression equals 0 and note again that H(t0, t1) is 0 if t1 is on the other side of 0. These
conditions imply continuity of H(·, t0).

Lemma 3.1.6. Let t0 ∈ R\{0}, t1 ∈ R : |t0| > |t1|, define:

h(t) =
H(t, t0)

H(t0, t0)
.

Where again H(t0, t1) is the covariance between Wa(t0) and Wa(t1), define:

Y (t) = Wa(t)− h(t)Wa(t0).

Then Wa(t0) and Y (t) are independent for all t ∈ R.
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Proof. Note (follows from Lemma 3.1.5):

h(t0) =
H(t0, t0)

H(t0, t0)
>
H(t1, t0)

H(t0, t0)
= h(t1). (12)

Define the random variable Y such that:

Y (t) = Wa(t)− h(t)Wa(t0), (13)

then both Y (t) and Wa(t0) are normally distributed for any t, therefore independent because
of Lemma 5.2.8, which tells us 2 normally distributed random variables are independent if
and only if their covariance is 0:

Cov(Y (t),Wa(t0)) = E[Y (t)Wa(t0)]− E[Y (t)]E[Wa(t0)]

= E[(Wa(t)− h(t)Wa(t0))Wa(t0)]− E[Wa(t)− h(t)Wa(t0)]E[Wa(t0)]

= E[Wa(t)Wa(t0)]− E[h(t)Wa(t0)2]− E[Wa(t)]E[Wa(t0)] + E[h(t)Wa(t0)]E[Wa(t0)]

= Cov(Wa(t),Wa(t0))−
H(t, t0)

H(t0, t0)
Var(Wa(t0))

= H(t, t0)−
H(t, t0)

H(t0, t0)
H(t0, t0)

= 0.

We’re now ready to prove the uniqueness of the location.

Proposition 3.1.7. Let {Wa(t) : t ∈ R} be a two-sided Brownian Motion with downward
quadratic drift depending on a > 0, the event of Wa achieving it’s supremum at two distinct
points of R is of size 0

Proof. Let i, j ∈ Q. Define: Ki,j = [i− |j|, i+ |j|], note
⋃

i,j∈Q
Ki,j = R.

It’s enough to prove that for 2 disjoint neighbourhoods Ki,j and Ki′,j′ of any 2 arbitrary
different points in R the following holds:

P
(

sup
t∈Ki,j

Wa(t) = sup
t∈Ki′,j′

Wa(t) = sup
t∈R

Wa(t)
)

= 0 (14)

Since this means the probability of the countable union is also 0, which is the probability
of the maximum being attained at 2 distinct points. Note that without loss of generality
choosing 2 arbitrary different points in R is equivalent to choosing t0 ∈ R\{0} and t1 ∈ R
such that |t0| > |t1| which enables us to use Lemma’s 3.1.5 and 3.1.6. Define Y and h as in
the Lemma 3.1.6. Let t0 ∈ R\{0}, t1 ∈ R : |t0| > |t1|. Now note because of Lemma 3.1.6 and
continuity of h, which follows from (2) of Lemma 3.1.5, there exist neighbourhoods K0 and
K1 of t0 and t1 with K0,K1 ∈ {K1,1, ...}, such that the following holds:

inf
t∈K0

h(t) ≥ β0 > β1 ≥ sup
t∈K1

h(t)
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Define the following 3 random variables:

Γ0(z) = sup
t∈K0

(
Y (t) + h(t)z

)
(15)

Γ1(z) = sup
t∈K1

(
Y (t) + h(t)z

)
(16)

Φ(z) = (Γ1 − Γ0)(z) (17)

Assume Y and therefore Φ are known. Let ∆ ∈ R+, z ∈ R:

Γ0(z + ∆)− Γ0(z) = sup
t∈K0

(
Y (t) + h(t)(z + ∆)

)
− sup
t∈K0

(
Y (t) + h(t)z

)
= sup

t∈K0

(
Y (t) + h(t)(z + ∆)

)
+ inf
t∈K0

(
− Y (t)− h(t)z)

)
=
(
Y (t∗1) + h(t∗1)(z + ∆)− Y (t∗2)− h(t∗2)z

)
≥
(
Y (t∗2) + h(t∗2)(z + ∆)− Y (t∗2)− h(t∗2)z

)
≥ inf

t∈K0

(
Y (t) + h(t)(z + ∆)− Y (t)− h(t)z

)
= ∆ inf

t∈K0

(
h(t)

)
≥ ∆β0.

Which implies:
Γ0(z + ∆)− Γ0(z) ≥ ∆β0. (18)

Analogously:
Γ1(z + ∆)− Γ1(z) ≤ ∆β1 (19)

t∗1 and t∗2 can be chosen because K0 and K1 are closed, h is continuous and Y (ω, ·) is continuous
for any ω ∈ Ω. Inequalities (19) and (18) imply:

Φ(z + ∆)− Φ(z) = (Γ1(z + ∆)− Γ1(z))− (Γ0(z + ∆)− Γ0(z)) ≤ ∆(β1 − β0) < 0.

So because Φ is strictly decreasing if Φ has a root then it’s unique.
This implies that Γ0 and Γ1 have at most 1 unique intersection point z∗(Y ), which depends
on Y . Y and Wa(t0) being independent allows the following interpretation of the probability
space (Ω,A,P). Let Ω1,Ω2 copies of Ω, A1,A2 copies A, P1,P2 copies of P define over the
product space (Ω1 × Ω2,A1 ×A2,P1 × P2):

Ŷ : Ω1 × Ω2 × R→ R : Ŷ (ω1, ·, ·) = Y (ω1, ·)

Ŵa(t0) : Ω1 × Ω2 → R : Ŵa(t0)(·, ω2) = Wa(ω2, t0).

This gives another definition for random variables Γ0 and Γ1:

Γ̂0 : Ω1 × Ω2 → R : Γ̂0 = sup
t∈K0

(
Ŷ (·, ·, t) + h(t)Ŵa(t0)(·, ·)

)
Γ̂1 : Ω1 × Ω2 → R : Γ̂1 = sup

t∈K1

(
Ŷ (·, ·, t) + h(t)Ŵa(t0)(·, ·)

)
.
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This implies:

P
(

sup
t∈K0

Wa(t) = sup
t∈K1

Wa(t) = sup
t∈R

Wa(t)
)
≤ P

(
sup
t∈K0

Wa(t) = sup
t∈K1

Wa(t)
)

= P
(

Γ0(Wa(t0)) = Γ1(Wa(t0))
)

=

∫
Ω

1Γ0(Wa(t0))=Γ1(Wa(t0))dP

=

∫
Ω

1Wa(t0)=z∗(Y )dP

=

∫
Ω1×Ω2

1
Ŵa(t0)=z∗(Ŷ )

d(P1 × P2)

=

∫
Ω1

∫
Ω2

1
Ŵa(t0)=z∗(Ŷ )

dP2dP1 = 0

Last equality follows because in the inner integral ω1 is fixed and noting that Ŵa(t0)(ω1, ·) is
a normal random variable with variance |t0|. Also note z∗(Ŷ (ω1, ·, ·)) = z∗(Y (ω1, ·)), which is
a fixed number if it exists (if it doesn’t exist then the probability of equality is certainly 0)
because Y (ω1, ·) is a fixed real valued function. The probability of a normal random variable
with non-trivial variance equalling a fixed number is 0, which proves the Proposition.

Propositions 3.1.4 and 3.1.7 prove existence and uniqueness of the maximum’s location
Va. Limitting Ω to the intersection of the size 1 events from both Propositions makes Va
a welldefined function from Ω to R. Finally Va is a random variable because it is Borel-A-
measurable, which means for any set O ∈ B : {ω : Va(ω) ∈ O} ∈ A.

Let M∗a (·, t) = sup
s≤t

Wa(·, s). Then M∗a is a measurable process with continuous paths.

This follows from the fact that it suffices to consider rational points s in the supremum (by
the continuity of the paths.

Look again at Ma(·), note Ma(·) = lim
t→∞

M∗a (·, t). This is also measurable. Now for every

t ∈ R we have {ω ∈ Ω : Va(ω) > t} = {ω ∈ Ω : M∗a (t, ω) < Ma(ω)}. The last set is measurable
and hence Va is Borel-A-measurable, therefore a random variable.

Before going into the formula for even moments, we will prove that odd moments are 0.
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Notation:
d
= means equal in distribution.

Lemma 3.1.8. odd moments of Va are 0, in other words:
∀n ∈ 2N− 1 : E[V n

a ] = 0.

Proof. Let n ∈ 2N− 1. From Definition 3.1.2 Wa(·, t)
∣∣∣
t≥0

and Wa(·,−t)
∣∣∣
t≥0

are independent

one-sided Brownian motions. Therefore max
t∈R+
{Wa(·, t)} and max

t∈R−
{Wa(·, t)} are independent

and identically distributed, which means Va is distributed the same as −Va (in other words
Va is symmetrically distributed). Define:

(V +
a )n = max{0, (Va)n}

and

(V −a )n = max{0,−(Va)
n}

= max{0, (−Va)n}

because n is odd. Now note:

(V +
a )n = max{0, (Va)n}

d
= max{0, (−Va)n} = (V −a )n.

Therefore the following holds:

E[(Va)
n] = E[(V +

a )n]− E[(V −a )n]

= E[(V +
a )n]− E[(V +

a )n] = 0.

This doesn’t hold for even moments, therefore a more complex expression has to be de-
rived, as seen in the introduction. We will start firstly by proving that Va only differs by a
scalar in distribution of Vb for any a, b > 0.
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Lemma 3.1.9. For any a > 0 : Va
d
= 2−

1
3a−

2
3V , where V = V 1√

2

Proof. Let a, b > 0. Note:

2
1
3a

2
3Va

= 2
1
3a

2
3 argmax

t2∈R

{
W (t2)− at22

}
= argmax

t∈R

{
W (

1

2
1
3a

2
3

t)− a(
1

2
1
3a

2
3

t)2
}

substitution t2 =
1

2
1
3a

2
3

t

d
= argmax

t∈R

{ 1√
2

1
3a

2
3

W (t)−
1

2
2
3a

4
3

at2
}

W (bt) and
√
bW (t) are Brownian Motions, such that:

W (bt)
d
=
√
bW (t)

d
= argmax

t∈R

{
W (t)−

√
2

1
3a

2
3

2
2
3a

4
3

at2
}

multiplication by
√

2
1
3a

2
3 .

= argmax
t∈R

{
W (t)−

1

2
1
2

t2
}

= V.

Therefore knowing the moments of V gives them for Va for any a > 0.
Choosing a = 1√

2
will provide easier formulas longterm. Similarly it can be proven:

Ma
d
= 2

1
3a−

1
3M,where M = M 1√

2
.

Before deriving the the final theorem we will introduce the Airy function in the next section.
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3.2 Airy function

The Airy function is the solution of
d2y

dx2
(x) = xy(x) with initial values:

y(0) =
3−

2
3

Γ(2
3)

y′(0) =
3−

1
3

Γ(1
3)
.

This gives the following power series expansion:

Ai(x) = c1f(x)− c2g(x) (20)

f(x) = 1 +
1

3!
x3 +

1 · 4
6!
x6 +

1 · 4 · 7
9!

z9 + ... c1 =
3−

2
3

Γ(2
3)

;

g(x) = z +
2

4!
z4 +

2 · 5
7!
z7 +

2 · 5 · 8
10!

z10 + ... c2 =
3−

1
3

Γ(1
3)
.

Note for any positive z:

Γ(z) =

∞∫
0

xz−1e−xdx

which enables you to compute Γ(1
3) and Γ(2

3) numerically. Limiting domain to R gives a real
valued function looking the following way:

f and g are derived through substituting a power series in the differential equation. As-

sume y is a solution of
d2y

dx2
(x) = xy(x) and analytic on a disk around 0 (in C), then the

following holds:

d2

dx2

∞∑
k=0

(
akx

k
)

= x
∞∑
k=0

(akx
k)

17



⇒
∞∑
k=0

(
ak

d2

dx2
xk
)

= x

∞∑
k=0

(akx
k)

⇒
∞∑
k=2

(
akk(k − 1)xk−2

)
=

∞∑
k=0

(akx
k+1)

⇒
∞∑
k=0

(
ak+2(k + 2)(k + 1)xk

)
=
∞∑
k=1

(ak−1x
k).

Differentiation and summation can be exchanged because of Lemma 5.1.4.
Equality holds on the disk iff. coefficients are equal, therefore:
a0, a1 ∈ R, a2 = 0 and for any natural n ≥ 3:

an =
an−3

n(n− 1)
.

Note this splits the powerseries of y in 2 parts:

y(x) = a0

(
1 +

1

2 · 3
z3 +

1

2 · 3 · 4 · 5
z6 + ...

)
+ a1

(
z +

1

3 · 4
z4 +

1

3 · 4 · 6 · 7
z7 + ...

)
= a0f(x) + a1g(x).

Coefficients a0 and a1 determine the function uniquely, which in the case of the Airy function

equal
3−

2
3

Γ(2
3)

and
3−

1
3

Γ(1
3)

respectively. There are asymptotic formulas for the Airy function (see

Handbook of mathematical functions, [1] and the appendix of [10]) and it’s derivative, which
hold for |z| large, and |Arg(z)| < π:

Ai(z) ∼
1

2
√
π
z−

1
4 exp

(
− 2

3
z

3
2

)
(21)

Ai′(z) ∼ −
1

2
√
π
z

1
4 exp

(
− 2

3
z

3
2

)
. (22)

For any complex valued functions a : C→ C, b : C→ C
a ∼ b means:

∀θ ∈ B : lim
x→∞

a(x exp(iθ))

b(x exp(iθ))
= 1.

Where the set B depends on the arguments for which the asymptotic expansions hold. The
asymptotic expansions for the Airy function hold for z away from the negative real axis,
therefore for θ ∈ (−π, π). The formulas imply the following Lemma:
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Lemma 3.2.1. The Airy function has the following properties:

(1):
Ai(z)′

Ai(z)
∼ −z

1
2 for z away from the negative real axis.

(2): Ai(it)−1 = O(e−c|t|
− 3

2 ), for t ∈ R and |t| ≥ 1 for some c > 0.
(3): (2) also holds for all derivatives of Ai(it)−1 to t.

Proof. (1): Dividing (21) by (22) gives:

Ai(z)′

Ai(z)
∼ −z

1
2 . (23)

(2): Note for large |it|, from formula (21) follows:

Ai(it) ∼
1

2
√
π

(it)−
1
4 exp

(
− 2

3
(it)

3
2

)
. (24)

This implies for t real, large and positive:

|Ai(it)| ∼
∣∣∣ 1

2
√
π

(it)−
1
4 exp

(
− 2

3
(it)

3
2

)∣∣∣
⇒∣∣∣ 1

Ai(it)

∣∣∣ ∼ ∣∣∣2√π(it)
1
4 exp

(2

3
(it)

3
2

)∣∣∣
=
∣∣∣2√πt 14 exp

(2

3

(
− 1

2

√
2 + i

1

2

√
2
)
t
3
2

)∣∣∣
=
∣∣∣2√πt 14 exp

(
−
√

2

3
t
3
2

)∣∣∣
≤
∣∣∣2√π exp

(1

3
t
3
2

)
exp

(
−
√

2

3
t
3
2

)∣∣∣.
The first equality follows because powers of i are irrelevant when multiplied within abso-

lute values, having modulus 1. Also because of Euler’s formula real multiples of i within the
absolute value of the exponential function are irrelevant, again because of modulus 1. Also
for large t : t

1
4 is bounded by exp(1

3 t
3
2 ).

Note for t real, large and negative (it has principle argument −π
2 ):

∣∣∣ 1

Ai(it)

∣∣∣ ∼ ∣∣∣2√π(it)
1
4 exp

(2

3
(it)

3
2

)∣∣∣
=
∣∣∣2√πa1|t|

1
4 exp

(2

3
a2|t|

3
2

)∣∣∣ : Arg(a1) = −1

8
π,Arg(a2) = −3

4
π

=
∣∣∣2√π|t| 14 exp

(2

3

(
− 1

2

√
2− i1

2

√
2
)
|t|

3
2

)∣∣∣
=
∣∣∣2√π|t| 14 exp

(
−
√

2

3
|t|

3
2

)∣∣∣
≤
∣∣∣2√π exp

(1

3
|t|

3
2

)
exp

(
−
√

2

3
|t|

3
2

)∣∣∣.
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Again, for large |t| : |t|
1
4 is bounded by exp(1

3 |t|
3
2 ), therefore:

1

Ai(it)
= O(e−

√
2−1
3
|t|

3
2 ).

Therefore (2) holds.

(3): Combining result (1) and the asymptotic formulas gives for t large and real:∣∣∣ d
dt

1

Ai(it)

∣∣∣ =
∣∣∣Ai′(it)
Ai(it)2

∣∣∣
=
∣∣∣Ai′(it)
Ai(it)

·
1

Ai(it)

∣∣∣
∼
∣∣∣(it) 1

2 2
√
π(it)

1
4 exp

(2

3
(it)

3
2

)∣∣∣
=
∣∣∣2√π(it)

3
4 exp

(2

3
(it)

3
2

)∣∣∣
≤
∣∣∣2√π exp

(1

3
|t|

3
2

)
exp

(
−
√

2

3
|t|

3
2

)∣∣∣,
which proves (3) for the first derivative.

Note from Lemma 3.3.5 follows
dn

dtn
1

Ai(it)
can be expressed as a linear combination of terms

tjAi′(it)k

Ai(it)k+1
. For large |t| because of the earlier results, we can again derive for |t| large enough:

∣∣∣ dn
dtn

1

Ai(it)

∣∣∣ ≤ ∣∣∣2√π exp
(1

3
|t|

3
2

)
exp

(
−
√

2

3
|t|

3
2

)∣∣∣,
because |tn| is bounded by | exp

(
1
3 |t|

3
2

)
| for large t for any fixed n, which proves (3) for any

derivative.
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3.3 Moment formula

We have proven in the previous section that 1
Ai(it) and it’s derivatives to t have certain prop-

erties. More specifically 1
Ai(it) and all of it’s derivatives are Schwartz functions of t, Definition

5.1.1. The most important thing to know about Schwartz functions in this thesis is that they
decrease to 0 very rapidly as |x| goes to ∞, therefore integrals over R exist:
Let g a Schwartz function, note:

∞∫
−∞

g(x)dx <∞

and more specifically: ∣∣∣ ∞∫
−∞

eitxg(x)dx
∣∣∣ <∞

for any real t.
This tells us that the proofs of Lemma’s 5.1.6 and 3.3.2 work because the integrals exist.
View the appendix for the exact definition of the Schwartz space.

Note the following very important theorem:

Theorem 3.3.1. For f the density function of V and Ai the Airy function, the following
holds:

(1):f(x) = 1
2g(x)g(−x), ĝ(t) =

2
1
2

Ai(it)
, where ĝ is the Fourier Transform of g, view appendix.

(2):g and ĝ are Schwartz functions.

The proof is too much for this thesis, for it you need a lot of results of the entire book
[7], by Groeneboom. Theorem 3.3.1 is very powerful from which combined with some Fourier
Analysis we can derive the following Lemma for which the characteristic function is used,
Definition 5.2.1.

Lemma 3.3.2. The characteristic function of V satisfies:

∀t ∈ R : φV (t) =
1

2πi

i∞∫
−i∞

dz

Ai(it+ z))Ai(z)
.

Proof. Let t ∈ R. Note:

φV (t) = f̂(t)

=
1

2
ĝg(t)

=
1

2

1

2π
(ĝ ∗ ĝ)(t)

=
1

4π
(ĝ ∗ ĝ)(t)

=
1

2π

∞∫
−∞

ds

Ai(i(t− s))Ai(−is)
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=
1

2π

∞∫
−∞

ds2

Ai(i(t+ s2))Ai(is2)

=
1

2πi

i∞∫
−i∞

dz

Ai(it+ z))Ai(z)
,

where the first two equalities are clear by (1) of Theorem 3.3.1 and the definition of the
characteristic function. From (3) of Lemma 5.1.6 in the appendix follows the third equation
(with the proof being quite tricky). Fourth equation follows from:

ĝ(t) =

∞∫
−∞

eitxg(x)dx =

∞∫
−∞

eitxg(−x)dx =

∞∫
−∞

ei(−t)yg(y)dy = ĝ(t).

The following equations also follow from Theorem 3.3.1, since ĝ(t) equals

√
2

Ai(it)
and by

substitution s2 = −s and z = is2.

This Lemma is also in [8], by Groeneboom.
Differentiating the characteristic function n times, choosing t = 0 and scaling by a power of
−i gives the n-th moment, we’re now ready to derive an expression for the even moments of
V , by the following two Lemma’s:

Lemma 3.3.3. General formula for the n-th moment:
Let X be a random variable of which all moments exist, then:

E[Xn] = (−i)n
dn

dtn
φX(0).

Proof. Note for any n ∈ N:

(−i)n
dn

dtn
φX(t) = (−i)n

dn

dtn
E[eitX ]

= (−i)n
dn

dtn

∞∑
k=0

E[(itX)k]

k!

= (−i)n
∞∑
k=0

dn

dtn
(it)k

E[Xk]

k!

=

∞∑
k=n

ik−ntk−n
E[Xk](k · ... · (k − n+ 1))

k!
,

where since derivatives of t0 to t are 0, so the first n− 1 terms dissappear.

Only the second and third equations require justification, second one follows from dom-
inated convergence and third one from Lemma 5.1.4. Choosing t = 0 gives proves the
Lemma.

This result enables us to derive an expression for the n-th moment of V :
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Lemma 3.3.4. For any n ∈ N:

E[V n] =
1

2πi

i∞∫
−i∞

dn

dzn

( 1

Ai(z)

) dz

Ai(z)
.

Proof. Note:

(−i)n
dn

dtn
φV (t) =

(−i)n

2πi

dn

dtn

i∞∫
−i∞

dz

Ai(it+ z)Ai(z)

=
(−i)n

2πi

i∞∫
−i∞

dn

dtn

( 1

Ai(it+ z)

) dz

Ai(z)

=
1

2πi

i∞∫
−i∞

dn

dzn

( 1

Ai(it+ z)

) dz

Ai(z)
,

where the first equation follows from Lemma 3.3.2 and the third equation follows from
the chain rule, considering differentiating to z is the same as differentiating to t except for
some power of i. Lemma follows from combining this result with Lemma 3.3.3.

Next thing to note is the following relationship following from (
d2

dz2
A(z) = zAi(z)).

Lemma 3.3.5.
dm

dzm

( 1

Ai(z)

)
can be expressed as a linear combination of terms of the form:

zjAi′(z)k

Ai(z)k+1

with j, k non-negative integers and 2j + k ≤ m.

Proof. Proof goes by induction. Taking the first derivative gives:

d

dz

( 1

Ai(z)

)
=
−Ai′(z)
Ai(z)2

which is of the correct form with j = 0, k = 1, also 2j + k = 1 ≤ 1 (induction basis).
Note the following (induction step):

d

dz

zjAi′(z)k

Ai(z)k+1
=
Ai(z)k+1(jzj−1Ai′(z)k + kAi′(z)k−1Ai”(z)zj)

Ai(z)2k+2

−
(k + 1)zjAi′(z)kAi(z)kAi′(z)

Ai(z)2k+2

=
jzj−1Ai′(z)k

Ai(z)k+1
+
kzj+1Ai′(z)k−1

Ai(z)k
−

(k + 1)zjAi′(z)k+1

Ai(z)k+2
,

which follows from a combination of the product, quotient and chain rules, which is also a
linear combination of terms of the correct form because:
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(1):if k = 0 or j = 0 corresponding terms with j− 1 or k− 1 dissappear during differentiation
(2):Assuming 2j + k ≤ m then in the final 3 terms 2j′ + k′ ≤ m + 1 holds, with (j′, k′) =
(j − 1, k), (j + 1, k − 1) or (j, k + 1) respectively.
Lemma follows from induction.

Lemma 3.3.6. Note: for any j, k ≥ 0:

E[V j+k] =
(−i)j

2πi

i∞∫
−i∞

dj

dzj

( 1

Ai(z)

) dk
dzk

( 1

Ai(z)

)
dz (25)

Proof. Name the right hand side J(j, k). Note firstly:

J(j, k) =
(−1)j

2πi

i∞∫
−i∞

dj

dzj

( 1

Ai(z)

) dk
dzk

( 1

Ai(z)

)
dz

=
(−1)j

2πi

i∞∫
−i∞

d

dz

( dj−1

dzj−1

( 1

Ai(z)

)) dk
dzk

( 1

Ai(z)

)
dz

=
(−1)j

2πi

[ dj−1

dzj−1

( 1

Ai(z)

) dk
dzk

( 1

Ai(z)

)]i∞
−i∞

+
(−1)j+1

2πi

i∞∫
−i∞

dj−1

dzj−1

( 1

Ai(z)

) dk+1

dzk+1

( 1

Ai(z)

)
dz

=
(−1)j−1

2πi

i∞∫
−i∞

dj−1

dzj−1

( 1

Ai(z)

) dk+1

dzk+1

( 1

Ai(z)

)
dz

= −J(j − 1, k + 1)),

where the third equation follows from integration by parts and asymptotic behavior of deriva-
tives of Ai(z)−1, (Lemma 3.2.1 and Lemma 3.3.5). This holds for any natural j, k, therefore
let j, k and choose n = k + j:

E[V n] =
1

2πi

i∞∫
−i∞

dn

dzn

( 1

Ai(z)

) dz

Ai(z)

= J(0, n)

= −J(1, n− 1)

= (−1)jJ(j, n− j)

=
(−1)j

2πi

i∞∫
−i∞

dj

dzj

( 1

Ai(z)

) dn−j
dzn−j

( 1

Ai(z)

)
dz,

where the third equation follows from repeating the previous computation j times.
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Note that combining Lemma 3.3.5 with Lemma 3.3.4 enables you to write any moment of
V as a linear combination of I(j, k), such that:

I(j, k) =
1

2πi

i∞∫
−i∞

zjAi′(z)k

Ai(z)k+2
dz (26)

Lemma 3.3.7. For j, k ∈ N ∪ {0} the following holds:

I(j, k) =

{
j

k+1I(j − 1, k − 1) + k−1
k+1I(j + 1, k − 2) k ≥ 2

j
k+1I(j − 1, 0) k = 1

}
(27)

Proof. Notation:
[g(z)]i∞−i∞ = lim

a→∞
lim
b→∞

g(ib)− g(−ia). Note:

0 =
1

2πi

[zjAi′(z)k
Ai(z)k+2

]i∞
−i∞

=
1

2πi

i∞∫
−i∞

d

dz

zjAi′(z)k

Ai(z)k+2
dz

= jI(j − 1, k) + kI(j + 1, k − 1)− (k + 2)I(j, k + 1).

The first equation follows from the rapidly decreasing behavior of
1

Ai(z)2
, which goes faster

to 0 than
∣∣∣zjAi′(z)k

Ai(z)k

∣∣∣ goes to ∞ for any j, k ∈ N ∪ {0} (Lemma 3.2.1). The third equation

follows analogously to the proof in Lemma 3.3.5. The equation implies:

I(j, k + 1) =
j

k + 2
I(j − 1, k) +

k

k + 2
I(j, k + 1) (28)

Equation (28) rewrites to (27), proving the Lemma.

Using this Lemma with Lemma 3.3.5 enables you to rewrite every term I(j, k) : 2j+k ≤ n
into terms I(j′, k′) with k′ < k where 2j′ + k′ ≤ n still holds, which follows from combining
equation (27) with:

[2j + k + 1 ≤ n]⇒ [(2(j − 1) + k ≤ n) ∧ (2(j + 1) + k − 1 ≤ n)].

Another important result (which will be of use in the next section) is I(0, 1) = 0 which
follows from Lemma 3.3.7. Combining Lemma’s 3.3.4, 3.3.5 and 3.3.7 gives the final theorem:

Theorem 3.3.8. For any even n ∈ N, V = V 1√
2

the following holds for the n-th moment:

E[V n] =
1

2πi

i∞∫
−i∞

pn(z)

Ai(z)2
dz,

pn is a specific polynomial of at most order n
2 and

Ai is the Airy function as defined in equation (20).
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Proof. Let n even. From Lemma 3.3.3 and 3.3.5 it follows E[V n] can be rewritten as an m-fold
linear combination of the form:

E[V n] =
1

2πi

(
a1

i∞∫
−i∞

zj1Ai′(z)k1

Ai(z)k1+2
dz + ...+ am

i∞∫
−i∞

zjmAi′(z)km

Ai(z)km+2
dz
)
.

Note 2ji + ki ≤ n, for all i.
After which from Lemma 3.3.7 it follows that every term can be rewritten as a linear

combination of terms with lower ki, which you can repeat until all ki are 0 resulting in:

E[V n] =
1

2πi

(
a′1

i∞∫
−i∞

zj
′
1

Ai(z)2
dz + ...+ a′m2

i∞∫
−i∞

zj
′
m2

Ai(z)2
dz
)
.

Note again that the relation 2j′i + k′i ≤ n is preserved, therefore the polynomial

a′1z
j′1 + ...+ a′m2

zj
′
m2

is at most of order n
2 .

Now to demonstrate the deriviation of the first 2 even moments, by also using Lemma 3.3.6:

E[V 2] =
− 1

2πi

i∞∫
−i∞

d

dz

( 1

Ai(z)

) d
dz

( 1

Ai(z)

)
dz

=
− 1

2πi

i∞∫
−i∞

(Ai′(z)2

Ai(z)4

)
dz

= −I(0, 2)

= −
1

3
I(1, 0)

=
1

2πi

i∞∫
−i∞

( − 1
3z

Ai(z)2

)
dz

E[V 4] =
1

2πi

i∞∫
−i∞

d2

dz2

( 1

Ai(z)

) d2

dz2

( 1

Ai(z)

)
dz

=
1

2πi

i∞∫
−i∞

( d
dz

( −Ai′(z)
Ai(z)2

))2
dz

=
1

2πi

i∞∫
−i∞

( d
dz

(Ai′(z)
Ai(z)2

))2
dz

26



=
1

2πi

i∞∫
−i∞

(Ai(z)2Ai′′(z)− 2Ai′(z)2Ai(z)

Ai(z)4

)2
dz

=
1

2πi

i∞∫
−i∞

( z

Ai(z)
−

2Ai′(z)2

Ai(z)3

)2
dz

=
1

2πi

i∞∫
−i∞

z2

Ai(z)2
−

4zAi′(z)2

Ai(z)4
+

4Ai′(z)4

Ai(z)6
dz

= I(2, 0)− 4I(1, 2) + 4I(0, 4)

= I(2, 0)− 4
(1

3
I(0, 1) +

1

3
I(2, 0)

)
+ 4
(3

5
I(1, 2)

)
= I(2, 0)− 4

(1

3
I(2, 0)

)
+ 4
(3

5

1

3
I(2, 0)

)
=

15

15
I(2, 0)−

20

15
I(2, 0) +

12

15
I(2, 0) =

7

15
I(2, 0)

=
1

2πi

i∞∫
−i∞

( 7
15z

2

Ai(z)2

)
dz.

Therefore p2(z) = −1
3z and p4(z) = 7

15z
2.
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3.4 Python program for computing pn

I’ve written a Python program that prints 7 even polynomials from p2 up to p14 (view ap-
pendix). Note p2(z) = −1

3z and p4(z) = 7
15z

2 as shown earlier.

Also note that the first 7 odd polynomials are 0 (ignoring the rounding errors) as expected.
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4 Conclusion and additional problems/conjectures

After combining results from multiple mathematical fields which may appear very disjoint
(Fourier Analysis and Probability Theory) simplifications for difficult formulas can be found.
In our case it’s formulas for moments of a Brownian Motion with downward quadratic drift.
As for the usefulness, one physical interpretation of a Brownian Motion with downward
quadratic drift is the movement of a particle through water including the effects of grav-
ity increasing it’s downward speed over time, but it’s overall movement remaining ”random”.
Knowing the moments then enables you not only to know the place where the particle is ex-
pected to be at it’s highest point, but also the variance (measure of the likelihood of deviating
from the expectation).

The final theorem yields an algorithm for computing the polynomials pn(z) but no simple
formula for them. Therefore the following problems and conjectures can be stated:

Problem 4.0.1. Is there an explicit formula for the coefficients bnj, and thus for the polyno-
mials pn(z)? Perhaps a recursion formula?

After computing the polynomials for n between 1 and 100. The following conjectures can
be made:

Conjectures 4.0.2. (1): pn(z) = 0 for every odd n (note that this is stronger than just
E[V n] = 0 for every odd n).
(2): pn(z) has degree exactly n/2; i.e., the coefficient bn,n/2 of zn/2 is non zero.
(3): These leading coefficients have exponential generating function:

∞∑
n=0

bn,n/2

n!
=

x

sinh(x)
.

Problem 4.0.3. Is there an explicit formula for the generating function

∞∑
n=0

pn(z)xn?

These problems and conjectures are from the article by Svante Janson [10].
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5 Appendix

Here are definitions and Lemma’s, with or without proof, necessary in the thesis, also the
code of the program used in the last subsection.

5.1 Fourier and Complex Analysis

Firstly introducing the Schwartz class of rapidly decreasing functions:

Definition 5.1.1. C∞(R) is the space of infinitely differentiable functions from R to C.
Let α, β be non negative integers. A function f : R→ C in C∞(R) is in the Schwartz space
S of rapidly decreasing functions if and only if for any x ∈ R:

sup
x∈R
|xαDβf(x)| <∞.

Where:

Dβ =
(1

i

d

dx

)β
.

This is the exact definition, note that Schwartz functions and their derivatives multiplied
by any polynomial have a bounded absolute value over R.

Definition 5.1.2. The Fourier Transform is the function f̂ of the function f defined the
followig way, as long as it exists:

f̂(t) =

∞∫
−∞

eitxf(x)dx (29)

It can be shown Fourier Transforms preserve Schwartz functions.

Definition 5.1.3. The convolution product between functions f and g is a function de-
fined as:

(f ∗ g)(t) =

∞∫
−∞

f(t− x)g(x)dx, (30)

as long as the integral exists.

Note:
∞∫
−∞

f(t− x)g(x)dx =

−∞∫
∞

−f(y)g(t− y)dy =

∞∫
−∞

f(y)g(t− y)dy. (31)

Therefore:
f ∗ g = g ∗ f. (32)

Which is visible by substitution t − x = y, implying x = t − y and dy = −dx, note the
borders have to be substituted too.

Lemma 5.1.4. Weierstrass’s Theorem for analytic functions
Let (fn)∞n=1 be a sequence of analytic functions converging locally uniformly to f on some
domain D then f is analytic and f ′n converge locally uniformly to f ′.
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Note: A domain D is a simply connected open subset of C on which any interior of a
closed curve is within the set.

Lemma 5.1.5. Fubini’s theorem
Let F ∈ S2, then:

∞∫
−∞

∞∫
−∞

F (x, y)dxdy =

∞∫
−∞

∞∫
−∞

F (x, y)dydx. (33)

Notation:
g(t) = g(−t)

Lemma 5.1.6. For f, g ∈ S the following 3 properties hold:
(1): Inverse Fourier Transform

f(t) =
1

2π

∞∫
−∞

e−itxf̂(x)dx (34)

(2):
1

2π
̂̂
f = f (35)

(3):

f̂g =
1

2π
(f̂ ∗ ĝ). (36)

Proof. (1): Note firstly from Fubini’s Lemma 5.1.5 follows:

∞∫
−∞

f̂g(x)dx =

∞∫
−∞

∞∫
−∞

eixyf(y)dyg(x)dx

=

∞∫
−∞

∞∫
−∞

eixyg(x)dxf(y)dy

=

∞∫
−∞

fĝ(x)dx.

Let λ > 0, f∗(x) = f
(x
λ

)
(clearly f∗ in S) then:

∞∫
−∞

f
(x
λ

)
ĝ(x)dx =

∞∫
−∞

f̂(x)g
(x
λ

)
dx.

Which follows from:
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∞∫
−∞

f
(x
λ

)
ĝ(x)dx =

∞∫
−∞

f∗(x)ĝ(x)dx

=

∞∫
−∞

f̂∗(x)g(x)dx

=

∞∫
−∞

∞∫
−∞

eixyf∗(y)dyg(x)dx

=

∞∫
−∞

∞∫
−∞

eixyf
(y
λ

)
dyg(x)dx

=

∞∫
−∞

λ

∞∫
−∞

exp(iλxy2)f(y2)dy2g(x)dx

=

∞∫
−∞

λf̂(λx)g(x)dx

=

∞∫
−∞

f̂(x2)g
(x2

λ

)
dx2.

Follows from substituting x2 = λx and y2 =
y

λ
.

Note taking the limit λ → ∞ (functions are continuous) sends g
(x
λ

)
to g(0) and f

(x
λ

)
to

f(0). From the dominated convergence Theorem follows

f(0)
∞∫
−∞

ĝ(x)dx = g(0)
∞∫
−∞

f̂(x)dx. (37)

This is visible by defining (fn)∞n=1 such that fn(x) = f(xn) since both are Schwartz func-
tions the integral of their absolute product is bounded and clearly lim

n→∞
fn(x)ĝ(x) = f(0)ĝ(x)

for any x therefore: lim
n→∞

∫
R
fn(x)ĝ(x)dx =

∫
R
f(0)ĝ(x)dx:

This goes analogously for f̂(x)g
(x
λ

)
. Now note: (τpg(x) = g(x− p) for any p ∈ R)

g(x) = (τ−xg)(0) =
1

2π

∞∫
−∞

τ̂−xg(t)dt =
1

2π

∞∫
−∞

e−itxĝ(t)dt. (38)

Second equation follows from the earlier derived result: (choosing: φ(x) = exp(−1
2x

2) and
noting φ ∈ S)

(τ−xg)(0)

∞∫
−∞

φ̂(t)dt = φ(0)

∞∫
−∞

τ̂−xg(t)dt. (39)
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Combined with: (note again the characteristic function of standard normal variable):

φ̂(t) =

∞∫
−∞

eitye−
1
2
y2dy =

√
2π

∞∫
−∞

eity
1
√

2π
e−

1
2
y2dy =

√
2πe−

1
2
t2 .

Which implies (integral of a density function over R equals 1):

1

2π

∞∫
−∞

φ̂(t)dt =
1

2π

∞∫
−∞

√
2πe−

1
2
t2dt

∞∫
−∞

1
√

2π
e−

1
2
t2dt = 1 = e−

1
2

02 = φ(0). (40)

After which you can substitute equation (40) in (39) to obtain the second equation of
(38). Last equation in (38) follows from:

∞∫
−∞

τ̂−xg(t)dt =

∞∫
−∞

∞∫
−∞

eity(τ−xg)(y)dydt

=

∞∫
−∞

∞∫
−∞

eityg(y + x)dydt

=

∞∫
−∞

∞∫
−∞

exp(it(y2 − x))g(y2)dy2dt

=

∞∫
−∞

e−itxĝ(t)dt.

By substituting y2 = y + x.
(1) of the Lemma follows from equation (38).

(2): From (1) follows (substitution x2 = −x):

f(−t) =
1

2π

∞∫
−∞

e−itxf̂(−x)dx =
1

2π

∞∫
−∞

exp(itx2)f̂(x2)dx2 =
1

2π
̂̂
f(t).

(3): Note first:

f̂ ĝ = (̂f ∗ g). (41)

This follows from:

(f̂ ĝ)(t) = f̂(t)ĝ(t)

=

∞∫
−∞

e−itxf(x)dx

∞∫
−∞

e−ityg(y)dy

=

∞∫
−∞

∞∫
−∞

e−it(x+y)f(x)g(y)dxdy
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=

∞∫
−∞

∞∫
−∞

e−it(x2)f(x2 − y)g(y)dydx2

=

∞∫
−∞

e−it(x2)(f ∗ g)(x2)dx2

= (̂f ∗ g)(t)

substitution of x2 = x+ y and Fubini is used here.
Also note:

1

2π
(̂f̂ ∗ ĝ)(t) =

1

2π
̂̂
f ̂̂g(t) = 2πfg(t) = 2πfg(t) =

̂̂
fg(t)

first equation follows from equation (41) earlier, second and last equations follow from (2)
and note again that f(t) = f(−t).
Applying the inverse Fourier Transform gives:

1

2π
(f̂ ∗ ĝ)(t) =

1

2π

∞∫
−∞

e−itx
1

2π
(̂f̂ ∗ ĝ)(x)dx =

1

2π

∞∫
−∞

e−itx
̂̂
fg(x)dx = f̂g(t).

Proving the Lemma.
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5.2 Probability Theory and Real Analysis

Definition 5.2.1. Let X be a random variable, it’s characteristic function φ is defined by:

φX(t) = E[eitX ].

There are multiple definitions for the Fourier Transform but conveniently we have chosen
the Fourier transform equal to the characteristic function of X for which f is the density
function. Characteristic functions are useful since they uniquely determine the distribution.

Definition 5.2.2. X is a normally distributed random variable with mean µ and variance
σ2 if and only if the following holds for the cummulative distribution function FX :

FX(x) = P(X ≤ x) =

x∫
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx, (42)

with density function f :

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (43)

This can be written as:
X ∼ N(µ, σ2). For Z ∼ N(0, 1), Z is standard normally distributed.

Lemma 5.2.3. Fourth moment formula for zero centered normal distributions.
Let σ ∈ [0,∞). Let X ∼ N(0, σ2). For X the following holds:

E[X4] = 3σ4.

Proof. By integration by parts and definition 5.2.2:

E[X4] =

∞∫
∞

x4 1

σ
√

2π
e−

1
2σ2

x2dx

=
1

σ
√

2π
(−σ2)

∞∫
∞

x3 d

dx
e−

1
2σ2

x2dx

= − σ2

σ
√

2π

(
[x3e−

1
2
x2 ]∞−∞ −

∞∫
∞

3x2e−
1

2σ2
x2dx

)

=
3σ2

σ
√

2π

∞∫
∞

x2e−
1

2σ2
x2dx

= − 3σ4

σ
√

2π

∞∫
∞

x
d

dx
e−

1
2σ2

x2dx

= − 3σ4

σ
√

2π

(
[xe−

1
2
x2 ]∞−∞ −

∞∫
∞

e−
1

2σ2
x2dx

)
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= 3σ4

∞∫
∞

1

σ
√

2π
e−

1
2σ2

x2dx = 3σ4.

Definition 5.2.4. Multivariate Normal distribution. Let
(
Z1, .., Zn

)
be a vector of

independent standard normal random variables.

The vector
(
W1, ..,Wn

)
is multinormally distributed iff. there exists some lower triangle

positive definite matrix B and a vector µ such that(
W1, ..,Wn

)T d
= µ+B

(
Z1, .., Zn

)T
. (44)

It’s covariance matrix is
BBT .

Lemma 5.2.5. Borel-Cantelli. For any sequence of events (An)∞n=1,

[ ∞∑
n=1

P(An) <∞
]
⇒
[
P
( ∞⋂
n=1

∞⋃
m=n

Am

)
= 0
]
.

Lemma 5.2.6. Characteristic function of Z, where Z ∼ N(0, 1) is:

φZ(t) = e−
1
2
t2 .

Lemma 5.2.7. Dominated convergence theorem.
Let (fn)∞n=1 be a sequence of lebesque integrable functions converging pointwise to f , so:

lim
n→∞

fn = f

then if there is an integrable g, such that: ∀n : |fn| ≤ g then

lim
n→∞

∫
R

fndλ =

∫
R

fdλ. (45)

Lemma 5.2.8. Let Z andW be normally distributed from the same probability space, they’re
independent if and only if Cov(Z,W ) = 0.
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5.3 Program

Note the earlier result:

a
d

dz

zjAi′(z)k

Ai(z)k+1
= a

Ai(z)k+1(jzj−1Ai′(z)k + kAi′(z)k−1Ai”(z)zj)

Ai(z)2k+2

− a
(k + 1)zjAi′(z)kAi(z)kAi′(z)

Ai(z)2k+2

=
ajzj−1Ai′(z)k

Ai(z)k+1
+
akzj+1Ai′(z)k−1

Ai(z)k
−
a(k + 1)zjAi′(z)k+1

Ai(z)k+2
.

Note again that
dn

dzn
1

Ai(z)
is a linear combination of terms of the form:

a ·
zjAi′(z)k

Ai(z)k+2
.

With j, k integers and a the multiplying coefficient.
Logic behind the code is to express these terms in triple vectors (a, j, k), starting with (1, 0, 0),
which corresponds with 1

Ai(z) , then using upper earlier result to reexpress every vector in a

matrix of 3 new vectors in every derivation step (leaving out trivial (0,0,0) vectors).
Then by using Lemma 3.3.7 redefine the matrix in terms with lower k until all k are 0, then
it’s just a matter of summing all coefficients a with corresponding j, which are powers of z.

1 import t ime i t
2 import numpy as np
3 s t a r t = t ime i t . d e f au l t t ime r ( )
4 de f d e r i v a t o r (Ai ) :
5 ob j e c t2 = np . z e ro s ( (3 , 3∗ l en (Ai [ 0 , : ] ) ) )
6 f o r i in range ( l en (Ai [ 0 , : ] ) ) :
7 a=Ai [ 0 , i ]
8 j=Ai [ 1 , i ]
9 k=Ai [ 2 , i ]

10 i f a==0:
11 ob j e c t2 [ : , 3 ∗ i ] = np . array ( [ 0 , 0 , 0 ] )
12 ob j e c t2 [ : , 3 ∗ i +1] = np . array ( [ 0 , 0 , 0 ] )
13 ob j e c t2 [ : , 3 ∗ i +2] = np . array ( [ 0 , 0 , 0 ] )
14 e l s e :
15 i f j == 0 :
16 ob j e c t2 [ : , 3 ∗ i ] = np . array ( [ 0 , 0 , 0 ] )
17 e l s e :
18 ob j e c t2 [ : , 3 ∗ i ] = np . array ( [ a∗ j , j −1,k ] )
19 i f k == 0 :
20 ob j e c t2 [ : , 3 ∗ i +1] = np . array ( [ 0 , 0 , 0 ] )
21 e l s e :
22 ob j e c t2 [ : , 3 ∗ i +1] = np . array ( [ a∗k , j +1,k−1])
23 i f k+1==0:
24 ob j e c t2 [ : , 3 ∗ i +2] = np . array ( [ 0 , 0 , 0 ] )
25 e l s e :
26 ob j e c t2 [ : , 3 ∗ i +2] = np . array ([−a ∗( k+1) , j , k+1])
27 count=0
28 f o r i in range ( l en ( ob j e c t2 [ 0 , : ] ) ) :
29 i f abs ( ob j e c t2 [ 0 , i ] ) >0:
30 count = count+1
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31 ob j e c t3 = np . z e ro s ( ( 3 , count ) )
32 l=0
33 f o r i in range ( l en ( ob j e c t2 [ 0 , : ] ) ) :
34 i f abs ( ob j e c t2 [ 0 , i ] ) >0:
35 ob j e c t3 [ : , l ]= ob j e c t2 [ : , i ]
36 l=l+1
37 re turn ob j e c t3
38 de f A i d i f f (Ai , n ) :
39 whi le n−1>0:
40 Ai = de r i va t o r (Ai )
41 n=n−1
42 re turn Ai
43 de f Kel iminator (Ai ) :
44 whi le sum( abs (Ai [ 2 , : ] ) )>0:
45 Ai2 = np . z e ro s ( (3 , 2∗ l en (Ai [ 0 , : ] ) ) )
46 f o r i in range ( l en (Ai [ 0 , : ] ) ) :
47 a=Ai [ 0 , i ]
48 j=Ai [ 1 , i ]
49 k=Ai [ 2 , i ]
50 i f k >= 2 :
51 Ai2 [ 0 , 2∗ i ] = a∗ j /( k+1)
52 i f Ai2 [ 0 , 2∗ i ] == 0 :
53 Ai2 [ 1 , 2∗ i ] = 0
54 Ai2 [ 2 , 2∗ i ] = 0
55 e l s e :
56 Ai2 [ 1 , 2∗ i ] = j−1
57 Ai2 [ 2 , 2∗ i ] = k−1
58 Ai2 [ 0 , 2∗ i +1] = a ∗(k−1)/(k+1)
59 i f Ai2 [ 0 , 2∗ i +1] == 0 :
60 Ai2 [ 1 , 2∗ i +1] = 0
61 Ai2 [ 2 , 2∗ i +1] = 0
62 e l s e :
63 Ai2 [ 1 , 2∗ i +1] = j+1
64 Ai2 [ 2 , 2∗ i +1] = k−2
65 e l i f k == 1 :
66 Ai2 [ 0 , 2∗ i ] = a∗ j /( k+1)
67 i f Ai2 [ 0 , 2∗ i ] == 0 :
68 Ai2 [ 1 , 2∗ i ] = 0
69 Ai2 [ 2 , 2∗ i ] = 0
70 e l s e :
71 Ai2 [ 1 , 2∗ i ] = j−1
72 Ai2 [ 2 , 2∗ i ] = 0
73 Ai2 [ 0 , 2∗ i +1] = 0
74 Ai2 [ 1 , 2∗ i +1] = 0
75 Ai2 [ 2 , 2∗ i +1] = 0
76 e l s e :
77 Ai2 [ 0 , 2∗ i ] = a
78 Ai2 [ 1 , 2∗ i ] = j
79 Ai2 [ 2 , 2∗ i ] = k
80 Ai2 [ 0 , 2∗ i +1] = 0
81 Ai2 [ 1 , 2∗ i +1] = 0
82 Ai2 [ 2 , 2∗ i +1] = 0
83 Ai = Ai2
84 count=0
85 f o r i in range ( l en (Ai [ 0 , : ] ) ) :
86 i f abs (Ai [ 0 , i ] ) >0:
87 count = count+1
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88 ob j e c t3 = np . z e ro s ( ( 3 , count ) )
89 l=0
90 f o r i in range ( l en (Ai [ 0 , : ] ) ) :
91 i f abs (Ai [ 0 , i ] ) >0:
92 ob j e c t3 [ : , l ]=Ai [ : , i ]
93 l=l+1
94 Ai = ob j ec t3
95 re turn Ai
96 ob j e c t2 = np . z e ro s ( ( 3 , 3 ) )
97 a=1
98 j=0
99 k=0

100 i f a==0:
101 ob j e c t2 [ : , 3 ∗ 0 ] = np . array ( [ 0 , 0 , 0 ] )
102 ob j e c t2 [ : , 3 ∗ 1 ] = np . array ( [ 0 , 0 , 0 ] )
103 ob j e c t2 [ : , 3 ∗ 2 ] = np . array ( [ 0 , 0 , 0 ] )
104 e l s e :
105 i f j == 0 :
106 ob j e c t2 [ : , 0 ] = np . array ( [ 0 , 0 , 0 ] )
107 e l s e :
108 ob j e c t2 [ : , 0 ] = np . array ( [ a∗ j , j −1,k ] )
109 i f k == 0 :
110 ob j e c t2 [ : , 1 ] = np . array ( [ 0 , 0 , 0 ] )
111 e l s e :
112 ob j e c t2 [ : , 1 ] = np . array ( [ a∗k , j +1,k−1])
113 i f k+1==0:
114 ob j e c t2 [ : , 2 ] = np . array ( [ 0 , 0 , 0 ] )
115 e l s e :
116 ob j e c t2 [ : , 2 ] = np . array ([−a ∗( k+1) , j , k+1])
117 hmpols = 7
118 f o r k in range ( hmpols ) :
119 a = Kel iminator ( A i d i f f ( object2 , 2∗ k+2) )
120 c o e f f i c i e n t s =[ ]
121 f o r z in range (2∗ hmpols ) :
122 c = np . z e ro s (2 )
123 f o r i in range ( l en ( a [ 0 , : ] ) ) :
124 i f a [ 1 , i ] == k+1−z :
125 c [0 ]= c [0 ]+ a [ 0 , i ]
126 c [1 ]=k+1−z
127 c o e f f i c i e n t s . append ( c )
128 pr in t ( ’ p ’+s t r (2∗k+2)+
129 ’ = ’+s t r ( c o e f f i c i e n t s [ 0 ] [ 0 ] )+’ ∗zˆ ’+s t r ( i n t ( c o e f f i c i e n t s [ 0 ] [ 1 ] ) ) )
130 f o r b in range ( l en ( c o e f f i c i e n t s )−1) :
131 i f abs ( c o e f f i c i e n t s [ b+1 ] [ 0 ] ) >0:
132 pr in t ( ” { : 11} ” . format ( ’+’+s t r ( c o e f f i c i e n t s [ b+1 ] [ 0 ] )+’ ∗zˆ ’+s t r ( i n t (

c o e f f i c i e n t s [ b+1 ] [ 1 ] ) ) ) )
133 stop = t ime i t . d e f au l t t ime r ( )
134 pr in t ( ’ computation time i s ’+s t r ( stop − s t a r t )+’ seconds ’ )
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