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Abstract

Urban areas have been facing the challenge of increased demand for urban transportation due to the
expansion of opportunities for activities and the growth of e-commerce. These areas constantly face
congestion, leading to more emissions and noise/air pollution. These circumstances have led to a
strong interest in sustainability in mobility and logistics in urban areas. In particular, integrating mo-
bility and logistics in a multimodal transport network instead of conventional transportation in which
mobility and logistics are handled separately has caught interest. It is expected that the utilisation of
water transit as a major means of urban transportation is important for the realisation of a sustainable
multimodal urban transport network where abundant waterways are available, and combining mobility
and logistics in the urban ferry system has the potential to provide more efficient urban transportation.
To investigate the potential of such a system, a dynamic centralised fleet management model that
optimises the operation of waterborne vessels is developed in this thesis, considering an electric wa-
terborne vessel system for heterogeneous on-demand service that serves stochastic passenger travel
and parcel delivery requests. The model dynamically optimises the operation of vessels by applying
a rolling horizon and updates the operation plan every time a new request is inserted. Two solving al-
gorithms, the exact method and the insertion heuristic, are proposed. The computational experiments
are conducted by taking the city of Fredrikstad in Norway as the case location to evaluate the solving
capability of the proposed solving algorithms and to assess the efficiency and service level of the trans-
port system by comparing the performance with the conventional fixed purpose vessels under different
demand scenarios. The demand scenarios are generated using a stochastic approach, which applies
a non-homogeneous Poisson process for passenger requests and a probabilistic approach for parcel
requests. The results suggest that the proposed insertion heuristic is capable of being applied to this
model by providing good solutions in a significantly shorter computational time. Also, combining mo-
bility and logistics results in higher efficiency and service levels for all demand scenarios than those of
the fixed purpose vessels. To conclude, a model that determines the operation of electric waterborne
vessels for on-demand heterogeneous services considering the stochasticity of the demand is devel-
oped in this thesis. The results show the capability of the proposed model to dynamically optimise the
operation and the benefits of combining mobility and logistics in vessels for heterogeneous on-demand
service.
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1
Introduction

1.1. Research Context

Mobility and logistics are essential systems for human society which base the opportunities for human
activities. After the invention and spread of automobiles, mobility and logistics drastically expanded its
reachable area in a short period, which has provided more and more opportunities for human activi-
ties. However, the expansion of human activities has led to enormous consumption of resources as
well as emissions from transport, and sustainability in mobility and logistics has been a vital challenge
worldwide. In fact, the European Green Deal sets a goal of achieving a 90% reduction in greenhouse
gas emissions from transport by 2050 (EuropeanCommision, 2021), and promotes the realisation of
connected and automated multimodal mobility. In order to realise sustainable multimodal mobility, pro-
viding highly efficient service is essential to decrease the emissions per capita for each service line and
reduce the aggregated emissions compared to transport modes for individuals. Efficient multimodal
mobility will also contribute to reducing traffic congestion and noise caused by traffic as well by enhanc-
ing modal shifts and improving the urban environment. Therefore, it is necessary to design the most
efficient service that satisfies the transport demand so that it does not hinder human activities while
ensuring the sustainability of the transport systems.

Although many urban areas are already facing traffic congestion and air and noise pollution from vehi-
cles, the rapid growth of e-commerce activities is leading to more necessity of urban freight transporta-
tion, and this growth in freight transportation in urban areas aggravates the traffic situation. One reason
for these issues is that people and freight transport are operated separately in urban areas. In fact, it
is rarely the case that a transport system in urban areas, such as buses and trams, carries parcels
in their vehicles, as well as freight vehicles, such as trucks or vans, provide transportation service for
passengers. This situation raised the idea of combining passengers and freight transportation in urban
areas to accommodate the growth of demand for urban freight transportation while maintaining the traf-
fic conditions and urban environment (Cleophas et al., 2019). However, Cleophas et al. (2019) states
that the low capacity of vehicles when combining passengers and freight transport leads to longer travel
distances to satisfy the demand. This implies the necessity of largely capacitated vehicles to combine
passenger and freight transport for more efficient urban transport.

When it comes to multimodal transport networks, land transport such as road and railway has been
the major means of urban public transportation. However, water transit also has a big potential to be
a major mode of transport in regions with abundant waterways. Urban ferry systems are implemented
in many cities with attractive rivers and canals, and they usually have a strong character as tourist
attractions rather than contributing to mobility in the region. By reflecting on the situation in which road
transport is congested and uncomfortable, interest in urban ferry systems is rising (Kamen and Barry,
2011). Despite their unreliability against weather conditions and high initial and maintenance costs
(Kamen and Barry, 2011), ferry systems can be an important part of multi-modal transport networks in
urban areas with water due to their capability to solve the hindrance between areas divided by water.

1



Chapter 1. Introduction 2

Implementing adequate ferry systems can provide better accessibility in the area and, consequently,
promote the use of multi-modal transportation rather than private cars.

Another factor of inefficient transport systems is the discrepancy between the demand and the supply
for transport services. In contrast to the homogeneity of the vehicles and the inflexibility of conven-
tional fixed-schedule transport services that are currently provided in the real world, the demand for
them drastically varies spatially and temporarily. This variety of demands provokes the inefficiency of
the transport system by creating unused capacity of the vehicles because of the over-provision of the
service compared to the demand, or insufficient transport supplies force more users to wait longer. The
solution to this mismatching of demand and supply has been studied widely by optimising the trans-
port service in terms of the capacity of vehicle units, scheduling of services, or designing a demand-
responsive transport (DRT). DRT is a type of transportation service that corresponds to demand in real
time (Alonso-González et al., 2018). Unlike the predefined scheduling and capacity, DRT dispatches
the vehicles to demand by collecting the demand information in advance. By DRT, the vehicles are
assured to have a high occupancy rate, which results in efficient transport services and better acces-
sibility to users. The flexibility in terms of routing and interior space allocation in waterborne vessels
contains the potential for the application of ride-hailing services as well as combining passengers and
freight transportation. In contrast to cars, buses or trains, which require physical infrastructure to define
the routes, waterway transits do not need predefined infrastructure for routing. This enables the agile
reaction to pick up requests by ferries. In addition, vessels have larger capacities than ride-hailing ser-
vices by car and more freedom in capacity allocation. This freedom of interior space distribution allows
us to arrange the capacity allocation by corresponding to the proportion of demand for passengers and
freight.

1.2. Research Problem

Considering the aspects mentioned above, on-demand ferry systems that correspond to the demand
for mobility and logistics have a big potential to be part of the multimodal network in urban environments
to achieve higher efficiency in urban mobility and logistics. However, only a few studies have studied
the dynamic management of fleets by considering how to handle passengers and parcels simultane-
ously. By integrating the mobility of people with the transportation of goods, the transport services will
achieve higher efficiency, and developing a model framework to optimise the operation of this service
will contribute to realising transport provides services to both passengers and parcels. In this thesis,
an electric ferry system for heterogeneous on-demand service will be considered, and a model that dy-
namically determines the operation of vessels will be developed. The impact of combining passenger
mobility and logistics will be assessed by comparing the operations of mixed purpose vessels, which
allows passengers and parcels to be on board simultaneously, and conventional fixed purpose vessels.

As mentioned before, on-demand services solve the inefficiency of fixed-schedule public transport by
removing the discrepancy between the demand and the supply. In order to achieve an efficient urban
ferry system for heterogeneous services, some decisions have to be made in operation, such as the
matching of the travel requests and the available vessels to satisfy the service and avoid inefficient
matching (e.g. matching a vessel far away from the pickup point while another vessel is closer to the
pickup point), and the route plan of vessels to serve the matched travel requests. These decisions can
be modelled by the well-known pick up and delivery problem and have been studied widely (Berbeglia
et al., 2007). While most studies consider road transport modes with small capacity, ferries are largely
capacitated in that they can simultaneously serve multiple passenger and parcel requests. The large
capacity of vessels is expected to provide more opportunities for merging requests to achieve more
efficient transportation.

1.3. Research Scope and Objective

The previous sections described the benefits and the essential aspects of operating an on-demand ur-
ban ferry system for heterogeneous services. The realisation of a well-designed ferry system as such
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requires the decisions mentioned above, which raises the importance of modelling a decision frame-
work to serve the demand in the most efficient way.

Therefore, this thesis aims to develop a model to determine the dispatching and routing of vessels
for heterogeneous on-demand service, considering the stochasticity of the demand. Moreover, it aims
to investigate the efficiency and service level of the system by comparing the capacity allocation for
mixed purpose with the conventional fixed purpose vessel system. This thesis only considers the
stochasticity in demand. The demand will be represented by a stochastic occurrence of requests from
passengers and parcels throughout the time period, and other uncertainties, such as travel time, will
not be considered in this thesis.

1.4. Research Question

The research objective and scope are narrowed down to the following research questions, which will
be answered throughout this thesis.

1) How can the dispatching of vessels be determined so that the efficiency of the water-
borne vessels system for heterogeneous on-demand service is maximised, considering
the stochasticity of the demand?

When a request from a passenger or parcel pops up, the dispatching of vessels will be decided
immediately. A model of a dynamic pick up and delivery problem that considers heterogeneous
service in a waterborne vessel system will be proposed in this thesis. The stochasticity of the
demand for the service will be incorporated to consider the real-life situation where travel/delivery
requests randomly pop up by applying a stochastic approach in generating the requests.

2) To what extent does the mixture of capacity in vessels improve the efficiency and the ser-
vice level of the waterborne vessels system?

The impact of the capacity allocation on the efficiency and the service level of the service will
be investigated by comparing the performance of the mixed purpose vessels with that of the con-
ventional fixed purpose vessels. KPIs such as total travel distance, total empty travel distance,
and request met ratio will be analysed to assess the transportation performance of each vessel
type.

1.5. Outline

The remainder of this thesis is organised as follows. In Chapter 2, the literature review is provided, and
the methodology of this thesis is described in Chapter 3. Chapter 4 describes the experiments to apply
the proposed method and their results. Then, the results and the limitations are discussed in Chapter
5. Finally, a conclusion is drawn in Chapter 6.



2
Literature Review

In this chapter, a literature review is presented to identify the research gap in the field. This thesis
considers the dynamic operation of an on-demand waterborne vessel system for heterogeneous ser-
vices. This topic is closely related to the well-known pick up and delivery problem (PDP) and one of
its variants the share-a-ride problem (SARP) (Li et al., 2014) which integrates passengers and freight
transportation. These topics have been studied widely and in different variants.

2.1. Pickup and Delivery Problem

The problem considered in this thesis is a variant of PDP. PDP is an extension of the vehicle routing
problem (VRP), which considers the “pickup” as well as the “delivery” of travel requests. In contrast,
the VRP only considers the destination since the vehicles depart from the depot. This problem has
been popularly studied.

PDP has many variants on the settings, objectives, and solving methods. Berbeglia et al. (2007) clas-
sified the static PDP into three categories, “Many-to-many”, “One-to-many-to-one”, and “One-to-one”,
which varies by the number of origins and destinations of the commodities. In a “Many-to-many” prob-
lem, any node can be an origin or a destination of the commodities. ”One-to-many-to-one” problems are
considered when some commodities are transported from the depot to customers while other commodi-
ties are transported back to the depot. In contrast, the ”one-to-one” problem gives each commodity a
single origin and destination. This type of problem consists of the well-known “Vehicle routing problem
with pick up and delivery” (Savelsbergh and Sol, 1995) and “Dial-a-ride problem” (Cordeau and Laporte,
2007). In these problems, the routing and the schedules of vehicles for a number of customers are con-
structed in the best way for the objective. Cordeau (2006) introduced a mixed integer programming
formulation of a Dial-a-ride problem and a solving algorithm called branch-a-cut algorithm. Although
the time windows of each travel request are present, this information is known in advance, so the whole
routing is constructed by one decision step. These problems are similar to the problem considered in
this thesis in a way that a ”one-to-one” problem for each passenger or parcel will be solved. However,
the aforementioned static problems require the travel information of each customer in advance to build
the route. One of the main aspects of the variants is whether or not the dynamicity is considered. PDP
arose as a static problem, in which all the information is known before the routing of vehicles is deter-
mined. In this thesis, the travel information from customers would arrive gradually and be unknown
beforehand, and thus, the problem must be solved dynamically.

The emergence of DRT services in transportation, such as Uber, led to strong research attention to
incorporate the dynamicity in PDP. In the dynamic PDP (DPDP), the request information is gradually
revealed over time. Cai et al. (2023) stated the decision types in a DPDP as to wait/leave and accep-
t/reject. When the request information is revealed at a time step, the system decides whether to accept
the request or not, and each vehicle needs to decide if to wait at the current node or leave the node and
head to the pickup node. They classified the DPDP based on aspects such as the degree of dynamism

4



Chapter 2. Literature Review 5

and the objective function.

The degree of dynamism is measured by the granularity of the time step in which new information
is revealed (frequency) and the time between a new request’s arrival and the serving of the request
(urgency) (Cai et al., 2023). Ulmer et al. (2021) developed a DPDP for restaurant meal deliveries and
conducted a case study in Iowa City. The time horizon was set to 7 hours, considering 12:00-19:00
for delivery requests, and an order could arrive every minute. They considered the cooking time and
the service time when serving requests. Pan and Liu (2023) developed a model for a dynamic vehicle
routing problem for the morning peak or evening peak, considering the uncertainty in demand during
these time periods. For this thesis, the time horizon will be set as a typical operation during a weekday
(6:00-22:00) with discrete time steps of every minute, and the urgency of requests will differ between
passengers and parcels. Passengers’ requests should be served with less waiting time, while parcel
requests are more lenient on waiting at the origins if they can arrive at the destination before the re-
quirement.

The objective functions can vary by the characteristics of the services and purpose of the study. The
objective functions mostly involve either minimising or maximising an indicator, and most of them are
related to either efficiency or the costs of transportation services. Sun et al. (2019) set the objective to
minimise the total cost of vehicle scheduling, which includes the travel cost, the penalty for not meeting
time windows, and the fixed costs for scheduling vehicles in the DPDP. Similarly, Arslan et al. (2019),
developed a DPDP with Ad Hoc drivers aiming to minimise the total cost. When it comes to costs,
several studies also aimed to maximise the profit of services (Su et al., 2022) (Bertsimas et al., 2019).
In terms of the efficiency of the services, Sitek et al. (2021) and Geiser et al. (2020) aimed to minimise
the total length of the route for their DPDP in parcel deliveries. Apart from objectives related to costs
and efficiency of the services, Aslaksen et al. (2021) proposed and optimised a combined dial-a-ride
and fixed schedule ferry service from the user perspective. It assigns the travel demand to either fixed
schedule services or an on-demand service so the user utility is maximised. In this thesis, the water-
borne vessel system will focus on the efficiency of the service. It will aim to minimise the total travel
distance since one of the interests of this thesis is to investigate the improvement of the efficiency of
mixed purpose vessels compared to the fixed purpose of vessel usage.

2.2. Combined Passengers-Goods Urban Transport

Collaborative urban transportation is a concept of collaborating urban logistics and urban transportation
in order to increase their efficiencies in the urban area and lead to less congestion and less pollution
in the urban areas. Collaborative urban transportation can be classified into two types: vertical and
horizontal (Cleophas et al., 2019). Vertical collaboration often refers to logistic systems in which differ-
ent partners/levels of the supply chain, such as suppliers, carriers, and even customers, work together
(Martin and Tom, 2016). Vertical collaboration in logistics mostly remains within the logistics sectors
and rarely involves urban passenger transport systems. In contrast, horizontal collaboration involves
multiple stakeholders at the same level in the transport system (Francesco et al., 2013). It used to
remain within the supply chain of goods, but the concept has expanded to involve the urban passenger
transport system and collaboration considers sharing the same mode, infrastructure, and information
(Cleophas et al., 2019). Collaboration of passenger transport and logistics in a dense urban envi-
ronment is expected to increase the efficiency of transport and contribute to reducing congestion, air
pollution, and emissions in transportation.

Crowd shipping is one of the concepts of combining passenger mobility and urban logistics by outsourc-
ing the delivery of urban freight to the “crowd”, mostly urban citizens (Le et al., 2019). The occasional
couriers for delivering parcels to the destination by making a small detour from the original travel route
and the couriers would receive a small compensation. This system allows freight vehicles to make less
travel by only requiring them to travel between distribution centres to small hubs in the neighbourhoods
instead of transporting the goods to every door. Therefore, it is expected to reduce traffic congestion
and air pollution and increase safety while satisfying the growing demand for last-mile delivery in urban
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areas (Sina Mohri et al., 2023). Crowd shipping requires interaction between the logistics supplier and
occasional couriers, who are not dedicated to transporting goods, and developing a crowd shipping
system involves different levels of decisions. Strategic decisions involve determining the transport net-
work so that the potential crowd shippers would effectively be involved in the logistics. Stokkink and
Geroliminis (2023) developed a model that locates depots for a crowd shipping system by simulating
the daily operational decision of assigning parcels to crowd shippers based on historical parcel delivery
records. In addition, tactical and operational decisions such as timetabling, matching of parcels and
couriers, are necessary.

The concept of crowd shipping can be extended to allow parcels to be carried by public transport
systems. Pimentel and Alvelos (2018), Masson et al. (2017) proposed models which distribute goods
in the existing passenger bus system to ensure last-mile delivery in urban environments. The model
considers the assignment of freight requests to bus fleets and also the synchronisation of micro-logistic
operation which ensures the delivery of freights to customers from bus stops. The multi-purpose ve-
hicles in urban transport will simultaneously enable the mobility of persons and freight. Chen et al.
(2022) investigated the impact of implementing multi-purpose vehicles for passengers and freight on
the PDP by comparing it with vehicle sets composed of only singular-purpose vehicles. The numeri-
cal experiment showed that fewer vehicles are required to serve all passengers and freight requests,
thus making urban transport more efficient. Similarly, Hatzenbühler et al. (2024) analysed the effect of
different operations of multi-purpose modular vehicles by solving a pickup and delivery problem. The
scenario study showed that modular vehicles saved the operation cost significantly, satisfying the de-
mand of passengers and freight, and enabling the consolidation (allowing passengers and freight to be
in the same platoon) service, which saved evenmore cost. Also, the distance of vehicles driving without
any passengers/freight was significantly reduced. This result shows the potential for higher efficiency
by combining passengers and freight in urban transportation. The collaboration not only remains in
road transport but also in the rail network. Behiri et al. (2018) addressed aspects to be considered for
integrating urban freight transport into the passenger rail network. In addition, the authors developed
a model for scheduling freight rail transport in an existing passenger rail network without distracting
passenger demand. Li et al. (2022) introduced a model to obtain the optimal timetable for trains and
freight vehicles for last-mile from station hubs. In other words, this model is a capacity matching model
that ensures the dynamic passenger demand to be served and assigns parcel demand to the excess
capacity of trains by adjusting the trains’ schedule so that the total freight transport time is minimised.
The numerical results and case study suggest the capability of train services to handle freight without
influencing passenger transport, especially during the off-peak hours of passenger demand, and the
integration will contribute to more efficient and environmentally friendly urban transport.

In the operational level of decision in crowd shipping, it is necessary to decide which transport re-
quests (demand) to exchange and plan a route to satisfy the requests. In other words, passengers and
freight ”share rides”, and several models and approaches have been studied to optimise the sharing. Li
et al. (2014) proposed a ”Share-a-Ride Problem” (SARP), which considers taxi service handling both
passengers and parcel delivery requests. The authors formulated a mixed-integer linear problem that
matches person and parcel requests and taxis to maximise the taxi company’s profit. The numerical
results showed that the performance of the system has high potential by considering the spatial distri-
bution of requests beforehand and ensuring enough capacity to serve the requests in every region of
the network. The emergence of SARP has brought attention to the field and has been studied widely.
Li et al. (2016) extended the SARP by considering stochastic travel times and stochastic delivery lo-
cations, respectively. The authors developed a two-level stochastic programming model with recourse
decisions after the information on travel times or delivery locations was revealed. The computational
results suggested the improvement of the profit by considering the stochasticity compared to determin-
istic solutions. Yu et al. (2023) extended the SARP to which there are multiple depots for the taxis to
incorporate the complexity and scattering of pickup and delivery locations for passengers and parcels,
and real life situation which taxis departing from multiple depots instead of one centralised depot. the
computational study shows an improvement in the objective function values by approximately 15% by
setting multiple depots compared to a single depot case. The SARP does not only remain within stud-
ies that consider taxi services. Zhan et al. (2023) developed a model which considers a ride-hailing
sharing between passengers and parcels by ride-hailing vehicles (RHV) and electric motorcycles(EM).
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The case study of performing the model showed a significant improvement on the profit of the platform
and drivers, as well as the number of matched requests by allowing parcels to be delivered by not only
EMs but also RHV and share a ride with passengers. Electric vehicles have also been considered in
SARP. Gao et al. (2024) introduced a stochastic SARP with electric vehicles and developed a reinforce-
ment learning approach. The model decides not only the assignment of requests to vehicles and the
routing of vehicles but also the EV charging decisions. The case study showed the capability of EVs
as a mode for sharing passengers and parcel transportation and also sharing the capacity of vehicles
improved the rewards by up to 10% compared to serving requests individually in the case study.
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2020)
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Heuristics Illustrative
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Exact: Exact method, PDP: Pick up and delivery problem, SARP: Share-a-ride problem

2.3. Summary

The review shows the variety of studies conducted in the PDP. Due to the emergence of on-demand
transport services, implementing dynamicity in PDP has caught research interest, and it has been stud-
ied in various settings. The dynamicity in the PDP has been implemented by making the travel requests
arrive gradually in the model and solving the problem iteratively throughout the time horizon. After the
emergence of SARP by Li et al. (2014), combining passengers and parcels in a ride sharing transporta-
tion has become a popular problem in the field. This problem has also been studied widely in different
settings and by adding aspects such as dynamicity and stochasticity.

However, most of these studies consider ride-sharing systems for road transport when it comes to
on-demand services. Combining passengers and parcels in a transport service has the potential to be
expanded to different modes. Because of their large capacity, urban ferry systems have the ability to
accelerate urban logistics without interfering with passenger transport. In conclusion, the contribution
of this thesis can be summarised as follows.

• Considering a dynamic pick up and delivery problem for a waterborne vessel transport
system for heterogeneous service.
A model that dynamically determines the dispatching of waterborne vessels to serve requests
from passengers and parcels will be developed in this thesis. While most of the previous studies
considered road transport such as taxis, waterborne vessels have a larger capacity than them,
and therefore, the optimal operations of the fleet are expected to differ from small capacitated
road transport.

• Considering the impact of capacity allocation of waterborne vessels for heterogeneous
service.
The flexibility of capacity allocation derived from the modularised interior of waterborne vessels
brings the possibility of dynamic capacity allocation in a vessel. In this thesis, the impact of ca-
pacity allocation on the efficiency and service level of the ferry system will be investigated by
comparing the performance of mixed purpose vessels with that of conventional fixed purpose
vessels. Mixed purpose vessels are able to serve passengers and parcels simultaneously, while
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conventional fixed purpose vessels are only able to serve one of the types of requests. As previ-
ous studies suggest in different modes, it is expected that mixed purpose vehicles provide more
efficient operation of the fleet than fixed purpose vehicles, and this hypothesis will be assessed
for a waterborne vessel system by performing the proposed dispatching model in this thesis given
the demand scenarios.

• Considering the different characteristics for passengers and parcels.
The characteristics of the demand from passengers and parcels are different. They differ in
aspects such as waiting time and the temporal distribution of demand. These aspects will be
modelled to make the problem more realistic.



3
Methodology

In this chapter, the methodology of this research is described. This thesis focuses on developing a
model of dynamic centralised fleet management of a waterborne vessel transport system which com-
bines passenger mobility and parcel delivery. Also, the benefits of combining passengers and parcels
will be investigated by comparing the transport performance between the cases in which mixed pur-
pose vessels are available and the case of conventional fixed purpose vessels. In the remaining of
this chapter, first, the theoretical benefits of the mixed purpose vessel are explained. Secondly, the
problem description and the model are presented. Afterwards, the solution methods are presented,
and finally, the indicators of the transportation performance are defined.

3.1. Proof of concept

The theoretical benefits of implementing mixed purpose vessels are explained in this section. Figure
3.1 and 3.2 illustrate simple examples of the routing of conventional fixed purpose vessels and mixed
purpose vessels, respectively. Each request has a type, either passenger or parcel. In Figure 3.1, each
vessel can only serve one of the types of requests, while the vessels in Figure 3.2 are able to handle
both types of requests. Both cases decide the routing of vessels to minimise the total distance, but
because the mixed purpose vessels can merge passenger and parcel requests in the same vessel, it
requires less total travel distance than that of conventional vessels. In the example, the total distance
of the conventional vessels is 9.4km and it is 5.8km for the mixed purpose vessels even though they
both handle the same set of requests. In addition, the total empty travel distance for the conventional
vessels is 0.8+0.5+2.0 = 3.3km, while it is 0.5+0.5 = 1.0km for the mixed purpose vessels. It is expected
that the mixed purpose vessels provide better efficiency of operations than conventional fixed purpose
vessels while serving the same demand.

10
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3.2. Problem description

The investigated problem is an extension of the pickup and delivery problem, which considers the prob-
lem dynamically and for heterogeneous service. Travel requests will be gradually inserted into the
model, and the vessels will update their routing plan immediately when the new request arrives. All
the requests in the model are served by dispatching a vessel. A rolling horizon approach is applied to
incorporate this dynamicity. Assuming each interval is τ , the time horizon T is divided into p intervals,
TS = {t1, t2, ...tp}, where p = T/τ .

A situation in which a given number of homogeneous vessels serve on-demand travel requests from
passengers and parcels will be considered. Each vessel has one of the types of ”mixed”, ”passenger”,
or ”parcel”. Mixed vessels are able to serve passenger and parcel requests simultaneously, while pas-
senger and parcel vessels are dedicated to serving the requests that the type matches. The type of
vessel is pre-defined. In a series of experiments, different vessel type combinations are experimented
to analyse the impact of the mixed purpose vessels compared to the conventional fixed purpose ves-
sels. Each vessel has a homogeneous total capacity and battery capacity. The route of vessels must
be made so the loading level on the vessel does not exceed the total capacity and the vessel has
enough battery level to complete the route. In addition, it is assumed that the vessel travels at a con-
stant speed. Therefore, it is assumed the travel time and the battery consumption between two nodes
are deterministic. Also, the battery consumption is assumed to have a positive linear correlation with
the distance between the two nodes.

Requests are inserted gradually into the model. Each request has a pick up node, delivery node,
time window, size, and type. The request type is either passenger or parcel. The time window consists
of the earliest pickup time, the maximum waiting time, and the latest delivery time. Passenger requests
will have a stricter time window than parcel requests because passengers make requests when they
want to travel to their destination, while what is important for parcel requests is to be delivered to the
delivery node before the required delivery time and the waiting time does not influence the service level.
The size and dimensions of the passengers and parcels differ in real life. In order to calculate the oc-
cupied spaces in each vessel, the size of passengers and parcels will be converted into the same unit.
Specifically, parcels will be translated into passenger units. The problem can be defined as follows:

Let G(t) = {N(t), A(t)} be the complete graph, where N(t) = {0, 1, ..., n, ..., o(k, t), o′} is the set of
nodes at time step t ∈ TS and A(t) = {(i, j), i, j ∈ N(t), i ̸= j} is the set of arcs at time step t. The
graph has nodes {0, 1, ...n} which are fixed to represent the ferry terminals. For each vessel k in the
set of vessels K, it has the current location of vessel k as the depot o(k, t) at time t, as well as the
dummy terminal o′ as arrival depot so the vessel is able to stay at the final destination of the route plan.
Nc ⊂ N(t) represents the set of nodes which has a charging facility; thus, when a vessel is dwelling at
a terminal in this set, it is possible to charge the battery of the vessel.

At time t, the set of all requests R(t) is defined as R(t) = Ra(t) ∪ Ru(t) ∪ Rs(t), where Ra(t) is
the set of assigned requests, Ru(t) is the set of unassigned requests, and Rs(t) is the set of serving
requests. When a request is assigned to be served by a vessel, the assignment will be fixed and will
not change later. Each request input in the static problem is part of only one of the sets, Ru, Ra, or Rs.
Each request r has its type s(r), which is a binary parameter: 1 if the request is a passenger request,
and 0 if the request is a parcel request. Also, they have a pickup and delivery terminal p(r), d(r), the
earliest pickup time a(r), the latest delivery time b(r), the maximum waiting time α(r), and the size of
the request q(r). For assigned and serving requests, the assigned vessels are represented as k(r),
and this is applied to formulate the constraints that once a vessel is assigned to a request, it is not
allowed to change the assignment of the vessel to the request.

Each vessel has a type pre-defined, mixed, passenger, or parcel. The set of mixed vessels, passen-
ger vessels, and parcel vessels are represented as Km,Kp,Kf , respectively. The set of all vessels
is represented as K = Km ∪ Kp ∪ Kf . The vessel type limits the type of requests the vessel can
serve. Mixed vessels can serve both passenger and parcel requests, while passenger vessels can
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only serve passenger requests, and parcel vessels can only serve parcel requests. Apart from the
type of vessel, each vessel has a homogeneous property regarding the total loading capacity and the
battery. The loading capacity of a vessel and the battery capacity are represented as parameters C
and B, respectively. In this model, vessels are assumed to travel at a constant speed of v. Because
of this assumption, the battery consumption is assumed to have a positive linear relationship with the
travel distance of the vessel. δij represents the battery consumption between two nodes i, j ∈ N(t)
and is calculated by rcdij , where dij is the distance between two nodes and rc is the consumption rate
of battery per distance. At a terminal with a charging facility, vessels always charge their batteries at a
constant rate of η. At each time step, the battery levels of vessels are input as the initial battery level
of the static problem and are represented as e(k, t) for each vessel k at time t.

The decision variables of this problem are related to the routing of the vessels. xk
ij is a binary vari-

able, 1 if vessel k ∈ K travel between node i, j ∈ N(t), otherwise 0. ykrij is also a binary decision
variable which is 1 if vessel k ∈ K travel between node i, j ∈ N(t) serving request r ∈ R(t), otherwise
0. zkij is a binary variable 1 if node i ∈ N(t) precedes (not necessarily immediately) node j ∈ N(t) in
the route of vessel k ∈ K, otherwise 0 and is used for sub-tour elimination.

In addition to the decision variables, variables related to the time domain and the battery level are
defined. tki , t

′k
i , t

k
i , t

′′k
i are the arrival time, service start time, service end time, necessary service time

at node i ∈ N(t) by vessel k ∈ K, respectively. Similarly, tkri , t′kri , tkri , t′′kri are the arrival time, service
start time, service end time, necessary service time for request r ∈ R(t) at node i ∈ N(t) by vessel
k ∈ K, respectively. The battery level of vessel k ∈ K upon arrival at node i ∈ N(t) is defined as βk

i

and β
′k
i on departure. The service time in this problem is representing the time passengers and parcels

need to board and get off the vessel.

Table 3.1 is the list of all the notations defined for the model. It is worth noting that the sets are time-
dependent, which is because the network graph G(t) changes by including the current locations of
vessels as temporal nodes. Also, the requests are possible to transfer between sets or to be newly
input, or to be removed after complete serving, so at each time step the sets related to requests are
also different. After the notations, the mathematical formulation of the problem is proposed.

Table 3.1: Notations of the model

Notation Description

Sets

Km Set of mixed purpose vessels

Kp Set of passenger dedicated vessels

Kf Set of parcel dedicated vessels

K Set of all vessels. K = Km ∪Kp ∪Kf

N(t) Set of nodes at time t

Nc Set of nodes with charging facilities

A(t) Set of arcs at time t

R(t) Set of all requests at time t. Ra(t) ∪Ru(t) ∪Rs(t).

Ra(t) Set of assigned requests at time t

Ru(t) Set of unassigned requests at time t

Rs(t) Set of currently serving requests at time t

O(t) Set of departing depots for vessel k ∈ K at time t
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Parameters

C Capacity of each vessel

B Battery capacity of each vessel

η Charging rate of the battery per time

v Speed of each vessel

o′ dummy arrival depot

t Time step in the scheduling horizon

dij Travel distance from node i ∈ N(t) to node j ∈ N(t)

δij
Battery consumption when travelling from node i ∈ N(t) to node j ∈
N(t)

s(r)
Binary parameter, 1 if the request is a passenger request, 0 if the request
is a parcel request.

k(r) Assigned vessel to request r ∈ Ra(t) ∪Rs(t)

p(r) Pickup terminal of request r ∈ R(t)

d(r) Delivery terminal of request r ∈ R(t)

a(r) The earliest pickup time of request r ∈ R(t)

b(r) The latest delivery time of request r ∈ R(t)

α(r) Maximum waiting time for request r ∈ R(t)

q(r) Size of request r ∈ R(t)

o(k, t)
The location of vessel k ∈ K at time t, which is the departing depot of
vessel k.

e(k, t) Battery level of vessel k ∈ K at time t

Variables

tki Arrival time at node i ∈ N(t) of vessel k ∈ K

t
′k
i Service start time at node i ∈ N(t) by vessel k ∈ K

t
k
i Service end time at node i ∈ N(t) by vessel k ∈ K

t
′′k
i Necessary service time at node i ∈ N(t) by vessel k ∈ K

tkri
Request arrival time at node i ∈ N(t) for request r ∈ R(t) by vessel
k ∈ K

t
′kr
i Service start time for request r ∈ R(t) at node i ∈ N(t) by vessel k ∈ K

t
kr
i Service end time for request r ∈ R(t) at node i ∈ N(t) by vessel k ∈ K

t
′′kr
i

Necessary service time for request r ∈ R(t) at node i ∈ N(t) by vessel
k ∈ K

βk
i Battery level of vessel k ∈ K when it arrived at node i ∈ N(t)

β
′k
i Battery level of vessel k ∈ K when it departed from node i ∈ N(t)

Decision variables

xk
ij

Binary variable, 1 if vessel k ∈ K travel using arc (i, j) ∈ A(t), otherwise
0.

ykrij
Binary variable, 1 if vessel k ∈ K travel using arc (i, j) ∈ A(t) serving
request r ∈ R(t), otherwise 0.
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zkij
Binary variable, 1 if node i ∈ N(t) precedes (not necessarily immedi-
ately) terminal j ∈ N(t) in the route of vehicle k, otherwise 0

3.3. Mathematical model

For each time step, the following mathematical programming model is proposed. The model is built by
modifying the study from Zhang et al. (2023).

Objective function

min
∑
k∈K

∑
i∈N

∑
j∈N

dijx
k
ij (3.1)

Subject to:∑
j∈N(t)

xk
o(k,t)j = 1 ∀k ∈ K (3.2)

∑
j∈N(t)

xk
o(k,t)j =

∑
j∈N(t)

xk
jo′ ∀k ∈ K (3.3)

xk
ij ≤ zkij ∀(i, j) ∈ A(t), k ∈ K (3.4)

zkij + zkji = 1 ∀(i, j) ∈ A(t), k ∈ K (3.5)

zkij + zkjp + zkpi ≤ 2 ∀i, j, p ∈ N(t), k ∈ K (3.6)∑
k∈K

∑
j∈N(t)

ykrp(r)j = 1 ∀r ∈ Ru(t) (3.7)

∑
k∈K

∑
i∈N(t)

ykrid(r) = 1 ∀r ∈ Ru(t) (3.8)

s(r)ykrij = 0 ∀(i, j) ∈ A(t), k ∈ Kf , r ∈ R(t) (3.9)

(1− s(r))ykrij = 0 ∀(i, j) ∈ A(t), k ∈ Kp, r ∈ R(t) (3.10)∑
i∈N(t)

x
k(r)
ip(r) = 1 ∀r ∈ Ra(t) (3.11)

∑
j∈N(t)

y
k(r)r
p(r)j = 1 ∀r ∈ Ra(t) (3.12)

∑
i∈N(t)

y
k(r)r
id(r) = 1 ∀r ∈ Ra(t) ∪Rs(t) (3.13)

∑
j∈N(t)

y
k(r)r
o(k,t)j = 1 ∀r ∈ Rs(t) (3.14)

∑
i∈N(t)

ykrid(r) −
∑

j∈N(t)

ykrp(r)j = 0 ∀k ∈ K, r ∈ Ra(t) ∪Ru(t) (3.15)

∑
j∈N(t)

xk
ij −

∑
j∈N(t)

xk
ji = 0 ∀k ∈ K, i ∈ N(t)\O(t), o′ (3.16)

∑
j∈N(t)

ykrij −
∑

j∈N(t)

ykrji = 0 ∀k ∈ K, r ∈ Ra(t) ∪ Ru(t), i ∈
N(t)\p(r), d(r)

(3.17)
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∑
j∈N(t)

ykrij −
∑

j∈N(t)

ykrji = 0 ∀k ∈ K, r ∈ Rs(t), i ∈
N(t)\p(r), d(r), O(t)

(3.18)

ykrij ≤ xk
ij ∀(i, j) ∈ A(t), k ∈ K, r ∈ R(t) (3.19)

tki ≤ t
′kr
i ∀i ∈ N(t), k ∈ K, r ∈ R(t) (3.20)

t
′kr
i ≤ t

′k
i ∀i ∈ N(t), k ∈ K (3.21)

t
kr
i ≤ t

k
i ∀i ∈ N(t), k ∈ K, r ∈ R (3.22)

tki ≤ tkri ∀i ∈ N(t), k ∈ K, r ∈ R(t) (3.23)

t
′′k
i =

∑
r∈R(t)

t
′′kr
i ∀i ∈ N(t), k ∈ K (3.24)

t
k
i = t

′k
i + t

′′k
i ∀i ∈ N(t), k ∈ K (3.25)

t
′′kr
i + t

′kr
i ≤ t

kr
i +M(1− ykrij ) ∀i, j ∈ N(t), k ∈ K, r ∈ R(t) (3.26)

a(r)ykrij ≤ tki ∀(i, j) ∈ A(t), k ∈ K, r ∈ R(t) (3.27)

t
kr
i ≤ b(r)(ykrij +M(1− ykrij )) ∀(i, j) ∈ A(t), k ∈ K, r ∈ R(t) (3.28)

t
k
i + dij/v − tkj ≤M(1− xk

ij) ∀(i, j) ∈ A(t), k ∈ K (3.29)

t
k
i + dij/v − tkj ≥M(1− xk

ij) ∀(i, j) ∈ A(t), k ∈ K (3.30)

t
′kr
p(r)−a(r) ≤ α(r)ykrp(r)j+M(1−ykrp(r)j)+M(1−s(r)) ∀j ∈ N(t), k ∈ K, r ∈ Ra(t) ∪Ru(t) (3.31)∑

r∈R(t)

ykrij q(r) ≤ Cxk
ij ∀(i, j) ∈ A(t), k ∈ K (3.32)

βk
o(k,t) = e(k, t) ∀k ∈ K (3.33)

β
′k
i = βk

i ∀i ∈ N(t)\Nc, k ∈ K (3.34)

β
′k
i = min(B, bki + η(t

k
i − tki )) ∀i ∈ Nc, k ∈ K (3.35)

βk
i ≥ 0.2B ∀i ∈ N(t), k ∈ K (3.36)

β
′k
i − δij − βk

j ≤M(1− xk
ij) ∀(i, j) ∈ A(t), k ∈ K (3.37)

β
′k
i − δij − βk

j ≥ −M(1− xk
ij) ∀(i, j) ∈ A(t), k ∈ K (3.38)

xk
ij , y

kr
ij , z

kr
ij ∈ {0, 1} ∀(i, j) ∈ A(t), k ∈ K, r ∈ R(t) (3.39)

The objective function (3.1) is to minimise the total travel distance of all vessels. The objective of this
system is to serve the travel requests in the most efficient way, and minimising the total travel distance
indicates the maximum efficiency of the system.

Constraints (3.2) - (3.15) are the typical PDP constraints. Constraints (3.2), (3.3) ensure a vessel
will leave the depot and arrive at the end depot. Constraints (3.4) - (3.6) are the subtour elimination
constraints. Constraints (3.7) - (3.15) ensure that a request is either only served by one vessel or not
served, and if the request is served, it is picked up and delivered by the same vessel. In the case of
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assigned and serving requests, the vessel is already determined as k(r). Constraints (3.9) and (3.10)
restrict the assignment of requests to vessels if the request and vessel type do not match.

The flow conservation constraints are set as well. Constraints (3.16) and (3.17), (3.18) are the flow
conservation constraints in terms of the vessel’s route and request’s route. Constraints (3.19) ensure
if a request is being served between two nodes, the vessel travels between the two nodes.

Constraints (3.20) - (3.31) are related to the time constraints. Constraints (3.20) ensure the service
start time for a request is after the vessel arrives at the terminal. Constraints (3.21) define the vessel’s
last service start time. Constraints (3.22) ensure the vessel only departs after all services are completed.
Constraints (3.23) maintain the arrival time of a vessel and requests at the terminal. Constraints (3.24)
determine the necessary service time for a vessel by summing all requests’ necessary service time.
Constraints (3.25) determine the service end time of a request by adding the necessary service time
to the service start time. Constraints (3.27) and Constraints (3.28) are the time windows of requests.
Constraints (3.29) and Constraints (3.30) define the deterministic travel time between two nodes. Con-
straints (3.31) are the maximum waiting time for a request. For parcel requests, the maximum waiting
time constraint is loosened by big M because the waiting time for parcels does not matter as long as
the delivery time window is respected in constraint (3.28). This is implemented by the parameter s(r),
which specifies the type of request, and s(r) is equal to 0 for parcel requests.

Constraints (3.32) are the capacity constraints. Constraints (3.33) - (3.38) are related to the battery
level of the vessels. Constraints (3.33) conserve the initial battery level at each time step. Constraints
(3.34) keep the battery level when arriving if the node is not a charging terminal, and constraints (3.35)
describe the charging of vessels but never exceed the battery capacity. Constraints (3.36) limit the
battery level of vessels to never go under 20% of the battery capacity, and constraints (3.37) and (3.38)
describe the deterministic battery consumption between two nodes. Finally, Constraints (3.39) are the
domain of the decision variables.

3.4. Dynamic framework

Given the demand from passengers and parcels and the service of the ferries, the dispatching of the
fleet will be determined dynamically. The demand is described as a set of individual travel requests.
This is because an on-demand service is assumed for both passenger and parcel requests in this thesis.
The dynamicity of the model is incorporated by applying a rolling horizon approach. Figure 3.3 shows
the flow of the dynamic optimisation. During the rolling horizon, the model will solve a static subprob-
lem explained in Section 3.2 to update the routing and scheduling of the vessels by taking into account
the new request when a new request is inserted. The new route plans will be pursued by the vessels
until the next time step when a new request appears. In the next time step, the status of vessels, such
as their locations, loading levels, and battery levels, will be updated based on the route plan. Also,
the request statuses will be updated accordingly. Requests can be failed, serve-complete, serving,
assigned, or unassigned. Failed means a request was rejected and will not be served, serve-complete
means the request was served, serving indicates the request is currently being served on a vessel,
assigned has a vessel assigned and is waiting to be served at the origin, and unassigned means the
request does not have a vessel assigned yet. It is assumed that assigned requests cannot be newly
assigned to a different vessel once the assignment is determined, despite the fact that there might be
some cases in which the reassignment of requests to vessels leads to better efficiency. These updated
statuses of the vessels and requests will be inherited in the next time step and will act as constraints
to determine the next route plan. This process continues until the time steps reach the end of the time
horizon. In this way, this model is able to optimise the full day of the operation of waterborne vessels
for heterogeneous services.
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Scheduling time horizon starts

Time step t=t+1

Solve static subproblem

Update routing and scheduling

Is it the last time step?

New information
 New requests

Scheduling time horizon ends

Is there any new request? Update vessels’ statuses
 Vessel location
 Vessel loading
 Vessel battery
 Vessel routing and scheduling 

plan

Update requests statuses
 Failed
 Serve-complete
 Serving
 Assigned
 Unassigned

Yes

Yes

No

No

Figure 3.3: Flow chart for the dynamic optimisation

3.4.1. Status updating

Before executing the optimisation of the static subproblem at a time step, the vessels and requests
status is updated by pursuing the route plan obtained in the previous time step. The vessels’ status
consists of their location, loading levels, and battery levels. For convenience, the methods of status
updating are explained by using an example. Consider a simple example as shown in Figure 3.4. Let τ
be a time step in the time horizon, and vessel k obtains a route plan departing from its current location
o(k, τ). The vessel is at location (φk

τ , θ
k
τ ) at time τ and node 0 and node 1 has locations of (φ0, θ0)

and (φ1, θ1), respectively. Two requests r0 and r1 will be served by this vessel. Request r0 is already
on board at time τ and must be delivered to node 1. Request r1 is assigned to the vessel and is
waiting to be picked up at node 0 and to be delivered to node 1 by the vessel. The vessel departs the
current location immediately with a battery level of e(k, τ) at time τ . It arrives at node 0 by travelling
at a constant speed so the arrival time at node 0 is tk0 = τ + do(k,τ)0/v, where do(k,τ)0 is the distance
between the current location and node 0. On arrival, the vessel has a battery level of βk

0 . At node 0,
request r1 boards on the vessel so it requires a service time t

′′k
0 to complete the boarding. Since node

0 has a charging facility, the battery of the vessel is being charged at a constant rate η while dwelling
at node 0. In the next trip between node 0 and node 1, both requests are on board. Similar to the first
trip, the arrival time to node 1 is the summation of the departure time from node 0 and the deterministic
travel time between node 0 and node 1. Battery consumption is also assumed to be deterministic and
has a positive linear correlation with travel distance. Therefore, the battery level upon arrival to node 1
is βk

1 = β
′k
0 − rcd01, where rc is the consumption rate of battery per kilometre.
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Figure 3.4: Example of route plan at time τ

When a new request pops up at time τ
′
(> τ), the vessel and request statuses are updated before

deciding the new route including the new request based on the assumption that the vessel is pursuing
the route in Figure 3.4 until τ ′ . There are three possibilities to consider when updating the statuses.

Vessel is in the middle of a trip

The first case is when the vessel is in the middle of a trip, such as the trip between depot and node
0 or from node 0 to node 1. In this case, the location of the vessel at time τ

′ is obtained by linear
interpolation between the origin and the destination of the trip. For instance, when τ < τ

′
< tk0 , the

origin and the destination of the trip is (φk
τ , θ

k
τ ) and (φ0, θ0). Figure 3.5 shows the example of when a

vessel is in the middle of a trip, using the same example from Figure 3.4. Therefore, the location of the
vessel at time τ

′ , (φk
τ ′ , θkτ ′ ) is calculated as,

φk
τ ′ = φ0 +

τ
′ − τ

tk0 − τ
(φ0 − φk

τ )

θk
τ ′ = θ0 +

τ
′ − τ

tk0 − τ
(θ0 − θkτ )

The battery level e(k, τ ′
) is calculated by obtaining the distance between the origin and the current

location. By taking the same trip as an example, the distance between the origin and the current
location represented as do(k,τ ′ )o(k,τ) is applied to obtain the battery level e(k, τ

′
),

e(k, τ
′
) = e(k, τ)− rcdo(k,τk)o(k,τ)

The same approach for location and battery level is applied for the trip between node 0 and node 1.

In terms of the request, when the request is on board during the trip, its status is ”serving”. Other
requests are either ”serve-complete” if the delivery is completed before the trip or ”assigned” if the
request is still waiting at its pick up node.
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Figure 3.5: Example of when a vessel is in the middle of a trip at time τ
′

Vessel is dwelling at a node

The second case is when the vessel is dwelling at a node and still has trips to complete. If tk0 ≤ τ
′ ≤ t

k
0 ,

the vessel is dwelling at node 0 to pick up request r1 (Figure 3.6). In this case, the location of the vessel
is the same as node 0, (φk

τ ′ , θkτ ′ ) = (φ0, θ0). The battery level depends on whether the dwelling node
has a charging facility. If the node does not have a charging facility, the battery level remains the same
as when the vessel arrived at the node. If the node has a charging facility, as in node 0 in the example,
the battery is charged at a constant rate η in time until the battery level reaches the battery capacity.
The battery level at time τ

′ is calculated as follows in this case.

e(k, τ
′
) = min(B, βk

0 + η(τ
′
− tk0))

Request r0 is still in ”serving” and request r1 is in ”assigned” when the vessel is dwelling at node 0.
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Figure 3.6: Example of when a vessel is dwelling at a node at time τ
′
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Vessel completed the route

The last case is when the vessel has completed the route. Figure 3.7 shows the example of route
completion. When τ

′ ≥ tk1 , the vessel has completed the route plan obtained in time τ , and is staying
at the final destination of the route, which is node 1. Therefore, the location of the vessel (φk

τ ′ , θkτ ′ ) =

(φ1, θ1). In the example, the battery level of the vessel at time τ
′ remains the same as when it arrived

at node 1 since node 1 does not have a charging facility. Therefore, e(k, τ ′
) = βk

1 . In case the final
destination has a charging facility, the battery is assumed to be charged every time a vessel is dwelling
at the node so the battery will be charged as explained in the case of dwelling at node 0. As the entire
route plan for the vessel is pursued in this case, both requests are in ”serve-complete” status.
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Figure 3.7: Example of when a vessel has already completed the route at time τ
′

3.5. Solving methods

The formulated optimisation problem will be solved in two approaches in this thesis: the exact method
using Gurobi and the insertion heuristics. The exact method is a method which tries to find the global
optimum every time a problem is solved. However, it requires a lot of computational resources and time
to find the global optimal solution since the problem is a combinatorial problem. In contrast, heuristics
are methods that provide solutions with good quality in a short time but are not guaranteed to be the
global optimum. Some techniques suitable for the problem are implemented to find a good solution in
a short time to prevent heavy computation time, as the exact method requires for complex problems.
In this thesis, a simple insertion heuristic is developed to determine the route plans of vessels.

3.5.1. Exact method

Exact methods in optimisation are those which ensure that they give the optimal solutions that are
proven to be global optimum for a problem. Gurobi Optimiser is a commercial solver that uses math-
ematical optimisation to find the optimal solutions to problems. Gurobi provides a package in Python,
and this package is used for the exact method for the problem in this thesis.

In principle, a node can only be visited once. However, it is possible to encounter a situation in which a
vessel needs to visit a particular terminal multiple times, especially in the patterns in which the vessel’s
purpose is fixed to one service. Figure 3.8a illustrates an example in which a vessel requires multiple
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visits to the same terminal. A vessel departs Terminal 1 to deliver a request to Terminal 2, and after-
wards, it picks up two other requests from Terminal 3, which is requesting Terminal 1 and Terminal 4
as the destinations, respectively. In this case, the vessel needs to visit Terminal 1 again to deliver the
new request. These situations cannot be handled by a MIP with only one node per terminal. In order to
allow multiple visits to a terminal, the network nodes can be duplicated in the model (see Figure 3.8b)
(Koyuncu and Yavuz, 2019). In this way, the vessel is able to visit the same terminal by visiting the
duplicated nodes, which have the same attribute as the original node but different unique IDs. This ap-
proach still maintains a node to be visited only once, while in reality, the terminal can be visited multiple
times through different nodes. It is important to note that the duplication of nodes amplifies the network
size. For instance, if there are 4 nodes in the original network and then allow 3 visits, the network
consists of 12 nodes. It is expected that this expansion of the network requires more computational
time to obtain the solution. The model duplicates the nodes three times in the model.

(a) Example of a terminal needs multiple visits (b) Example of the duplicated nodes

Figure 3.8: Example of multiple visits to a node and duplication of nodes

In a dynamic optimisation, it is important to react to the changes in the situation and provide routing
plans to the fleet in a quick manner so the fleet is quickly able to adjust its operations. Therefore, in
dynamic optimisation, the solving time of each time step is limited to a short time. Since the problem is
a complex combinatorial problem, it is possible that the solver encounters situations in which it cannot
find a feasible solution within the time limit. In this case, the model will keep the previous route plan,
and the newly inserted requests’ assignment will be postponed to the next time step until the requests
become infeasible. The vessels are assumed to keep pursuing the previous route plan until the next
step when the solver manages to find a feasible solution.

3.5.2. Insertion heuristic

The proposed linear programming is a variant of PDP and is widely studied. It is known that the com-
plexity of these combinatorial optimisation problems is proven to be NP-hard (Savelsbergh and Sol,
1995) and requires computational resources to solve large instances. Therefore, solving algorithms
and heuristics/metaheuristics for similar problems have been widely studied. Insertion heuristic is a
popular method for solving routing problems. Insertion heuristics considers the routes of vehicles as
a sequence of nodes, such as (0, 1, 2, 3). This sequence indicates the order of the nodes to visit. For
instance, in this case, node 0 is visited first, and then node 1 and node 2 are visited sequentially, and
the route ends at node 3. Given the route of a vehicle and the set of new requests with the origin and
the destination, it is possible to construct the next route plan by inserting the origin and destination
nodes in the current sequence of nodes. By taking the example from before for the current route and
assuming a new request with the origin and the destination of (4, 5), node 4 and node 5 can be inserted
in the sequence, such as (0, 1, 4, 2, 5, 3). It is important to note that the origin node must always be
positioned before the destination node. There are several algorithms that effectively insert the nodes
to obtain a reasonable route plan. Greedy insertion is a simple algorithm that tries all possible solutions
for insertion (Ghilas et al., 2016). It investigates all possible combinations of insertion, and therefore,
it is more computationally expensive than other insertion methods such as random insertion, nearest
insertion, or cheapest insertion (Zhang et al., 2023). However, since greedy insertion provides all possi-
ble combinations of the sequence, it is effective to find a feasible solution for a problem in a reasonable
computation time, depending on the size of the problem.

In this thesis, the greedy insertion heuristic will be applied to accelerate the optimisation of the ves-
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sel operation at each time step of the rolling horizon. A greedy insertion is applied for several reasons.
The first reason is its exploration ability. Greedy insertion investigates all the possible insertions in
the current route. Therefore, there is no risk of not finding a better sequence regarding the objective
function. Since the objective function of the problem is to minimise the total travel distance, the greedy
insertion will find the best insertion position of the nodes so the total travel distance is minimised. The
second reason is the size of the problem. This thesis considers a dynamic pick up and delivery problem
for heterogeneous service in a rolling horizon manner. It determines the routing and scheduling of the
vessels every time (a) new request(s) popup. Therefore, at every time step, the amount of travel re-
quests inserted into the system is expected to be smaller than the traditional static pick up and delivery
problem. In a traditional static pick up and delivery problem, it is expected to provide a good feasible
solution in a short time for large instances since all demand is known a-priori. Therefore, more efficient
insertion algorithms such as nearest insertion and Adaptive Large Neighbourhood Searching (Ghilas
et al., 2016) have been studied in different cases. However, the problem in this thesis is less likely to
encounter large instances, and therefore, it is possible to obtain a good, feasible solution by greedy
insertion in a short computational time.

The insertion heuristic is developed based on the following assumptions.

• Vessels serve the requests as soon as possible. It does not wait to serve a request, even if there
is a margin until the delivery time window.

• Related to the above assumption, vessels do not charge their batteries longer if they are already
above 20% of the capacity and will pursue the route. It does not wait to serve a request in order
to charge the battery.

• Once a request is assigned to a vessel, the assignment of the vessel does not change.

These assumptions allow the scheduling of visits to each node to be simplified and to be easier to
assess the feasibility of the route. Based on the sequence of node visits, the route plan can be con-
structed, including the time domain, the battery level, the loading of vessels, and the serving requests.

The insertion algorithm for the dynamic pickup and delivery problem solved in a rolling horizon is il-
lustrated in Algorithm 1. When a new request pops up while rolling the time horizon, the algorithm
creates a new sequence and its associated route plan for each vessel trying to serve the new requests.
Firstly, the locations of the vessels and the request status are updated based on the assumption that
the vessels are pursuing the previous route plan. The locations are updated in the way mentioned
in Section 3.4.1. Also, the requests in the previous route plan can have different statuses from when
the previous route plan was generated. The previous requests can be in one of the statuses assigned,
serving, or serve-complete. The next step is to limit the positions of insertion of the new requests’ origin
and destination nodes in the sequence.

Each new request has a pickup and delivery time window, as well as a request type of either passenger
or parcel. This information is applied to limit the position of insertion in the previous route plan to make
at least the new requests feasible. Regarding the type of request, the request can only be served by
either a mixed purpose vessel or a fixed purpose vessel with the same request type assigned. When
a fixed purpose vessel is present, requests that do not match the type with the vessel type cannot be
served by the vessel; thus, the insertion of the origin and destination nodes in the sequence of this
vessel is prohibited. This constraint does not apply to mixed purpose vessels.

The route plan contains the time information about when the vessel arrives and departs each node
of the route. This information provides the minimum requirement of by which position in the sequence
the request has to be picked up and delivered. For instance, consider an example of a vessel with
a sequence of (0, 1, 2, 3) with a route plan such as in Table 3.2. Assume that two requests r0 and r1,
which r0 is at serving status and r1 is at assigned status. Let a new request r2 with pick up node and
a delivery node of (p(r2), d(r2)) = (4, 5) and a pickup time window of 25 ≤ a(r2) ≤ 40, and a delivery
time window of b(r2) ≤ 65. In this case, the request has to at least be picked up before the vessel visits
node 2 and has to be delivered before the vessel visits node 3. Therefore, the origin node 4 has to
be inserted before node 2 appears in the sequence, and node 4 has to be inserted before node 3 and
after node 4. As a result, the possible new sequences are (0, 4, 5, 1, 2, 3), (0, 4, 1, 5, 2, 3), (0, 4, 1, 2, 5, 3),
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Table 3.2: Example of the route plan of a vessel

Trip Origin Destination Departure time Arrival time Serving requests

Trip 1 node 0 node 1 25 30 [r0]

Trip 2 node 1 node 2 35 50 [r0, r1]

Trip 3 node 2 node 3 60 70 [r1]

(0, 1, 4, 5, 2, 3), (0, 1, 4, 2, 5, 3). This information enables us to identify the maximum index of the inser-
tion position of the new requests’ origins and destinations into the current sequence. These constraints
are generated for each new request before the model generates all possible sequences with the new
nodes inserted. After the constraints are generated, all the possible sequences and the corresponding
route plans are generated. At the same time, the objective value, which is the total travel distance, is
calculated by simply adding the distances between the two nodes appearing in the sequence sequen-
tially. The set of possible sequences and routes are sorted by the objective value for the next step to
check the feasibility of the routes. Although the time feasibility of the new requests is secured in the
constraints by the insertion positions, the new route plan is generated based on the aforementioned
assumptions and it is necessary to check the feasibility of the new routes considering all the requests
being served by the vessel, as well as the loading and battery capacity of the vessel. The constraints
are the same as what is described in Section 3.3. The loading of a vessel must not exceed the capacity
of the vessel, the battery level of the vessel must not become below 20% of the battery capacity, and
the time windows of all requests must be respected. If one or more than one of the constraints are
violated, the route becomes infeasible and will not be kept. The feasibility check starts from the route
plan with the lowest objective value, and it continues until a feasible route plan is found. This route plan
will be the next route plan for the vessels and will be pursued until the next time step a new request
pops up. This process continues until the time horizon is completed.
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Algorithm 1 Insertion algorithm with new requests
1: for t in TS do
2: if new request arrives then
3: Input: new_requests, route_plan

4: // Update current location of vessels and requests’ states
5: current_locations, requests_status← update_status(previous_route_plan)

6: // Limit insertion positions of new requests
7: feasible_positions← []
8: for r in new_requests do
9: limitr ← find_limit_position(r)
10: feasible_positions.append(limitr)
11: end for

12: // Create route plans for possible insertions and calculate the objective value
13: possible_routes← generate_possible_routes(feasible_positions)
14: objective_values← calculate_objective_values(possible_routes)

15: // Check feasibility of routes and remove infeasible ones
16: feasible_routes← []
17: for γ in possible_routes do
18: if capacity(γ) and time(γ) and battery(γ) then
19: feasible_routes.append(γ)
20: end if
21: end for

22: // Retrieve the route plan with the best objective value
23: best_route_plan← get_best_route(feasible_routes, obj)

24: // Update the route plan
25: route_plan← best_route_plan
26: end if

27: Go to the next time step
28: end for
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Algorithm 2 and Algorithm 3 shows the flow of the route plan construction. The route plan construc-
tion takes a sequence, requests’ information, and the tracking of requests and vessels as input. The
tracking keeps track of the assignment of requests to vessels. The first step is to identify in which trips
the requests are being served. Each request has an origin and destination node, and the sequence
should contain these nodes appearing in order. The first time the origin node appears in the sequence
is when the request boards, and the first time the destination node appears after the appearance of the
origin node is when the request is getting off the vessel. The indices which the request boards and gets
off the vessel are identified in Algorithm 2. It searches for the first index which the value matches with
the origin node and the destination node for each request. The service for unassigned and assigned
requests has not started at the time step, based on the definition of request status. Therefore, Both the
boarding and getting off indices for these requests are searched in this algorithm (line 3-17). However,
the serving requests are already on board when in this time step, which means only the getting off index
for each serving request is necessary to search (line 18-27).

The boarding information obtained in Algorithm 2 is utilised to construct the new route plan. Based
on the boarding information, it is possible to identify which requests are involved in each trip (boarding,
on board, getting off). A trip is built between two consecutive nodes in the sequence. Each trip has
a departure time from the origin, arrival time at the destination, the battery level upon departure and
arrival, the serving requests, and the loading level. At time tt, the new sequence for a vessel is fixed
to start from the current location and will depart the current location at time tt. The travel time between
the current location and the next terminal is calculated from the distance between the two nodes and
is deterministic. In the case in which the current location is the same as one of the terminals, which
indicates the vessel is dwelling at the terminal, a trip from the current location node and the terminal
node is generated with a travel time of zero. It is modelled in this way to satisfy the constraint that the
vessels must leave the current location.

Between the arrival at a terminal and the departure from a terminal, requests originating from the ter-
minal must board. Therefore, the service time of the requests must be considered before the next trip.
The service time for each request is assumed to be dependent on the request size, and the necessary
service time for a vessel at a terminal is assumed to be the sum of the service time of individual re-
quests boarding or getting off at the terminal. While a vessel is dwelling at a terminal, the battery will
be charged if the terminal has a charging facility. When the terminal does not have a charging facility,
the battery level upon departure will be the same as when the vessel arrives at the terminal. However,
if the terminal has a charging facility, the battery would be charged at a constant rate for the duration
of the vessel’s dwell at the terminal. As mentioned before, it is assumed that the vessel will leave the
terminal as early as possible. Therefore, the vessels will not dwell and charge their battery for more
than necessary to pursue the route plans. Also, the battery level will never be above its capacity B.
The battery consumption between two nodes are assumed to be deterministic and has a positive cor-
relation with the distance between the two nodes, which is represented as δij , when the vessel travels
from node i to node j.

Since the boarding information is available, it is known in which trips each request is served. There-
fore, the total loading as well as the loading per request type are calculated by summing the size of
requests on the trips. The loading information will be applied to assess the feasibility of the route later,
as explained in Algorithm 1.
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Algorithm 2 Boarding position identification for insertion heuristic
1: Input seq,Rs, Ra, Ru, track
2: Initialise the boarding position in the sequence boardr ← (0,−1)∀r ∈ R = Rs ∪Ra ∪Ru

3: for all r ∈ Ra ∪Ru do
4: Assigned vessel to each request k(r) = track(r)
5: Pick up and delivery node (p(r), d(r))
6: // Find the indices of boarding and getting off
7: for ind ∈ range(length(seq[k(r)])) do
8: if seq[(k(r)][ind] = p(r) then
9: boardr[0] = ind
10: end if
11: end for
12: for ind ∈ range(boardr[0], len(seq[k(r)) do
13: if seq[(k(r)][ind] = d(r) then
14: boardr[1] = ind
15: end if
16: end for
17: end for
18: for all r ∈ Rs do
19: Assigned vessel to each request k(r) = track(r)
20: delivery node d(r)
21: // Find the index of getting off
22: for ind ∈ length(seq[k(r)]) do
23: if seq[(k(r)][ind] = d(r) then
24: boardr[1] = ind
25: end if
26: end for
27: end for
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Algorithm 3 Route plan construction for insertion heuristic
1: function ConstructRoutes(nk, seq, board, dictrk, Rs, Ru, Ra, tt, btemp, T raveltime, charge_loc, B)
2: Routes← [0 for _ in range(n_k)]
3: for all k ∈ nk do
4: route← zeros((length(seq[k])-1, 8), dtype=object)
5: R← [r in Ra ∪Rs ∪Ru if dictrk[r] = k]
6: for all i ∈ range(length(seq[k])− 1) do
7: serving_requests← [r for r in r_serving if dictrk[r] = k]
8: origin← seq[k][i]
9: destination← seq[k][i+ 1]
10: travel_time← Traveltime[seq[k][i], seq[k][i+ 1]]
11: service_time← 0
12: for r ∈ R do
13: if i ≥ boardr[0] and i < boardr[1] then
14: if r not in serving_requests then
15: Append r to serving_requests
16: service_time += service_timer
17: end if
18: end if
19: if i ≥ board[r][1] then
20: if r in serving_requests then
21: Remove r from serving_requests
22: service_time += service_timer
23: end if
24: end if
25: end for
26:
27: // If it is the first trip
28: if i = 0 then
29: dep_time[i]← tt
30: arr_time[i+ 1]← dep_time[i] + travel_time

31: b
seq[k][i]
d ← b_temp[k]

32: bseq[k][i+1] ← b_temp[k] - δseq[i]seq[i+1]

33: loading_all← sum([sizer for r in serving_requests])
34: loading_parc← sum([sizer for r in serving_requests if typer is parcel])
35: loading_pass← sum([sizer for r in serving_requests if typer is passenger])
36: // Other trips
37: else
38: dep_time[i]← arr_time[i− 1] + service_time
39: arr_time[i+ 1]← dep_time[i] + travel_time
40: if seq[k][i] in charge_loc then
41: b

seq[k][i]
d ← min(bseq[k][i−1] + rc (route[i, 2] - route[i-1, 3]), B)

42: else
43: b

seq[k][i]
d ← bseq[k][i−1]

44: end if
45: bseq[k][i+1] ← b

seq[k][i]
d - δseq[k][i]seq[k][i+1]

46: loading_all← sum([sizer for r in serving_requests])
47: loading_parc← sum([sizer for r in serving_requests if typer is parcel])
48: loading_pass← sum([sizer for r in serving_requests if typer is passenger])
49: end if
50: end for
51: Routes[k]← route
52: end for
53: return Routes
54: end function
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3.6. Transportation performance indicators

One of the objectives of this thesis is to investigate the efficiency and the service level of waterborne
vessels for heterogeneous on-demand service by comparing the mixed purpose vessel system with
the conventional fixed purpose vessel system. The investigation is conducted through the analysis of
the following key performance indicators (KPIs).

• Total travel distance (TTD). The total travel is the distance travelled by all the vessels throughout
the day. It is computed by tracking the travelled distance of each vessel between each time step
of the rolling horizon. The lower this value is, the higher the efficiency of the system.

• Total empty travel distance (TETD). The total empty travel distance is the distance travelled by
all the vessels throughout the day without loading any requests. It is computed by tracking the
travelled distance of each vessel between each time step and the loading level of the trip. If the
loading level is zero, the travelled distance is added to the empty travel distance. The lower the
value is, the higher the efficiency of the system.

• Request met ratio (RMR). The request met ratio is the ratio between the number of served re-
quests and the total number of requests at the end of the time horizon. It indicates to what extent
the requests are served by the service. The higher the value is, the higher the service level is.
RMR is defined as,

(number of served requests)

(total number of requests)
× 100[%]



4
Model Application

In this chapter, the model proposed in Chapter 3 is performed by taking Fredrikstad in Norway as the
case location. The computational experiment in a specific case location is conducted for the following
reasons: 1) The proposed model has to be verified, and the performance of the model and solving
algorithms must be evaluated. 2) Insights on the efficiency and the service level of the heterogeneous
on-demand service by dynamic centralised fleet management of electric waterborne vessels can be ob-
tained through the series of experiments in the case study. The computational experiment starts from
the evaluation of the performance of solving the static subproblem proposed in Section 3.3 for each
algorithm, the exact method, and the insertion heuristic. Afterwards, the dynamic problem is solved for
different demand scenarios which are developed in a stochastic approach, and the performance of the
solving method, as well as the results of the transportation performance will be provided.

4.1. Case study

Fredrikstad is selected as the case location for the experiment. Fredrikstad is a city located along the
southeast coast of Norway, with a population of approximately 84,000 (Frederikstad Kommune, 2022).
Fredrikstad has an urban ferry system connecting the old town and the city centre, and new water metro
stops using shared electric ferries are being developed in the new city centre area. Figure 4.1 shows
the location of Fredrikstad (left) and its zoomed-in geography (right). The mobility of Fredrikstad has
been highly dependent on private cars with a 59% mode share, despite the abundant waterways the
city has (“Fredrikstad –SUM”, 2024), and the municipality is focused on reducing the dependency on
car trips in order to stop the growth of climate emissions. The considered network consists of 8 ferry
terminals and is illustrated in Figure 4.2. The terminals have already been used for the conventional
ferry service provided by the municipality of Fredrikstad, and these terminals are considered in this
case study as well. The terminals are labelled with a unique ID from 0-7.

Hyke (“Hyke”, 2021) has been developing a ferry solution which is electrified and also has the mar-
gin to be fully autonomous. Hyke is in collaboration with the municipality of Fredrikstad to transform
urban mobility and transportation to be more sustainable and accessible to people by utilising the ferry
solution they developed and providing mobility and logistic service in the urban waterway of Fredrikstad.
The ferry solution of Hyke is shown in Figure 4.3. The modularised interior in the ferry solution enables
different allocations of capacity between passengers and goods; thus, it is possible to provide service
to passengers and parcels simultaneously. The ferry is designed to be emission-free by full electrifica-
tion and also to reduce the noise when operating. Not only does the vessel property contribute to more
environmentally friendly transportation, but this innovation in the waterway transportation in the city is
also expected to stimulate the modal shift of the citizens from private cars to multimodal transportation
by providing more comfortable and accessible services.

Based on the mentioned aspects, Fredrikstad is suitable for the case location to apply the proposed

30
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model and investigate the potential of electric on-demand waterborne vessels for heterogeneous ser-
vices in the urban transportation environment.

Figure 4.1: Location (left) and geography (right) of Fredrikstad

Figure 4.2: Ferry terminals in Fredrikstad (made from GoogleMaps)
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Figure 4.3: Hyke’s ferry solution

4.2. Static model application

The model application starts from the computational experiments with small instances for the static
subproblem. This series of experiments is conducted to evaluate the solving performance of the pro-
posed solving methods. The ferry network of Fredrikstad (Figure 4.2) is utilised for the experiment. 18
instances are generated for the experiment by setting different fleet sizes (number of vessels) and the
number of requests. Table 4.1 lists the parameters used for the experiments. The fleet size between
two and four and the number of requests between one and six are tested. These two factors influence
the complexity of the problem. Therefore, experimenting with different combinations of fleet size and
number of requests is expected to provide insights into the solving capability of the proposed methods.

The vessels are assumed to have a homogeneous property and are defined according to the technical
description of Hyke’s ferry solution (“Hyke”, 2021). A vessel is assumed to have a loading capacity of C
= 50 passenger units, with the freedom to adjust the capacity allocation in the vessel with a granularity
of one passenger unit per request type for mixed purpose vessels. In the static experiments, all vessels
are assumed to be mixed purpose. Also, the speed of the vessel is assumed to be constant at 6 knots,
which is equivalent to v = 11.112 km/h. The battery consumption per distance is assumed to be rc =
1.0 kWh/km. Also, the battery capacity of the vessel is set to B = 190 kWh.

Table 4.1: Parameters used for the static experiments

Parameter Values Parameter Values

|K| {2, 3, 4} B 190 kWh

|N | 8 terminals rc 1.0 kWh/km

|R| {1, 2, 3, 4, 5, 6} r 100 kWh/h

C 50 pax v 11.112 km/h

Each instance is solved by the exact method and the insertion heuristic. The objective value, MIP gap,
and computational time are collected for the exact method. The MIP gap represents the difference
between the objective value and the lower bound of solutions the solver discovered in the exact method.
The objective value and computational time are collected for the insertion heuristic. All experiments
are repeated three times to obtain the average values. Each experiment has a time limit of one hour.
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4.2.1. Results of static model application

The results of the static experiment are shown in Table 4.2. The objective value, the MIP gap, and the
computational time are presented for the exact method for each instance. The objective values and
the computational time are presented for each instance for the insertion heuristic. The MIP gap of 0
indicates the solver found the optimal solution, while if the gap is larger than 0, it means the feasible so-
lution is not guaranteed to be the optimum. Instances differ in the fleet size and the number of requests,
as shown in Table 4.1. The model is developed in Python 3.12.2, and all experiments are performed
on a laptop with an 11th Generation Intel(R) Core(TM) i7-1165G7 @ 2.80GHz and 32GB RAM with a
Windows 11 Pro. The routing solution for each instance can be found in Appendix B.

The results indicate the capability of the insertion heuristic in finding optimal/good solutions for all in-
stances in a shorter computational time than the exact method. All instances have the same objective
values as the exact method. The solutions in instances 6, 12, and 18 have the same objective values
as the exact method, but these solutions are not guaranteed to be the optimal solutions since the time
limit of the exact method is reached in these instances.

The insertion heuristic has a significantly shorter computational time than the exact method if the num-
ber of requests is less than or equal to 5. It manages to find the solution within a maximum of 15
seconds for these instances. When 6 requests are inserted, both methods require a long computa-
tional time to find the solution. Therefore, it can be said that a maximum of 5 requests is the limit of the
solving capability of the insertion heuristic under the tested fleet size variation.

Also, the computational time of the insertion heuristic is not linear to the number of requests or the
fleet size. This is logical since the heuristic applies a greedy insertion and tries all possibilities of in-
sertion. The increment in the number of requests and fleet size exponentially increases the possible
combinations of insertion. Thus, the computational time is expected to drastically increase when the
fleet size and the number of requests increase. The results suggest that the number of requests sub-
stantially influences the computational time more than the fleet size.

In small instances, such as instances 1, 2, 7, 8, 13, and 14, the exact method found the optimal solution
within a minute, which is acceptable for the dynamic model since the time step is set to every minute
and providing a solution within a minute will be the benchmark for the dynamic model. However, the
computational time of the exact method drastically increases when the number of requests increases.
When 6 requests are present, the exact method could not find the optimal solution within the time limit.
These results indicate that the solving capability of the exact method is limited to very small instances.
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Table 4.2: Comparison between the exact method and the insertion heuristic for the static subproblem

ID |K| |R| Obj
Exact
[km]

MIP Gap
Exact
[%]

CPU
Exact
[s]

Obj
Insertion
[km]

CPU
Insertion
[s]

1 2 1 1.301 0.000 1.076 1.301 0.007

2 2 2 3.999 0.000 53.255 3.999 0.004

3 2 3 5.421 0.000 55.852 5.421 0.006

4 2 4 5.725 0.000 140.320 5.725 0.153

5 2 5 5.577 0.000 512.009 5.577 4.007

6 2 6 7.140 12.709 3600.000* 7.140 335.608

7 3 1 1.301 0.000 1.767 1.301 0.001

8 3 2 3.987 0.000 33.208 3.987 0.002

9 3 3 5.410 0.000 66.412 5.410 0.002

10 3 4 5.725 0.000 78.645 5.725 0.175

11 3 5 5.577 0.000 295.413 5.577 14.412

12 3 6 6.976 10.621 3600.000* 6.976 1287.811

13 4 1 1.301 0.000 1.947 1.301 0.001

14 4 2 3.678 0.000 52.450 3.678 0.002

15 4 3 5.100 0.000 146.781 5.100 0.011

16 4 4 5.725 0.000 174.212 5.725 0.569

17 4 5 5.411 0.000 1385.376 5.411 12.560

18 4 6 6.976 17.802 3600.000* 6.976 3415.124

*Time limit of 1 hour reached.
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4.3. Dynamic model application

The proposed dynamic model is experimented with to assess the model performance and to obtain
insights into the transportation performance of the mixture of capacity in waterborne vessels for hetero-
geneous on-demand service. By utilising the ferry network of Fredrikstad (Figure 4.2), experiments with
different demand scenarios and vessel type combinations are conducted. The fleet size is assumed
to be fixed to two. Thus, four vessel type combinations, (mixed, mixed), (mixed, passenger), (mixed,
parcel), and (parcel, passenger) are examined. The starting depots of the vessels are assumed to be
terminals 4 and 6. These terminals are also where the charging facilities are installed. The parameters
regarding the vessel property are the same as Table 4.1. The experiments consider a full usual work
day between 6:00-22:00. As mentioned before, the demand for the services is represented as sets of
individual requests and the demand scenarios are generated stochastically.

In the dynamic model, the solving time of each static subproblem is limited to one minute. This is
because of the necessity of quickly obtaining the next route plan to react to the new requests. As ex-
plained in Section 3.5, the new requests will be rejected or postponed, and the previous route plan will
be kept until a new feasible route plan is found in the case where the model does not manage to find
a feasible solution within a minute. It is also possible that the solver finds a feasible solution, but it is
not guaranteed to be the global optimum in the exact method. As long as the route plan is feasible, the
route plan will be updated to the new route plan and will be pursued by the vessels until the next time
step.

4.3.1. Request generation

A set of travel requests from passengers and delivery requests from parcels are generated to repre-
sent the demand for the service. Each request consists of the origin terminal, the destination terminal,
the time window, the maximum waiting time, the size, and the type of the request. In this section, the
process of generating a set of requests will be presented.

It is ideal to incorporate historical data regarding the demand for the ferry service to create realistic
synthetic request data. However, the considered ferry system is still in the conceptual phase and does
not have real historical data regarding the demand to apply. Therefore, the set of requests is created
by incorporating the typical temporal and spatial patterns of demand for passenger and parcel services
in transportation. The temporal distribution of transport demand from passengers is well known to have
peak hours and off-peak hours due to common activities such as commuting. Passenger demand has
two peak hours during the day: the morning peak and the evening peak. These peak hours derive
from commuting trips to work or school. The hours for the rest of the day are off-peak hours, and the
passenger demand decreases from the peak hour demand.

As well as the temporal patterns of demand, the spatial patterns of demand will be considered in the
request generation. The spatial patterns of demand are influenced by the land use of the areas (Liu
et al., 2021). For instance, commuting between a terminal in a residential area to a terminal in an indus-
trial/office area is more likely to happen compared to other terminals, or trips from a residential area to
a commercial area are more likely to occur considering the shopping activities. These characteristics
will formulate the spatial patterns of demand for the system and will be incorporated into the parameter
settings in the case study.

Considering the temporal and spatial distribution of transport demand, an OD and time specific Pois-
son process is conducted to generate the passenger requests stochastically. The Poisson process is
a widely used stochastic process that models the times of arrival to a system at an interval of time.
(Robert, 2011) The Poisson process has several characteristics which align with the travel requests
made in real life. The first characteristic is the independence of events’ occurrence. The occurrence of
an event in one time interval does not affect the occurrence of the event in another time interval. This
is a realistic assumption to make when it comes to travel requests in real life. Customers do not make
requests based on other customers’ requests, but they make requests because they want to travel to
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their destination to fulfil their activity. Another characteristic of the Poisson process is the stationarity.
Stationarity means that the probability of an event occurring in a certain length of time is constant and
is defined as a constant rate λ.

A Poisson process can be defined as the following. Given a arrival rate of λ and the length of the
interval t, the Poisson random variable with mean value of λt is,

P (N(t) = k) =
(λt)ke−kt

k!

Where N(t) is the number of events in time t. This is the probability of a certain number of events k
occurring in the time interval t. Also, the time between two events follows an exponential distribution,

f(t) = λe−λt

The arrival rate λ is set per OD pair and time period. Given the arrival rate, a set of requests in the time
period per OD pair is generated randomly. Each request has an arrival time, and that will be assumed
to be the beginning of the pickup time window of the request.

The dynamic model considers a full usual workday between 6:00-22:00, and the time period for pas-
sengers is divided into five sections: 6:00-7:00, 7:00-9:30, 9:30-16:00, 16:00-18:30, 18:30-22:00. This
division is defined to incorporate the peak hours and the off-peak hours in terms of the passenger
demand. 7:00-9:30 and 16:00-18:30 are considered the morning peak and the evening peak, respec-
tively. In these time periods, the parameters are adjusted to have higher arrival rates than other time
periods, which indicates that the interval time between two requests is expected to be shorter during
these periods than other time periods. In the experiment, the peak hours’ arrival rate is set to be 1.5
times larger than the off-peak hours.

The land use around each terminal differs from each other, and these differences are expected to
influence the demand from the passengers. The municipality of Fredrikstad published a master plan of
urban planning between 2023-2035 (“Kommuneplanens arealdel 2023-2035”, 2023). The plan states
that the area around terminals 4 and 5 in Figure 4.2 are part of the focused areas of urban development.
More residential buildings and business activities are planned for the city. Therefore, it is expected that
the demand from/to these terminals will be greater than that of other OD pairs. Based on this assump-
tion, the arrival rate for OD pairs which either the origin or the destination is terminal 4 or 5 is set double
of the other OD pairs, and the arrival rate between terminal 4 and 5 is set triple of the other OD pairs. In
addition to this demand pattern, it is simply assumed that there is no demand for ferry service between
the terminals located on the same island, as well as between the same terminal. Specifically, the pairs
(2, 3), (3, 5), (0, 4), and (6, 7) do not have any demand. The details of the parameters can be found in
the Appendix A.

Each passenger request has a size which is randomly determined by a discrete uniform distribution
between 1-10. Also, it is assumed that the maximum waiting time for each passenger request is 15
minutes, and the latest delivery time is 45 minutes after the request pop up time. The service time of
a request is dependent on the size of the request, and for the passenger requests, it is assumed to be
0.25 minutes (15 seconds) per passenger unit. For instance, if the request size is 4, it is assumed that
1 minute is necessary for boarding and leaving the vessel.

The number of parcel requests between an OD pair in a time period is assumed to be known be-
forehand. This is based on the assumption that the logistics company provides the ferry operator with
the information about the parcels to be communicated in advance. Therefore, the ferry operator is
able to anticipate how many parcel requests to expect during the day. The stochasticity of the parcel
request derives from the uniform distribution of the pop up time of the requests and the required ar-
rival time of the parcel. An uniform distribution with the time period determines the pop up time of a
parcel request. Also, parcels have different requirements from passenger requests. In contrast to pas-
senger requests, the waiting time is not important for parcel requests. The important aspect of parcel
requests is to arrive at the destination by the required arrival time to ensure the parcels are delivered
to the customers as ordered. Therefore, the maximum waiting time is set to large enough for parcel
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requests and only the delivery time window is applied for them. The time period for parcel requests are
divided into 6:00-11:00, 11:00-15:00, and 15:00-21:00. These are set based on the assumption that the
parcels can be categorised into three required delivery times: 12:00, 16:00, and 22:00. The delivery by
noon considers the case which the parcel has to be delivered to the customer in the afternoon of the
same day. Similarly, the delivery time of 16:00 considers the parcels which need to be delivered in the
evening of the same day. Finally, the delivery by the end of the day means the parcel will be delivered
to the customer the next day. The arrival time of each passenger request is determined by a discrete
probability distribution for each time step. Table 4.3 shows the probability of each required delivery
time depending on in which time period the request pops up. The required delivery time is randomly
determined for each request based on this distribution. It is made sure that the parcel request would
have at least an hour between the pop up time and the required delivery time to ensure that the parcel
is feasible to be delivered within the time window. The size of a parcel request is also randomly deter-
mined by a discrete uniform probability between 1-10. When a parcel request is served by the vessel,
it requires some time to board and disembark the parcels to/from the vessel. Similar to the passenger
requests, it is assumed that the service time for a parcel request is dependent on its size and is set to
require 30 seconds (0.5 minutes) per passenger unit. The request size of parcel requests is defined in
the passenger unit for this study.

Table 4.3: Probability of each required delivery time from each pop up time period

Required delivery time

12:00 16:00 22:00

Pop up time period

6:00-11:00 0.6 0.2 0.2

11:00-15:00 0 0.6 0.4

15:00-21:00 0 0 1

Two demand scenarios are developed for the experiment, ”high” and ”low”. As the name suggests, the
”high” scenario has higher demand and the ”low” has lower demand. The demand can be summarised
as the number of requests throughout the day. The total number of requests for each demand scenario
is shown in Table 4.4. The ”low” scenario has 172 requests in total and consists of 36 passenger
requests and 136 parcel requests during the whole day. The ”high” scenario has 57 passenger requests
and 148 parcel requests and in total 205 requests. Figure 4.4 and Figure 4.5 illustrate the temporal
distribution of the cumulative number of requests by taking the time as horizontal axes and the number
of requests of each request type occurring at each time as the vertical axes for each demand scenario.
It is worth noting that because of the higher arrival rate between the peak hours and the off-peak hours,
the increment of passenger requests (red lines) is sharper between the peak hours (7:00-9:30, 16:00-
18:30) than the off-peak hours. In contrast, the parcel requests are widely and more or less evenly
spread throughout the day.

Table 4.4: Number of requests per demand scenario

Scenario Total requests Passenger requests Parcel requests

low 172 36 136

high 205 57 148
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Figure 4.4: Temporal distribution of total number of requests under high demand scenario

Figure 4.5: Temporal distribution of total number of requests under low demand scenario
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4.3.2. Results of solving performance of dynamic model

The results of the dynamic model application are reported in this section. The experiment begins with
the performance evaluation of the solving algorithms of the dynamic optimisation for each solving al-
gorithm. Finally, the transportation performance, which mainly focuses on the aforementioned KPIs, is
reported. Same as the static model application, the model is developed in Python 3.12.2, and all exper-
iments are performed on a laptop with an 11th Generation Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
and 32GB RAM with a Windows 11 Pro.

The dynamic optimisation model is performed for two demand scenarios and four different vessel type
combinations. All configurations are performed using both the exact method and the proposed inser-
tion heuristic. The two demand scenarios are defined as it was demonstrated in Section 4.3.1. The
fleet size is fixed to two, and the experimented vessel type combinations are (mixed, mixed), (mixed,
passenger), (mixed, parcel), and (parcel, passenger). The model performance of the exact method is
assessed by the capability of obtaining the optimal solution at each time step, and the computational
time. For the insertion heuristic, the computational time is compared to the exact method.

Table 4.5 and 4.6 show the model performance of both methods under each configuration per demand
scenario. Every time a new request is inserted into the model, the model executes the static optimi-
sation to determine the new route plan of the vessels to serve the new requests, while ensuring the
previous requests’ requirements are satisfied. The computational time is the time needed to perform
the model for the entire time horizon for each method. The number of time steps the static optimisation
was executed are shown in the tables. In the exact method, ”Optimum” indicates the number of time
steps in which the model found the optimal route plan, ”sub-optimum” is the number of time steps the
model found a feasible route plan, but it is not guaranteed to be the optimal solution, and ”infeasible”
is the number of time steps the model could not find a feasible solution within the time limit. The total
number of time steps differs between each configuration in the exact method because when the model
does not manage to find a feasible solution, the assignment of the new request is postponed to the
next time step, and the model tries to find a new route plan again. In contrast, the insertion heuristic
has the same number of time steps for each vessel time combination in the same demand scenario
since the model is developed to reject new requests if no feasible route is found.

For the high demand scenario, the computational time for the entire time horizon significantly differs
between the insertion heuristic and the exact method. As the table shows, the insertion heuristic man-
aged to run the model between 13 - 48 seconds, while the exact method took a minimum of 2876.81
seconds, which is 48.0 minutes. This difference in computational time was expected from the static
model application. In the dynamic model, a maximum of three requests were inserted in the same time
step. As the results of the static experiment (Table 4.2) suggest, the insertion heuristic finds a solution
almost instantly when three requests are inserted, while the exact method took almost a minute to find
the optimal solution under three requests with two vessels. The static model was performed between
173 and 176 times in the exact method. The (mixed, parcel) combination managed to find a feasible
solution 93.1% of the times, and 84.6% of them were the optimal solution. This was the highest among
all vessel type combinations for the high demand scenario. (mixed, mixed) followed by 86.1% of the
time finding a feasible solution and 89.3% of them being optimum, (mixed, passenger) with 85.2% and
77.3% of them being optimum, and (parcel, passenger) with 78.9% and 79.0% of them being optimum.

Similar to the high demand scenario, the computational time of the insertion heuristic was significantly
shorter than that of the exact method for the low demand scenario. The computational time of the
insertion heuristic varies between 24 - 67 seconds, while the exact method took at least 6272 seconds
(104 minutes) to perform this scenario. The static model was performed 169-172 times during the time
horizon in the exact method. (mixed, parcel) has the highest proportion of obtaining a feasible solution
as well as the optimal solution. 95.3% of the time steps reached a feasible solution, and 57.1% of them
were the optimal solution. (parcel, passenger) follows with 94.1% of the time obtaining a feasible so-
lution and 47.5% being the optimum. (mixed, mixed) reached a feasible solution for 91.7% of the time
with 46.7% being the optimum, and finally (mixed, passenger) had 81.4% of the time finding a feasible
solution, which is the lowest among all configurations for this demand scenario. 47.9% of them were
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the optimal solution.

Table 4.5: Performance of each method under high demand configuration

Vessel types CPU
Exact
[s]

Exact
(optimum, sub-optimum,
infeasible, total)
[time steps]

CPU
Insertion
[s]

Insertion
total
[time
steps]

(mixed, mixed) 2876.81 (133, 16, 24, 173) 13.23 173

(mixed, passenger) 4523.62 (116, 34, 26, 176) 47.41 173

(mixed, parcel) 3035.68 (137, 25, 12, 174) 14.66 173

(parcel, passenger) 4614.02 (109, 29, 37, 175) 15.28 173

Table 4.6: Performance of each method under low demand configuration

Vessel types CPU
Exact
[s]

Exact
(optimum, sub-optimum,
infeasible, total)
[time steps]

CPU
Insertion
[s]

Insertion
total
[time
steps]

(mixed, mixed) 6840.56 (77, 78, 14, 169) 24.15 168

(mixed, passenger) 6909.89 (67, 73, 32, 172) 67.07 168

(mixed, parcel) 6272.47 (92, 69, 8, 169) 37.84 168

(parcel, passenger) 6575.45 (76, 84, 10, 170) 24.19 168

4.3.3. Results of transportation performance in dynamic model

This section reports the results related to the transportation performance for different configurations for
the dynamic model. As mentioned before, the dynamic model for all configurations is performed using
the exact method and the insertion heuristic. Therefore, two values are presented for each KPI per
configuration. In addition to the KPIs, the time series of the loading level of each vessel per configura-
tion is also analysed to provide insights into the operation of vessels throughout the day.

KPIs for high demand scenario

Table 4.7 and 4.8 present the request met ratio (RMR), the total travel distance (TTD), and the total
empty travel distance (TETD) of each vessel type combination for high demand scenario solved by
the exact method and the insertion heuristic, respectively. (mixed, mixed) recorded high RMR in this
scenario, 87.05% for the Exact method and 89.58% for the insertion heuristic. This result is plausible
since any request can be assigned to both vessels in (mixed, mixed), which means the closer vessel
from the origin of the request was able to pick up the request in most of the cases. On the other hand,
(parcel, passenger) recorded the lowest RMR for both solving methods. In contrast to (mixed, mixed),
the closer vessel to the pick up terminal was not necessarily able to serve the request because of the
fixed purpose of the vessel; thus, more requests were rejected because of the time constraints. (mixed,
parcel) and (mixed, passenger) resulted in an intermediate RMR between (mixed, mixed) and (parcel,
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passenger). It is logical that (mixed, parcel) has a higher RMR than that of (mixed, passenger) since
there were more parcel requests than passenger requests generated in this experiment and the depen-
dency on the mixed purpose vessel was relatively lower for (mixed, parcel) than (mixed, passenger).

In the exact method, (mixed, parcel) recorded 207.08 km of TTD and is the lowest TTD among the
four combinations. (mixed, passenger) follows with 222.93 km, (mixed, mixed) with 252.98 km, and
(parcel, passenger) with 313.91 km. It can clearly be seen that the TTD decreases from the (parcel,
passenger) when mixed purpose vessel is available. In fact, it resulted in between 19.4-34.0% reduc-
tion of the TTD by introducing the mixed purpose vessel.

In the insertion heuristic, (mixed, passenger) recorded the lowest TTD of 149.34 km. (mixed, par-
cel) followed by 155.28 km. Unlike the exact method, (parcel, passenger) has slightly lower TTD than
(mixed, mixed), with 162.05 km and 177.79 km, respectively. This result derives from the difference
in the RMR. As mentioned before, (mixed, mixed) has a significantly higher RMR than that of (parcel,
passenger) in the insertion heuristic. It is natural that the more requests the vessels serve, the longer
the TTD is. It can be said that a trade-off between the RMR and the TTD is observed from the results
of the insertion heuristic.

The TTD is overall lower for the insertion heuristic than those of the exact method. The TTD were
25.0-48.3% lower for the insertion heuristic compared to the exact method. This is possible since there
were many cases in which the exact method could only find a feasible solution that is not necessarily
the optimal solution for the route plans, and it is assumed that the vessels update their route plans if
the solver finds a feasible solution. This led the vessels to pursue route plans that had more travelling
distance, and thus, the TTD ended up high. However, the insertion heuristic considers all possible
sequences of the order of visiting the terminals. This guarantees that the order of visiting the terminals
will be at least found with the minimum total travel distance for the route plan, which is the objective
function in the model. Therefore, it is logical that the insertion heuristic obtained lower TTD overall.

In both solving methods, (parcel, passenger) has the largest TETD among the four vessel type combi-
nations. Notably, the availability of mixed purpose vessels decreased the TETD by 63.3-74.9% from
(parcel, passenger) in the exact method. The difference in TETD between vessel type combinations
is not as large as the exact method in the insertion heuristic. However, (parcel, passenger) still has
the largest TETD among the four vessel type combinations, and mixed purpose vessel reduces the
TETD by 12.5-34.9% from only having fixed purpose vessels. The reduction of TETD by implementing
mixed purpose vessels is expected because the mixed purpose vessels are able to serve any request,
and the cases in which a vessel far from the pickup terminal needs to pick up a specific type of request
occur less than when fixed purpose vessels are present. The model assigns the nearby mixed purpose
vessel to the request rather than the further fixed purpose vessel.

Table 4.7: KPIs for each vessel type combination (high demand, Exact method)

Vessel types Request met ratio [%] Total travel distance
[km]

Total empty distance
[km]

(mixed, mixed) 87.05% 252.98 33.31

(mixed, passenger) 80.31% 222.93 26.90

(mixed, parcel) 88.08% 207.08 22.79

(parcel, passenger) 71.50% 313.91 90.85
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Table 4.8: KPIs for each vessel type combination (high demand, Insertion heuristic)

Vessel types Request met ratio [%] Total travel distance
[km]

Total empty distance
[km]

(mixed, mixed) 89.58% 177.79 23.16

(mixed, passenger) 78.13% 149.34 17.22

(mixed, parcel) 82.29% 155.28 18.84

(parcel, passenger) 76.04% 162.05 26.47

KPIs for low demand scenario

Table 4.9 and 4.10 present the KPIs for each vessel type combination for the low demand scenario
by each solution method. (mixed, mixed) and (mixed, parcel) recorded similarly high RMR of more
than 87% in the exact method. (parcel, passenger) has the third-highest RMR and (mixed, passen-
ger) recorded the lowest RMR. (mixed, mixed) has a significantly high RMR of 86.98% in the insertion
heuristic compared to other vessel type combinations. The other three combinations recorded a similar
RMR of around 80%. Similar to the high demand scenario, (mixed, mixed) resulted in higher RMR than
those of (parcel, passenger). This indicates the improvement of service level by having mixed purpose
vessels.

In the insertion heuristic, (mixed, passenger) has 108.59 km of TTD and is significantly lower than
other vessel type combinations. (mixed, parcel) followed by 120.20 km and (mixed, mixed) and (par-
cel, passenger) has a similar TTD between 144 and 149 km. The high TTD in (mixed, mixed) can
be because of the higher RMR than other vessel type combinations. As mentioned before in the high
demand scenario, it is observed that there is a trade-off between the RMR and the TTD. Naturally, the
more requests the vessels serve, the more the vessels need to travel. This trade-off is observed in
the low demand scenario as well. (parcel, passenger) has high TTD, and this can be explained by the
situations in which a specific vessel needs to pick up a request far away for a fixed purpose.

Similar to the high demand scenario, the TTD in the insertion heuristic resulted in 10.7-42.1% lower
than those of the exact method for all vessel type combinations. As mentioned before, this can be
because of the assumption that the vessels will update their route plan when a feasible route plan is
found, which is not necessarily the optimal route plan that minimises the total travel distance. In the
exact method, (mixed, parcel) and (parcel, passenger) have lower TTD than those of (mixed, mixed)
and (mixed, passenger). This can be because of the route plan constructed through the optimisation.
Also, the TTD highly depends on which request is accepted/rejected. If a request that requires a long
travel distance (e.g., terminal 7 to 0) is accepted, the TTD of the vessels increases to serve this request.
In contrast, if this request is rejected depending on the vessel types, then the vessels do not need to
make long travels. Therefore, it is possible that the limitation of vessel purpose can lead to less TTD,
which is highly dependent on the requests occurring in the day.

The results of both methods indicate the reduction of TETD by introducing a mixed purpose vessel.
The TETD is reduced by between 13.7-64.5% in the exact method and 39.8-53.1% in the insertion
heuristic. This derives from reducing empty trips to pick up a further request with a specific type by
introducing mixed purpose vessel. In contrast to the TTD, lower TETD was recorded for the exact
method than those of the insertion heuristic. (mixed, passenger) recorded the lowest TETD of 7.33
km. (mixed, parcel) follows with 11.09 km, (mixed, mixed) with 17.83 km, and (parcel, passenger) with
20.65 km. In the insertion heuristic, each vessel type combination has less difference with each other.
(mixed, passenger) recorded 14.20 km, (mixed, parcel) with 15.56 km, (mixed, mixed) with 18.23 km,
and finally (parcel, passenger) with 30.28 km.
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Table 4.9: KPIs for each vessel type combination (low demand, Exact method)

Vessel types Request met ratio [%] Total travel distance
[km]

Total empty distance
[km]

(mixed, mixed) 87.29% 188.57 17.83

(mixed, passenger) 75.98% 187.47 7.33

(mixed, parcel) 87.36% 161.23 11.09

(parcel, passenger) 83.71% 161.65 20.65

Table 4.10: KPIs for each vessel type combination (low demand, Insertion heuristic)

Vessel types Request met ratio [%] Total travel distance
[km]

Total empty distance
[km]

(mixed, mixed) 86.98% 148.63 18.23

(mixed, passenger) 79.77% 108.59 14.20

(mixed, parcel) 81.50% 120.20 15.56

(parcel, passenger) 80.57% 144.38 30.28

Time series of loading level of each vessel

In addition to the KPIs, the time series of vessels’ loading level for each vessel type combination is use-
ful to understand the usage of each vessel during the day. Figure 4.6 and 4.7 illustrate the time series
of the loading level of each vessel for all vessel type combinations in high and low demand scenarios
solved by the insertion heuristic. For each figure, the horizontal axis is the time and the vertical axis
is the loading level represented in passenger unit. Each figure represents both vessels’ loading levels
at each time step. The loading levels are indicated with vessel 1’s load upward from the baseline of 0,
and vessel 2’s load downward. Orange represents vessel 1’s parcel load, blue represents vessel 1’s
passenger load, purple represents vessel 2’s parcel load, and green represents vessel 2’s passenger
load. The loading capacity of each vessel is 50 passenger units. Since both solving methods resulted
in similar patterns, the results from the insertion heuristic will be explained here, and the results of the
exact method can be found in Appendix C.

It can be seen in Figure 4.6a that both vessels handled the requests in a good balance in (mixed,
mixed) throughout the day compared to other vessel type combinations in high demand scenario. This
is supported by the fact that there were fewer time periods in which a vessel had a loading of zero
overall, which indicates that the vessel is dwelling at a terminal than other vessel type combinations.
For instance, the large difference in the loading level between vessel 1 and vessel 2 in (mixed, pas-
senger) is easy to identify as vessel 1 had a non-zero loading throughout the day, while vessel 2 had
zero loading for most of the time, except for several hours including the peak hours (Figure 4.6c). Also,
it can be seen in Figure 4.6a that both of the vessels handled the passenger requests in the morning
peak and the evening peak in (mixed, mixed). However, vessel 2 served fewer passenger requests in
the morning peak and focused on parcel requests, while in the afternoon, the focus switched to vessel
1, where most of the parcel requests were served by vessel 1 and the passenger requests by vessel 2.

Regardless of the vessel type combination, the model preferred to assign the requests to the same
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vessel during a certain time period regardless of the type of the request rather than trying to distribute
the loads equally between the two vessels. This can be because the model’s objective function is set
to minimise the total travel distance. The simple and effective way to reduce the total travel distance
is to reduce the number of trips, and this implicitly means the request service was merged with other
requests as much as it could be. Therefore, it is expected that the loading is imbalanced between
vessels for a certain period until a new request close to the other vessel occurs.

In contrast to the high demand scenario, the loading level of vessels in the low demand scenario was
imbalanced in all vessel type combinations, including the (mixed, mixed). As can be seen in Figure
4.7, vessel 1 served most of the requests, and vessel 2 did not serve requests for a long time in all
vessel type combinations. As mentioned above, the objective of minimising the total travel distance
leads to trying to merge as many requests as possible into one vessel. The imbalance may have oc-
curred because one vessel was enough to serve most of the requests in the low demand scenario, and
operating one one vessel led to less total travel distance of the route. Notably, vessel 1 was operating
on a loading level close to the capacity when vessel 2 is dedicated to passengers, as shown in Figure
4.7c. Despite vessel 2 being dedicated to passengers, vessel 1 still served the passenger requests in
the morning peak in (mixed, passenger) setting.
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(a) (mixed, mixed) (b) (mixed, passenger)

(c) (mixed, parcel) (d) (parcel, passenger)

Figure 4.6: Loading level of each vessel in each vessel type combination for high demand scenario by insertion heuristic
orange: parcel vessel 1, blue: passenger vessel 1, purple: parcel vessel 2, green: passenger vessel 2
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(a) (mixed, mixed) (b) (mixed, passenger)

(c) (mixed, parcel) (d) (parcel, passenger)

Figure 4.7: Loading level of each vessel in each vessel type combination for low demand scenario by insertion heuristic
orange: parcel vessel 1, blue: passenger vessel 1, purple: parcel vessel 2, green: passenger vessel 2



5
Discussion

In this chapter, the results obtained from the computational experiment are discussed. Also, the as-
sumptions and limitations of the modelling are discussed.

5.1. Discussion of Results

The experiment of the static optimisation model (Section 4.2.1) indicates the high solving capability of
the proposed insertion heuristic. The instance tests demonstrated that the insertion heuristic produces
solutions with the same objective values from the exact method in a significantly shorter computational
time than the exact method. The results show that the insertion heuristic is capable of solving instances
with up to five requests, and when six requests are input, the computational time increases significantly.
This is because the algorithm applies greedy insertion. Greedy insertion tries all possible insertion po-
sitions for the input requests, and the number of possible combinations increases drastically when the
number of requests increases. The shortened computational time derives from the simplification of the
route construction in the time domain. The decision variables in the exact method are x, y, and z. x
and y are variables related to the travel of the vessels and the requests, respectively. It is necessary to
determine if the requests are boarded during each trip, which x is equal to 1. This way of formulation
creates another set of decision variables with a size equal to the number of x for each request. There-
fore, the number of decision variables significantly grows when the number of requests increases. In
addition, the scheduling of the routes, such as the departure time of each trip, is part of the variables in
the exact method. The model needs to determine the schedule and the routing simultaneously in the
exact method. These aspects increase the solution space to be extremely larger in the exact method
than in the insertion heuristic.

In contrast, the proposed insertion heuristic constructs the scheduling of the vessels and the requests
after the determination of the routes, based on simple assumptions mentioned in Section 3.5. These
assumptions enabled the scheduling and the requests’ boarding situations in each trip of the vessels
to be deterministic. This is as if it removes the y variables and the time-related variables in the ex-
act method, and it is expected to reduce the solution space significantly. Also, the insertion heuristic
only needs to consider the new requests, and the previously assigned or serving requests are only
considered in the scheduling construction. In contrast, the exact method takes assigned and serving
requests as part of the decision. Although the status of the requests is assured by applying additional
constraints to these requests and it contributes to reduce the solution space, the solution space is still
large and it requires enormous computational time to find a solution. Finally, the model in the exact
method duplicates the network to allow multiple visits to a terminal. The size of the network also affects
the resources required to obtain the optimal solution.

In the experiment of the dynamic model, a maximum of three requests occurred in the same time
step. As the experiment of static optimisation suggests, the insertion heuristic provides the route plan

47
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instantly when less than or equal to three requests are inserted. This led to extremely short computa-
tional time for each time step in the dynamic model. This result indicates that the proposed insertion
heuristic with greedy insertion is suitable for this dynamic optimisation model with the rolling horizon,
and the implementation of more efficient heuristic such as ALNS (Ghilas et al., 2016) would not bring sig-
nificant improvement in the solving performance for the dynamic model. In contrast, the exact method
faced many cases in which the solver did not manage to find a feasible solution within the time limit
of one minute. As the performance of the static optimisation model suggests, the model is capable of
reaching the optimal solution in cases of up to two or three unassigned requests. With all unassigned,
assigned, and serving requests considered, there were mostly more than three requests inputted to
the model at each time step, and it is logical that the model had many cases of not finding a feasible
solution. Through the evaluation of the methods for solving the dynamic optimisation problem, it can be
concluded that the proposed insertion heuristic is effective in providing a good solution for this problem
in a short time.

The dynamic model with two solving methods were performed for two different demand scenarios and
four different vessel type combinations to obtain insights into the efficiency and the service level of
the capacity allocation of waterborne vessels for heterogeneous services. The results show a higher
service level and efficiency in the high demand scenario when a mixed purpose vessel is available
compared to when only conventional fixed purpose vessels are operating. Allowing the combination of
passenger and parcel requests in the same vessel brings more flexibility when assigning requests to a
vessel. More cases in which the request was assigned to the nearest vessel were possible thanks to
the mixed purpose vessel and this contributed to rejecting fewer requests due to the time constraints
because less time was required to pickup the request within the maximum waiting time for passenger
requests. Also, vessels were able to pick up and deliver requests with fewer detours, which led to less
TTD. TETD decreased by having mixed purpose vessels because they could serve passenger requests
while having parcels on board since the parcel requests had looser time window than the passenger
requests as long as the parcels were delivered before the required delivery time. Also, it is important to
note that the passenger and parcel requests with the same pickup terminal could be picked up at the
same time when a mixed purpose vessel is available. This contributed to not only increasing the RMR
but also reducing TTD and TETD because the other vessel did not need to visit the same terminal to
serve a specific type of request.

Similar to the high demand scenario, it was consistent that implementing mixed purpose vessels con-
tributed to lower TETD in the low demand scenario. Apart from the TETD, there are no notable patterns
in the KPIs for this demand scenario using the exact method. This can be because of the solving ca-
pability of the model. As shown in Table 4.6, there were many time steps in which the solver could not
find a feasible solution or the optimal solution in this demand scenario. The solver especially struggled
to find a feasible solution when multiple visits to a terminal were required to construct a feasible route
plan. It was often the case that once the solver found a non-optimal feasible solution with multiple
visits to a terminal, the solver could not update the route plan with new requests until the multiple visits
to a terminal by pursuing the previous route plan were completed. The KPIs are highly dependent on
whether the solver manages to find a feasible solution within the time limit. Otherwise, the new requests
would be rejected, and route plans would not be updated at each time step. Therefore, it is important
to note that the KPIs demonstrated in Table 4.6 are highly influenced by the solving capability of the
model, and the influence of the dynamic capacity allocation to the efficiency and the service level of
the system cannot be verified. In contrast, the results of the insertion heuristic provide several insights
into transport performance. Operating the service with two mixed purpose vessels brought high RMR
compared to the other vessel type combinations while maintaining the TTD and the TETD to be low.
This result indicates the increase in the service level and the efficiency of the system by introducing
dynamic capacity allocation for heterogeneous service. Also, the trade-off between the service level
and the efficiency of the system is observed in the result. This is expected since it is natural that the
vessels need to travel more to serve more requests.

In the experiment, more parcel requests were generated than passenger requests in both demand
scenarios. Only 27.8% (high) and 20.9% (low) of the requests were passenger requests. Therefore,
when a passenger-dedicated vessel was present, this vessel spent a long time dwelling. Meanwhile,
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the other vessel operated and served not only all the parcel requests but also the passenger requests
throughout the whole time horizon by merging the service with parcel requests with the same orig-
in/destination. It is important to note that this result is highly dependent on the demand. It is expected
that if more passenger requests occur, the passenger-dedicated vessel have less dwelling time and
serve the passenger requests more. In the experiment, more parcel requests were generated based
on the assumption of the growth of e-commerce and business-related logistics demand compared to
the modal shift of citizens from road transport to multi-modal transport, including waterways.

5.2. Discussion of assumptions and limitations

The model for dynamic centralised fleet management is developed with several assumptions. The as-
sumptions, their influence on the results, and the possible improvement methods are discussed in this
section.

The dynamic optimisation model was solved in a rolling horizon manner, which solves a static sub-
problem at the time step when a new request arrives. In the static model, the problem was formulated
based onmultiple assumptions. The first assumption is that the objective function is defined to minimise
the total travel distance. This objective led to the usage of the vessels to be imbalanced throughout the
time horizon, as discussed before. In real life, it would not be ideal to operate only one of the vessels
out of two heavily, considering the long-term effect of heavy usage (e.g. vessel breakdown likelihood,
battery degradation by repetitive charging and exploiting). It would be better to operate all vessels in a
good balance to have longer lifetime usage and reduce the risk of vessel breakdown. As mentioned in
Chapter 2, the objective function of these PDPs and their variants can vary depending on the purpose
of the study. For instance, minimising the discrepancy of loading level between vessels can lead to
the assignments of requests to vessels to be distributed as equally as possible between vessels. This
may avoid the imbalanced usage of vessels. Another possibility is to maximise the profit of the service
company as Su et al., (2022) did. The company is able to determine the operation of vessels to max-
imise the profit of the company by considering the revenue from logistic companies by serving parcels
and also from passenger customers and the operation costs such as travel costs and charging costs.

Another assumption is related to the stochasticity regarding the vessel operation. The vessel speed is
assumed to be constant in the model and the associated aspects such as travel time and the battery
consumption between two nodes are assumed to be deterministic. In real life, the speed of vessels is
not constant. Vessels’ speed changes due to many factors, such as the necessity of acceleration/de-
celeration when approaching or departing a terminal, the weather conditions, and the loading situation.
The stochasticity of the speed influences the travel time and the battery consumption between two
nodes, and the travel time significantly influences the acceptance/rejection of travel requests since it
determines if the vessels manage to serve the requests while ensuring the time windows. Some litera-
ture, such as Li et al. (2016) and Wang et al. (2023), incorporated the stochasticity of travel times in a
static PDP. However, as far as I know, there are no studies considering the stochasticity in travel times
in a dynamic setting for a ferry system. Not only the speed of the vessel but also the distance between
two nodes is an important assumption made in this thesis. The distance between two nodes is as-
sumed to be the great-circle distance calculated by the coordinates of the two nodes. This assumption
is applied to obtain the travel times. The model will be more realistic if the actual path on the water-
ways is implemented and the distance/travel times are defined based on the realistic network. Similar
to the vessel speed assumption, this affects the capability of reaching terminals within a certain time
and would affect the route plan of vessels. In the model, the travel times are underestimated because
the distance between two nodes is underestimated. This means the vessels were able to satisfy the
time constraint of requests more easily than they would have been if the actual waterways had been
considered. Regarding the KPIs, TTD and TETD are underestimated, and the RMR are likely to be
overestimated in this model.

The assumptions are made in the request generation as well. The waterborne vessel system for het-
erogeneous on-demand service is a conceptual system that has not yet been implemented in real life.
Therefore, there was no data regarding the demand for the service available. In order to incorporate
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the stochasticity of the demand in the model, a non-homogeneous Poisson process was applied to
generate the request. The parameters in the process were arbitrarily defined by considering little in-
formation about the urban demographic and land use of the case location. As the output of the model
highly depends on the requests, it is significant to produce a realistic demand dataset to accurately
capture the performance of the transport system. Therefore, it is important to collect historical data in
order to define realistic parameters for stochastic demand generation.

In the dynamic optimisation model, the requests are inserted into the model gradually and the rout-
ing decisions are immediately made every time a new request is inserted to serve the new requests.
This approach implicitly prioritises the early requests and the upcoming requests’ acceptance/rejection
is dependent on the earlier requests. Therefore, despite the developed model optimising the route
of vessels at each time step, it does not mean that the service level and the efficiency of the system
are optimised for the entire time horizon. For instance, vessels can result in rejecting many requests
to serve a single request which occurred earlier than the others, or may need to make extra travels
to serve the new requests at the terminal where the vessels departed to serve an earlier request. It
is possible to try to incorporate the anticipation of future requests to improve the performance of the
transport system. The waiting strategy is one of the common methods used to incorporate the antic-
ipation of future requests. Several waiting strategies are developed for dynamic pick up and delivery
problems, such as the wait-first strategy, in which the vehicles wait at their current location for as long
as the requests and the route is feasible (Mitrović-Minić and Laporte, 2004).

Related to the anticipation of future requests, the availability of historical data will enable the devel-
opment of a leaning-based method in the dynamic optimisation model (Cai et al., 2023). Especially,
the temporal and spatial pattern in the demand data can be utilised to learn the optimal behaviour of
vessels considering the entire time horizon. For instance, the vessels can learn the peak hours and
the off-peak hours and wisely decide the acceptance/rejection, the assignment of requests to vessels,
and the vessels’ route plan so most of the passenger requests during the peak hour can be served,
or to postpone the parcel requests to make sure enough capacity is available for the passenger peak
hours. Learning-based methods, such as machine learning and reinforcement learning, are capable
of deriving the optimal strategies of the operation through training based on historical data. Several
studies have implemented learning-based method for vehicle routing problem and its variants (Gao
et al., 2024), (Pan and Liu, 2023).



6
Conclusion

This chapter contains the conclusion of this thesis and the recommendation for future application and
research. This thesis aimed to develop a model to determine the dispatching of vessels for hetero-
geneous on-demand service, considering the stochasticity of the demand. In addition, it aimed to
investigate the efficiency and the service level of the system by comparing the capacity allocation sys-
tem by mixed purpose vessels with the conventional fixed purpose vessel system.

Amodel which dynamically optimises the fleet operation given the generated demand data is developed
in this thesis. In demand generation, a non-homogeneous Poisson process was applied to passenger
requests to incorporate the temporal and spatial pattern of demand, and a probabilistic approach was
also used to reflect the characteristics of parcel deliveries in real life. Given the two generated demand
scenarios, the model dynamically solves the dispatching of the waterborne vessels in a rolling horizon
manner. Two solving algorithms, the exact method and the insertion heuristic, were proposed to solve
the static subproblem at each time step. The output of the experiments was analysed to investigate
the solving capability of each algorithm in static and dynamic settings. Also, the output including the
KPIs was analysed to obtain insights into the efficiency and the service level of the transport system
with mixed purpose fleet compared to the conventional fixed purpose fleet.

In the remaining of this chapter, the answers to the research questions are provided in Section 6.1.
Afterwards, recommendations for future application and research are presented in Section 6.2 and
Section 6.3.

6.1. Answers to the research questions

1) How can the dispatching of vessels be determined so that the efficiency of the water-
borne vessels system for heterogeneous on-demand service is maximised, considering
the stochasticity of the demand?

The developedmodel optimises dispatching thewaterborne vessels for heterogeneous on-demand
service and the associated route plans so the total travel distance is minimised. Minimising the to-
tal travel distance contributes to maximising the efficiency of the system for the fleet. The demand
stochasticity was considered by generating individual travel and delivery requests by applying
a non-homogeneous Poisson process for passenger requests and a probabilistic approach for
parcel requests. The parameters were defined to incorporate the spatial and temporal demand
patterns for the services. Taking the generated set of travel and delivery requests as input, the
model dynamically optimises the route plan of each vessel to serve requests aiming to minimise
the total travel distance of the route plan in a rolling horizon manner. A static subproblem, which
contains various constraints related to the capacity, battery level, and the time window, is solved
at each time step a new request occurs to determine the new route plan of vessels considering
the new requests. Two solving algorithms, the exact method and the insertion heuristic, were pro-
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posed to solve the static subproblem. The solving capability and quality of both algorithms were
evaluated through the experiment. The insertion heuristic demonstrated its capability of providing
good solutions in a significantly shorter computational time than the exact method.

2) To what extent does the mixture of capacity in vessels improve the efficiency and the ser-
vice level of the waterborne vessels system?

The model provides the KPIs related to the efficiency and the service level of the waterborne
vessel system. The total travel distance (TTD) and the total empty travel distance (TETD) were
defined as the indicators for the efficiency of the service, and the request met ratio (RMR) was
defined as the indicator relating to the service level. These KPIs were collected for each configu-
ration, which is a combination of the demand scenario and vessel type combinations, through the
case study in Fredrikstad, Norway. The RMR suggests that introducing mixed purpose vessels
improves the service level in both demand scenarios as the RMR is higher for (mixed, mixed)
than that of (parcel, passenger) by around 6-13 points. Also, the TETD decreases by 12.5-53.1%
by introducing mixed purpose vessels compared to the fixed purpose vessels. This is derived
from the reduction of empty trips for the vessels to pick up a specific type of request. TTD did not
necessarily decrease from fixed purpose vessels when mixed purpose vessels were introduced.
This is because of the trade-off observed between RMR and TTD/TETD. The travel distance
increases when more requests are served, and the output verifies this trade-off. However, con-
sidering the higher RMR for (mixed, mixed) than that of (parcel, passenger) and (mixed, mixed)
recording in less TETD and only a slight increment in TTD shows the maintaining the efficiency of
the system while providing a high service level. In conclusion, the mixture of capacity in vessels
significantly improved both the efficiency and the service level of the waterborne vessel system
for heterogeneous on-demand service compared to conventional fixed purpose vessels in the
experimented demand scenarios. However, transportation performance is case-specific since
it depends highly on demand. Therefore, it is important to accurately capture the demand in
practice to obtain insights into transportation performance in real life.

6.2. Recommendations for future application

This section presents some recommendations for the future application of the considered waterborne
vessel system in real life. This thesis demonstrated that providing heterogeneous service with a mixture
of capacities in vessels improves the efficiency and service level compared to conventional fixed pur-
pose vessels. This result suggests that the current urban ferry systems can utilise their excess capacity
to provide logistics services. This will benefit the service-operating company by obtaining profit from
delivery companies and the delivery companies by potentially reducing costs by implementing crowd
shipping.

It is important to provide a platform for customers so they can easily make requests and the system can
quickly determine the vessels’ routes accordingly. The proposed insertion heuristic showed its capabil-
ity of providing good solutions in a very short time. Thus, this algorithm can be a sufficient approach in
the system to start the service until more advanced methods can be applied. The platform also enables
the service provider to collect the demand data. The historical data of demand would provide the po-
tential for a data-driven approach to determine the operation of vessels for better efficiency and service
level for the whole day. However, it is significant to carefully consider the privacy and the security of
the data since the collected data will be able to identify individuals.

6.3. Recommendations for future research

The model was developed based on several assumptions as discussed in Section 5.2. The assump-
tions are mostly related to the network topology and the vessel property which mostly assumed them
to be deterministic and homogeneous. These assumptions can be relaxed to set up a more realis-
tic setting in terms of the operation of vessels. The set up of a geographically accurate network and
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stochasticity in the vessel property and behaviour can possibly be incorporated into the model. In ad-
dition, the unavailability of historical data regarding the demand for the service led the model to create
a synthetic request dataset arbitrarily. As mentioned before, the results obtained in the experiments
are highly dependent on the demand scenario. Therefore, it is significant to provide accurate demand
data to the model to accurately capture the impact of dynamic capacity allocation on transportation
efficiency and service level. Also, the historical data enables a data-driven approach to optimise the
vessel’s operation. Learning-based methods are especially expected to be powerful since they can
learn from historical data to make decisions about operations by incorporating the anticipation of future
demand, as well as the temporal and spatial demand patterns.
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A
Parameters for request generation

module

In this appendix, the parameters applied in the request generation module in the computational exper-
iments are presented. Two demand scenarios, ”high” and ”low” were defined. Each demand scenario
had different parameters for the non-homogeneous Poisson process of passenger requests. The non-
homogeneity is derived from different parameters for each OD pair and time period. In the experiment,
6:00-7:00, 9:30-16:00, and 18:30-22:00 were defined as off-peak hours. In contrast, 6:30-9:00 and
16:00-18:30 were defined as peak hours.

A.1. High demand scenario

Table A.1: Arrival rate for each OD pair in off-peak time periods (high demand)

O/D 0 1 2 3 4 5 6 7

0 0 0.0006 0.0006 0.0006 0 0.0012 0.0006 0.0006

1 0.0006 0 0.0006 0.0006 0.0012 0.0012 0.0006 0.0006

2 0.0006 0.0006 0 0 0.0012 0.0012 0.0006 0.0006

3 0.0006 0.0006 0 0 0.0012 0 0.0006 0.0006

4 0 0.0012 0.0012 0.0012 0 0.0018 0.0012 0.0012

5 0.0012 0.0012 0.0012 0 0.0018 0 0.0012 0.0012

6 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0 0

7 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0 0
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Table A.2: Arrival rate for each OD pair in peak time periods (high demand)

O/D 0 1 2 3 4 5 6 7

0 0 0.0009 0.0009 0.0009 0 0.0018 0.0009 0.0009

1 0.0009 0 0.0009 0.0009 0.0018 0.0018 0.0009 0.0009

2 0.0009 0.0009 0 0 0.0018 0.0018 0.0009 0.0009

3 0.0009 0.0009 0 0 0.0018 0 0.0009 0.0009

4 0 0.0018 0.0018 0.0018 0 0.0027 0.0018 0.0018

5 0.0018 0.0018 0.0018 0 0.0027 0 0.0018 0.0018

6 0.0009 0.0009 0.0009 0.0009 0.0018 0.0018 0 0

7 0.0009 0.0009 0.0009 0.0009 0.0018 0.0018 0 0

A.2. Low demand scenario

Table A.3: Arrival rate for each OD pair in off-peak time periods (low demand)

O/D 0 1 2 3 4 5 6 7

0 0 0.0004 0.0004 0.0004 0 0.0008 0.0004 0.0004

1 0.0004 0 0.0004 0.0004 0.0008 0.0008 0.0004 0.0004

2 0.0004 0.0004 0 0 0.0008 0.0008 0.0004 0.0004

3 0.0004 0.0004 0 0 0.0008 0 0.0004 0.0004

4 0 0.0008 0.0008 0.0008 0 0.0012 0.0008 0.0008

5 0.0008 0.0008 0.0008 0 0.0012 0 0.0008 0.0008

6 0.0004 0.0004 0.0004 0.0004 0.0008 0.0008 0 0

7 0.0004 0.0004 0.0004 0.0004 0.0008 0.0008 0 0
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Table A.4: Arrival rate for each OD pair in peak time periods (low demand)

O/D 0 1 2 3 4 5 6 7

0 0 0.0006 0.0006 0.0006 0 0.0012 0.0006 0.0006

1 0.0006 0 0.0006 0.0006 0.0012 0.0012 0.0006 0.0006

2 0.0006 0.0006 0 0 0.0012 0.0012 0.0006 0.0006

3 0.0006 0.0006 0 0 0.0012 0 0.0006 0.0006

4 0 0.0012 0.0012 0.0012 0 0.0018 0.0012 0.0012

5 0.0012 0.0012 0.0012 0 0.0018 0 0.0012 0.0012

6 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0 0

7 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0 0



B
Obtained solutions from the static

subproblem optimisation

The obtained route plans from the static experiment are presented. The numbers below the visited
terminals show the arrival time at each terminal. It can be seen that the visiting orders of terminals are
the same between the exact method and the insertion heuristic in all instances. However, the arrival
time at each terminal differs in some instances.

(a) Exact method (b) Insertion heuristic

Figure B.1: Obtained route plan from each solving method, |K| = 2, |R| = 1
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(a) Exact method (b) Insertion heuristic

Figure B.2: Obtained route plan from each solving method, |K| = 2, |R| = 2

(a) Exact method (b) Insertion heuristic

Figure B.3: Obtained route plan from each solving method, |K| = 2, |R| = 3
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(a) Exact method (b) Insertion heuristic

Figure B.4: Obtained route plan from each solving method, |K| = 2, |R| = 4

(a) Exact method (b) Insertion heuristic

Figure B.5: Obtained route plan from each solving method, |K| = 2, |R| = 5
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(a) Exact method (b) Insertion heuristic

Figure B.6: Obtained route plan from each solving method, |K| = 2, |R| = 6

(a) Exact method (b) Insertion heuristic

Figure B.7: Obtained route plan from each solving method, |K| = 3, |R| = 1
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(a) Exact method (b) Insertion heuristic

Figure B.8: Obtained route plan from each solving method, |K| = 3, |R| = 2

(a) Exact method (b) Insertion heuristic

Figure B.9: Obtained route plan from each solving method, |K| = 3, |R| = 3
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(a) Exact method (b) Insertion heuristic

Figure B.10: Obtained route plan from each solving method, |K| = 3, |R| = 4

(a) Exact method (b) Insertion heuristic

Figure B.11: Obtained route plan from each solving method, |K| = 3, |R| = 5
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(a) Exact method (b) Insertion heuristic

Figure B.12: Obtained route plan from each solving method, |K| = 3, |R| = 6

(a) Exact method (b) Insertion heuristic

Figure B.13: Obtained route plan from each solving method, |K| = 4, |R| = 1
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(a) Exact method (b) Insertion heuristic

Figure B.14: Obtained route plan from each solving method, |K| = 4, |R| = 2

(a) Exact method (b) Insertion heuristic

Figure B.15: Obtained route plan from each solving method, |K| = 4, |R| = 3
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(a) Exact method (b) Insertion heuristic

Figure B.16: Obtained route plan from each solving method, |K| = 4, |R| = 4

(a) Exact method (b) Insertion heuristic

Figure B.17: Obtained route plan from each solving method, |K| = 4, |R| = 5
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(a) Exact method (b) Insertion heuristic

Figure B.18: Obtained route plan from each solving method, |K| = 4, |R| = 6



C
Results of the loading level

The results of the time series of the loading level for each vessel in each configuration solved by the
exact method are presented.
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(a) (mixed, mixed) (b) (mixed, passenger)

(c) (mixed, parcel) (d) (parcel, passenger)

Figure C.1: Loading level of each vessel in each vessel type combination for high demand scenario by exact method
orange: parcel vessel 1, blue: passenger vessel 1, purple: parcel vessel 2, green: passenger vessel 2
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(a) (mixed, mixed) (b) (mixed, passenger)

(c) (mixed, parcel) (d) (parcel, passenger)

Figure C.2: Loading level of each vessel in each vessel type combination for low demand scenario by exact method
orange: parcel vessel 1, blue: passenger vessel 1, purple: parcel vessel 2, green: passenger vessel 2
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