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Steady-state nonlinearity of open-loop reset systems

M. B. Kaczmarek1, X. Zhang1 and S. H. HosseinNia1

Abstract— In this paper, we introduce a new representation
for open-loop reset systems. We show that at steady-state a
reset integrator can be modelled as a parallel interconnection
of the base-linear system and piece-wise constant nonlinearity.
For sinusoidal input signals, this nonlinearity takes a form of
a square wave. Subsequently, we show how the behaviour of a
general open-loop reset system is related to the nonlinearity of a
reset integrator. The proposed approach simplifies the analysis
of reset elements in the frequency domain and provides new
insights into the behaviour of reset control systems.

I. INTRODUCTION

A reset element is a linear time-invariant system whose
states, or a subset of states, reset to values defined by a
reset law if certain conditions are satisfied [1]. It has been
proven that reset systems can overcome limitations of linear
controllers [2], [3]. Examples of applications of reset in
various fields like process control or networked systems
can be found in textbooks [1], [4], [5]. Moreover, reset
elements have been successfully applied to control precision
positioning systems [6], [7], [8], [9], [10], [11], [12].

One of the reasons why the reset control systems draw
so much attention, especially for industrial applications,
is the fact that they can be designed using a modified
frequency-domain loop-shaping procedure. The steady-state
behaviour of nonlinear systems may be, in certain cases,
described using the describing functions (DF) [13]. For reset
system the DF were first derived in [14], and later extended
to the Higher-order Sinusoidal-input Describing function
(HOSIDF) in [15].

With HOSIDF, the nonlinearity of a system is represented
by describing harmonics of the output signal to a sinusoidal
input at a certain frequency. While this method can be
used for tuning the controllers, the influence of the higher
harmonics can not be easily interpreted.

In this paper, we introduce a new representation of the
steady-state behaviour of reset systems with sinusoidal in-
puts. First, we show that a reset integrator can be modelled
at steady state as a parallel interconnection of the base-linear
systems and piece-wise constant non-linearity. For sinusoidal
input signals, this nonlinear component of the output takes
a form of a square wave.

Any general open-loop reset system can be represented as
a feedback system built around a reset integrator. Using this
fact, we show how the nonlinearity of any reset element in
open-loop is related to the behaviour of a reset integrator.

*This work was not supported by any organization
1Authors are with Faculty of Mechanical, Maritime and Materials En-

gineering (3mE), Delft University of Technology, Delft, The Netherlands
m.b.kaczmarek@tudelft.nl

The representation introduced in this paper provides a
clear interpretation of HOSIDF of open-loop reset systems.

II. BACKGROUND

A. Notation
I and 0 denote here square identity matrix and zero matrix

of appropriate size respectively. Jm,n denotes a matrix of
ones.

B. Reset control systems
Consider a reset element

R :


ẋr(t) = Arxr(t) +Brur(t), if ur ̸= 0

xr(t
+) = Aρxr(t), if ur = 0

yr = Crxr(t) +Drur(t)

, (1)

where xr(t
+) = limϵ→0+ x(t + ϵ), xr ∈ Rm is the state of

R, ur ∈ R1 is the input of R, yr ∈ R1 is the output of R
and Ar, Br, Aρ, Cr, Dr are constant matrices of appropriate
dimensions.

The linear system described with (Ar, Br, Cr, Dr) is re-
ferred to by the term Base linear system (BLS) and describes
dynamics of R in absence of reset.

The linear reset law xr(t
+) = Aρxr(t) describes the

change of state that occurs at reset instants tk, k = 1, 2, . . . ,
that is when the reset condition ur = 0 is satisfied. Alterna-
tive reset laws and conditions [5] are not considered in this
work.

Since reset systems are a special case of hybrid sys-
tems, pathological behaviours like beating, deadlock and
Zeno behaviour may occur [16]. In practice, existence and
uniqueness of the solution are assured by time-regularization
[17], [18]. Time-regularization is a modification of reset
system, such that reset instants happen only if a minimum
time between resets ∆m > 0 has lapsed. Any discrete-time
implementation inherently features time regularization with
∆m equal to the sampling time [9]. In remainder of this
paper it is assumed that solutions of R are well defined [1].

C. Reset elements
For illustration purpose, let introduce the First order reset

element (FORE) and the Second order reset element (SORE).
FORE is a reset element (1) with

Ar = −ωr, Br = ωr, Cr = 1, Dr = 0.

The state-space matrices for SORE are

Ar =

[
0 1

−ω2
r −2βrωr

]
, Br =

[
0
ω2
r

]
,

Cr =
[
1 0

]
, Dr = 0.

Here, we choose ωr = 100, βr = 0.1 and Aρ = 0.
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III. NONLINEARITY OF RESET SYSTEMS

To analyse the steady-state behaviour of a system, we
require it to be uniformly convergent [19], [20]. In this way,
we guarantee the existence of a steady-state solution for a
system driven by periodic inputs. This condition is satisfied
by (1) for a class of sinusoidal inputs if |λ(Aρe

Arδ)| <
1,∀δ ∈ R+ [14]. In [21], this property has been studied
in closed-loop, related to the Hβ condition [22] and proven
for a wider class of input signals.

Theorem 3.1 (Reset integrator): The steady-state state re-
sponse of uniformly convergent reset integrator, i.e. reset
system (1) with Ar = 0, Br = I, Cr = I,Dr = 0, to an
input signal ur(t) = a sin(ωt), a ∈ Rm×1 is given by

xr(t) = xbls(t) + qi(t), (2)

where xbls denotes the steady-state response of the base-
linear system (Ar, Br, Cr, Dr) and qi is a square wave in
phase with ur, with a mean value

q̄i =
−a

ω
I (3)

and amplitude

q̂i = (I −Aρ)(I +Aρ)
−1 a

ω
. (4)

Proof: Consider dynamics of q ≜ xr − xbls{
q̇(t) = Arq(t), if ur ̸= 0

q(t+) = Aρq(t) + (Aρ − I)xbls(t), if ur = 0.
(5)

It is clear that for a reset integrator Ar = 0 with any input
ur, q(t) is piecewise constant, and jumps only at the reset
instants.

Between consecutive reset instants tk, tk+1 we have

q(t) = q(t+k ) +

∫ t

tk

Arq(τ) dτ, for t ∈ (tk, tk+1). (6)

For an input signal ur(t) = a sin(ωt), we have reset
instants tk = k π

ω , k ∈ N. Signal q specific for this case
is denoted with subscript i. From the second equation of (5)

qi(t
+
k ) = Aρqi(t

+
k−1) + (Aρ − I)

∫ tk

tk−1

Brur(τ) dτ

=

{
Aρqi(t

+
2n), if k = 2n+ 1

Aρqi(t
+
2n+1) + (Aρ − I) 2

ωa, if k = 2n.

(7)

At the steady state, we have

qi(t
+
2n) = qi(t

+
2n+2)

= Aρqi(t
+
2n+1) + (Aρ − I)

2

ω
a

= A2
ρqi(t

+
2n) + (Aρ − I)

2

ω
a.

(8)

After solving for qi(t+2n) we have

qi(t
+
2n) = (I −A2

ρ)
−1(Aρ− I)

2

ω
a = −(I +Aρ)

−1 2

ω
a. (9)

0.35 0.4 0.45 0.5

-0.02

-0.01

0

0.01

0.02

(a) Integrator (Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρ = 0)

0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

(b) FORE (Ar = −100, Br = 100, Cr = 1, Dr = 0, Aρ = 0)

Fig. 1: Steady-state time-responses of reset elements to
ur(t) = sin(100t) as a sum of linear and nonlinear con-
tributions.

For qi(t+2n+1) we have

qi(t
+
2n+1) = −Aρ(I +Aρ)

−1 2

ω
a. (10)

Taking all this into consideration we have

qi(t) =

{
−(I +Aρ)

−1 2
ωa, for t ∈ [t2n, t2n+1)

−Aρ(I +Aρ)
−1 2

ωa, for t ∈ [t2n+1, t2n+2).
(11)

The mean value q̄i and the peak amplitude q̂i are given by

q̄i =
q(t+2n) + q(t+2n+1)

2
=

−a

ω
I (12)

q̂i =
q(t+2n+1)− q(t+2n)

2
= (I −Aρ)(I +Aρ)

−1 a

ω
. (13)

So we can also write

qi(t) =

{
q̄i + q̂i, for t ∈ [t2n, t2n+1)

q̄i − q̂i, for t ∈ [t2n+1, t2n+2).
(14)

Remark 1: Signal q(t) represents nonlinearity added to
the base linear system by the reset actions.

Steady-state response of a reset integrator, divided into the
linear and nonlinear components, is presented in Fig. 1a.

Theorem 3.2 (Reset state-space system): The steady-state
state response of uniformly convergent reset system (1) to
an input signal ur(t) = b sin(ωt), b ∈ R is given by

xr = xbls + q = xbls + Tq ⊛ qi, (15)

Tq(s) =
xr(s)

qi(s)
= Q(sI −Ar)

−1s (16)
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where xbls denotes the steady-state response of the base-
linear system (Ar, Br, Cr, Dr) and qi is the square wave
introduced in Theorem 3.1, representing the nonlinearity in
a reset integrator with the same number of states and reset
matrix as in (1), that is driven by input a sin(ωt), a = bJm,1.

The scaling of the magnitude of the nonlinearity Q ∈
Rm×m is given by

min
Q

∥∥eArt(I −Aρ)xbls(tk)− eArtAρQq∗(tk) +Qq∗(t)
∥∥2
2
,

(17)
for t ∈ (tk, tk+1), where tk, tk+1 denote subsequent reset
instants.

Proof: Any state-space reset system can be represented
in a block diagram form as a feedback system with a reset
integrator and feedback gain Ar, see Fig. 2a. Using the
Theorem 3.1, the reset integrator can be represented as a
parallel interconnection of its base-linear system and a block
generating the signal related to resets (Fig. 2b).

Reset instants of considered elements are depending only
on the input signal. In consequence, reset instants for a reset
integrator considered in Theorem 3.1 and a general reset
state-space system are the same, if both systems are driven
by sine waves of the same frequency and phase. However,
in the state-space system, the signal entering the integrator
er is shifted with respect to the ur. This leads to the change
of the magnitude of the square wave, which is represented
by the scaling matrix Q.

The complete new representation of a reset element is
shown in Fig. 2c. It can be seen that the state of a reset
element consists of the response of the base linear system
xbls and a contribution due to the nonlinearity qi. This
contribution is denoted by q and defined in (5). By analysing
the block diagrams, we have

xr = Ar
I

s
xr +Br

I

s
ur + q, (18)

xr = xbls + q = xbls + Tq ⊛ qi, (19)

Tq(s) =
xr(s)

qi(s)
= Q(sI −Ar)

−1s (20)

The linear transfer function Tq defines the magnitude and
shape of the nonlinear contribution.

To find the amplitude of the nonlinear contribution we
consider evolution of a reset system states between reset in-
stants. We define q(t) ≜ Qq∗(t), where q∗ can be interpreted
as a response of Tq with Q = I to the square wave signal
qi.

Using that xr = xbls + q, for t ∈ (tk, tk+1) we have

eAr(t−tk)xbls(tk) + q(t) =eAr(t−tk)xr(t
+
k ) (21)

eAr(t−tk)xbls(tk) +Qq∗(t) =eAr(t−tk)Aρ(xbls(tk) +Qq∗(tk))
(22)

0 = eArt(I −Aρ)xbls(tk)−eArtAρQq∗(tk) +Qq∗(t).
(23)

(a)

(b)

(c)

Fig. 2: Block diagram representation of a reset state-space
system. a) standard form, b) reset integrator as a sum of linear
and nonlinear components, c) entire state-space element as
a sum of linear and nonlinear components. Dotted lines
indicate signals triggering resets.

In consequence, Q can be found as a solution for a mini-
mization problem

min
Q

∥∥eArt(I −Aρ)xbls(tk)− eArtAρQq∗(tk) +Qq∗(t)
∥∥2
2
.

(24)
For first-order reset elements (m = 1), it is sufficient to
consider only the before and after-reset state. From (5) we
have

Aρ (xbls(tk) + q(tk)) = xbls(tk) + q(t+k ), (25)

(Aρ − I)xbls(tk) = Q
(
q∗(t+k )−Aρq

∗(tk)
)
, (26)

Q = (Aρ − I)xbls(tk)
(
q∗(t+k )−Aρq

∗(tk)
)−1

. (27)

To complete the calculation of Q we need to find xbls(tk)
and q∗(t).
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The response of the base-linear system at a reset instant
is given by

xbls(tk) = eArtxbls(0) +

∫ t

0

eAr(t−τ)Bra sin(ωτ) dτ

=

{
(A2

r + ω2I)−1Braω, for k = 2n+ 1

−(A2
r + ω2I)−1Braω, for k = 2n+ 2.

(28)

As we mentioned earlier, q∗ can be interpreted as a re-
sponse of Tq with Q = I to qi. Tq can be represented
in the state-space form by the quadruple (ABCD-matrices)
(Ar, Ar, I, I). Note, that Tq has a direct feedthrough term.
We calculate response of a linear system Tq to a square wave
qi

q∗(t) = eArtq∗(0) +

∫ t

0

eAr(t−τ)Arqi(τ) dτ + qi(t). (29)

At the steady state, the term related to q∗(0) disappears.
qi consists of a constant and a variable component. The
contribution due to the constant component is∫ t

0

eAr(t−τ)Ar q̄i dτ = (eArt − I)q̄i ≈ −q̄i (for large t).

(30)
Consider now t ∈ [t2n, t2n+1). The varying part qi(t)− q̄i

is a zero-mean square wave with peak amplitude q̂i. We have∫ t2n

0

eAr(t−τ)Ar(qi(τ)− q̄i) dτ = 0 (31)

The response for t ∈ [t2n, t2n+1) can be calculated as a
response to step with magnitude q̂i, because the constant
components q̄i cancel out. For this, we define the state of
Tq to be xq , such that q(t)∗ = Ixq(t) + Iqi(t). The initial
condition is xq(t2n). At the steady state we have xq(t2n) =
−xq(t2n+1). By comparing these values we get

−eAr
π
ω xq(t2n+1) + (eAr

π
ω − I)q̂ = xq(t2n+1) (32)

(eAr
π
ω + I)xq(t2n+1) = (eAr

π
ω − I)q̂i (33)

xq(t2n+1) = (eAr
π
ω + I)−1(eAr

π
ω − I)q̂i (34)

q∗(t2n+1) =
(
(eAr

π
ω + I)−1(eAr

π
ω − I) + I

)
q̂i (35)

Following the step response logic, the after reset value
q∗(t+2n+1) is given by

q∗(t+2n+1) = xq(t2n+1)− Iq̂i. (36)

To illustrate the Theorem 3.2, Fig. 1b shows a steady-
state response of a FORE. The FORE can be represented
as a feedback system around the reset integrator, whose re-
sponse is presented in Fig. 1a. In consequence, the nonlinear
components q presented in both figures are related by Tq .

The following corollaries are a consequence of the fact
that an ideal square wave can be represented as an infinite
sum of sinusoidal waves

qi(t) = q̄i+ q̂i
4

π

(
sin(ωt) +

1

3
sin(3ωt) +

1

5
sin(5ωt) . . .

)
.

(37)

Corollary 1: The k-th harmonic of the nonlinear contri-
bution q in the reset system (1) is given by

qk(ω) =

{
4
kπCrQ(jkωI −Ar)

−1jkωq̂iJm,1 for odd k

0 for even k.
(38)

Corollary 2: The Higher-order Sinusoidal-input Describ-
ing function (HOSIDF) of the reset system (1) is given by

Hk(ω) =

{
Cr (jωI −Ar)

−1
Br +Dr + q1(ω) for k = 1

qk(ω) for k ≥ 2
(39)

Corollaries 1 and 2 give a clear insight into the behaviour of
HOSIDF for reset elements.

Remark 2: For a reset integrator, the influence of a higher-
order harmonic on the behaviour of the element is inversely
proportional to the order of the harmonic.

Nonlinearities of a general reset system and a correspond-
ing reset integrator are related by a linear transfer function
Tq , which depends on the state matrix Ar of the base
linear system of the system and the reset matrix Aρ. In
consequence, the influence of a particular harmonic can be
amplified or diminished.

Remark 3: For a uniformly convergent reset element, the
sum of HOSIDF is always finite, as they compose the
nonlinearity q.

IV. EXAMPLES

In this section we will illustrate the equivalence of the
introduced representation of reset systems with the standard
models. To show that the introduced methodology represents
the steady-state behaviour of a reset system correctly, we
compare the HOSIDF derived in Corollaries 1 and 2 with
ones derived using the original method introduced by [14]
and [15].

10
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-40

-30

-20
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0
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Fig. 3: HOSIDF Hj and harmonics of the nonlinearity qj for
the FORE element.
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Fig. 4: HOSIDF Hj and harmonics of the nonlinearity for
the SORE element.

Figures 3 and 4 compare the HOSIDF and the harmonics
of the nonlinear component q of FORE and SORE. The
differences between the 1st-order describing function, 1st
harmonic of the nonlinear contribution and the transfer
function of the base-linear system can be clearly seen. The
1st-order HOSIDF is recreated by summing the transfer
function of the BLS and the 1st harmonic of q. As expected,
the higher-order harmonics of q and HOSIDF are equivalent.

V. CONCLUSION

In this paper, we introduced a new representation for the
steady-state responses of open-loop reset systems. It provides
an intuitive explanation for HOSIDF of reset systems and
highlights the influence of nonlinearity on the behaviour of
the reset system. The insights from this work can be applied
for the shaping of nonlinearities of reset elements. While this
paper considers only reset elements in open-loop, the same
approach may be taken in the case of closed-loop systems
if appropriate assumptions about the reset instants are made
[15].
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