
1

Smart safety shoe of the future: 
Detecting risks of low back pain
Master Thesis

Yixiang Zhang
TU Delft 2021



Author
Yi Xiang Zhang
Delft University of Technology (TU Delft)
Industrial Design Engineering
Integrated Product Design
y.x.zhang@outlook.com

Chair
Dr. ir. W.F. van der Vegte
Delft University of Technology (TU Delft)
Department of Industrial Design
Section: Cyber-physical Systems 

Mentor
A.H. Jellema, MSc.
Delft University of Technology (TU Delft)
Department of Industrial Design
Section: Applied Ergonomics & Design 

Company Mentor
J. Arts
Allshoes
Manager of Operations & Sustainability

University 
Delft University of Technology
Faculty of Industrial Design Engineering
Landbergstraat 15
2628CE Delft
The Netherlands
T: +31 15 278 4750
info@tudelft.nl
http://www.io.tudelft.nl

Company 
Allshoes Benelux B.V.
Koivistokade 60
1013BC Amsterdam  
The Netherlands
T: +31 (0) 20 2250 130
info@allshoes.eu
https://www.allshoes.eu/

Colophon



Acknowledgments
I would like to thank everyone who supported me in the course of this 

graduation project.  

 

Supervisors 

Anton and Wilfred, I would like to thank you for the support and coaching 

through this project. The project reached this level of the thoroughness with 

the critical feedback you have provided me. Also giving me insights into how to 

approach certain aspects of the project.  

 

Company mentor 

Jan, thank you for coaching me through this project. Your enthusiasm and 

asking the critical (sometimes tough) questions helped me keeping focus on the 

project. Also for helping me plan the project, which helped me immensely.  

 

Floris de Bruyn Kops 

Thank you for helping me to get to know how safety shoes are made, helping 

with some ideation phases and the general information about shoes.  

 

Jan Metselaar 

Thank you for making time to answer the questions that I send you from time to 

time. It has helped me a lot.  

 

Colleagues  

Thank you to all the great people working at Allshoes. For some, it was the first 

hearing about the project in detail, but always eager to hear about the project. 

 

Xinyu Huang 

Thank you for being there when I needed support in different stages of the 

project, from planning to ideation. Also, keeping me from going insane during 

the project. 

 

My friends and family 

Thank you all for supporting me during this project and being interested in this 

project. Always providing a listening ear to what I have to tell about the project.  



List of abbreviations

AI - Artificial Intelligence 
AGI - Artificial General Intelligence
ANN - Artificial Neural Networks
DT - Decision Tree
EU-OSHA - European Agency for Safety and Health at Work
FBD - Free Body Diagram
FSR - Force Sensitive Resistor
GRF - Ground Reaction Force
IMU - Inertial Measurement Unit
IoT - Internet of Things
IPD - Integrated Product Design
KNN - K Nearest Neighbours
LBP - Low Back Pain
MCU - Microcontroller Unit
MEMS - Micro-electro-mechanical systems
ML - Machine Learning
NIOSH - National Institute for Occupational Safety and Health
OWAS - Ovako Working posture Assessment System
PCB - Printed Circuit Board
PLA - Polylactic Acid
PPD - Plantar Pressure Distribution
RTC - Real Time Clock
SPD - Strategic Product Design
SVM - Support Vector Machines
TPU - Thermoplastic polyurethane 
WMSD - Work-related Musculoskeletal Disorders 



Abstract
The warehousing sector is among the top when it comes to the risk of 

developing work-related musculoskeletal disorders (WMSDs), in particular low 

back pain (LBP). In this sector, LBP is a prevalent issue, due to the nature of 

the job of lifting and moving (heavy) objects around. The issue has significant 

implications for the workers’ health, in terms of quality of life. Companies and 

society feel the consequences in terms of financial costs. This issue could be 

tackled by introducing smart technology in the form of a smart safety shoe. 

The concept has been developed by a strategic product design student and 

the strategic direction has been determined. This project explores the concept 

further and validates the idea of smart safety shoes to reduce the risk of LBP 

during manual handling, through technological means.  

 

To understand the problem of LBP in context, extensive literature research 

was conducted on ergonomics. Understanding what causes it and the current 

methods to reduce the risks. Further, looking into the possibility of detecting 

causes through technology. The research results were used to build a prototype 

for validation of the concept. 

 

The causality of LBP is not easy to point out, as multiple factors (physical, 

psychosocial, and individual) play a role in its development. Research does 

conclude that physical factors play a major role, which is related to heavy lifting, 

repetitiveness, and awkward postures. Manual handling can be performed 

safely as long as the weight is below 23 kg and correct postures are adopted. 

Though not all workers adhere to correct posture, and it is hard to track through 

observational methods. 

 

Postures can be tracked or detected through plantar pressure distribution 

(PPD), by using pressure sensors. These sensors can be placed within safety 

shoes and will collect PPD data of workers. The PPD data shows certain 

patterns and have characteristics that can be linked to different postures. The 

data can be analysed using machine learning, to automate the process and 

could be able to give feedback to the user when a risky posture is adopted.  

 

A pressure insole has been prototyped with the conducted research to collect PPD data of different 

postures (stoop lifting, lifting above shoulder height, and asymmetrical lifting). The collected data 

were manually analysed to understand how patterns may look like. A machine learning model was 

made, using a tree algorithm, to analyse the data as well. It can classify all the measured static 

postures with 100% accuracy. Dynamic lifting data were not analysed by the model yet as it needs 

additional data preparation. At this point, the concept needs more development to analyse dynamic 

data and to implement the hardware in the safety shoes. 	  

 

Based on the results, the core components of the concept have been proven to work and able to 

detect different postures with great accuracy. The idea of a smart safety shoe that can detect and 

warn the worker of potential injury is not far-fetched.  

 

This project is the first step in the development of the concept. Due to the complexity of the issue and 

required knowledge, additional research is needed for the continuation of the project. The posture 

database has to be set up, improving the machine learning model for dynamic lifting data, hardware 

design and a live feedback system. With these developments, a smart safety shoe could be brought 

to market that could improve workers’ lives and save additional costs for companies.
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1. Introduction
In the Netherlands, 560.000 people work in construction and 443.000 in 

warehousing as of 2019 (CBS, 2019). These sectors are unfortunately at the 

top of the ranking list for the risk of developing work-related musculoskeletal 

disorders (WMSDs) (NEA, 2019). According to a report from the NEA (2019), 

18.7% of the 2170 employees in construction and 10.8% of the 2772 people in 

warehousing responded in the survey that they suffer from low back pain (LBP) 

in 2018. Making it a total of 29.5% within these two sectors. These disorders 

could lead to increased costs for employees, employers, and society (EU-

OSHA, 2019). Absence due to pain or discomfort could cost 5800 euros on 

average per employee per year. In 2019 there were around 178.000 workers 

absent from work due to LBP (TNO, 2020). The costs could lead to hundreds 

of millions of euros yearly. The problem size and consequences of LBP alone 

show reason to develop a novel smart safety shoe that could help reducing or 

even preventing the risk of LBP. Improving the overall safety of these working 

environments and reducing the costs significantly.  

 

Allshoes is a company that specializes in safety shoes that are used in all 

kinds of working sectors. The thriving sectors for these shoes are warehousing, 

construction, and transport. Due to the nature of these jobs, handling heavy 

objects and interacting with heavy machinery, the shoes protect the feet of the 

workers from dangers such as falling objects and slipping. Currently, safety 

shoes only play a passive role in the safety of workers. Allshoes has envisioned 

that equipping shoes with proactive capabilities can introduce a competitive 

advantage. Deploying proactivity to help combat WMSDs could be an excellent 

opportunity. To give the shoes proactive capabilities, a new shoe has to be 

designed and developed using smart technology that could detect and collect 

data about increased risk or high-risk situations. Allshoes aim to develop an 

innovative proactive smart safety shoe that will protect the workers from (short 

term) dangers and prevent (long term) musculoskeletal disorders. 

 

This project is the follow-up project to an earlier smart shoe project for Allshoes. 

The strategic direction of this project has been executed by a Strategic Product 

Design (SPD) master student, and an initial smart shoe concept has been 

developed. The focus of the SPD student was to explore and find opportunities 

for the future of safety shoes and found that giving the current safety shoes 

proactive capabilities could improve the overall safety in warehousing and construction. The focus on 

these sectors comes from Allshoes, as these are the major clients of the company. These capabilities 

have been explored by looking at electronics and artificial intelligence. The final concept is a smart 

safety shoe equipped with sensors and machine learning to proactively assess situations to reduce 

the risk of low back pain.  

 

It is often thought that LBP is caused by poor posture, but it comes from a combination of factors 

(Roffey et al., 2010). It could arise from (unsafe) manual handling alone in some cases but often 

combined with several factors such as heavy loads or frequent lifting in a short time that contribute to 

its development (Descatha et al., 2020; Parreira et al., 2018; Swain et al., 2020). Finding the exact 

cause of LBP due to manual handling is difficult since several factors play a role.  

 

Preventive measures are provided by regulatory agencies such as European Agency for Safety and 

Health at Work (EU-OSHA). They provide guidelines and programs to prevent WMSDs but are often 

generic and do not consider the specific work settings (Antwi-Afari et al., 2017). The measures do 

not have much effect in reducing or preventing injuries. Largely due to the individual need to learn 

and understand the different measures (Driessen et al., 2010). Current methods of assessing risks 

are done manually through observational methods, such as NIOSH and Ovako Working posture 

Assessment System (OWAS), which takes a lot of time and effort (D. Wang et al., 2015). 

 

There are several studies (Antwi-Afari, Li, Seo, et al., 2018; Eskofier et al., 2017; Huang et al., 

2007; Kim et al., 2019; Ren et al., 2020; Shu et al., 2010; X. Wang et al., 2013; Yu et al., 2018) 

that have been exploring and experimenting with making shoes smart by equipping it with sensors 

to gain insights on gait, posture, detecting activities using machine learning (ML), and assessing 

risks of WMSDs. Eskofier et al. (2017), Huang et al. (2007), and Kim et al. (2019) looked into the 

use of IMUs in shoes for gait analysis and found that it yields accurate assessment without the 

boundaries of a lab. Shu et al. (2010) and X. Wang et al. (2013) looked into making foot plantar 

pressure analysis practical by using force-sensitive resistors in shoes and obtained stable analysis 

results from experiments in both static and dynamic loads. Antwi-Afari, Li, Seo, et al. (2018) and Ren 

et al. (2020) examined the accuracy of activity classification by machine learning through plantar 

pressure information and achieved an average of 80% accuracy (detects/classifies the activity 

correctly such as running or falling). Yu et al. (2018) conducted research estimating the physical 

workload of construction workers using plantar pressure information. This information has been 

combined with a smartphone camera, which is run through an app with an advanced deep learning 

algorithm to extract skeleton data from workers, to assess risk factors of WMSDs. They found that 
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this assessment method gives accurate results in finding WMSDs. These 

studies show promising practical uses and possibilities, though most of the 

studies are conducted in a controlled (lab) environment and focuses on gait 

and fall detection. At this moment there no smart shoes or soles available for 

warehousing and construction. Only a few studies have conducted research 

using smart shoes in warehousing, as mentioned before. This may be a good 

indication of an opportunity in the market but could also mean that the available 

technology is not mature yet or simply does not exist. To assess whether it is 

possible to develop a safety shoe that is capable of assessing the risk of LBP 

during work, additional research concerning ergonomics, sensors and smart 

data processing is needed.  

 

This leads to the following research question of the thesis:  

 

“Can equipping safety shoes with sensors and smart data processing help 

reducing the risk of LBP, and eliminate the need for deploying labour-intensive 

observation methods for that purpose?” 

 

Ergonomics is important to determine the causal effects of working postures 

concerning the risk of developing LBP (Swain et al., 2020). While sensors can 

acquire data about the user, such as the amount of load force on the body and 

possibly different postures. Acquired data can be analysed manually but would 

be time-consuming. Instead, smart data processing (artificial intelligence and/or 

machine learning) will be used in analysing the data. The exact method will be 

determined based on the acquired data.  

 

The aforementioned research components are needed to develop a novel 

smart safety shoe and to test whether it can help to reduce the risk of LBP. 

Later, smart safety shoes will be developed further to reduce WMSDs in 

general, as LBP is only a part of musculoskeletal disorders caused by work. 

The results from a built functional prototype and conducted user tests will reveal 

the feasibility, desirability, and viability of a new smart safety shoe. The target 

audience for this project will be the workers in warehousing as Allshoes has its 

own warehouse. This makes it possible to conduct tests during development 

and later utilize the product at its own location when the product launches. 
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The introduction already shed some light on what research areas has been 

conducted. The following chapter will go into detail on what the project exactly 

is. First, discussing the problem which has been formed into an assignment 

based on the project brief and the taken approach.  

 

Chapter three will go into literature research conducted on ergonomics. It 

explains in more detail what LBP is and how it can be viewed to reduce the 

risks.  

 

Chapter four explores technology, mainly readily available technology as the 

aim is to build a prototype. It goes over possible hardware that can be used and 

what smart data processing is that will be used.  

 

Chapter five is the section where the prototyping design is discussed. The 

prototype has been built and tested and showing a bit of the process. Further in 

this section, the prototype has been tested and the results are discussed.  

 

Chapter six is a chapter that discusses the roadmap that Allshoes could follow 

as the project still needs further development.  

 

Chapter seven will answer the research question and ends with the conclusion 

of this project.  

 

Chapter eight consists of several recommendations, based on results and a 

built prototype. These recommendations are mostly (design) aspects that have 

been considered but due to time or complexity not implemented during the 

project.  

 

Chapter nine will end with a personal reflection on this project. 

Reader’s guide
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2. Project
An overview of the project and the approach is presented here. 

Describing the problem and the impact of the problem within the target 

group. Further, briefly explaining the initial assignment provided by the 

company and the setting of the scope. 

In the Netherlands, the occurrence of WMSDs, in particular low back pain, is most common in the 

warehousing and construction sectors (NEA, 2019). Common causes for WMSDs are awkward 

working posture, lifting too heavy objects, or standing for too long (EU-OSHA, 2007). WMSDs may 

affect general health, the quality of life is deteriorating as pain or discomfort might be experienced, 

even during rest and sleep. It may reduce productivity at work, slowing down due to pain or trying 

to avoid discomfort. Ultimately, it can result in absenteeism from work (EU-OSHA, 2019). All these 

consequences lead to increased cost for the workers themselves (medical expenses), enterprises 

(loss in production and Ziektewet) and society (insurance premium).  

 

To tackle the issue, the root causes have to be identified and addressed to prevent employees 

from developing WMSD injuries (Humantech, 2017). Finding the cause may be difficult, as it may 

have started at an early age and reflected when an employee started working. It may be a badly 

designed working place, difficult to reach tools or manual heavy loads lifting for example. In a study 

conducted by NIOSH (1997), it was found that three primary risk factors could lead to WMSDs, high 

force, awkward working posture, and extended duration or high frequency (repeated movements). 

Additionally, psychosocial factors, such as stress and job dissatisfaction, may influence the 

development of WMSDs (Menzel, 2007).  

 

A possible way to find where the problem originates is by observing and analysing how the employee 

works. Assessing individual workers through ergonomic observation-based methods, such as the 

NIOSH method where 15-minute sampling per task is recommended (Middlesworth, 2020), to collect 

the physical ergonomic data may be time-consuming (D. Wang et al., 2015). Observation-based 

methods “rely heavily on the observer’s experience and judgement, and the interrater reliability of this 

assessment is questionable” (Umer et al., 2017).  

 

A more accurate ergonomics assessment can be done through special setups, using sensors 

(IMUs) and/or cameras. However, the setup could affect the workers at their jobs and tasks. The 

setup requires multiple sensors to be placed on the body which may feel intrusive and could cause 

annoyance (Yu et al., 2018). Through habituation, this problem may go away after using it several 

times (e.g., as workers are getting used to it) (Nasiopoulos et al., 2014), but adds another piece of 

equipment that could be forgotten to wear.  

 

Current methods to prevent risks of WMSDs are done through regulations, safety rules, and 

equipment (EU-OSHA, 2020). Another measure to reduce the risk is by training employees 

through programs. Learning to assess risks and to perform different manual handling safely. Still, 

2.1 Problem Analysis
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the occurrence exists due to some barriers to successful implementation. 

Yazdani & Wells (2018) reviewed 88 articles to identify common challenges 

to implementing and sustaining WMSD prevention programs. They identified 

eleven barriers to successful implementation: 

 

 

 

 

 

 

 

 

 

 

 

 

Participatory ergonomics programs should be the most effective at reducing 

the incidence of WMSDs by actively involving employees in the process of 

developing a safer work environment (Burgess-Limerick, 2018; Vink et al., 

2006). From another study conducted by Driessen et al. (2010), it seems that 

the participatory ergonomics programs are not effective in preventing WMSDs 

among large groups of employees. The success rate may increase if the 

program is combined with active continuous involvement of workers and giving 

them individualized feedback.  

 

To sum up, WMSDs have a significant impact on employees, employers, and 

society due to the increased costs and loss of quality of life. Finding the origins 

of WMSDs is not easy, it can be done by manually observing workers in the 

working environment, but it is a rather time-consuming process. Technology 

can be used to make it easier but may interfere with work or feel intrusive for 

the employees. Instead, preventive measures have been created and regulated 

by safety agencies such as EU-OSHA. However, training does not have much 

effect on reducing the risks. The success rate may go up with individualized 

feedback.  

The objective of this graduation project is to design and test to reveal the feasibility, viability, and 

usability of a connected smart shoe concept in warehousing and construction. This follow-up project 

aims to develop the concept into a prototype.  

 

The goal for the company is to develop a smart safety shoe of the future, aimed at preventing 

musculoskeletal issues, monitored, and analysed by smart data processing to proactively reduce the 

risk of LBP and finally WMSDs in general.  

 

Within the time scope of the thesis, the aim is to create a proof of concept that is capable of detecting 

causes of LBP by collecting data for analysis and proofing its reliability and usability. The target group 

will be limited to warehousing and construction as these are the biggest client groups of Allshoes 

(Arts, 2020). 

 

From the problem analysis, the main research question has been formulated. The question is already 

orientated towards a possible solution to the problem; this would not fit in a traditional research 

thesis. Though, the thesis aims to make a proof of concept based on the assignment provided by the 

company. 

Main research question

Can equipping safety shoes with sensors and smart data processing help reducing the risk of LBP, 

and eliminate the need for deploying labour-intensive observation methods for that purpose?

To answer the main research question in a complete and substantiated manner, additional research 

sub-questions are formulated and divided into three sections for a better overview. The ergonomics 

section looks into the causal effects of (wrong) manual handling within the target group, as lifting is 

the primary performed action. Further, looking into how currently the WMSD risks are assessed. The 

technology exploration section will look into electronics to acquire data for risk assessment and how 

this data could be processed using smart data processing. Also, analyse whether the data correlates 

to real-world postures and tasks (manual handling). The smart data processing section looks into the 

possibilities of artificial intelligence and machine learning to analyse the acquired data automatically.  

2.2 Assignment

1.	 Insufficient time

2.	 Insufficient resources

3.	 Insufficient communication

4.	 No management support, commitment, and participation

5.	 Insufficient knowledge and training

6.	 High resistance to changes

7.	 Changing work environment

8.	 Scope of activities

9.	 Lack of trust, stableness, or loss of authority

10.	 In efficient processes 

11.	 Challenge of implementing controls
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Sub-research questions

Ergonomics 

•  What are the causes of low back pain in warehousing and construction?

o	 What are the correct and safe manual handling techniques in 	

	 warehousing and construction?

o	 Which causes can potentially be detected by using smart safety 	

	 shoe?

•  How are WMSD risks currently assessed and prevented? 

•  To what extent is biomechanics needed to analyse WMSD risks?

Electronics and Data

•  Which manual assessment aspects have to be considered when 		

   using sensors in order to acquire data about manual handling 		

   forms?

o	 Which sensors can used to detect how someone walks, how they 	

	 stand and how they perform manual handling?

o	 Which sensors are inexpensive and able to fit in safety shoe?

•  Will the collected sensor data correlate to postures and handling?

Smart Data Processing

•  Can smart data processing find causes or patterns that lead to (the 		

   increased risks of) MSDs?

•  Can machine learning be used to characterize how patterns in the collected 	

data of manual handling and postures relate to LBP?

In this graduation project, two approaches have been used. In the analysis 

stage, it was mainly literature research to understand the fundamentals of 

the problem and finding causality. The research also helped me to become 

knowledgeable of what is already out there in terms of state-of-the-art. 

 

The second approach is prototyping design, where the design process is done 

through making ideas or concepts that relate to the design goal. This can also 

be seen as the Agile methodology which is used in software development. 

Prototype design helps with quickly making tangible results and iterating based 

on found problems in the prototype.  

 

The built prototype will be used to conduct tests for collecting data which is 

needed to validate the feasibility of this project. 

2.3 Design Approach
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To design and develop a novel product, research is needed to see what 

the problem exactly is and how it can be solved. This section presents the 

analysis of underlying theoretical fundamentals and state-of-the-art based 

on literature review.

3. Research Analysis

This section will look into the ergonomics in warehousing and construction, 

in particular manual handling. For lifting or moving objects, guidelines are 

provided by health and safety agencies which will be used as a reference 

for correct manual handling. Even with these guidelines in place, people get 

injured occasionally. Van den Berg (2020) looked into this matter and found 

three causes that still leads to injuries:

  •  Safety culture of the company

  •  The design of the 

	 o Task

	 o Environment

	 o Tools

	 o Instructions 

  •  Individual capabilities

	 o Health and fatigue

	 o Risk perception 

	 o Knowledge

All three causes should be approached to prevent future risks of LBP. 

Starting small at the individual level could lead to a change on a bigger scale, 

companies safety culture. Redesigning tasks and environment can be done 

when it is known where the problems occur.

3.1.1 Musculoskeletal Disorders in Warehousing and 
Construction

‘’Musculoskeletal disorders (MSDs) are impairments of bodily structures such 

as muscles, joints, tendons, ligaments, nerves, cartilage, bones, and the 

localised blood circulation system. If MSDs are caused or aggravated primarily 

by work and by the effects of the immediate environment in which work is 

carried out, they are known as work-related MSDs’’ (EU-OSHA, 2019).

3.1 Ergonomics

Based on the description above, it can be concluded that many injuries and disorders could fall under 

MSDs. Not all of them are prevalent in the target group. Narrowing it down to the most common ones 

will help with analysing the cause.  

 

Among construction workers, the most common WMSDs are carpal tunnel syndrome, tendonitis, 

trigger finger, tennis elbow, and LBP (D. Wang et al., 2015). In warehousing, there are similar 

common disorders, which includes LBP, neck pain and upper-limb disorders (HSE, 2007). Employees 

that suffer from WMSDs can have reduced work-ability and there is an increased chance that 

symptoms become worse. In some serious cases, it may even lead to permanent disability (Albers & 

Estill, 2007). In both sectors, LBP is the most common injury that results in absenteeism from work. 

In both sectors, comparable manual handlings are performed, leading to similar injuries. Though the 

variety of tasks performed in construction is much higher, which will not be included in this graduation 

project due to the focus on manual handling. This will be considered in future further development of 

the smart safety shoe. 

 

The focus shall be on LBP as this affects the majority of the people that suffer from a musculoskeletal 

disorder.  

This is the definition of LBP:

“Low back pain (LBP) is defined as pain and discomfort, localised below the costal margin and above 

the inferior gluteal folds, with or without leg pain.” (Burton et al., 2006).

This is below the lowest rib and above the lowest part of the butt, see Diagram 1. It can be further 

categorised into non-specific LBP, which is also known as common LBP. It can be defined as LBP 

not associated with recognisable, known specific pathology (e.g. tumour, infection). Acute LBP can 

be defined as LBP that persisted for less than six weeks; sub-acute LBP for between six and twelve 

weeks; chronic LBP for twelve weeks or more (Burton et al., 2006). From the definitions, it is clear 

that LBP is a condition that is not easy to find the cause. The causality of LBP will be discussed in the 

following chapter.

Diagram 1 - LBP area (MATSUDAIRA et al., 2015)
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3.1.2 Causes of Low Back Pain

“Although low back pain is still largely idiopathic, research has identified over 

one hundred risk factors for the condition. Of these risk factors, manual material 

handling tasks are perhaps the most widely explored within the biomechanical 

literature, as these tasks have been associated with high mechanical stresses 

on the lower back” (Cole & Grimshaw, 2003). 

The causality of LBP remains a major research topic in the field of ergonomics 

and biomechanics. This will be utilised, through literature research, as a basis 

to develop a novel smart safety shoe. More recent studies found that manual 

lifting is the most demanding handling technique as workers are exposed to 

high force stresses and awkward body postures (Basahel, 2015; D. Wang et al., 

2015). The result of high spinal compression, due to lifting, is what may cause 

LBP (Basahel, (2015); Parreira et al., (2018). Limiting the lifting force may lead 

to reduced risks of LBP.  

Several factors may contribute to the cause of LBP, physical, psychosocial, 

and individual (EU-OSHA, 2007). The factors may act alone, but generally 

in combination with heavy lifting, performance pressure (stress) and low job 

satisfaction. It is important to take the different factors into account, as they 

may contribute to the development of LBP (Menzel, 2007). A list below is 

provided by EU-OSHA (2007), showing the variety of factors contributing to the 

development of WMSDs in general. There is no specific list provided for LBP, 

though the factors may still be relevant.  

Physical and biomechanical factors (EU-OSHA, 2007):

•	 Application of force, e.g., lifting, carrying, pulling, pushing

•	 Repetition of movements 

•	 Awkward and static postures, e.g., with hands above shoulder height, 

or long standing and sitting 

•	 Vibration

•	 Environment temperature (Cold or high heat) 

•	 Poor lighting conditions, e.g., could lead to errors and accidents 

•	 High noise levels, e.g., causing the body to tense up (muscle fatigue)

Organisational and psychosocial factors: 

•	 Demanding work, lack of control over the tasks performed, and low levels of autonomy 

•	 Unsatisfactory job level

•	 Repetitive work at a high pace 

•	 Low or no support from colleagues, supervisors, and managers 

Individual factors: 

•	 Medical history 

•	 Physical fitness 

•	 Age 

•	 Smoking 

•	 Obesity

Currently, the causality of LBP is determined by analysing the work tasks and work environment of 

employee (Descatha et al., 2020). Due to the multifactorial nature of LBP, it is difficult to determine 

the aetiology. To find the cause, it is needed to take a holistic approach. Considering occupational 

and nonoccupational influences. The diagram below shows an overview of how different factors 

linked to contributing to the risk of MSDs.

Diagram 2 - Schematic overview for assessing MSDs (Roquelaure, 2016)
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Smart safety shoes may analyse or determine the risks of LBP by following 

the diagram. Physical (biomechanical) factors may be detected by sensors 

equipped in a smart safety shoe. Psychosocial factors could be considered 

by acquiring data through surveys from a possible smartphone app. Individual 

factors could be provided by linking the safety shoes to individual profiles 

(individualized smart safety shoes). These are some possibilities of accounting 

for different factors; more possibilities will be discussed in a later chapter. The 

diagram is a good starting point but does not consider the different weight of the 

factors. Biomechanical stress may contribute more to LBP than psychological 

stress. This should be determined in co-operation with an ergonomics expert.

3.1.3 Preventive Measures

Health and safety agencies around the world provide preventive guidance and 

measures against risks of WMSDs. From the problem definition section, it is 

clear why the WMSDs need to be tackled. It decreases the quality of life and 

the huge costs that entail. In the case of warehousing and construction, manual 

handling is ergonomically the most hazardous (Basahel, 2015). Over the years, 

the health and safety agencies developed guidelines for manual handling 

techniques to minimize risks. The different aspects of manual handling shall 

not be covered extensively as it has been covered in the previous thesis by 

Van den Berg (2020). A brief review of the aspects will be presented here. The 

purpose of the review is to see whether the different aspects can be translated 

for (data) analysis purposes. For example, looking at how posture can be read 

by sensors. The additional biomechanical analysis will be done to understand 

the lifting techniques more in-depth. This analysis will be used as the basis for 

distinguishing different aspects of manual handling in the sensor data analysis. 

It is important to know what the correct handling techniques are, to distinguish 

them from the incorrect ones for the smart shoe. Van den Berg (2020) found 

five different aspects of manual handling: posture, weight load, duration and 

frequency, acts, and environment. The analysis is based on guidelines and 

recommendations provided by HSE (2007, 2016a, 2016b, 2018), Arboportaal 

(2020), EU-OSHA (2006). When all of these aspects are considered while 

performing manual handling, the risks should be minimal. The aforementioned 

aspects may also be used as a form of objective manual handling assessment. 
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Figure 1 - Manual handling technique for lifting, carrying, pulling, and pushing, original visuals by HSE (2016a, 2016b and 2018).

Posture

Posture relates to body posture or stance during lifting, carrying, 

pushing, and pulling of loads. Figure 1 shows the correct and 

incorrect handling techniques. A proper or correct posture will 

reduce the risk of injuries as loads will be distributed more evenly 

over the body. The list below shows recommendations that may be 

detected by using sensors. 

•  Body Postures

o	 Bending and twisting the back is considered harmful and 

should be avoided

   To avoid a bend back while lifting objects, bend 

the knees and keep back straight

o	 Pivoting the body should be done from the feet, not the 

hips

o	 Reaching for objects should be minimal

•  Load location relative to body (Centre of Mass of Object)

o	 Keep loads as close to the body as possible

o	 Carry heavy loads between knee and shoulder height 

(power zone)

o	 Push and pull loads between elbow and shoulder height

o	 Plantar pressure should be evenly distributed when lifting
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Weight load limits

The weight of an object is crucial in manual handling. Figure 2 shows the 

weight limits when using equipment and other handling techniques. If an object 

is heavy, muscle fatigue will occur sooner (D. Wang et al., 2015). Fatigue may 

lead to improper handling, which could result in injury. 

•  Maximum recommended handled weight is 23 kg, without tools (NIOSH, 

2007)

•  Maximum weight can deviate based on load position in relation to body (also 

Figure 2) and alternate techniques (e.g., rolling and dragging)

Figure 2 - Maximum weight loads, original visuals by HSE (2016a, 2016b).
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Acts

Certain actions may increase risks, aside from the mentioned unsafe handlings 

before. The acts are visualised in Figure 4. These acts may occur incidentally, 

for example catching a falling object. It happens instinctively and differs per 

person. Still, these acts should be avoided, when possible. 

•  Always look up and ahead to avoid tripping or colliding

•  Always use tools and equipment when available

•  Avoid manual handling with obstructed view

•  Always handle with controlled movement

•  Never try to catch falling objects, in particular heavy or large objects

Duration and frequency

The time length of manual handling task, how often a task is performed and 

distance plays a role as well. With increased weight or duration, the body will 

be put under more stress. Depending on the weight and whether the equipment 

is used, different durations and frequencies are advised. Figure 3 shows 

carrying and lifting recommendations based on frequency and weight. The 

green area shows that frequent lifting, up to 720 times per hour, a load under 

10 kg poses a low risk. For carrying, this number is lower, up to 300 times per 

hour, but at a higher load limit of 15 kg. The frequency drops when the load 

increases (HSE, 2018). 

•  Tasks should be performed for a certain time period

o	 Heavier objects should be handled for a short duration

Distance 

•  Carrying should be limited to 4 meters distance (low risk)

o	 Up to 10 meters is allowed, though with significant increased risk

o	 More than 10 meters is unacceptable

•  Pulling and pushing with wheels should be limited to 10 meters distance

o	 Up to 30 meters is allowed, though with significant increased risk

o	 More than 30 meters is unacceptable

•  Pulling and pushing without wheels should be limited to 2 meters distance

o	 Up to 10 meters is allowed, though with significant increased risk

o	 More than 10 meters is unacceptable

Figure 3 – Maximum weight loads based on frequency and duration, original visuals by HSE (2018).

Figure 4 – Unsafe acts during manual handling.
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Environment

The last factor is the work surrounding, including physical factors and 

psychosocial factors, as it may directly affect manual handling. 

This relates to:

•	 Available surrounding space 

•	 Floor surface, e.g., rough/grip, unstable, unevenness

•	 Object characteristics, e.g., form, size, and available grip

•	 Obstacles on walking path

•	 Environment condition, e.g., ambient temperature, humidity, noise, 

and lighting

•	 Work demand and pattern (repetitiveness)

•	 Condition of equipment and tools

Top five riskiest lifting postures 

During literature research, a list of the riskiest lifting postures could not be 

found. Though, this information is needed to reduce the number of possible 

postures for the testing phase. To acquire this information an email has been 

sent to J. Metselaar (EHS Manager at Bunzl) (15 March, 2021) asking for a 

list of the most dangerous lifting postures that he has documented related to 

Bunzl’s warehousing and replied with the following list: 

1.	 Reaching towards objects in racks with an awkward posture

2.	 Lifting material above shoulder height

3.	 (Fast) Picking of medium weight objects with one hand to the side

4.	 Repeatedly moving objects (with some speed)

5.	 Stoop lifting

According to J. Metselaar, the weight limit seldom gets exceeded during work 

as people follow this rule. When heavier loads have to be handled, dedicated     

Diagram 2 - Categorised assessment methods (Roman-Liu, 2014).

WMSD Risk Assessment Methods

Several methods exist to assess risks in a working environment. Each method has its focus area 

such as the upper body, limbs, and whole body. Reviewing some methods may help to determine 

how the risks are assessed currently. It can be used as a reference and creating an assessment 

overview for smart data processing (Sasikumar & Binoosh, 2018).  

Here is a list of methods made by Roman-Liu (2014), reviewing them to create new methods 

that could cover multiple assessment methods. Creating an overview of different methods and 

categorised them into specific focus areas. 

•	 Key Item Method - KIM

•	 Revised NIOSH lifting equation 

•	 Ovako Working Posture Analysis System - OWAS

•	 Postural Loading on the Upper Body Assessment - LUBA

•	 Occupational Repetitive Actions - OCRA

•	 Strain Index - SI

•	 Upper Limb Risk Assessment - ULRA

•	 Procedure in Standard EN 1005-4:2005

•	 Rapid Upper Limb Assessment - RULA

•	 Rapid Entire Body Assessment - REBA
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For assessing manual handling, one could use KIM (Key Item Method), the 

revised NIOSH lifting equation and OWAS (Ovako Working Posture Analysis 

System) as they are dedicated for load assessment during manual handling 

(Roman-Liu, 2014). NIOSH lifting equation may be the most suitable method 

for assessing manual handling, as it is developed for reducing lifting injuries, 

especially LBP (Caris, 2020). It looks into load weight, duration and lifting 

distance, to assess the performed lift. OWAS analyses the working posture 

to determine the musculoskeletal injury risk but does not consider the load as 

much as NIOSH (Karhu et al., 1977). KIM analyses load on the body based on 

frequency, weight and posture, to assess the risk of workloads (BAuA, n.d.).

Gait Analysis

Analysis of the gait (human locomotion) can be used to assess how workers 

walk as it analyses walking patterns (Whittle, 2007). Walking patterns may 

reveal if someone is experiencing discomfort or pain (Eskofier et al., 2017; 

Tasch et al., 2008). This could serve as additional indicators to assessing 

risks. In the detecting the factors section, some factors are detected using gait 

analysis, using an inertial measurement unit (IMU) (Kim et al., 2019). Below is a 

list of factors that are captured through gait analysis. 

Factors and parameters (Mazumder & Vashista, 2017):

•	 Step length

•	 Stride length 

•	 Angle of the foot

•	 Angle of the hips

•	 Speed

•	 Cadence

There are several measurement methods for gait analysis, which are listed 

below:

Spatial and temporal

•	 Timer and floor markings

•	 Walking on pressure plate

•	 Laser range (distance) sensors, few cm above ground

•	 Inertial measurement sensors

Kinematics

•	 Chronophotography

•	 Video

•	 Passive marker systems

•	 Active marker systems

•	 MEMS inertial sensors

In a study by Kim et al. (2019) found that novel IMUs are capable of detecting gait events within a 

small range of error. For heel-strike and toe-off detection there was an error of 0.03 seconds and 

other detections were within the range of 0-0.01 seconds. This study shows that IMU could be utilised 

in gait analysis without the limitations of more traditional methods that are used in laboratories. 

Ergonomics Conclusion

The causality of LBP has been a research topic for years, yet there is no clear cause. There might 

not be a clear cut due to how multifactorial the issue is. Studies do agree on the fact that high 

forces and awkward body postures have a significantly increased risk of developing LBP. Though 

in warehousing, manual handling cannot be avoided as these actions have to be performed due 

to the variety in dimensions of the objects. However, manual handling can be performed safely. 

Health and safety agencies have developed guidelines and instructions. There are six factors to safe 

manual handling: posture, weight load limits, duration, frequency, acts, and environment. When all of 

these factors are considered, the manual handling task can be performed safely. The riskiest lifting 

postures people adopt in warehousing are: reaching towards objects in racks, lifting above shoulder 

height, asymmetric lifting, repeatedly moving objects (with some speed), and stoop lifting. Currently, 

the risk of LBP can be assessed through NIOSH lifting equation, OWAS and KIM as it assesses the 

load on the body. The physical factors of manual handling could be detected using electronics, such 

as pressure sensors and IMUs. Gait analysis could be a good addition to LBP risk analysis as it can 

detect when something is wrong with the worker. 
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3.1.3 Allshoes Warehouse

Allshoes has its warehouse for the distribution of shoes and foot accessories 

in Alkmaar. The warehouse ships orders to businesses, retailers and directly 

to consumers, which results in orders as small as one to two pairs of shoes 

or as big as bulk orders of hundreds of shoes. For this to work properly, the 

warehouse has been designed to allow this kind of workflow, the scaffolding 

can be seen in Figure 5. At the lowest level the single products are easily 

accessible for order pickers, at the second level individual boxes are stored and 

at the top level, the products are stored in bulk or pallets.  

 

The warehouse is planned in such a way that the most popular products are the 

closest to the packing table. This reduces the distance that has to be walked 

to pick more common orders. Less popular products are placed further away 

as they will be picked less often. Boxes with shoes are placed on the ground 

and chest level for workers to pick up products easier, products on the ground 

are elevated to avoid stooping, see Figure 6. Pallets of the same products are 

placed in the scaffolding above for easy refilling of the section when the product 

runs out.  

 

All orders are picked by using a cart, to group different products per order, see 

Figure 7. Multiple orders can be picked this way, without walking back and forth 

to the packing table. Orders are packed up to approximately 20 kg per box. 

When there is a bulk order from a bigger business or retailer, a whole pallet 

could be prepared. This could consist of different brands and sizes or a single 

brand and size. These pallets are moved by forklift trucks, see Figure 8.  

 

The height of the scaffolding for order picking is a little over two meters, though 

most products are around my shoulder height, as seen in Figure 9. There are 

products placed higher and could be inconvenient, as seen in Figure 10. This 

could lead to awkward postures, trying to pick order above shoulder or even 

head height. My length is 180 cm and the products at the top were barely 

reachable. 

Figure 5 – Storage scaffolding at Allshoes distribution center in Alkmaar.

Figure 6 – Elevated scaffolding to avoid stoop lifting.
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Figure 7 – Electric picking car.

Figure 8 – Forklift. Figure 10 – Picking product, above shoulder height.

Figure 9 – Picking a product, around shoulder height.
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“Biomechanics is the study of the structure and function of biological systems 

by means of the methods of mechanics.“ (Hatze, 1974)

To understand how one’s musculoskeletal system works or behaves when 

lifting, biomechanics becomes important (Garg & Kapellusch, 2009). It can 

be used to investigate causes of work injuries and finding the maximum 

reaching distances, for example. Biomechanical calculations can also help with 

assessing whether a task is too strenuous for the body.  

3.2.1 Biomechanical Analysis

By analysing how forces act on the body, it can be estimated how much stress 

is put on the musculoskeletal system (Beck, 2020). For example, calculating 

the amount of strain, compression and shear stress, on the spinal discs in the 

low back region when the person is lifting an object of 10 kg. 

To estimate the amount of compression on ones back, the following information 

is needed:

  •  Height and weight of the person

  •  Bending degree 

  •  Weight of the load object

Here is an example given by Beck (2020): 

‘’Using this case as an example, we might have a situation with a caregiver who 

weighs 80 kilos, is 186 cm tall, and bend 45 degrees forward, lifting a patient’s 

legs, weighing 10 kilos, at a reaching distance of 30 cm. 

This case will result in a strain on the caregiver corresponding to approx. 255 

kg on the disc in the lumbar region (or the weight of an adult male lion). If we 

further take into account, that the caregiver is often not just standing still, but is 

lifting and moving the patient’s legs, the load must be multiplied by 3, and the 

adult male lion turns into a large rhino equivalent to 765 kilos!’’ 

The example above is a rough calculation using a static biomechanical model. 

A static model is a simplified form of a complex phenomenon, for example, 

lifting an object from floor level up to a shoulder level rack. To simplify this 

phenomenon, it will be reduced to the point of a non-moving world, where 

everything is static and frozen in time. It helps with comprehending the situation, how the forces 

are applied and how it affects the whole body. It may be used for designing manual lifting guides or 

assessment models, such as the NIOSH lifting model. The downside of static models is that some 

important factors are not considered, in particular inertial forces. It makes some situations look safe, 

but in reality, they are not (Parida & Ray, 2015).   

Figure 11 shows a simplified calculation and shows that a 20 kg box would result in an exerted force 

of 5493.6 N by the back muscles. The compression and shear force on the spine can be calculated 

if the angle is known. If 45 degree is taken, there would 3884.6 N compression force which is 

comparable to 395.9 kg. 

Fg, body  = 40 [kg] * 9.81[m/s2] = 392.4 [N] 

Fback =  5493.6 [N]

Fcomp =  cos (α) * Fback 

Fshear =  sin (α) *  Fback 

Fg, object  = 20 [kg] * 9.81[m/s2] = 196.2 [N] 

M = F * L
F = m * g

 ΣM = 0 = Fback  * Lback = - Fg, body  * Lbody -  Fg, object * Lobject

 ΣM = 0 = Fback  * 0.05 = - 392.4 * 0.6  - 196.2 * 0.2

Fg, body 

Fgrf 

Fback

Fg, object

Lobject 

FBD of body with load Situation FBD of internal forces

Lbody 

Lback

y

x
+

Fback

Fcomp Fshear

Lbody 

Lback
α

Figure 11 – Biomechanical calculation of lifting a 20 kg box.

3.2 Biomechanics and Lifting
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Ground Reaction Force

Estimating the exact force on the spine may be difficult and not the goal of this project. Though, it is 

still important to understand the basics of biomechanics for developing the new smart shoe. To make 

use of biomechanics for the project, ground reaction force (GRF) might be rather helpful. Looking 

at how forces are applied to the feet may reveal how forces are applied to the body. The feet will 

always interact with the ground with everything that is manually handled, revealing the total force in 

a static model. Karatsidis et al. (2016) state that “ground reaction forces (GRF) and moments are 

important measures used as input in biomechanical analysis to estimate joint kinetics, which often is 

used to infer information for many musculoskeletal diseases”. GRF is measured using force platforms 

as illustrated in Figure 13. The measured forces may help with the prediction of increased risk of 

LBP. Analysing possible highest GRF location(s) could be an indication of how a worker is manual 

handling or whether the load is too heavy. 

Dynamic biomechanical analysis is complex, due to the inclusion of inertial 

forces of the load and body segments. The amount of these forces should not 

be underestimated during dynamic movements as it can increase the stress on 

the body significantly. In addition to the forces from the load and body weight, 

effects of motion dynamics along with acceleration and velocity are included 

in the model. There are two types of complexity introduced in the model. The 

first type is how motion must be described in the kinematic form, direction of 

movement, speed (velocity) and acceleration over time. The second type is 

the inertial forces that are created during movement, which can slow down 

or speed up the movement (Parida & Ray, 2015). Dynamic models will not 

be considered due to their complex nature, involving more aspects such as 

the direction of force and time. A biomechanical expert or engineer might be 

needed to make correct models for analysis, which would not fit within the time 

frame and scope of the thesis. 

Figure 12 – Dynamical Analysis of an athlete

Figure 13 – Measuring GRF (G. Smith, n.d.).
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There are several studies done on feet analysis involving GRF by using 

pressure sensors (Castro et al., 2013; Fong et al., 2008; Jung et al., (2014). 

Fong et al., (2008) conducted a study in estimating GRF with pressure sensing 

insoles, comparing it to a complete GRF analysis using a force plate, and found 

that the results of both devices were rather comparable. Jung et al. (2014) also 

came to the same conclusion but using estimation models to estimate GRF 

using insole pressure mat data as input. Castro et al. (2013) compared GRF 

(using force plates) and plantar pressures (using in-shoe pressure system) 

between occasional loaded (wearing a backpack) and unloaded gait and found 

that occasional load increases pressure in midfoot and toes area. The studies 

show that pressure sensors are capable of estimating the GRF without the 

location constraint (use force plates in a lab) and can provide more detailed 

information about characteristics of forces acting on the body (Castro et al, 

2013). Pressure sensors proofed to be useful in several studies when it comes 

to plantar pressure analysis. It shall be used as the basis for assessing LBP 

risks. Though, currently, there is no paper or study available that has looked 

into the use of plantar pressure in manual lifting recognition. 

Correct Lifting according to Biomechanics 

It is often thought that squat lifting (Figure 14c) is the best method to lift 

vertically, while stoop lifting (Figure 14a) is considered harmful. From 

studies conducted by Burgess-Limerick (2003) and Van Dieën et al. 

(1999), it was found that squat lifting is not much better than stoop lifting, 

from a biomechanical point of view. Van Dieën et al. (1999) reviewed 27 

biomechanical studies involving lifting and found no support in advocating squat 

lifting. Additionally, it was found that the net moments and compression forces 

may cause LBP. Bending during stoop lifting remains below injury levels making 

it safe to perform. Dreischarf et al. (2016) found that squat lifting even resulted 

in 4% higher resultant loads than stoop lifting, using a modified strain gauge 

attached to the lumbar. A more recent study conducted by Ausavanonkulporn 

et al., (2019) also found, through musculoskeletal modelling using AnyBody 

Technology software, that there is no significant difference in compressive and 

resultant force among squat and stoop lifting. Instead of teaching the perfect 

single lifting technique, Burgess-Limerick (2003) and Steffens et al., (2016) 

proposes to educate workers on general lifting techniques and assisting them 

Figure 14 – Lifting Techniques.

in finding their appropriate postures and patterns of movement. The main takeaway of these studies 

is, keep loads as low as possible, avoid extreme lumbar vertebral flexion (extreme stoop lifting at 

60°), trunk (upper body) rotation and lateral flexion to reduce the risk of LBP. These four points will be 

mainly considered in the assessment as they may have the most influence on LBP.  
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Lifting Phases

During a manual lift, there are several phases that a worker goes through. 

In these phases, different forces are applied over the body (Matt Maines & 

Reiser, 2006). This information is useful, as it can be used as determinants for 

assessing how much is being lifted and possibly determining lift technique.  

 

There are five steps involved in lifting an object, lowering the body to the object 

to lift, lifting the object, bringing the object close to the centre of mass (CoM) of 

the body, carry to the destination and lower the object. Matt Maines & Reiser 

(2006) conducted a study in load asymmetries during a lift, by measuring GRF 

in both feet separately using one force plate per foot. Figure 15 shows the 

created force graph over time. The GRF on the test person is 833 N and lifts an 

object of 17 kg. The total force is found by adding up the force of left and right 

feet. The beginning and end of the graph show a steady line, indicating that the 

test person is standing stable. If there are strong fluctuations of GRF, this may 

indicate strong jerks during a lift which is considered a risk of LBP (Xu et al., 

2008). 

1.  Initial – Unweighted Phase

There is no additional load on the body. Force changes due to acceleration in 

direction of gravity.

2.  The lift – Weighted Phase 

Force increases to more than the weight of body and object. 

Caused by increased force to counter gravity and inertial forces.

3.  Final – Unweighted Phase

Body and load are in a balanced state with a neutral spine, showing total weight.

4.  Carrying – Weighted Phase

5.  Additionally Lowering

Figure 15 shows the changes in force when the worker is going through the first three lifting phases. 

The fourth and fifth phase was not measured by Matt Maines & Reiser (2006). This information might 

be needed for lifting pattern recognition.   

Figure 15 – Lifting phases and the 

GRF (Matt Maines & Reiser, 2006)



27

Figure 16 – Interpreting graphs 

(Chockalingam et al., 2016)

Detecting the different phases may hold valuable information due to the 

dynamic load’s information. In a static analysis, one would only see data at a 

specific time point. At that time point, the peak loads may not be as high as in 

dynamic analysis. Figure 16 shows that the anterior is a positive force and the 

posterior a negative force. In Figure 15, the peak load in phase 2 is more than 

1100 N, 100 N more than phase 3. In some cases, the additional 100 N may 

increase the risk of LBP, due to exceeding the maximum recommended load of 

3400 N (Waters et al., 1993).  

 

The lifting phases may have recognizable patterns which could be used in 

lifting pattern recognition. In Figure 15b and c, it is shown how forces are 

distributed in anterior-posterior and lateral-medial directions. In Figure 15b the 

force peaks at -45 N between 1 and 1.5 s, meaning the peak load was on the 

posterior side. This indicates that the forces were placed on the heel of the feet 

to counterbalance, by leaning the trunk backwards. 

 

 

Biomechanics Conclusion

Understanding biomechanics is necessary to comprehend the physical causality of LBP. The 

studies conducted over the years uncover more and more factors that may lead to the problem. For 

this project, the found literature can be used as a basis to develop the design. Using GRF as the 

assessment measurement for risk of LBP. GRF can be measured using pressure sensors placed at 

the feet, giving possible insights into lifting behaviour. Stoop lifting is not more dangerous than squat 

lifting. Instead, heavy loads, extreme stoop lifting, rotating with the trunk or lateral flexing with the 

trunk do have an increased risk of LBP. The goal will be to detect these four points to reduce the risk. 

To analyse these points, the GRF of lifting phases will be captured. Looking at total force, peak force, 

force distribution and patterns.



28

3.2.2 Detecting Physical Factors

To reduce the risk of LBP, awkward postures and lifting heavy loads have to be 

avoided. Ideally, this would be done by predicting them before they happen. 

Before the prediction of dangers is possible, there need to be (theoretical) 

reference models that understand which postures are good and bad. In this 

section, the current state-of-the-art will be reviewed. 

 

Antwi-Afari, Li, Yu, et al. (2018) conducted a study to automatically detect 

and classify awkward working postures using insole with pressure sensors 

to measure and map plantar pressure distribution (PPD). This study shows 

how different postures may be revealed through PPD data, as seen in Figure 

17. The PPD profiles are distinctive from each posture. To detect the different 

postures automatically, Antwi-Afari, Li, Yu, et al. (2018) used supervised 

machine learning to classify them. They have used four supervised machine 

learning classifier models to compare reliability: artificial neural network (ANN), 

decision tree (DT), k-nearest neighbour (k-NN), and support vector machine 

(SVM). SVM classifier has performed the best and had an accuracy of 99.7%.  

Figure 17 - Postures and plantar pressure distribution profiles (Antwi-Afari, Li, Yu, Kong, 2018) 
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For an accurate GRF measurement, the sensor layout has to cover most of 

the foot. Shu et al. (2010) proposed the following layout, shown in Figure 17, 

as these foot areas support the majority of the body weight and are used for 

balancing the body. “The sole of foot can be divided into 15 areas, as heel 

(area 1–3), midfoot (area 4–5), metatarsal (area 6–10), and toe (area 11–15)” 

(Shu et al., 2010). Instead of fully equipping insoles with fifteen sensors, 

which could increase complexity, Shu et al. (2010) tested a setup with only six 

sensors per foot and found rather good results which clearly shows changes in 

plantar pressure. This layout has been used to simplify the system and reduce 

the overall cost. The sensors were placed in the metatarsal area and the heel 

as these places show the most forces. Wang et al. (2016) conducted research 

looking into different pressure sensor layouts and tested every layout shown in 

Figure 19. The results were compared to a Tekscan 3000E, a pressure insole 

with 4 cells/cm2, and found that 7C (7 sensors) had the best performance.  

Ciniglio et al. (2021) tested the fifteen sensor layout in different applications 

from weightlifting to gait analysis and found that the setup can be considered 

adequate in both sport and clinical fields, where precise information is needed. 

Fewer sensors may be used, but there should not be empty areas due to 

possible loss of information. Instead, Ciniglio et al. (2021) suggest using larger 

pressure sensors to cover more area of the foot which is done in their sensor 

layout, see Figure 20. 

Figure 18 - Pressure Sensor Location 

(Shu et al., 2010).

Figure 20 - Pressure sensor layout for different shoe sizes (Ciniglio et al., 2021)Figure 19 - Variants of pressure sensor layouts (Wang et 

al., 2016)

Detecting Physical Factors Conclusion

The risk of LBP could be reduced if heavy lifting and awkward postures are avoided. By analysing 

how workers are lifting over the day, could reveal potential dangers. There is a study that looked 

into recognizing awkward manual handling postures, using ML to detect them. The study revealed 

that posture recognition is possible and has the potential to be utilized in practice. To acquire a 

good GRF measurement, the whole foot needs to be measured. This can be done by equipping 

an insole with 15 sensors that cover the whole body weight. This number of sensors is useful for 

precise measurements. Fewer sensors can yield good results as well, but at the cost of precision. 

Additionally, the system becomes less complex and more cost-effective.
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Conclusion
Low back pain has no clear causality as the issue is a multifactorial one. It 

may be caused due to physical strain, psychological issues or a combination. 

Studies have found that high forces and awkward body postures are the main 

contributors to the occurrence of LBP. To reduce the risk, five factors have to be 

considered for safe manual handling: posture, weight load limits, duration and 

frequency, acts, and environment. The riskiest lifting postures people adopt are: 

reaching towards objects in racks, lifting above shoulder height, asymmetric 

lifting, repeatedly moving objects and stoop lifting. 

 

Assessment of safe manual handling is done through observational methods 

such as NIOSH and OWAS which looks at load on the body. This could be 

supported by utilizing technology, which is currently done by implementing 

pressure sensors and IMUs in shoes. A pressure sensor will be able to 

measure the total load on the body and IMUs can be used for gait analysis.  

 

Biomechanics can help understand how the physical world works, how loads 

are distributed over our body and how much strain it puts on certain areas. 

Analysing the whole body would be difficult. Instead, looking at our feet 

could be the solution. There is always force on the feet, which is also known 

as ground reaction force. This force can be detected and measured during 

everything people do from walking to lifting objects. The most important GRFs 

to note will be heavy loads, extreme stoop lifting, rotating with the trunk or 

lateral flexing with the trunk which all lead to a high risk of LBP. 

 

To be able to detect these GRFs, pressure sensors are needed. The data from 

the pressure sensors could reveal patterns specific patterns for every lifting 

posture. The layout of the sensors is an important factor to achieve precise 

results. It is found that 6 and 7 sensor layouts do perform rather well but at the 

cost of some precision. 
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This section shall look into electronics that could be used in the smart shoe. 

Instead of assessing through manual observational methods, the smart shoe 

will do the assessing with the data from sensors. These sensors will analyse 

the physical factors mentioned Detecting Physical Factors chapter. The data 

acquired can be used to assess the risk of LBP per individual.  

 

The key element in this research is the accuracy and reliability. Due to the 

experience level of the experts, the assessment of risks is reliable. Though, as 

humans have different experiences and ways of thinking, there is always a level 

of subjectivity. This may influence the assessment to some extent. Electronics 

or sensors do not have a bias, the output data is objective. Meaning that there 

is no room for interpretation or guessing. This brings an additional level of 

reliability as one level of subjectivity is taken away. Though, the correctness of 

the sensors setup may influence reliability. The electronics have a few tasks: 

sensing physical quantity (pressure or force), converting data into information 

(smart data processing), store historical data, detect changes in data compared 

to historical data, predict new data and warning the worker. This has been 

visualised in Figure 21.

4. Technology Exploration
Sensing Physical Quantity

The main functionality of the shoe is to measure the GRF and this will be done by pressure sensors. 

Additionally, gait analysis could assist the assessment of an individual by monitoring their mobility, for 

example, walking distance with a load. By adding an IMU, the acceleration and angle of the feet can 

be measured.  

The following factors could be detected using these two sensors:

  •  Walking pattern (gait (Whittle, 2007))

o Step length

o Stride length

o Cadence (steps/min)

o Step width

o Gait speed (walking speed)

o Foot angle

  •  Force distribution while standing

  •  Force distribution while lifting

  •  Normal posture (based on force distribution)

  •  Lifting pattern

  •  Posture during lifting (based on force distribution)

Figure 22 – Pressure Sensor Location and Distribution

(Shu et al., 2010)

4.1 Electronics and Data

This section presents the exploration of existing technological 
possibilities. Looking into electronic components that are needed to 
capture data and smart data processing to analyse it.

Figure 21 – Data flow diagram
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Processing Data

The sensors have to be controlled by a microcontroller, an Arduino would be the most fitting for 

prototyping due to its ease of use, readily available software, and community support. For the initial 

setup, an Arduino Uno is used as it is compact enough and is highly compatible with additions like 

Arduino Shields.  

 

A microcontroller unit (MCU) is a small computer that is designed for embedded applications (Fan 

et al., 2019). The actual MCU on the Arduino Uno is the black rectangular chip, see Figure 26. By 

connecting the sensors to the chip, it will process all of the receiving data. Depending on how it is 

programmed, it can save the data or even do something based on the received information.  

 

To integrate into the safety shoe, the size of the MCU should be smaller than the one used in 

Arduino. An Arm Cortex-M series, see Figure 27, would be the fittest for the project. It has been 

utilised in microcontrollers such as STM32, which is aimed towards data processing by smart 

software (STMicroelectronics, n.d.). It makes the ideal option due to its low power consumption, the 

small size of 7.2 x 7.2 x 1.45 mm, low price, and existing support by major manufacturers.  

Figure 23 – FSR made by Interlink 

Electronics Inc. 

Figure 25 – IMU LSM6DS3 Breakout (Sparkfun, n.d.)

Figure 26 – Arduino Uno (Arduino, n.d.)

An inertial measurement unit (IMU) is an electronic device that can measure specific forces, angular 

rate, and orientation of the body (Iosa et al., 2016). This is done by using a combination of an 

accelerometer and gyroscope. In Figure 25 the IMU, LSM6DS3, is the black unit in the middle and 

measures at 2.5 x 3 x 0.83 mm. The LSM6DSM is currently the best IMU, for gyroscope and acceler-

ometer, according to Winer (2021) due to its price, accuracy, and lower power consumption. The size 

makes it ideal to integrate it into the smart shoe.

Figure 27 – Arm Cortex M0 Microcontroller Unit

There is a variety of pressure sensors currently on the market, but only a 

few are cost-effective or available off-the-shelf. Abdul Razak et al. (2012)  

conducted a study reviewing off-the-shelf pressure sensors and applications 

of such pressure sensors in other publications. They found that off-the-shelf 

components work well in analysing plantar pressure distribution as they are 

designed following several key requirements: spatial resolution, sampling 

frequency, accuracy, sensitivity, and calibration. The study also made a list of 

requirements for the implementation of pressure sensors in smart shoes. 

Implementation Requirements in Smart Shoes (Abdul Razak et al., 2012)

1.  Very mobile

a.	 Light and small 

2.  Limited cabling

a.	 Wireless is ideal, for comfort, safety, and natural gait

3.  Shoe and sensor placement

a. Ideally 15 sensors to cover most of the body weight, see Figure 22). 

4.  Low cost

5.  Low power consumption

With the requirements listed above, force-sensitive resistors (FSRs), Figure 

23, are the most cost-effective and readily available sensor. The sensor can 

measure the amount of force that is applied to the sensor by measuring the 

amount of resistance (Interlink Electronics, Inc., n.d.). Another existing smart 

insole product uses the same sensor, see Figure 24.

Figure 24 – NURVV Run Insoles (NURVV, 2021)
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Storing Data

For building the prototype, to capture the first dataset, an Adafruit Data 

Logging Shield will be used. It is almost plug-and-play and sits flush on the 

microcontroller, see Figure 28. It also has a built-in Real-Time Clock (RTC) to 

track the time in the real world, which is useful for manual pattern recognition. 

The data will be saved on the SD card and will be analysed manually. 

Detecting

In Detecting Physical Factors chapter, it was explored how different factors 

could be detected. The data that is collected by the setup, will be logged in 

a .csv format file. This file can be opened in Excel on the computer to be 

analysed. To be able to comprehend the captured data, some data processing 

will be needed to make it more visual. Below is a list of what kind of data will be 

captured. 

For the posture of the body

  •  Looking at PPD and the location of pressure in newton

Weight load of the objected

  •  Estimate total and peak loads from PPD in newton

Duration and frequency of handling

  •  Time length of load and unload in time ranges

  •  Frequency of load and unload in a number

  •  Distance tracking in meters

Acts

  •  Tripping data in degrees angle

  •  Abrupt loads (catching falling objects) in newton related to time

Environment

  •  Repetitiveness (same loads over sustained time period) in a number

  •  Environment condition data through smart technology (connected sensors)

Warning

The worker could be warned through a vibration motor. Sounds would be hard to hear in warehouses 

due to machines. Lights placed on the shoe could be missed when lifting, as people do not look at 

their feet continuously. 

Testing Setup

For the test setup, the components mentioned above will be used. An Arduino Uno will be the 

microcontroller, FSRs are the pressure sensors, Adafruit Datalogger Shield with an SD card is the 

module to collect the data. Additionally, a 16-channel analogue multiplexer will be used to be able to 

connect fifteen FSRs to the Arduino Uno, which has only five analogue inputs. 

Figure 28 - Adafruit Data Logging shield for Arduino (Adafruit, 2013)

Figure 29 - SparkFun Analog/Digital MUX Breakout (SparkFun, 2015)
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Publications on FSR usage

The pressure sensors that will be used in the pressure insole have been 

discussed. Interlink Electronics FSR 402 sensors will be used due to readily 

availability and cost-effectiveness. The same sensors have been tested and 

used in studies conducted by Dyer & Bamberg (2011) and Howell et al. (2013). 

Dyer & Bamberg (2011) compared the performance of an instrumented insole 

with a force plate, the instrumented insole was a custom-built insole using 

the FSR 402 sensors, as seen in Figure 30. The sensors were individually 

calibrated up to 30lb. (13.6 kg) and the results revealed that the FSR are rather 

capable as seen in Figure 31, where the centre of plantar pressure is compared 

between the two systems. FSR sensors may not be as accurate as a force 

plate, but due to their portability, making it a great solution for analysis outside 

labs and even in daily lives (Dyer & Bamberg, 2011). Howell et al. (2013) 

conducted research on kinetic gait using a custom-built insole, equipped with 

Interlink FSR (individually calibrated) see Figure 32, and comparing it to clinical 

motion analysis laboratory equipment. This equipment includes infrared motion 

sensors and force plates. In Figure 33 the results from the lab equipment and 

the custom-built insole are compared, the results from both systems do not 

deviate much. According to Howell et al. (2013), the results deviate less than 

10% from each other.  

 

The accuracy of the Interlink FSRs can be improved by calibrating them 

individually (Florez & Velasquez, 2010). As mentioned before, Dyer & Bamberg 

(2011) and Howell et al. (2013) used calibrated sensors in their setup, which 

both did by using a loadcell as a reference, which can measure the absolute 

weight (in kg/lbs). By stacking the loadcell and the FSR on each other, as 

shown in Figure 34 and applying force on them both, the loadcell will measure 

the weight and send it to the computer. The computer will link the weight to the 

voltage value measured by the FSR, this process is done through a custom 

computer script.  

Though, due to my limited access to an accurate loadcell and lack of 

experience in using one, no calibrated pressure sensors will be used in the 

prototypes. This will lead to less accurate results but will most likely only affect 

the maximum force measurements as the studies above focused on calibrating 

the force values.  

Figure 31 - Centre of plantar pressure 

compared (Dyer & Bamberg, 2011).

Figure 30 - Custom-built pressure insole (Dyer & Bamberg, 2011).
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Figure 32 - Custom-built pressure insole (Howell et al., 2013).

Figure 33 - Comparison of measurements between custom-built insole and lab equipment (Howell et al., 

2013).

Figure 34 - Calibration of sensors using a loadcell in a vice (Dyer & Bamberg, 2011).
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Conclusion

Electronic components come in all forms and sizes. There is a wide variety 

in quality and purpose. To find which components could be used for making 

the prototype, a list has been made that shows how the relevant data can 

be captured and analysed. Sensing physical quantity (pressure or force), 

converting data into information (smart data processing), store historical data, 

detect changes in data compared to historical data, predict new data and 

warning the worker.  

The decisions are made based on availability, price and familiarity. Which is 

mainly due to the time constraint. All the components have decent performance 

and are small enough to be able to fit into the shoes. For sensors, the FSR 402 

has been chosen. For data conversion, an Arduino Uno will be used. Storing of 

data will be done on an SD card. The user will be warned through a vibration 

motor. 

Force-sensitive resistors have been chosen as the pressure sensors, as these 

are well known and relatively easy to use. Specifically FSR 402 by Interlink, 

these have been tested by several studies and found that they are decent 

enough for most measurements but need calibration. 
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This section looks into how smart data processing could aid in analysing and 

reducing the risk of WMSDs. Artificial intelligence or machine learning can 

analyse vast amounts of data. There is no need for (continuous) supervision, 

and it can be done continuously. Analysis of data may also be done more 

thoroughly or find patterns that otherwise would have been missed. 

Types of Smart Data Processing

There are many types and models of AI, used for different purposes. Generally, 

they are categorised into two groups, Narrow AI, and Artificial General 

Intelligence (AGI). Narrow AI is only able to execute tasks in a limited context 

but do it very well. AGI is capable of doing a variety of things, often seen as 

robots with human-like intelligence in movies. True AGI has yet to be achieved. 

Machine learning falls under narrow AI, using learning model to achieve 

intelligence.  

 

Several interesting AI models are available for data analysis and risk 

assessment. For this project rule-based AI (expert system) and machine 

learning may be most useful. Though, choosing should be done based on the 

volume, velocity, and variety (three V’s in big data) (Rajput, 2020) and what will 

be done with the data (J. Vroon, personal communication, February 23, 2021).  

 

Outcomes of an expert system are based on rules that are coded by people. 

The model utilizes the rule of if-then coding statements and consists of two 

major components, a set of rules and a set of facts (Smith, 2020) This system 

is deterministic, making decisions based on set rules.  

Machine learning can make its own set of rules that are based on data 

outcomes. The model could continuously evolve, develop, and adapt based on 

new data. A fixed model could also be used, which is offline pre-trained and will 

not evolve and develop further. It takes a probabilistic approach. The machine 

learning system is much more scalable compared to rule-based AI. Though, 

much more data is required to learn. 

4.2 Smart Data Processing

For analysing data from sensors the following methods can be used (W.F. van der Vegte, feedback, 5 

March, 2021):

- Regression 

- Classification

- Clustering

- Affinity analysis

- Sequential pattern mining

- Time-series forecasting

- Anomaly detection

Regression analysis is a process to infer the relationship between a dependent (data) variable and 

independent (data) variables. “In this analysis, it is often attempted to find the best decision function 

which can satisfactorily explain the variation of the target parameter based on the input variables.” 

(Gholami & Fakhari, 2017). It is often used for predicting and forecasting values, based on historical 

data.  

 

Classification identifies and groups data that have something in common. These groups or classes 

are pre-determined. New data will be identified looking for similarities and will be put in these groups 

with similar properties or features (ScienceDirect, n.d.).  

 

Clustering, groups objects or data in groups based on similarities or how closely they are associated. 

It is an unsupervised learning algorithm (Qualtrics, 2021). This differs from classification where it 

specifically looks for a certain similarity that fits a specific group. Clustering can be used to group 

data with an unknown amount of clusters.  

 

Affinity analysis looks for meaningful correlations between different data points based on their 

co-occurrence in a data set (Saygın, 2021). It searches for all frequent attributes and generates 

association rules based on predefined criteria, which will be used to identify frequent itemsets (set of 

items that occur together, “data pairs”). 

 

Sequential pattern mining looks for relevant patterns between known data and new data that is sent 

in a sequence. By identifying the data on frequently occurring patterns and comparing sequences for 

similarities, it can create an efficient database (Mabroukeh & Ezeife, 2010).  
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A study conducted Antwi-Afari, Li, Yu, et al. (2018), which has been discussed in 2.3.3, uses 

supervised machine learning, specifically: artificial neural network (ANN), decision tree (DT), KNN, 

and SVM. All of these models were able to identify different lifting postures with great accuracy, 90% 

on average. 

Conclusion

Smart data processing has its roots in mathematics and statistics. It all looks like magic but is nothing 

more than algorithms that continuously calculate the input data and show outcomes in the forms of 

data tables or graphs. There are several automated processes in the field of AI, one is a model that 

has been pre-defined by rules, expert system. Second is machine learning which has two methods of 

learning (making models), with the help of people or supervised and unsupervised.  

 

To understand what is needed for the envisioned goal, the methods or types of problems have to 

understand. It is an extensive list that has different approaches and goals. Choosing a method 

depends on the generated or acquired data and the goal in mind.  

 

From literature research, it is found that for every problem, there are more specific models that can 

be used. Though, these models may or may not work for this project and should only be used as 

reference. Machine learning can detect patterns in lifting postures that could give more insights into 

which postures could lead to WMSDs. 

Time-series is a series of data points in time order, it could be indexed, listed 

or graphed. This can be analysed for forecasting, by looking at patterns that 

occurred at certain time points (Shmueli & Jr, 2016). Data from time series can 

also be aggregated (e.g., averages per hour or per day) to apply regression or 

classification (W.F. van der Vegte, feedback, 3 May, 2021).  

 

Anomaly detection, also outlier detection looks for data points that differ 

significantly from the majority of the data (Zimek & Schubert, 2017). It may be 

used to find changes in data that does not seem normal.  

 

For every problem, there is a different approach to analyse the data. It all 

depends on how the data is captured, in what form and what the goal is with 

the data.  

 

Literature research may be useful to find what kind of algorithms or models 

are used, but may not apply to this project. Their use case may be different 

and with different goals in mind. The literature research will be used only for 

orientation purposes, as to what could be used for similar goals.  

 

Di Noia et al. (2019) deployed machine learning on data regarding worker 

and workplace to predict occupational disease risks. They found that using 

supervised cluster-based algorithms, k- nearest neighbours (KNN) and support 

vector machines (SVM), could help in risk assessment and forecasting risks. 

The study also advised using a clustering-based classifier for a grey box 

approach. 

 

A study by Sasikumar and Binoosh (2018) uses machine learning to find a 

correlation between postural, psychological, and work-related factors that may 

lead to the occurrence of MSDs. “The Random Forest algorithm or Naïve Bayes 

Classifier model developed based on these factors could be used to accurately 

predict the risk of musculoskeletal disorders among computer professionals at 

any instance of time, during their work.” (Sasikumar and Binoosh, 2018).
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5. Design

5.1 Design Vision

“Design a novel safety shoe for warehousing that can acquire plantar pressure 

distribution data and automatically warn workers for dangerous lifting postures 

while performing manual handling techniques.”

 

The vision is based on the conducted literature research, strategic direction 

of Van den Berg (2020) and the company’s wishes. From the research, it was 

found that PPD could be used to detect different postures and find potential 

causes of LBP. In the first horizon, as shown in Figure 35 (Van den Berg, 2020), 

a fairly basic prototype was envisioned that could analyse postures and warn 

the wearer in case of danger. Lastly, the company would like to see a novel 

safety shoe that has a proactive role in preventing work-related risks and 

dangers.

Figure 35 - Strategic First Horizon (Van den Berg, 2020).

This section presents the design process of the technology that will be 

implemented in safety shoes. Discussing how the pressure insole is 

made and tested. The results have been analysed and interpreted. 
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5.2 Design Scope

To limit the range of possibilities for the design of the novel smart shoe, a 

design scope has been set. The envisioned smart safety shoes consist of 

several elements, divided into smart (technology) and shoe, as shown in Figure 

36 below. The shoe group will not have the focus on the design process due to 

the risk of breaking the certification and lack of specific knowledge in this field. 

Still, all the elements have to consider due to adding new components in the 

shoe which will affect safety, comfort, and aesthetics. By adding components, 

the internal structure of the shoe design will be affected, for example, increased 

stiffness which may lead to less comfort. The focus will be on the smart group 

as this will give the safety shoe the ability to gain a proactive role in preventing 

injuries. The most important aspect is the data collecting and processing part, 

which could be seen as the brain of the product. Data will be collected through 

sensors, processed by an MCU which also will give an alert when needed. 

Figure 36 - Design scope of the project.
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The defined scope above shows all the elements that will be focused on but does not show the 

end goal that could be achieved within the given time frame. In order to work towards something, a 

tangible goal has to be set. The goal is to make a working prototype of a smart safety shoe that is 

able to collect PPD data and an analysis system that is able to analyse the data to detect different 

lifting postures. It should be at a level that a worker could wear the prototype and work for a day. 

The data could be analysed after the working day through the analysis system to see what kind of 

postures were adopted during the day. 
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Figure 37 - Function analysis diagram

5.3 Function Analysis

This is a flowchart to create an overview of how the envisioned product would 

function, Figure 37. The orange shows what the user does, the green is a 

function of the product and dark blue is direct feedback from the product 

to the user. At the start, the user will take the shoe and put it on, as these 

actions cannot be done by the shoe itself. As the shoe is put on, the shoe will 

start calibrating the sensors to the body weight. A signal will be given when 

the calibration is done. The user will start to work, and their feet are always 

protected while wearing them till the shoes are taken off. Shoes will provide 

protection against falling objects, sharp objects that may pierce through the 

sole, give the feet support and avoid slippage. During work, manual handling 

tasks will be performed by the user. When the shoe detects a dangerous 

posture, it will start vibrating to warn the user. Once the posture has been 

corrected to a safe one, the vibration will stop. At the end of a workday, the 

user will take off the shoes and put them on a charging dock where it will 

automatically start charging the shoes. While it is on the dock, the captured 

data will be downloaded to the dock and transferred to a local server of the 

company. This data will be analysed locally for direct insights for the employees 

and it gives the managers insights on injuries within the company as a whole. 

Further, this data will be sent to a data analysis company for further macro 

analysis (city-wide or even countrywide) and this could be sold to manual 

handling training companies for further improving their education. This model 

has been made by Van den Berg (2020) and the visual of this model can be 

found in Appendix A.
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5.4 Prototyping of critical functionality

Prototyped pressure insole

To see what kind of lifting postures are taken during manual handling, PPD data 

will be utilised for this purpose. Capturing the PPD for posture analysis has 

been reviewed in 3.2.2, where Antwi-Afari, Li, Yu, et al., (2018) used in-shoe 

pressure sole to measure the PPD and classify different lifting postures based 

on the data. A similar approach will be taken to capture PPD data in the safety 

shoes. Due to safety certification of safety shoes, no aftermarket parts, such as 

a personal insole, may not be used in a certified shoe during work. Unless they 

are re-certified as a new combination, e.g., same safety shoe with a personal 

aftermarket orthopaedic insole (F. de Bruyn, personal communication, 22 

February, 2021). For that reason, a custom pressure insole will be designed 

and tested. This pressure insole will be included in the novel safety shoe during 

manufacturing to avoid additional (re)certification. During a co-creation session 

on placement possibilities of components in the shoe with Floris de Bruyn, the 

in-house designer at Allshoes, it was found that stitching the pressure insole in 

the shoe on top of the Kevlar (anti-perforation) layer would be a good option, 

components placement will be discussed more in detail later. Stitching it will 

prevent the pressure insole from moving back and forth in the shoe, which 

would otherwise affect the measurements from day-to-day usage and making 

the data comparison more difficult.  

 

For the design process of the pressure insole a trial-and-error approach 

has been used. Several prototypes have been made and tested to make 

improvements. As this approach works better personally than continuously 

making conceptual designs on paper. Ideas and concepts become more 

tangibility when they are made. Detailed process of prototyping is discussed in 

Appendix B. Every prototype has been made with a purpose in mind, such as 

testing the layout and capturing PPD data. 

Insole for testing

The prototypes have been made based on three goals, first was too test and understand hardware 

and writing the software code. Second was to make the sensor layout that would cover the foot but 

with a smaller amount of sensors. Final prototype has been made for collecting PPD data for posture 

analysis purposes, software from the first prototype and the layout from the second.  

 

The pressure insole has been made out of 3D printed TPU (thermoplastic polyurethane) layer to hold 

the sensors in place and the other layer is the pressure-zone layer, see Figure 39. TPU is an elastic 

material that can compress under load (Treatstock, n.d.-b). It will also help to distribute the force 

more evenly over the sensor, when placed on uneven surfaces. 

 

The sensor layout is based on the layouts from the literature, discussed in 3.2.2, which covers the 

majority of the foot. To improve the amount of GRF that sensors can sense, a pressure zone system 

was made inspired by a paper that redirected all the force to the sensors by placing the sensors on 

the cleats on a pair of football shoes. This is explained in detail in Appendix B. Instead of placing the 

sensors externally, the “cleats” are placed in a layer that is placed on top of the sensors, the system 

has been visualised in Figure 38. 

 

After testing with this new pressure sole, it was found that the TPU pressure zone-layer did not 

work as intended due to the flexibility of the material. To fix this issue, a stiffer material is needed. 

A 3D printed PLA (polylactic acid) layer was made and placed on top of the sensor layer, as shown 

in Figure 40 where the PLA layer is between the fingers. PLA is a common and low-cost bio plastic 

material with decently tough mechanical properties (Treatstock, n.d.-a). This setup has been tested 

by standing on the two custom made pressure insoles and performing several lifting postures. The 

test has been done with and without the PLA layer, to see how much impact the layer has on the 

accuracy of the measurements. In depth testing of the insoles with results will be discussed in a 

dedicated section. 
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Figure 39 - 3D printed TPU pressure sole Figure 40 - 3D printed PLA pressure-zone layer.
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Figure 38 - Drawing of pressure zone system.

Sensor Layer Pressure Insole
(Pressure zone layer 

on top of sensor layer)

Side view of pressure 
insole

Pressure Zones

Stiff Material 
Pressure Sensor

Pressure Sensor

Connection Ribbon 
Cable

Pressure Pucks

Pressure Pucks

Force applied over 
the pressure zone

Force will be 
concentrated 
to the force 
pucks on to 
the pressure 

sensor

Flexible Material 

PLA layer



44

With the made pressure insole, it will be used to collect PPD data from different 

postures. This will later be analysed to see whether patterns can be found.

5.5.1 Theoretical plantar pressure data analysis 

First, theoretical analysis on different manual lifting will be performed to create 

an overview of possible points of attention, patterns, and load locations. This 

analysis is based on static biomechanical analysis and the study conducted by 

Antwi-Afari, Li, Yu, et al. (2018), using insole pressure sensors to map plantar 

pressure distribution. 

 

The common dangerous lifting techniques have been analysed based on how 

they may be detected in PPD data and have been visualised in pressure heat 

maps. Figure 41 shows how an ideal PPD map would look like, where the load 

is held close to the body. The PPD map shows that the pressure is evenly 

distributed over the whole feet and some higher at the metatarsal and heel.   

 

Actual pressure data will be captured by two pressure insoles, equipped with 

force-sensitive resistors (FSRs), as shown previously. Sensors are connected 

to a microprocessor (Arduino) and the data will be stored on an SD card. 

5.5 Plantar Pressure Distribution 
Assessment

Figure 41 – Ideal PPD with evenly distributed pressure
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Posture and load

As mentioned in problem analysis and also found in biomechanics literature 

research, awkward postures and heavy loads may be the key contributors to 

LBP. The focus on the detection of risks will be on these two key factors. 

Different scenarios of possible PPD profiles have been visualised.

Detecting Load

The amount of load could be measured by adding all the measured forces 

together. If this number approaches or exceeds the recommended force of 

3400 N (on top of the workers own weight force), action should be taken. 

  o Load distribution, Figure 42.

	 Ideal: Left and right foot should have equal PPD and under 3400 N

	 Hazard Indication: 

1. Total load higher than 3400 N (on top of workers weight)

2. Peak pressures over 3400 N

3. Increased pressure on one side

Detecting Awkward Postures 

There are many posture variations of how a worker could lift, covering them all would be difficult 

due to the variety in combinations. Instead, the most hazardous key elements will be included in 

the analysis. It includes twisting of trunk, lateral (sideways) movement of the trunk, load balance, 

reaching and lifting form. Different lifting forms (stoop, semi-squat, and squat) may not have different 

risks but may reveal increased risk or damage in long term, which has not been studied in the 

literature (Marras et al., 2006). For that reason, the lifting forms are included for collecting long term 

analysis. 

  o  Twisting and pivoting the trunk, Figure 43.

	 Ideal: Left and right foot should have equal PPD

	 Hazard Indication: PPD change over time in a gradual and/or rotating manner

1. When twisting the back, the load could shift gradually (rotational) from equilibrium to 

one side (incorrect handling)

2. When pivoting from hips, the load could shift abruptly from equilibrium to one side 

(incorrect handling)

Figure 42 – Unequally distributed weight Figure 43 – Twisting and Bending of Trunk 
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  o  Reaching for objects or lifting above shoulder level, Figure 45. 

	 Ideal: Equal distribution of PPD over both feet (Objects are lifted between knee and should 

height)

	 Hazard Indication:

1. Pressure peaks in both shoes at the toe area (reaching for object or pushing object in 

a high rack)

  o  Pushing and pulling loads , Figure 46.

	 Ideal: Equal distribution of PPD over the foot during pushing or pulling

	 Hazard Indication:

1. High pressure at toe area

  o Lifting postures, Figure 44.

	 Ideal: Equal PPD over whole both feet, no severe pressure peaks

	 Starting Lift

1. Squat Lift: Middle and heel feet area have the highest pressure

2. Semi-squat Lift: Middle and heel feet area have the highest 

pressure

3. Stoop Lift: Middle and toe feet area have the highest pressure

	 Lifting

1. Squat Lift: Pressure shift towards middle and fore feet due 

change of center of mass

2. Semi-squat Lift: PPD remains similar, increase PPD due to load 

and inertial forces

3. Stoop Lift: Middle and heel feet area due to counter balancing 

load of object

	 Hazard Indication:

1. High peak pressures at toe or heel area, unbalanced lifting

Figure 44 – Lifting Postures.

Figure 45 – Reaching for or with objects Figure 46 – Pushing and Pulling Detection
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Duration and Frequency

The amount of time manual handling takes and how often this is done may 

contribute to LBP (Nourollahi et al., 2018; Stobbe et al., 1988). The duration 

of manual handling could be tracked, and the frequency could be counted by 

analysing the lifting phases. Distance could reveal how far the worker is walking 

with an object.  

  o  Duration

	 The start time minus the end time of increased load, indicating a lift 

and carry, would reveal the total duration of a manual handling

  o  Frequency

	 Counting how often a load starts and ends can reveal the frequency 

of manual handling

  o  Distance

	 Handling distance may be interesting to analyse, which could be 

done by using an IMU (inertial measurement unit)

Acts

Acts may be difficult to detect due to the unpredictability, there are no leading 

indicators for these factors. It may still be interesting to collect occurrence data 

for the improvement of the workspace. 

  o  Tripping (due to not looking ahead or the obstructed view) could be 

detected through an IMU and PPD

	 An IMU has a gyroscope, which could detect when an employee is 

not standing anymore, PPD could confirm when there is low pressure 

detected

  o  Catching falling objects could be detected through plantar pressure map, an 

abrupt increase in load may indicate catching something

Environment

Physical surrounding is difficult to detect due to the diversity of factors, for example obstacles on the 

walking path and available surrounding space. 

  o  Repetitiveness or pace could be detected similarly to frequency factor

  o  Danger area of slipping and tripping could be pinpointed by using a localization sensor or 

triangulating via existing WiFi/Bluetooth

  o  Environment condition could be sent to the shoe via other connected products (sensing 

temperature, humidity, and noise)

Psychosocial Factors

Repetitive physical stress loading may lead to fatigue and psychological stress from work may 

aggravate the risk of LBP further (Yip, 2001). Workers may not be able to focus on their work. They 

are more prone to errors and may result in injuries. Due to the individual character of this factor, it is 

difficult to find out the cause.  

 

Current risk assessment methods do not consider psychosocial factors, or rather limited. Mental 

wellbeing can be measured by asking the workers. A way of gathering psychosocial factor data 

could be through frequent short surveys. For example, in an app that is connected to the smart 

shoe, though desirability has yet to be reviewed. Though, this will remain as a possibility for future 

development as the current goal is to be able to detect the physical factors of LBP. 
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5.5.2 Pilot Static PPD Measurements

The first PPD assessment has been conducted by performing static (lifting) 

postures, as this is based on the theory in the research section. The focus will 

be on three particular lifting postures: lifting above shoulder height, stoop lifting 

and asymmetric lifting. These postures resulted in most injuries at Bunzl (J. 

Metselaar, email, 15 March, 2021). For the capturing of the data, the insoles 

were placed on the floor with Kevlar layers beneath the insoles, to reduce the 

dampening effect of the carpet as shown in Figure 47. Four static postures 

have been performed and measured, standing upright, holding arms above 

shoulder height, stoop lift and asymmetrical lift, see Figure 48. The second set 

of measurements can be found in Appendix C. 

 

Capture data from the assessment has been analysed by cleaning the data 

first, removing dynamic data points and thereafter plotted in graphs. It has 

been considered to visualise the data into pressure heatmaps as in Figure 

49, but due to limited experience and knowledge about this process, it has 

not been pursued. Additionally, a pressure heatmap would be only useful for 

manual analysis by humans as it makes it visually easier to understand. In the 

final product, these data points will be analysed by a computer, making the 

heatmaps obsolete. 

Figure 47 - Testing setup with pressure insoles connected to the Arduino.

Figure 48 - Four performed static postures: Neutral standing, arms above shoulder height, stoop lift, asymmetric lift.

Figure 49 - Heat map of plantar pressure distribution



49

For manual analysis of static postures, the graphs have been studied in depth. 

The procedure for the analysis is as follows: The graphs have been studied by 

looking at the highest GRFs and holding the pressure map layout next to them, 

see Figure 51, to know where the specific GRFs are located. These high GRF 

areas indicate where the person has been putting the most of their weight on 

their feet. The biomechanics theory from the Research section has been used 

to explain what the high GRF areas mean and/or how it can be translated to 

postures.  

 

Graph 1 and Graph 2 shows the measurements done by standing on the 

pressure insole with body weight and without the PLA layer. The graphs can be 

read by looking at the sensor layout in Figure 51, sensors are colour coded for 

easier reading. From the graphs above, it can be seen that the most weight has 

been put on the heel area, sensors L4/R4, and some in the middle foot area, 

sensors L2/R2. The high force in the heel area comes from the body weight, as 

seen in Figure 50, the centre of mass is perpendicular to the heel of the foot. 

There is some force in the middle feet, which is caused by the balancing act of 

the body, using the middle feet to increase the surface area. 

Graph 1 - Force graph of the left foot with no additional load in Newton.

Graph 2 - Force graph of the right foot with no additional load in Newton.Figure 51 - Colour coded sensors related to the 

graphs, five sensors layout.

Figure 50 - Plantar pressure distribution with no load
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Graph 3 shows the total force of all sensors summed up. The average total 

force is 140 N, which is 14.3 kg (140 [N] / 9.81 [m/s2] = 14.27 [kg]). It does 

not match my absolute weight of 90 kg. This is caused by the force range and 

accuracy of the sensors and also the loss of force as mentioned earlier in 5.4 

Prototype Two.  

 

Additionally, during the analysis of the lifting postures, it was found that the 

sensors in the toe area could not measure the forces well. Some other sensors, 

such as L2/R2 and L3/R3 also had difficulties. The graphs of the posture 

analysis can be found in Appendix B. This issue is caused by the incorrect 

positioning of the sensors. With the results from this pilot analysis, a prototype 

version four was made, which included an additional sensor in the toe area 

on the big toe spot and some sensors have been moved to better spots, see 

Figure 52, at the big toe and new spots. The new sensor locations are based 

on Figure 53, which have been proposed and tested by Ciniglio et al. (2021).  

Graph 3 - Force graph of all sensors of both feet.

Figure 52 - Iterations of pressure sole prototypes, 

prototype 3a, 3b and 4.

Figure 53 – Pressure sensor layout for different shoe sizes (Ciniglio et al., 2021)

Prototype 3a. Prototype 3b. Prototype 4.
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5.5.3 Static PPD Measurements

Standing up right

With the fourth iteration of the pressure insole prototype, the measurements 

became significantly better. The amount of force is higher on each of the 

sensors due to the better placement of sensors and the reduced loss of force 

with the stiff PLA pressure-zone plate. The results are analysed and discussed 

below in more detail. The second set of measurements can be found in 

Appendix D. 

 

As the layout has changed, Figure 54 shows where each sensor is located, 

each colour in Graph 4 and Graph 5 corresponds to the colours in the new 

layout. In the new graphs, it can be seen that all the values are higher than 

previous Graph 1 and Graph 2, even though the body weight did not change. 

This improvement makes the posture analysis more reliable as the values 

are more distinct from each other. In Graph 4 and Graph 5 a pattern can be 

recognised for standing upright. L5/R5 shows the highest force, followed by 

R4 in Graph 5. Graph 4 shows that L3 is the second-highest after L5. This may 

be caused by incorrect placement of the foot or due to balancing of the body. 

L2/R2 and L3/R3 are similar in force due to the location of the sensors, at the 

metatarsal. L0/R0 and L1/R1 show little force.

Graph 5 - Force graph of the right foot with PLA pressure-zone layer, no additional load, in Newton.

Graph 4 - Force graph of the left foot with PLA pressure-zone layer, no additional load, in Newton.

Figure 54 - Colour coded sensor map on the insole, 

six-sensor layout.



52

The average total force of all the sensors combined with the new pressure 

sole is 278 N, which is 28.3 kg. This is an improvement of 98.6% relative to the 

previous pressure sole, which only measured a total of 140 N. Still, it is only 

around a third of my weight of 90 kg. 

Comparing to the theory

These measurements are compared to the lifting phases that are presented in 

3.2.1 to see if it shows similar results. The forces of the lifting phases, shown 

in Figure 55, are measured during a dynamic stoop lift situation. The start is 

a static situation as the person is standing on top of the pressure plates. This 

moment can be compared with the graphs above. The total force in one foot 

slightly differs from the other foot while standing, which can be seen in Graph 7 

as well. Around 0.12 seconds in the Ant/Post Force graph, in Figure 55, it can 

be seen that there is an increased force towards the posterior. This is similar in 

Graph 4 and Graph 5 where L4/R4 and L5/R5 has the highest forces, meaning 

that when standing there is more force at the heel area. 
Graph 6 - Force graph of both feet with PLA pressure-zone layer.

Graph 7 - Total force per foot
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Figure  55 - Lifting phases and the GRF (Matt Maines & Reiser, 2006)



53

Stoop Lift 

The static posture of stoop lifting has been analysed in two situations, without 

any external load and with a 10 kg load. As for the first situation, the person will 

stoop down to pick up an object.  

 

Graph 8 and Graph 9 show the highest forces in L1, L2/R2 and L3/R3, as the 

centre of mass of the body is perpendicular to the middle foot area. The force 

values of the other sensors in the right foot do not match or show similarities 

to the left foot sensor values. This is most likely due to foot placement on the 

pressure insole. The heel area fluctuates in the amount of force to balance the 

body. Otherwise, the person would fall forward. 

Recognisable patterns:

•	 L1(/R1*), L2/R2 and L3/R3 show highest constant force

•	 L4/R4 and L5/R5 show balance adjustment forces over time

Graph 8 - Force graph of left foot, no load, in Newton.

Graph 9 - Force graph of left foot, no load, in Newton.
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Comparing to the theory

Comparison between a dynamic measurement and a static measurement is not 

fully representative due to non-existing inertial forces in a static measurement. 

It can still provide useful insights nonetheless. Later, a dynamic measurement 

will be compared with the literature research.  

In Figure 56, between 1 and 1.5 seconds in the Ant/Post Force graph, it can 

be seen that the force is in on the anterior side, meaning towards the toe area 

of the feet. This can be seen in Graph 8 and Graph 9 where the highest forces 

are in L1/R1, L2/R2 and L3/R3. Ant/Post Force graph in Figure 56 also shows a 

slightly higher force in one foot compared to the other. This has been measured 

as well during the test as seen in Graph 11. 

Figure  56 - Lifting phases and the GRF (Matt Maines & Reiser, 2006)
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Stoop Lift 10 kg

The second situation is where the worker would lift a load of 10 kg while 

stooped.  

 

Graph 12 and Graph 13 show the highest amount of force is in L3/R3 followed 

by L5/R5, L4/R4 and L2/R2. To maintain the balance of lifting a 10 kg load, the 

body has to lean backwards putting some of the load towards the heel area. 

With the load in the front, most of the force will be in the middle foot area.

Recognisable patterns:

•	 L3/R3 show highest constant force

•	 Followed by L5/R5, L4/R4 and L2/R2, which all show around an 

equal amount of force

•	 L0/R0 and L1/R1 show little force 

Graph 12 - Force graph of left foot, load of 10 kg, in Newton.

Graph 13 - Force graph of left foot, load of 10 kg, in Newton.
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Comparing to the theory

During the lift of a load in a stooped posture, the amount of force increases 

in the posterior side, see Figure 57 in the Ant/Post Force graph. This can be 

seen in Graph 12 and Graph 13 by looking at L2/R2, L3/R3, L4/R4 and L5/R5. 

During the test measurement, the box was held a few centimetres above the 

ground.  

The difference between left and right foot force is bigger than standing or 

starting the stoop lift. This can be seen in both Figure 57 and Graph 15. 

Figure 57  - Lifting phases and the GRF (Matt Maines & Reiser, 2006)

250

260

270

280

290

300

310

Ti
m

e
53

:0
7:

00
53

:0
7:

00
53

:0
7:

00
53

:0
7:

00
53

:0
7:

00
53

:0
8:

00
53

:0
8:

00
53

:0
8:

00
53

:0
8:

00
53

:0
8:

00
53

:0
9:

00
53

:0
9:

00
53

:0
9:

00
53

:0
9:

00
53

:0
9:

00
53

:1
0:

00
53

:1
0:

00
53

:1
0:

00
53

:1
0:

00
53

:1
0:

00
53

:1
1:

00
53

:1
1:

00
53

:1
1:

00
53

:1
1:

00
53

:1
1:

00

Fo
rc

e 
in

 [N
]

Timestamp

Stooplift Total Force

0
20
40
60
80

100
120
140
160
180

53
:0

7:
00

53
:0

7:
00

53
:0

7:
00

53
:0

7:
00

53
:0

7:
00

53
:0

7:
00

53
:0

8:
00

53
:0

8:
00

53
:0

8:
00

53
:0

8:
00

53
:0

8:
00

53
:0

9:
00

53
:0

9:
00

53
:0

9:
00

53
:0

9:
00

53
:0

9:
00

53
:1

0:
00

53
:1

0:
00

53
:1

0:
00

53
:1

0:
00

53
:1

0:
00

53
:1

1:
00

53
:1

1:
00

53
:1

1:
00

53
:1

1:
00

53
:1

1:
00

Fo
rc

e 
in

 [N
]

Timestamp

Stooplift total force per foot

Left Foot Total Force Right Foot Total Force

Graph 14 - Force graph of both feet while stoop lifting

Graph 15 - Force graph of both feet while stoop lifting
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Shoulder Height Lifting

The static posture of having arms above shoulder height has been analysed in 

two situations, without load and with a load of 10 kg. In the first situation, it can 

be seen as a posture that could be used to reach for an object in a rack.  

 

Graph 16 and Graph 17 shows high forces in the metatarsal area (L2/R2 and 

L3/R3) and heel area (L4/R4 and L5/R5). This happens due to the centre of 

mass of the body that moves forward as the arms create a moment arm. The 

toe area also increases in force, to balance the body, as it is used to create 

more surface area for the feet. 

Recognisable patterns:

•	 L2/R2 and L3/R3 shows the highest force

•	 Followed by L4/R4 and L5/R5

•	 L0/R0 and L1/R1 has a small increase in force

Graph 16 - Force graph of left foot, no load, in Newton.

Graph 17 - Force graph of right foot, no load, in Newton.
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Shoulder Height Lifting 10 kg

The second situation is lifting an object of 10 kg above shoulder height, to put it 

in a rack for example.  

 

Graph 18 and Graph 19 do not show (relative) straight static force lines due 

to micro-adjustments of the body to maintain balance. Especially with a load 

far from the body and above shoulder height, creating a big moment arm. 

The highest forces are in L2/R2 and L3/R3 as this would be perpendicular to 

the middle feet when the load of the object and the load of the body would be 

combined and averaged.  

L1/R1 sensors show increased force, meaning the big toes are trying to 

maintain the load that is in front of the body. L4/R4 and L5/R5 are fluctuating 

in forces to maintain the balance of the body and object, otherwise, the person 

would fall forward. 

Recognisable patterns:

•	 L2/R2 and L3/R3 show highest constant force

•	 L0/R0, L1/R1, L4/R4 and L5/R5 show balance adjustment forces 

over time

Graph 18 - Force graph of left foot, load of 10 kg, in Newton.

Graph 19 - Force graph of right foot, load of 10 kg, in Newton.
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Asymmetric Lifting

Two situations have been analysed for asymmetric lifting, first without an 

external load and second with a load of 10 kg. The first situation could be a 

case where someone bends sideways down to pick up a load. 

 

Graph 20 shows little to no forces, while Graph 21 shows high forces. This 

indicates that the worker is standing asymmetrically. The notable sensors 

are R3 and R4 as these are on the right side of the shoe, here are the higher 

forces meaning that the person is leaning to the right on the right foot. R5 is 

the highest due to the increased body weight on one foot and R2 is used to 

maintain the balance of the body.

Recognisable patterns:

•	 Low force in left foot 

•	 R3 and R4  > R2

•	 Highest force in R5 
Graph 20 - Force graph of left foot, no load, in Newton.

Graph 21 - Force graph of right foot, no load, in Newton.
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Asymmetric Lifting 10 kg

The second situation is where the worker would lift a load of 10 kg while 

stooped.  

 

Graph 22 and Graph 23 look similar to asymmetric lifting without any load. The 

major difference is the force in L5, as seen in Graph 17. This force occurs due 

to the balancing of the body as there is an additional load of 10 kg. The body 

tries to counterbalance using its weight. 

Recognisable patterns:

•	 Force in L5

•	 Low force in the rest of the left foot 

•	 R3 and R4  > R2

•	 Highest force in R5 

Graph 22 - Force graph of left foot, load of 10 kg, in Newton.

Graph 23 - Force graph of right foot, load of 10 kg, in Newton.
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Figure 58 - Lifting phases and the GRF (Matt Maines & Reiser, 2006)
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5.5.4 Dynamic PPD Measurements

Stoop lift

Analysing dynamic lifting is more difficult as there are more forces on the 

body due to motion. As mentioned before, the dynamic measurement will be 

compared to the theory discussed in 3.2.1.  

The performed dynamic lift is the same as visualised in Figure 58. Graph 26 

can be compared with the vertical force graph in Figure 58. The graphs are not 

similar due to sensor sensitivity and/or placement. From dotted line 1 in Graph 

24, 25, and 26, to line 2 the force should increase in the total force graph. This 

is the case in Figure 58, from 0.6 seconds to 1 second. At the dotted line 3 

the amount of total force increases, which is comparable to Figure 58 at 2.1 

seconds. Graph 24 - Force graph of right foot

Graph 25 - Force graph of left foot

Graph 26 - Force graph of the total and per foot

1. 2. 3.
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Conclusion

The three lifting postures, lifting above shoulder height, stoop lifting and asymmetric lifting, all 

have recognisable patterns when analysed from a static point. This shows that it is rather viable to 

distinguish different lifting postures from each other. There is a second set of all the static postures, 

which included in Appendix C. There are some differences relative to the first analysed set. This has 

been caused by how the participant stood on the insoles and how the body lifts loads after some 

effort as muscle fatigue could change how someone lifts.  

 

The static stoop lift measurement has been compared to the dynamic stoop lift measurement from 

the literature research. This may not be a direct comparison, but it can help with confirming how 

patterns will look like. For instance, starting to stoop lift the force peaks in the toe area, while lifting 

the load will increase the force in the heel area. This was found from a biomechanical perspective 

and confirmed by comparing it to the literature.  

 

Additionally, a dynamic stoop lift measurement has been performed and compared to the literature. 

The measurement of the prototype does reveal similar results. Though, due to differences in used 

hardware, the prototype does not yield equally accurate values. This may be improved by using 

better pressure sensors or by calibrating them individually. Nonetheless, the current prototype is 

capable of measuring dynamic lifts.  

 

Instead of manually analysing the lifting data, smart data processing will be used to see if it can 

detect different lifting postures. 

Graph 24 and 25 can be compared to the ant/post force graph in Figure 58. At 

0.6 second there is an increase of force in the posterior. This can be seen as 

a high force in L4/R4 and L5/R5 in Graph 24 and 25. At 0.7 seconds the force 

drops to the anterior which can be seen as a drop-in force in L4/R4 and L5/R5 

and an increase in L0/R0, L1/R1, L2/R2 and L3/R3.  

 

These results show that the prototype is capable of measuring dynamic lifting. 

Though the placement of sensors needs to be improved or the sensors have to 

be calibrated, to achieve higher accuracy of measurement values. Additionally, 

the used sensors are not sufficiently sensitive, as they can not measure an 

increase in force due to acceleration. The current prototype is capable of 

capturing the location of the peak GRF, in either anterior or posterior.  

 

Comparing static measurements to dynamic measurements is not an equal 

comparison. Though, it helps with understanding where to look for unique 

characteristics in terms of peak forces per sensor or zones (e.g., toe area or 

heel area). Smaller details such as distinctive force amount per sensor are less 

obvious, as some performed lifts have a similar force distribution pattern, such 

as stoop lifting and lifting above shoulders. With a closer look at each sensor, 

differences or patterns can be found. Smaller details and characteristics can 

be found by using smart data processing, which will be discussed in the next 

section. 
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Figure 59 – Data learning model in Orange using Tree algorithm.

5.5.5 Machine Learning

To automate this analysis process, machine learning will be utilised. The same 

data sets that have been used for manual analysis, will also be used in the 

machine learning process. The model will be set up in Orange, which is an 

open-source machine learning and data visualisation software.  

 

The model has been set up in Orange by Wilfred van der Vegte, with the 

use of a classification tree algorithm. Before the data set is imported into the 

program, it has to be cleaned up first, removing irrelevant data or that has 

errors. Second, the data points need to have labels for the algorithm to learn 

the specific postures. The different postures were manually labelled in Excel 

sheets. The data has been imported into Orange where different steps are 

performed to filter out fluctuations and smoothing the values using moving 

averages. 

In Figure 59 each widget, shown as a circle, performs a certain step or process to make the data 

readable for the algorithm. The settings of each Orange widget can be found in Appendix E.  

The first widget in Figure 59 imports the data set of a specific posture. Next, the columns from the 

data set will be selected, irrelevant columns can be ignored. As the data is measured over time, the 

order of the data points is important, the widget As Timeseries has been used to maintain this order 

of data. The captured data has some short-term fluctuations, the blue line in Figure 60, this has been 

smoothed out using Moving Transform, with moving average setting. The result is the red line in 

Figure 60. A transformation of a whole data set can be found in Appendix F.  

The transformed data will be selected for the continuation of the process. All the processed data sets 

will be Concatenated or linked into one data set.  

This set will be used by the Tree algorithm as training data to make a model. The model will be 

validated to see how accurate it can classify data, this is done by using the Test and Score widget. 

Figure 61 shows that the model has an accuracy of 99.7%, which means that the model can classify 

data with little error. The test is performed by withholding 20% of the data set for learning. After 

making the model, the 20% unused data will be used to test the model, by letting the model classify 

these test data points, which has a known label. 

Figure 60 – Graph with original data and transformed to moving average.
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The model is visualised using the Tree Viewer widget, it is a resulting decision 

tree, as shown in Figure 62. This visualisation shows how the model works if 

new data is introduced to the model. For prediction, in the case of the project, 

it is detection, it will go through the decision tree to classify the new data 

points. For example, if the value of L0 is bigger than 0 it will go to Neutral_

Standing_NoLoad. If the value R2 is bigger than 23.7167, then it will go to 

Shoulder_Height_NoLoad. If R3 is bigger than 34.1333, go to Stooplift_10kg. 

If L1 is smaller than 14, classify the data point as Stooplift_10kg. This process 

of if-then will be performed till it reaches the end of the decision tree to classify 

each data entry.  

 

Looking at the end of the decision tree, it can be seen that every posture can 

be classified with 100% certainty. Meaning that every posture has unique 

patterns and that the model is reliable in identifying each posture with certainty.  

 

Though, this model is based on data sets from one person. It is possible 

that this model may not work for other people due to differences in weight 

and length. Further development and steps to take will be discussed in the 

recommendation section. 

Figure 62 – Postures classified by machine learning.

Figure 61 – Result of tested model.
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Machine learning is capable of analysing static postures with no problems, as it 

can distinguish the postures with 100% accuracy. What has not been analysed 

yet is dynamic posture data. This has been measured but due to the time 

constraint, this has not been processed using machine learning. Labelling of 

this data is much more difficult due to the sheer amount of data. Additionally, 

the methodology for taking videos alongside measuring the lifting was not done 

synchronously as there was some deviation in time. This makes analysis rather 

difficult and less reliable.  

 

At this point, it shows that machine learning can be trained using a (relative) 

simple tree algorithm. The model that came out, has close to no errors in 

classifying data. During a meeting with Van der Vegte, it was discussed that 

alternative algorithms may be used that could lead to different models, which 

may or may not perform better (W.F. van der Vegte, personal communication, 

2 June, 2021). Alternative algorithms have not been tried as these are more 

complex such as neural networks. The development of ML should be explored 

further as currently, the data set is only from one person. If the data set grows 

in a variety of individuals and postures, another algorithm may be needed. 
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During ideation and prototyping, several (potential) bottlenecks were found 

that could have an impact on the realization of the smart safety shoe. These 

concerns have to be taken into account in the future design process. Some 

have been left out during this project, as the focus was to create a prototype 

with the critical functionality to see if the idea is feasible. This chapter shall 

discuss what has been considered and potential focus points.  

 

Here is a list of aspects that directly influences the performance of the smart 

safety shoe:

•	 Sensor performance (accuracy, drift and longevity) (reliability aspect)

•	 Sizing of hardware (comfort aspect)

•	 Smart data processing (smart aspect)

•	 Variety of postures (machine training aspect)

•	 Assessment system 

•	 Connectivity (IoT) and data storage (network aspect)

This list is ranked in functionality priority. The first and most important aspect is 

the sensors and the sensor layout as these components do all the measuring 

during the use of smart shoes. They have to reliable and sufficiently accurate 

to measure the amount of force applied to the ground. The prototype works 

relatively well with the Interlink sensors. Though, the reliability aspect has not 

been fulfilled yet. Alternative sensors could be explored such as the FSRs from 

Tekscan. This will be discussed further in detail in the recommendation section.  

 

The second aspect is the comfortability of the safety shoe, which is related 

to component placement within the shoe. Comfortability might be affected by 

placing rigid and stiff electronics in the shoes. Almost every part of a shoe is 

flexible to some degree and by introducing stiff components, this flexibility will 

be decreased. This aspect has to be explored in more detail as the users of the 

safety shoes have to wear them every day during work. A close collaboration 

between the hardware developer and the shoe manufacturer is needed to 

succeed. Comfortability has been explored to some extent but not further 

elaborated due to the client’s wish to let this be explored and executed by the 

shoe manufacturer. Some ideas can be found in Appendix G. 

Comfortability sits just higher than smart data processing, as the workers 

are required to wear safety shoes during the whole working day. If the smart safety shoes are less 

comfortable than regular safety shoes, workers will be less inclined to wear them. It does not make 

smart data processing less important. This is the whole smart aspect of the idea, the software that 

could assess postures without the need for a human. The smart data processing model has to be 

based on the data from the sensors. That is the reason why the priority lies with the sensors.  

 

Many variables could influence how a person lifts. Age, fitness, experience, length, weight and more 

could all contribute to how someone lifts. At this stage, only one person has been measured and the 

model is trained based on that data. If another person would be measured, this data could strongly 

deviate and the model would not be able to classify the postures correctly. An extensive database 

with a variety of postures is needed to train the model that would be able to classify postures from a 

wide range of people.  

 

Next to the posture detection model, an assessment system or model is needed to give feedback 

to the user. This aspect has not been looked into during the project. There are only some ideas on 

how this could be set up. For instance, some postures have an increased risk of injury, these could 

be red-flagged every time the model detects it. It might not be dangerous if it is done once or twice. 

If it is done systematically, the model could give the user a warning. Further, aspects such as age or 

fitness could reduce the risk somewhat, making the threshold higher before it warns the user. This 

could be seen as a point system as injuries may come from cumulative small strains throughout the 

day.  

 

Lastly, the connectivity of the product is an aspect that has to be considered. Currently, the decision 

has not been made yet, whether the data will be continuously transmitted to a local network or stored 

in the shoe itself. The consideration between the two is the power consumption. It requires some 

electricity when data is continuously transmitted, which could lead to a depleted battery before the 

end of the working day. The benefit of continuous data is live data analysis and insights. On the other 

hand, people could have privacy concerns. From this point of view, it might be best to opt for storing 

the data in the shoe and transmit the data at the end of the day. This yields lower power consumption 

and fewer privacy concerns. 

5.6 Design considerations
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6. Roadmap
Next steps

Currently, the project has only shown that the idea is feasible. Without using 

high-end pressure sensors, the core principle of the smart safety shoe has 

been tested and proven that works. Not as accurate as desired, but this should 

be easily be improved with better sensors or calibrating the current ones.  

 

From here on, there are several paths available to continue the project. This 

roadmap has been set up together with J. Arts to give the roadmap a more 

realistic outlook. The decisions are based on the novelty and complexity of the 

idea combined with the desired launch date. Naturally, the timeline is a gross 

estimation as unexpected delays are inevitable.  

 

To be able to launch the product, a variety of parties have to be involved to 

realize the idea. Allshoes is a safety shoe distributor and does not have the in-

house resources for designing and testing the hardware or software. The major 

party that is already involved is AMF, a shoe producer located in Portugal who 

has the capabilities of adapting manufacturing to new shoe designs. Though, 

from a meeting with the producer, it was found that they do not have experience 

with working with electronics.  

 

Electronics and software still have to develop further. Additionally, a larger 

ergonomic database is required to encompass different people. It is preferred 

to proceed with the project with TU Delft. They have the capabilities to develop 

hardware, software and setting up the database. It has been suggested by 

the staff team to proceed with postdoctoral researchers, as they have more 

experience in developing such novel products. Two or more may be needed to 

develop the idea further due to the complexity of the problem that is trying to 

be solved. Ideally, one researcher should be a hardware and software expert, 

second the other should be an ergonomics expert, and the third an AI and/

or ML expert. This way, the electronics can be designed with the required 

software. The database should set up by the ergonomics researcher. Lastly, 

the AI/ML expert will be able to make models based on the captured data. This 

stage could be seen as research and development.

The TU Delft team may be able to develop a state-of-the-art product, based on extensive scientific 

research. It is estimated that the team would need roughly nine months to execute the research. 

AMF should be involved from the beginning as they will be the party that will do the production. 

Additionally, they will be providing insights on safety shoe knowledge regarding comfortability and 

possibilities of placing components. They will also be making samples of shoe designs to fit the 

hardware. TU Delft will be developing a working prototype, database and ML model. At this point, the 

commercial viability has to be reviewed by Allshoes, to see if it is worth pursuing in terms of profit.  

 

It might be a good idea to focus on a user group or use case. Currently, the focus was on warehouse 

workers who have to pick orders the whole day. Most products that are picked are not too heavy 

or awkwardly sized. There is a potential client/party that is greatly interested in this project due to 

common LBP injury occurrence. This party delivers gas cylinders that are heavy and often awkwardly 

sized as they are cylinders. This kind of target group would greatly benefit from the smart shoes, to 

see when they are lifting incorrectly. Instead of building a posture database that is all-encompassing, 

taking months to set up, it will be reduced to a more specific set of postures.  

 

For commercial development of the hardware and software, a commercial party in IoT will be 

involved. They have more experience in commercializing hardware with IoT solutions. The hardware 

design from TU Delft should be considered, with some production changes. They would also be 

developing the network infrastructure for data, software for the users (front end and back end) and 

hardware design for production. Close cooperation with AMF would be needed as the hardware 

has to be placed within the shoes during production. Several iterations may be needed before the 

production can start. 

 

Allshoes should start a marketing campaign before production starts, to create some awareness 

around the product. As it is a novel product, people may not understand what the product is for 

or what value it could bring them. This development and production stage would roughly take 

another nine months. Which totals 18 months to reach launch. A comprehensive roadmap with time 

estimations, tasks, and goals can be found in Appendix H. 
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7. Conclusion
This project is to design and validate the theoretical feasibility of a smart safety 

shoe of the future. To reduce WMSDs in warehousing due to manual handling. 

Through research, it was found that LBP was the most common WMSD, which 

has a significant impact on the life of the workers, companies, and society as a 

whole. Traditional (observational) methods could help people on the work floor 

but this would cost too much time and money. Technology would be a better fit 

to aid workers in their daily work. Therefore, the main research question was 

formulated: 

 

Can equipping safety shoes with sensors and smart data processing help 

reduce the risk of LBP, and eliminate the need for deploying labour-intensive 

observation methods for that purpose? 

 

To answer the question, extensive literature research was conducted to 

understand the causality of LBP, correct manual handling, the basis of 

biomechanics, and current technological standing. This formed the foundation 

of the project that led to the prototypes with critical components. The prototypes 

were used to conduct tests to measure forces during manual handling.  

 

Research has shown that the causality of LBP is not easy to point. A 

combination of different factors contributes to it. Though, the physical factor 

is the most prominent in the cause. By looking at how a worker is performing 

manual handling, the risk could be assessed. The way how a worker is 

performing a lift can be seen through ground reaction forces, without the need 

for complex biomechanical calculations. 

 

Technology has progressed far, components can be easily fit in shoes. Placing 

pressure sensors in the sole of a shoe, the ground reaction force can be 

measured. With the aid of machine learning, data can be analysed without 

the continuous involvement of people. The GRF is analysed by an ML model 

to classify the postures. The model can identify static postures with 100% 

accuracy. An assessment model has not been set up due to time constraint, 

though risky postures are identified with little error.  

 

 

From the research and the conducted tests, it is found that equipping safety shoes with sensors and 

smart data processing, ML, can detect risky postures that would lead to injuries without the need 

for labour-intensive observation methods. Even though the prototype is not at the level desired, it is 

capable of fulfilling the intended goal. With further development, Allshoes would be able to bring a 

novel product to market that could help lots of people and prevent future work injuries. 
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Discussion and limitations

The smart safety shoe could potentially be a great beneficial product that 

could help millions of people in many sectors. It is proven that it is possible, 

even with a rough prototype using sensors that are not fully capable off-the-

shelf. Reducing or preventing LBP (or WMSDs down the road), is much more 

complex than initially thought. There is still a long way ahead before the product 

can be launched. Some of the considerations will be discussed in this section.

Complexity of the issue

At the beginning of the project, the complexity of LBP was overlooked. Once 

the research started, the complexity became apparent. Knowledge from prior 

projects or simply logical thinking is not sufficient. In-depth knowledge was 

required for this project as the causality of LBP is not as simple as just lifting 

something wrong. The conducted research during the project barely scraped 

the top layer of the required knowledge. To develop the product to the desired 

level that could assess lifting postures without the interference of people, real 

experts are required in the field of ergonomics, AI/ML and electronics. 

Ergonomics

Build a database to cover all the data about postures will be quite the 

challenge. This database will be needed to cover a large percentage of 

the population. The challenge lies in how every human has its unique 

characteristics, from different walking patterns to lifting postures. One way 

would be building an enormous database or another way would be trusting the 

smart data processing to make the correct decision. As mentioned before in the 

roadmap, a good start would be starting by focusing on one target audience 

and collect data in smaller phases.

Smart data processing

Machine learning (or AI) needs much more development as it currently can 

only detect static postures. Dynamic postures are much more complex due to 

how fast the posture values/data changes over time. Additionally, inertial forces 

could make posture data less predictable due to balancing of the body for 

example. This could lead to false positives or wrong classifications. It is a major 

challenge that has to be tackled from the beginning of development as AI/ML is 

the brain of the product. 

Furthermore, the currently used algorithm may not be fit for dynamic lifting data. The complexity of 

making decisions by the model increases as the amount of postures increases. A more complex 

algorithm could be a better fit. This has to be explored further in-depth. 

Electronics

The components that have been used for prototyping are not chosen based on best performance 

or value. All the components are chosen based on ease of use and readily available. Which has 

to lead to big components that would never fit inside a shoe. From technology exploration and my 

knowledge, some components could achieve similar results with maybe even better performance 

with a much smaller footprint. Though, these components are not easy to work with normal home 

equipment. Special tools are required. For that reason, hardware design should be handled by an 

electronics expert. Further, some safety regulations should be adhered to, avoiding shorting for 

example. 

Limitations

As mentioned before, this is not a simple project to execute. There are too many aspects to be 

covered by only one student at a time. To successfully execute this project, a bigger team is required 

to work on different aspects simultaneously. This led to the expected limitation of time, every aspect 

has been covered to some extent but not to the level as desired. 

Further, product desirability has not been explored extensively, it is only known that one company 

within the Bunzl group has a great interest in the product. This is already a good sign for the adoption 

of the product. Though, it is not known to what extent, in terms of expectations.  

 

Lastly, the long term reliability of electronics components has not been investigated. There are 

technical specifications on the pressure sensors, but in reality, they may differ. The sensors may not 

be fit for eight hour-long loads, every day. They could lose accuracy over weeks or months. How 

much this decrease is unknown and it should be tested by using a machine setup that could put a 

load on the shoes with sensors for a set amount of time and unload after. 
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8. Recommendation
There are a lot more possibilities for this project in which direction it can 

go. This section shall discuss what it is recommended to explore further to 

develop the project. Of course, it has been discussed in the roadmap what 

potential following steps may be. Though, it does not go into detail which will be 

discussed here.

Sensors

The current sensors from Interlink are easy to implement and cost-effective, 

but it has accuracy and resolution limitations in its uncalibrated form. From 

literature research, it shows that these sensors are capable of measuring GRF 

with good accuracy after calibration. Though, this process is time-consuming 

and will increase the cost per sensor. Alternatively, better sensors may be used 

such as Tekscan’s, but has a much higher price. To make an informed decision 

on this aspect, both options should be explored in more detail regarding 

performance and total pricing. For example, if the performance of the sensors 

from Interlink can perform similarly to Tekscan after calibration. With only an 

increase in the price of 100%, it would still be more cost-effective than its 

competitor.  

Sensor layout

To cover the majority of the foot, the sensors have to placed at spots where the 

most force is applied while standing or walking. The used layout for prototyping 

is based on literature research but still with some guesswork and by looking 

at my own feet. There is no perfect sensor layout as humans have unique feet 

sizes and forms. Ciniglio et al. (2021) has looked into sensor layout based on 

shoe sizes. The study did not test every layout to see whether it fitted the shoe 

size, but something similar should be explored. More sensors could yield higher 

accuracy but with an increased cost. Lower sensors could be bare essential 

pattern recognition, but with a lower cost. 

Shoe material 

The outer sole of the shoe has some influence on the measurements of the 

pressure sensors. During the project, it has not been tested in-depth to see 

to what extent. It was noticed during the static and dynamic measurements. 

This cannot be entirely be eliminated as the shoes has to be flexible for 

comfortability. Instead, the software should compensate for the small inaccuracy. This should be 

tested in a lab environment using a universal testing machine. The machine can put an amount of 

known force on top of the sensor while in a shoe. This could be done for a variety of forces to see 

how it behaves based on the applied force. From this data, a formula could be formulated and should 

be added to the code for compensation.  

Lacing tightness

There is a concern that lacing the shoes too tight or too loose, could affect how the sensors measure 

the force. If it is too tight, the sensors will always sense a higher force than they should be. If it is 

too loose, the measurements might not register. This concern could be solved with a calibration 

process when the shoes are put on. The shoes could give a signal when it reaches the optimal force 

tightness. A force range is desired as people have their preference. 

Feedback system

When potential danger to injury is detected, warning feedback will be given to the worker. It has been 

suggested to use a LED light, but it may not work or increase danger even more. Workers will not 

look at their feet while working, the warning will go unnoticed. When employees are looking at their 

feet, they might not notice what is happening in front of them. Vibration as a warning is better, which 

is inaudible and can be felt. The placement of the component is crucial, it should be at a spot that 

could always feel it. From the comfortability experiment, it was found that this is the inside of the foot, 

the area between the heel and ankle. Further experimenting is required. 

Target audience

In the roadmap section, it has been discussed that the focus could be put on a use case such as 

the gas cylinder company. The solution that has to be developed will be more tangible than making 

something that could cover everything, but only does half the job e.g., (incorrect detection or false 

positives). Instead of making a detection model that could detect everything, specific models can 

be made per working sector. This results in higher detection accuracy and models can be made in 

several phases.

Weight Calibration

The sensors in the smart shoes have to be calibrated every day to have a good baseline or 

reference point for long term data analysis. It also has to accommodate people with different weights. 

Calibration functionality can built-in the software, it measures the force of the user while standing and 

uses this as offset values. 
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9. Reflection
This was a challenging but rather fulfilling project, knowing that the idea has the 

potential to help protect people from daily potential injuries. All the subjects that 

are relevant to this project were not new to me, but the basic knowledge was 

simply not sufficient. The need to dive deep into the theory was unexpected. 

Of course, a research phase is needed to get a better understanding of the 

problem and get knowledgeable on what is out there already. Though, research 

became more and more complex the deeper it went. Instead of finding answers, 

only more questions arose. Contacting an expert in the field would have helped 

a lot. Giving clear directions where to look or at least have a discussion about 

certain subjects. This would have saved lots of research hours. 

 

The second difficulty is understanding some scientific papers, as terminology 

can be an issue. It felt like learning a whole new course for the project, aside 

from working on the project itself. My understanding of ergonomics and AI/ML 

grew a lot and putting it to practice in the project. Maybe it would have been 

better if a list of assumptions was made before and conduct research based on 

the list. This would create a better overview of what I already knew and what 

has to be looked deeper into.  

 

Working closely with an actual client is new for me. Usually, there is only a 

contact moment with the client every two weeks or once per month. Having 

contact every week and even two times per week is great for decision making. 

Though, at times it felt like it took away a bit of designer freedom. Thinking of 

multiple options or directions. There might have been a good option on a path 

that was decided not to take. In the end, it did work out well, making much 

faster decisions.  

 

TU Delft is where everyone learns to concept design. This approach is 

understandable, as concept designing takes less time, effort and especially 

low cost. Though, it does not work for me very well. Getting stuck on a limited 

amount of ideas that may or may not work. Instead, trying to make concepts 

through prototyping works much more efficiently for me. It brings an idea to life, 

adding dimension to ideas. Working on essential elements first and working 

down to the details. From the beginning of the project, it was expected to build 

prototypes for testing purposes and investigating the feasibility of the idea. 

Looking back at the process, the prototyping phase started just a bit too early. The ideation phase 

was cut too short and certain elements, in general, were considered. For future projects, I need to 

find a better balance between these two phases. A longer ideation phase would help with building 

better prototypes. Every approach has its advantages and disadvantages.  

 

Planning for this project went considerably well, it helped a lot when I planned goals per week. At 

some points in time, it looked like I didn’t adhere to the planning anymore. Either falling behind or 

doing work that is needed later. Though, looking back at the planning as a whole, the tasks that were 

done were always as planned. When I was falling behind, it was often that there wasn’t sufficient time 

planned for that task. During the project, I’ve learned a lot about planning from Jan Arts, the company 

mentor. Planning in the bigger picture, the why’s, is much more important than planning every task, 

the how’s. Also, trying to plan tasks in parallel helps a lot, instead of chronologically.  

 

Overall, it was a great but challenging project to do. Gained lots of new knowledge and experience, 

improving myself as a technical designer. It was great to work at a company like Allshoes, timelines 

move much faster and results have to made on weekly basis. Also, bringing something new and 

innovative to the table, is not easy. Especially, as there is not much else to compare it to. Sometimes 

you have to be the first to start something new, to innovate a market. This is what I want to keep 

doing as a designer. 
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Appendix B - Prototyping Stage 1 and 2

Prototype One – Testing hardware & writing code
This is the first prototype where the electronics and the software have been 

tested. It has been made to get to know the hardware better and know their 

capabilities, as documented values may not always apply to every situation. 

Further, the focus was on writing the Arduino code for controlling the sensors 

and logging the data. From personal experience, writing and debugging code 

can take some time and effort, especially resolving bugs. 

 

The first pressure insole has been made using cardboard for a quick test. It 

follows the sensor layout as provided by Shu et al. (2010) in Figure 1, as it 

covers all the foot pressure areas as shown in Figure 2. The first prototype 

uses fourteen sensors instead of fifteen due to size and wiring difficulties, 

see Figure 3 and Figure 4. It does cover all the pressure areas on the foot. 

In the first tryouts, it was found that the sensor layout works but not optimally 

as some sensors did not show any value while standing on it. This may be 

caused by the anatomy of the foot, as some areas do not exert any force 

while standing. No real tests have been conducted using the first prototype as 

that was not the main purpose of this prototype. 

Figure 1 - Pressure Sensor Location (Shu et al., 2010). Figure 2 - Foot pressure measurement image (Son et al., 2015).

Figure 3 - Cardboard pressure sole.

Figure 4 - Cardboard pressure sole wiring.
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Prototype Two – Designing a new pressure insole
The second prototype was to reduce the number of pressure sensors 

needed as this is a requirement of Allshoes to reduce the price of the (final) 

product. To reduce the number of sensors without losing accuracy, a new 

design has to be made. The new design has been inspired by a paper by 

Muzaffar and Elfadel (2020), where they put pressure sensors on the cleats 

of soccer shoes, which would result in full GRF measurements. This comes 

from the same problem, where a portion of the force “disappears” through 

areas without any sensors, visualised in Figure 5a. Instead, measure the 

GRF by standing on a “solid” plate and placing pressure sensors beneath 

the plate. The sensors should interact with the ground giving the full GRF of 

the body, visualised in Figure 5b. This idea has experimented with a proof 

of concept, shown in Figure 6. The measurements were four times better 

than the existing state-of-the-art, according to Muzaffar and Elfadel (2020). 

This idea solves the issue of needing an insole fully equipped with sensors. On safety shoes, it 

would not be possible to place sensors on the outside of the sole, nor good for the longevity of the 

sensors. Instead, this study serves as an inspiration to create a new insole that could measure the 

full GRF with fewer sensors by concentrating the force to the available sensors. 

The first sole in the figure shows the foot zones that have been created. These zones are based 

on how the sole can be divided into several zones, which Shu et al. (2010) have described in 

Prototype One section. Zone 1 is the toe area. Zone 2 and 3 is the metatarsal area, split in two 

to be able to measure whether the person is more standing to the left or right which will be useful 

during measurement. Zone 4 is the middle foot area and zone 5 is the heel area. The area next 

to zone 4 has been left empty as this is the arch of the foot, which should not show any force in a 

healthy foot. The dimensions of zones are based on the pressure map of a healthy foot, as seen in 

Figure 36 as the zone-layer is laid over on top of the foot and tries to cover the most high-pressure 

areas. The second figure is the sensor layer, where the sensors are embedded in a flexible PCB 

and the third figure shows the two layers on top of each other. The final figure shows a side view of 

the two layers, where the flexible “pucks” will be placed on top of the sensors.  

 

Each zone will be made out of stiffer material, for the force to go to transfer to the sensors. The 

connection parts between the zones will be made out of flexible material such as silicone or rubber, 

to have individual flexibility per zone.  

Pressure sensors are placed in the middle point of these areas from a mechanical perspective. 

If some of the force is applied to the outer brims of the zones, the sensor would still be able to 

measure it.  

 

This idea has been made and tested using cardboard, see Figure 7 and Figure 8, and showed 

similar results as the first prototype with fourteen pressure sensors. Even with the use of cardboard 

and tape, the results were better than expected. Though, the results were not captured and 

documented, because the first and second prototype was used to get familiar with the hardware 

and creating a new sensor layout with fewer sensors.    

Figure 5 - (a) Sensors placed in insole (b) “Sandwiched sensor force consolidators” 

(Muzaffar & Elfadel, 2020).

Figure 6 - Proof of concept (Muzaffar & Elfadel, 2020).
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Figure 8 - Sensors elevated with a cardboard puck.

Figure 7 - Cardboard pressure sole with zones.
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Appendix C - Results of pilot test with 
5-sensor layout
Standing up right - no load
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Lifting Shoulder Height Lifting - No load
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Shoulder Height Lifting - 10 kg
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Stoop Lift - No load
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Stoop Lift - 10 kg
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Appendix D - Results of 6-sensor layout 
test
Standing upright  - No load
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Standing up right - 10 kg
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Shoulder Height Lift - No load
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Shoulder Height Lift - 10 kg
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Stoop Lift - No load
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Stoop Lift - 10 kg
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Asymmetric Lift - No load
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Asymmetric Lift - 10 kg
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Imported data Selected columns

Timeseries in sequence as in the set

Appendix E - ML in Orange Settings
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Moving transform for transforming the data into moving averages Concatenate the data Settings for the tree algorithm

Test the tree model with a 5-fold cross validation
After transforming the data, select the transformed data
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Data graph before moving average transform

Appendix F - Moving Averages



99

Data graph after moving average transform



100

Appendix G - Ideation Design

8

Locations
Spots to place components

Where would it fit?

Heel of the upper
+ Does not affect safety
- Comfort might be affected due to increased stiffness

Insole
+ Does not affect safety
- Comfort might be affected due to hard components
- Rather thin 

Heel of the sole
+ Rigid area, great place for stiff components
- Safety hazard due to puncturing (can be solved with additional anti 
perforation layer)
- May affect comfort by adding rigid components

Source: Van den Berg (2020)
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Design

9

Considerations
Possible locations for components

PPD sensors
- PPD Sensors above anti-perforation sole
- Stitch PPD Sensors onto anti-perforation sole

Consider
- Space for flat cable
- Margin for stitching 
- ESD / Anti-static (Certification)

Source: Van den Berg (2020)
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Design

10

Considerations
Possible locations for components

Controller
- Integrate in BOA button 
- Tongue of the shoe
- Heel of upper (side or back)
- Heel of sole (using two anti-perforation layers)

Source: Van den Berg (2020)
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Design

11

Considerations
Possible locations for components

Battery
- Heel of upper (side)
- Heel of sole (using two anti-perforation layers)

Source: Van den Berg (2020)
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Recap

17

Sole heel dimensions

65 mm

82 mm

21 mm
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Recap

18

Configuration
Fitting in the sole of the shoe

12 mm

53 mm

60 mm

18 mm

45 mm

Total of 21 mm

Total of 82 mm x 65 mm
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Recap

19

Configuration
Fitting in the upper of the shoe

Side of the upper 
- Adding “pouches” for electronics
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Appendix H - Roadmap

Roadmap Allshoes

Goal

2020
Pillar Strategies Workflows Resposible June July August September October November December Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Research current market 
and look for opportunities

Strategy exploration
TU Delft - SPD Graduation 
student

Delivered a thesis 
with strategic 
opportunities and 
directions

Research idea and test for 
plausibility 

Feasibility exploration
TU Delft - IPD Graduation 
student

Researched 
feasibility and made 
first prototypes for 
testing feasibility

Ergonomic data base Arrange agreement

Determine necessary 
ergonomic data; 
Prepare lab for 
ergonomics 
measurements

Collect ergnomic 
data from a variety 
of people; Build 
lifting posture 
database 

Structuring the 
collected data in 
database

Use prototype to 
collect ergonomic 
data

Analysing and 
correlating 
reference (lab) data 
with prototype 
data

Hardware design
Design and develop 
hardware setup

Prototype hardware 
setup and test

Improve hardware 
design

New prototype and 
technical 
documentation

Smart data processing 
model

Develop an AI/ML 
model for data 
processing

Training/testing the 
model with collected 
data

Improving the model
Using the model on 
data from prototype

Improve the model 
further

Research business model 
feasibility

Business model Allshoes 

Make business 
model to see if the 
idea is worth 
pursuing

Review business plan 
based on potential 
hardware costs

Development of hardware 
on commercial scale 

Hardware development
Cooperation with 
TU Delft

Adopting hardware 
design and 
improving; Building 
hardware 
prototype

Hardware design 
drawings for 
production

Developing data acquisition 
infrastructure and 
processing

Smart data processing 
development

Adopting models; 
Improving models

Developing 
infrastructure for 
data; GDPR

Developing the software 
for data and user interface

Software development 
Software frontend 
development

Supporting on development 
and design of smart safety 
shoe

Shoe design 
development

AMF / Allshoes

Assissting in making 
prototype, sharing 
knowledge on safety 
shoes

Sharing knowledge 
on safety shoes; 
placement of 
components 

Creating 
prototypes/sample 
models for testing 
purposes; Prepare 
certification 
process

Production of the safety 
shoes

Shoe production AMF
Make production 
plans and adapt 

Run production; 
Produce first 
samples

Hardware production and 
assissting in implementing 
of hardware in shoes

Electronics hardware 
production

IoT hardware specialist
Order and assess 
quality

Setting up IoT 
infrastructure for routing 
data to local data storage

IoT infrastructure IoT specialist
Optimisation of 
data through 
different networks

Launch
Marketing of the product 
through different channels

Marketing Allshoes 
Make marketing 
plan

Execute marketing 
plan

Launch product

Software backend development
Development

Research for development 
of database and hardware

TU Delft - Postdoc 

IoT hardware specialist

Production

Developing novel smart safety shoes for prevention of musculoskeletal disorders

2021 2022 2023

Research for 
opportunities and 

possibilities
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Roadmap Allshoes

Goal

2020
Pillar Strategies Workflows Resposible June July August September October November December Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Research current market 
and look for opportunities

Strategy exploration
TU Delft - SPD Graduation 
student

Delivered a thesis 
with strategic 
opportunities and 
directions

Research idea and test for 
plausibility 

Feasibility exploration
TU Delft - IPD Graduation 
student

Researched 
feasibility and made 
first prototypes for 
testing feasibility

Ergonomic data base Arrange agreement

Determine necessary 
ergonomic data; 
Prepare lab for 
ergonomics 
measurements

Collect ergnomic 
data from a variety 
of people; Build 
lifting posture 
database 

Structuring the 
collected data in 
database

Use prototype to 
collect ergonomic 
data

Analysing and 
correlating 
reference (lab) data 
with prototype 
data

Hardware design
Design and develop 
hardware setup

Prototype hardware 
setup and test

Improve hardware 
design

New prototype and 
technical 
documentation

Smart data processing 
model

Develop an AI/ML 
model for data 
processing

Training/testing the 
model with collected 
data

Improving the model
Using the model on 
data from prototype

Improve the model 
further

Research business model 
feasibility

Business model Allshoes 

Make business 
model to see if the 
idea is worth 
pursuing

Review business plan 
based on potential 
hardware costs

Development of hardware 
on commercial scale 

Hardware development
Cooperation with 
TU Delft

Adopting hardware 
design and 
improving; Building 
hardware 
prototype

Hardware design 
drawings for 
production

Developing data acquisition 
infrastructure and 
processing

Smart data processing 
development

Adopting models; 
Improving models

Developing 
infrastructure for 
data; GDPR

Developing the software 
for data and user interface

Software development 
Software frontend 
development

Supporting on development 
and design of smart safety 
shoe

Shoe design 
development

AMF / Allshoes

Assissting in making 
prototype, sharing 
knowledge on safety 
shoes

Sharing knowledge 
on safety shoes; 
placement of 
components 

Creating 
prototypes/sample 
models for testing 
purposes; Prepare 
certification 
process

Production of the safety 
shoes

Shoe production AMF
Make production 
plans and adapt 

Run production; 
Produce first 
samples

Hardware production and 
assissting in implementing 
of hardware in shoes

Electronics hardware 
production

IoT hardware specialist
Order and assess 
quality

Setting up IoT 
infrastructure for routing 
data to local data storage

IoT infrastructure IoT specialist
Optimisation of 
data through 
different networks

Launch
Marketing of the product 
through different channels

Marketing Allshoes 
Make marketing 
plan

Execute marketing 
plan

Launch product

Software backend development
Development

Research for development 
of database and hardware

TU Delft - Postdoc 

IoT hardware specialist

Production

Developing novel smart safety shoes for prevention of musculoskeletal disorders

2021 2022 2023

Research for 
opportunities and 

possibilities
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Please state the title of your graduation project (above) and the start date and end date (below). Keep the title compact and simple. 
Do not use abbreviations. The remainder of this document allows you to define and clarify your graduation project. 

project title

INTRODUCTION **
Please describe, the context of your project, and address the main stakeholders (interests) within this context in a concise yet 
complete manner. Who are involved, what do they value and how do they currently operate within the given context? What are the 
main opportunities and limitations you are currently aware of (cultural- and social norms, resources (time, money,...), technology, ...). 

space available for images / figures on next page

start date - - end date- -

Smart Safety Shoe of the Future

11 12 2020 17 05 2021

Allshoes is a company that specializes in safety shoes that is used in all kinds of working sectors. The main thriving 
sectors for these shoes are logistics, construction and transport. Due to the nature of these jobs, handling heavy 
objects and interacting with heavy machinery, the shoes will protect the feet of the workers from most dangers. 
Though, still many injuries happen everyday. To get a better insight on the underlying problem, a new shoe should be 
designed using smart technology that could collect this data. The aim of Allshoes is to design an innovative shoe that 
will protect the workers from (short term) dangers and prevent (long term) musculoskeletal disorders. 

This project is the follow-up to an earlier Smart Shoe project for Allshoes, which was done by an SPD student. From the 
prior project, it was concluded that the shoe of the future will use artificial intelligence and machine learning to 
prevent musculoskeletal problems. The data will be acquired by implementing sensors into insoles or integrate them 
in the shoe. Figure 1 illustrates the imagined system. 

Since the solution is still in an early concept stage, there is a lot of room for adjustment and development. The product 
is aimed at a target group that work in a highly dynamic work environment, where anything could happen. The 
employers might be the most interested in smart shoes, as they could use the data to improve the work environment 
for their employees. They could get insights in what kind of injuries happen often and where it happens. To prevent 
future problems they could make boxes lighter or require the employees to use machinery instead.  

The employees may not be that interested in such a shoe, if it does not bring them any comfort for example. Possibly, 
to make it more interesting for them, could be direct advice (via smartphone) based on the collected data. One could 
think of posture improvement or show the time spent standing or walking. Tracking personal physical data is already 
possible using smart watches and smart shoes. 

Allshoes wishes to use AI as it could put them in a pioneering position within the shoe industry. From an initial quick 
search on Google, there are no smart working shoes as of this moment. Smart shoes are now mostly aimed at sports to 
track the performance of athletes. One example could be found, where body tracking technology has been trialled in a 
work environment, see figure 2. This was Ford Valencia Engine Assembly with collaboration with the Instituto 
Biomecánica de Valencia (IBV). Using motion sensors on several places on the body and motion cameras, it captured all 
the movement data. The focus of the research was to improve posture of the workers. The need for such product or 
technology does exist, but the real benefits and use has yet to be recognized.  

The main challenge lies in the viability of the product. Will the needed data be captured and to what extent is it 
usable? Are the necessary electronics available and affordable? Will the data correlate to the body movements? In the 
research done by Ford and IBV, they required lots of equipment which is undesirable in day to day working 
environment. Implementing all the necessary components in the shoes could resolve this issue.  

One possible limitation for the project will be adoption of such product. People do not like the feeling of being 
observed all the time. People do also not recognize the need or benefit of these products directly. Another one is the 
time limitation of the project for obtaining sufficient data to analyze trends and patterns. Also the reliability of the data 
could pose an issue; will it be sufficiently consistent to uncover meaningful patterns?

ZhangY.X. 4378776

Smart Safety Shoe of the Future
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image / figure 1: Smart Shoe Data - Visualization and Integration

Ford Valencia - Body Tracking Setup (Ford, 2018)

ZhangY.X. 4378776
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Title of Project

Initials & Name Student number

IDE TU Delft - E&SA Department /// Graduation project brief  & study overview /// 2018-01 v30 Page 5 of 7

PROBLEM DEFINITION  **
Limit and define the scope and solution space of your project to one that is manageable within one Master Graduation Project of 30 
EC (= 20 full time weeks or 100 working days) and clearly indicate what issue(s) should be addressed in this project.

ASSIGNMENT **
State in 2 or 3 sentences what you are going to research, design, create and / or generate, that will solve (part of) the issue(s) pointed 
out in “problem definition”. Then illustrate this assignment by indicating what kind of solution you expect and / or aim to deliver, for 
instance: a product, a product-service combination, a strategy illustrated through product or product-service combination ideas, ... . In 
case of a Specialisation and/or Annotation, make sure the assignment reflects this/these.

In many working sectors, (longterm) physical problems occur due to different reasons. Couple of reasons could be 
wrong working posture, lifting too heavy objects or standing for too long. As all humans are unique, it is hard to 
determine the cause per person. Tracking the workers to collect the physical ergonomic data is time consuming. 
 
Currently, collecting data about ergonomics is often done in a short period during work. Not all the problems occur 
during this snapshot, the crucial moment or event could be missed. Secondly, a special setup is needed, which can 
influence the workers at their tasks.  
 
Designing a new smart safety shoe could help analyzing potential problems and maybe even prevent them. Without 
needing a special setup, the workers can continue working as usual 
 
The scope will be aimed at the feasibility of smart shoe, to be proven by research and testing. Research will be focused 
on the correlation between sensor data and ergonomic assessment. Exploring the practicality of artificial intelligence 
to analyze data and to present it in a meaningful manner.  
Testing will comprise of building prototypes and product testing. This will proof the usability and reliability of such 
product.  
 
The integration of technology in a shoe will be the secondary goal of the project. The materials in the shoe might not 
interact with the components as intended. Repairability of the product should also be taken into consideration. 

Design the smart safety shoe of the future aimed at preventing musculoskeletal issues, monitored and analyzed by AI to 
detect early symptoms. Creating a proof of concept will reveal the potential and usability of the product. 

The goal is to create and design a product that is capable of generating insightful data that can be used to prevent 
musculoskeletal problems. Breaking down the assignment into sub-assignments: 
- Research bio-mechanics to establish a baseline of good ergonomics related to shoes. 
- Proof that a smart shoe is a product that can detect and prevent musculoskeletal issues.  
- Explore opportunities with AI to automate the process of analyzing large amount of data without the need for 
continuous involvement of health professionals.  
 
To show the potential and usability of a new smart shoe as a proof of concept has to be created and tested. The smart 
shoe will be equipped with sensors capable of collecting a variety of data. This data could be analyzed locally or in a 
cloud server with AI. The users could be recommended to do things differently, based on the found issues.  
 
Embodiment design of the product will be the secondary assignment, which is a responsibility of an IPD design 
student. The consideration of the different technical aspects is part of the challenge to create and design a smart shoe 
of the future.
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Title of Project

Initials & Name Student number

IDE TU Delft - E&SA Department /// Graduation project brief  & study overview /// 2018-01 v30 Page 6 of 7

PLANNING AND APPROACH **
Include a Gantt Chart (replace the example below - more examples can be found in Manual 2) that shows the different phases of your 
project, deliverables you have in mind, meetings, and how you plan to spend your time. Please note that all activities should fit within 
the given net time of 30 EC = 20 full time weeks or 100 working days, and your planning should include a kick-off meeting, mid-term 
meeting, green light meeting and graduation ceremony. Illustrate your Gantt Chart by, for instance, explaining your approach, and 
please indicate periods of part-time activities and/or periods of not spending time on your graduation project, if any, for instance 
because of holidays or parallel activities. 

start date - - end date- -11 12 2020 17 5 2021

The approach for this project will mainly be hands on prototyping design. With a foundation on research, done in the 
early phase to have a reference point and general understanding of the smart technology products. As there is no 
prototype yet, (user) research will be done with built prototypes, to gain the necessary data and insights. It will be an 
iterative process between building and researching, following an agile approach .  
 
In the first phase, the research will be the foundation of the project. The intended result of this phase will be a report or 
overview of necessary components that correlate with each other. Based on bio-mechanics and ergonomics 
knowledge, the sensors will be selected. In this phase the first concepts will be made. Testing prototypes will be build 
to see if the components will work as imagined and to collect the first data to analyze.  
 
In phase two, the concept design will be developed further. The actual prototype will be built during this phase to test 
with people and acquire data. The data is needed to correlate the ergonomic knowledge to the data. Consequently, 
with this data, AI can be trained to detect patterns and trends. The (final) concept will be developed in this phase as 
well. 
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IDE TU Delft - E&SA Department /// Graduation project brief  & study overview /// 2018-01 v30 Page 7 of 7

MOTIVATION AND PERSONAL AMBITIONS
Explain why you set up this project, what competences you want to prove and learn. For example: acquired competences from your 
MSc programme, the elective semester, extra-curricular activities (etc.) and point out the competences you have yet developed. 
Optionally, describe which personal learning ambitions you explicitly want to address in this project, on top of the learning objectives 
of the Graduation Project, such as: in depth knowledge a on specific subject, broadening your competences or experimenting with a 
specific tool and/or methodology, ... . Stick to no more than five ambitions.

FINAL COMMENTS
In case your project brief needs final comments, please add any information you think is relevant. 

This project was chosen because I like to design functional and technical products. Often with cutting edge 
technology. The following points explains what my ambitions and interests are as a designer.  

1. Technical & Embodiment Design
My personal interest has always been with technical subjects; engineering, state-of-the-art technology and production
for example. Making a (concept)product really working, is what drives me as a designer. If you design through
prototyping, the design process is in my opinion much quicker and more tangible. Often, new technology is accessible 
and comprehensible for some people. My ambition is to make new technology accessible, to make their lives easier
and/or better. With this project, I will be able to do this. With the help of embodiment design experience, I will be able
to implement new technology into new products.

2. Electronics
Designing with electronics is something I like to do and a skill that not many designers have. Having knowledge of this
is a huge benefit when one is trying to develop a working (test)prototype. It helps with designing more feasible
concepts. Especially in a world where electronics can be found in almost any product.

3. AI
Artificial Intelligence is being used in more and more products and services. It is inevitable that it becomes more used
in products, as it is able to perform tasks that humans find tedious or simply not doable. Understanding the capabilities 
of AI is future proofing yourself as designer. I've read a lot about AI, but never really used it in practice. With this project
I will get the opportunity to do so.
AI has potential in this project, as it can monitor and analyze data at any given moment. If one only has to analyze data
points from a few people, that is doable by hand. However, if the number of people increases to a few hundreds or
thousands and the amount of sensors increases then it would be hard to process the data by hand. AI could be a good
automated helping hand for data processing and analysis.

4. IoT
During my electives, I've learned to use IoT technology, making a hub and connecting different sensors to it. The hub
was able to collect and share the data to a cloud. The cloud represented the data in a meaningful manner to humans.
Though, I've mainly learned the theory and basics of the technology, I wish to use it during this project. This
knowledge will be useful to design and create a product with the desired usefulness.

5. Prototyping
I do not mind to get my hand dirty to build something. It helps me to come up with better feasible ideas. It is also
easier to communicate your ideas through a physical product. There are countless possibilities, but they might not
always work. So, building it, show immediately if it works or not. For this project, it will be valuable to create as many
prototypes as achievable.
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Our story
The Netherlands excels at logistics, 
construction and transport. These 
industries are growing fast! A huge 
number of people work in these 
sectors. Working in warehouses, on 
constructions sites or with heavy 
equipment involves risks. Safety shoes 
are required in many workplaces 
and 1.5 million pairs of safety shoes 
are sold in The Netherlands each 
year, with Allshoes Safety Footwear 
as market leader. With own brands 
such as Redbrick and Mr. Miles and 
exclusive distribution rights for 
Grisport and Vismo, our company 
owes its success to our courageous 
decision to introduce revolutionary 
safety footwear that reflects the 
latest fashion and sports trends into a 
conventional market. 

Our aim
Despite many measures to prevent 
accidents at work, 60 people are killed 
and 2,300 seriously injured every year. 
Safety shoes only protect the feet 
and only provide protection when an 
incident occurs. In other words, safety 
shoes currently play a static role. To 
help prevent manual handling injuries, 
such as back problems, we want 
to contribute in proactive incident 
prevention. Our goal? To create a 
“smart” safety shoe that detects and 
alerts the wearer to danger in high-
risk situations. In cooperation with TU 
Delft and a SPD graduation student, 
research was conducted regarding 
this topic. A strategic concept has 
already been developed in which 

a smart safety shoe measures the 
leading and lagging indicators 
with regard to manual handling. 
This shoe can then give feedback 
by sending the measured data to 
relevant parties in order to eliminate 
the causes of manual handling 
incidents. It was strongly suggested 
that machine learning and/or AI offer 
predictive capabilities with strong 
potential, but concrete deployment 
of these technologies needs further 
elaboration.  

Your task? Make the concept of 
“smart shoe” concrete.
On behalf of Allshoes Safety Footwear, 
we challenge you to further develop 
the smart safety shoe that will reduce 
the number of injuries caused by 
manual handling. It is your task to 
follow up on the current strategic 
concept; build tangible prototypes, 
test them and finally end up with an 
innovative smart safety shoe with the 
aim of bringing it to the market. You 
will continue to develop the current 
idea including the technology behind 
it.

Who are we looking for?  
Are you the one who wants to bring 
the smart safety shoe to life and who 
wants to drive change with us? Then 
you are the person we are looking for! 
We are looking for an IPD graduation 
student who is able to develop an 
idea into a tangible prototype. You 
are willing to explore the potential of 
machine learning, AI, IoT and related 
cutting-edge technologies, and 

meaningfully incorporate these into 
your design. You do not hesitate to ask 
for information or assistance: during 
the project our colleagues will be there 
to offer helpful insights and advice.

What do we offer?
You can make use of a great workplace 
at the heart of safety-shoe land in 
our brand-new office in Amsterdam. 
However, it is also possible to work 
remotely. You will have access to our 
large network of manufacturers to 
gain all the information needed. There 
will be a budget available for you to 
develop your idea into a prototype. 
Our organization is informal and we 
have short lines of communication. You 
will receive an internship allowance 
and your travel expenses will be 
reimbursed.

Will you be the one 
to develop the  
Smart Safety Shoe?
If you're interested, please contact 
Jan.Arts@allshoes.eu
Wilfred van der Vegte from the 
Knowledge & Intelligence Design 
section is the envisaged chair for 
this graduation project. He can offer 
support on machine learning and 
related technologies. He also chaired 
the foregoing SPD assignment and is 
available for additional info:
w.f.vandervegte@tudelft.nl

Graduation Opportunity

Develop the 
Smart Safety 
Shoe of the 
Future!
Part 2
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