
 
 

Delft University of Technology

Assessing the Use of Sentinel-2 Data for Spatio-Temporal Upscaling of Flux Tower Gross
Primary Productivity Measurements

Spinosa, Anna; Fuentes-Monjaraz, Mario A.; El Serafy, Ghada

DOI
10.3390/rs15030562
Publication date
2023
Document Version
Final published version
Published in
Remote Sensing

Citation (APA)
Spinosa, A., Fuentes-Monjaraz, M. A., & El Serafy, G. (2023). Assessing the Use of Sentinel-2 Data for
Spatio-Temporal Upscaling of Flux Tower Gross Primary Productivity Measurements. Remote Sensing,
15(3), 1-36. Article 562. https://doi.org/10.3390/rs15030562

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/rs15030562
https://doi.org/10.3390/rs15030562


 

 
 

 

 
Remote Sens. 2023, 15, 562. https://doi.org/10.3390/rs15030562 www.mdpi.com/journal/remotesensing 

Article 
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Abstract: The conservation, restoration and sustainable use of wetlands is the target of several in-

ternational agreements, among which are the Sustainable Development Goals (SDGs). Earth Obser-

vation (EO) technologies can assist national authorities in monitoring activities and the environ-

mental status of wetlands to achieve these targets. In this study, we assess the capabilities of the 

Sentinel-2 instrument to model Gross Primary Productivity (GPP) as a proxy for the monitoring of 

ecosystem health. To estimate the spatial and temporal variation of GPP, we develop an empirical 

model correlating in situ measurements of GPP, eight Sentinel-2 derived vegetation indexes (VIs), 

and different environmental drivers of GPP. The model automatically performs an interdependency 

analysis and selects the model with the highest accuracy and statistical significance. Additionally, 

the model is upscaled across larger areas and monthly maps of GPP are produced. The study meth-

odology is applied in a marsh ecosystem located in Doñana National Park, Spain. In this application, 

a combination of the red-edge chlorophyll index (CLr) and rainfall data results in the highest corre-

lation with in situ measurements of GPP and is used for the model formulation. This yields a coef-

ficient of determination (R2) of 0.93, Mean Absolute Error (MAE) equal to 0.52 gC m−2 day−1, Root 

Mean Squared Error (RMSE) equal to 0.63 gC m−2 day−1, and significance level p < 0.05. The model 

outputs are compared with the MODIS GPP global product (MOD17) for reference; an enhancement 

of the estimation of GPP is found in the applied methodology. 

Keywords: SDGs; EO; GPP; Sentinel-2; ecosystem health 

 

1. Introduction 

Healthy ecosystems are a primary source of vital resources for human welfare and 

survival while regulating the impacts of natural hazards and protecting human settle-

ments against floods, landslides, and drought events, thus playing a key role in mitigating 

climate change effects [1]. Conserving biodiversity and preventing biodiversity shifts is, 

therefore, of significant importance and a main target of multiple international conven-

tions. The Sustainable Development Goals (SDGs) [2] and the Paris Agreement by the 

United Nations Framework Convention on Climate Change (UNFCCC) [3] promote the 

conservation of ecosystems and their associated biodiversity. The conservation, restora-

tion and sustainable use of ecosystems are specifically mentioned in SDG 6.6 and SDG 

15.1. The first, SDG 6.6, aims to “protect and restore water-related ecosystems, including moun-

tains, forests, wetlands, rivers, aquifers and lakes”, while SDG 15.1 aims at ensuring “the con-

servation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their 

services, in particular forests, wetlands, mountains and drylands, in line with obligations under 

international agreements”. Other agreements and commitments include the Aichi 
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Biodiversity Targets by Parties of the United Nations (UN) and the Convention on Bio-

logical Diversity (CBD) [4,5]. 

Providing information on the health of ecosystems status through monitoring activ-

ities is essential for applying suitable conservation and restoration practices. In recent 

years, Earth Observation (EO) technologies, particularly Satellite Remote Sensing (SRS), 

have been used to assist national authorities in monitoring programs for the achievement 

of the SDGs [6]. The main advantages of SRS include the provision of data in a systematic 

and timely way, the cost-effectiveness of monitoring activities and accessibility to remote 

areas [7–9]. SRS can capture biodiversity changes both at global and regional scales [10,11], 

thus the joint use of SRS data with in situ data and images obtained from other technolo-

gies (Light Detection and Ranging (LiDAR), Unmanned Aerial Vehicle (UAV), etc.) is a 

key factor to generate actionable knowledge in real-time for improved decision-making 

[10]. 

To generate actionable knowledge, SRS data need to be translated into information 

and specifics metrics, maps, or consumable information products that can then be used to 

inform decision-makers. Structural and functional indicators are both required to evaluate 

the ecosystem's health. Structural indicators reflect on the extension and composition of 

the ecosystems; functional indicators are useful to understand whether the areas are ful-

filling their ecosystem role [12]. Structural indicators are often used in monitoring pro-

grams whereas ecosystem functions are rarely measured [13–16], although they are sensi-

tive indicators of ecosystem health [17] and losses of biodiversity [18]. Ecosystem func-

tions are the aggregation of multiple processes that overall define the ecosystem's capacity 

to bring benefits to a range of species [9,19]. Among these components, is Primary Produc-

tivity (PP). PP can be categorized into Gross Primary Production (GPP), the total amount 

of carbon or energy captured by plants and Net Primary Production (NPP), the carbon 

allocated to plant tissue after accounting for the costs of autotrophic respiration. PP is a 

process that underpins most of the ecosystem functions essential for the understanding of 

the global carbon cycle [20]. Due to its relevance in the characterization of biodiversity 

change, PP is considered an Essential Biodiversity Variable (EBV). EBVs are defined as the 

derived measurements to study and manage biodiversity change, and their estimation is 

a step forward for integral monitoring programs and holistic health assessments in eco-

systems [4,21]. 

PP has been widely related to the Vegetation Indexes (VIs), used as a proxy for veg-

etation productivity and to create long-term and consistent data series. Since their first use 

in the early 1970s, VIs have evolved rapidly together with the increased number of spec-

tral bands of the sensors and the new demand for measuring specific ecological indicators 

[7]. Particularly, the Normalized Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI) have been widely used for the monitoring of primary productiv-

ity. Empirical models linking the NDVI and EVI with GPP or NPP in situ observations 

have shown accurate NDVI-GPP correlation in low biomass vegetation areas [9,22] and 

good performance of the EVI in high biomass vegetated areas such as dense grass or forest 

ecosystems [23,24]. Additional VIs have also been investigated, such as the two-band En-

hanced Vegetation Index (EVI2) used by Cai et al. to assess the relationship between the 

EVI2, meteorological variables and GPP within the Nordic region [25]. A recently sug-

gested vegetation index, the Near-Infrared Reflectance of terrestrial vegetation (NIRv) [26] 

has also shown a high correlation with GPP across different ecosystems [27,28] and tem-

poral scales [29,30]. Recent outcomes in research suggest that given that GPP is not only 

connected to the greenest of vegetation, but also to other processes such as temperature 

or content water of leaves, different VIs sensitive to these factors need to be evaluated in 

carbon flux studies [31]. Moreover, since specific VIs are more sensitive to particular eco-

systems, a broader analysis for the selection of a specific VI depending on the study region 

is required for a better model formulation [32–34]. 

Currently, remote sensing based global products of PP are provided by the National 

Aeronautics and Space Administration (NASA) through the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) sensor. This product, known as a MOD17 product, 

provides estimates of GPP on an 8-days basis, aggregated to annual products to compute 

NPP, with a spatial resolution of 250 m, 500 m and 1 km. MOD17, designed to provide an 

accurate regular measure of terrestrial vegetation growth, has been available since the 

mid-2000s [35–38]. Although the MOD17 product is widely utilized, its use and applica-

bility in conservation and management practice are limited by the trade-off between its 

temporal resolution, spatial resolution, and spatial extent [35,39,40]. MOD17 coarse spatial 

resolution (1 km) does not provide sufficient relevant information to monitor processes at 

a fine-local scale and represents a critical factor for carbon flux estimation, especially in 

heterogeneous landscapes [41,42]. Additionally, MOD17 GPP products are estimated by 

means of biome-specific parameters, parametrized and applied to biomes at a global scale 

[35]. While this simplification is suitable for global estimations of GPP, the coarse inputs 

and the use of global Biome Parameter Look-up Table (BPLUT) parameters reduce the 

capacity of MOD17 to describe ecologically significant variation at finer scales 

[35,37,43,44]. 

Different authors have identified the Copernicus Sentinel-2 Multi-Spectral Instru-

ment (MSI) as a potential sensor capable to improve the estimation of PP at a local scale, 

given its higher spatial resolution (10 m, 20 m, and 60 m). Pettorelli et al. [20] listed several 

potential applications of Sentinel-2 sensors, including the generation of indicators of veg-

etation phenology, fire damage extent, defoliator control, habitat extent, habitat quality, 

production of biomass, etc. According to Cai et al. [25], the Sentinel-2 data can better cap-

ture the spatial variation in heterogeneous landscapes in comparison to MOD17 products 

and enable the estimation of GPP at finer scales. Lin et al. [33] have shown that the narrow 

red bands from Sentinel-2 sensors enhance the GPP estimations, increasing the accuracy 

of the empirical relationship between remote sensing based VIs and GPP which is influ-

enced by the spectral resolution of the satellite products. 

To provide information on ecosystems and biodiversity status, this study builds on 

the methodology proposed by Cai et al. [25] and further investigates the use of Sentinel-2 

MSI in modeling GPP. The methodology of Cai et al., is extended to evaluate not only 

several EVs but also multiple VIs, therefore, assessing the sensitivity of specific bands to 

the climate conditions and vegetation characteristics of the studied area. Eight Sentinel-2 

derived VIs are integrated with in situ measurements of different EVs; their relationship 

with ground base GPP is investigated to select a model with the highest accuracy. A robust 

empirical approach employed by Cai et al. that follows previous research [45,46] is 

adopted. Additionally, a methodology is implemented to upscale the model across larger 

areas. This upscaling methodology relies on an unsupervised classification algorithm 

used to identify regions with similar reflectance properties to those within the EC area. 

Those regions are assumed to have vegetation with similar biophysical properties and 

photosynthesis activity. The study methodology is demonstrated in the case study of a 

marshland ecosystem located in Doñana National Park, Spain. High-resolution maps of 

GPP at the local scale are provided to support conservation and restoration practices, pol-

icy and decision-making. The integration of multiple remotely sensed indices and addi-

tional environmental variables (EVs) allows our workflow to be flexible, facilitating its 

uptake to different ecosystems. 

2. Materials and Methods 

2.1. Study Area 

The workflow is implemented in a wetland ecosystem located in Doñana National 

Park, situated in southwest Spain (Figure 1). The Doñana National Park (DNP), with an 

extension of 537 km2, is a UNESCO Biosphere Reserve and a Natural Heritage and a Ram-

sar site [47]. It shelters the largest wetland in Western Europe, composed of a complex 

environment of marshlands and dune ponds (270 km2) enclosed by Mediterranean 
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scrubland, pine forests, a dune ecosystem, and cultivated areas [48]. This study focuses on 

the areas dominated by saltmarsh bulrush (Bolboschoenus maritimus). 

 

Figure 1. Protected area limits of Doñana Natural Park and Doñana National Park located in the 

southwest of Spain, and the distribution of its major habitats. 

The wetlands of the Doñana National Park are essential for the conservation of bio-

diversity and the provision of ecosystem services [48–50]. Regardless of their importance, 

the area has experienced numberless threats associated with ecological disasters, both due 

to anthropogenic pressure [51,52] and exceptional weather conditions [53], diversion of 

water and overexploitation of groundwater for agricultural purposes, and land-use 

changes [48,54,55]. These activities have affected both the water quantity and quality 

available to the marsh and dune pond ecosystems [56,57]. Previous research predicted 

exacerbation of the problems due to climate change in the absence of better management 

of the water resources in the catchment and the aquifer [56]. The need for monitoring ac-

tivities in the region is, therefore, crucial. 

2.2. Data 

Doñana’s Singular Scientific-Technical Infrastructure (ICTS-RBD) provided data ac-

cess and support to carry out the study case at the Doñana Protected Areas. The in situ 

monitoring infrastructure operated by the ICTS-RBD consists of an eddy covariance 

tower, the “Duque Fuente flux tower“ and a meteorological station, named the “Palacio 

Doñana station”. The location of the station and tower is displayed in Figure 1. 

The eddy covariance data set consisted of 30-min measurements of Net Ecosystem 

Exchange (NEE) and ancillary meteorological data collected between the 1st of October 

2020 and the 8th of June 2021. The meteorological data set from “Palacio Doñana station” 

consisted of daily estimations of multiple environmental variables of the region including 

daily cumulative precipitation and average temperature collected between 1976 and 2021. 

Tables 1 and 2 display the data and metadata available in the ICTS-RBD monitoring sys-

tem. 
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Table 1. Data collected from the ICTS-RBD monitoring system. 

Data Time Range Description Variables Units 

Eddy 

covariance 

data 

from 1 October 

2020 

to 8 June 2021 

Pre-processed eddy 

covariance measurements. 

Corrected 30-min estimations 

of gas analyzer and 

anemometer data. 

CO2 flux µmol m−2 s−1 

Quality flag CO2 flux - 

Air temperature K 

Relative humidity % 

Vapour pressure deficit Pa 

Friction velocity m s−1 

Monin–Obukhov length M 

Wind speed m s−1 

Maximum wind speed m s−1 

Wind direction ° (degrees) 

Variance of the wind component 

along the v anemometer axis 
m s−1 

Meteorologica

l data 

from 1 

September 1976 

to 31 October 

2021 

Daily estimations of 

meteorological data from 

analogic instruments. 

Rainfall mm 

Maximum temperature °C 

Minimum temperature °C 

Mean temperature °C 

Thermal oscillation °C 

Table 2. Metadata of the ICTS-RBD monitoring system. 

Station Metadata  

Duque Fuente flux tower 

Location 36.9985 N, −6.4345 E 

Canopy height 0.7 m 

Displacement height 0.2 m 

Roughness length - 

Anemometer sensor height 3.95 m 

Gas analyser sensor height 4.03 m 

Tower fetch 375 m 

Anemometer sensor type Gill HS-50 

Gas analyser sensortype 
LI-7200  

Enclosed CO2/H2O analyser 

Palacio Doñana meteorological station 
Location 36.9905 N, −6.4426 E 

Sensor type Manual analogic instruments 

To differentiate the night periods for the NEE data processing, the Global Radiation 

data set (SW_IN) was retrieved from the SARAH solar radiation data records provided 

by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). The 

SW_IN records were available for the years 2005 to 2016; therefore, we assumed that the 

global radiation data for 2020 and 2021 were equal to the daily average value of solar 

radiation for the years 2005 to 2016. Night periods were identified by using a threshold of 

20 W m−2. 

Meteorological precipitation data were additionally retrieved from a global data set 

to assess the capacity of these products to compute the study workflow and supply sites 

lacking daily measurements of meteorological variables. Daily measurements of precipi-

tation were collected from the Climate Hazards Group InfraRed Precipitation with Station 

data (CHIRPS) database (https://www.chc.ucsb.edu/data/chirps, accessed on 12 Decem-

ber 2022) at the Duque Fuente tower location. 

ICTS-RBD also provided the vegetation map of the wetlands of Doñana. The latest 

was used to qualitatively assess the results of the unsupervised classification to upscale 

the outputs of the model beyond the climatological footprint. The vegetation map was 
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previously computed with supervised classification approaches for the year 2009 by the 

ICTS-RBD. 

2.2.1. Remote Sensing Imagery 

For this study, Level-2A Sentinel-2 (S2) products were used. Images were accessed 

through the Google Earth Engine (GEE) data catalog “COPERNICUS/S2_SR” by means of 

the python client “ee” package (https://gee-python-api.readthedocs.io/en/latest/ee.html, 

accessed on 12 December 2022). All images available in the region of interest were col-

lected, and those correspond to the tiles T29SQA and T29SQB (Figure 2). Images with high 

cloud coverage were removed. The cloud coverage threshold was set at 30%. Specific 

treatment was applied afterward to remove remaining pixels with high cloud coverage 

and not belonging to vegetation (e.g., water bodies, snow, temporal floods, or another 

temporal phenomenon). The cloud mask was applied to the images using the Scene Clas-

sification Map (SCL) and the supplementary band QA60. The SCL allows for tracing or 

marking defective pixels whereas the QA60 band helps distinguish between opaque and 

cirrus clouds (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/pro-

cessing-levels/level-2, accessed on 12 December 2022). 

To remove flooded pixels, at first, we applied the water mask of the SCL on the im-

ages; however, the mask also covered and removed flooded regions with standing vege-

tation or biomass contributing to the GPP of the ecosystems. Previous research estimating 

PP through correlation with satellite-derived VI suggested removing the influence of wa-

ter pixels at Doñana National Park by selecting a threshold corresponding to the baseline 

of the phenological curve [58]. Kordelas et al. [59] suggested the use of the Modified Nor-

malized Difference Vegetation Index (MNDVI) to identify vegetation in the flooded area 

of Doñana National Park, which was preferred over the Normalized Difference Vegeta-

tion Index (NDVI) that created false positives in areas where vegetation was not expected. 

For this reason, we decided to filter the water pixels by defining a threshold of the 

MNDVI. A baseline of MNDVI = 0.1, corresponding to the minimum reflectance observed 

in the vegetation throughout the year was found. A threshold of 0.05 was then selected to 

identify and remove water pixels (MNDVI < 0.05) not contributing to the GPP of the eco-

system. Table 3 displays the number of images for each tile for different cloud coverage 

thresholds and months during the period of analysis. All available images from 1 October 

2020 to 8 June 2021 with cloud coverage lower than 30% were used for the computation 

of the workflow. 

 

Figure 2. Tiles of Sentine-2 products over the study area of Doñana National Park. [Image retrieved 

from the Copernicus Open Access Hub]. 
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Table 3. Available Sentinel-2 images from October 2020 to June 2021 for different cloud coverage. 

Month Cloud Coverage 

 <100% <50% <30% 

 T29SQA T29SQB T29SQA T29SQB T29SQA T29SQB 

10-2020 6 6 6 5 5 3 

11-2020 6 6 5 4 4 5 

12-2020 6 6 4 5 4 4 

01-2021 7 7 4 4 3 3 

02-2021 5 5 1 1 1 1 

03-2021 6 6 4 6 4 6 

04-2021 6 6 2 1 2 0 

05-2021 8 8 7 7 5 5 

06-2021 6 6 5 4 3 3 

Total 56 56 38 37 31 30 

Together with the Sentinel-2 images, MOD17 products were also retrieved from the 

GEE catalog for the same period (1 October 2020 to 8 June 2021). This data set was used to 

compare the Sentinel-2-based GPP results with the MOD17 products and analyze their 

performance in comparison with in situ measurements. 

2.3. Methods 

The research workflow is schematized in Figure 3. It consists of nine main processes: 

(1) derivation of in situ GPP daily measurements from NEE; (2) estimation of the climato-

logical footprint; (3) computation of the VIs time series within the climatological footprint; 

(4) computation of time series of all the environmental/meteorological variables; (5) inter-

dependency analysis between in situ GPP and the VIs-EVs and model formulation; (6) 

calibration and validation of the model; (7) unsupervised classification of the area to select 

an upscaling region; (8) computation of GPP maps. The details of each process are pro-

vided in the sections below. 

 

Figure 3. Schematization of methodology with details of data requirements (blue), data pre-pro-

cessing (yellow), modeling processing (gray), and post-process and workflow outputs (green).  
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2.3.1. In Situ Time Series of GPP 

In situ measurements of NEE were used to derive the time series of GPP. NEE is 

measured at the Duque Fuente flux tower (Figure 1) by means of the Eddy Covariance 

(EC) technique, a method to ascertain the exchange rate of carbon dioxide rates in ecosys-

tems [60]. We processed the 30-min NEE records following the standardized processing 

methodology proposed by Papale et al. [60] and using the ancillary meteorological data 

of the EC system. The methodology included four steps aiming at correcting the data and 

estimating the GPP: (1) outlier detection, (2) velocity friction filtering, (3) carbon fluxes 

partitioning to derive GPP, and (4) gap filling using ancillary environmental data. The 

estimates were finally aggregated to derive daily values of GPP (in gC m−2 day−1) used in 

the model calibration and validation. For a detailed description of the steps, refer to the 

paper by Papale et al. [60]. 

The aforementioned process was implemented through the hesseflux Python package 

[61] adapted to process the European Fluxes Database Cluster (EFDC) format files 

(http://www.europe-fluxdata.eu/, accessed on 12 December 2022). Full documentation of 

the hesseflux package is available at https://mcuntz.github.io/hesseflux/, (accessed on 12 

December 2022). In the context of the study case, we adopted a velocity friction filtering 

threshold of 0.14, as previously conducted for salt marshes [62], since the threshold could 

not be automatically computed because of the lack of full-year measurements. 

2.3.2. Climatological Footprint 

To better interpret flux tower measurements, flux footprint models have been used 

to estimate the size and position of the surface area contributing to the measured flux [63]. 

The knowledge of this area, also known as flux footprint, is of extreme importance in up-

scaling the model from a single site flux measurement to an ecosystem or regional scale. 

Wind and turbulence conditions, and atmospheric conditions and surface characteristics 

contribute to the flux measured at a specific point in time. To estimate the flux footprint, 

we used the Flux Footprint Prediction (FFP) model of Kljun et al. [63] available in Python 

code (https://geography.swansea.ac.uk/nkljun/ffp/www/, accessed on 12 December 2022). 

We derived two aggregated footprints, also known as footprint climatology, three months 

of half-hourly input data for 2020 (October to December 2020), and six months of half-

hourly input data for 2021 (January to July 2021). 

Most of the input variables required for the FFP model were collected as a part of the 

EC system at the Duque Fuente flux tower. The variables included mean wind speed, 

measurement height above displacement height, equal to the anemometer sensor height 

minus the displacement height (3.75 m), the Obukhov length, the standard deviation of 

lateral velocity fluctuations and the friction velocity. The boundary layer height was esti-

mated with the expressions described by Kljun et al. [63] for atmospheric near-neutral and 

stable conditions and here reported for completeness (Equation (1)) 

h =  
L

3.8
[−1 + (1 +  2.28

u∗

fL

0.5
)], (1) 

where L is the Obukhov length, u* is the friction velocity and f is the Coriolis parameter 

calculated using the site’s latitude. The boundary layer is set to be at 1500 m at convective 

conditions defined as records in the eddy covariance data set when Obukhov length < 10 

m [64]. The FFP model was computed to derive 20%, 40%, 60%, and 80% isolines. The 

100% was not calculated with the FFP model but set as the fetch of the Duque Fuente 

tower according to the 1:100 displacement height-fetch ratio [65]. The derived footprints 

can be seen in Figure 4. The climatological footprints did not differ significantly in shape 

and size, having a surface of 5.72 and 5.30 ha within the 80% contour lines for 2020 and 

2021, respectively. 
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Figure 4. Climatological footprint of 2020 (left image) and 2021 (right image). 

2.3.3. Time Series of Vegetation Index 

The filtered and masked Sentinel-2 images were post-processed to calculate multiple 

VIs. Table 1 lists the VIs employed in this research together with their equations. In total 

eight VIs were computed per image and selected based on a literature review of GPP 

modeling for different ecosystem types (Table A1). Those VIs can be divided into two 

major classes, (i) greenness-sensitive VIs ((Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Two-bands Enhanced Vegetation Index (EVI-

2), Red-edge Index (CLr), Modified Normalized Difference Vegetation Index (MNDVI)), 

and (b) water-sensitive VIs (the Modified Normalized Difference Water Index (MNDWI), 

Land Surface Water Index (LSWI), and Normalized Difference Infrared Index (NDII)). At 

first, we calculated the VI for each region within the climatological footprint, then we av-

eraged them by a scaling factor. Finally, the total VI was computed as the sum of the VIs 

(Equation (2)): 

VI =  ∑ [ wj  ×  ∑ VIi

n

i=1

 ]

k

j=1

, (2) 

where i is the number of pixels, j is the number of regions and wj  is the weight of the j 

region calculated as (Equation (3)): 

wj= 
OCLj- ICLj

ni
 (3) 

𝑂𝐶𝐿𝑗 and 𝐼𝐶𝐿𝑗 being the outside and inner contour lines of the region j, respectively. With 

our approach, the weight is a constant value per region. This is a simplification of Cai et 

al.’s approach [25] that reduces the computational time of the calculation of the VIs. For 

our study, we computed five regions within the climatological footprint, each of them 

accounting for 20% of the NEE measured at the Duque Fuente flux tower. Finally, we used 

the Akima [66] fitting algorithms to obtain a continuous time series. Fitting algorithms 

were not implemented as we addressed the noise in the time series through the filtering 

and masking processes of the satellite images. Figure 5 summarizes the processing chain 

applied on the Sentinel-2 images to obtain the VIs time series (pre-processing steps have 

been described in Section 2.2.1). 
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Figure 5. Schematization of the processing chain applied on the Sentinel-2 images to obtain the VIs 

time series. At first, S2 L2A images (with orthorectification and atmospheric correction) are collected 

and filtered by cloud coverage (<30%). Then, pixels are filtered using (i) the supplementary band 

QA60 to mask the clouds; (ii) the SCL band to select pixels classified as vegetation, soil and water 

and (iii) a water mask to remove flooded pixels without standing vegetation (MNDVI < 0.05). Fi-

nally, the VI is calculated for each pixel within the climatological footprint, multiplied by their con-

tribution weight and summed to obtain the final VI, a single value of VI per image per day. The 

Akima fitting algorithm is then applied to fill in the gaps and obtain a continuous time series. 

2.3.4. Environmental Variables 

PP is driven by several environmental drivers [36], and our model formulation also 

integrates different EVs. In this research we integrated the Air Temperature (AT), the Va-

pour Pressure Deficit (VPD) both retrieved from the EC tower and the temperature data 

provided by the meteorological station of the Doñana National Park (see Table 4). Those 

EVs were smoothed with a 7-day moving average window to reduce the noise in the time 

series. 

Additionally, we integrated precipitation data from in situ measurements and from 

the CHIRPS data set as a proxy for the ecosystem water availability. Water stress, has been 

indeed identified as one of the main limiting environmental conditions of PP [8,67]. Par-

ticularly for the studied areas, the water availability is mainly regulated by rainfall events 

[58,68,69]. Precipitation, however, was not expected to have an immediate impact on the 

PP but rather the water accumulated in the system. Therefore, to account for the long-

term soil moisture repletion process, we shifted the rainfall time series in time delaying 

the precipitation. Different time lags were considered. Moreover, the rainfall data were 

smoothed with a multiple moving average window to reduce the noise in the time series. 

Table 4 displays the environmental variables used in the study. 

Table 4. Environmental drivers of primary productivity used for the empirical model formulations. 

Variable Units Description 

AT_MAX °C Maximum temperature 

AT_MIN °C Minimum temperature 

AT_MEAN °C Daily mean temperature 

AT_OSC °C Daily thermal oscillation 

AT_MEAN_f * °C Daily mean temperature 
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VPD_MEAN_f Pa Daily mean of vapor pressure deficit 

RAIN mm Daily rainfall 

RAIN_7 mm 30-days rainfall average 

RAIN_15 mm 60-days rainfall average 

RAIN_30 mm 30-days rainfall average 

RAIN_60 mm 60-days rainfall average 

RAIN_90 mm 90-days rainfall average 

RAIN_7_N ** mm 7-day rainfall average with N-day lag 

RAIN_15_N mm 15-day rainfall average with N-day lag 

RAIN_30_N mm 30-day rainfall average with N-day lag 

RAIN_60_N mm 60-day rainfall average with N-day lag 

RAIN_90_N mm 90-day rainfall average with N-day lag 

RAIN_C mm Daily CHIRPS rainfall 

RAIN_C_7_N mm 7-day CHIRPS rainfall rolling average with N-day lag 

RAIN_C_15_N mm 15-day CHIRPS rainfall rolling average with N-day lag 

RAIN_C_30_N mm 30-day CHIRPS rainfall rolling average with N-day lag 

RAIN_C_60_N mm 60-day CHIRPS rainfall rolling average with N-day lag 

RAIN_C_90_N mm 90-day CHIRPS rainfall rolling average with N-day lag 

* f stands for measurements collected at the flux tower. ** N represents 0, 7, 15, 30, 60, 90, 120, 150 

or 180-day delays in precipitation data. 

2.3.5. Interdependence Analysis and Model Calibration 

An analysis of interdependence was performed to assess the correlation between the 

calculated in situ GPP and the set of all the possible combinations of VI × EV. The squared 

Pearson correlation coefficient (r2) was used to identify the product (VI × EV) with the 

highest correlation selected for the final model formulation. The latest followed the linear 

formulation suggested by Schubert et al. [45] and used by Cai et al. [25] reported in Equa-

tion (4): 
GPP =  m × (VI ×  EV)  +  b     (4) 

where m and b are slope and intercept parameters, respectively, of the linear regression 

model. The Ordinary Least Squares (OLS) method was used to compute the parameters 

of the regression model. The OLS method is a statistical analysis aiming at deriving the m 

and b parameters of a linear model by minimizing the sum of squared errors, where the 

errors are the differences between the observed and predicted dependent variables. The 

m and b linear regression parameters were calculated using the OSL method with the 

following expressions (Equations (5) and (6)): 

m =
n ∑ xy − ∑ x ∑ y

n ∑ x2 − (∑ x)2
     (5) 

b =
n ∑ x2 ∑ y − ∑ x ∑ xy

n ∑ x2 − (∑ x)2
 (6) 

where y is the independent variable (GPP), x is the dependent variable (VI × E), and n is 

the number of data pairs. The estimation of the parameters was performed with a data set 

consisting of 80% of the original samples of in situ GPP. The statistical significance of the 

linear parameters and the overall model was evaluated with a confidence level of 95% (p-

value < 0.05). In the case statistical significance was achieved, the model was accepted and 

used in the validation process. 

2.3.6. Model Validation 

The model was validated with an independent data set corresponding to 20% of the 

data. The validation data set was used to generate GPP predictions (GPPpredicted). The pre-

dictions were compared with the flux-derived GPP (GPPobservation). The performances of 
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the model were estimated in terms of Mean Absolute Error (MAE) (Equation (7)), Root 

Mean Squared Error (RMSE) (Equation (8)) and relative standard error of the estimates 

(Sest) (Equation (9)). The coefficient of determination (R2) between predicted and meas-

ured GPP was also calculated to evaluate to which extent the model explains the variance 

of the GPP. 

MAE =
∑|GPPpredicted − GPPobservation|

n
 (7) 

RMSE = √∑(GPPpredicted − GPPobservation)
2

n
 (8) 

Sest =

√∑(GPPpredicted − GPPobservation)
2

n − 2

∑ GPPobservation

n

 
(9) 

where GPPobservation is the in situ GPP retrieved from the eddy covariance measurements, 

GPPpredicted is the GPP derived with the empirical formulation, and n is the number of 

observations in the validation data set. 

2.3.7. Vegetation Classification Maps 

In order to observe the spatial pattern of GPP, the model was upscaled to the sur-

rounding areas of the eddy covariance tower. An unsupervised classification algorithm 

was used to identify regions with the same land cover (reflectance properties) as those 

identified within the flux footprint. The identified regions were assumed to have homo-

geneous vegetation with similar biophysical properties, photosynthesis activity and GPP 

seasonality of those within the footprint. The unsupervised classification was performed 

on a composite image created by using all the Sentinel-2 images available for the study 

period preprocessed as described in Section 2.2.1. The k-means clustering algorithm de-

veloped by Arthur and Vassilvitskii [70] was used to perform the unsupervised classifi-

cation and implemented through the Clusterer.wekaKMeans method of the “ee” package 

in python. The algorithm minimizes the average squared distance between the points in 

the same cluster. The use of this robust unsupervised clustering method helps overcome 

the need for expert human knowledge required for supervised classification and has al-

ready been used in similar studies [71–73]. Our area of study was classified into seven 

classes using 5000 training pixels with a scale of 10 m retrieved from the study area 

2.3.8. GPP Maps with Composite Images 

Once the vegetation classification map was obtained, the model was applied to the 

regions having the same land cover of the area within the climatological footprint. By do-

ing so, we produced GPP maps for each Sentinel-2 available image. Then, we aggregated 

the obtained maps to produce an estimate of the monthly/annual GPP. The latest is indeed 

a highly important product relevant for further analysis of the ecosystem’s status. Annual 

maps of GPP are useful for trend analysis, the identification of the degradation of the eco-

system functions, and for computing annual NPP if knowledge of the autotrophic respi-

ration processes of the ecosystem is known [35,36]. 

To create an operational monitoring tool easy to be implemented by stakeholders and 

policymakers that bypasses the limitations of cloudy satellite data, we propose a simpli-

fied model for the calculation of GPP for a specified time window. Aggregated products 

of GPP are computed as (Equation (10)): 

GPP = ∑ GPPi

n

i=1

= ∑(m × (VIi × EVi) + b)

n

i=1

 (10) 
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where n is the number of days within the time window, and m and b are the model pa-

rameters, and therefore, constant. Assuming that the VI is constant within the selected 

time window (VIi  =  VI), Equation (10) can be written as: 

GPP = m × VIi ∑(EVi)

n

i=1

+  b × n (11) 

The model formulation (Equation (11)) is susceptible to high deviation if the assump-

tion cannot be guaranteed. In this research we propose to work with a 30-day time win-

dow; however, we also applied a 15-day time window to compare the benefits of increas-

ing the frequency of the map generation. 

The GPP products are finally aggregated to derive a GPP map for the full period of 

analysis. 

3. Results 

3.1. Interdependency Analysis and Model Calibration 

The interdependency analysis between the in situ GPP and VIs showed that green-

ness-sensitive VIs derived the highest coefficients of determination. The CLr resulted in 

the highest correlation with GPP, with a coefficient of determination R2 = 0.90 and statis-

tical significance p < 0.05. The NDVI showed the lowest correlation among the greenness-

related VIs with R2 = 0.57. Water-sensitive vegetation indices did not show a high correla-

tion with the GPP measurements. Among those, the NDII had the highest R2 of 0.39 and a 

significance level of p < 0.05. Table 5 summarizes the results of the interdependency anal-

ysis, obtained using only SRS VIs. 

Table 5. Coefficient of determination between different VIs and in situ GPP. 

Vegetation Index R2 

CLr 0.904 

MNDVI 0.899 

EVI2 0.853 

EVI 0.853 

NDVI 0.576 

NDII 0.358 

LSWI 0.329 

MNDWI 0.189 

By including the EV in the model formulation, we observed an increase in the corre-

lation with in situ GPP. In total 784 models (VI × EV) were analyzed and the coefficient of 

determination was acquired for all the models. In general, the VIs showed a higher corre-

lation when combined with rainfall-related variables in contrast with temperature or va-

por pressure deficit data. The first fifty VIs and environmental variables combinations 

with higher correlation are displayed in Table A2. The product between the CLr and the 

rainfall data calculated with a rolling average of 90 days and delay of five months 

(RAIN_90_150) yielded the strongest correlation with an R2 of 0.93. We, therefore, selected 

the CLr and the RAIN_90_150 for the model formulation (Equation (12)): 

GPP = m (CLr × RAIN_90_150) + b (12) 

where m and b represent the slope and intercept parameters of the linear model, estimated 

by means of the OLS method. The summary of the calibration process, including the pa-

rameter values and their corresponding significance levels, is displayed in Table 6. 
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Table 6. Summary of model fit using the linear least-squared method from Statsmodels python tool. 

The table shows the coefficients of the linear model and their statistical significance. 

 Coef Std Err t P > |t| 0.025 0.975 

Intercept 0.331 0.061 5.420 0 0.210 0.451 

CLr × RAIN_90_150 3.374 0.065 52.017 0 3.246 3.502 

From the calibration process, an offset parameter b = 0.3308 and a scale parameter m 

= 3.3743 were derived. The final linear model for GPP prediction was, therefore, formu-

lated as follows: 

GPPmodel = 3.3743 (CLr × RAIN_90_150) + 0.3308 (13) 

The scatter plot between the observed GPP values and the estimated ones is shown 

in Figure 6 together with the 95% confidence interval. It can be seen that the model per-

formances were accurate with most of the points within the prediction interval. 

 

Figure 6. Scatter plot and corresponding regression line and 95% confidence interval for the rela-

tionship between the GPP calculated as the product between the Red-edge index (CLr) and the rain-

fall data calculated with a rolling average of 90 days and delay of five months (RAIN_90_150) and 

the ground measurements of GPP. 

3.2. Model Validation 

The calibrated model was used to predict GPP (GPPpredicted). The results were com-

pared with an independent validation data set corresponding to 20% of the original GPP 

sample (GPPobserved). The model resulted in an MAE of 0.52 gC m−2 d−1, RMSE of 0.63 

gC m−2 d−1 and Sest equal to 0.27. The latest indicated that the model predictions had a 

standard deviation of 27% with respect to the GPP observations. 

The scatterplots of observed versus estimated values of GPP for the validation phase 

(Figure 7) show that the slope of the predicted-observed relationship did not differ signif-

icantly from 1 (0.97), indicating that the model predictions neither under nor overesti-

mated the observed values of GPP. 
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Figure 7. Scatter plot with fitted regression line showing the correlation between the predicted GPP 

values (x-axis) obtained by our model and the observed GPP values (y-axis). 

3.2.1. Comparison with MOD17 Products 

To evaluate our model performance in comparison with existing satellite-based prod-

ucts, we produced time series of MOD17. At first, we compared in situ GPP and the 

MOD17 1 km 8-day GPP products. From the scatter plot in Figure 8, we can observe that 

the slope of the predicted-observed relationship of the MOD17 product is higher than 1 

(1.62) indicating that the MODIS model is underestimating the ground GPP. 

 

Figure 8. Scatter plot with fitted regression line showing the correlation between the predicted GPP 

MOD17 predictions (x-axis) and the observed GPP values (y-axis). 

Then, we compared both our model and the MOD17-based time series with in situ 

measurements of GPP. Both the MOD17 and our GPP products showed a general agree-

ment with the observed data, especially during the fall and winter months when low pri-

mary productivity was observed (October 2020 to February 2020). For the months with a 
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peak of GPP (April 2021 to June 2021), our simulated GPP performed better than the 

MOD17 product, which was underestimating the observed GPP measurements (Figure 9). 

 

Figure 9. Time series of our model GPP predictions, MOD17 GPP prediction and in situ measure-

ments of GPP. 

A comparison of the two models in terms of MAE, RMSE, and Sest is presented in 

Table 7. While having a high correlation with flux-derived GPP, the MOD17 products 

presented higher prediction standard errors due to the high underestimation of the GPP 

during the peak biomass suggesting that the calibration of the MOD17 products should 

be performed together with the investigation of the sampling procedure that can ensure 

that collected ground measurements are adequately representative and sufficient to vali-

date the target low resolution EO product. 

Table 7. Summary of our model and MOD17 GPP product errors. 

 MAE [gC m−2 day−1] RMSE [gC m−2 day−1] Sest 

Our model 0.52 0.63 0.27 

MOD17 0.94 1.44 0.62 

3.2.2. Vegetation Maps 

The unsupervised classification of the wetlands of Doñana National Park derived 

seven classes displayed in Figure 10. Classes can be grouped into (i) vegetated areas (green 

areas); (ii) sand depression areas (yellow and orange areas) and (iii) flooded areas (blue 

areas). Visual comparison of the outcomes with different land cover classification maps of 

the region [48,58,74,75] showed good performances of the unsupervised classification al-

gorithm. The flux tower is located within the green zone (dense biomass area) and 

measures carbon fluxes from the densely vegetated areas on the west side of the wetlands 

(see Figure 10). 
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Figure 10. Vegetation classification maps showing the seven classed identified by k-means algo-

rithm implemented in Google Earth Engine API and ee. python package using a Sentinel-2 L2A 

mean composite image from the 1 October 2020 to the 31 May 2021. Class 1 and 2 correspond to the 

dense vegetated area, mainly dominated by the Cyperus rotundus, and the Cyperus rotundus and Sar-

cocornietea fruticosae plants, respectively. Class 3 is a vegetated area mainly dominated by the Cyperus 

rotundus. Class 4 and 5 are sand depression areas mainly characterized by salt marshes and shrubs 

and salt marshes, respectively. Class 6 and 7 correspond to ponds, temporarily and permanently 

flooded areas, respectively. 

By a visual comparison with the vegetation classification map of 2009 provided by 

ICTS-RBD (Figure 11), we could see that those green areas correspond to the regions dom-

inated by Bolboschoenus maritimus vegetation, commonly named saltmarsh bulrush. The 

vegetated-marsh area of the Doñana National Park was also identified in 2017 by Lum-

berries et al. [58] (highlighted with the red line in Figure 11). Being one of the most recent 

classifications we could find in literature, we decided to adapt our model to the same 

region identified by Lumbierres et al. [58]. This area dominates the region surrounding 

the eddy covariance tower and has similar biomass production. 
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Figure 11. Vegetation classification over the Doñana park for 2009 (shapefiles provided by ICTS-

RBD). The Bolboschoenus maritimus vegetation identified in 2009 is displayed in orange. The “BM 

Lumbierres et al., 2017” red limited area represents the Bolboschoenus maritimus dominated area 

identified by Lumbierres et al. [58] and used in their research on biomass production. The red lim-

ited area has been adopted in our study for the estimation of GPP in the marsh area surrounding 

the EC tower. 

3.2.3. GPP Maps with Composite Images 

The following figures display the monthly maps of GPP derived with composite im-

ages per month (Figure 12). The model well represented the interannual variability and 

trend of GPP over the study area. GPP is low during the start of the fall and winter months 

(October–January). At the end of the wet season, when the water availability in the eco-

system is at its maximum [58], the GPP content increases and reaches its maximum during 

the springtime (April–May). More spatial and temporal details of the variation of GPP can 

be seen in Figure A1 where a comparison between the Sentinel-2 and MOD17-derived 

products obtained using a monthly composite image is presented. 
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(g) (h)  

Figure 12. Monthly GPP maps obtained using a single composite image per month. The maps show 

the spatial and temporal pattern of GPP (gC m−2 month−1). (a) October 2020, (b) November 2020, (c) 

December 2020, (d) January 2021, (e) February 2021, (f) March 2021, (g) April 2021, (h) May 2021. 

The model accuracy in the selected area could not be directly assessed given the lack 

of in situ measurements outside the climatological footprint. Attempting to quantify the 

goodness of the model, we compared the predicted GPP within the footprint with the 

monthly carbon flux measured at the Duque Fuente flux tower (Table 8). 
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Table 8. Monthly carbon fluxes retrieved from the Duque Fuente flux tower and predicted for the 

climatological footprint using a single monthly composite image. GPP in gC m−2 month−1. 

Month GPP Flux Tower GPP Composite Image 

October 32.40 45.92 

November 22.61 24.70 

December 23.18 10.84 

January 12.27 14.99 

February 10.74 19.52 

March 75.96 80.18 

April 186.89 187.32 

May 197.25 232.93 

From Table 8, we observed that the model generally overestimates the ground meas-

urements of GPP which varies within a range of ± 13 gC m−2 month−1 in comparison to 

the in situ measurements. A MAE equal to 9.97 gC m−2 month−1, RMSE equal to 14.64 gC 

m−2 month−1, and a Sest of 0.24 are found. 

To improve the estimations of the GPP, we decided to reduce the time window and 

produce 15-day maps. Reducing the time window allows indeed for a better discretization 

in time and particularly accounts for the high variation of the CLr index during the spring. 

Equation (11) assumes that the VI is constant during the months and with high variation 

of CLr, the GPP can be over or underestimated. The time series of CLr for different pixels 

within the studied area is shown in Figure 13. GPP maps were, therefore, retrieved for the 

entire period using a 15-days composite image. The resulting maps are displayed in the 

figures below (Figures 14 and 15). 

 

 

Figure 13. Time series of the CLr index for different pixels in the upscaling area (pointers) and for 

the eddy covariance footprint (black dot). 
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(a) (b) (c) 

  

 

(d) (e) (f) 

  

 

(g) (h)  

Figure 14. 15-days GPP maps. The maps show the spatial and temporal pattern of GPP (gC m−2 15-

days−1). (a) 1–15 October 2020, (b) 16–31 October 2020, (c) 1–15 November 2020, (d) 16–30 November 

2020, (e) 1–15 December 2020, (f) 16–31 December 2020, (g) 1–15 January 2021, (h) 16–31 January 

2021. 
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(g) (h)  

Figure 15. 15-days GPP maps. The maps show the spatial and temporal pattern of GPP (gC m−2 15-

days−1). (a) 1–15 February 2021, (b) 16–28 February 2021, (c) 1–15 March 2021, (d) 16–31 March 2021, 

(e) 1–15 April 2021, (f) 16–30 April 2021, (g) 1–15 May 2021, (h) 16–31 May 2021. 

The production of maps using 15-day composite images was affected by the high 

cloud coverage over the study area. This phenomenon can be clearly observed in the maps 

produced for the second half of February and April 2021. This hampered the estimation 

of GPP for the considered time range. The 15-day composite image, however, also allowed 

for better identification of the flooded period. This was the case for the month of January 

2021. Comparing the first and second half of the month, we can observe that some pixels 
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were left out in the second half of the month. Those corresponded to a phase of high flood 

and thus pixels were masked and GPP set to zero in the flooded regions. 

Table 9 shows the comparison between the 15-day GPP predictions and the ground 

measurements of GPP. We observed that the model performances slightly improved com-

pared to the monthly prediction, confirming that a smaller time window could improve 

the estimation of GPP. 

Table 9. Monthly carbon fluxes retrieved from the Duque Fuente flux tower and predicted for the 

climatological footprint using a single 15-day composite image. 

Month GPP Flux Tower GPP Composite Image 

October 1–15 15.45 25.70 

October 16–31 16.96 20.54 

November 1–15 8.96 13.88 

November 16–30 13.66 10.63 

December 1–15 12.15 5.38 

December 16–31 11.04 5.41 

January 1–15 6.92 7.23 

January 16–31 5.36 7.11 

February 1–15 3.29 * 

February 16–28 7.46 * 

March 1–15 22.01 25.86 

March 16–31 53.95 51.18 

April 1–15 85.87 90.26 

April 16–30 101.02 * 

May 1–15 97.93 132.93 

May 16–31 99.32 115.24 

Finally, a GPP map was produced for the entire period of study (Figure 16). An av-

erage GPP of 770.20 gC m−2 (8 months)−1 was found. This value is comparable with re-

ported GPP values [58]. 

When compared to in situ measurements at the Duque Fuente station, a MAE equal 

to 9.68 gC m−2 month−1, an RMSE equal to 13.81 gC m−2 month−1, and a Sest of 0.23 were 

derived. 

 

 

Figure 16. GPP map for the period October 2020 to May 2021 over the study area. 
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4. Discussion 

The development and application of a workflow to derive an empirical model of 

gross primary productivity from remote sensing imagery have been demonstrated at Do-

ñana National Park wetlands. The model has been upscaled for the estimation of GPP in 

the marsh area surrounding the EC tower. The generated monthly maps of GPP have the 

potential to provide detailed information on the patterns and dynamics of primary pro-

duction. 

The model selection led to a linear regression model driven by the remote sensing 

based red-edge chlorophyll index CLr in combination with the rainfall data. This con-

firmed previous research outcomes on the sensitivity of the red-edge to canopy biomass, 

chlorophyll content and photosynthesis activity [76–78] and thus on the enhanced estima-

tion of the vegetation biophysical characteristics [33,79,80]. In general, analyzing each VI 

proposed in the methodology, we observed that the greenness-sensitive VIs performed 

the best. Narrowband greenness VIs also showed good performances. The EVI and EVI-2 

resulted to be more sensitive than NDVI, confirming that EVI can improve the estimation 

of productivity in areas with dense vegetation being less prone than NDVI to noise caused 

by soil and atmospheric effects [81,82]. Water-sensitive VIs, such as the LSWI and the 

MNDWI, did not show a high correlation with in situ GPP. Previous researchers have 

shown that these indexes are more sensitive to drought [34,83] than greenness-sensitive 

VIs and thus we suggest further investigation of their performances during dry phases 

and in ecosystems undergoing seasonal droughts. 

The integration of satellite-derived VIs with environmental variables in the model 

formulation increased the correlation with in situ GPP. Particularly, rainfall data increased 

the model performances confirming that the biomass production of the Doñana marsh 

ecosystem is strongly dependent on precipitation [58]. As a result of the high exploitation 

of water resources in the proximities of the Doñana National Park, the current flooding 

regime of the natural marsh is mainly determined by local precipitation [16]. The wet-

lands’ size and depth change remarkably between years, driven mainly by the variability 

in the precipitation [48], indicating that the flood levels and associated primary produc-

tivity in the ecosystems also correlate with the precipitation regimen. The association has 

also been supported by other authors studying species distribution stating that precipita-

tion is the main driver of primary productivity and associated support of habitats for wa-

terbirds in the ecosystem [84]. 

The phenological cycle of the vegetation of the study area is also well reproduced, 

confirming the choice of our model predictors. [48,58] report that the biomass and associ-

ated photosynthesis activity observed through the total intake of carbon dioxide or GPP 

is low during the start of the rain season (October–December) and the initial stage of the 

more intense precipitation and flood season (January–February). Then, the GPP content 

increases in the middle of the wet season when the water availability in the ecosystem 

reaches a maximum (February–March) [58] and continues to increase till the dry season 

when GPP starts to decrease. During the months with higher productivity, the vegetation 

contributed to 81% of the total GPP produced during the entire period. 

This pattern can also be observed in the generated monthly GPP maps. Given the 

lack of validation data outside the EC tower, we attempt to validate the derived products 

at the location of the EC tower. Although the empirical regression model was generally 

accurate, an overestimation of the monthly GPP was observed when upscaling the 

method. Smaller time windows were also considered to check the influence of the window 

size on the model results. The model performances did not improve significantly; how-

ever, the smaller time window allowed for a better discretization in time and the identifi-

cation of GPP variation within the months. Ideally, a smaller time window during the 

period with high productivity, when the VI selected for the model formulation is rapidly 

changing, should yield higher model accuracy and abides by the prerequisite of stable VI. 

At the same time, enlarging the time window could contribute to a reduction in the con-

tamination and noises in the images, and therefore, lead to a smoother GPP estimation 
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[85]. We, therefore, suggest further investigation of the model development when upscal-

ing it. 

Including more specific land cover classes to account for different vegetation types 

or ecosystems [86–88] or applying daily instead of annual climatological footprint [25,89] 

can also allow better estimations of GPP and should be pursued in further research. To 

perform the classification, we used the k-means clustering algorithm [70]. The algorithm 

was quick and easy to run, a main advantage in comparison with supervised classifica-

tion, which would have required extensive prior knowledge of the area to be able to iden-

tify and label the classes for the training data set [90]. Supervised classification algorithms, 

however, can also be considered to further improve the land classification of the study 

area. Supervised classification methods are in general more expensive since require more 

time and prior knowledge of the area, but can perform better if a good quality training 

data set is available [91]. 

The heterogeneity of the area surrounding the EC tower and the climatological foot-

print represents a critical factor for carbon flux estimation from satellite imagery [41]. 

High-resolution products that accurately describe the observed patterns and processes 

occurring at different temporal and spatial scales are needed [35]. We demonstrated that 

the high spatial resolution of the Sentinel-2 products allowed a detailed description at the 

time of the distribution of GPP over the ecosystem, enhancing the MOD17 coarse 500-m 

resolution GPP products. We conclude, therefore, that Sentinel-2 multispectral and high-

resolution products can enhance the evaluation of ecosystem responses at a fine scale. 

The model versatility is ensured by the integration and assessment of multiple re-

motely sensed indexes with different environmental variables. This can facilitate the up-

take of the workflow in different ecosystems. The advantage of assessing multiple indexes 

is justified by the fact that the sensitivity to specific bands combination depends on the 

characteristics of the vegetation or climatic conditions [32,33]. A clear example of this is 

the saturation of NDVI in high biomass vegetation areas and the use of EVI instead [92]. 

Regardless of the development of multiple vegetation indexes formulated to characterize 

specific vegetation features and processes in different regions, many studies on primary 

productivity still rely on the use of NDVI or EVI [25,41,45,46,92]. It can be assumed that 

those VIs will have sensitivity to any ecosystem component or process. Nevertheless, eco-

system functioning processes such as primary productivity could be explained by multi-

ple remotely sensed information and not exclusively by the fraction of absorbed photo-

synthetically active radiation (fAPAR), commonly approximated with the NDVI and EVI. 

An additional concern about the use of those indexes is that multiple studies have derived 

models for Nordic ecosystems [25,45]. Regardless of the accuracy derived for those eco-

systems, upscaling the approach to other regions would require further analysis. For in-

stance, the assessment of drier ecosystems for which the water or temperature availability 

can play an essential role rather than the light availability or fAPAR would require the 

use of VIs that reflect these limiting factors. Examples of these indices are the water-sen-

sitive VIs such as the Land Surface Water Index (LSWI) and the Modified Normalized 

Difference Water Index (MNDWI), which are more sensitive to droughts [34] or the Green 

Normalized Difference Vegetation Index (GNDVI) which is more sensitive to chlorophyll 

and so to photosynthesis activity [32]. Additionally, narrowband VIs should be preferred 

to broadband VIs since they are more sensitive to water availability than other vegetation 

indices [34,83]. Further improvement of the workflow would, therefore, require the inclu-

sion of other VIs which can be more sensitive to the study area. The same would apply to 

the environmental variables used for the model formulation that also help to better repre-

sent the condition of the ecosystem. 

Challenges and Outlook 

In the present study, the model could not be calibrated and validated for multiple 

years, or a full year. This was due to the lack of in situ measurements during the dry 

season that hampered the calculation of the annual GPP and the modeling of interseason 
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variation of GPP. Moreover, about half of the total available Sentienl-2 data images had to 

be removed from the original dataset because the cloud coverage was higher than 30% of 

the total area of the tale. With the increased availability of both in situ measurements and 

satellite data in the future, it will be possible to fine-tune the model and study not only 

interseason but also interannual variation in GPP. This was, however, not the main objec-

tive of this study that aimed at assessing the capability of Sentinel-2 data for spatiotem-

poral upscaling of flux tower GPP measurements. Furthermore, the application of the 

workflow in different regions and different ecosystems may require further development 

of the tool and will make the upscaling methodology robust. 

Further analysis to estimate the effect of the flux partitioning method in the calcula-

tion of the ground base GPP may need to be carried out. Although the night-time method 

of flux partitioning proposed by Reichstein et al. [93] was generally accurate, further re-

search could investigate the day-time method of flux partitioning suggested by Lasslop et 

al. [94] or the night-time data-based method proposed by Falge et al. [95]. Using multiple 

flux partitioning approaches would allow the evaluation of the robustness of the GPP pre-

diction method [96]. Moreover, an uncertainty analysis could also be implemented to bet-

ter understand the accuracy of the in-situ GPP estimation and its impact on the workflow 

[97]. 

Additionally, further analysis to investigate residual noise in the VI time series may 

be required. In the current study, the noise in the time series was reduced by removing 

cloudy pixels, water pixels and pixels not belonging to vegetation (e.g., water bodies, 

snow, temporal floods, or other temporal phenomena). However other noises arising from 

surface-viewing geometries or sun sensors can still be hindered [98]. Noise-reduction al-

gorithms such as the Savitzky–Golay filtering [99], the asymmetric Gaussian function fit-

ting [100], the double logistic function fitting [101], or the best index slope extraction 

(BISE) method [102], might be also implemented in the methodology to increase the accu-

racies of the derived VIs. 

5. Conclusions 

The adoption of the 2030 Agenda for SDGs reflects the ambitions of the countries to 

direct the policy and strategy toward ensuring a sustainable future. In this context, mon-

itoring activities, along with the use of satellite-derived information, play a key role in 

defining implementation strategies to meet the SDGs goals. In this work we assessed the 

use of Sentinel-2 data derived indexes for the estimation of the GPP in the wetlands of 

Doñana National Park. The GPP model predictions showed better performances than 

standard global MOD17 GPP products over the same area. The potentiality of Sentinel-2 

data to enable the estimation of GPP at a finer scale has been demonstrated. Further im-

provements are foreseen with the increased amount of data and the use of longer time 

series of Sentinel-2 data, which will result in the modeling of interannual variation of the 

GPP and a more robust model. High spatial resolution products are key for allowing a 

detailed description of the distribution of GPP over the ecosystem, especially for hetero-

geneous ecosystems, thus improving the understanding of ecosystem functions, which 

are highly correlated to the health condition of ecosystems and the delivery of ecosystem 

services. Currently, there is a vast amount of unprocessed eddy covariance data in the 

European Fluxes Database Cluster and other repositories from multiple regions world-

wide (https://fluxnet.org/about/regional-networks/, http://www.europe-fluxdata.eu/, etc., 
both links accessed on 12 December 2022). The present research workflow is expected to 

be implemented into GitHub and into the Virtual Earth Laboratory (VLab), a cloud-based 

platform openly and easily accessible to the users. We encourage relevant stakeholders 

and protected area managers to make use of the workflow and integrate it into projects 

and monitoring programs for policy development, implementation, and the ecosystem’s 

status evaluation. 
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Appendix A 

Table A1. Remote sensing based vegetation indexes used in the current study. 

Index Description Equation 

Normalized Difference Vegetation In-

dex (NDVI) 

NDVI [103] is the most common VI in 

studies of vegetation covers. It combines 

the near-infrared band (NIR) with the red 

band (R). 

NDVI = 
NIR-R

NIR+R
 

Enhanced Vegetation Index (EVI) 

EVI is an improved version of the NDVI 

that handles the saturation of this index 

in high biomass ecosystems [81]. It com-

bines the near-infrared (NIR), red (R) and 

blue (B) bands. 

EVI =  
NIR − R

(NIR + 6 R − 7.5 B + 1)
 

Two-bands Enhanced Vegetation Index 

(EVI-2) 

EVI-2 is an alternative to the EVI using 

only the near-infrared (NIR) and red (R) 

band [104]. 

EVI2 =  
NIR − R

(NIR + 2.4 R + 1)
 

Red-edge Index (CLr) 

CLr is a vegetation index built with the 

narrow red-edge bands of Satellite prod-

ucts with high spectral resolution [33]. It 

combines the red-edge bands with a cen-

tral wavelength of 705 nm (Re1) and 783 

nm (Re3). 

CLr =  
Re3

Re1
+ 1     

Modified Normalized Difference Vege-

tation Index (MNDVI) 

MNDVI is a normalized difference be-

tween the narrow red-edge bands with a 

central wavelength of 705 nm (Re1) and 

783 nm (Re3) [59]. 

MNDVI =  
Re3 − Re1

Re3 + Re1
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Modified Normalized Difference Water 

Index (MNDWI) 

MNDWI is a normalized difference be-

tween the green (G) and the short-wave 

infrared band (SWIR1) proposed by Xu 

[105] and applied in studies of carbon 

fluxes by Noumonvi et al. [34]. 

MNDWI =  
G − SWIR1

G + SWIR1
 

Land Surface Water Index (LSWI) 

LSWI is a normalized difference between 

the near-infrared (NIR) and the short-

wave infrared band (SWIR1). This index 

has been applied in studies of carbon 

fluxes by Noumonvi et al. [34]. Other au-

thors have studied the same combination 

of bands under the name of Normalized 

Difference Water Index (NDWI) or Nor-

malized Difference Moisture Index 

(NDMI) [32,106,107].  

LSWI =  
NIR − SWIR1

NIR + SWIR1
 

Normalized Difference Infrared Index 

(NDII) 

NDII is a normalized difference between 

the near-infrared (NIR) and the short-

wave infrared band (SWIR2) proposed 

by [108] and applied in studies of pri-

mary productivity by Adan [106]. 

NDII =  
NIR − SWIR2

NIR + SWIR2
 

Table A2. Coefficient of determination of the first fifty VIs and environmental variables combina-

tions showing higher correlation with ground measurements of GPP. 

VI × EV R2 VI × EV R2 

CLr × RAIN_90_150 0.9327 NDVI × RAIN_C_90_180 0.8750 

MNDVI × RAIN_90_150 0.9316 NDVI × RAIN_90_150 0.8714 

CLr × RAIN_C_90_150 0.9270 MNDVI × AT_OSC 0.8701 

MNDVI × RAIN_C_90_150 0.9228 MNDVI × RAIN_90_120 0.8663 

CLr × AT_MAX 0.9178 CLr × RAIN_60_120 0.8651 

CLr × RAIN_C_60_150 0.9160 EVI × AT_MEAN_f 0.8628 

MNDVI × AT_MAX 0.9128 EVI2 × AT_MEAN_f 0.8594 

CLr × VPD 0.9114 MNDVI × RAIN_C_90_180 0.8573 

MNDVI × RAIN_60_150 0.9109 CLr × RAIN_C_90_120 0.8545 

CLr × RAIN_60_150 0.9108 CLr × RAIN_C_60_120 0.8522 

CLr × AT_MEAN_f 0.9082 NDVI × AT_MAX 0.8479 

MNDVI × VPD_f 0.9047 NDVI × RAIN_60_150 0.8453 

MNDVI × AT_MEAN_f 0.9041 CLr × RAIN_90_180 0.8436 

CLr × AT_MED 0.9039 EVI × RAIN_C_60_150 0.8435 

MNDVI × RAIN_C_60_150 0.9022 EVI × RAIN_90_120 0.8434 

CLr × RAIN_90_120 0.8910 EVI2 × RAIN_90_120 0.8431 

MNDVI × AT_MED 0.8908 CLr × RAIN_C_60_180 0.8419 

EVI2 × RAIN_90_150 0.8895 EVI2 × RAIN_C_60_150 0.8419 

EVI × RAIN_90_150 0.8862 NDVI × RAIN_C_90_150 0.8256 

CLr × AT_OSC 0.8852 NDVI × RAIN_C_60_180 0.8244 

EVI × RAIN_60_150 0.8840 MNDVI × RAIN_C_90_120 0.8212 

EVI2 x RAIN_60_150 0.8823 NDVI × RAIN_90_180 0.8209 

CLr × RAIN_C_90_180 0.8821 MNDVI × RAIN_C_60_180 0.8198 

EVI2 × RAIN_C_90_150 0.8816 NDII × RAIN_90_180 0.8161 

EVI × RAIN_C_90_150 0.8771 MNDVI × RAIN_60_120 0.8156 
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Figure A1. Comparison of Sentinel-2 (S2) and MOD17 GPP maps obtained using a monthly compo-

site image. The maps show the spatial and temporal pattern of GPP (gC m−2 month−1) and the differ-

ence captured by the two satellites given their different spatial resolution. (a) MOD17 October 2020, 

(b) S2 October 2020, (c) MOD17 November 2020, (d) S2 November 2020, (e) MOD17 December 2020, 

(f) S2 December 2020, (g) MOD17 January 2021, (h) S2 January 2021, (i) MOD17 February 2021, (j) 

S2 February 2021, (k) MOD17 March 2021, (l) S2 March 2021, (m) MOD17 April 2021, (n) S2 April 

2021, (o) MOD17 May 2021, (p) S2 May 2021. 
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