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ABSTRACT This paper investigates sensitive minima in popular deep distance learning techniques such
as Siamese and Triplet networks. We demonstrate that standard formulations may find solutions that are
sensitive to small changes and thus do not generalize well. To alleviate sensitive minima we propose a new
approach to regularize margin-based deep distance learning by introducing stochasticity in the loss that
encourages robust solutions. Our experimental results on HPatches show promise compared to common
regularization techniques including weight decay and dropout, especially for small sample sizes.

INDEX TERMS Deep metric learning, regularization, generalization, feature point matching, contrastive

loss, triplet loss.

I. INTRODUCTION

Computing meaningful distances between image pairs is dif-
ficult due to illumination, viewpoint, occlusions, etc. Current
deep neural network approaches leverage training data to
learn a powerful nonlinear distance measure [36]. Distance
learning has many important applications such as image
retrieval [10], [39], image matching [8], face verification [27],
person re-identification [42], local descriptor learning [19],
one-shot recognition [29], etc.

Margin-based distance learning methods using the Con-
trastive loss [5] or the Triplet loss [24], [32] optimize a deep
network by learning a nonlinear distance where similar image
pairs are optimized to be closer than dissimilar pairs. For dis-
similar image pairs often a hinge-loss variant max(m — d, 0)
is used so that the distance d between the dissimilar image
pair is at least m away, where m is the margin. The elegance
and ease of implementation makes margin-based approaches
arguably the best known and popular current approach for
deep distance learning [16], [19], [23], [25], [41].

In this paper we posit our observation that margin-based
approaches for deep distance learning suffer from sensitive
minima. As illustrated in Figure 1, there are two cases. Case 1:
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FIGURE 1. Adding a margin to distance learning creates sensitive minima.
The blue line is a learned nonlinear distance function d, the purple line is
the margin m, the black line is a typical distance learning hinge loss:
max(m — d, 0)2. Case 1: If the margin is violated and the loss minimized
with gradient decent, the solutions (red dots) have a strong gradient for d
which is sensitive to small changes and thus unstable. Case 2: If the
margin is not violated, any solution is satisfactory, disregarding all
stability issues. In this paper we propose a method to find robust
solutions (green dots).

If the distance d of the dissimilar pair is too small, and the
margin is thus violated, then gradient descent will converge
to points on the margin where the loss is zero, but the gradient
of d with respect to the learned parameters is high (red
points), i.e.: Small changes in the parameters will lead to
large changes in the distance and thus sensitivity. Case 2:
The dissimilar image pair has a large enough distance d, the
margin is never violated, there is no loss and thus any valid
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FIGURE 2. 2D example of distance learning. Five point pairs (connected
by a line) are used as input to a Contrastive loss, which overfits severely
to such a small sample size. In contrast, our regularized Siamese loss,

trained with exactly the same network and hyper-parameters, is robust.

parameterization is selected, without taking robustness into
consideration. The problem of sensitive solutions is that they
do not well generalize to unseen data as changes of weights
and input data are strongly correlated. Thus, using a margin
for distance learning may lead to sensitive solutions which in
turn causes overfitting.

We propose a novel regularization technique to combat
sensitive minima for margin-based deep distance learning.
We introduce stochasticity in the loss which forces the opti-
mization to search for minima with small gradient for dis-
tance w.r.t. the parameterization, leading to robust minima.
In addition, we explore the use of a robust margin not only
on the dissimilar pairs, but also on similar image pairs, which
prevents the network from selecting minima too close to 0,
which would fit the training data too well, and likely not gen-
eralize. In Figure 2 we show a 2D example fitted on 5 random
2D pairs where the Contrastive loss severely overfits while
our regularization approach is stable.

We have the following contributions. 1) We make the
observation that margin-based deep distance learning suf-
fers from sensitive minima. 2). We propose a regulariza-
tion technique by introducing stochasticity in the loss that
imposes non-zero gradients for sensitive minima thus pre-
venting gradient descent to settle at those unstable solutions.
3) We show that introducing a non-zero margin for similar
pairs in Siamese loss is beneficial. 4) We propose the use
of square-loss instead of a hinge-loss in both Siamese and
Triplet loss formulation, which leads to more robust features
in the learned latent space. 5) We evaluate our regularization
on recent HPatches dataset [3] and we show that compared
to other popular regularization methods our regularization is
particularly effective for small training size.

Il. RELATED WORK

A. REGULARIZATION IN DEEP DISTANCE LEARNING
Regularized convex distance metric learning allow for gen-
eralization bounds [14], yet they do not apply to current
non-convex deep distance learning. We focus on practical reg-
ularization of popular margin-based metric learning, where
Siamese [5] and Triplet networks [24], [32] are best known
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example. Siamese networks existed in the 90s [4], but mod-
ern Siamese network with a CNN architecture dates back
a decade [5]. Overfitting in Siamese networks [17], [27],
[38] are treated commonly with data augmentation [19],
l>-norm normalization [28] and /;-norm regularization [17],
[38], and Dropout [42]. Triplet networks tend to outperform
Siamese networks at the expense of a more complicated
training process [16], [19]. There exist diverse works based on
Triplet networks for feature embedding, where few examples
are [1], [9], [20], [30], [40] and overfitting is addressed by
regularization techniques, ranging from data augmentation
[19] to more complicated sampling strategies [12], [34].
Learning local image descriptors is a well known application
of deep distance learning [38]. Examples in this category
are MatchNet [8], LIFT [37], HardNet [22], L2-Net [28],
DOAP [10]. Typically some sort of feature normalization
and batch normalization [13] are used in these networks to
reduce the effect of hyper-parameters. Overfitting is reduced
by dropout and limiting the architecture to few convolutional
layers (only around 7 layers), without fully connected layers.
All such works, including Siamese and Triplet networks typ-
ically use common regularization techniques proven in the
image classification domain such as dropout, /;/l;-norms,
etc. In contrast, we propose a regularization technique for
deep metric learning specifically.

B. STOCHASTICITY FOR REGULARIZATION

Uncertainty injection is a regularization technique by making
a network insensitive to small random modifications [6],
which in some cases is equivalent to an analytical form,
e.g., weigh decay [18] with a Gaussian prior on the input is
the same as /-regularization. Uncertainty injection methods
include dropout [26], drop-connect [31], standout [2], and
shakeout [15], that are injecting Bernoulli noise to the hidden
units of the deep neural network. In this context, practical
Bayesian variational methods are discussed in [7]. Controver-
sial techniques such as [35] suggest that adding noise to the
output labels improves generalization. In [6, Ch. 7.5, p. 242],
perturbing network weights during training is reported to
approximate adding norm regularization on the gradient w.r.t.
the network parameters, in the regression setting. Inspired
by uncertainty injection methods we propose a regularization
method by adding noise to the loss layer, yet without changing
the labels.

ill. METHOD

A. MARGIN-BASED DISTANCE LEARNING

Margin-based distance learning finds a mapping function
from an image of size w x h with r color channels to a
k-dimensional representation space, f : IN">*"*" — Rk
where distances in IR® between similar image pairs d, are
smaller than distances to dissimilar image pairs d,, by a prede-
fined margin m in the desired metric space, i.e., d, +m < dy,
where

dp = d(f), fINly = 1), (1)
dn = d(f (D), fI")ly = 0). )
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Similar image pairs have a label y = 1 and dissimilar image
pairs the label y = 0. We consider a Euclidean metric space
where d(f (I), f(I')) outputs the Euclidean distance between
two vectors of representations for an image pair {/, I’}. The
mapping function f is typically parameterized by a deep
convolutional neural network (CNN).

Common CNN architectures for deep distance learning are
Siamese and Triplet networks. In Siamese network two iden-
tical networks, that share the same weights, are trained using
a Contrastive loss function [5] which aims a zero distance for
all similar image pairs and at least marginal distance m for
dissimilar images:

Npos Nneg

2 .
JsiamWom) =Y di* + ) (max(m —d, 0))
i=1 =1

2
)

3

where Npos and Nyee are the number of similar and dissimilar
training pairs indexed by i and j. The loss is a function of the
network weights w and the margin m.

A Triplet network uses three images: An anchor image is
compared to a similar image and to a dissimilar image [24].
An example Triplet loss for N = Npos + Npeg images is

N
i2 i2
Jrip(w,m) = Y max (dy” = di” +m,0). (4
i=1

B. SQUARE LOSS INSTEAD OF HINGE LOSS

Several important variants of Contrastive and Triplet losses
exist in the literature [19], yet in essence they are captured by
the above formulation, e.g., the hinge loss in Egs. (3-4) can
be replaced by other function of choice. The hinge loss is 0 if
the margin is not violated, which makes all valid parameter
instantiations equal, as illustrated in case 2 in Figure 1.
To favour robust minima, we use the squared loss for both
Siamese and Triplet instead of the hinge-loss.

C. NON-ZERO MARGIN FOR SIMILAR PAIRS

Our experiments show clear advantage once the desired
distance for positive pairs is not set to zero unlike the orig-
inal Siamese loss in Eq. (3). By allowing non-zero dis-
tances between similar images, the natural inter class variance
is accounted for in the optimization process. This means
although different images (patches) of positive class have
same label, they are slightly different in terms of texture,
illumination, viewpoint, etc. The Siamese loss of our choice
is illustrated in Figure 3. In contrast to the Siamese loss, the
Triplet loss does not have a fixed optimal points, i.e., m™
(optimal point for positive pairs) and m~ (optimal point for
negative pairs) alternate from sample to sample [19].

D. STOCHASTIC LOSS

Our proposed loss, referred to as Stochastic loss, is modelled
by an additive random variable to the distance representation.
The proposed loss for Siamese and Triplet networks are

VOLUME 8, 2020

loss

o 05 1 15 2 25 3 35 4
d

—— Squared loss for positive pairs
—— Squared loss for negative pairs
O margin for positive pairs: m* = 0.5

O margin for negative pairs: m~ = m* +m = 3.5

FIGURE 3. Visualization of the loss w.r.t. the distance for the squared
variation of Contrastive loss in Eq. (3) with non-zero positive optimal
point. The positive (negative) optimal point is depicted with the blue
circle (red circle ) which shows m* (m™* + m). The relative margin is set to
m =3 and m* = 0.5 in this plot, therefore, the negative optimal point is
settom™ =3.5.

represented as follows

Npos
Tsiam(w, m*,m) = "(d —m* + 6} )
i=1
Nneg . ) 2
+Z(dﬁ —(m++m)+9{l) . (®)
j=1

N
~ . . . . 2
Triip(W, m) = ((d;+9;)2—(d,§+9,;)2—m) . (D
i=1

Comparing Egs. (3-4) with Eqgs. (5-7) reveals three new
variables that are inserted in the proposed loss. The random
variables 6, and 6, in Eqs. (5-7) are the core of the proposed
regularization method. The constant variable m™, in Eq. (5),
is related to the non-zero optimal point (positive margin) for
similar images. Note that setting the 6,, 6, and mT to zero
reduces the Egs. (5-7) to the conventional Contrastive and
Triplet losses where the max-loss is replaced by squared loss.

The appended random variables 6, and 6, impose uncer-
tainty to the distance of the image pair representations in
Siamese and Triplet network and are considered zero mean
ii.d. random variables. This property guaranties that the
injected random variables does not affect the expected value
of the empirical loss. For example, jgiam will be optimized
in an average sense on E{d,} = m™ and E{dy} = m™ + m
for positive and negative pairs, respectively. This is impor-
tant because the desired optimal points for the positive and
negative samples remain intact by injecting uncertainties to
the loss, unlike methods that insert randomness to the hidden
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layers, e.g., [6] and [26]. We keep 6, and 6, equal to limit the
introduced hyper-parameters to one.

E. REGULARIZATION BY Stochastic LOSS

The effect of Stochastic loss on preventing the model from
choosing sensitive minima is effectively explainable by
exploring the behavior of the loss once optimized using gradi-
ent descent. In gradient descent, at each iteration, gradient of
the loss function is computed and then, a proper step is taken
towards the minimum of the loss. Taking the gradient of the
Stochastic loss on positive samples in Eq. (5) leads to

Npos
VaJ =32 Vdi (di — m* +6}). @®)
i=1
In turn, the gradient of Eq. (6) is given by
Nneg . .
VI =Y 2Vyd] (d{1 —m 4 9-,/,') , )
j=1

where def; (Vwdl) is the gradient of the positive pair (neg-
ative pair) distance w.r.t. the network parameters, w for the
ith (jth ) training sample. Here we show that the expectation
of the gradient is the same for Stochastic loss and Siamese
loss. However, the difference lies in the variance that is
added by stochasticity. This an important difference between
norm penalty regularization techniques which change the loss
expectation as well as the gradient expectation while our
method affects the variance instead.

To further analyze, the sum gradient vector, expectation
and covariance matrix of the gradient are

Npos
1 . .
SVl = 3 Vad (dl’) — m+> (10)
i=1
Nneg . .
+3° Vud, (d{l - m_) (11)
j=1
Npos Nneg
+) Vud 0+ Vyd 0] (12)

i=1 j=1

Eq. (12) shows the appended term to the loss gradient due
to the proposed stochasticity, where Egs. (10-11) correspond
to the original Siamese loss gradient. The expectation of the
gradients of proposed loss, over all training samples, is simply
equal to the original Siamese loss since both 6, and 6, are
zero-mean i.i.d. random variables.

E{%ij} = ]E{%VWJ}. (13)
By Egs. (10-13), we explicitly show the regularization as an
additive term to the gradient, which reveals the similarity and
difference between Siamese and Stochastic loss.

At this point, we focus on the gradient behaviour at an
optimal point that is the key to understand why Stochastic
loss imposes regularization on Siamese loss. The network
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parameters are trained when sum of the gradients are close
to zero, i.e.,

VuJ = VT + V™ =0, (14)

where the loss is not updated anymore in any direction.
One can see, for both Siamese and Stochastic losses, the
expectation of losses gradient is zero, once: 1. The scalars
]E{(dn — m_)} and IE{(dP —m+)} (the distance from the
optimal point (§dy)) are zero or 2. The vectors E{Vyd,}
and E{Vyd,} (the expected metric gradient) are zero. Both
options can equally make the expectation of the losses gradi-
ent zero at the optimal point. Nevertheless, only the second
choice will make the variance of Stochastic loss zero, there-
fore we regularize the solution space by using stochaticity.

The covariance matrix of the loss gradient reveals the
regularization property explicitly.

(15)
(16)

2[%vwi] = %E{(vwiwiif}
= E{0*}E{(Vywd)(Vyd)T },

where VyJ is the metric gradient and E{#2} is the regular-
ization variance (we assume equal variance for 6, and 6,).
Eq. (15) is derived assuming that variables d, Vyd and 0 are
independent mutually. Note that [£{#?} is always zero in the
original Siamese loss so as the covariance matrix where, this
is not the case for Stochastic loss. In other words, if gradient
descent converges to an optimal point meaning that there is
no (or negligible) update from one iteration to another, then
the Stochastic loss guaranties that the metric gradient is zero
on that optimal point since the variance of the 6 is designed
to be non-zero. Hence, Eq. (15) admits the regularization
term that promotes solutions with zero metric gradient over
other (sensitive) solutions.

Note that we do not claim any convergence guarantee,
however, we showed through the gradient analysis that once
gradient descent converges, then the gradient of metric is
always (almost) zero on that solution point. Because Vyd),
requires to be a function of w so it can be tuned during
the training process. Consequently, Stochastic loss does not
affect a linear network that leads to a constant term for V ,,d,.
Strictly convex losses also do not benefit from Stochastic loss.
Moreover, note that our proposed loss is not equivalent to
adding a norm penalty of the gradient loss to the original
loss as we showed that the loss expectation remains intact
compared to the original loss. The same line of derivations
can be shown for Triplet loss, that is omitted here for the sake
of space.

IV. EXPLANATORY EXAMPLE IN 1D

For ease of explanation, we start by building intuition with
an illustrative example of creating a 1D nonlinear function
in Figure 4. Let the blue line be a learned nonlinear dis-
tance function for a pair of samples, for parameter values
w. We wish to find the best value for w where d(w) = m;
the black curve is the corresponding loss (d — 1.5)%. The red
circles show all the minima of the loss.

VOLUME 8, 2020
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function of w

—— d:nonlinear pair-wise distance
—— quadratic loss: (d — m)?
— — uncertainty 1, (d — m + 6;)*|0 = -2
uncertainty 2, (d — m + 6,)%|6 = +2
—— margin: m = 1.5
# initial point in gradient descent
gradient descent iterations
# optimal point found by gradient descent
o all local minima for the loss
J +0.5|V,.d|

FIGURE 4. lllustration of Stochastic loss optimization for a 1D function.
The blue line is a nonlinear distance function d = f(w), for parameter
values w. The black curve is the corresponding loss (d — m)?2 where

m = 1.5. The red circles show all minima for the loss. The red and green
dashed lines show the loss of adding either —¢ or ¢ to the distance. The
coloured stars indicate the random initial guess (wp = 4.21) and the
minimum (w* = 1.74) found by gradient descent algorithm. The orange
curve shows the regularized loss with added penalty on the norm of the
metric gradient. The unstable minima of the loss does not coincide with
the minima of the regularized loss. Note that the minimum (or maximum)
of the uncertain losses are the same as the regularized loss that are
found by our method using gradient descent. The steps that are taken by
the gradient descent to reach the minimum are shown by light blue
circles, where, at each iteration 6 is chosen randomly.

At each iteration of gradient descent, stochastically pick
a constant € {—6,0} and simply add it to the distance d.
The red and green dashed lines show these losses. In fact,
the gradient descent experiences one of these two losses at
each iteration randomly. Once 6 is large enough compared to
m then the sign of the gradients in red and green losses have
opposing directions. Almost always (with the exception of
d = m), one of the two opposed signed losses will dominate
the other and pushes the gradient descent towards it’s own
minimum. An example of gradient descent steps for 6 = 2
is illustrated in Figure 4, where the initial point is randomly
chosen at wy = 4.21 (black star) and the optimal point is
found in 500 iterations at w* = 1.74 (orange star). One can
see at the sensitive optimal point, where the metric gradient
is non-zero, none of the Stochastic losses have minima so
there is no chance that gradient descent finds these points.
In contrast the original loss can easily settle at these sensitive
local minima.

We also added the conventional norm of gradient regular-
ization to the original loss and plotted the function on Figure 4
with orange solid line. As we expect, the unstable minima
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FIGURE 5. Histogram of the minima found by our method for different 6
values. For ¢ = 4, our proposed method finds the minimum at w* = 1.74
with 100% chance.

in original function disappeared due to the regularization
term that penalizes the loss once the norm of the gradient
is non-zero. One can see that the minima of the orange
function coincides with the minima of one of the Stochastic
losses which confirms the regularization effect of the pro-
posed Stochastic margin loss. In other words, the proposed
approach samples the minima of the gradient regularized
loss effectively without explicitly calculating the gradient of
the metric. Analytical computation of the gradient is very
expensive for high dimensional optimization problems as the
partial derivative of a vector valued function is a matrix that
needs to be calculated at every iteration of stochastic gradient
descent.

In Figure 5 we perform a small experiment where gradient
descent runs 10,000 times with random initialization each
time for various 6 values. This experiment shows the effect
of hyperparameter tuning. The regularization parameter of
60 = 4 yields to the same (not sensitive) solution 100% of
the time.

V. EXPERIMENTS
Dataset: We use HPatches [3], with more than 2.5 million
image patches, which is the largest and most recent bench-
mark for local descriptor learning. The HPtaches bench-
mark is designed to evaluate image descriptors for three
different tasks: patch verification, image matching and patch
retrieval. The dataset is collected in various illuminations
and view points from 116 different scenes with 3 level
of difficulties easy, hard and tough based on the dif-
ferent transformation noises where 40 scenes are used
for test while the other 76 scenes are considered as
train data. Evaluation is done by Mean Average Precision
(mAP) [3].

Architecture: Our network architecture in Table 1 consists
of 11 convolutional layers (including residual blocks [11]),
followed by a fully connected layer. The number of learning
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TABLE 1. Our model architecture.

Layers Filters Output
Conv. 7x7,32 32 x 32
6 x 6,32
Res-block 6 x 6,32 32 x 32
Conv. 6 X 6,64 16 x 16
Avg-Pool 2 x 2, stride 2
5% 5,64
Res-block 15 x 5, 64_ 8x8
Avg-Pool 2 X 2, stride 2
14,64
Res-block 4x 464 8x8
Conv. 4 x 4,128 4x4
Avg-Pool 2 X 2, stride 2
3 x 3,128
Res-block 3% 3,128 4 x4
FC 128 x 1 x 1 128 x 1
Siamese Triplet
10 6
[7:) L 2] 4
v 5 [72]
ke N <2
0 e 0 :
0 2 4 0 5 10
% # of iterations x10* _ # of iterations x10*
)
2 10t S 10t
= | =
s N e
B 10° o 10°
= 21
A 102 N0
= 0 2 4 = 0 5 10
# of iterations x10* # of iterations x10*
1010 1010
® ®
< 10° = 10°
g g
— =
= 100 =100
-5 0 5 -2 0 2

gradient values
Plain margin-based
I Non-Stochastic (6 = 0)
Il Stochastic (6 # 0)

gradient values

FIGURE 6. Effect of Stochastic loss on metric gradient. The plots show
three states: Plain margin-based in green, Non-stochastic (¢ = 0) in red
and Stochastic (9 # 0) in blue for both Siamese (left) and Triplet (right).
The first row is the loss over iterations and the second row is the norm of

the metric gradient || . b] dei||z over iterations, where Nj, is number

of batch pairs. The third' row shows the histogram of all elements of v,y d
for all the train pairs after training in logarithmic scale. The
hyperparameter ¢ is set to 2 and 0.15 for Stochastic Siamese and
Stochastic Triplet , respectively. Note that the metric gradient becomes
smaller once stochasticity is added to the loss.

parameters for this network is approximately 1.2 M. The acti-
vation function for all the layers is Relu, padding is the
“same” and average pooling is used for down sampling.
Unlike other common networks, our proposed model does
not use any batch normalization, dropout layer and any
other conventional regularization method. Additionally, in all
the experiments, we do not leverage any form of data
augmentation. The network input is 32 x 32 gray image
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0.7 . . . !
1 2 3 4 5

Models
—-Training accuracy on Stochastic Siam. (ours)
Training accuracy on Siam. (m* # 0)
—e-Training accuracy on Contrastive
——Test accuracy on Stochastic Siam. (ours)
Test accuracy on Siam. (m* # 0)
——Test accuracy on Contrastive

FIGURE 7. Comparison of Contrastive (red), Siamese (green), and
Stochastic (blue) losses for 5 different CNN models on Hpatches dataset
for patch verification task. The models 1 to 5 are respectively,
correspondent to 4, 5, 8, 12 and 20 convolutional layers plus a fully
connected layer at the end. Test and train mAPs, show that Stochastic loss
reduces overfitting problem.

patches and the output is a 128 dimensional feature vec-
tor resembling SIFT feature descriptor [21]. For training,
stochastic gradient descent with momentum of 0.9 and
learning rate of 0.005 is used, where the learning rate is
gradually decreased over iterations. The number of itera-
tions in different experiments is considered enough high
based on the data regime to make the loss convergence
possible. The hyperparameter introduced by Stochastic loss,
6, has a zero mean Bernoulli distribution which is with
Pr(—60) = Pr(@) = 0.5 where the 6 is tuned in different
experiments.

A. DOES THE METRIC GRADIENT BECOME SMALLER?

We hypothesize that for Stochastic loss shrinks the metric
gradient with respect to the network weights V,,d. We train
on 3K pairs taken from Hpatches [3] dataset. Both Siamese
and Triplet losses are trained in three different settings:
1) Plain margin-based, 2) non-Stochastic (¢ = 0) and
3) Stochastic (6 # 0). Experiments are repeated 5 times
with random initialization and averaged results are shown
in Figure 6. The top row shows that networks converge,
while our loss is higher because of the added stochastisity.
The middle row shows that the norm of the metric gradient
indeed reduces more for Stochastic loss. The histogram in
the bottom row shows that the variance of V,,d for Stochas-
tic loss is less than the non-Stochastic one after training
for Siamese . However, for Triplet loss, the histogram of
V,»d for Stochastic loss is closer to the non-Stochastic one,
which confirms that the Triplet loss is inherently less sensi-
tive to the weights rather than Siamese as confirmed in the
literature [16], [19].
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FIGURE 8. Comparison of Stochastic Siamese and Stochastic Triplet losses with conventional Contrastive and Triplet losses regularized by drop out,
L,-regularization and batch normalization (BN) on 4 different training data regimes where the mAP for 3 different tasks are reported. Generally,

Stochastic losses result in better mAP especially, in the lower data regime.
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FIGURE 9. Tuning different Contrasive regularization methods.

B. WHAT IS THE EFFECT ON THE ARCHITECTURE?
Since we introduce regularization, can we use deeper archi-
tectures using Stochastic loss compared to the Siamese
loss? In Figure 7, The mean average precisions (mAPs)
for patch verification task on Hpatches [3] dataset are
shown for 5 different models. These models listed from
1 to 5 correspond to the networks with 4,5,8,12 and
20 convolutional layers plus an ultimate FC layer. We used
600K pairs collected from training portion of Hpatches
dataset to learn all the models, simply without any conven-
tional type of regularization. The stochastic parameter 6 €
{—1, +1}. Three different losses Contrastive (red), Siamese
(green) and Stochastic (blue) are compared in this figure.
The first observation in Figure 7 is the significant
gap between the train and test mAPs, specifically for
Contrastive loss which confirms the overfitting problem,
which deteriorates as the network goes deeper. The sec-
ond observation shows the overall performance improve-
ment once the squared loss is used instead of the hing loss
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FIGURE 10. Tuning different Triplet regularization methods.

and positive margin is added for the similar pairs (Siamese
loss). In the third experiment we add the stochasticity to the
Siamese loss that results in the proposed Stochastic loss. One
can see that by using Stochastic loss, the accuracy gap on
the train and test set is reduced even more. Additionally,
it results in higher correlation between mAP of train and test
data. These observations show the generalization power of
Stochastic loss over different models. It is clear once the mAP
on deeper model drops for Siamese and Contrastive losses,
Stochastic loss retains its performance.

C. REGULARIZATION VS TRAINING SET SIZE

We conducted extensive experiments in 4 different data
regimes of 3K, 30K, 300K and 3M from train Hpatches [3]
data, on our 12-layer network. In all cases the number
of positives and negatives pairs are equal. We evaluate
10 different loss settings including: Contrastive, Stochas-
tic Siamese, Contrastive regularized by L,-regularization,
Contrastive regularized by dropout, Contrastive regularized
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TABLE 2. Comparison of weights perturbation and Stochastic loss.
The mAP[%]s are reported for three different Hpatches tasks.

[ Method | Pat. verif. | Im. match. | Pat. retriev. |
Siam. 66.11 4.88 22.95
Siam.+w noise 67.24 5.64 24.17
Stoch.(6 # 0) 81.12 19.67 41.99

by batch normalization, Triplet, Stochastic Triplet, Triplet
regularized by Lp-regularization, Triplet regularized by
dropout and Triplet regularized by batch normalization. The
evaluations are reported on three different tasks of HPatches
where training process repeated 3 times with different initial-
ization. The total number of conducted experiments for this
section is 4 x 10 x 3 = 120 which makes it a reliable source
for comparison between different methods.

The CNN model is fixed for all the experiments and the
hyperparameters are tuned on 30 K data regime using patch
verification mAP. We tuned the model for all the listed
methods individually, to obtain the best mAP. The result of
this tuning is shown in the Figure 9 and Figure 10 where
m* = 1 and m = 2. We report the mean and variance of
each setup in the Figure 8. This experiment confirms that
Stochastic Siamese loss performs better than the other con-
ventional Contrastive loss regularized by different methods
in all different tasks. However, the improvement of Triplet
loss by adding stochasticity is less significant compared to
the Siamese loss. One important observation from this exper-
iment is to show the advantage of Stochastic loss when there
are fewer available training data in the left part of Figure 8.

D. COMPARISON TO WEIGHT PERTURBATION

The literature [6] suggests that random Gaussian perturbation
of the network weights can approximate a norm penalty
regularization on the gradient, which is comparable to our
proposed Stochastic loss. To compare the effect of both WP
and Stochastic loss we conducted the following experiment.
‘We train our model on three states: Siamese loss, Siamese loss
with Gaussian noise is added to the weights, and Stochastic
loss. After tuning the network on 30K data regime with
different initializations, the best performance of these three
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states are reported in Table 2. The tuned Gaussian distribution
of noise is N (0, 2.5) and 6 € {+2, —2}. The results show that
stochasticity better generalizes for Siamese loss compared
to WP.

E. COMPARISON TO OTHERS

We compare the performance of our Stochastic Siamese and
Stochastic Triplet losses with other methods on HPatches [3].
We trained our model on Hpatches train dataset as same as
other methods except HardNet++ which is trained on the
union of Liberty [33] and HPatches. Data augmentation is
not used at all. Parameters & = £0.75 and 6 = £0.05 are
tuned for Stochastic Siamese and Stochastic Triplet losses,
respectively. Results are shown in Figure 11. The accuracy of
our Stochastic Triplet loss on patch verification task is 94.8%
which introduces a new state of the art on this dataset. For
image matching and patch retrieval tasks, our best mAPs are
58.67% and 80.23%, respectively which are competitive. The
DOAP does better, which can be expected as the DOAP is a
ranking loss which is better correlated with ranking task such
as retrieval.

VI. CONCLUSION

This paper introduces new Stochastic Siamese and Stochastic
Triplet losses for deep distance learning that regularizes the
networks at loss layer to prevent overfitting. This is by elim-
inating sensitive minima, where the metric gradient is non-
zero, from the loss landscape. Experimental results show the
effectiveness of the proposed Stochastic loss particularly, for
limited training data regime. Stochastic loss achieves state of
the art on patch verification, while have a competitive perfor-
mance on image matching and patch retrieval compared to
the ranking losses.

REFERENCES

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5297-5307.

[2] L.J.Baand B. Frey, “Adaptive dropout for training deep neural networks,”
in Proc. 26th Int. Conf. Neural Inf. Process. Syst., vol. 2. Red Hook, NY,
USA: Curran Associates Inc, 2013, pp. 3084-3092.

VOLUME 8, 2020



R. Serajeh et al.: On Sensitive Minima in Margin-Based Deep Distance Learning

IEEE Access

[3]

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, ‘“HPatches: A
benchmark and evaluation of handcrafted and learned local descriptors,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3852-3861.

J. Bromley, I. Guyon, Y. LeCun, E. Séckinger, and R. Shah, ‘““Signature
verification using a, ‘siamese’ time delay neural network,” in Proc. 6th
Int. Conf. Neural Inf. Process. Syst. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc, 1993, pp. 737-744.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric dis-
criminatively, with application to face verification,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1, Jun. 2005,
pp. 539-546.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

A. Graves, “Practical variational inference for neural networks,” in Proc.
Adv. Neural Inf. Process. Syst.,J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran
Associates, 2011, pp. 2348-2356.

X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, ‘“Match-
Net: Unifying feature and metric learning for patch-based matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 3279-3286.

B. Hariharan and R. Girshick, “Low-shot visual recognition by shrinking
and hallucinating features,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 3037-3046, doi: 10.1109/ICCV.2017.328.

K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average
precision,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 596-605.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for per-
son re-identification,” pp. 1-17, Mar. 2017, arXiv:1703.07737. [Online].
Available: https://arxiv.org/abs/1703.07737

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” ArXiv, vol. abs/1502.03167,
pp. 1-11, Feb. 2015.

R. Jin, S. Wang, and Y. Zhou, “Regularized distance metric learning:
Theory and algorithm,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst.
Red Hook, NY, USA: Curran Associates Inc, 2009, pp. 862-870, USA,
2009.

G. Kang, J. Li, and D. Tao, “Shakeout: A new regularized deep neu-
ral network training scheme,” in Proc. AAAI, 2016, pp. 1751-1757.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAT/AAAILG/
paper/view/11840

M. Keller, Z. Chen, F. Maffra, P. Schmuck, and M. Chli, “Learning deep
descriptors with scale-aware triplet networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2762-2770.

G. Koch, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks for
one-shot image recognition,” in Proc. ICML Deep Learn. Workshop, vol. 2,
2015, pp. 1-8.

A. Krogh and J. A. Hertz, ““A simple weight decay can improve generaliza-
tion,” in Proc. Adv. Neural Inf. Process. Syst., J. E. Moody, S. J. Hanson,
and R. P. Lippmann, Eds. San Mateo, CA, USA: Morgan Kaufmann, 1992,
pp. 950-957.

G. VijayKumarB., G. Carneiro, and I. D. Reid, “Learning local image
descriptors with deep siamese and triplet convolutional networks by min-
imizing global loss functions,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Dec. 2016, pp. 5385-5394.

H.Liu,J. Feng, M. Qi,J. Jiang, and S. Yan, “End-to-end comparative atten-
tion networks for person re-identification,” IEEE Trans. Image Process.,
vol. 26, no. 7, pp. 3492-3506, Jul. 2017.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.

A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to
know your neighbor’s margins: Local descriptor learning loss,” in Proc.
NIPS, 2017, pp. 4826-4837.

Q. Qian, L. Shang, B. Sun, J. Hu, T. Tacoma, H. Li, and R. Jin, “SoftTriple
loss: Deep metric learning without triplet sampling,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6449-6457.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815-823.

H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, ‘‘Deep metric learning
via lifted structured feature embedding,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4004—4012.

VOLUME 8, 2020

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

(41]

(42]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014,

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the
gap to human-level performance in face verification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1701-1708.

Y. Tian, B. Fan, and F. Wu, “L2-Net: Deep learning of discriminative patch
descriptor in Euclidean space,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6128-6136.

O. Vinyals, C. Blundell, T. Lillicrap, K. kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Adv. Neural Inf.
Process. Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, Inc., 2016,
pp. 3630-3638.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. 30th Int. Conf. Neural
Inf. Process. Syst. Red Hook, NY, USA: Curran Associates Inc, 2016,
pp. 3637-3645.

L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of neural networks using DropConnect,” in Proc. 30th Int. Conf.
Mach. Learn., in Proceedings of Machine Learning Research,
vol. 28, no. 3, S. Dasgupta and D. McAllester, Eds. Atlanta,
GA, USA: PMLR, Jun. 2013, pp. 1058-1066. [Online]. Available:
http://proceedings.mlr.press/v28/wan13.pdf

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning fine-grained image similarity with deep rank-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1386-1393.

S. Winder, G. Hua, and M. Brown, “Picking the best DAISY,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 178-185.
C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling
matters in deep embedding learning,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 2859-2867.

L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “DisturbLabel: Regular-
izing CNN on the loss layer,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4753-4762.

L. Yang and R. Jin, “Distance metric learning: A comprehensive survey,”
Dept. Comput. Sci. Eng., Michigan State Univ., East Lansing, MI, USA,
Tech. Rep., May 2006, vol. 2.

K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned invariant feature
transform,” in Computer Vision—ECCYV, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham, Switzerland: Springer, Sep. 2016, pp. 467—483.
S. Zagoruyko and N. Komodakis, “Learning to compare image patches via
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4353-4361.

A. Zhai and H.-Y. Wu, “Classification is a strong baseline for deep metric
learning,” in Proc. BMVC, 2019, pp. 1-12.

R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable deep
hashing with regularized similarity learning for image retrieval and per-
son re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4766-4779, Dec. 2015.

X. Zhang, F. X. Yu, S. Kumar, and S.-F. Chang, “Learning spread-out
local feature descriptors,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4605-4613.

Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned CNN
embedding for person reidentification,” ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 14, pp. 1-20, Nov. 2018.

REZA SERAJEH received the B.Sc. degree in elec-
tronics engineering from Hakim Sabzevari Uni-
versity, Sabzevar, Iran, in 2010, and the M.Sc.
degree in digital electronics from the Amirkabir
University of Technology, Tehran, Iran, in 2013.
He is currently pursuing the Ph.D. degree in elec-
tronics with the K. N. Toosi University of Tech-
nology, Tehran. He joined the Vision Laboratory,
Delft University of Technology, Delft, The Nether-
lands, in 2017, as a Ph.D. Visiting Researcher. His

research interests include computer vision, image processing, and machine
learning.

145075


http://dx.doi.org/10.1109/ICCV.2017.328

IEEE Access

R. Serajeh et al.: On Sensitive Minima in Margin-Based Deep Distance Learning

SEYRAN KHADEMI (Member, IEEE) received
the B.Sc. degree in electrical engineering from the
University of Tabriz, in 2005, the M.Sc. degree in
communications engineering from the Chalmers
University of Technology, Gothenburg, Sweden,
in 2010, and the Ph.D. degree from the Circuits
and Systems (CAS) Group, Delft University of
Technology, The Netherlands, in 2016. She was
an Application Engineer with Telecommunication
Company, Tehran. She was also a Postdoctoral

Researcher in audio and speech processing for intelligibility enhancement
with the CAS Group, Delft University of Technology, from February 2015 to
2017, where she is currently a Postdoctoral Researcher in image processing
and machine learning algorithms with the Computer Vision Laboratory.

AMIR MOUSAVINIA received the B.Sc. degree
(Hons.) from the Ferdowsi University of Mashhad,
in 1992, the M.Sc. degree in electrical engineer-
ing from the Amirkabir University of Technology,
in 1995, and the Ph.D. degree in electronics from
the Iran University of Science and Technology,
Tehran, Iran, in 2001. He is currently an Associate
Professor with the Faculty of Computer Engineer-
ing, K. N. Toosi University of Technology, Tehran.
His research interests include computer vision,

multiview geometry, and digital signal processing.

145076

JAN C. VAN GEMERT received the Ph.D. degree
from the University of Amsterdam, in 2010.
He was a Postdoctoral Fellow with the Ecole
Normale Supérieure, Paris. He currently Leads
the Computer Vision Laboratory, Delft University
of Technology, where he also teaches the M.Sc.
courses in computer vision and deep learning.
He has published over 75 peer-reviewed articles
with more than 5000 citations. His current research
interest includes adding visual inductive priors to
deep learning.

VOLUME 8, 2020



