
Delft University of Technology
Master’s Thesis in Embedded Systems

Command Recognition on
Intermittently-Powered Devices

Patrick Schilder

Embedded
Networked
Systems

Command Recognition on

Intermittently-Powered Devices

Master’s Thesis in Embedded Systems

Embedded and Networked Systems Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Patrick Schilder
p.t.schilder@student.tudelft.nl

30th April 2019

mailto:p.t.schilder@student.tudelft.nl

Author
Patrick Schilder (p.t.schilder@student.tudelft.nl)

Title
Command Recognition on Intermittently-Powered Devices

MSc presentation
9th May 2019

Graduation Committee
Prof. dr. K.G. Langendoen (chair) Delft University of Technology
Dr. ir. J.S.S.M. Wong Delft University of Technology
M.A. Zuniga, PhD. Delft University of Technology
A. Majid, MSc. Delft University of Technology

mailto:p.t.schilder@student.tudelft.nl

Abstract

The Internet of Things (IoT) is expected to include billions of tiny de-
vices that collect, process, and communicate sensory data. As of now, bat-
teries power these devices. Batteries, however, are large, expensive, and
short-lived – even the rechargeable ones wear out in a few years. There-
fore, they are not a sustainable powering solution. Tiny battery-less devices
promise a maintenance-free and environment-friendly alternative. They op-
erate by harvesting energy from the environment. Ambient power, however,
is marginal and unpredictable. This causes tiny energy-harvesting devices
to operate intermittently, violating the requirements of many real-world ap-
plications.

This work presents the Coalesced Intermittent Command Recognizer
(CICR), a group of intermittently-powered sensors that together perform
a real-world application: command recognition. To achieve this, we first
developed an event-based command-recognition algorithm tailored towards
battery-less sensors, taking into account the challenges of intermittent ex-
ecution. We then used this algorithm on multiple intermittent sensors to
make use of their collective availability. To experience continuous operation
of the CICR – at all times – at least one of the sensors must be on. In
worst-case conditions (little, intermittent power) the random nature of the
ambient power source (e.g. solar) randomizes the awake times. However, as
the energy conditions increase, sensors react collectively on the same word
– depleting their energy buffer all at the same time and missing subsequent
words. To counter this behavior we use a probabilistic algorithm to postpone
sensor reactions.

We implemented a CICR consisting of 8 battery-less recognizers on real
hardware and constructed a solar testbed for evaluation. Single-word com-
mands are recognized 50% of the time at a light intensity of 500 lux and
over 90% of the time at ≥800 lux. For multiple-word commands, our proba-
bilistic approach effectively distributes the recognizers over the words of the
command. Many recognizers, however, then have insufficient energy left in
their buffer to finish recording, which drastically reduces the capture rate.
This can be mitigated by a hardware modification that would allow recog-
nizers to start recharging as soon as the the amount of energy becomes too
low for recording.

iv

Preface

Computers have always held my interest. By studying Embedded Systems
at the Delft University of Technology I could extend that interest and learn
how computers connect to the physical world we live in. Battery-less IoT
sensors, however, are a whole step further into the future. They form a great
challenge in exchange for a sustainable solution. Writing my thesis about
this relatively new topic at the Embedded & Networked Systems group at
the TU Delft offered a taste of the future of technology.

Of course, I could not have completed this project without the help of others.
First of all I want to thank my daily supervisor, Amjad Majid, for the
frequent discussions, brain-storming sessions, and other help. Further I want
to thank my supervisors Przemys law Pawe lczak and Koen Langendoen for
support and useful feedback, Ioannis for giving advice on designing a custom
PCB, and other master and PhD students for the time spent together at the
faculty.

I also want to thank my family for always supporting me, and my friends,
especially Kavya, Rebecca, Patŕıcia, Álvaro, David, Madhu, and Carlo, for
memorable moments during my thesis, and during my master in general.

Patrick Schilder

Delft, The Netherlands
30th April 2019

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contributions . 4
1.3 Thesis Outline . 4

2 Background and related work 5
2.1 Energy harvesting . 5
2.2 Intermittent execution . 6
2.3 Speech recognition . 7

2.3.1 Types of speech . 7
2.3.2 Speech-recognition process 7
2.3.3 History of speech recognition 8
2.3.4 Low-power speech recognition 9

3 Design and implementation 11
3.1 Hardware . 11
3.2 Intermittent-node design . 12

3.2.1 Power States . 14
3.2.2 Desynchronization . 15

3.3 Command recognition implementation 16
3.3.1 Recording . 16
3.3.2 Feature Extraction . 17
3.3.3 Feature Matching . 18
3.3.4 Power-failure proofing 20

3.4 Code profiling . 21

4 Results 23
4.1 Design optimization . 23

4.1.1 Minimum effective recording length 23
4.1.2 Comparison of feature matching methods 24
4.1.3 Determining the recognition threshold 25
4.1.4 Recognition of late recordings 25

vii

4.2 Evaluation . 27
4.2.1 Experimental setup . 27
4.2.2 Single-node duty cycle 28
4.2.3 CICR availability . 28
4.2.4 Single word detection 29
4.2.5 Long commands – detection and capture 30
4.2.6 CICR word coverage 32
4.2.7 CICR command coverage 32

5 Conclusions and Future Work 35
5.1 Conclusions . 35
5.2 Future Work . 35

A Microphone PCB design 43

viii

Chapter 1

Introduction

The Internet of Things (IoT) is expected to include billions (or trillions)
of tiny devices that collect, process, and communicate sensory data. These
devices will improve healthcare [8], water infrastructure [59], and smart
buildings [1, 14], to name a few.

As of now, batteries power these devices. Batteries, however, are large,
expensive, and short-lived – even the rechargeable ones wear out in a few
years. They impose regular maintenance of devices that are otherwise func-
tional. Therefore, they are not a sustainable powering solution.

Tiny battery-less devices promise a maintenance-free and environment-
friendly alternative. They operate by harvesting energy from ambient sources
such as light [40, 41], vibration [22], and radio frequency waves [21]. Tiny
energy harvesters, however, can only scavenge very limited power from such
energy sources [36]. Therefore, the execution is intermittent : it is triggered
when a threshold in the energy buffer (e.g. super-capacitor) is reached, and
terminated when the energy buffer has been depleted (Figure 1.1). Be-
cause of intermittent execution data processing, sensing, and communi-
cation are often disrupted, clocks are reset, and volatile memory is lost.
Recent advances in checkpointing [3, 54], data consistency [11, 38], time-
keeping [17, 26], energy management [24], testing [23], and debugging [13]
address some of the key challenges of intermittent execution.

Existing intermittent applications include temperature monitoring [12],
voice presence detection [68] and robot actuation [68]. So far, intermittent
applications have been often implemented as toy applications, i.e. proof of
concepts instead of functional applications. This thesis contributes to the
intermittent-sensing community with an implementation of a functional
speech recognition algorithm for intermittently-powered devices.

Speech recognition has long been studied, and currently most of the al-
gorithms employ hidden Markov models (HMMs) for feature matching [18,
29, 45]. Recently, also deep neural networks are employed for acoustic mod-
eling of state-of-the-art speech recognition systems [27]. The acoustic and

1

B
uf
fe
re
d
En
er
gy

Time

on threshold

off threshold polling-based sensing

charging

Figure 1.1: The execution of an intermittent system is triggered when an
energy threshold in the buffer is reached, and terminated when the energy
buffer has been depleted.

language models used for speech recognition typically use tens to hundreds
of megabytes of storage with significant computation required for large vo-
cabulary search [16].

Due to their limited resources, battery-less devices can only run a much
simpler speech recognition algorithm. One that is still able to recognize a
limited set of words (i.e. 10-20), requiring a significant smaller amount of
computation, and therefore less energy.

In many useful cases a simple form of speech recognition – command
recognition – suffices to communicate the necessary information from a user
to a device. The use of battery-less devices for human-device interaction
could offer a green and maintenance-free alternative, especially in places
where a limited vocabulary size is needed, e.g. data entry applications in
smart homes [44].

Despite significant progress achieved in the intermittent domain, the sys-
tem availability problem has not been addressed. A monitoring sensor that
has a very low probability to be available when an external event occurs
is not worth deploying. A sensor that is capable of capturing only very
short events has a limited number of potential applications. For example,
a voice-controlled light-switch capable of only accepting short (single-word)
commands has its limitations. Using ”on” to turn on the lights might turn on
other devices as well. Using ”lights” does not allow the specification of ”on”
or ”off”. Consequently, intermittent sensors have not gained widespread
adoption.

This thesis touches the paradox of continuous sensing on intermittent
devices. It studies the power cycles of energy-harvesting command recog-
nizers and makes a key observation about the relationship between those
power cycles. Energy-harvesting recognizers driven by the same ambient
energy source (e.g. light) do not show correlated on/off (sense/charge) cy-
cles. Building on top of this observation, we introduce coalesced intermittent

2

Continuous
Sensing

Nodes on-times

Intermittent
Power

External
event

Figure 1.2: A Coalesced Intermittent Command Recognizer is a group of
intermittently-powered nodes that sense continuously despite intermittent
power supply.

command recognizer (CICR). The CICR is defined as the abstraction of a
group of energy-aware intermittent word recognizers providing the collective
sense of continuous availability. Figure 1.2 illustrates the CICR concept; a
number of solar-powered nodes equipped with a microphone, recording voice
commands in a smart home setting. Recording and processing a word de-
pletes the super-capacitor that powers a node, leaving it unresponsive until
the subsequent recharging completes. Multiple nodes with (partially over-
lapping) on/off cycles spread in time can provide continuous service despite
the inherent intermittency.

In contrast to periodic (one-shot) sensing applications, event-based appli-
cations (like our command recognizer) may induce implicit synchronization
(multiple nodes detecting the same command) that compromises the avail-
ability required by the application (all nodes recharge after the first word,
missing any subsequent word). To guarantee continuous availability, a CICR
may need to introduce artificial randomness.

1.1 Problem Statement

A lot of research has been performed on intermittent systems already, how-
ever most applications are focusing on measuring slow-changing variables,
due to the limitations that are introduced by intermittent sensing. It would
be beneficial to be able to use small, battery-less devices for continuous
sensing.

Often only certain parts of a signal are interesting. In order to respond
to the interesting events, these events themselves can be used to trigger
sensing. For example a big vibration could trigger an earthquake detector,

3

a vibration or sound could trigger a presence detector, or a sound could
trigger a command-recognition system.

However, handling bursts of events is challenging on intermittent systems:
one device is not sufficient, as it may be unavailable or will need to recharge
quickly, and using multiple devices requires specialized algorithms. Keeping
this in mind and focusing on command recognition, the main research ob-
jective is formulated as follows:

Develop, implement, and evaluate a command-recognition algorithm for
intermittently-powered devices.

During evaluation properties of interest are system availability and recog-
nition accuracy.

1.2 Contributions

The key contributions of this thesis are twofold:

� Development and implementation of a command-recognition algorithm
that is able to run on intermittently-powered devices. We used isolated-
word recognition together with a probabilistic desynchronizing algo-
rithm to distribute individual command recognizers over a four-word
command.

� Evaluation of a coalesced intermittent command recognizer consist-
ing of eight intermittent nodes. We show that the CICR recognizes
over 90% of single-word commands with ≥800 lux, but that distribut-
ing the nodes over a four-word command often leaves the nodes with
insufficient energy left in their buffer by the time they start recording.

1.3 Thesis Outline

The layout of this thesis is as follows: The background of this thesis topic
and related work will be discussed in Chapter 2. System design and im-
plementation will be described in Chapter 3. Results will be presented in
Chapter 4. Finally the conclusions will be presented in Chapter 5 as well as
directions for future work.

4

Chapter 2

Background and related work

This chapter provides background information on energy harvesting (Sec-
tion 2.1), intermittent execution (Section 2.2), and speech recognition (Sec-
tion 2.3).

2.1 Energy harvesting

Many studies have proposed techniques for harvesting kinetic energy [22],
solar energy [40, 41], thermal energy [4] and energy from radio frequency
(RF) waves [21].

Recently specialized small-form-factor harvesting circuits have been de-
veloped [61], making it possible to use some of the natural energy resources
in IoT devices. Since then, many battery-less energy-harvesting platforms
have been proposed. Some of them rely on dedicated external energy sources
such as WISP, a general wireless identification and sensing platform [58,
71, 69]; WISPcam, an RF-powered camera [46]; and the battery-free cell-
phone [60]. Others, harvest from ambient sources such as the ambient
backscatter tag [36], and the solar-powered tag [39]. Other platforms that
facilitate the development of batteryless energy-harvesting systems have also
been proposed. For instance, Flicker [25], a prototyping platform for battery-
less devices; EDB [10] an energy-interference-free debugger for intermittent
devices; and Capybara [12], a re-configurable energy storage architecture for
energy-harvesting devices.

Ambient energy, however, is volatile and scarce. For example, harvestable
RF power varies from nW-scale when harvesting ambient RF energy, to µW-
scale when harvesting a dedicated RF signal; and solar power ranges from
tens of µW to tens of mW when it is harvested by a solar panels of a few cm2

of illumination surface [37, 55]. For comparison, an intermittent command
recognizer uses up to 850 µW (Section 3.4).

Tiny solar panels will not be able to provide enough energy to power the
command recognizer continuously, thus it will have to operate intermittently.

5

Figure 2.1: Example of a failure that can occur when there is a Write After
Read (WAR) dependency during intermittent execution. The variable ’len’,
which is non-volatile (does hold its value during a reset) is incremented more
often than it should. Figure taken from [38].

2.2 Intermittent execution

Intermittent systems are regarded as the successor of energy-aware systems.
Dewdrop [7] is an energy-aware runtime for (computational) RFID’s such as
WISP. Dewdrop goes into low-power mode until sufficient energy for a given
task is accumulated. QuarkOS [70] divides a given task (i.e. sending a mes-
sage) into small segments and sleeps after finishing a segment for charging
energy. However, these systems are not disruption tolerant.

On an intermittent system, the execution of a program is composed of
periods of sequential execution interrupted by reboots that can occur at
any moment in time. During a reboot all volatile memory is cleared, and
control returns to the entry point of the application. Only data in non-
volatile memory (e.g. Ferroelectric RAM) is retained. Power-failure-tolerant
systems [53] use checkpointing of the volatile state into non-volatile memory
to ensure forward progress during the frequent resets (up to multiple times
per second). Once execution reaches a certain point in the code, a checkpoint
is made, from where execution is continued after a reset.

For bigger programs it takes a lot of effort to place checkpoints manually.
Ratchet [64] uses compiler analysis to eliminate the need of programmer
intervention and hardware support. HarvOS [6] uses both compiler and
hardware support to optimize checkpoint placement and energy consump-
tion.

Unfortunately, frequent checkpointing causes overhead. Hibernus [3] mea-
sures the voltage level in the energy buffer to reduce the number of check-
points. Measuring the voltage level, however, still causes some overhead.

Using checkpoints does not automatically ensure data consistency. It
may happen that code is executed multiple times because of resets, causing
a data value to be altered more often than intended. DINO [52] shows that

6

in addition to the volatile memory, the non-volatile memory of the processor
must also be protected to ensure correct executions. For example, Figure 2.1
shows how non-volatile variable with a Write After Read (WAR) dependency
leads to wrong results.

Programming models are available that guarantee data consistency during
intermittent execution [6, 38, 64]. To do that, sometimes multiple copies of
data need to be made. Some of the models optimize intermittent execution
by reducing the amount of data needed to be saved into non-volatile mem-
ory to protect applications against power interruptions [11]. Intermittent
execution models, however, also enforce certain coding schemes, which are
generally cumbersome to use.

2.3 Speech recognition

While there are many speech-recognition algorithms, none work on intermit-
tent devices. This section briefly explains speech types and speech recogni-
tion steps, and gives an overview on the history of speech recognition.

2.3.1 Types of speech

Speech recognition algorithms can focus on different types of speech, namely:
spontaneous speech, continuous speech, connected word, and isolated word [20].
The recognition of different types of speech all have their advantages and
disadvantages. Systems with continuous or spontaneous speech recognition
are the closest to supporting natural speech, but are the most difficult to
create because they need special methods to detect word boundaries [20].
This is less the case for the connected word type, where a minimum pause
between the words is required. The type with the least complexity is the
isolated word type. It requires a period of silence on both sides of the spoken
word and accepts only single words.

2.3.2 Speech-recognition process

Speech recognition usually consists of several steps (Figure 2.2). The basic
steps are mentioned briefly here, while a more detailed description of the
implemented algorithm is given in Chapter 3.

First the speech has to be recorded. A microphone records the sound
waves and an ADC converts the microphone signal into a digital signal. A
sampling rate of about 8 kHz is required to capture the frequencies of a
human voice (100-4000Hz [5]).

After that the digital signal is divided into blocks of usually 10-30 ms
called frames [15, 16, 20]. In the rest of the code, speech is processed on a
frame-by-frame base. This reduction of dimensionality is possible because,

7

feature
extraction

feature
matching

endpoint
detection

1 2 3

Figure 2.2: Typical steps in a template-based speech-recognition algorithm:
(1) An endpoint detection algorithm extracts the part of the audio signal
that corresponds to the input word, (2) during feature extraction the energy
spectrum of the trimmed signal is calculated, and (3) features are matched
against templates from the local database to find the most similar word.

while audio properties are varying with time, the properties can be consid-
ered constant on a small time scale.

If the position of the word in the recording is unknown, it needs to be
determined by an endpoint detection algorithm [49, 67].

Then, for each frame a feature vector is extracted, which contains the
essential acoustic information.

Finally the sound features from the recording are matched against features
known to the recognizer. In some statistical-based speech recognition mod-
els, feature matching is split into (i) calculating the probabilities of all the
possible sounds that could have been pronounced and (ii) matching those
sounds to a dictionary of words [18].

2.3.3 History of speech recognition

To give an idea about existing algorithms, we give a brief summary of the
advances in speech recognition over the years.

Early systems for automatic speech recognition started appearing in the
1950’s and 1960’s [33]. They were able to recognize small vocabularies (order
of 10-100 words) of isolated words, based on simple acoustic-phonetic prop-
erties of speech. The key technologies that were developed in this decade
were filter-bank analyses and elementary time-normalization methods, that
were based on the ability to reliably detect speech starts and ends [42].

The speech recognition algorithms from the 1970’s were able to recognize
medium vocabularies (order of 100-1000 words) using simple template-based
pattern recognition methods. The key technologies that were developed dur-
ing this period were pattern-recognition models, Linear Predictive Coding
methods for spectral representation, pattern clustering methods for speaker-
independent recognizers, and dynamic programming methods for time align-
ing a pair of speech utterances – known as Dynamic Time Warping (DTW)
– including algorithms for connected word recognition [66].

Speech recognition research in the 1980s was characterized by a shift in
methodology from the more intuitive template-based approach towards a

8

more rigorous statistical modeling framework [18]. Today, most speech
recognition systems are based on the statistical framework developed in
the 1980s [29, 45], with significant improvements having been added in the
1990’s. The key technologies introduced during this period were the hid-
den Markov model (HMM) [50, 51] and the N-gram stochastic language
model, which together enabled powerful new methods for handling virtu-
ally any continuous speech recognition problem efficiently and with high
performance.

In the 1990’s large vocabulary systems were built with unconstrained lan-
guage models, and constrained task syntax models for continuous speech
recognition and understanding [33]. Various techniques were investigated to
increase the robustness of speech recognition systems against the mismatch
between training and testing conditions, caused by background noises, voice
individuality, microphones, transmission channels, room reverberation, and
so-called disfluencies such as partial words, hesitation, and repairs. In this
period speech recognition started to be used within telephone networks to
automate operator services [18].

Finally, from 2000 onwards, very large vocabulary systems have been in-
troduced with full semantic models, integrated with text-to-speech synthesis
systems. Research has focused on spontaneous speech recognition and fur-
ther increasing robustness, using techniques like flexible acoustic modeling,
sentence boundary detection, pronunciation modeling, adaptation of acous-
tic as well as language models, and automatic speech summarization [19].
Speech recognition has further entered the market. Mobile devices with
internet access have caused a movement towards distributed speech recog-
nition, where the computationally-intensive parts of speech recognition are
offloaded to the cloud [2].

Recently, deep neural networks are being employed for acoustic modeling
of state-of-the-art speech recognition systems that, however, still often are
combined with a HMM [27].

2.3.4 Low-power speech recognition

Developing speech recognition for intermittent devices first of all means de-
veloping speech recognition for ultra-low-power devices. A lot of research
on low-power speech recognition has been done. Most solutions use special-
purpose hardware [9, 43, 47] or are implemented on FPGAs [35]. Others
focus on speech recognition for handheld devices [16, 30], which still re-
quire significantly higher resources than our targeted hardware (Chapter 3).
Open-source speech recognition toolkits such as PocketSphinx [30] and Em-
bedded Julius [34] also focus on handheld devices like smartphones rather
than ultra-low-power devices. They use a HMM in combination with large
language models and therefore are not suitable for intermittently-powered
devices.

9

The problem of implementing speech recognition on less powerful hard-
ware was already faced in the early 90’s. The objective at that time was
to bring speech recognition to personal computers in a time where speech
recognition systems often required sophisticated special-purpose hardware
to obtain reasonable processing times. A speaker-dependent, isolated-word
speech-recognition algorithm was implemented for a personal computer us-
ing a relatively simple signal processing technique [28]. FFT was used for
feature extraction while DTW was used to determine the most likely entry
from a dictionary of previously stored word templates. Inspiration was taken
from this approach during development of the speech recognition algorithm
described in this thesis.

More recent work that does not require special-purpose hardware includes
a low-power speech recognition algorithm using neural networks [5]. The
algorithm used in that paper does not divide the recording into multiple
frames, but uses only one time frame instead, which limits the system to
recognize only five vowels instead of whole words. The detection of a vowel
takes 347ms on hardware similar to our target hardware. The algorithm
does not support intermittent execution, however.

10

Chapter 3

Design and implementation

We designed a Coalesced Intermittent Command Recognizer (CICR) con-
sisting of multiple intermittently-powered command recognizers (nodes).
Each node is capable of extracting and compressing voice features, as well
as performing simple word recognition. By combining results from multiple
nodes in a central base station, multiple-word commands can be processed,
and further actions can be taken (Figure 3.1).

The design aims for devices with a small form factor (a couple of square
centimeters), which can be embedded in furniture, wallpaper, or ceiling and
placed in an office or home environment.

The requirement of a small form factor also holds for the energy harvesting
equipment: A small solar panel or antenna provide the device with some tens
to hundreds of µW, depending on the exact size and type, and the energy
environment. This calls for an energy-aware design that takes into account
low power usage as well as power outages and charging times (intermittent
execution).

3.1 Hardware

We selected the ultra-low-power microcontroller MSP430FR5994 [62] from
Texas Instruments for all sensing and processing. This microcontroller has a
16-bit RISC processor running at 1 MHz, 8KB of SRAM (volatile), 256KB of
FRAM (non-volatile), and a 12-bit analog to digital converter (ADC). It also
features a Low Energy Accelerator (LEA), which offloads the main CPU for
specific operations, such as FFT. We chose this microcontroller because of
the low cost (couple of dollars), and because of the low power consumption
and the availability of non-volatile memory in the form of FRAM. FRAM
retains data during a power reset, while it is faster and less power hungry
than other types of persistent storage like an SD-card.

For recording we used the PMM-3738-VM1010-R [48] piezoelectric MEMS
microphone, which features Wake-on-Sound and ZeroPower-listening tech-

11

Powered
Base

Station

Figure 3.1: Results of the coalesced intermittent command recognizer are
combined at a central base station, where multiple-word commands can be
processed, and further actions can be taken.

nologies [65], allowing both the microcontroller and the microphone to sleep
in a low-power mode until a sound is detected. The microphone chip is
mounted on a custom PCB (Appendix A) and has a wired connection to the
microcontroller.

The microcontroller and microphone are powered intermittently by a
Texas Instruments BQ25570 [61] solar-power harvester connected to an
IXYS SLMD121H04L [31] solar panel (6 cm2) and a super-capacitor of 470 µF.

3.2 Intermittent-node design

The low-power design calls for low-power hardware, which in turn calls for a
very simple command-recognition algorithm. We implemented a speaker-
dependent, template-based, isolated-word algorithm (implementation de-
tails in Section 3.3). These properties of the algorithm have a great impact
on the rest of the design.

As the algorithm is speaker dependent, it requires a short training period
for each user. This suggests the use in an environment with a small, fixed
group of users, such as a smart home or smart office.

An isolated-word algorithm can process one word at the time and requires
a short period of silence both before and after a word. This disqualifies it
for recognition of continuous speech, but lends it well for command recogni-
tion. In fact shorter recording times are preferred on intermittently-powered
systems, as a smaller capacitor can be used, decreasing the charging time,
and therefore making the device more reactive.

There is a lower recording limit, however. If a recording length were
used that is much shorter than a word, a single node would be unable to

12

B
uf
fe
re
d
En
er
gy

Time

Sensing theshold

captured event missed event

eventbased sensing

Listening

on threshold

off threshold

Figure 3.2: A command recognizer node first charges its energy buffer, then
stays in low-power mode until it detects a word and starts recording it.

recognize a word on its own, since it would have recorded only a part of
a word, and would have to recharge before it can record again. Therefore
it would not have enough information to recognize a word. Theoretically
different nodes could record different parts of a word and afterwards a word
could be reconstructed by putting the pieces together. In reality, accurate
timing information to put the sound pieces together is not available on
battery-less devices. Additionally, combining several sub-word sound pieces
would introduce extensive communication between the nodes — a significant
energy investment.

To avoid the need for precise timing and extensive communication, we
used a recording length long enough to recognize a word. It is important
for the recording to happen uninterrupted: a recording interrupted by a
power reset effectively exists of two shorter recordings. Once a node has
finished recording, power resets do not affect the recognition result of the
just recorded word anymore, since the recoding is safely stored in FRAM.

Multiple-word commands will always have to be recognized by multiple
nodes, as a single intermittent node must recharge its energy buffer after
recording.

A representative sound input for a command recognition system consists
of bursts of 1-4 words closely after each other, forming a command, and
long periods of silence between the commands. As words can be seen as
events, we chose to design an event-driven algorithm, which will await events
(words), sleeping in a low-power mode, and start acting once it detects a
word (Figure 3.2).

In an environment where commands are not spoken often, the availability
of a CICR at the time someone starts speaking can be modeled using the
duty cycles that intermittent nodes have when in low-power mode – as that
is the state they will be in until that moment. The following equation models
the system availability when a single node is added to the CICR:

asys(N) = asys(N − 1) + anode ∗ (1− asys(N − 1)), (3.1)

13

4 8 12 16 20
Number of Nodes

 20%

 40%

 60%

 80%

 100%
A
va

ila
bi
lit
y

on/off cycle=0.1
on/off cycle=0.2
on/off cycle=0.3
on/off cycle=0.4
on/off cycle=0.5

Figure 3.3: Modeled Coalesced Intermittent Command Recognizer availabil-
ity percentage for different numbers of nodes and different duty cycles, using
Equation (3.1)

where asys is the system availability, anode is the availability of the node that
is being added to the system, and N is the number of added nodes so far
(asys(0) = 0). Figure 3.3 presents the modeled CICR availability percentage
for different numbers of nodes and different duty cycles.

3.2.1 Power States

A CICR can experience a wide range of ambient power intensities. For ex-
ample, a CICR may harvest no energy at night, modest energy from artificial
light, and abundant energy from direct sunlight. Generally, we can identify
four different powering states:

� Targeted power state—These are the powering conditions that the
CICR is designed for. In these conditions, it should work intermit-
tently and have sufficiently randomized power cycles to uniformly dis-
tribute its intermittent nodes’ on-times and meet the desired availabil-
ity percentage (Figure 3.3). In general, the targeted powering condi-
tions should be near worst-case energy harvesting conditions to ensure
that the system is properly functioning for the majority of the time.

� Under-targeted power state—Ultimately, the ambient energy is an un-
controllable power source, and it is not hard to imagine scenarios where
the CICR will be under-powered or even comes to complete and long
power down (for example in darkness). In general, for under-targeted
energy conditions, the CICR behavior can be considered as undefined.

14

En
er
gy

Time

event node 1
node 2
node 3

missed event

sleep
off

active

Figure 3.4: Coalesced Intermittent Command Recognizer is in a hibernat-
ing power state when the energy harvesting rate approximates the energy
consumption rate at the sleeping (low-power) mode. In this state, the inter-
mittent nodes lose the randomization between their power cycles. Thus, all
the nodes record the first word and power down shortly afterwards, missing
the subsequent ones. Consequently, the CICR senses intermittently and fails
to take advantage of its redundant nodes.

� Hibernating power state—When the intermittent nodes of a CICR
sleep in low-power mode waiting for a word to wake them up. If the
energy conditions are significantly higher than the targeted conditions,
the nodes may not die and sustain their sleeping power consumption.
This will cause them to synchronize their wake-ups on the first in-
coming word and their powering down as the word recording process
depletes their energy buffers quickly. Consequently, the CICR may
miss the next incoming words (especially if the words arrive in the
form of a long command) causing it to sense intermittently in stead of
continuously (Figure 3.4).

� Continuous power state—Under direct mid-noon sun even a tiny solar
panel can continuously power a sensor. In such conditions, the CICR
will sense continuously without the need for randomization. Therefore,
the job of a single node will be repeated N times, and instead of
sending a single message to the base station, N identical messages will
be sent, which wastes a lot of energy.

3.2.2 Desynchronization

The inefficiencies highlighted in the Hibernating and Continuous power
states can be mitigated by desynchronizing (enforcing randomization) on
the response of the intermittent nodes (Figure 3.5): when a node detects
word it only starts recording with a certain probability.

For this, we generated random numbers from the least significant bits of
the last recorded sound values. Depending on the random number, a node

15

En
er
gy

Time

event node 1
node 2
node 3

sleep

event

off

active

Figure 3.5: Randomized response helps in mitigating the hibernating power
state problem. Also, it reduces the number of duplicated captured events
when the CICR is overpowered.

will either (i) start recording as usually, or (ii) turn off the microphone, sleep
for an additional 700 ms and then wait for the next voice event. At the next
event a new random number is drawn to make the same decision again. The
additional period of sleep (in this case 700 ms) is based on the used testing
set of words (Table 4.1) and is needed to ensure that the node will not wake
up from the same word, but instead will wait for the next word.

The downside of using randomness for desynchronization is that it intro-
duces a probability that all available nodes will postpone their recording
and a word will not be captured, even though some nodes were available.
Furthermore, it may happen that a node that initially had enough energy
to record, will not have enough energy anymore after postponing recording
a couple of times.

3.3 Command recognition implementation

This section describes the used steps for performing command recognition.
Figure 3.6 gives an overview of where the steps fit in the command recogni-
tion process.

In our implementation the code is always executed in a fixed order and is
non-preemptive. This means that once recording is completed a node has
to finish processing before it can record again.

3.3.1 Recording

We use a sample rate of 8 kHz for recording to cover the frequency range of
the human voice. By studying the characteristics of the targeted vocabulary
– in particular the minimum effective recording length (Section 4.1.1) –
we selected a fixed recording length of 285 ms. Because we use a fixed
recording length and exploit the wake-on-sound microphone feature, the

16

ADC FFT Normalization

Templates

LDM Decision logic

Train

Recognize

Frequency
band filtering

Recording Feature extraction Feature matching

Figure 3.6: System block diagram.

word is always positioned at the beginning of the recording (t = 0) and
endpoint detection is not needed, greatly improving the processing time and
system efficiency from the energy perspective.

Once a recording has finished, framing and data processing begin. We
use non-overlapping frames of 256 samples (≈ 33 milliseconds). This size
is beneficial for doing a Fast Fourier Transform and short enough for the
voice-features to be considered constant inside one frame (see Section 2.3).

3.3.2 Feature Extraction

Next, features of the recorded voice are extracted for comparison against
previously stored templates. Feature extraction takes place on a frame-by-
frame basis and is based on the energy and spectral characteristics of each
frame. The spectral characteristics of a frame are determined by dividing the
frequency range of interest into several spectral bands. We use 12 spectral
bands as in [28] (Table 3.1). Because most of the energy in human speech
is contained in lower frequencies, the width of the bands is smaller for the
lower frequencies and gradually increases as the frequency gets higher.

For each frame in a word, a 256-point FFT is performed. The results of
the FFT are used to determine the energy in each of the 12 spectral bands.
This process essentially produces a 12-element vector for each frame of the
speech input. Each element of the vector represents the energy in one of the
12 spectral bands. These vectors are the basis for comparison against the
previously stored templates, once they are normalized.

Normalization

Once the features are extracted from the speech input, the frames are nor-
malized. This process helps to eliminate errors that could result from differ-
ences between the amplitude of the speech input and the previously stored
template for that word. To normalize a feature vector, for each of the spec-
tral bands the binary logarithm is taken of the energy in that band and

17

Table 3.1: Spectral bands used for feature extraction.

Band Frequency range (Hz)

1 100-300
2 250-450
3 400-600
4 550-750
5 700-900

6 900-1200
7 1200-1500
8 1500-1800

9 1800-2300
10 2300-2800

11 2800-3400
12 3400-4000

the average energy logarithm of the frame is subtracted from that. This is
shown in the following equation:

fi = log(f̂i)−

S∑
i=1

log(f̂i)

S
, (3.2)

where fi is the normalized output for the ith spectral band of the frame. f̂i
is the energy in the ith spectral band of the frame and S is the number of
spectral bands (12 in our case).

3.3.3 Feature Matching

The system identifies the recorded word by comparing the normalized fea-
tures of the input signal against the features of all the templates contained
in its dictionary.

As was previously discussed, these features are contained in vectors, and
the comparison of these vectors is made on a frame-by-frame basis. The sim-
ilarity between two frames is determined by computing the distance between
them, which can be obtained by computing the squared Euclidean distance
between their normalized vectors as shown in the following equation:

d[FT , FR] =
S∑

i=1

(fT,i − fR,i)
2, (3.3)

where d is the the distance between two frames, FT is the a template frame,
FR is the a recorded frame, fT,i is the normalized output of the ith spectral

18

band of a template frame, fR,i is the normalized output of the ith spectral
band of a recorded frame and S is the number of spectral bands.

It should be emphasized that feature matching algorithms may choose
different frame pairs to compare for determining word similarity. We im-
plemented two feature matching methods: Linear Distance Matching and
Dynamic Time Warping.

Linear Distance Matching

In Linear Distance Matching (LDM) the frames within the feature vectors
of two words are compared successively, not accounting for differences in
pronunciation speed. LDM can only compare feature vectors of equal length.
The total distance between two words is calculated as follows:

d[WT ,WR] =
L∑
i=1

d[FT,i, FR,i], (3.4)

where d is the distance, WT is a template word, WR is a recorded word,
FT,i is the ith template frame, FR,i is the ith recorded frame, and L is the
recording length measured in frames.

Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for measuring similarity be-
tween two time sequences of numbers (representing words, in our case),
which may vary in speed. Two words can be ”warped” non-linearly by
stretching or shrinking them along their time axis, as long as time-ordering
is preserved and the boundary conditions are met: the starting and ending
points of the warping path must be the first and last points of the words [57].
The process is depicted in Figure 3.7. The optimal warping path is the path
with minimal global distance, and is calculated as follows:

For two words of length m and n, an accumulated cost matrix D is con-
structed, filling up the matrix from i = 1, j = 1 till i = m, j = n:

D(i, j) = d(i, j) + min[D(i− 1, j − 1),D(i− 1, j),D(i, j − 1)], (3.5)

where D(i, j) is the minimal distance between two words up till frames i
and j respectively, and d is the distance between two frames, as in Equa-
tion (3.3). When all values of the matrix are calculated, D(m,n) holds the
optimal distance between two words:

d[WT ,WR] = D(m,n). (3.6)

We compared the performance of both LDM and DTW (Section 4.1.2). In
the scope of our project (short recording time of fixed length) both methods
achieve a comparable recognition accuracy, while DTW needs significantly
more computation power. Therefore, we chose to use LDM for our project.

19

Figure 3.7: Example of a time warping process between time sequences X
and Y. The warping path is shown as a black line in the array on the right. A
perfectly diagonal line means no time-warping is applied. Figure from [63].

Word recognition

Once a word has been compared to all templates, the template with the
smallest distance to the recorded word is considered the recognized word,
unless the smallest distance exceeds a threshold (see Section 4.1.3). This
means that the recorded word is not similar to any of the word templates
and hence the recognizer concludes the word is unknown.

At this point, the recognized word is communicated via UART for debug-
ging. In the future a wireless transmitter can be used to send the result
to a central server, or directly to an actuator device in case of single-word
commands.

3.3.4 Power-failure proofing

In order to make the code progress despite power failures, we manually in-
serted checkpoints into the code. The checkpoints are placed after complet-
ing each step of the process of recording, feature extraction, feature match-
ing. We placed additional checkpoints inside feature extraction and feature
matching, see Table 3.2. In total we use 20 checkpoints. We ensure that the
execution of the code in between each two checkpoints requires less energy
than what the energy buffer can provide with a single charge.

During every calculation, results that are needed past the checkpoint are
stored directly into non-volatile memory. A checkpoint at the end of the
calculation indicates that the calculation has finished, and that the results
are stored successfully. If a power reset occurs later on, the execution will
return to the last reached checkpoint.

20

Table 3.2: Checkpoints

Stage Checkpoints(#)

Recording 1
Future extraction 9 (each frame)
Future matching 10 (each word)

Total 20

Table 3.3: Code statistics: lines of code

Language Files Blank Comment Code

C 7 264 173 736
C/C++ Header 8 62 40 237

Total 15 326 213 973

By manually placing the checkpoints, we could specify exactly which data
is needed after the checkpoint and needs to be stored in non-volatile memory
(results), and which data does not need to be retained during a power reset
(temporary variables).

The data-flow is implemented in such a way that the input and output
of a process are stored in different locations in memory, avoiding values to
be overwritten if a function is restarted multiple times due to power resets
(Write-After-Read dependency). This way data consistency is preserved
during intermittent execution.

3.4 Code profiling

The entire command recognition software was written in the C programming
language. The program consists of 973 lines of code in total, excluding the
Texas Instrument DSP library, from which the FFT function was used. See
Table 3.3 for more information.

The memory footprint on the microcontroller is 20,064 bytes of FRAM
and 1,134 bytes of SRAM. Execution times are shown in Table 3.4.

The power usage of a node differs according to its activity. When a node
is waiting for a voice event, it is in low-power mode. When data needs to be
processed or recorded it is in active mode. When recording, the microphone
and ADC consume additional power. The power consumption rates are
measured with a Monsoon power monitor and shown in Table 3.5.

21

Table 3.4: Profiling results for the recording and processing of 9 frames using
different feature matching methods.

Section LDM (ms) DTW (ms)

Recording 285 285
Feature extraction 501 501
Feature matching 99 1251

Total 885 2037

Table 3.5: Power usage with standard deviation.

Section Voltage (V) Current (µA) Power (µW)

Sleeping 2.008 64 (20) 128 (40)
Recording 2.008 423 (20) 849 (40)
Processing 2.008 282 (20) 566 (40)

22

Chapter 4

Results

First we show several experiments we did to optimize the command recog-
nition algorithm. Next we evaluate the CICR behavior in different energy
conditions and with different lengths of commands.

4.1 Design optimization

4.1.1 Minimum effective recording length

The recording length has a big influence on the system performance. Since a
recording has to be done in one go, the recording length directly determines
the minimum capacitor size. The recording length also affects the amount
of processing that needs to be done, and the memory usage, since the length
of the word templates in the dictionary needs to be (at least) as long as the
recording length.

Therefore, the first experiment is targeting the minimum recording length
without including a significant accuracy loss.

Table 4.1: Words in the testing set together with their duration.

Word Duration (std. dev.) [ms]

Cancel 593 (33)
Clear 561 (28)
Edit 446 (33)
Go 441 (35)
Load 520 (31)
Off 388 (14)
On 486 (27)
Pause 596 (28)
Resume 662 (34)
Stop 533 (28)

23

0 2 4 6 8 10 12 14 16
Recording length (frames)

0

20

40

60

80

100
R

e
co

g
n
it

io
n
 a

cc
u
ra

cy
 (

%
)

clear

edit

go

load

off

on

pause

cancel

resume

stop

Figure 4.1: Recognition accuracy versus the recording length (in frames).
Each data point is the result of 19 runs. The Linear Distance Matching
algorithm was used for feature matching.

For this experiment we used a single microcontroller running on continu-
ous power. Each word taken from Table 4.1 was recorded on a PC 20 times.
We used the first recording for training and the rest of the recordings for
conducting the experiment.

In Figure 4.1 the word recognition accuracy is shown when the 19 remain-
ing recordings of each word were played back from a bluetooth speaker [32].
We see that for some words the recording length that is needed to distinguish
them properly, is longer than for other words.

We conclude that recording beyond nine frames (285 ms) does not signifi-
cantly increase the recognition accuracy for the used set of words. Therefore,
we use a recording length of nine frames for the rest of the experiments. This
recording length is very specific for the combination of words in our testing
set and will vary for different testing sets, although on every testing set a
similar experiment can be conducted to minimize the recording length. The
average recognition accuracy for the words from our test set with a recording
length of nine frames is 97%.

4.1.2 Comparison of feature matching methods

We compared the accuracy of the Linear Distance Matching and Dynamic
Time Warping for our chosen set of words and a recording length (285 ms).

24

cle
ar

ed
it go

lo
ad of

f

on

pa
us

e

ca
nc

el

re
su

m
e

st
op

0
20
40
60
80

100
Ac

cu
ra

cy
 (%

)

LDM
DTW

Figure 4.2: Recognition accuracy for LDM and DTW when using nine frames
(285 ms) as the recording length.

Figure 4.2 shows that both methods provide similar recognition accuracy.
However, the profiling results (Table 3.4) show that DTW has a longer
processing time. Therefore we use LDM in future experiments.

4.1.3 Determining the recognition threshold

Our template-based command-recognition algorithm bases its result on the
template in its dictionary that is most similar to the recorded word. How-
ever, when a word is recorded that is not in its dictionary, it must be able
to tell it apart. To achieve this, we choose a recognition threshold. The
lower the distance, the bigger the similarity between words (see also Sec-
tion 3.3), therefore known words (that can be matches against a template)
are expected to have a lower distance than unknown words.

First, to assess the ability of the algorithm to tell different words apart, we
plotted the distances between words in a confusion matrix (Figure 4.3). On
the diagonal each word is matched against itself and the 19 other recordings
of the same word. In the rest of the matrix each word is matched against
other words. The highest distance on the diagonal is 403. We use this value
as the recognition threshold.

4.1.4 Recognition of late recordings

Each time when a node comes on-line after recharging, there is a chance
that a word is being spoken at that time. A node will detect that there is
a voice speaking and will start recording. It can not know, however, when
someone started speaking and will assume it is recording from the beginning
of the word. This causes a misalignment between the recording and the
template. The effects of the misalignment on the recognition accuracy are

25

cl
ea

r
ed

it go
lo
ad of

f
on

pa
us

e

ca
nc

el

re
su

m
e

st
op

clear

edit

go

load

off

on

pause

cancel

resume

stop
0

200

400

600

800

1000

1200

1400

1600

d
is

ta
n
ce

Figure 4.3: Confusion matrix, showing the distance between the words in
our testing set. From every word there are twenty recordings.

0 50 100 150 200 250 300
Recording delay (ms)

0

20

40

60

80

100

R
ec

og
ni

tio
n

ac
cu

ra
cy

Figure 4.4: Effect of a late start of recording on the recognition accuracy.

26

shown in Figure 4.4. We see that with a small delay in recording, words can
still be recognized, but with an increasing delay the recognition accuracy
quickly decreases. This means the node used its precious energy without any
contribution, and will possibly miss following words when it is recharging
its energy buffer. However, we measure that late recordings only happen
occasionally (Figure 4.9). Therefore, countermeasures are not needed.

4.2 Evaluation

In this section we focus on how well the CICR is able to react on spoken
words (Table 4.1) and longer commands made of these words. We recorded
patterns of single words as well as multiple-word commands, and varied the
periods of silence in between them.

4.2.1 Experimental setup

In order to get reproducible results, we designed a testbed with steady and
controllable light intensity. To achieve this, we blocked uncontrollable light
sources with a box of 60 × 40 × 40 cm. On the ceiling of the box, we at-
tached a light strip of 2.5 m with 150 LEDs that can produce 15 different
light intensities. On the bottom of the box, we placed 8 intermittent com-
mand recognizer nodes (the hardware is described in Section 3.1). We used a
Bluetooth speaker [32] to replay a certain record. The data was collected us-
ing a logic analyzer [56] and processed on a laptop. The whole experimental
setup is shown in Figure 4.5.

Figure 4.5: Solar testbed where uncontrollable light sources can be blocked
out and a LED strip provides 15 different light intensities.

27

11
6

21
5

32
0

43
0

52
4

62
1

71
5

81
2

90
4

10
09

10
96

11
85

12
80

14
00

17
05

Light intensity (lux)

0

20

40

60

80

100
N

od
e

du
ty

 c
yc

le
 (%

)

Figure 4.6: Duty cycle of an intermittently powered node for different light
intensities when the node is sleeping (red) and when processing (blue).

4.2.2 Single-node duty cycle

Figure 4.6 shows the duty cycle of an intermittently-powered node when
in sleep mode and when processing, for different light conditions. Due to a
higher power consumption, the duty cycle is lower when a node is processing.
The CICR is designed for a light intensity of about 500 lux, where it has
a duty cycle of 10-20%. In these conditions, it should work intermittently
and have sufficiently randomized power cycles to uniformly distribute its
intermittent nodes’ on-times.

4.2.3 CICR availability

In an environment where commands are not spoken often, the availability of
a CICR at the time someone starts speaking is determined the duty cycles
that nodes have in sleep mode – as that is the state they will be in until
that moment. Figure 4.7 shows the system availability for different numbers
of intermittent nodes while in sleep mode. These results show how a CICR
consisting of multiple nodes can achieve a much higher availability than
its individual intermittent nodes, and confirms the availability model; the
dashed line matches a 15% duty cycle based on the availability model in
Equation (3.1).

However, when words follow each other with little time in between, as is
the case in multiple-word commands, nodes spend part of their time having
a lower duty cycle, resulting in a lower – and harder to predict – CICR
availability.

28

1 2 3 4 5 6 7 8
Number of nodes

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%
Av

ai
la

bi
lit

y

320 lux
524 lux
812 lux
1185 lux
on/off cycle=15%

Figure 4.7: System availability for different numbers of intermittent nodes,
measured under different light conditions. The dashed line matches a system
availability of 15% based on the model in Equation (3.1)

4.2.4 Single word detection

First we evaluate the CICR behavior in an environment with regular words.
In this experiment we varied the light intensity from 500 lux to 1700 lux and
played a word repeatedly every one, two, four, and six seconds. The lowest
inter-word arrival time is one second because this is slightly longer than
the 885 ms that our algorithm takes when run on a continuously-powered
command recognizer (see Table 3.4). This means a single continuously-
powered command recognizer is able to record and process all the words at
this rate.

Figure 4.8 shows the percentage of the total detected words and the
uniquely detected ones. We see a positive correlation between light intensity
and the average number of nodes detecting a word, caused by the increased
duty cycles.

In particular, we see that the number of duplicately-detected words rises
dramatically when light intensity increases, demonstrating the overpowering
problem. Moreover, increasing the inter-word arrival time also increases the
number of duplicated words. The reason for this phenomenon is that when
the time between words increases, a bigger part of the nodes has finished
processing and recharging by the time the next word comes. This brings
them in the same state (low-power mode), and this reduces the inherent
randomization of the intermittent nodes and leads them to the hibernating
power state (Section 3.2.1).

29

300lux 500lux 800lux 1400lux
0

100

200

300

400

500

600

700

800
Pe

rc
en

t o
f w

or
ds

1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

Figure 4.8: The total number of word detections (orange) and unique de-
tected words (blue) by a coalesced intermittent command recognizer with
8 intermittent nodes. The total number of played words is 240. The red
numbers indicate the word arrival interval. In general, we see that when the
light intensity increases, the number of detected words rises too.

4.2.5 Long commands – detection and capture

Having seen how nodes react to regularly repeating words, we will next study
the reaction on multiple-word commands separated by periods of silence.

When a node detects a sound and starts recording we count this as a
detection. However, words are relatively long events and therefore some of
their recordings do not complete due to insufficient harvested energy. When
a node successfully finishes recording we say the node captured the word.
If a node finishes charging and starts recording during a word, it will finish
recording, but the recording will contain wrong information. We call this a
late capture. The effects of a late capture is studied in Section 4.1.4.

Figure 4.9a shows the detection and capture rates for words inside a com-
mand. A command of four words, with one second between the start of
individual words, was played repeatedly with 20 seconds of silence between
the commands. Each command was repeated 10 times and for four different
light intensities.

For light intensities of 800 lux and greater, we observe that the intermit-
tent nodes react to the first word of a command and power down shortly
after, missing other words in the command. This results validate our theory
about the side effect of the hibernating power state (Section 3.2.1). These
results also demonstrate the hibernating power problem on a wide range of
power intensities, showing the significance of this problem. Next, we will
show how randomized response mitigate these problems.

30

500 800 1400 1700
Light intensity (lux)

0

1

2

3

4

5

6

7

8

N
od

es

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Only detected
Captured late
Captured on time

(a) Plain.

500 800 1400 1700
Light intensity (lux)

0

1

2

3

4

5

6

7

8

N
od

es

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Only detected
Captured late
Captured on time

(b) Explicit randomization

Figure 4.9: Average number of nodes reacting on a word in a four-word
command. When a node detects a sound and starts recording we count
this as a detection. However, words are relatively long events and therefore
some of the recordings do not complete due to insufficient harvested energy
(labeled ‘only detected’). When a node successfully finishes recording we say
the node captured the word. If a node finishes charging and starts recording
during a word, it will finish recording, but the recording will contain wrong
information. We call this a late capture.

Word detection rate with explicit randomization

To randomize during commands (which length is known in advance), a node
reacts with a certain probability on a word. This probability is different for
each word the node encounters after the last recharge. In order to spread
the nodes over the words, the probabilities need to increase for subsequent
words, since some nodes have reacted already on previous words, and there-
fore the number of nodes still available is smaller after each word.

We can calculate the probabilities to distribute the nodes evenly under the
assumption that the nodes have a duty cycle of 1 while sleeping (Hibernating
power state), and the nodes will only react once during a command: Since
we expect four words, 25% of all nodes should react on the first word. The
nodes that are left should be divided over the remaining three words, hence
the (remaining) nodes should react on the second word with a probability of
33%. After that there are two words left, hence the remaining nodes should
react with a probability of 50%. For the last word all the remaining nodes
should react.

However, we can not use these probabilities when nodes have a lower duty
cycle: when a command arrives, some nodes might be charging. Further-
more, nodes that were charging at the start of the command may become ac-
tive later on. This affects the probabilities that should be used for spreading
the nodes evenly. We experimentally determined the following probabilities
to reasonably spread the nodes over the words: We programmed the nodes

31

500 800 1400 1700
Light intensity (lux)

0

20

40

60

80

100

W
or

ds
 (%

)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(a) Plain.

500 800 1400 1700
Light intensity (lux)

0

20

40

60

80

100

W
or

ds
 (%

)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(b) Explicit randomization.

Figure 4.10: Percentage of words inside a four-word command that are cap-
tured by the CICR.

to react with a probability of 40% on the first word, with 50% on the second
word, 70% on the third word and 100% on the fourth word.

Figure 4.9b shows that a command recognizer with randomized response
spreads its resources – as compared to Figure 4.9a.

4.2.6 CICR word coverage

For a coalesced system as a whole, to capture a word, it is sufficient that at
least one of the nodes captures the word. Therefore we analyze the previous
experiments with four-word commands again, both plain and with explicit
randomization, to see how often a word was captured by at least one node.

Figure 4.10 shows that explicit randomization helps to increase the cap-
ture percentage of second, third and fourth words in a command, and that
in total more words are captured with explicit randomization for light in-
tensities of 800 lux and greater.

For a light intensity of 500 lux, however, the additional randomization
decreases the total number of captured words in a command. This happens
because at this light intensity there is no additional benefit from explicit
randomization – ambient randomness already spreads the nodes quite well
– while postponing a recording comes with the risk of a node depleting its
energy buffer in the meantime.

4.2.7 CICR command coverage

In case of having commands longer than one word, it is important for the
system to capture all of the words of a command: an incomplete command
is meaningless. Figure 4.11 shows the percentage of commands where all
the four words were detected (orange) and the percentage where all the

32

500 800 1400 1700
Light intensity (lux)

0

20

40

60

80

100

C
om

m
an

ds
 (%

)

1010

00 00

1010

Only detected
Captured

(a) Plain.

500 800 1400 1700
Light intensity (lux)

0

20

40

60

80

100

C
om

m
an

ds
 (%

)

00

40

10

60

10

9090Only detected
Captured

(b) Explicit randomization.

Figure 4.11: Effect of explicit randomization on four-word command de-
tection (orange) and capture (green). The horizontal lines in Figure (b)
represent the theoretical upper bound computed from the CICR availability
at a given light intensity and an ideal spreading of two nodes per event.

four words were captured (green). This last percentage effectively is the
availability of the CICR for commands consisting of four words.

The horizontal lines in Figure 4.11b indicate an upper limit for the com-
mand detection rate for an ideal spreading of two nodes per word at a given
light intensity. The limit is calculated by (i) taking a single node’s sleeping
duty cycle at a given light intensity from Figure 4.6, (ii) calculating the
CICR availability while sleeping (silent environment) with Equation (3.1)
for each word in the command – taking into account how many nodes are left
unoccupied; 8 for the first word, 6 for the second, etc. – and (iii) multiplying
those availabilities.

We see that without randomization hardly any words are captured or
even detected. Explicit randomization greatly improves the percentage of
detected commands for light intensities of 800 lux and above. This means
that nodes are successfully distributed over the four-word command. How-
ever, we see that for light intensities of 800 and 1400 lux nodes almost never
have enough energy to finish recording, causing the percentage of captured
commands to stay low. We propose a solution for this problem as a direction
for future work (Section 5.2).

33

34

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

We developed a command-recognition algorithm for intermittently-powered
devices and built a prototype of a battery-less coalesced intermittent com-
mand recognizer. From the evaluation we conclude that it is possible to
run a simple command-recognition algorithm on ultra-low-power hardware
used for battery-less sensors. Our algorithm achieves a recognition accuracy
of 97% for a ten-word vocabulary. Furthermore we conclude that multiple
battery-less command recognizers distribute themselves uniformly in time
for low light conditions.

An important finding is that favorable energy conditions may cause sleep-
ing intermittent nodes to synchronize their power cycles on the arrival of the
first word. Consequently, they react to the same word, start recharging at
the same time, and miss the next word. To counter this unwanted behavior
we use a probabilistic algorithm to postpone node reactions. We show that
a coalesced intermittent command recognizer using this algorithm is able to
distribute its nodes over a four-word command, but often the nodes have
insufficient energy left in their buffer by the time they start recording. We
propose a solution for this problem in the next section.

5.2 Future Work

Intermittent sensors are a relatively new research topic. Till now they have
been considered as devices that work separately, used to sense slow-changing
properties. Although this work presents the first Coalesced Intermittent
Command Recognizer, there is still much research that can be done to im-
prove it. We propose the following topics that we feel will improve the CICR
performance or extend its functionality.

35

� Speech recognition on coalesced intermittent devices In this
thesis we have shown the feasibility of speech recognition on intermit-
tent power. However, our implementation targets the simplest type of
speech – isolated words – and is speaker dependent. A next attempt
may target a more complicated type of speech, understand multiple
speakers, and support a larger number of words than the 10 words
chosen for this study.

� Buffer energy estimation A node’s availability could further be
improved by eliminating unfinished recordings. This can be achieved
by (i) enabling a node to estimate how much energy there is left in
its energy buffer, and – once there is not enough energy left to record
– (ii) triggering an early power-off and recharge. The buffer energy
estimation can be achieved by either directly measuring the voltage
over the capacitor or by estimating the energy environment (e.g. based
on previous on-time) and timing how long the node has been on since
the last recharge.

� Preemptive execution Our current implementation first needs to
finish processing before it can record again. By making the algorithm
preemptive, a node will be able to record a new word even when it is
still processing the previous word, and finish the processing later. If
the processing of a word is preempted too often, however, the word
that was being processed in the first place may become outdated and
loose its relevance. Also, recording new words before the old ones are
processed will obviously have a bigger memory footprint.

� Node distinction Future designs could make use of the fact that
a coalesced system consists of multiple nodes spaced across a room.
Spacial information of individual nodes could be used additionally to
the commands. This way a coalesced system will know e.g. where
an additional light should go on. Also, not all the nodes need to
necessarily have the same functionality. For example, a part of the
nodes could support a different word vocabulary to extend the total
system word vocabulary.

36

Bibliography

[1] Omid Ardakanian, Arka Bhattacharya, and David Culler. Non-Intrusive Tech-
niques for Establishing Occupancy Related Energy Savings in Commercial
Buildings. In Proc. BuildSys, Palo Alto, CA, USA, nov 2016. ACM.

[2] Mehdi Assefi, Guangchi Liu, Mike P Wittie, and Clemente Izurieta. An Exper-
imental Evaluation of Apple Siri and Google Speech Recognition. Proccedings
of the 2015 ISCA SEDE, pages 1–6, 2015.

[3] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,
Davide Brunelli, and Luca Benini. Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems. IEEE Embedded Systems
Letters, 7(1):15–18, mar 2015.

[4] Saurav Bandyopadhyay and Anantha P. Chandrakasan. Platform Architecture
for Solar, Thermal, and Vibration Energy Combining With MPPT and Single
Inductor. IEEE Journal of Solid-State Circuits, 47(9):2199–2215, sep 2012.

[5] C. Bernal-Ruiz, F.E. E Garcia-Tapias, B. Martin-del Brio, A. Bono-Nuez,
and N.J. J Medrano-Marques. Microcontroller Implementation of a Voice
Command Recognition System for Human-Machine Interface in Embedded
Systems. 2005 IEEE Conference on Emerging Technologies and Factory Au-
tomation, 1:587–591, 2005.

[6] Naveed Anwar Bhatti and Luca Mottola. HarvOS: Efficient code instrumen-
tation for transiently-powered embedded sensing. In Information Processing
in Sensor Networks (IPSN), 2017 16th ACM/IEEE International Conference
on, pages 209–220. IEEE, 2017.

[7] Michael Buettner, Ben Greenstein, and David Wetherall. Dewdrop: an
Energy-aware Runtime for Computational RFID. In Proc. NSDI, pages 197–
210, Boston, MA, USA, 2011. USENIX.

[8] Gregory Chen, Hassan Ghaed, Razi M Haque, Michael Wieckowski, Yejoong
Kim, Gyouho Kim, David Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise,
David Blaauw, and Dennis Sylvester. A Cubic-Millimeter Energy-Autonomous
Wireless Intraocular Pressure Monitor. In Proc. ISSCC, San Francisco, CA,
USA, 2011. IEEE.

[9] Octavian Cheng, Waleed Abdulla, and Zoran Salcic. Hardware-software code-
sign of automatic speech recognition system for embedded real-time applica-
tions. IEEE Transactions on Industrial Electronics, 58(3):850–859, 2011.

[10] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample. An
energy-interference-free hardware-software debugger for intermittent energy-
harvesting systems. ACM SIGPLAN Notices, 51(4):577–589, 2016.

[11] Alexei Colin, Brandon Lucia, Alexei Colin, and Brandon Lucia. Chain: tasks
and channels for reliable intermittent programs. ACM SIGPLAN Notices,
51(10):514–530, 2016.

37

[12] Alexei Colin, Emily Ruppel, and Brandon Lucia. A Reconfigurable En-
ergy Storage Architecture for Energy-harvesting Devices. Proceedings of the
Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems - ASPLOS ’18, pages 767–781, 2018.

[13] Alexei Colin, Alanson P. Sample, and Brandon Lucia. Energy-interference-free
system and toolchain support for energy-harvesting devices. In 2015 Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), pages 35–36. IEEE, oct 2015.

[14] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. Monjolo: An Energy-
harvesting Energy Meter Architecture. In Proc. SenSys, Rome, Italy, nov 2013.
ACM.

[15] Brian Delaney, Nikil Jayant, Mat Hans, Tajana Simunic, and Andrea Ac-
quaviva. A low-power, fixed-point, front-end feature extraction for a dis-
tributed speech recognition system. In Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2002 IEEE International Conference on, volume 1, pages
I—-793. IEEE, 2002.

[16] Brian Delaney, N Jayant, and T Simunic. Energy-aware distributed speech
recognition for wireless mobile devices. IEEE design & test of computers,
22(1):39–49, 2005.

[17] Carlo Delle Donne. Wake-up alignment for batteryless sensors with zero-
energy timekeeping. master’s thesis, 2018.

[18] Sadaoki Furui. Speech Technology. Springer, 2010.
[19] S. Furui, T. Kikuchi, Y. Shinnaka, and C. Hori. Speech-to-Text and Speech-to-

Speech Summarization of Spontaneous Speech. IEEE Transactions on Speech
and Audio Processing, 12(4):401–408, jul 2004.

[20] Santosh K Gaikwad, Bharti W Gawali, and Pravin Yannawar. A review on
speech recognition technique. International Journal of Computer Applications,
10(3):16–24, 2010.

[21] Shyamnath Gollakota, Matthew Reynolds, Joshua Smith, and David Wether-
all. The Emergence of {RF}-Powered Computing. Computer, 47(1):32–39,
2014.

[22] Maria Gorlatova, John Sarik, Guy Grebla, Mina Cong, Ioannis Kymissis, and
Gil Zussman. Movers and Shakers: Kinetic Energy Harvesting for the Internet
of Things. In Proc. SIGMETRICS, Austin, TX, USA, 2014. ACM.

[23] Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho. In Proceedings of the
12th ACM Conference on Embedded Network Sensor Systems - SenSys ’14,
pages 1–15, New York, New York, USA, 2014. ACM Press.

[24] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Tragedy of the Coulombs.
In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems - SenSys ’15, pages 5–16, New York, New York, USA, 2015. ACM
Press.

[25] Josiah Hester and Jacob Sorber. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proc. SenSys, pages 1–13, Delft, The Netherlands,
nov 2017. ACM.

[26] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Hol-
comb, Kevin Fu, Wayne P. Burleson, and Jacob Sorber. Persistent Clocks
for Batteryless Sensing Devices. ACM Transactions on Embedded Computing
Systems, 15(4):1–28, aug 2016.

[27] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara

38

Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling
in Speech Recognition: The Shared Views of Four Research Groups. IEEE
Signal Processing Magazine, 29(6):82–97, nov 2012.

[28] Greg Hopper and Reza Adhami. An FFT-based Speech Recognition System.
Journal of the Franklin Institute, 329(3):555–562, 1992.

[29] Xuedong. Huang, Alejandro. Acero, and Hsiao-Wuen. Hon. Spoken language
processing : a guide to theory, algorithm, and system development. Prentice
Hall PTR, 2001.

[30] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and
A. I. Rudnicky. PocketSphinx: A free, real-time continuous speech recognition
system for hand-held devices. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 185–188, 2006.

[31] IXYS Corporation. IXOLAR� high efficiency SLMD121H04L solar module,
2018.

[32] JBL. JBL Go+ bluetooth speaker, 2019.

[33] B H Juang and Lawrence R Rabiner. Automatic Speech Recognition - A Brief
History of the Technology Development. Elsevier Encyclopedia of Language
and Linguistics, pages 1–24, 2005.

[34] Hiroaki Kokubo, Nobuo Hataoka, Akinobu Lee, Tatsuya Kawahara, and Kiy-
ohiro Shikano. Embedded julius: Continuous speech recognition software for
microprocessor. 2006 IEEE 8th Workshop on Multimedia Signal Processing,
MMSP 2006, pages 378–381, 2007.

[35] Minjae Lee, Kyuyeon Hwang, Jinhwan Park, Sungwook Choi, Sungho Shin,
and Wonyong Sung. FPGA-based low-power speech recognition with recurrent
neural networks. IEEE Workshop on Signal Processing Systems, SiPS: Design
and Implementation, pages 230–235, 2016.

[36] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wether-
all, and Joshua R Smith. Ambient backscatter: wireless communication out of
thin air. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 39–50. ACM, 2013.

[37] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Rup-
pel. Intermittent Computing: Challenges and Opportunities. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 71. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[38] Brandon Lucia, Benjamin Ransford, Brandon Lucia, and Benjamin Ransford.
A simpler, safer programming and execution model for intermittent systems.
Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation - PLDI 2015, 50(6):575–585, 2015.

[39] Amjad Yousef Majid, Michel Jansen, Guillermo Ortas Delgado, Kasım Sinan
Yıldırım, and Przemys law Pawe lczak. Multi-hop backscatter tag-to-tag net-
works. arXiv preprint arXiv:1901.10274, 2019.

[40] Robert Margolies, Maria Gorlatova, John Sarik, Gerald Stanje, Jianxun Zhu
adn Paul Miller, Marcin Szczodrak, Baradwaj Vigraham, Luca Carloni, Peter
Kinget, Ioannis Kymissis, and Gil Zussman. Energy-Harvesting Active Net-
worked Tags ({EnHANTs}): Prototyping and Experimentation. 11(4):62:1—
-62:27, nov 2015.

[41] Robert Margolies, Guy Grebla, Tingjun Chen, Dan Rubenstein, and Gil Zuss-
man. Panda: Neighbor Discovery on a Power Harvesting Budget. In Proc.
INFOCOM, San Francisco, CA, USA, apr 2016. IEEE.

39

[42] T B Martin, A L Nelson, and H J Zadell. Speech recognition by feature-
abstraction techniques, 1964.

[43] Binu Mathew, Al Davis, and Zhen Fang. A Low-Power Accelerator for the
Sphinx 3 Speech Recognition System. Proceedings of the International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, page
210, 2003.

[44] Ian McLoughlin and Hamid Reza Sharifzadeh. Speech recognition for smart
homes. In Speech Recognition. InTech, 2008.

[45] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state
transducers in speech recognition. Computer Speech & Language, 16(1):69–88,
jan 2002.

[46] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin Ransford,
and Joshua R Smith. {WISPCam}: A Battery-Free {RFID} Camera. In Proc.
RFID, pages 166–173, San Diego, CA, USA, sep 2015. IEEE.

[47] Michael Price, James Glass, and Anantha P. Chandrakasan. A Low-Power
Speech Recognizer and Voice Activity Detector Using Deep Neural Networks.
IEEE Journal of Solid-State Circuits, 53(1):66–75, 2018.

[48] PUI audio, vesper. Pmm-3738-vm1010-r: A zeropower listening piezoelectric
mems microphone, 2019.

[49] He Qiang and Zhang Youwei. Prefiltering and Endpoint Detection. Proceedings
of ICSP, (i):749–752, 1998.

[50] L.R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[51] Lawrence R Rabiner, Biing-Hwang Juang, and Janet C Rutledge. Fundamen-
tals of speech recognition, volume 14. PTR Prentice Hall Englewood Cliffs,
1993.

[52] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a broken time
machine. In Proc. MSPC, Edinburgh, United Kingdom, 2014. ACM.

[53] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support
for long-running computation on {RFID}-scale devices. In Proc. ASPLOS,
pages 159–170, Newport Beach, CA, USA, 2012. ACM.

[54] Benjamin Ransford, Jacob Sorber, Kevin Fu, Benjamin Ransford, Jacob Sor-
ber, Kevin Fu, Benjamin Ransford, Jacob Sorber, Kevin Fu, Benjamin Rans-
ford, Jacob Sorber, and Kevin Fu. Mementos. In Proceedings of the sixteenth
international conference on Architectural support for programming languages
and operating systems - ASPLOS ’11, volume 39, page 159, New York, New
York, USA, 2011. ACM Press.

[55] V S Rao. Ambient-Energy Powered Multi-Hop Internet of Things. 2017.

[56] Saleae. Logic 16 analyzer. http://www.saleae.com, 2017. Last accessed: Jul.
28, 2017.

[57] Pavel Senin. Dynamic time warping algorithm review. Information and Com-
puter Science Department University of Hawaii at Manoa Honolulu, USA,
855:1–23, 2008.

[58] Joshua R Smith, Alanson P Sample, Pauline S Powledge, Sumit Roy, and
Alexander Mamishev. A Wirelessly-Powered Platform for Sensing and Com-
putation. In Proc. UbiComp, Orange County, CA, USA, sep 2006. ACM.

[59] Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline.
PIPENET: A Sireless Sensor Network for Pipeline Monitoring. In Proc. IPSN,
Cambridge, MA, USA, apr 2007. ACM/IEEE.

40

http://www.saleae.com

[60] Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua R Smith.
Battery-free cellphone. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 1(2):25, 2017.

[61] Texas Instruments. Ultra low power management IC, boost charger nanopow-
ered buck converter evaluation module, 2018.

[62] Texas Instruments. MSP430FR5994 16 MHz ultra-low-power microcontroller
product page, 2019.

[63] MacHiko Toyoda and Yasushi Sakurai. Subsequence matching in data streams.
NTT Technical Review, 11(1), 2013.

[64] Joel Van Der Woude and Matthew Hicks. Intermittent Computation With-
out Hardware Support or Programmer Intervention. In OSDI, pages 17–32,
Savannah, GA, USA, nov 2016. ACM.

[65] Vesper. ZeroPower Listening FAQ.
[66] T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics,

4(1):52–57, 1972.
[67] J. G. Wilpon and L. R. Rabiner. Application of hidden Markov models to

automatic speech endpoint detection. Computer Speech and Language, 2(3-
4):321–341, 1987.

[68] Kasm Sinan Yldrm, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah Hester. InK. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems - SenSys ’18, pages
41–53, New York, New York, USA, 2018. ACM Press.

[69] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. Moo: A
Batteryless Computational {RFID} and Sensing Platform. Technical Report
UM-CS-2011-020, UMass Amherst, 2011.

[70] Pengyu Zhang, Deepak Ganesan, and Boyan Lu. Quarkos: Pushing the op-
erating limits of micro-powered sensors. In Proceedings of the 14th USENIX
conference on Hot Topics in Operating Systems, page 7. USENIX Association,
2013.

[71] Yi Zhao, Joshua R Smith, and Alanson Sample. NFC-WISP: A sensing and
computationally enhanced near-field RFID platform. In RFID (RFID), 2015
IEEE International Conference on, pages 174–181. IEEE, 2015.

41

42

Appendix A

Microphone PCB design

Due to the small dimensions of the microphone chip, we had to design a
custom printed circuit board in order to connect it to the microcontroller.
Design and result are shown in Figure A.1.

The sound comes in trough a hole in the bottom of the chip, therefore the
PCB also contains a hole for the sound input.

Figure A.1: Footprint and PCB for the microphone.

43

	Preface
	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	Background and related work
	Energy harvesting
	Intermittent execution
	Speech recognition
	Types of speech
	Speech-recognition process
	History of speech recognition
	Low-power speech recognition

	Design and implementation
	Hardware
	Intermittent-node design
	Power States
	Desynchronization

	Command recognition implementation
	Recording
	Feature Extraction
	Feature Matching
	Power-failure proofing

	Code profiling

	Results
	Design optimization
	Minimum effective recording length
	Comparison of feature matching methods
	Determining the recognition threshold
	Recognition of late recordings

	Evaluation
	Experimental setup
	Single-node duty cycle
	CICR availability
	Single word detection
	Long commands – detection and capture
	CICR word coverage
	CICR command coverage

	Conclusions and Future Work
	Conclusions
	Future Work

	Microphone PCB design

