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 A B S T R A C T

Fibre-reinforced laminated composites are constructed layer-by-layer, enabling ease of directional stiffness 
tailoring. Their vast design space is typically explored using two-steps. First, the optimum stiffness for 
given loads is conceptualised using continuous optimisation of lamination parameters (LPs). Then, discrete 
optimisation determines a fibre stacking sequence (SS) that closely matches these LPs. While fibre angles are 
conventionally limited to 45◦ multiples, finer increments (e.g., ±15◦) can enable lighter structures. However, 
existing SS design methods do not scale well with this increased problem dimensionality. To overcome this 
challenge, we propose LP2SS, a novel methodology utilising fast Fourier transforms (FFT) and a branch-
and-bound optimiser. By treating LPs as a signal, FFTs identify the number of fibre layers oriented at 
different angles, akin to estimating the magnitude of different frequencies within a signal. This fibre angle 
distribution guides the branch-and-bound optimiser, enabling efficient SS design with accurate LP matching, 
while satisfying empirical design rules. The ingenious use of FFTs is key to LP2SS’s performance, achieving 
solutions within tenths of a second, compared to minutes required by state-of-the-art methods. Validated on 
established benchmarks and a newly proposed comprehensive test set, LP2SS marks a significant advancement 
in the optimal design of large-scale laminated composite structures.
1. Introduction

As demand for commercial aviation rises, governments have set ambi-
tious emission reduction goals [1]. One approach to achieve this is to 
enhance fuel economy by reducing structural weight. Fibre-reinforced 
laminated composites have been essential in this effort, owing to su-
perior specific strength relative to their isotropic counterparts (metal-
lic alloys). Today, they comprise over half the structural weight of 
modern aircraft [2,3]. Meanwhile, researchers are working on further 
weight reduction by capitalising on their layer-by-layer construction 
and tailoring directional stiffness throughout a structure [4,5].

From an optimisation perspective, the design variables of laminated 
composites (ply1 thickness and fibre orientation in each of 𝑁 layers) 
belong to a discrete set of allowable values. This results in a vast, 
discrete, and non-convex design space, posing a complex optimisation 
problem [6–8]. For circumventing this, a two-step design procedure 
is commonly followed, among other multi-step variants [9]. First, 

∗ Corresponding author at: German Aerospace Center (DLR), Institute of Lightweight Systems, Lilienthalplatz 7, Braunschweig, 38108, Germany.
E-mail address: rakshith.manikandan@dlr.de (R. Manikandan).

1 In this study, a ply refers to a layer of continuous unidirectional fibres.

the composite’s conceptual stiffness is optimised for given loads with 
lamination parameters (LPs). Then, a stacking sequence (SS) of different 
plies is designed to match the optimum stiffness. Commonly, LPs are 
designed using continuous optimisation, while SS is designed to match 
the LPs using discrete optimisation [6]. This separation helps manage 
the problem’s inherent complexity.

Historically, engineers opted to orient fibres only along multiples of 
45◦ (𝜃 ∈ [0, ±45, 90]) (or [𝛥45◦]), for analytical and manufacturing 
convenience [10]. Such laminates still remain prevalent, owing to 
years of experience making aircraft with them. However, more weight 
reduction can be enabled with a broader range of angles like 𝜃 ∈
[0, ±15, ±30, ±45, ±60, ±75, 90] (or [𝛥15◦]), as the fibre’s direc-
tional properties are better utilised [5]. At the same time, structural 
design is largely governed by response-driven constraints (e.g., strain 
failure/buckling), and SS design guidelines (e.g., Symmetry, Balance, 
10% Rule, Disorientation, etc.) to eliminate unwanted stiffness coupling 
and be robust under in-service loads [11,12]. As such, expanding the 
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number of allowable fibre angles increases design options, but also 
magnifies the computational challenge.
Although genetic algorithms [13] and branch & bound [14] are widely 
used for SS design, benchmark studies show nearly a four-fold increase 
in their computation time when expanding fibre angle choices from 
[𝛥45◦] to [𝛥15◦] [14]. In response, this paper presents a robust and 
efficient SS design method, to match conceptual stiffness described 
by given LPs. The following section review existing approaches and 
highlight the need for improved methods to design SS with [𝛥15◦].

2. Preliminaries: Design and optimisation using lamination pa-
rameters

The design space offered by laminated composites can be effectively 
navigated, as described in Fig.  1. First, the conceptual optimum stiffness 
is determined using LPs, and then the SS is designed to match that 
optimal stiffness.

Fig. 1. Overview of Laminate Design using LPs.
For completeness, it is noted that, to the best of the authors’ knowl-

edge, LP-based designs are not yet used in the aerospace industry. A 
brief overview of the industry’s current design practices is provided in 
Appendix  A.1.

Classical laminated plate theory describes laminate stiffness us-
ing the 𝐴𝐵𝐷 matrix: 𝐴- Extensional Stiffness, 𝐵- Coupling Stiffness, 
and 𝐷- Flexural Stiffness. In order to determine the conceptual op-
timum stiffness, the directional stiffness values in the matrix can be 
optimised. However, given that these values are highly correlated, 
assigning them arbitrarily is challenging. Hence, Tsai et al. [15] param-
eterised laminate material properties using trigonometric identities to 
linearly describe 𝐴𝐵𝐷 using laminate height ℎ and 12 non-dimensional 
quantities (the LPs)2.
𝐴 = ℎ(𝛤0 + 𝛤1𝑉 𝐴

1 + 𝛤2𝑉 𝐴
2 + 𝛤3𝑉 𝐴

3 + 𝛤4𝑉 𝐴
4 )

𝐵 = ℎ2

4
(𝛤1𝑉 𝐵

1 + 𝛤2𝑉 𝐵
2 + 𝛤3𝑉 𝐵

3 + 𝛤4𝑉 𝐵
4 ) (1)

𝐷 = ℎ3

12
(𝛤0 + 𝛤1𝑉 𝐷

1 + 𝛤2𝑉 𝐷
2 + 𝛤3𝑉 𝐷

3 + 𝛤4𝑉 𝐷
4 )

Here, 𝑉 {𝐴,𝐵,𝐷}
[1,2,3,4]  are the 12 LPs, and 𝛤  entities are matrices describing 

ply material properties that are invariant to orientation (see Appendix 
A.2 for formulations). For Symmetric-Balanced laminates, 6 LPs (𝑉 𝐵

and 𝑉 𝐴
3,4) can be nullified in optimisation. Mathematically, the LPs 

2 LPs are valid only for the design of laminates or sandwich structures [16], 
with plies and/or core, respectively, made of the same material.
2 
form a continuous and convex design space [17], making the use of 
gradient-based optimisation particularly effective. While each LP can 
numerically lie within [−1, 1], the design domain is not a full 12D 
hypercube due to inherent correlations among them [10]. Appendix  A.3 
gives an overview of how design space and constraints can be defined 
for LP optimisation.

SS design is now performed such that their LPs closely match 
the conceptual optimum from the previous step. For a given SS with 
equi-thickness plies, its LPs are calculated as follows:

𝑉 𝐴
[1,2,3,4] =

1
𝑁

𝑁
∑

𝑘=1

[

cos 2𝜃𝑘, cos 4𝜃𝑘, sin 2𝜃𝑘, sin 4𝜃𝑘
]

𝑉 𝐵
[1,2,3,4] =

2
𝑁2

𝑁
∑

𝑘=1
{
(𝑁
2

− 𝑘 + 1
)2

−
(𝑁
2

− 𝑘
)2

}
[

cos 2𝜃𝑘, cos 4𝜃𝑘, sin 2𝜃𝑘, sin 4𝜃𝑘
] (2)

𝑉 𝐷
[1,2,3,4] =

4
𝑁3

𝑁
∑

𝑘=1

{

(𝑁
2

− 𝑘 + 1
)3

−
(𝑁
2

− 𝑘
)3}

[

cos 2𝜃𝑘, cos 4𝜃𝑘, sin 2𝜃𝑘, sin 4𝜃𝑘
]

Here, 𝜃𝑘 represents the orientation of the 𝑘th ply. Now, the task is to 
design a discrete SS whose LPs match the optimised set. These SS also 
need to satisfy empirical design guidelines that are commonly followed 
in the aerospace industry [12,18,19]:

1. To nullify in-plane and out-plane coupling stiffness (𝐵 matrix), 
mid-plane symmetry of a stacking sequence can be enforced. 
Eliminating this behaviour without symmetry is explored by 
York et al. [20].

2. To nullify coupling responses within the 𝐴 matrix (extension-
shear coupling), the off-axis plies (orientations apart from 0 and 
90) can occur in balanced pairs, that is, every +𝜃 should have 
a −𝜃. Such in-plane orthotropy can also be achieved without the 
balancing rule [21].

3. The 10% Rule requires at least 10% of plies to be oriented 
along the four principal directions (0, ±45, 90◦), ensuring min-
imum in-plane stiffness for protection under secondary loads. 
For non-conventional orientations ([𝛥15◦]), a more generalised 
version [19,22] ensures adequate stiffness across all directions.

4. To induce less residual stresses in the laminate while curing, the
disorientation guideline restricts orientation change between 
consecutive layers not to exceed 45◦.

5. To avoid crack bridging, the contiguity guideline does not allow 
more than 0.6 mm of material with the same orientation to be 
placed together.

6. For damage tolerance against impact and improved buckling 
performance, surface layers should have a ±45◦ ply.

Designing an N-layer SS (discrete) while matching the optimum LPs 
(continuous) and satisfying these design guidelines can be a complex 
computational task. The jump between these two design spaces — 
converting LPs, i.e., predetermined stiffnesses, into an SS — is com-
monly referred to as the ‘inverse problem’ of laminate design. Over 
the past few decades, many solutions have been proposed to address 
this challenge [6,23]. They can be broadly classified into five cate-
gories: Analytical, Gradient-based, Mixed-Integer Linear Programming, 
Population-based, and Layerwise approaches. 
Analytical Methods: Miki [24] proposed a simple formulation to 
design a Symmetric-Balanced SS with up to three orientations [±𝜃1,±𝜃2,
𝜃3 = 0◦], matching only 𝑉 𝐴 LPs, with user-defined ply fraction. 
Hammer [25] showed that a three-layer SS is enough to match any 
set of 𝑉 𝐴 LPs, while Autio [26] showed a two-layer SS sufficed for 
any set of 𝑉 𝐷 LPs. With conventional angles ([𝛥45◦]), Diaconu [27] 
considered both 𝑉 𝐴 and 𝑉 𝐷 LPs together. However, these techniques 
treat ply thickness as a continuous variable—making them impractical. 
Van Campen et al. [28] proposed a practical solution for analytically 
designing a four-layer Symmetric-Balanced SS ([±𝜃1,±𝜃2]𝑆 ). Viquerat 
et al. [29] then accessed a broader design space by designing more than 
four layers of an SS ([±𝜃1,±𝜃2,… .,±𝜃𝑁∕2]𝑆 ) using polynomial homo-
topy continuation (PHC). This method can solve a system of equations, 
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Table 1
Comparison of state-of-the-art SS Design methods from LPs using [𝛥45◦], and their overall performance scalability to [𝛥15◦] designs.
 Guideline 

enforcement
Design Space 
Exploration

Solution Quality Computational 
Efficiency

Performance Scalability 
for [𝛥15◦]

 Analytical + − − + −
 Gradient + − − − −
 Population + + − − −
 Layerwise + + + + −
 MILP − − − + −
even with more unknown values than equations (non-square systems). 
Nevertheless, PHC is sensitive to initial parameters and computation-
ally expensive: approximately two hours to solve square systems (e.g., a 
12-layer SS to match 12 LPs), with non-square cases taking longer.
Gradient-based Methods: By using local gradient information, the 
angles within an N-layer SS can be iteratively optimised to minimise the 
mismatch between target and realised LPs. Grédiac used the steepest-
descent method with a least-squares objective [30,31], while Peeters 
et al. [32] applied the method of moving asymptotes with a convex-
quadratic approximation of structural responses. Given the discrete 
and non-convex nature of the problem, these techniques often strug-
gle to escape local minima as the dimensionality increases. Sankalp 
et al. [33] introduced deflation constraints to address this, though their 
computational performance remains untested.
Mixed-Integer Linear Programming: Non-gradient-based approaches, 
such as Mixed-Integer Linear Programming (MILP), enable handling 
constrained optimisation tasks with both discrete and continuous de-
sign variables. They have been used for SS design in various stud-
ies [34,35], with recent implementations by Ntourmas et al. [36] 
demonstrating effectiveness even for variable stiffness designs from 
LPs. These methods require explicit formulation of design guidelines as 
constraints, and their scalability with increasing problem size remains 
uncertain. More recently, a novel study re-cast the MILP formulation 
using quantum computing operators [37] (density matrix renormalisa-
tion group algorithm, or DMRG), showing competitive computational 
efficiency on the order of a few minutes for SS design with [𝛥45◦]
plies while enforcing design guidelines using penalties [38]. However, 
DMRG is nondeterministic and its scalability with [𝛥15◦] angles is 
uncertain.

Population-based Methods: These methods simultaneously explore 
different parts of the design space using a population of candidate 
solutions, often guided by nature-inspired heuristics (e.g., ant colony, 
bird swarms, or evolution [39]). Genetic Algorithm (GA), inspired 
by Darwinian evolution, is the most widely used SS design method 
due to its ease of implementation. The population evolves through 
stochastic operations like selection, crossover, and replacement, grad-
ually converging towards a SS that matches target LPs and follows 
design guidelines.3 Earlier implementations, such as OptiBLESS (Op-
timisation of BLEnded Stacking Sequence [13]), enforced guidelines 
like disorientation solely through penalties. Nevertheless, this does 
not guarantee that the offspring populations inherit the traits. Newer 
implementations, such as pyTLO (python Tapered composite Laminate 
Optimisation [41]), encode these guidelines as constraints, ensuring 
offspring populations stay guideline-compliant even after genetic oper-
ations. However, with increasing number of layers and using finer angle 
resolutions ([𝛥15◦]), GAs become computationally expensive, requiring 
larger populations to preserve diversity and avoid local minima. These 
demands make GAs less practical.
Layerwise methods: These methods sequentially design SS layer-by-
layer. Narita et al. [42,43] used a simple 1D enumeration process, 

3 See [40,41] for details on encoding SS and design guidelines with GA 
operators.
3 
Table 2
Optimisation problem in focus.

Description

Objective minimise 𝛥LPs
(mismatch between desired and realised stiffness)

Variables SS: [𝜃1 , 𝜃2 ,… , 𝜃𝑁∕2]𝑆 ,
𝜃 ∈ [𝛥45◦] or [𝛥15◦]

Constraints Symmetry, Balanced, 10% Rule, Damage Tolerance,
Disorientation, Contiguity (Design Guidelines)

selecting the optimal orientation of every layer to minimise mismatch 
between desired and realised LPs. However, greedy selection for every 
layer need not guarantee a global optimum solution. This problem 
was then reformulated as a decision tree with branch-and-bound (BB) 
optimisation, to explore a broader solution space. The fractal branch 
and bound (FBB) method [44–46] utilised the fractal nature of LP 
space, showing how each angle choice influences the realisable LPs. It 
enabled informed selection of angles, while pruning infeasible branches 
or guideline-violating partial SS solutions. As the evaluation cost of 
this method increased heavily with problem size, Liu et al. [47] used 
a simpler objective function (least square difference of LP mismatch) 
to improve search speed at the expense of optimality. They mitigated 
this trade-off by redesigning the SS multiple times. Fedon et al. [48] 
improved this workflow with LAYLA (LAY-ups for LAminates), which 
uses beam search, a group-wise redesign strategy, and a computation-
ally efficient method to enforce design guidelines (RELAY [49]). Beam 
search explores multiple solution branches in parallel to avoid greedy 
selection. Then, the SS is divided into multiple groups and iteratively 
redesigned to reduce mismatch. LAYLA can design even 300-layer SSs 
in few minutes, while adhering to design guidelines. While it scales 
well for conventional laminates ([𝛥45◦]), its effectiveness decreases for 
non-conventional laminates ([𝛥15◦]), where reported results indicate 
a four-fold increase in computation time and a significant drop in 
solution quality.

Amongst state-of-the-art methods, BB offer the best trade-off be-
tween efficiency and solution quality. With increasing problem di-
mensionality, GAs incur high computational costs, while MILP lacks 
solution quality. BB’s strength lies in pruning the search tree to signif-
icantly reduce the portion of the design space explored. Pruning can 
be either informed [44] (precise but expensive), or heuristic [47,48] 
(faster but sub-optimal). While heuristic exploration strikes a sufficient 
balance between solution quality and efficiency with [𝛥45◦], this advan-
tage visibly diminishes with [𝛥15◦]. Here, mismatch errors increase due 
to the limited exploration of a larger design space, and computational 
times rise with the evaluation of more fibre angle combinations. While 
BB still outperforms other methods under these conditions, this remains 
a key limitation. Table  1 collectively presents all these inferences.

As such, state-of-the-art methods still face the challenge of designing 
an N-layer SS to match input LPs while using a wide range of angles 
([𝛥15◦]) and adhere to all relevant design guidelines. With the advent of 
comprehensive multi-disciplinary [50] and multi-fidelity [51] optimi-
sation methods, computational limits like this can hinder the depth of 
design trade studies, resulting in heavier or suboptimal structures. This 
gap highlights the need for an efficient SS design approach that does 
not compromise on optimality, as tabulated in Table  2. To address this 
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Fig. 2. Illustrative comparison of different BB trees for SS design. (Top) All combinations. (Middle) Beam search expands a subset of promising nodes. (Bottom) 
Beam search with further reduced nodes, excluding angles outside a FAD. Translucent nodes do not contribute to computation.
need, this paper presents a novel, computationally efficient methodol-
ogy for SS design, even with increased dimensionality. The following 
section outlines the key concepts behind the proposed method.

3. Proposed methodology for efficient and scalable stacking se-
quence design from lamination parameters

BB methods reduce computational cost through pruning, but at the ex-
pense of limiting the explored design space and compromising solution 
quality [48]. As a result, this study focused on enriching the design 
process, rather than limiting it. This enrichment was achieved by in-
troducing an intermediate step: the design of a fibre angle distribution 
(FAD), which specifies the number of plies oriented at different angles.

Once determined, the FAD serves as an informative guide for SS 
design, with minimal computational overhead. This effect is illustrated 
in Fig.  2: the top shows a full BB tree with all nodes expanded, the 
middle shows beam search reducing the number of explored nodes, 
and the bottom demonstrates how FAD knowledge further focuses the 
search by guiding ply angle selection only from a designed set. This 
reduces computational effort even before pruning, while still making 
informed choices. Additionally, design guidelines — such as symmetry, 
balance, and the 10% rule — can be accounted for solely through FADs, 
further reducing the burden on a BB optimiser.

To enable this FAD-guided approach, this study introduces an effi-
cient method to design them. Since FADs do not encode any through-
thickness information and solely describe in-plane stiffness (𝐴), they 
are sufficiently represented using 𝑉 𝐴 LPs: 

𝑉 𝐴 = 1
𝑁

[(𝑁1 ∗ 𝑡(𝜃1)) + (𝑁2 ∗ 𝑡(𝜃2)) + (𝑁3 ∗ 𝑡(𝜃3)) +⋯ .] (3)
4 
This formulation resembles a Fourier Series: a function is expressed 
as a weighted sum of sinusoidal components. Here, the trigonometric 
function 𝑡(𝜃𝑖) captures the stiffness contribution at angle 𝜃𝑖, and the 
coefficients 𝑁𝑖 represent the number of plies—i.e., the FAD. Based 
on this analogy, Fast Fourier Transforms (FFTs) were repurposed for 
laminated composite design. While FFTs are typically used to identify 
the magnitude of different frequencies in a signal, here, they were used 
to determine the number of plies at different orientations (their FAD).

This leads to a two-step solution to the inverse problem of con-
verting LPs into SS. First, FFTs enable a fast and elegant derivation 
of FADs from 𝑉 𝐴 LPs (LP2FAD). Second, a simple yet robust BB 
implementation, guided by the FAD, can design a SS to match given 
𝑉 𝐷 LPs (FAD2SS). These two deterministic sub-problems, leveraging 
well-known mathematical techniques, form the basis of the proposed 
methodology. This method is encapsulated and published open-source 
as a Python package named LP2SS [52] (lamination parameters (LP) 
to (2) stacking sequences (SS)), reflecting its overall functionality.

The remainder of this paper is organised as follows: Section 4 
explains the implementation of LP2SS (see Fig.  3), which is then 
evaluated against the state-of-the-art in Section 5. Section 6 discusses 
the results and demonstrates how LP2SS enables designs with [𝛥15◦], 
which are typically difficult and computationally expensive to realise. 
These findings are then consolidated with conclusions in Section 7 .

4. Implementation of LP2SS

For the inverse problem of converting LPs to SS (LP2SS), the proposed 
method follows two steps: FAD design and SS design. The following 
subsections detail the implementation of the novel FFT-based method 
behind LP2FAD, and then the robust BB method behind FAD2SS.
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Fig. 3. LP2SS: Proposed methodology to convert LPs into SS (lp2ss.py = lp2fad.py + fad2ss.py).
4.1. Step 1: LP2FAD - From lamination parameters to fibre angle distribu-
tion

This subsection outlines how FFTs are performed on 𝑉 𝐴 LPs to design 
the FAD of a 𝑁-layer SS. The process starts by writing 𝑉 𝐴 as a signal. 
Since multiple unique FADs can share the same 𝑉 𝐴, multiple valid 
signal forms can exist. Hence, these periodic signals, composed of 
sinusoids with repeating patterns, were studied and parameterised with 
𝑉 𝐴 LPs. This approach allowed efficient design of multiple FADs for 
the same 𝑉 𝐴. Having this multiplicity is essential to avoid overfitting 
and preserve the overall solution quality of LP2SS: a single FAD may 
perfectly match a given 𝑉 𝐴 (in Step-1), but can lack the necessary 
angles to match given 𝑉 𝐷 LPs (later in Step-2). Since FFT outputs need 
not be integers, post-processing is done to round ply counts to integers 
summing to 𝑁 , while enforcing design rules.

4.1.1. Signal representation of 𝑉 𝐴 lamination parameters

FFTs can be used to estimate the magnitude of different frequencies 
in a signal. For FAD estimation, 𝑉 𝐴 was reinterpreted as a signal 
(𝐿𝐴) whose frequency and magnitude corresponded with fibre angles 
and their ply counts, respectively. Mathematically, the argument of a 
sinusoid is a product of frequency and time [53]. Hence, a fictitious 
time variable 𝑇  was inserted into the 𝑉 𝐴 LP formulation:

𝑉 𝐴
1,2 =

1
𝑁

𝑁
∑

𝑘=1
[cos (2𝜃𝑘), cos (4𝜃𝑘)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Normal Representation

⇔ 𝐿𝐴(𝑇 ) = 1
𝑁

𝑁
∑

𝑘=1
[cos (2𝜃𝑘𝑇 )]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Signal Representation

(4)

Due to the focus on Symmetric-Balanced laminates, only the cosines 
in 𝑉 𝐴

1,2 LPs are focused on. As such, this parameterisation writes 𝑉 𝐴
1,2

as a laminate signal 𝐿𝐴, where the arguments 2𝜃 and 4𝜃 are now 
harmonically related.

To apply FFT on the laminate signal 𝐿𝐴, its values must be described 
(sampled) over discrete steps of the fictitious 𝑇  domain. An appropriate 
sampling rate and number of samples ( ) are critical to ensure reliable 
FFT results without aliasing. As per the Nyquist-Shannon theorem [54], 
the sampling rate must be at least twice a signal’s highest angular 
5 
frequency — equating to 1 sample per second for the given parame-
terisation.4 The value   must be chosen to capture one full period of a 
signal. As illustrated in Fig.  4, periodicity can vary based on a signal’s 
constituent frequencies (or, angles in this case):

Fig. 4. 𝐿𝐴 of two unique 12-layer FADs with same 𝑉 𝐴 LPs. Sampled points 
with identical values are marked red, and rest in black.

As seen in Fig.  4, the laminate signals of FADs consisting [𝛥45◦] and 
[𝛥15◦] angles exhibit distinct periodicity. and symmetries. The [𝛥45◦]
FAD exhibits a period of 4, thus requiring  = 5 samples (at 𝑇 =
[0, 1, 2, 3, 4]). Meanwhile the [𝛥15◦] FADs exhibit a period 12, requiring 
 = 13 samples (at 𝑇 = [0, 1, 2, 3, 4, 5, 6, 7,… , 12]).

By simple substitution in Eq.  (4), it can be understood that 𝐿𝐴
numerically equals 1, 𝑉 𝐴

1 , 𝑉
𝐴
2 , at 𝑇 = [0, 1, 2]. Moreover, the mid-period 

symmetry implies that the values at 𝑇 = 1 and 𝑇 = 3 are identical 
for [𝛥45◦]. The pattern then repeats beyond 𝑇 = 4. Hence, the signal 
pattern for [𝛥45◦] can be tabulated as follows (in Table  3):
Table 3
𝐿𝐴 Signal Pattern for [𝛥45◦] laminates.
 Angle Increments 𝑇 = 0 𝑇 = 1 𝑇 = 2 𝑇 = 3 𝑇 = 4 𝑇 > 4  
 [𝛥45◦] 1 𝑉 𝐴

1 𝑉 𝐴
2 𝑉 𝐴

1 1 repeated 

4 Sampling Rate and periodicity calculation detailed in Appendix  B.1.
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Table 4
Exact signal pattern for laminates made of [0◦ , 15◦ , 30◦ ] orientations.
 Orientations 𝑇 = 0 𝑇 = 1 𝑇 = 2 𝑇 = 3 𝑇 = 4 𝑇 = 5 𝑇 = 6  
 [0◦ , 15◦ , 30◦] 1 𝑉 𝐴

1 𝑉 𝐴
2 6.46 − 10.19𝑉 𝐴

1 + 4.73𝑉 𝐴
2 20.39 − 30.58𝑉 𝐴

1 + 11.19𝑉 𝐴
2 35.32 − 51.98𝑉 𝐴

1 + 17.66𝑉 𝐴
2 41.78 − 61.17𝑉 𝐴

1 + 20.39𝑉 𝐴
2  
For [𝛥15◦], similar use of substitution and symmetries is not suf-
ficient to describe the entire sample set, as values at 𝑇 = [3, 4, 5, 6]
still need to be determined. This problem was handled in two differ-
ent ways. Their values can be analytically determined, or manually 
approximated as a function of 𝑉 𝐴 LPs. These two types formed the 
basis of a database of pre-observed patterns. This database evolved 
throughout the study until a desired number of diverse solutions could 
be generated. The sufficient number of patterns was determined later 
in Section 4.2.3, through actual SS design attempts with [𝛥15◦ ].
Analytical Exact Patterns: To analytically determine values of 𝐿𝐴 at 
any given 𝑇 , they were described as a linear combination of the known 
quantities 𝐿𝐴(𝑇 = [0, 1, 2]):

𝐿𝐴(𝑇 ) = 𝑎𝑇
(

𝐿𝐴(𝑇 = 0)
)

+ 𝑏𝑇
(

𝐿𝐴(𝑇 = 1)
)

+ 𝑐𝑇
(

𝐿𝐴(𝑇 = 2)
)

⇒ 𝐿𝐴(𝑇 ) = 𝑎𝑇 + 𝑏𝑇 𝑉 𝐴
1 + 𝑐𝑇 𝑉 𝐴

2 (5)

Upon assuming a set of three ply orientations to be used (similar to the 
three-layer logic of Hammer [25]), the coefficients 𝑎𝑇 , 𝑏𝑇 , and 𝑐𝑇  can 
then be solved for a given value of 𝑇 , by equating Eqs.  (4) and (5)5: 

⎡

⎢

⎢

⎣

𝑎𝑇
𝑏𝑇
𝑐𝑇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 cos
(

2𝜃1
)

cos
(

4𝜃1
)

1 cos
(

2𝜃2
)

cos
(

4𝜃2
)

1 cos
(

2𝜃3
)

cos
(

4𝜃3
)

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

cos
(

2𝜃1𝑇
)

cos
(

2𝜃2𝑇
)

cos
(

2𝜃3𝑇
)

⎤

⎥

⎥

⎦

(6)

Thus, using Eq.  (6), the value of the signal can be exactly calculated 
for any timestamp 𝑇 . From [𝛥15◦ ], a set of three angles can be chosen 
in 7𝐶3 ways (∵, seven unique |𝜃| exist within [𝛥15

◦ ]). Ergo, 35 ‘Exact’ 
signal patterns can be formulated. For example, the exact pattern for 
[0◦ , 15◦ , 30◦ ] is shown in Table  4. The pattern is described only up 
to 𝑇 = 6 due to the signals’ mid-period symmetry. For brevity, the 
complete list of Exact patterns is presented in the Appendix (Table  11).
Manual Approximate Patterns: To design FADs with more than three 
unique angles, exact patterns are infeasible. Hence, signal patterns 
were approximated with 𝑉 𝐴 LPs using visual pattern matching. This 
approach inherently fixes the contributions of some ply orientations, 
while others (typically three) remain designable. While this can be 
done in innumerable ways, the signal representation helps handle this 
situation with ease. This visual pattern approximation exercise can be 
explained with the following example. A combination 𝑉 𝐴

1,2 = [0.17,−0.1]
was randomly chosen from the feasible 𝑉 𝐴 LP space. From an in-house 
laminate database6, multiple FADs made of [𝛥15◦ ] that match these 
LPs were noted. Their corresponding 𝐿𝐴 signals were then plotted for 
analysis in Fig.  5.

In Fig.  5, the signal values at timestamps 𝑇 = 4 and 5 are equal, 
while a variation can be observed at timestamps 𝑇 = 3 and 6. Nev-
ertheless, these common and uncommon points (at 𝑇 > 2) were 
manually approximated as a function of 𝑉 𝐴 LPs. However, the sample 
value at 𝑇 = 3 and 6 can be represented by multiple equivalent 𝑉 𝐴

parameterisations. In such cases, the most effective approximation was 
chosen by perturbing the reference FAD’s ply counts and identifying 
which yielded the closest matching signal. In this manner, a manually 
approximated FAD can be made as shown in Table  5.

By repeating this exercise with laminates from across the design 
space, several ‘Approximate’ patterns for [𝛥15◦ ] were made.

5 An expanded derivation of this solution is presented in Appendix  B.2.
6 This was generated via brute-force enumeration for 𝑁 = 5 till 15 and is 

published alongside this study [55].
6 
Fig. 5. 𝐿𝐴 Signals of FADs corresponding to 𝑉 𝐴
1,2 = [0.17,−0.1]. Sampled points 

with equal values across all the FADs are marked in red.

Table 5
Approximate Signal Pattern corresponding to 𝑉 𝐴

1,2 = [0.17,−0.1].

 𝑇 = 0 𝑇 = 1 𝑇 = 2 𝑇 = 3 𝑇 = 4 𝑇 = 5 𝑇 = 6 
 1 𝑉 𝐴

1 𝑉 𝐴
2 0 −𝑉 𝐴

2 −𝑉 𝐴
1 −2𝑉 𝐴

2  

4.1.2. Deriving fibre angle distribution from the fast fourier transform of 
laminate signals

For a target set of 𝑉 𝐴 LPs, different periodic signals can be created 
using pre-observed patterns. Applying FFT on them paved the way 
for efficiently designing multiple unique FADs. For an example case 
(𝑉 𝐴

1,2 = [0.52, 0.15] and 𝑁 = 20), the pattern in Table  5 yield the 
following frequency spectrum in Fig.  6.

Fig. 6. Frequency Spectrum of 𝐿𝐴 (𝑉 𝐴
1,2 = [0.52, 0.15] and 𝑁 = 20): FFT 

magnitudes (left y-axis), and Number of Plies (right y-axis).
Only the positive real components of the spectrum are considered, 

as imaginary or negative FFT values (if present) have no physical mean-
ing in the laminate signal parameterisation used here. The spectrum is 
then normalised by dividing each value by the average FFT sum per 
layer (total sum of FFT values divided by 𝑁). The resulting FAD (for 
all |𝜃|) is listed in Table  6.

Since 𝑉 𝐴
1,2 are composed of cosine terms, the fibre orientation 𝜃 is 

invariant to sign; that is, +𝜃 and −𝜃 contribute equally. Consequently, 



R. Manikandan et al. Composite Structures 378 (2026) 119939 
Table 6
FAD (∀ |𝜃|) obtained from 𝐿𝐴1  (𝑉 𝐴

1,2 = [0.52, 0.15] and 𝑁 = 20).

 Ply Orientation (◦) 0 15 30 45 60 75 90  
 Ply Count 4.91067 5.488 4.57733 3.33333 0.08933 1.17866 0.422667 
Table 7
Analysing a non-integer FAD (∀|𝜃|) obtained from FFT of 𝐿𝐴 made of: 𝑉 𝐴

1,2 = [0.52, 0.15] and 𝑁 = 20.

 Ply Orientation (◦) 0 15 30 45 60 75 90 Sum 
 Ply Count 4.91067 5.488 4.57733 3.33333 0.08933 1.17866 0.422667 20  
 Even Integer 4 4 4 2 0 0 0 14  
 Residual 0.91067 1.488 0.57733 1.33333 0.08933 1.17866 0.422667 6  
Table 8
Symmetric-Balanced FAD (∀|𝜃|) obtained from 𝐿𝐴 (𝑉 𝐴

1,2 = [0.52, 0.15] and 
𝑁 = 20) using an Approximate Pattern.
 Ply Orientations (◦) 0 15 30 45 60 75 90 
 Ply Count 4 6 6 2 0 2 0

 Mismatch Error 𝜀𝐴 0

ply counts are expressed as |𝜃|, combining contributions from both +𝜃
and −𝜃. In this example, the ply counts sum to the desired 𝑁 = 20, 
yielding LPs 𝑉 𝐴

1,2 = [0.52, 0.15]. As such, a FAD for any value of 𝑁
can be inferred from the FFT results upon normalisation. However, 
non-integer ply counts must be corrected for manufacturability. Addi-
tionally, design guidelines such as balance and the 10% rule must be 
met. Therefore, additional post-processing of the FAD is necessary.

4.1.3. Enforcing manufacturability and design guidelines for fibre angle 
distribution

When the FAD obtained from FFT contains non-integer ply counts, a 
rounding procedure is applied to ensure manufacturability. This process 
ensures that off-axis |𝜃| values are balanced while maintaining a total of 
𝑁 plies. This is illustrated using the FAD example from Table  6, where 
each ply count is first decomposed into its even-integer and residual 
(fractional) components, as shown in Table  7. An emphasis is placed 
on having even ply counts, so that |𝜃| can be equally split between +𝜃
and −𝜃, for a balanced solution.

Here, the even components sum to 14, meaning six additional plies 
must be added to reach the required 𝑁 = 20. This was done by rounding 
up ply counts while ensuring the off-axis plies remain balanced. In this 
case, 112 valid rounding combinations are possible.7 Optionally, this 
step can also consider sign-sensitive angle bins (i.e., treating +𝜃 and 
−𝜃 as distinct rather than the aggregated |𝜃|). This allows for a broader 
set of combinatoric possibilities — potentially resulting in FADs that 
are mathematically in-plane orthotropic — even without enforcing the 
balanced laminate rule.

Each rounded FAD was then evaluated based on its closeness to the 
target laminate parameters, using Euclidean distance: 

𝜀𝐴 =
√

∑

(|𝑉 𝐴
𝐷𝑒𝑠𝑖𝑔𝑛 − 𝑉

𝐴
𝑇𝑎𝑟𝑔𝑒𝑡|)

2 (7)

𝑉 𝐴
𝐷𝑒𝑠𝑖𝑔𝑛 is computed from each rounded FAD and 𝑉 𝐴

𝑇𝑎𝑟𝑔𝑒𝑡 is the original 
design target. The FAD with the lowest error was selected, as shown in 
Table  8.

Symmetry was enforced by determining the FAD for one-half of 
the laminate. For odd-symmetric cases, the same procedure is followed 
while allowing one angle to have an odd-ply count, which is the middle 
ply. For the balanced rule, off-axis ply counts (|𝜃|) are evenly split 
between +𝜃 and −𝜃. If the 10% rule is desired, the same number of plies 

7 This combinatoric was based on distributing six additional plies (as three 
balanced pairs), across seven absolute angle bins.
7 
is preallocated to [0◦, ±45◦, 90◦], and the remainder of the FAD is de-
signed to match the given 𝑉 𝐴. For non-conventional angle sets ([𝛥15◦]), 
only the LP-based formulation of the 10% rule is considered [22].

4.2. Step 2: FAD2SS - from fibre angle distribution to stacking sequences

Once multiple FADs are designed in Step 1 (LP2FAD), the top four 
solutions are selected to be converted to SS in Step 2 (FAD2SS). A 
BB algorithm with beam search was developed to optimally assign the 
through-thickness positions of the plies in the FAD. After this, an open-
source laminate repair tool was employed to enforce design guidelines 
for the SS.

4.2.1. Designing stacking sequence with branch and bound
In this study, a BB algorithm was implemented in Python to design 
SS from a given FAD. As motivated earlier (Section 3), BB treats SS 
design as a decision tree search problem, by designing SS layer by layer. 
The beam search method allowed simultaneous evaluation of multiple 
solution branches, guided by a heuristic cost function defined as the 
mean squared error between the obtained and desired 𝑉 𝐷 LPs. 

𝜀𝐷 = 1
4
∑

(|𝑉 𝐷
𝐷𝑒𝑠𝑖𝑔𝑛 − 𝑉

𝐷
𝑇𝑎𝑟𝑔𝑒𝑡|)

2 (8)

This formulation was chosen over the previously used Euclidean dis-
tance (Eq.  (7) in Step-1) to reduce computational burden: LP mismatch 
can be computed incrementally for a (partially) designed SS by adding 
each layer’s contribution, without repeatedly computing a fourth root.

To ensure ease of use and repeatability, the implementation was 
kept free of tuning or hyperparameters (e.g., branching limits or re-
finement cycles). The number of simultaneously explored solutions in 
beam search (beam width) was suitably fixed8 to avoid sensitivity to 
hyperparameter tuning.

4.2.2. Enforcing design guidelines for stacking sequence
The design guidelines to enforce at this stage are Damage Tolerance, 
Disorientation, and Contiguity. Damage Tolerance can be addressed by 
constraining the outermost ply angle to 45◦, while the others require 
more nuanced handling. Initial efforts to enforce them using pruning 
in the BB method (in Section 4.2) limited design space exploration 
and often led to local optima. A posterior repair strategy was therefore 
adopted, using RELAY [49], an open-source Python-based tool.

RELAY minimally modifies a SS designed by FAD2SS — mainly 
through ply shifts and, if necessary, angle changes — to enforce guide-
lines like Disorientation and Contiguity, while preserving the target 𝑉 𝐴

and 𝑉 𝐷 LPs [49]. Its effectiveness depends on three hyperparameters: 
nD1 (number of redesigned plies), nD2 (ply shifts tested to reduce 𝑉 𝐷

mismatch), and nD3 (repetitions of the shift algorithm). The developer 
recommended default values (nD1 = 6, nD2 = 10, nD3 = 2) to balance 
computational cost and repair success. However, since repairs are not 

8 Testing across a range of values showed performance converging at a 
beam width of 10.



R. Manikandan et al. Composite Structures 378 (2026) 119939 
always successful, this study uses an adaptive strategy: if the repair 
fails, nD1 was increased by two and retried (up to five times).

4.2.3. Assuring stacking sequence solution diversity
As discussed earlier, a FAD matching the desired 𝑉 𝐴 LPs need not 
contain fibre angles that help match the desired 𝑉 𝐷 LPs. Therefore, in 
LP2FAD, multiple FADs are created using a database of pre-observed 
signal patterns. However, the sufficiency of this database must be 
validated through actual SS design attempts to ensure the desired 
solution diversity across various ply counts and the enforcement of 
desired design guidelines. Hence, an exhaustive validation process was 
undertaken.

Fig. 7. LP2SS with a database of 66 signal patterns, sufficient to exactly match 
all possible SS for 𝑁 = 5, 6, 7, 8,… , 15 (1.6 million SS).

To this end, all symmetric and balanced SS from 𝑁 = 5 to 15 with 
[𝛥15◦] were enumerated—approximately 1.6 million unique sequences. 
For each SS, corresponding LPs and compliance with the design guide-
lines (10% Rule, Disorientation, Damage Tolerance, and Contiguity) 
were noted to form a reference test dataset. Mismatch error from 
here onward will be represented as a mean squared error between the 
designed and target LPs (𝑉 𝐴

1 , 𝑉 𝐴
2 , 𝑉 𝐷

1 , 𝑉 𝐷
2 , 𝑉 𝐷

3 , and 𝑉 𝐷
4 ). This metric 

was chosen to be consistent with previous comparative studies [48]. 

𝜀 = 1
6
∑

(|𝑉 𝐴,𝐷
𝐷𝑒𝑠𝑖𝑔𝑛 − 𝑉

𝐴,𝐷
𝑇𝑎𝑟𝑔𝑒𝑡|)

2 (9)

For a given case, if LP2SS failed to design a SS with mismatch 
error9 below 10−2 and satisfy applicable guidelines, new signal patterns 
were added by manually analysing the corresponding enumerated SS 
and parameterise their signal pattern with LPs. This approach helped 
identify a robust pattern database to design any 𝑁-layer SS, with the 
angular diversity to help satisfy design guidelines.

Ultimately, a total of 66 unique signal patterns (listed in Appendix 
B.3) sufficed to design all test cases with exact LP matching (mean 
squared error ≈ 10−35) and guideline-compliance. Fig.  7 shows each 
case was solved within a few tenths of a second on average. With 
multiple FADs available, the implementation readily supports designing 
multiple unique SS, efficiently enabling alternative designs on demand. 
Since the methods within LP2SS are deterministic and scalable, this 
validation over small 𝑁 values ensures robust and diverse solutions 
with increasing dimensionality. The following subsection demonstrates 
LP2SS on a representative mechanical design problem.

9 A mismatch limit of mean squared error 10−2 was conservatively 
estimated from design case studies seen in literature [56,57].
8 
4.3. Demonstration on a loaded plate design case

This subsection illustrates the use of LP2SS in the optimisation of 
a loaded composite plate. The case, adapted from Liu et al. [47], 
considers a simply supported rectangular plate of dimensions 100 mm×
150 mm, designed for a buckling load of 100 kN (longitudinal compres-
sion). The plate stiffness was optimised using LPs, with the software
VICONOPT  [58], resulting in the following target vectors:
𝑉 𝐴 = [−0.1196, −0.0585, 0, 0],

𝑉 𝐷 = [0.0483, −0.721, −0.0196, 0.0], 𝑁 = 28

For complete details of the plate setup and LP optimisation, readers are 
referred to the original study [47]. Using these LP targets, the proposed 
LP2SS method was used to design the loaded plate. Table  9 summarises 
the resulting SS for varying sets of imposed guidelines, along with the 
corresponding runtimes and LP-mismatch (as defined in Eq.  (9)).
Table 9
LP2SS results for the simply supported loaded plate design case.
 Design Guidelines Resulting SS Time (s) Error 𝜀  
 Symm + Bal + 10% Rule [45, 45, 0,−45,−45,−45,−45, 0.29 1.04E−05 
 0, 45, 45, 90, 90, 90, 90]S  
 Symm + Bal + 10% Rule [−45, 45, 45,−45,−30, 30, 60, 0.41 1.20E−05 
 + Contiguity −60, 0,−75, 0, 90, 90, 75]S  
 Symm + Bal + 10% Rule [−45,−45, 0, 45, 45, 30, 60, 0.57 1.76E−03 
 + Disorientation + Contiguity 75,−60, 90, 90,−75,−30, 0]S  

Across all cases, LP2SS consistently designed laminates that satisfy the 
imposed guidelines within sub-second runtime while maintaining the 
target stiffness with negligible mismatch. This example demonstrates 
the method’s practical applicability in efficiently translating optimised 
LPs into SS. The following section further evaluates its robustness and 
comparative performance against state-of-the-art methods.

5. Comparison of LP2SS with state-of-the-art

This section compares LP2SS with established SS design methods 
across varying problem sizes and complexities. The evaluation uses 
benchmark datasets with LPs spanning diverse regions of the design 
space, effectively representing optimal solutions for various mechanical 
problems. The objective is to assess each method’s ability to design 
guideline-compliant SS for all cases with minimal runtime and low LP 
mismatch.

Methods Evaluated: These include GA, BB, MILP, and LP2SS (the 
proposed method). OptiBLESS [13] and pyTLO [41] (GA), LAYLA [48] 
(BB), DMRG [37] (MILP using quantum-inspired solver). OptiBLESS 
and pyTLO are used for [𝛥45◦] and [𝛥15◦] designs, respectively, due 
to their respective limitations in initial population generation with 
design guidelines. DMRG was tested exclusively with [𝛥45◦], as the 
current implementation supports only this configuration while adhering 
to design guidelines. Given the nondeterministic nature of MILP and 
GA implementations, they were run multiple times, and the best solu-
tion was presented. The hyperparameters used for all State-of-the-art 
methods are listed in Appendix  B.5.
Benchmark Datasets: Tests were conducted using two benchmarks, 
each containing 100s of guideline-compliant SS across varying ply 
counts. Since the LPs corresponding to these SS are realisable, all 
design methods can be expected to recreate these SS, or equivalent 
ones, that satisfy all constraints. The benchmark from the University 
of Bristol [14], contains 200 SS with [𝛥45◦] angles for each 𝑁 = [40, 
80, 200]. However, it lacks LP values attainable only with finer angle 
resolutions. This gap is addressed by introducing a new benchmark 
in this study [55], comprising over 450 SS for each ply count with 
[𝛥15◦] angles, for 𝑁 = [10, 20, 40, 80, 100, 200]. Compared to the 
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Table 10
Test Matrix for Evaluating LP2SS and State-of-the-Art Methods.
 Criteria Bristol Benchmark [14] Newly Proposed Benchmark [55]  
 Composition LPs from SS with [𝛥45◦] angles LPs from SS with [𝛥15◦] angles  
 Ply Counts (𝑁) 40, 80, 200 10, 20, 40, 80, 100, 200  
 Admissible Angles [𝛥45◦], [𝛥15◦] [𝛥15◦] only  
 Methods Evaluated GA (OptiBLESS, pyTLO), BB (LAYLA), GA (pyTLO), BB (LAYLA),  
 MILP (DMRG), LP2SS LP2SS  
 Design Guidelines Symmetry, Balance, 10% Rule, Disorientation (𝛥𝜃 ≤ 45◦), Contiguity (max 5 plies)
)

Bristol benchmark, these datasets represent a more diverse spread of 
stiffness combinations across the design space — as evident from the 
LP projection plots provided in Appendix  B.4.
Evaluation metrics: Performance across a range of 𝑁 was assessed 
using two metrics: (i) LP mismatch error and (ii) Computational time. 
As different methods operate well with different objective functions 
(e.g., root mean square error, or absolute error), the mean squared error 
(Eq.  (9)) of all solutions were used for consistent comparisons. The tests 
enforce all key design guidelines: Symmetry, Balance, Disorientation 
(𝛥𝜃 ≤ 45◦), Contiguity (max. five plies), and the 10% rule. For non-
conventional angles, the ply-count-based 10% rule is replaced with 
the LP-based formulation from Abdalla et al. [22], which ensures the 
designed 𝑉 𝐴 LPs lie within a feasible domain. The complete test plan 
is summarised in Table  10.

5.1. Performance evaluation with existing benchmarks

Each case from the Bristol datasets (200 cases for each 𝑁 = 40, 80, and 
200) was provided as an LP target to the design methods. Although 
originally derived from a [𝛥45◦] SS, these targets were also attempted 
to be designed using [𝛥15◦]10, to evaluate scalability. Figs.  8(a) and 8(b) 
present the trends in LP mismatch error and runtime for both angle sets.

These evaluations reaffirmed the trends noted in the literature 
review. GAs like OptiBLESS and pyTLO struggle to consistently make 
guideline-compliant SS without incurring high LP mismatch errors and 
long runtimes. Although pyTLO shows decreasing mismatch errors with 
increasing 𝑁 (∵, greater design freedom), it remains inefficient. DMRG 
(MILP), though nondeterministic, offers slightly faster runtimes than 
LAYLA (BB) but incurs higher mismatch errors. LAYLA (BB) and LP2SS 
show comparable solution quality when using [𝛥45◦], but only LP2SS 
maintains or improves performance when extended to the more vast 
[𝛥15◦] space. Unlike the previous section, while testing with fewer 
layers, LP2SS does not always achieve perfect LP matches, due to 
the heuristic pruning of its BB method in FAD2SS. Nonetheless, it 
outperforms other methods, generating precise, guideline-compliant SS 
in under a second—compared to minutes required by state-of-the-art 
alternatives. This superior scalability is more evident when considering 
the total time taken to complete the Bristol benchmark. While other 
tools require at least 20 hrs, LP2SS completes this test suite in under 
20 mins.

5.2. Performance evaluation with newly proposed benchmarks

To further assess scalability, the newly introduced [𝛥15◦] benchmarks 
were used. For these test cases, Fig.  8(c) shows how mismatch error 
and runtime evolve with increasing 𝑁 .

LP2SS achieves perfect LP matching for 𝑁 = 10, with runtimes 
comparable to LAYLA and significantly outperforming pyTLO. The 
latter highlights a practical lower bound on runtime for GA-based 
methods, which cannot operate any faster due to their inherent pop-
ulation generation and evaluation overhead. As 𝑁 grows, both pyTLO 

10 As [𝛥45◦] ⊂ [𝛥15◦], both sets are valid for the Bristol Benchmark tests.
9 
and LAYLA suffer from increased mismatch errors and runtime, often 
converging to suboptimal solutions — highlighting their limited ability 
to utilise an expanded design space fully. LP2SS, in contrast, main-
tains unparallelled computational efficiency and precision across all 𝑁 , 
demonstrating its robustness with expanded design spaces.

6. Discussion

6.1. Conventional [𝛥45◦] vs non-conventional [𝛥15◦] fibre angles

The use of non-conventional fibre angles 𝜃 ∈ [𝛥15◦] enables better util-
isation of a fibre’s directional properties, compared to the conventional 
[𝛥45◦]. In order to visualise this in terms of the stiffness design space, 
the 𝑉 𝐴 LPs were uniformly sampled for symmetric-balanced conditions 
(𝑉 𝐴

3,4 = 0). LP2SS was then used to attempt designing a solution for 
each sampled point. Plotting the resulting mismatch errors over these 
samples reveals the realisable regions of the design space- as shown by 
the zero error points (in Fig.  9).

Using [𝛥15◦] enables a broader range of stiffness combinations to 
be realised with fewer layers, compared to [𝛥45◦]. These realisable 
𝑉 𝐴 combinations correspond to a FAD, which can be rearranged into 
different SS with distinct 𝑉 𝐷 values. LP2SS, with its proven robustness, 
demonstrates how the [𝛥15◦] design space is larger and more closely 
approximates the continuous LP design space than that of [𝛥45◦].

6.2. Implications of using fast fourier transforms

FFTs provide an elegant and highly efficient way for designing mul-
tiple unique laminates with similar stiffnesses. By using a database 
of pre-observed signal patterns, laminate signals were instantaneously 
transformed into multiple unique FADs. This supports robust design of 
guideline-compliant SS.

A key implication of using FFTs is their dependence on a manually 
curated signal-pattern database. As demonstrated by over 1.6 million 
test cases (Sections 4.2.3 and 5), the 66 patterns in LP2SS suffice 
to match stiffness targets and enforce guidelines within tenths of a 
second, regardless of the layer count. Nevertheless, to achieve the 
same performance and robustness for a different set of ply orientations 
(such as [𝛥5◦]), will require expanding the database through additional 
manual effort.

6.3. Implications of using a multi-step method (LP2SS = LP2FAD + FAD2SS

The multi-step architecture of LP2SS — comprising FAD design, SS 
design, and posterior guideline enforcement — distinguishes it from 
existing methods. A known caveat of such approaches is the potential 
for suboptimal interaction between steps: a FAD perfectly matching 
𝑉 𝐴 LPs, may lack the necessary angles for a guideline-compliant SS, 
matching 𝑉 𝐷 LPs. For example, a FAD composed of [0◦,±60◦, 90◦] will 
inherently violate the disorientation rule. LP2SS manages this situation 
by designing multiple unique FADs upfront using the signal pattern 
database. This provides alternative set of ply angle selections, enabling 
viable solutions. Designing FADs prior to SS design also simplifies the 
BB implementation. Unlike state-of-the-art BB methods [14,47], LP2SS 
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Fig. 8. Comparison of mismatch error and time taken by various methods across all benchmark datasets.
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Fig. 9. Design space of Symmetric-Balanced FADs with 𝑁 = [4, 6,… , 14, 16], 
compared between [𝛥45◦](left) and [𝛥15◦](right).
11 
Fig. 10. Computational Performance of all tested methods to design SS from 
LPs and enforce design guidelines: [𝛥45◦] (top), and [𝛥15◦] (bottom).

avoids dynamic branching limits and groupwise refinements without 
compromising solution quality.

6.4. Time complexity and scalability of LP2SS

Fig.  10 presents the computational performance of all tested methods 
for guideline-compliant SS design from LPs. Unlike other methods 
that exhibit linear or quadratic11 growth in runtime with increas-
ing ply counts, LP2SS consistently achieves sub-second performance 
across all angle sets. This superior scalability stems from three factors: 
the innovative use of FFTs for FAD design, a simple yet effective 
BB implementation, and a combination of pre-observed laminate sig-
nal pattern database with efficient programming practices to reduce 
dynamic memory allocation.

Compared to the many minutes required by state-of-the-art meth-
ods, LP2SS achieves sub-second runtimes. Since such methods are 
typically applied across multiple structural regions or repeatedly within 
optimisation loops, this efficiency translates into substantial cumu-
lative computational savings, enabling faster trade studies without 
compromising solution quality.

While conventional sub-laminate or homogenised strategies in in-
dustrial workflows (briefly discussed in Appendix  A.1) allow for ease 
of design iterations, they limit simultaneous optimisation of in-plane 
(𝐴) and out-of-plane (𝐷) stiffness. LP-based designs enable this, of-
fering more efficient load-path tailoring. LP2SS makes such designs 
practically accessible, marking a substantial advancement in the do-
main of efficient composite laminate design from conceptual stiffness 
requirements.

7. Conclusion

This paper presents LP2SS, a novel and efficient approach to address 
the ‘Inverse Problem’ of converting Lamination Parameters (LPs) to 

11 For brevity, the polynomial regression lines from Fig.  10 are included in 
Appendix  B.6.
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Stacking Sequence (SS). The proposed SS design method is determinis-
tic, delivering high accuracy in LP matching while being exceptionally 
time-efficient. The method is structured as follows: first, the Fibre Angle 
Distribution (FAD) is created using a novel fast Fourier transform (FFT)-
based approach, which then serves as a basis for designing SS using a 
Branch and Bound method with Beam search. Both steps were accom-
panied by post-processing to ensure integer ply counts and adherence 
to design guidelines.

The use of FFTs enabled an elegant way to design multiple unique 
FADs and eventually SS. While considerable hours were spent manually 
parameterising signal patterns with LPs, exhaustive testing schemes 
ensured that LP2SS was robust and ready for practical use in designing 
SS with [𝛥15◦]. The use of such fibre angles allows broader portions 
of the feasible LP design space to be matched with fewer layers, 
facilitating lighter designs compared to the conventional [𝛥45◦].

Furthermore, testing against popularly-used genetic algorithms (GA)
[13,41], Mixed-Integer Linear Programming (MILP)(with quantum-
inspired solver) [37], and branch & bound(BB) [14] methods showed 
that LP2SS outperforms the state-of-the-art in all metrics. Even with 
increasing problem dimensionality (increasing 𝑁 , [𝛥15◦], and design 
guideline enforcement), LP2SS consistently provides closely matching 
results within a second, establishing its efficiency and effectiveness for 
large-scale composite structural design.

To further develop LP2SS and this line of work, we recommend the 
following:

• Application for variable stiffness laminates:  To maximise 
LP2SS’s capability of making multiple unique SS solutions, fur-
ther development is needed to effectively utilise them while 
designing variable stiffness with laminate blending [41] or fibre 
steering [9].

• Increasing solution diversity:  LP2SS can currently design us-
ing the conventional [𝛥45◦] and non-conventional [𝛥15◦] angles. 
Accommodating greater diversity for variable stiffness designs or 
finer increments (e.g., [𝛥5◦]) requires manually adding more sig-
nal patterns. Automating this signal curation process will ensure 
robust scalability of LP2SS.
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download from [55]. The code is available on a public, open access 
repository [52].
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Appendix A. Theoretical background

A.1. Design practices followed in industry

Early design practices relied on sizing pre-defined sub-laminates: ho-
mogenised angle sequences that satisfied empirical design rules. These 
sub-laminates served as building blocks to construct guideline-compliant
laminates. The recent concept of Double-Double laminates formalises 
this strategy using the [±𝜙, ±𝜓] building block, enabling rapid, albeit 
sub-optimal designs [59]. They have also been adopted in gradient-
based structural optimisation efforts [60].

Nevertheless, Airbus’s optimisation strategy for the A350 demon-
strates relatively more design freedom compared to classic homogeni-
sation approaches [61,62]. With a library of optimisation methods 
in play, their approach first optimises the SS thickness and their ply 
angle %’s across the structure, assuming a uniform through-thickness 
distribution of angles. A blended SS is then optimised to meet design 
guidelines and a minimum reserve factor for different structural failure 
modes. However, this approach fixes the load paths early (𝐴 stiffness), 
and consequently restrain out-of-plane stiffness tailoring (𝐷 stiffness).

A.2. Material invariants

𝛤0 =

⎡

⎢

⎢

⎢

⎣

𝑈1 𝑈4 0
𝑈4 𝑈1 0
0 0 𝑈5

⎤

⎥

⎥

⎥

⎦

𝛤1 =

⎡

⎢

⎢

⎢

⎣

𝑈2 0 0
0 −𝑈2 0
0 0 0

⎤

⎥

⎥

⎥

⎦

𝛤2 =
1
2

⎡

⎢

⎢

⎢

⎣

0 0 𝑈2

0 0 𝑈2

𝑈2 𝑈2 0

⎤

⎥

⎥

⎥

⎦

𝛤3 =
⎡

⎢

⎢

⎣

𝑈3 −𝑈3 0
−𝑈3 𝑈3 0
0 0 −𝑈3

⎤

⎥

⎥

⎦

𝛤4 =
⎡

⎢

⎢

⎣

0 0 𝑈3
0 0 −𝑈3
𝑈3 −𝑈3 0

⎤

⎥

⎥

⎦

Where,

𝑈1 =
1
8
(

3𝑄11 + 3𝑄22 + 2𝑄12 + 4𝑄66
)

𝑈2 =
1
2
(

𝑄11 −𝑄22
)

𝑈3 =
1
8
(

𝑄11 +𝑄22 − 2𝑄12 − 4𝑄66
)

𝑈4 =
1
8
(

𝑄11 +𝑄22 + 6𝑄12 − 4𝑄66
)

𝑈5 =
1
8
(

𝑄11 +𝑄22 − 2𝑄12 + 4𝑄66
)

These 𝑄 entities are the reduced material stiffness values:

𝑄 =

⎡

⎢

⎢

⎢

𝐸1
1−𝜈12𝜈21

𝜈12𝐸2
1−𝜈12𝜈21

0
𝜈12𝐸2

1−𝜈12𝜈21
𝐸1

1−𝜈12𝜈21
0

⎤

⎥

⎥

⎥

⎣
0 0 𝐺12⎦
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The reduced stiffness matrix 𝑄 can be characterised using five material 
properties that can be obtained from uniaxial mechanical tests: 𝐸1
(Young modulus in longitudinal (fibre) direction), 𝐸2 (Young modulus 
in transverse (matrix) direction, 𝐺12 (In-Plane Shear modulus), 𝜈12, 
and 𝜈21 (Poisson’s ratio). The (1–2) notation used here represent the 
principal directions of orthotropy.

A.3. Requisites for lamination parameter optimisation

The lamination parameters (LPs) are mathematically described in a 
continuous and convex design space [17]. Such properties allow the use 
of time-efficient gradient-based optimisation algorithms. However, that 
does not easily assure optimality, as the optimisation objectives (struc-
tural responses such as buckling, strain failure criterion, aeroelastic 
requirements, etc. [12]) need not be convex. As a consequence, several 
studies can be found in the literature that use different gradient-based 
methods to optimise LPs [9,63,64]. Moreover, appropriate optimisation 
constraints need to be used to account for the following: mathemat-
ically feasible domains of LPs, correlations between them, and the 
practically realisable regions of LPs upon following design guidelines. 
This is still an actively studied topic in literature, and an appropriate 
list of constraints can be referred from [22,23,63,65].

For completeness, it is noted that, analogous to how LPs help 
optimise stiffnesses under Classical Laminate Theory, an alternative 
formulation — Polar Parameters — can be used for First-order Shear 
Deformation Theory based stiffnesses [66].

Appendix B. Implementation

B.1. Sampling requirements for FFT of laminate signals

To avoid aliasing and ensure reliable FFT outputs, a signal must 
be appropriately sampled. The Nyquist-Shannon theorem was followed 
to achieve the same [54]. For the parameterisation used to represent 
𝑉 𝐴 LPs as signals (in Eq.  (4)), frequency corresponds with 2𝜃, and 
𝜃 ∈ (−90, 90]. Hence, the highest frequency is 2 ∗ 90◦ or 𝜋 𝑟𝑎𝑑. As such, 
the sampling rate in fictitious time 𝑇  can be quantified as follows:
Sampling Rate ≥ 2 ∗ Highest Angular Frequency in Signal

⇒Sampling Rate ≥ 2 ∗
𝑚𝑎𝑥(𝜔)

2𝜋
⇒Sampling Rate ≥ 2 ∗ 𝜋

2𝜋
⇒Sampling Rate ≥ 1

This implies that a laminate signal 𝐿 needs to be sampled at least 
once a second.

The precise quantity of these samples ( ) was then determined 
with another criterion: they must be able to describe a signals funda-
mental period [54]. While real signals may be aperiodic, the laminate 
signals are periodic due to their pure sinusoidal composition.

This periodicity-based criterion is motivated by how the Fast Fourier 
Transform (FFT) processes signals. Specifically, the FFT of   samples 
produces an output array of   frequency bins. Each bin represents a 
specific frequency and contains their corresponding amplitude. These 
bins are uniformly spaced between 0 (0◦ here) and the maximum 
detectable frequency (90◦ here).

Therefore, by sampling a period of the signal at the required rate, 
the number of bins will be spaced such that the desired frequency 
information are captured. For example, consider a laminate design 
with ply orientations |𝜃| ∈ 15◦, 45◦, 60◦, 90◦. Their signal periodicity is 
determined by calculating the fundamental frequency:

Periodicity = 360
Fundamental Frequency

⇒Periodicity = 360

Greatest Common Divisor(2 ∗ [15◦, 45◦, 60◦, 90◦])

13 
⇒Periodicity = 360
30

⇒Periodicity = 12

Hence, the periodicity of the design case in this example is 12. So by 
using  = 13 samples (from 𝑇 = 0 to 12), the frequency bins generated 
by them correspond to [0◦, 7.5◦, 15◦, 22.5◦, 30◦, 37.5◦, 45◦, 52.5◦, 
60◦, 67.5◦, 75◦, 82.5◦, 90◦]. They contain the desired ply orientation 
information for this example case (|𝜃| ∈ [15◦, 45◦, 60◦, 90◦]).

B.2. Derivation of exact signal patterns

For a given 𝑇 , 𝑎 𝑏 and 𝑐 can be solved by equating Eqs.  (4) and (5):

1
𝑁

𝑁
∑

𝑘=1
[cos 2𝜃𝑘𝑇 ] = 𝑎𝑇

(

𝐿𝐴1 (𝑇 = 0)
)

+ 𝑏𝑇
(

𝐿𝐴1 (𝑇 = 1)
)

+ 𝑐𝑇
(

𝐿𝐴1 (𝑇 = 2)
)

⇒
1
𝑁

𝑁
∑

𝑘=1
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(

1
𝑁
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[cos 2𝜃𝑘 ⋅ 0]

)

+ 𝑏𝑇

(

1
𝑁
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𝑘=1
[cos 2𝜃𝑘 ⋅ 1]

)

+ 𝑐𝑇

(

1
𝑁

𝑁
∑

𝑘=1
[cos 2𝜃𝑘 ⋅ 2]

)

The summation rule adds the contribution of all 𝑁 plies in the 
symmetric half of the FAD. For convenience, they are now replaced 
as a sum of 𝑝 different ply orientations and their respective volume 
fractions 𝜈 (the fraction of plies belonging to a certain orientation). 
For example, in a 20-layer FAD, if 5 plies have the orientation 45◦, the 
volume fraction 𝜈 of 45◦ is 0.25 (∵, 5∕20=0.25).
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Table 11
Analytically-derived Signal Patterns for Laminates consisting [𝛥15◦].
 Orientations 𝑇 = 0 𝑇 = 1 𝑇 = 2 𝑇 = 3 𝑇 = 4 𝑇 = 5 𝑇 = 6  
 [0, 15, 30] 1 𝑉 𝐴

1 𝑉 𝐴
2 6.46 − 10.19𝑉 𝐴

1 + 4.73𝑉 𝐴
2 20.39 − 30.58𝑉 𝐴

1 + 11.19𝑉 𝐴
2 35.32 − 51.98𝑉 𝐴

1 + 17.66𝑉 𝐴
2 41.78 − 61.17𝑉 𝐴

1 + 20.39𝑉 𝐴
2  

 [0, 15, 45] 1 𝑉 𝐴
1 𝑉 𝐴

2 3.73 − 6.46𝑉 𝐴
1 + 3.73𝑉 𝐴

2 7.46 − 12.93𝑉 𝐴
1 + 6.46𝑉 𝐴

2 7.46 − 13.93𝑉 𝐴
1 + 7.46𝑉 𝐴

2 6.46 − 12.92𝑉 𝐴
1 + 7.46𝑉 𝐴

2  
 [0, 15, 60] 1 𝑉 𝐴

1 𝑉 𝐴
2 1 − 2.73𝑉 𝐴

1 + 2.73𝑉 𝐴
2 −2.73𝑉 𝐴

1 + 3.73𝑉 𝐴
2 −3.73𝑉 𝐴

1 + 4.73𝑉 𝐴
2 1 + 5.46(𝑉 𝐴

2 − 𝑉 𝐴
1 )  

 [0, 15, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 −1 + 2𝑉 𝐴
2 −2 + 𝑉 𝐴

2 −2 − 𝑉 𝐴
1 + 4𝑉 𝐴

2 −3 + 4𝑉 𝐴
2  

 [0, 15, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 −1.73 + 𝑉 𝐴
1 + 1.73𝑉 𝐴

2 −2 + 𝑉 𝐴
2 −3.46 + 𝑉 𝐴

1 + 3.46𝑉 𝐴
2 −3 + 4𝑉 𝐴

2  
 [0, 30, 45] 1 𝑉 𝐴

1 𝑉 𝐴
2 3 − 5𝑉 𝐴

1 + 3𝑉 𝐴
2 4 − 6𝑉 𝐴

1 + 3𝑉 𝐴
2 𝑉 𝐴

1 −3 + 6𝑉 𝐴
1 − 2𝑉 𝐴

2  
 [0, 30, 60] 1 𝑉 𝐴

1 𝑉 𝐴
2 1 − 2𝑉 𝐴

1 + 2𝑉 𝐴
2 𝑉 𝐴

2 𝑉 𝐴
1 1  

 [0, 30, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 −0.46 + 0.19𝑉 𝐴
1 + 1.26𝑉 𝐴

2 −0.39 + 0.58𝑉 𝐴
1 + 0.8𝑉 𝐴

2 0.68 − 0.02𝑉 𝐴
1 + 0.34𝑉 𝐴

2 0.21 + 1.17𝑉 𝐴
1 − 0.39𝑉 𝐴

2  
 [0, 30, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 −1 + 𝑉 𝐴

1 + 𝑉 𝐴
2 𝑉 𝐴

2 𝑉 𝐴
1 1  

 [0, 45, 60] 1 𝑉 𝐴
1 𝑉 𝐴

2 1 − 𝑉 𝐴
1 + 𝑉 𝐴

2 2𝑉 𝐴
1 − 𝑉 𝐴

2 𝑉 𝐴
1 1 − 2𝑉 𝐴

1 + 2𝑉 𝐴
2  

 [0, 45, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 0.26 + 0.46𝑉 𝐴
1 + 0.26𝑉 𝐴

2 0.53 + 0.92𝑉 𝐴
1 − 0.46𝑉 𝐴

2 0.53 − 0.07𝑉 𝐴
1 + 0.53𝑉 𝐴

2 −0.46 + 0.92𝑉 𝐴
1 + 0.53𝑉 𝐴

2  
 [0, 45, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 𝑉 𝐴

1 1 𝑉 𝐴
1 𝑉 𝐴

2  
 [0, 60, 75] 1 𝑉 𝐴

1 𝑉 𝐴
2 1 + 0.73𝑉 𝐴

1 − 0.73𝑉 𝐴
2 0.73𝑉 𝐴

1 + 0.26𝑉 𝐴
2 −0.26𝑉 𝐴

1 + 1.26𝑉 𝐴
2 1 + 1.46𝑉 𝐴

1 − 1.46𝑉 𝐴
2  

 [0, 60, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 1 + 𝑉 𝐴
1 − 𝑉 𝐴

2 𝑉 𝐴
2 𝑉 𝐴

1 1  
 [0, 75, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 1.73 + 𝑉 𝐴

1 − 1.73𝑉 𝐴
2 −2 + 𝑉 𝐴

2 3.46 + 𝑉 𝐴
1 − 3.46𝑉 𝐴

2 −3 + 4𝑉 𝐴
2  

 [15, 30, 45] 1 𝑉 𝐴
1 𝑉 𝐴

2 2.73 − 4.73𝑉 𝐴
1 + 2.73𝑉 𝐴

2 2.73 − 4.73𝑉 𝐴
1 + 1.73𝑉 𝐴

2 −2.73 + 3.73𝑉 𝐴
1 − 2.73𝑉 𝐴

2 −6.46 + 9.46𝑉 𝐴
1 − 5.46𝑉 𝐴

2  
 [15, 30, 60] 1 𝑉 𝐴

1 𝑉 𝐴
2 0.86 − 2𝑉 𝐴

1 + 1.73𝑉 𝐴
2 −0.5 −0.86 + 𝑉 𝐴

1 − 1.73𝑉 𝐴
2 −2𝑉 𝐴

2  
 [15, 30, 75] 1 𝑉 𝐴

1 𝑉 𝐴
2 −0.5 + 𝑉 𝐴

2 −0.5 0.5 − 𝑉 𝐴
1 − 𝑉 𝐴

2 −2𝑉 𝐴
2  

 [15, 30, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 −1 + 0.73𝑉 𝐴
1 + 0.73𝑉 𝐴

2 −0.73𝑉 𝐴
1 + 0.26𝑉 𝐴

2 −0.26𝑉 𝐴
1 − 1.26𝑉 𝐴

2 1 − 1.46𝑉 𝐴
1 − 1.46𝑉 𝐴

2  
 [15, 45, 60] 1 𝑉 𝐴

1 𝑉 𝐴
2 0.73 − 1.26𝑉 𝐴

1 + 0.73𝑉 𝐴
2 −0.73 + 1.26𝑉 𝐴

1 − 1.73𝑉 𝐴
2 −0.73 + 0.26𝑉 𝐴

1 − 0.73𝑉 𝐴
2 0.46 − 2.53𝑉 𝐴

1 + 1.46𝑉 𝐴
2  

 [15, 45, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 0 −𝑉 𝐴
2 −𝑉 𝐴

1 −1  
 [15, 45, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 −0.26 + 0.46𝑉 𝐴

1 − 0.26𝑉 𝐴
2 0.53 − 0.93𝑉 𝐴

1 − 0.46𝑉 𝐴
2 −0.53 − 0.07𝑉 𝐴

1 − 0.53𝑉 𝐴
2 −0.46 − 0.92𝑉 𝐴

1 + 0.53𝑉 𝐴
2  

 [15, 60, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 0.5 − 𝑉 𝐴
2 −0.5 0.5 − 𝑉 𝐴

1 + 𝑉 𝐴
2 −2𝑉 𝐴

2  
 [15, 60, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 0.46 + 0.19𝑉 𝐴

1 − 1.26𝑉 𝐴
2 −0.39 − 0.58𝑉 𝐴

1 + 0.8𝑉 𝐴
2 −0.67 − 0.02𝑉 𝐴

1 − 0.34𝑉 𝐴
2 0.21 − 1.17𝑉 𝐴

1 − 0.39𝑉 𝐴
2  

 [15, 75, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 1 − 2𝑉 𝐴
2 −2 + 𝑉 𝐴

2 2 − 𝑉 𝐴
1 − 4𝑉 𝐴

2 −3 + 4𝑉 𝐴
2  

 [30, 45, 60] 1 𝑉 𝐴
1 𝑉 𝐴

2 −2𝑉 𝐴
1 −2 + 𝑉 𝐴

2 𝑉 𝐴
1 3 + 4𝑉 𝐴

2  
 [30, 45, 75] 1 𝑉 𝐴

1 𝑉 𝐴
2 −0.73 − 1.26𝑉 𝐴

1 − 0.73𝑉 𝐴
2 −0.73 − 1.26𝑉 𝐴

1 − 1.73𝑉 𝐴
2 0.73 + 0.26𝑉 𝐴

1 + 0.73𝑉 𝐴
2 0.46 + 2.53𝑉 𝐴

1 + 1.46𝑉 𝐴
2  

 [30, 45, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 −1 − 𝑉 𝐴
1 − 𝑉 𝐴

2 −2𝑉 𝐴
1 − 𝑉 𝐴

2 𝑉 𝐴
1 1 + 2𝑉 𝐴

1 + 2𝑉 𝐴
2  

 [30, 60, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 −0.86 − 2𝑉 𝐴
1 − 1.73𝑉 𝐴

2 −0.5 0.86 + 𝑉 𝐴
1 + 1.73𝑉 𝐴

2 −2𝑉 𝐴
2  

 [30, 60, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 −1 − 2𝑉 𝐴
1 − 2𝑉 𝐴

2 𝑉 𝐴
2 𝑉 𝐴

1 1  
 [30, 75, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 −1 − 2.73𝑉 𝐴

1 − 2.73𝑉 𝐴
2 2.73𝑉 𝐴

1 + 3.73𝑉 𝐴
2 −3.73𝑉 𝐴

1 − 4.73𝑉 𝐴
2 1 + 5.46(𝑉 𝐴

2 + 𝑉 𝐴
1 )  

 [45, 60, 75] 1 𝑉 𝐴
1 𝑉 𝐴

2 −2.73 − 4.73𝑉 𝐴
1 − 2.73𝑉 𝐴

2 2.73 + 4.73𝑉 𝐴
1 + 1.73𝑉 𝐴

2 2.73 + 3.73𝑉 𝐴
1 + 2.73𝑉 𝐴

2 −6.46 − 9.46𝑉 𝐴
1 − 5.46𝑉 𝐴

2  
 [45, 60, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 −3 − 5𝑉 𝐴

1 − 3𝑉 𝐴
2 4 + 6𝑉 𝐴

1 + 3𝑉 𝐴
2 𝑉 𝐴

1 −3 − 6𝑉 𝐴
1 − 2𝑉 𝐴

2  
 [45, 75, 90] 1 𝑉 𝐴

1 𝑉 𝐴
2 −3.73 − 6.46𝑉 𝐴

1 − 3.73𝑉 𝐴
2 7.46 + 12.92𝑉 𝐴

1 + 6.46𝑉 𝐴
2 −7.46 − 13.93𝑉 𝐴

1 − 7.46𝑉 𝐴
2 6.46 + 12.93𝑉 𝐴

1 + 7.46𝑉 𝐴
2  

 [60, 75, 90] 1 𝑉 𝐴
1 𝑉 𝐴

2 −6.46 − 10.19𝑉 𝐴
1 − 4.73𝑉 𝐴

2 20.39 + 30.58𝑉 𝐴
1 + 11.19𝑉 𝐴

2 −35.32 − 51.98𝑉 𝐴
1 − 17.66𝑉 𝐴

2 41.78 + 61.17𝑉 𝐴
1 + 20.39𝑉 𝐴

2  
⇒
⎡

⎢

⎢

⎣

𝑎𝑇
𝑏𝑇
𝑐𝑇

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 cos
(

2𝜃1
)

cos
(

4𝜃1
)

1 cos
(

2𝜃2
)

cos
(

4𝜃2
)

⋮ ⋮ ⋮
1 cos

(

2𝜃𝑝
)

cos
(

4𝜃𝑝
)

⎤

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎣

cos
(

2𝜃1𝑇
)

cos
(

2𝜃2𝑇
)

⋮
cos

(

2𝜃𝑝𝑇
)

⎤

⎥

⎥

⎥

⎥

⎦

To solve this system of equations, the dimensions across both ends 
should match. Hence, 𝑝 = 3:

⇒
⎡

⎢

⎢

⎣

𝑎𝑇
𝑏𝑇
𝑐𝑇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 cos
(

2𝜃1
)

cos
(

4𝜃1
)

1 cos
(

2𝜃2
)

cos
(

4𝜃2
)

1 cos
(

2𝜃3
)

cos
(

4𝜃3
)

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

cos
(

2𝜃1𝑇
)

cos
(

2𝜃2𝑇
)

cos
(

2𝜃3𝑇
)

⎤

⎥

⎥

⎦

B.3. Complete list of signal patterns made for [𝛥15◦] laminates

The analytically-derived and the manually-approximated signal pat-
terns are presented in Tables  11 and 12 respectively.

B.4. Comparison of benchmark datasets

The original Bristol benchmarks [48] feature LP values that belong 
to SS with [𝛥45◦] angles and ply counts of 𝑁 = [40, 80, 200]. In order 
to have a more comprehensive assessment of a method’s performance 
when designing SS with finer angle increments, new benchmarks were 
created using [𝛥15◦] increments with a broader range of ply counts: 
𝑁 = [10, 20, 40, 80, 100, 200]. As shown in the 2D projections in Fig. 
11, the new datasets cover a more diverse and extensive spread of LP 
values, all corresponding to real SS that satisfy design guidelines. Both 
datasets follow the same set of design guidelines, as stated in Table 
10. The total number of test cases in all benchmark datasets can be 
summarised in Table  13.

Given that more stiffness combinations are possible with [𝛥15◦]
compared to [𝛥45◦], the new benchmarks include many more test 
cases. An exception occurs for 𝑁 = 10, as the number of guideline-
compliant SS was limited. The laminates in these datasets were created 
14 
as follows. A uniform sample of 𝑉 𝐴 values was selected from the 
enumerated datasets of earlier (with 𝑁 = 5 to 15). For each sample 𝑉 𝐴, 
three corresponding 𝑉 𝐷 targets were chosen—one nearby, one at the 
median distance, and one farthest, from the original 𝑉 𝐴. This ensured a 
varied and challenging set of test cases. The reference SS corresponding 
to these LPs were generated using the open-source GA pyTLO [41], 
with an exhaustive initial population and number of generations to 
ensure optimal convergence. This process ensured that all targets in 
the new benchmarks are realisable and well-distributed (at least in 2D 
projections).

B.5. Hyperparameters of all state-of-the-art methods seen in comparison 
studies

All methods were evaluated using hyperparameters recommended 
by their respective developers, ensuring fair and representative com-
parisons. Adjustments were made only when a method failed to pro-
duce feasible results with [𝛥15◦] angles. For LAYLA [48], when the 
default repair parameters were insufficient for providing a guideline-
compliant solution, the parameter controlling number of redesigned 
plies (𝑛𝐷1) was incremented by 2 to enable feasible design. The full 
set of parameters are listed in Table  14.

For OptiBLESS [13], the parameters used in the work of Fedon 
et al. [48] are listed in Table  15. That work applied OptiBLESS to the 
bristol benchmark cases, and the same results are used in this study 
when comparing against LP2SS under identical conditions. However, 
due to limitations in OptiBLESS’s population generation method, no 
hyperparameter setting was found that effectively designed feasible 
solutions for higher ply counts (𝑁=200) and [𝛥15◦] test cases, while 
satisfying all design guidelines. As a result, pyTLO [41] was employed 
for those cases, with its parameters detailed in Table  16. The GA 
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Fig. 11. LP projections of test datasets used in this study: [𝛥45◦] from Bristol and the newly proposed [𝛥15◦].
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Table 12
Manually Approximated Signal Patterns for Laminates consisting [𝛥15◦].
 Approximate Pattern 𝑇 = 0 𝑇 = 1 𝑇 = 2 𝑇 = 3 𝑇 = 4 𝑇 = 5 𝑇 = 6  
 1 1 𝑉 𝐴

1 𝑉 𝐴
2 0 −𝑉 𝐴

2 −𝑉 𝐴
1 −2𝑉 𝐴

2  
 2 1 𝑉 𝐴

1 𝑉 𝐴
2 0 𝑉 𝐴

2 𝑉 𝐴
1 0  

 3 1 𝑉 𝐴
1 𝑉 𝐴

2 0 1 − 𝑉 𝐴
2 1 − 𝑉 𝐴

1 0  
 4 1 𝑉 𝐴

1 𝑉 𝐴
2 0 𝑉 𝐴

2 𝑉 𝐴
2 0  

 5 1 𝑉 𝐴
1 𝑉 𝐴

2 0 2𝑉 𝐴
1 𝑉 𝐴

1 0  
 6 1 𝑉 𝐴

1 𝑉 𝐴
2 −𝑉 𝐴

2 𝑉 𝐴
1 − 𝑉 𝐴

2 𝑉 𝐴
1 −𝑉 𝐴

1  
 7 1 𝑉 𝐴

1 𝑉 𝐴
2 −𝑉 𝐴

2 𝑉 𝐴
2 − 𝑉 𝐴

1 𝑉 𝐴
1 −𝑉 𝐴

1  
 8 1 𝑉 𝐴

1 𝑉 𝐴
2 𝑉 𝐴

1 𝑉 𝐴
2 𝑉 𝐴

1 −𝑉 𝐴
1  

 9 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1 𝑉 𝐴

1  
 10 1 𝑉 𝐴

1 𝑉 𝐴
2 0.5𝑉 𝐴

2 −𝑉 𝐴
2 −0.85𝑉 𝐴

2 𝑉 𝐴
1  

 11 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
2 0.5𝑉 𝐴

2 0.5(𝑉 𝐴
1 + 𝑉 𝐴

2 ) 0.5𝑉 𝐴
2  

 12 1 𝑉 𝐴
1 𝑉 𝐴

2 0.36(𝑉 𝐴
2 − 𝑉 𝐴

1 ) 0.34𝑉 𝐴
1 𝑉 𝐴

1 0.33𝑉 𝐴
1  

 13 1 𝑉 𝐴
1 𝑉 𝐴

2 1 + 𝑉 𝐴
1 − 𝑉 𝐴

2 𝑉 𝐴
2 𝑉 𝐴

1 1  
 14 1 𝑉 𝐴

1 𝑉 𝐴
2 0.84𝑉 𝐴

1 + 0.34𝑉 𝐴
2 0.59𝑉 𝐴

2 0.87𝑉 𝐴
1 + 0.59𝑉 𝐴

2 0.43𝑉 𝐴
2  

 15 1 𝑉 𝐴
1 𝑉 𝐴

2 −2𝑉 𝐴
1 −0.5(𝑉 𝐴

1 + 𝑉 𝐴
2 ) 𝑉 𝐴

1 0.5(𝑉 𝐴
2 − 𝑉 𝐴

1 )  
 16 1 𝑉 𝐴

1 𝑉 𝐴
2 0.36(𝑉 𝐴

2 − 𝑉 𝐴
1 ) −0.34𝑉 𝐴

1 −𝑉 𝐴
1 −0.6  

 17 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1 + 𝑉 𝐴

2 −𝑉 𝐴
1 𝑉 𝐴

1 −2𝑉 𝐴
1  

 18 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1 0.5(𝑉 𝐴

1 + 𝑉 𝐴
2 ) 𝑉 𝐴

1 −0.5(𝑉 𝐴
1 + 𝑉 𝐴

2 ) 
 19 1 𝑉 𝐴

1 𝑉 𝐴
2 −2𝑉 𝐴

1 0.2𝑉 𝐴
2 𝑉 𝐴

1 −0.8𝑉 𝐴
2  

 20 1 𝑉 𝐴
1 𝑉 𝐴

2 −2𝑉 𝐴
1 5𝑉 𝐴

2 𝑉 𝐴
1 4𝑉 𝐴

2  
 21 1 𝑉 𝐴

1 𝑉 𝐴
2 0 1.66𝑉 𝐴

2 −𝑉 𝐴
1 0  

 22 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
2 − 0.5 −0.5 0.5 − (𝑉 𝐴

1 + 𝑉 𝐴
2 ) −2𝑉 𝐴

2  
 23 1 𝑉 𝐴

1 𝑉 𝐴
2 0.34𝑉 𝐴

2 + 0.84𝑉 𝐴
1 0.594𝑉 𝐴

2 0.594𝑉 𝐴
2 + 0.87𝑉 𝐴

1 0.4375𝑉 𝐴
2  

 24 1 𝑉 𝐴
1 𝑉 𝐴

2 −2𝑉 𝐴
1 0.2𝑉 𝐴

2 𝑉 𝐴
1 −0.8𝑉 𝐴

2  
 25 1 𝑉 𝐴

1 𝑉 𝐴
2 −2𝑉 𝐴

1 5𝑉 𝐴
2 𝑉 𝐴

1 4𝑉 𝐴
2  

 26 1 𝑉 𝐴
1 𝑉 𝐴

2 − 𝑉 𝐴
2

2.3333
1.00669(𝑉 𝐴

1 − 𝑉 𝐴
2 ) 𝑉 𝐴

2

2.3333
− 𝑉 𝐴

1 −2𝑉 𝐴
2  

 27 1 𝑉 𝐴
1 𝑉 𝐴

2 0.3661𝑉 𝐴
1 −2𝑉 𝐴

2 −0.268𝑉 𝐴
1 −2𝑉 𝐴

2  
 28 1 𝑉 𝐴

1 𝑉 𝐴
2 2𝑉 𝐴

2 0 𝑉 𝐴
2 − 𝑉 𝐴

1 𝑉 𝐴
2  

 29 1 𝑉 𝐴
1 𝑉 𝐴

2 0.5𝑉 𝐴
2 0 𝑉 𝐴

2 − 𝑉 𝐴
1 −2𝑉 𝐴

2  
 30 1 𝑉 𝐴

1 𝑉 𝐴
2 −𝑉 𝐴

2 0 𝑉 𝐴
2 − 𝑉 𝐴

1 𝑉 𝐴
2  

 31 1 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐴
1

𝑉 𝐴
2

3
 

Table 13
Total number of test cases for different ply counts and [𝛥𝜃] across benchmark 
datasets.
 𝑁 Bristol 

Benchmarks 
[𝛥45◦] [48]

New Benchmarks 
[𝛥15◦] [55]

 

 10 – 68  
 20 – 450  
 40 200 450  
 80 200 450  
 100 – 450  
 200 200 450  

Table 14
LAYLA Hyperparameters [48].
 Maximum Outer loops 5  
 Branching limit of beam search 50  
 Fitness limit 1E−10  
 No. of iterations 1  
 Objective Function Mean Squared Error 
 No. of redesigned plies 𝑛𝐷1 6 (+2)  
 No. of ply-shifts tested 𝑛𝐷2 10  
 No. of repetitions of ply-shift algorithm 𝑛𝐷3 2  

Table 15
OptiBLESS Hyperparameters [13,48].
 Maximum generations 100  
 Population Size 200  
 Elitism % 1  
 Crossover % 75  
 Fitness limit 1E−10  
 No. of iterations 5  
 Objective Function Root Mean Squared Error 
 Feasibility penalty factor 100  
16 
Table 16
pyTLO Hyperparameters [41].
 Maximum generations 1000  
 Population Size 100  
 Elitism % 5  
 Crossover % 75  
 Mutation % 25  
 Fitness limit 1E−4  
 Feasibility penalty factor 100  
 No. of iterations 1  
 Objective Function Root Mean Squared Error 

Table 17
DMRG Hyperparameters [38].
 No. of Sweeps 40  
 Maximum Bond Dimension 8  
 Sweep Sequence L  
 Objective Function Root Mean Squared Error 
 No. of Iterations 5  
 Disorientation Penalty 1/N  
 Contiguity Penalty 0.5/N  
 Balance Penalty 0.2/N  

implementation of pyTLO was robust enough to converge to similar re-
sults when re-run multiple times. Hence, they were not re-run multiple 
times, like OptiBLESS and other nondeterministic methods require.

For DMRG [38], the hyperparameter settings were adopted directly 
from the developer’s publication, as shown in Table  17. Given the 
nondeterministic nature, the tool was re-run for multiple iterations to 
match the same solution quality as the developer. As the current state 
of DMRG is tuned primarily for [𝛥45◦] angles, they were unable to be 
used to yield feasible results with [𝛥15◦].

B.6. Empirical time complexity of tested SS design methods

The time taken to design an 𝑁-layer SS was empirically determined 
for each method using polynomial regression of results from the  
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Table 18
Empirical time complexity of LP2SS and other SS design methods, as a function of ply count 𝑁
and allowable angle set.
 [𝛥45◦] [𝛥15◦]  
 LP2SS 𝑡 = 0.00127𝑁 + 0.01366 𝑡 = −(9.71723𝐸 − 06)𝑁2 + (5.20035𝐸 − 03)𝑁 + 0.12097 
 BB 𝑡 = 0.32730𝑁 − 2.97030 𝑡 = (1.47236𝐸 − 03)𝑁2 + 0.66927𝑁 − 4.54268  
 MILP 𝑡 = 0.35954𝑁 − 9.04419 –  
 GA 𝑡 = 1.21673𝑁 + 102.57415 𝑡 = (5.62316𝐸 − 03)𝑁2 + 0.61318𝑁 + 46.51798  
comparison studies (in Section 5). The resulting equations approximate 
time complexity as a function of the number of layers (𝑁) and the angle 
set used ([𝛥45◦] or [𝛥15◦]), and are summarised in Table  18.

These regressions reflect the average behaviour observed during 
testing. The Branch & Bound (BB) results are based on LAYLA [48]. 
Mixed Integer Linear Programming (MILP) results are based on the 
Quantum-inspired DMRG method [38]. For Genetic Algorithm (GA), 
OptiBLESS [13] was used for cases involving [𝛥45◦], while pyTLO [41] 
for [𝛥15◦]. Estimates for MILP are not provided for [𝛥15◦], as the current 
state of DMRG can reliably produce results only for [𝛥45◦].
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