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Abstract—Optimization for single main objective with multi
constraints is considered using a probabilistic approach coupled
to evolutionary search. In this approach the problem is converted
into a bi-objective problem, treating the constraint ensemble as
a second objective subjected to multi-objective optimization for
the formation of a Pareto front, and this is followed by a local
search for the optimization of the main objective function. In this
process a novel probabilistic modeling is applied to the constraint
ensemble, so that the stiff constraints are effectively taken care
of, while the model parameter is adaptively determined during
the evolutionary search. In this way the convergence to the
solution is significantly accelerated and an accurate solution
is established. The improvements are demonstrated by means
of example problems including comparisons with the standard
benchmark problems, the solutions of which are reported in the
literature.

I. Introduction

MANY real life problems involve decision makings and

choices based on some compromises. Among the pos-

sible compromises to select the ones which are as good as

possible is a natural way to proceed. In general this process is

complex and it can be defined as optimization. The complexity

arises due to a single or many conflicting objectives. Most

real-life problems in science, engineering and optimization

consist of one or many linear, non-linear, non-convex, and

discontinuous constraints, which come into picture mainly

due to some physical limitations or functional requirements

to satisfy. Constraints can be subdivided into inequality type

or equality type, but the challenge is to satisfy all constraints

to make the solution be feasible. To solve the optimization

problems traditionally a number of methods are developed

in the realm of mathematics with their associated merits

and limitations [1], [2], [3]. With modern advancements in

science and engineering, from last two decades the solution

of optimization problems are sought by means of evolutionary

search algorithms which are proved to be very effective [4],

[5], [6]. Even though evolutionary algorithms mainly were

developed to solve unconstrained problems, researchers suc-
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cessfully introduced many constraint handling mechanisms to

solve constrained optimization problems [7], [8], [9].

A constrained optimization problem is generally formulated

as the following non-linear programming (NLP) problem:

Minimize / Maximize f (x),

Subject to g j(x) ≥ 0, j = 1, .., J,

hk(x) = 0, k = 1, ..,K,

xl
i
≤ xi ≤ xu

i
, i = 1, .., n.

(1)

In the NLP problem, n is the number of variables, J the

number of inequality constraints, and K the number of equality

constraints. The function f (x) is the objective (cost) function,

the j-th inequality constraint is g j(x) and hk(x) is the k-th

equality constraint. The range of i-th variable varies in between

[xl
i
, xu

i
]. In this work exclusively inequality constraints are

treated. To handle an equality constraint the same methodology

can be used under the condition that the equality constraint

is approximated by a corresponding inequality constraint as

follows: gJ+k(x) = |ǫk − hk(x)| ≥ 0, where ǫk represents a small

tolerance for violation of the original equality constraint.

Identifying a solution x that is both feasible and optimizes

the objective at hand is particularly challenging when con-

straints and objective have a non-linear, non-convex, discrete,

or non-differentiable nature. Solving such an engineering

problem is formidably challenging when classical optimization

algorithms and theorems are used, as these are developed

mainly for well-behaved problems [4], [10], [11]. The reason

for this is that the non-linearity in the objective and constraint

functions gives rise to many local optima. Therefore a classical

algorithm, being based on improving a single solution in

objective space, is generally bound to be trapped in one of the

local optima and not reach the global optimum. Evolutionary

computation was found to be able to handle such problems due

to its stochastic, population-based nature, where it probes the

space of possible solutions at several points simultaneously,

without making use of derivative information. The basic

principle of an evolutionary algorithm (EA) is to improve

individuals of a randomly generated initial population based on

combining potentially successful ones. The combination yields

new solutions in the vicinity of the original solutions, while

the new solutions may outperform the previous ones. This

principle turned out to be generically capable for optimiza-

tion problems with non-linear or discrete objective functions,

so that evolutionary algorithms have been used for various

engineering applications, e.g. [7], [12], [13].

Deb [8] developed an evolutionary algorithm for constrained
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optimization problems. In this approach, during the tourna-

ment selection process, an infeasible solution is always treated

as inferior compared to a feasible one, or as inferior compared

to a solution that violates the constraints to a lesser extent. In

this algorithm, among two infeasible solutions, exclusively the

difference in the amount of violating a constraint determines

the suitability of a solution, so that the information on objec-

tive function value is not taken into account. This may lead to

feasible solutions, which however do not yield satisfactory ob-

jective function values. With increasing difficulty of a problem,

i.e. as the degree of non-linearity of objectives and constraints

increases, it becomes aparent that evolutionary computation

has limited robustness and effectiveness, which is partially due

to ineffective constraint handling in the algorithms. Namely,

when the feasible region is sufficiently small compared to the

space of possible solutions, then an initial population of an

evolutionary algorithm generally does not contain any feasible

solution. This lack of information in the population poses a

challenge to the algorithm as it aims to reach to the feasible

region in the search domain. The problem is to assess the

potential of a solution in the population, for reaching the

feasible region while satisfying the objective at the same time.

An approach to make use of constraint information and

objective information at the same time without merging them

by means of a linear combination, is to consider the con-

strained single objective problem as a bi-objective optimization

problem. This means, next to the original single objective

f (x) a measure of overall constraint violation is used as

an additional objective to be minimized [14]. This way the

search process tolerates infeasible solutions as long as they are

Pareto-optimal regarding function value as well as constraint

violation. This approach is also referred to as ’multiobjec-

tivization’ [15]. Through multiobjectivization the information

in the population is exploited more effectively compared to

the previously mentioned approaches. Recently an extension

of the bi-objective approach was proposed [16] using the

reference point approach to focus the search in the vicinity of

the constrained minimum solution. Wang et al. [17] proposed

an adaptive trade off model (ATM) using bi-objective approach

with three phase methodology for handling constraints in

evolutionary optimization.

Studies on many different evolutionary algorithms for con-

strained optimization showed that finding the constrained

optimum by an evolutionary algorithm alone is problematic for

multiple, non-linear constraints, so that it became appealing

to use evolutionary algorithms jointly with a classical local

search procedure [18]. Recently, a bi-objective evolutionary

optimization strategy has been proposed [9] to estimate the

penalty parameter R for a problem from the obtained two-

objective non-dominated front. Based on the information

obtained through the bi-objective evolutionary algorithm, an

appropriate penalized function is constructed and solved using

a classical local search method. Another joint evolutionary-

classical method used gradient information of the constraints

to repair the solutions which are not feasible [19]. Yet an-

other joint approach used the combination of Nelder-Mead

simplex search with evolutionary algorithm [20]. More hybrid

constraint handling studies can be found in [21], [22].

Presumably the most popular constraint handling approach

is known as the penalty function approach, which was orig-

inally developed for the classical optimization methodolo-

gies. A penalty function penalizes a solution by worsening

the fitness of a solution, when it violates constraints. This

penalization is accomplished by adding a value to a solu-

tion’s objective function value in proportion to the amount

of constraint violation. The proportionality factor is known as

the penalty parameter, which balances the relative importance

between constraint violation and objective function value.

That is, in the penalty method a constrained optimization

problem is converted into an unconstrained problem. This

approach is very popular presumably due to the simplicity of

the concept and ease of implementation. However, it is clearly

noted that fixing a penalty parameter implies that the relative

importance among constraint violation and satisfaction of the

objective function should be known, which is a problematic

issue in general due to non-linearity inherent to objective and

constraint functions. To overcome this issue to some extend,

Coello [23] proposed a self-adaptive penalty approach by using

a co-evolutionary model to adapt the penalty factors.

In this paper an approach is proposed where constraint

violation is treated in probabilistic terms. This way, the popu-

lation based nature of the evolutionary algorithm is exploited,

in order to estimate the relative significance of violating a

constraint in perspective with the other constraints.

The organization of the paper is as follows. In the next

section a probabilistic method developed in this work is

described. Thereafter its effectiveness is verified by means of

applications of the associated algorithm for solving a number

of mathematical test problems, an engineering design problem,

and a robotics problem. This is followed by conclusions.

II. Evolutionary Optimization and Probabilistic Constraint

Handling

The bi-objective joint evolutionary-classical method used

in this work is a combination of a multiobjectivized EA and

the penalty function approach for inequality constraints. The

method has been described elsewhere [9]. Additionally, in

this work a probabilistic model is developed associated with

the Pareto front formed by the objective function and the

constraint violation. Based on this model the penalty parameter

over all constraint violation is computed in a natural way,

so that commensurate weighting of the constraint violation is

maintained throughout the optimizations process. The antici-

pated outcome is the effective solution for the problem at hand

with major improvements compared to the several approaches

mentioned above. For convenience of readers the essential

issues of the bi-objective joint approach are pointed out in

the following section before addressing the novel probabilistic

constraint handling technique.



A. Bi-objective approach

The working principle of evolutionary-classical algorithm

proposed in this work is based on bi-objective method of

handling constrained single objective optimization problem,

where a penalty function approach is used. In both evolu-

tionary and classical search, a novel probabilistic constraint

handling approach is employed that will be described in the

next subsection. The algorithm is described as follows, clar-

ifying the role of its evolutionary, probabilistic and classical

components.

First, the generation counter is set at t = 0.

Step 1:The evolutionary component is an elitist, non-

dominated-sorting based multi-objective genetic al-

gorithm (NSGA-II [6]). It is applied to the bi-

objective optimization problem [9]. This means

the Pareto-optimal solutions in the objective space

formed by function value and constraint violation are

to be identified. That is, the bi-objective problem is

defined as follows:

Minimize f (x),

Minimize V(x),

subject to x
(L)

i
≤ xi ≤ x

(U)

i
, i = 1, .., n.

(2)

where n denotes the number of variables, x
(L)

i
and

x
(U)

i
are the lower and upper variable bounds of the

i-th component of x respectively, and V(x) denotes

the overall constraint violation whose computation

we will describe in the next section.

Step 2:If t > 0 and ((t mod τ) = 0), the penalty parameter

R is obtained from the current non-dominated front

as follows [9]. A cubic curve is fitted for the non-

dominated points ( f = a+b×V+c×V2+d×V3). This

way the penalty parameter is estimated by finding the

slope at V=0, that is R = −b. Since this is a lower

bound on R, after some trial-and-error experiments

on standard test problems, twice this value is chosen

as R, i.e. R = −2b [9].

Step 3:Thereafter, using R computed in Step 2, the following

local search problem is solved starting with the most

feasible solution, i.e. the solution having minimum

V(x), as given by

Minimize P(x) = f (x) + R × V(x),

x
(L)

i
≤ xi ≤ x

(U)

i
.

(3)

The solution from the local search is denoted by x̄.

Step 4:The algorithm is terminated in case x̄ is feasible, and

the difference between two consecutive local search

solutions is smaller than a small number δ f . In the

applications of this paper, δ f = 10−4 is used. Then

x̄ is identified as the optimized solution. Else, t is

incremented by one, and we continue with Step 1

It is noted that due to Step 2, the penalty parameter R is not

a user-tunable parameter as it is determined from the obtained

non-dominated front. For the local search procedure in Step

3 Matlab’s fmincon() procedure with reasonable parameter

settings is used to solve the penalized function.

B. Probabilistic constraint handling

Typically the penalty function approach is used to solve the

following unconstrained problem [9].

Minimize P(x,R) = f (x) +
∑J

i=1 R j〈g j(x)〉. (4)

where f (x) is the objective function to be minimized; 〈α〉
is the bracket operator and is equal to −α, if α〈0 and zero

otherwise; g j(x) represents a general violation of the j-th

constraint. R j is the penalty parameter for j-th constraint.

Since 〈g j(x)〉 is continually tried to be vanishing during the

minimization process, probability density value of 〈g j(x)〉 is

highest at zero and its values gradually diminish. With this

information we can confidently surmise a probabilistic model

for this probability density (pdf) which is exponential pdf

given by

fλ(y) = λ e−λy. (5)

where λ is the decay parameter. If we denote 〈g j(x)〉 by

v j(x), namely

〈g j(x)〉 = v j(x). (6)

the pdf in (5) becomes

fλ j(v j) = λ e−λ jv j . (7)

The mean value of the exponential pdf function is equal to

λ−1
j

. During the evolutionary search 〈g j(x)〉 is a general form

of violation which applies to any member s of the population

although this is not explicitly denoted. In explicit form, we

can write

fλ j(v j,s) = λ j e−λ jv j,s . (8)

We can characterize the exponential pdf function according

to the constraint j simply by equating the mean value of the

violations to the mean of the exponential pdf, namely

λ j =
1
v̄ j
. (9)

so that (3) becomes

fλ j(v j) =
1
v̄ j

e−v j/v̄ j . (10)

One should note that the mean of the exponential probability

density of v j is equivalent to the mean of a uniform probability

density applied to the violations v j. Therefore the mean of

the exponential density function is estimated by taking the

mean of the violations which are from a uniform probability

density and they are independent. This is closely connected to

exponential averaging [24]. Variation of the exponential pdf

for different decay parameters is shown in figure 1.

The importance of (10) can be seen in the following way.

Since a violation v j spans all the violation starting from zero

up to the point v j, the probability of the violation is expressed



Fig. 1. Variation of exponential pdf for different decay constants versus v j.

as cumulative distribution function whose implication is easy

to comprehend by considering the extremes. The cumulative

distribution function of (10) is given by the following equation

p(v j) =
1
v̄ j

∫ v j

0
e
−

v j

v̄ j dv j = 1 − e
−

v j

v̄ j . (11)

For v j = 0 violation is zero and for v j = ∞, violation is

1.0, i.e., 100%. The variation of p(v j) vs v j with respect to

the mean of v j is shown in figure 2.

Fig. 2. Variation of p(v j) versus v j for various mean values of p(v j).

The function expressed by equation 11 tells us how probable

it is that a solution with equal or less degree of violation

is expected to occur. That is, it is the probability to find an

equal or better solution. This can be defined as the degree of

solution-unimportance. The smaller the probability p(v) the

more important the solution is. This is because, we want the

search process to arrive at the region where the probability

to find equal or better solutions is low. In the extreme case

the probability of the violation is zero. Consequently this is

the most important, i.e. ideal solution. We value a solution

with a low probability as important, because it is relatively

close to the most important point where the violation is zero,

and the algorithm tries to find solutions to confirm this. For

a solution with a high probability p(v) the occurrence of

this solution is quite common, so that such a solution is not

significant for the search process to reach the feasible region.

Namely it is relatively far from the point where the violation

is zero, and to find a better solution than the one at hand is

foregone conclusion. The corresponding chromosomes are to

be favoured according to their degree of importance namely

according to their closeness to the point where the violation

is zero in the evolutionary search process. It is interesting

to note that, from the figures, for zero constraint violation

the probability density is maximum, while the corresponding

probability, namely to find an equal or better solution, is

minimum, i.e. zero. In (4) denoting

〈g j(x)〉 = v j(x). (12)

we can write

R j〈g j(x)〉 = R jv j(x) = Rr j(x)v j(x). (13)

where R is the penalty parameter common for all the

constraints; r j is given as a non-linear function of v j in (14)

in a general form

r j = f (v j). (14)

so that, we obtain

r jv j = f (v j)v j = p(v j). (15)

Using this result in (4), we write

R jv j = Rp(v j),
∑J

j=1 R jv j = R
∑J

j=1 p(v j).
(16)

where J is the number of constraints; R is a common penalty

parameter which is determined as described in the preceding

section. The probability p(v j) controls the common penalty

parameter which varies theoretically between zero and minus

infinity. Equation (16) points out two important items.

1) R j(v j)〈g j(x)〉 = R j(v j)v j is explicitly defined by a single

nonlinear function p(v j).

2) The entire v j region is transformed between zero and

one, where probable stiffness of the constraints is natu-

rally and effectively handled. Especially in the presence

of stiff violations the determination of R j contains much

uncertainty, since it is computed as a slope at the point

where constraint violations vanish. In this case the R j is

relatively small and v j is relatively large so that the prod-

uct R jv j is precarious. This is a typical manifestation of

stiff constraint. This is sketched in figure 3. Figure 3a

presents the total overview about the Pareto front for

stiff conditions. The cubic approximation is carried out

to impose curve fitting on the Pareto front. The slope

of the tangent is computed at the point where cubic

approximation and the vertical axis intersect. Figure 3b

is cubic approximation merged with the Pareto front as

a single curve.

In the new approach the sum
∑J

1 p(v j) has a well defined

outcome which corresponds to a well established R so that the

product of these two yields a stable outcome. The improve-

ment by the new approach is illustrated in figure 4. Figure 4a

presents the overview about the Pareto front in stiff constraint



Fig. 3. Sketch of computing slope of the tangent in the presence of stiff
constraint conditions. (a) Total overview of the Pareto front together with
cubic interpolation & extrapolation to determine the slope of the tangent. (b)
Cubic approximation merged with the Pareto front as a single curve (a) at the
region where v j is close to the origin.

Fig. 4. Sketch of computing slope of the tangent in the presence of stiff
constraint conditions. (a) Total overview of the Pareto front together with
cubic interpolation & extrapolation to determine the slope of the tangent in
the new approach. (b) Cubic approximation merged with the Pareto front as
a single curve (a) at the region where v j is close to the origin.

conditions. The cubic approximation is carried out to impose

curve fitting on the Pareto front. The slope of the tangent

is computed at the point where cubic approximation and the

vertical axis intersect. Figure 4b shows the cubic polynomial

merged with the Pareto front and they are represented as a

single curve.

It is noteworthy to mention that the change of the shape of

the degree of solution-unimportance from generation to gen-

eration implies that the search processes uses the most actual

violation information represented by the statistical properties

of the population to grade the suitability of solutions, and the

slope of the violation tends to go minus infinity. This way the

local search benefits from the evolutionary algorithm having

suitable starting point for the local search.

III. Applications

In order to study the effectiveness of the probabilistic-

based bi-objective hybrid algorithm, the algorithm is applied

to a number of well-known standard mathematical problems

taken from constrained optimization literature [25], as well

as a constrained welded beam design [8] and a robotics

problem [26]. The problems have previously been tackled by

researchers using different approaches.

The parameter values for the EA used are: population size =

100, simulated binary crossover (SBX) probability= 0.9, SBX

index = 10, polynomial mutation probability = 1/n, where n

denotes the amount of decision variables, and mutation index

= 100. It is to note that the termination criterion is described

in the algorithm. For every problem the algorithm was run 25

times from different initial populations. As result the number

of function evaluations is presented in the form of best, median

and worst number of evaluations.

A. Test problems

In this section, we are providing the problem formulation of

both the mathetical and engineering design test problems. The

probabilistic-based hybrid algorithm is applied to four difficult

test problems, that are named g01, g07, g18, and g24 in [25].

The mathematical formulation for each problem is given with

the corresponding best-known optimum solution. In Table I

the function evaluations needed by the probabilistic-based

hybrid approach are presented and compared with an existing

approach taken from the literature [27]. From the results of

the applications it is seen that our approach outperforms the

existing one. Considering the average amount of function

evaluations, the existing approach requires more evaluation

by factor 21.1 for 1; factor 5.8 for problem 2; factor 7.6 for

problem 3; and factor 2.4 for problem 4.

B. Test problem description

A. Problem 1

The problem is given as follows:

min. f (x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i
+ 5
∑13

i=5 xi,

s.t. g1(x) ≡ 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,

g2(x) ≡ 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,

g3(x) ≡ 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,

g4(x) ≡ −8x1 + x10 ≤ 0,

g5(x) ≡ −8x2 + x11 ≤ 0,

g6(x) ≡ −8x3 + x12 ≤ 0,

g7(x) ≡ −2x4 − x5 + x10 ≤ 0,

g8(x) ≡ −2x6 − x7 + x11 ≤ 0,

g9(x) ≡ −2x8 − x9 + x12 ≤ 0,

(17)

where 0 ≤ xi ≤ 1 for i = 1, . . . , 9, 0 ≤ xi ≤ 100 for i =

10, 11, 12, and 0 ≤ x13 ≤ 1. The minimum point is x∗ =

(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)T and f (x∗) = −15.

In Figure 5 for a typical simulation among the 25 runs

of problem 1, the history of the best objective value of the

population and the corresponding constraint violation value

are shown.

B. Problem 2

The problem is given as follows:

min. f (x) = x2
1
+ x2

2
+ x1 x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,
s.t.

g1(x) ≡ −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,
g2(x) ≡ 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3(x) ≡ −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,

g4(x) ≡ 3(x1 − 2)2 + 4(x2 − 3)2 + 2x3
2
− 7x4 − 120 ≤ 0,

g5(x) ≡ 5x2
1
+ 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,

g6(x) ≡ x2
1
+ 2(x2 − 2)2 − 2x1 x2 + 14x5 − 6x6 ≤ 0,

g7(x) ≡ 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5
− x6 − 30 ≤ 0,

g8(x) ≡ −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,
−10 ≤ xi ≤ 10, i = 1, . . . , 10.

(18)



Best known f

points
Infeasible

CV

f

 8  9  10 11 12 13 14 15

 0

 5

 10

 20

B
es

t 
O

b
je

ct
iv

e 
V

al
u

e,
 f

C
o

n
st

ra
in

t 
V

io
la

ti
o

n
, 

C
V

Generation Number

 15

−30

−25

−20

−15

−10

−5

 0

 0  1  2  3  4  5  6  7

Fig. 5. Function value reduces with generation for problem 1. Figure taken
from [9].

The best reported minimum is at

x∗ = (2.172, 2.364, 8.774, 5.096, 0.991, 1.431, 1.322, 9.829,

8.280, 8.376)T with a function value 24.306.

C. Problem 3

The problem is given as follows:

min. f (x) = −0.5 (x1x4 − x2x3 + x3x9 − x5x9

+x5x8 − x6x7),

s.t. g1(x) ≡ x2
3
+ x2

4
− 1 ≤ 0,

g2(x) ≡ x2
9
− 1 ≤ 0,

g3(x) ≡ x2
5
+ x2

6
− 1 ≤ 0,

g4(x) ≡ x2
1
+ (x2 − x9)2 − 1 ≤ 0,

g5(x) ≡ (x1 − x5)2 + (x2 − x6) ≤ 0,

g6(x) ≡ (x1 − x7)2 + (x2 − x8) ≤ 0,

g7(x) ≡ (x3 − x5)2 + (x4 − x6)2 − 1‘0,

g8(x) ≡ (x3 − x7)2 + (x4 − x8)2− ≤ 0,

g9(x) ≡ x2 + (x8 − x9)2 − 1 ≤ 0,

g10(x) ≡ x2x3 − x1x4 ≤ 0,

g11(x) ≡ −x3x9 ≤ 0,

g12(x) ≡ x5x9 ≤ 0,

g13(x) ≡ x6x7 − x5x8 ≤ 0,

−10 ≤ xi ≤ 10 for i = 1, . . . , 8, 0 ≤ x9 ≤ 20.

(19)

The best-reported constrained minimum lies

at x∗ = (−0.657776,−0.153419, 0.323414,−0.946258,

−0.657776,−0.753213, 0.323414,−0.346463, 0.599795)

with an objective value of f (x∗) = −0.866025.

D. Problem 4

The problem is given as follows:

min. f (x) = −x1 − x2,

s.t. g1(x) ≡ −2x4
1
+ 8x3

1
− 8x2

1
+ x2 − 2 ≤ 0,

g2(x) ≡ −4x4
1
+ 32x3

1
− 88x2

1
+ 96x1 + x2 − 36 ≤ 0,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.
(20)

The best-reported optimum lies at

x∗ = (2.32952019747762, 3.17849307411774) and the

corresponding objective value is f (x∗) = −5.508013.

E. Problem welded beam design

The problem is given as follows (x = (h, l, t, b)T ):

min. f1(x) = 1.10471h2l + 0.04811tb(14.0 + l),

s. t. g1(x) ≡ 13, 600 − τ(x) ≥ 0,

g2(x) ≡ 30, 000 − σ(x) ≥ 0,

g3(x) ≡ b − h ≥ 0,

g4(x) ≡ Pc(x) − 6, 000 ≥ 0,

g5(x) ≡ 0.25 − δ(x) ≥ 0,

0.125 ≤ h, b ≤ 5,

0.1 ≤ l, t ≤ 10,

(21)

where,

τ(x) =

√

(τ′)2 + (τ′′)2 + (lτ′τ′′)/
√

0.25(l2 + (h + t)2),

τ′ =
6, 000
√

2hl
,

τ′′ =
6, 000(14 + 0.5l)

√

0.25(l2 + (h + t)2)

2[0.707hl(l2/12 + 0.25(h + t)2)]
,

σ(x) =
504, 000

t2b
,

δ(x) =
2.1952

t3b
,

Pc(x) = 64, 746.022(1 − 0.0282346t)tb3.

Reduction of function value with generation is shown in

Figure 6.
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Fig. 6. Function value reduces with generation for welded beam design
problem. Figure taken from [9].

With reference to problems 1-4, table I presents the compar-

ison of function evaluations needed by the probabilistic joint

evolutionary-classical approach and an existing approach [27].

The number of required evolutionary and classical function

evaluations are shown separately.

C. Robotics problem

We emphasize that many real-world engineering design

optimization problems involve multiple constraints to satisfy,

while few is known about expected magnitude of violation to

be reached for the constraints simultaneously during the search



TABLE I
Comparison of function evaluations needed by the probabilistic hybrid approach and an existing approach [27]; the number of required evolutionary and

classical evaluations are shown separately.

Problem Best known Function Evaluations (FEs)

optima Zavala, Aguirre & Proposed Hybrid Approach

( f ∗) Diharce [27]

Mathematical Best Median Worst Best Median Worst

Problem 1 −15.0 80,776 90,343 96,669 1,475 4,274 22,367

NSGA-II+Local 1,000+475 3,500+774 14,000+8,367

Problem 2 24.306209 1,14,709 1,38,767 2,08,751 4,069 23,842 55,721

NSGA-II+Local 2,400+1,669 14,400+9,442 34,400+21,321

Problem 3 −0.866025 97,157 1,07,690 1,24,217 2,107 14,082 36,547

NSGA-II+Local 1,000+1,107 9,000+5,082 19,000+17,547

Problem 4 −5.508013 11,081 18,278 6,33,378 1,263 7,695 41,762

NSGA-II+Local 1,000+263 6,500+1,195 39,000+2,762

Engineering Approach [8] Proposed Hybrid Approach

Welded beam design 2.38119 3,20,000 3,20,000 3,20,000 2,778 21,287 44,617

NSGA-II+Local 1,500+1,278 18,000+3,287 37,000+7,617

process. Therefore proposed probabilistic based methodology

is also applied to a constrained robot gripper design optimiza-

tion problem. The problem concerns the design of a robot

gripper optimally, which is commonly used in industry as

an interaction device between environment, to pick and place

object and to perform grasping and manipulation tasks. The

vector of seven design variables are x = (a, b, c, e, f , l, δ)T ,

where a, b, c, e, f , l are dimensions (link lengths) of the robot

gripper and δ is the angle between link length b with c shown

in figure 7 [26].

y

cbz a

f

l

e
β

α

δ

Fk

Fk

Fig. 7. A sketch of robot Gripper-I. Figure taken from [26]

The objective is to minimize the difference between maxi-

mum and minimum force in the gripper. Minimize

f (x) = max
z

Fk(x, z) −min
z

Fk(x, z). (22)

The minimization of robot gripper design is subject to the

following geometric and force constraints:

g1(x) ≡ Ymin − y(x,Zmax) ≥ 0,

g2(x) ≡ y(x,Zmax) ≥ 0,

g3(x) ≡ y(x, 0) − Ymax ≥ 0,

g4(x) ≡ YG − y(x, 0) ≥ 0,

g5(x) ≡ (a + b)2 − l2 − e2 ≥ 0.

g6(x) ≡ (l − Zmax)2 + (a − e)2 − b2 ≥ 0,

g7(x) ≡ l − Zmax ≥ 0.

(23)

where,

g ≡
√

(l − z)2 + e2,

b2 ≡ a2 + g2 − 2.a.g. cos(α − φ),

α ≡ arccos(
a2 + g2 − b2

2.a.g
) + φ,

a2 ≡ b2 + g2 − 2.b.g. cos(β + φ),

β ≡ arccos(
b2 + g2 − a2

2.b.g
) − φ,

φ ≡ arctan(
e

l − z
),

Fk ≡
P.b sin(α + β)

2.c cosα
,

y(x, z) ≡ 2(e + f + csin(β + δ)),

10 ≤ a ≤ 250,

10 ≤ b ≤ 250,

100 ≤ c ≤ 300,

0 ≤ e ≤ 50,

10 ≤ f ≤ 250,

100 ≤ l ≤ 300,

1.0 ≤ δ ≤ 3.14,

Ymin = 50 mm,

Ymax = 100 mm,

YG = 150 mm,

Zmax = 50 mm,

P = 100 N,

FG = 50 N.

(24)

Table II shows the best, median and worst objective func-

tion values obtained using probabilistic constraint handling

methodology and compared with an existing approach taken

from literature [26]. It is noted that due to the multi-modality

of the robotics problems at hand the algorithm is executed

without local search component involved in order to ensure

robustness of the algorithm. Despite this, as for the mathe-

matical problems, also for the robotics problems the prob-



TABLE II
Comparison of results for the robot gripper design.

Best Median worst

Teaching-learning-based

optimization (TLBO) [26] 4.247644 4.93770095 8.141973

Artificial Bee Colony

optimization [26] 4.247644 5.086611 6.784631

Proposed methodology 0.592738 0.623837 0.673636

abilistic based approach performed better than the previous

one. Namely the existing approach used about 10 times more

function evaluations in average compared to the probabilistic

hybrid approach, and the probabilistic based approach reached

a solution that is significantly better compared to the best

known optimum up till now. This improved performance of

robot gripper design optimization is indicated in Table II.

IV. Conclusions

A probabilistic constraint handling approach for

evolutionary-classical constrained optimization is presented to

deal effectively with challenging constrained single objective

optimization problems. The novelty of the probabilistic

approach is to handle the stiffness present among the

constraints. This is accomplished by employing a bi-objective

constraint handling approach based on multi-objectivization

of the constrained single objective problem. This entails that

the information obtained from the evolutionary algorithm is

used effectively in order to bring the population near to the

feasible region with pressure. This is accomplished by using

the constraint violation information in terms of the degree of

solution importance that is quantified by a probability. The

evolutionary search provides the information for estimation

of the appropriate penalty parameter for the local search, so

that it is able to arrive at the exact global optimum. From

the applications of the approach on several mathematical test

problems, a welded beam design and a robotics problem, it

is noted that the probabilistic hybrid approach outperforms

existing approaches by significant factors in terms of the

amount of function evaluations required to reach the optima,

reported in Table I as well as with respect to best known

optima, reported in Table II, where it is seen that the

probabilistic hybrid algorithm yields very accurate results as

it generally arrives at the best-known optimum with exactness.
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