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Abstract

Monitoring residential scale photovoltaic (PV) systems is important for maximizing

the energy yield and detecting malfunctions. Analytical-based approaches are not

reliable in these systems because of the lack of on-site measurements and detailed

PV system specifications. In this paper, a collaborative approach is proposed which

does not depend on weather data but on similar PV systems. Based on the so-called

performance-to-peer approach, the aim of this work is to improve this baseline model

by adding PV systems characteristics and by optimizing with machine learning tech-

niques. The methodology has been tested in a fleet of more than 12,000 PV systems

located in the Netherlands with up to 7 years of data per system. The proposed

model achieves an average R2 of 94.1% and a NRMSE of 0.05, outperforming in

terms of R2 the baseline model by 1.4 points, and the analytical approach by 3.8. The

data requirements of this model are not high: With 1,700 years of PV system data

with daily resolution, the maximum performance can be achieved as long as a mini-

mum of 6 months of data per system and 100 PV systems are considered. The appli-

cation of this model for fault detection and categorization has also been shown. The

proposed approach has shown its strengths with respect to other methods through

its ability of distinguishing between system mismatch and actual fault and of adapting

to new situations via retraining.
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1 | INTRODUCTION

Motivated by the rising awareness on climate change and higher com-

petitiveness, in recent years, photovoltaic (PV) sources have seen an

increase in the share of electricity generation all around the world.1

Solar energy is an abundant, increasingly affordable, scalable, and

clean source of energy.2 It is possible to generate electricity from solar

energy using photovoltaic panels with no direct emissions; that is, no

greenhouse gasses (GHG) are emitted during operation, only in the

manufacturing and installation processes. With non-renewable energy

sources set to decline and an exponential drop in prices of PV mod-

ules, solar energy has the potential to supply electricity that is envi-

ronmentally as well as economically attractive.3

One of the main drawbacks of solar energy is the uncertainty and

intermittent generation due to not only diurnal and seasonal Sun vari-

ations but also due to local phenomena such as clouds. This
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interrupted generation may create instabilities in the power grid such

as voltage fluctuations.4 One of the ways to tackle this issue is by esti-

mating the energy generation of these PV systems. Monitoring PV

systems can also be beneficial for fault detection in order to rapidly

spot any malfunction in the system.

The conventional approach employed in monitoring is to use

design information along with accurate weather data.5–7 This is suit-

able for large or commercial solar farms where expensive sensors can

be installed on site. However, for residential PV systems, extrapolated

weather data have to be used. This rarely represents the local weather

as the weather stations are often far away from the actual site of PV

system installation. Thus, local phenomena like a cloud passing over

the area cannot be accounted for in the calculation of expected

energy generation. This affects the accuracy of monitoring.

To overcome the problem of weather data, an alternative

approach was developed where neighboring or peer systems are used

to monitor each other. A peer system is essentially a system similar to

the monitored PV system. It could be physically nearby or have similar

design parameters. This way, if a cloud passes over one PV system, it

will also pass over a geographically close peer system, and thus, their

yields can be compared to detect any fault. Since the approach is

based on historical energy yields along with the peer predictions, it

will also overcome any monitoring error due to incorrect design

information.

Several works can be found where the information from neigh-

boring PV systems was employed to improve the predictions in the

residential scale. The studies8,9 employed neighboring systems to

determine the irradiance variations due to cloud motion and then

forecasted energy production using analytical models. Golnas et al10

predicted the output of a PV system from a regional fleet by using

data from other systems in the fleet based on historical performance

correlation between the systems. Tsafarakis et al11 developed a

method for fault detection considering that the power produced by a

PV system is linearly related to the power produced by neighboring

PV systems. Next, Popovic and Radovanovic12 presented a methodol-

ogy for inter-system comparison between correlated PV systems to

estimate the operation status of individual panel in urban

surroundings.

The most relevant approach to use peer systems to monitor the

PV power was presented by Leloux et al.13,14 They defined a novel

performance indicator called Performance to Peer (P2P) which was

computed by comparing the energy production of several neighboring

PV systems.13,14 They proposed it as an alternative to the Perfor-

mance Ratio (PR), commonly employed for monitoring and automatic

fault detection. They showed that P2P was more stable than PR when

monitoring 6,000 PV installations across Europe with energy output

data for approximately 7 years and a temporal resolution of 10 min.

Stability here was interpreted by the authors as the ability to easily

distinguish between the absence and presence of a fault.

The objective of this research is to extend the work performed in

Leloux et al.14 The database will be expanded to more than 12,000

PV residential systems located in the Netherlands, with diverse sys-

tem characteristics and installation age. System information will be

employed beyond just geographical closeness. In contrast to some

research papers,8,9,11,12,15 weather data are not employed for finding

similar systems in order to avoid their inaccuracies. Furthermore, in

line with the recommendations of Leloux et al,13 machine learning

algorithms are used to optimize the model and increase its accuracy.

The application of the developed model for fault detection and cate-

gorization will also be demonstrated.

The structure of the paper is as follows. Section 2 presents the

employed models. The data used are briefly described in Section 3.

Main results are displayed in Section 4 where the superior perfor-

mance of the proposed algorithm is shown, together with its limits.

The main application of the proposed model is demonstrated in

Section 5 by presenting the fault detection approach and showing the

fault categorization performed. Finally, Section 6 presents the main

conclusions.

2 | MODELS

This section explains the main models employed in this work. Sub-

section 2.1 describes the P2P model developed in Leloux et al.13 With

this approach as base, several improvements are made yielding the

proposed model, in subsection 2.2. Optimizations are required for the

latter approach, which are explained in subsection 2.3. Finally, sub-

section 2.4 presents a series of models that will be used for compari-

son in later sections.

2.1 | Performance-to-peer model

In P2P model, the performance of one system is compared with its

peers in order to monitor the former system.13 The PV system to be

monitored is defined as the focus system, whereas all other available

PV systems are referred as peer systems. The model is divided into

two steps: identifying the good peers among all available PV systems

and calculating the expected yields by using the data of the good

peers.

The energy yield data are the only characteristic employed to find

the good peers for the focus system. The yields are normalized with

respect to their total capacity resulting in the Capacity Utilization Fac-

tor (CUF) as shown in Equation 1. With the daily yields now normal-

ized to the same scale, the Capacity Utilization Ratio (CUR) is

calculated for each focus-to-peer system pair, according to

Equation 2. Next, the weighing factor is calculated by taking the

inverse of the Median Absolute Deviation (MAD) of CUR and raised to

fourth power (Equation 3). The exponent was determined through a

sensitivity analysis performed by Leloux et al.13 This weighing factor

is used to determine whether the peer system is a good peer system

or not. The higher the weighing factor, the better the peer for the

chosen focus system.

CUF¼ EPV
P �T , ð1Þ
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where EPV is the energy output of the PV system, P is the rated power

of the PV system, and T is the time interval of energy output

measurement.

CUR¼CUFfocus
CUFpeer

, ð2Þ

where CUFfocus is the CUF of the focus PV system and CUFpeer is the

CUF of the peer PV system.

weighing factor¼ 1

½MADðCURÞ�4
ð3Þ

The next step is to use the data of good peer systems to calculate

the expected yields. Once top 10 peers are chosen as good peers, a

weighted median of the peer systems' CUF with respect to their

weighing factors is calculated to give the reference CUFref . CUFref can

be recognized as the normalized expected yields for the focus system.

Hence, the true expected yields can be estimated by reverse calcula-

tion of CUF. Additionally, the model further calculates P2P for each

day by taking a ratio of the focus system CUFfocus to reference CUFref .

This new metric is proposed instead of the conventional Performance

Ratio (PR) for the monitoring of focus system.13

2.2 | Proposed model

The proposed model is based on the above Performance-to-Peer

model. The main difference between the two is the use of a higher

amount of PV system data. Moreover, system design information,

daily yields, and system location are used to find good peers for the

chosen focus system, not only system yields. Just like P2P, the pro-

posed model is divided into two steps: distance calculation to identify

the good peers and expected yields calculation using the data of the

good peers.

2.2.1 | Distance calculation

This first part of the proposed model calculates the similarity between

two PV systems. This similarity is computed by making use of several

distances, understood as the more alike two systems are, the lower is

the distance between them. Therefore, here, the distance should not

be necessarily interpreted as geographical distance between the two.

Three distances are computed (one for each characteristic), normal-

ized, and later combined. Normal standardization was applied to all

distances to ensure a fair comparison.

To begin with, the feature distance (dfeat) considers the system

design information. This includes the number of panels n, panel incli-

nation θ, and panel orientation ϕ. These variables were chosen after a

feature correlation analysis and experience-based selection. The

model calculates the Euclidean distance for each focus-to-peer system

pair using Equation 4. When computing the Euclidean distance, each

of these attributes has a different weight w, representing the impor-

tance that the features have individually.

dfeat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wnðnf �npÞ2þwθðθf �θpÞ2þwϕðϕf �ϕpÞ2

q
, ð4Þ

where sub-index f represents the focus PV system and sub-index p

represents the peer PV system.

Next, the yield distance (dyield) is calculated in a similar fashion as

in the P2P model. The daily yields are normalized with respect to the

actual energy yield in the first year of installation of the system (for

systems older than 1 year) or with respect to the estimated energy

yield for the typical meteorological year for the system (for systems

less than a year old) in order to obtain the CUF. For each focus-to-

peer system pair, the CUR is calculated for each day according to

Equation 2. Since a single value is needed for the distance, median

absolute deviation is calculated from all the daily CUR values.

The third and final distance is the geographical distance (dgeo). It is

the physical distance between the latitude and longitude coordinates

of each focus-to-peer system pair. Due to the curvature of Earth,

haversine distance is used.16

Now that the three distances have been computed for each

focus-to-peer system pair, these are combined into a total distance

dtot using the weighted sum of the distances according to Equation 5.

A weighted sum is used to consider a different influence for each dis-

tance when finding good peers. Once the total distance is known for

each focus-to-peer pair, the pairs with the lowest distances, that is,

the peer systems most similar to focus system, are chosen as good

peers.

dtot ¼wfeat �dfeatþwyield �dyieldþwgeo �dgeo ð5Þ

2.2.2 | Expected yield calculation

The expected yield of the focus system is calculated using the daily

yields of only the selected peer systems. Each of these peer systems

has a different level of influence on the expected yields. The higher

the similarity of the peer system to the focus system, the higher its

influence. Since the total distance was a measure of the similarity, the

weighing factor λp per peer system is evaluated as the reciprocal of

the corresponding total distance, Equation 6.

These weighing factors along with the CUF of good peer systems

are used as a weighted median to determine CUFref , as shown in

Equation 7.

For Np distinct ordered number of selected peers with

CUF1,CUF2,…,CUFNp and weights λ1, λ2,…,λNp such that

λp ¼ 1
dtot,p

restricted to
XNp

p¼1

λp ¼1, ð6Þ

CUFref is the element CUFk satisfying
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Xk�1

p¼1

λp ≤1=2 and
XNp

p¼kþ1

λp ≤1=2: ð7Þ

The reason for using a weighted median over weighted average is

that a median is not influenced by an abnormal extreme value that

may be present for one of the good peers. This abnormal extreme

value could be a fault in a peer system, so using the median essentially

helps to avoid that fault from being transferred in the predictions of

the focus system. The expected yield is estimated from CUFref by

reverse calculation of CUF.

Figure 1 shows the procedure to obtain the expected yield of a

focus system with the proposed model. For each peer system, all the

distances are computed, as just explained. From the total distance, the

weights can be determined; hence, the peers can be selected. One

can see some variables outside the boxes. These are the variables that

need to be determined via optimization, as will be explained in the

next subsection.

2.3 | Model optimization

While explaining the proposed model in the previous section, several

variables came across that need to be determined in order to ensure

optimum performance of the model. The unknowns are the weights w

of each distance and of the individual PV system features, and the

number of peers Np that need to be chosen for estimating the

expected yields. The value of these variables was determined by train-

ing the model using an optimization algorithm.

Given the complexity of the problem at hand, local optimization

algorithms, such as gradient descent17 and Nelder-Mead methods,18

were stuck in local minima and unable to find the global optimum.

Global optimization algorithms were needed. Among the tested global

optimization algorithms, evolutionary algorithms gave the best results.

Inside this group, particle swarm optimization (PSO) and genetic algo-

rithm (GA) were the most promising ones. Both algorithms are rela-

tively simple and easy to modify, and their performance depends on

the problem at hand because they traverse the candidate space rather

differently.19

In order to select between the two, a literature search was done

to find the best algorithm for problems using peer-to-peer strategies.

We came across the work of, who used PSO and GA for neighbor-

selection in peer-to-peer networks and found out that GA obtained

better results.20 Similarly, Rehman et al21 employed GA and PSO to

optimize the peer-to-peer energy transactions in a decentralized

energy trading market and saw that GA results outperformed the PSO

ones. GA was also combined with PSO for device-to-device (D2D)

communication in advanced communication networks.22 The authors

claimed that PSO alone can be trapped in local optima due to prema-

ture convergence; hence, a hybrid PSO-GA algorithm was proposed

to find the optimum allocation of the D2D communication network's

resources and avoid interference with the primary cellular network.

Given the similarities of these problems with the one at hand, GA was

finally chosen as the optimization algorithm.

Genetic algorithm is a global search engine inspired by natural

evolution.23 The objective of GA is to obtain the optimum value of a

fitness or objective function, which represents the performance of the

problem. The higher the fitness value, the better the system's perfor-

mance. In our case, the objective function is to minimize the average

Mean Absolute Error (MAE) between the actual yields and expected

yields of the focus systems. The optimum solution is found via a

F IGURE 1 General outline of the proposed
model for one focus system
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generational process which consists of fitness evaluation, selection,

crossover, or reproduction and mutation.24 An overview of the pro-

cess can be seen in Figure 2.

The problem is initialized by a set of randomly selected chromo-

somes, which are candidate solutions to the optimization problem.

This whole set is called population. Each of the variables to be opti-

mized are named genes, so that a set of genes forms a chromosome.

In the first step, the fitness function for each of these chromosomes is

computed (fitness evaluation), and the ones with the highest fitness

value are chosen (selection). These selected chromosomes will be

combined in the reproduction step, generating the crossover popula-

tion. Mutation is incorporated in the algorithm to prevent the popula-

tion from stagnating at any local point. It consists of altering one or

more genes in a chromosome from its original state. The offspring

together with the muted chromosomes will form the next generation.

The algorithm repeats the generational process until a termination

condition has been reached.

There are several modifications to this GA method with more

complex interactions25,26; however, here, we employed the simplest

one with the most popular operators27: fitness proportionate selec-

tion method for parent selection and one-point crossover for the

reproduction step.

2.4 | Baseline models

This section provides a brief explanation of the algorithms that will be

used for comparison with the proposed model in Sections 4 and 5.

These are models currently developed at Solar Monkey28 for PV sys-

tem monitoring and fault detection.

The current approach of PV system monitoring at Solar Monkey

consists of an analytical algorithm, hereafter called analytical model.

By making use of weather data from nearby stations and an accurate

skyline profile to account for obstacles surrounding the PV modules,

they are able to predict the PV power produced by each of the sys-

tems in their fleet. Details on the framework can be found in de Vries

et al.29 This approach is also employed for fault detection by using a

fraction of actual yield over the expected yield.

Based also on a physics-based approach, Solar Monkey developed

a method for fault detection which consisted of estimating the num-

ber of panels that would generate the actual energy yield: the sizing

yields model. Comparing the estimated amount of panels with the

actual value, overestimation and underestimation in the PV systems

can be detected.

The third method for fault detection is based on historical yields,

referred as the year-over-year model. For systems older than a year,

the PV power produced is compared to that one year earlier. This

model is unavailable in the first year of operation of the PV system.

3 | DATA

The data employed come from the fleet of PV systems available at

Solar Monkey.28 It consists of the daily energy yield and main charac-

teristics of 12229 roof-top PV systems, for a period ranging from

2 months to 7 years. While finer data resolution such as hourly data

can provide higher quality results, it was available only for a limited

number of systems; hence, daily energy yields were employed. All sys-

tems are spread across the Netherlands.

Data cleaning was performed, consisting on removing systems

with large amount of missing data, after which the total number of PV

systems was reduced to 9,480. Data splitting was performed on these

systems between training and testing sets. While the training set is

employed for model optimization, the testing set is used for model

evaluation so the results are not influenced by the training stage.30 A

10:1 system split between training and testing set was used to reduce

the computational burden while ensuring a sufficient number of sys-

tems for testing.

F IGURE 2 Overview of the steps of Genetic Algorithm: Initialization, Fitness Calculation, Selection, Crossover, Mutation, and New
Generation creation. The cycle is repeated until a termination condition has been reached [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | RESULTS

This section provides the results of the proposed algorithm. In sub-

section 4.1, the main outcomes of the optimization of the proposed

model are explained. Then, the performance of the proposed model is

compared to that of the other available PV system monitoring algo-

rithms, namely, P2P and the analytical model, in subsection 4.2.

Finally, the limits of the proposed model are found and discussed in

subsection 4.3.

4.1 | Optimization

Once the model was developed and the optimization algorithm was

chosen, GA was trained on a set of random 5,000 systems with each

having daily yields for up to 1 year. The whole dataset was not used

due to computational and memory limitations, although the peers

were found from the whole set of 9,480 PV systems. The results of

the optimization can be found in Table 1.

The first three weights correspond to the individual characteris-

tics of the PV systems employed to compute the feature distance.

Among the three, the panel count has a very low weight, probably

due to the normalization of the PV system yields. Panel tilt and panel

azimuth have a 1:3 weight distribution. Regarding the weights of the

three distances, the results show that the yield distance has the

highest weight among all three. It is interesting to note that geograph-

ical distance has negligible weight compared to the other two

distances.

The number of peers needed for accurate calculation of expected

yields is in the range of 12–20 peer systems. Upon multiple simula-

tions, it was observed that the fitness value of GA does not change

significantly within a given range of number of peers. One possible

reason is that the model uses a weighted median when calculating

expected yields. Thus, within a certain range, the value of weighted

median does not change the result by a significant amount. This topic

will be further discussed in subsection 4.3.

The low weight of geographical distance seemed suspicious con-

sidering that location was the only feature employed in previously

published peer-to-peer PV monitoring models.31–33 Thus, further

exploration was required. The first hypothesis was that there existed

a high correlation between feature and yield distances. The Spearman

correlation coefficient34 was therefore calculated and resulted in a

value of 0.53, which was not significant enough. Despite this, the

optimization model was run again without the yield distance. It was

found that geographical distance still had a low weight of 0.07, while

now most of the weight was skewed towards feature distance.

Another hypothesis considered was related to the data itself. The PV

systems available are only from the Netherlands, which is a rather flat

and small country. One major influence of geographical distance for

this project is that it enables the peer systems to account for the

changes in very local weather like clouds near the focus system, espe-

cially when the weather stations are farther away from the focus sys-

tem. This is important when dealing with hourly or higher frequency

energy yields. However, for this project, daily energy yields are used,

and it can be postulated that in the Netherlands, the day-to-day

weather is very similar throughout the country. With this logic in

mind, it is possible that when dealing with a larger area or with non-

uniform weather conditions in a different environment, geographical

distance could have a higher impact.

In our case, this low weight of geographical distance indicates

that peers are not necessarily located close to each other. As can be

seen in Figure 3, peers of a focus system can be either closer to it or

farther apart from the focus system. This new finding gives more flexi-

bility to P2P approaches, especially when there are not many PV sys-

tem around a contain focus PV system.

4.2 | Models comparison

Once the proposed model was optimized and trained, its performance

was assessed in the testing dataset. This set was composed of 500 PV

systems with data up to 3 years.

TABLE 1 Parameters of the proposed model optimized by GA

wn wθ wϕ wfeat wyield wgeo Np

0.01 0.24 0.75 0.13 0.87 0 12–20

F IGURE 3 Spatial plot of good peer systems for a random focus
system; focus system, red triangle; good peer systems, blue squares;
all available systems, cyan circles [Colour figure can be viewed at
wileyonlinelibrary.com]
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In order to properly test its accuracy, the performance of the pro-

posed model was compared to that of the P2P and the analytical

model, explained in Sections 2.1 and 2.4, respectively. Two commonly

used metrics were employed for this assessment: the Normalized

Root Mean Squared Error (NRMSE) and the R2 score, shown in

Equations 8 and 9, respectively. For information on these metrics, the

reader is referred to Zhang et al.35 Table 2 depicts the mean value of

these metrics for all systems in the testing set for the three models.

Additionally, R2 score was reinterpreted as a new metric: Percentage

of Good Systems (PGS). Considering that an R2 score higher than 85%

is a good fit, PGS is the percentage of PV systems with an R2 score

higher than 85%.

NRMSE¼ 1
ymax�ymin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i

ðyi� byiÞ2
n

vuut , ð8Þ

R2 ¼1�
P

iðyi� byiÞ2P
iðyi�yÞ2

, ð9Þ

where ymax is the maximum of actual values of y, ymin is the minimum

of actual values of y, n is the number of observations, yi is the actual

value of y for observation i, byi is the predicted value of y for observa-

tion i, and y is the mean of actual values of y.

All metrics show that the cooperative models have higher accu-

racy than the physical one. The daily yield shows that the analytical

model underestimates the expected yields, while the P2P-based

models are more accurate. This information is also represented in the

error plot of Figure 4. Table 2 also depicts that the proposed model

has better metrics than the previously published P2P model.13 Hence,

the addition of PV system data and the optimization with GA was an

improvement.

4.3 | Use-case analysis

In this subsection, we elaborate on the limits of the proposed model.

Characteristics such as the minimum data requirements for good per-

formance and the sensitivity to the number of peers employed are

explored. These would give a better perspective on the proposed

model and show its robustness.

The first experiment consists of exploring the minimum data

requirements for the model. Hence, the minimum number of PV sys-

tems required for training the model and the minimum number of

days of data per PV system are determined. In this experiment, the

trained systems still look for peers in the complete dataset of 9,480

PV systems. Fifty-six simulations were performed where both the

amount of PV systems and the number of days of each system were

tuned. Since cross-validation was not possible due to the high compu-

tational requirements, it was ensured that the training and testing sets

had a similar distribution as the total dataset to have an accurate rep-

resentation. The results of the experiment can be seen in a heatmap

in Figure 5. The metric R2 score was employed as a measure of

performance.

The experiments show that number of systems does not have a

strong influence on the metrics. However, if only a few months of

data (<6 months) is available per system, the performance degrades

strongly. Thus, when it comes to training the model, number of days

per system is important while number of PV systems used for training

is not as long as a minimum of 100–250 is available.

Although the experiment gives an understanding of the minimum

data requirement for optimization, it was interesting to observe that

even 100 PV systems might be fairly good enough to train. Thus, the

results of the experiment were portrayed differently as seen in

Figure 6. In this graph, the x axis shows the total number of years of

data for each run. Thus, for grid point (4,000, 365) in the heatmap, the

corresponding value on x axis would be 4,000 years of data. A trend

line was generated on the experiment results as a help to the human

eye. According to the trend line, data higher than 1,700 years are

more than sufficient for training the model, that is, achieve R2 score

greater than 90%. This translates to 1,700 PV systems with 1 year

data each or 850 PV systems with 2 years of data each and so on. It is

important to note that data lower than 1,700 years can also lead to

good performance, although it is not as reliable. The trend line satu-

rates at around 4,000 years data, which is about 25% of the total data

available.

The second experiment conducted was also related to the previ-

ous one, although it was way smaller. The objective was to determine

the minimum data requirement when a new element is incorporated

into the fleet. When a new PV system is added, energy yield data for

the first 30 days of operation are sufficient to locate the good peers.

TABLE 2 Metrics of the three monitoring models on the testing
set

NRMSE [�] R2 [%] PGS [%]

Analytical 0.08 90.3 85.2

P2P 0.06 92.7 88.1

Proposed 0.05 94.1 92.5

F IGURE 4 Error plot showing the NRMSE for all the test systems
for each monitoring model [Colour figure can be viewed at
wileyonlinelibrary.com]
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These peers can be used for estimating the expected yields for the

next one to two months with fairly good accuracy (R2 ≈ 85%). After

this time, good peers need to be located again with the new informa-

tion available. These new good peers can be used accurately for

another few months and so on. This process needs to be repeated

until sufficient amount of yield data is available, at least 6–9 months.

After 1 year of active monitoring, the frequency needed for distance

training is low as long as the system parameters stay fairly constant.

The third and final experiment performed explored the best value

for the number of peers. As mentioned in subsection 4.1, while the

optimum value of the weights w does not usually change, the

variable number of peers varies considerably over different simula-

tions. Thus, a learning curve on the number of peers was plot in

Figure 7 in order to find the range of number of peers that gave high

performance.

It can be observed that the simulation has the highest R2 score

when the number of peers varies between 12 and 20. Less than

12 peers cannot ensure an accurate prediction due to high depen-

dence on only a few systems. More than 20 peers also leads to lower

accuracy in predictions most likely due to additional noise resulting

from not so adequate peers, although this effect is highly mitigated

thanks to the use of median.

F IGURE 6 Minimum data required: R2 score as a function of
amount of data employed. The red dashed trend line is a help to the
eye, while the green continuous line indicates an R2 of 90%. For color
references, refer to the web version of this article [Colour figure can
be viewed at wileyonlinelibrary.com]

F IGURE 7 Learning curve of number of peers with respect to R2

score [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 R2 score as a function of number
of days and number of training systems for
minimum data requirement. The higher the R2

score, hence the lighter the color, the better
[Colour figure can be viewed at wileyonlinelibrary.
com]
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5 | FAULT DETECTION

The main objective of this work was to develop a model for monitor-

ing residential PV systems using a peer-to-peer approach. Monitoring

PV systems consists of a two-step process: calculating the expected

yield for the PV system and comparing that yield with the actual one

to find any faults in the system. Once completed the development of

the proposed model, this section focuses on the second step: fault

detection.

The typical approach for fault detection consists of first filtering

out poorly performing systems, and then finding out the origin of the

poor performance by inspecting the PV system characteristics. The

proposed model together with the analytical, system sizing, and year-

over-year ones, explained in subsection 2.4, is employed in this pro-

cess. These models are mainly used to detect the poorly performing

systems and classify the type of fault. To do the former, the perfor-

mance factor (PF) is calculated for all the expected yields. This metric

computes the ratio of actual yield to expected yield, as shown in

Equation 10. When the PF is outside an experience-determined range,

the system is considered faulty; hence, it is selected for further

inspection.

Performance Factor¼ Actual Yield
Expected Yield

ð10Þ

One of the most important steps in this process is to distinguish

between system design mismatch and fault detection. In the case of

system design mismatch, the design should be simply updated to

match the actual installation. Comparatively, in the case of fault detec-

tion, there is a drop in performance due to a problem with the system.

In this latter case, the owner of the PV system should be notified to

solve the issue and act accordingly.

Using the above two-step process along with the expected yield

and actual yield temporal plots, some PV systems were scrutinized to

diagnose the most common faults encountered. Based on this

analysis, a fault categorization framework was developed, whose

details are provided in the next subsection. Higher focus is given to

two of these faults in subsection 5.2 where the added value of using a

collaborative approach is highlighted.

5.1 | Categorization

In this section, a categorization of the most common encountered

faults is made. Instead of using the whole database, 120 randomly

chosen PV systems were checked to gain insight into the occurrence

and type of faults. They were selected to ensure a good distribution

of new and old systems. Only the data for the month of June 2021

were used for categorization, although the energy yields for the entire

lifetime of the PV system was looked at for inspection. The reason for

choosing June was that in summer months, PV systems are expected

to produce the most energy yield in the year. A malfunction in sum-

mer could lead to significantly large energy and monetary loss for the

owner than a malfunction in winter. Furthermore, in winter, fault

detection becomes relatively harder due to very low energy yields.

Four criteria were used to separate the systems into groups,

namely, the expected yields of the analytical model, the proposed

model, year-over-year, and sizing yields. The fault categories found

were no fault, missing data, under-performance, over-performance,

and false positive as usual faults along with additional, peer-to-peer

failure. Each of these categories can have multiple combinations of

the four criteria, and they may or may not lead to a different fault

diagnosis. The occurrence share of each of these faults can be seen in

Figure 8. An additional category is included in the pie chart for sys-

tems whose fault was detected, but its origin could not be

determined.

To begin with, a baseline of no fault would be when all four

criteria are within an acceptable range, here when PF is between 93%

and 120%. Most of the systems (62.5%) fell within this category.

There is also a small possibility for false negative, but among the

F IGURE 8 Occurrence of faults when
categorization tested on 120 PV systems [Colour
figure can be viewed at wileyonlinelibrary.com]
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120 PV systems considered, none presented a clear case. The case of

missing data was the most occurring fault detected, in 16.7% of the

systems, although it is easy to detect due to automatic notice from

the inverter.

In case of under-performance (5.8% of systems) and over-

performance (0.8% of systems), if the fault occurred within the last

year, it was reflected in all criteria. Yet if the fault persisted for longer

than 1 year, year-over-year yields failed to flag the fault. Depending

on the magnitude of under-performance, the diagnosis could either be

a small, temporary problem, or else it could be due to broken panels

or strings. In the case of broken panels, the magnitude of PF should

drop by an equivalent amount. Similarly, on the rare occasion of over-

performance, depending on the magnitude of the increase in actual

yields, it could be a case of system size change. This should always be

verified with the latest satellite images.

The fifth category is a false positive, when some of the models

detect a fault that does not exist. This fault was detected in about

7.5% of the analyzed systems. It usually occurred when there was

a mismatch between the actual installation and the system design

details in the company database. The analytical and sizing yield

models would be more easily fooled in this case due to their high

dependence on the system design parameters. On the other hand,

since both the year-over-year and proposed model depend more

on historical yields, they are more robust against incorrect system

data. Another case of false positive is when all except the year-

over-year yields are within the acceptable range. Here, the possible

diagnosis is that due to, for example, unusually sunny/cloudy days,

the actual yields are higher/lower than last year. Since both analyti-

cal and sizing yields depend on weather data, they adjust accord-

ingly to the unusual irradiance. Similarly, the unusual weather is

experienced by most peer systems; thus, the proposed model does

not flag either.

The final category and the one checked with caution were the

case of peer-to-peer failure. In this case, only the proposed model

detected a failure. This occurred mainly due to poor distance training

related to poor quality or low availability of data. Another cause of

failure occurred for systems older than 5 years with degradation in

the performance. Since the distance training was done in early years

of the PV system, the model does not adjust to the performance deg-

radation over the years and, thus, detects it as a fault. Compared to

that, both analytical and sizing yields include system decay, while

year-over-year yield experiences the degradation in a controlled man-

ner. The occurrence of this fault was not very high, only 3.3%, and it

can generally be solved by distance retraining of the systems in order

to ensure proper expected yields. Figure 9 shows the fault categoriza-

tion flowchart.

F IGURE 9 Flowchart
depicting the main process of
fault categorization, where “an” is
analytical model, “pr” is proposed
model, “YOY” is year-over-year,
and “SY” is sizing yield [Colour
figure can be viewed at
wileyonlinelibrary.com]

10 ALCAÑIZ ET AL.

http://wileyonlinelibrary.com


It was expected to find some examples of inverter limited

systems among the 120 checked. There were a few systems

present whose inverter capacity was lower than the total system

watt-peak, yet none of them seemed to have an energy generation

high enough to be limited by the inverter. Note that while

these systems represent the total dataset, the statistics should

be taken with a grain of salt. Moreover, hourly yield data

would have been more appropriate to properly detect inverter

clipping.

5.2 | Key examples

In this subsection, some examples of PV systems with certain faults

are presented. Examining these PV systems will help understanding

how the collaborative approach fits into the categorization framework

and can be a useful addition to fault detection. The proposed model

plays a key role in the detection of over-performance and false posi-

tives, thus examples of PV systems with these faults are presented in

this subsection.

5.2.1 | Common fault

This first type of example is intended to serve as baseline and to show

how all the models are able to detect a common fault such as broken

strings or panels. The example PV system has 58 panels, formed by

separate sets of 31 panels and 27 panels which differ in both type

and orientation.

Among the models described in subsection 2.4, all the fault

detection checks give a red flag, suggesting that the system has

been under-performing to around 40% as seen in Table 3. There is

a sudden drop in the actual daily yield around the month of

September 2020 as seen in the yield plots in Figure 10. As the

fault occurred within the last 1 year, year-over-year model is able

to flag the issue. In case this fault persists beyond September

2021, year-over-year yields will not be able to flag the fault

anymore.

While all these checks simply suggest that the system is under-

performing, the fact that under-performance has been consistent or in

other words the performance factor being consistently around 40%

suggests that only a part of the PV system has developed a fault.

The sizing yields estimate the system size as 25 panels instead of

58 (≈ 40%) that were installed, indicating that part of the system has

likely broken down.

5.2.2 | Over-performance

Due to the capital-intensive nature of PV systems, it can be pre-

ferred by residential owners to install their systems in steps on

their roofs. Thus, a few years after a PV system has been installed,

there have been instances when the owner has decided to increase

the capacity of the PV system. This is usually not reported back to

the monitoring company which leads to system over-performing.

Considering the fault detection checks for this particular example

as seen in the first row of Table 4, all models except for

year-over-year flag the system as over-performing. When the yield

plots in Figure 11 are checked, it is clear why this is the case. This

system has been over-performing since April of 2019 by 140%

TABLE 3 Performance factor according to each model for a PV
system with broken strings or panels

Analytical Year-over-Year Sizing Proposed

PF 37.0% 47.0% 40.1% 46.9%

F IGURE 10 Temporal yield plots: example of
a PV system with broken strings or panels. For
color references refer to the web version of this
article [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Performance factor according to each model for an
over-performing PV system before and after retraining

Analytical Year-over-year Sizing Proposed

Before

retraining

143.0% 106.9% 136.2% 139.3%

After

retraining

143.0% 106.9% 136.2% 99.5%
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which, looking at the system specifications, is equivalent to a size

of 11 panels instead of 8. This was verified when the design image

in Figure 12 is compared with the latest satellite image in

Figure 13.

A particular advantage that the proposed model has in such sce-

nario is that it can be tweaked by changing the time period over which

the distance training is done. In the above case, distance training was

done prior to the system change. Since system size change is not a

malfunction in the system, this system can be retrained with the new

PV system size to absorb this change in system. Hence, distance train-

ing can be done after the system change, in order to find different

peer systems that indicate this focus system is performing as

expected. The results of retraining can be seen in Figure 14, and in

the second row of Table 4. While the analytical and sizing yields still

suggest that the system is over-performing, the proposed model does

not flag any faults. This distance retraining is especially important if a

true fault occurs now, since it will be flagged by the proposed model

while the analytical one might suggest only a lesser over-

performance.

5.2.3 | False positive

One of the strengths of using peer-to-peer yields for fault detection

is the ability to detect false positives. A false positive occurs when

the analytical model suggests an issue with the system despite the

system not having any particular malfunctions. As illustrative exam-

ple, the chosen PV system has 14 panels according to the database.

Furthermore, from the fault detection checks in Table 5, most

models suggest that the system is under-performing. When these

three checks give a red flag, the first conclusion would be that there

might be a few broken panels. However, the proposed model sug-

gests that the system is performing perfectly fine with a 97% per-

formance factor. To make sense of this discrepancy, the yield plots

are inspected.

From Figure 15, it can be deduced that the system has been

under-performing since the day it was installed. Since the proposed

model was trained during this alleged under-performance, it does not

consider this to be any fault. From the yield plot, it can be deduced

that there is a mismatch between the system design details and the

F IGURE 12 System design
developed with 8 PV panels in the
company software before
installation [Colour figure can be

viewed at wileyonlinelibrary.com]

F IGURE 11 Temporal yield plots: example of
over-performing PV system due to an increase in
system size. For color references, refer to the web
version of this article [Colour figure can be viewed
at wileyonlinelibrary.com]
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actual installation. This suggests that the under-performance flag by

the analytical models is a false positive as the system has been per-

forming as historically expected according to the proposed model and

there is no malfunction in the system that might degrade its

performance.

This kind of mismatch fault is the cause for many persistently

under-performing systems. These systems are a time-sink monitoring

companies, and thus, it is key to simplify the diagnosis. The proposed

approach can be very handy in such scenarios.

The categorization framework and the examples given are based

on the theory, discussions, and experience. Unfortunately, there was

no possibility to validate the conclusions as this would entail physi-

cally visiting 120 PV installation sites all over the country or con-

tacting the corresponding home owners. Nonetheless, the objective

for undertaking fault detection was to show how the proposed

approach can be used for fault detection.

F IGURE 14 Temporal yield plots: over-
performing PV system after retraining to absorb
the increase in system size. For color references,

refer to the web version of this article [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Latest satellite
image available (2020) for the PV
system with 11 panels [Colour
figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Performance factor according to each model for a PV
system when a false positive is detected

Analytical Year-over-year Sizing Proposed

PF 53.7% 82.0% 55.8% 97.0%
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6 | CONCLUSION

In this work, we have developed a model based on comparisons

between neighboring and similar installations for PV system monitor-

ing and fault detection. The model was based on a previously devel-

oped performance to peer approach, which has been improved by the

addition of PV systems parameters and the use of machine learning

techniques.

The viability of the proposed model has been demonstrated

in the fleet of Solar Monkey consisting of more than 12,000

residential PV systems with up to 7 years of data per system. The

developed model showed an average R2 score of 94.1% and

normalized root mean squared error of 0.05 on all tested PV

systems. This implied an improvement in terms of R2 score of 1.4 per-

centage points with respect to the baseline performance-to-peer

model and of 3.8 points with respect to the analytical one.

This superiority with respect to analytical models was thanks to

its independence on inaccurate weather data and lower dependence

on PV system parameters. A use-case analysis was also performed

to find the limits of the proposed model. It was discovered

that 1,700 years of data were required for proper model training,

with a minimum of 6 months of data per system and 100 PV

systems.

The usage of the developed model for fault detection and cat-

egorization has also been demonstrated. This model has the

strength of distinguishing from incorrect PV system information

and actual faults. Moreover, distance and peer retraining provide

the flexibility to adapt the model to changes occurred in the PV

systems. Although validation of these faults was not possible,

the proposed model has demonstrated to be a good tool in

combination with other developed models for fault detection and

diagnosis.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from

the “Increase Friendly Integration of Reliable PV plants considering

different market segments,” under Grant Agreement 952957,

Trust PV.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Alba Alcañiz https://orcid.org/0000-0002-8786-7832

Olindo Isabella https://orcid.org/0000-0001-7673-0163

Hesan Ziar https://orcid.org/0000-0002-9913-2315

REFERENCES

1. groupInternational Energy Agency. Snapshot of Global PV Markets;

2021. http://www.iea-pvps.org

2. Smets A, Jäger K, Isabella O, van Swaaij R, Zeman M. Solar energy. In:

The Physics and Engineering of Photovoltaic Conversion, Technolo-

gies and Systems, Vol. 20; 2012.

3. SolarPower Europe. EU Market Outlook for Solar Power 2020-2024;

2020. http://www.solarpowereurope.org

4. Refaat SS, Abu-Rub H, Sanfilippo AP, Mohamed A. Impact of grid-tied

large-scale photovoltaic system on dynamic voltage stability of elec-

tric power grids. IET Renew Power Gener. 2018;12(2):157-164.

5. Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de Pison FJ,

Antonanzas-Torres F. Review of photovoltaic power forecasting. Sol

Energy. 2016;136:78-111.

6. Kumar DS, Yagli GM, Kashyap M, Srinivasan D. Solar irradiance

resource and forecasting: a comprehensive review. IET Renew Power

Gener. 2020;14(10):1641-1656.

7. Sobri S, Koohi-Kamali S, Rahim NA. Solar photovoltaic generation

forecasting methods: a review. Energy Convers Manag. 2018;156:

459-497.

8. Elsinga B, van Sark W. Spatial power fluctuation correlations in urban

rooftop photovoltaic systems. Prog Photovolt Res Appl. 2015;23(10):

1390-1397.

9. Lonij VPA, Brooks AE, Cronin AD, Leuthold M, Koch K. Intra-hour

forecasts of solar power production using measurements from a net-

work of irradiance sensors. Sol Energy. 2013;97:58-66. https://doi.

org/10.1016/j.solener.2013.08.002

10. Golnas A, Bryan J, Wimbrow R, Hansen C, Voss S. Performance

assessment without pyranometers: Predicting energy output

based on historical correlation. In: IEEE Photovoltaic Specialists Con-

ference; 2011:2006-2010. https://doi.org/10.1109/PVSC.2011.

6186347

11. Tsafarakis O, Sinapis K, Van Sark WG. PV system performance evalu-

ation by clustering production data to normal and non-normal

F IGURE 15 Temporal yield plots: example of
false positive PV system. For color references,
refer to the web version of this article [Colour
figure can be viewed at wileyonlinelibrary.com]

14 ALCAÑIZ ET AL.

https://orcid.org/0000-0002-8786-7832
https://orcid.org/0000-0002-8786-7832
https://orcid.org/0000-0001-7673-0163
https://orcid.org/0000-0001-7673-0163
https://orcid.org/0000-0002-9913-2315
https://orcid.org/0000-0002-9913-2315
http://www.iea-pvps.org
http://www.solarpowereurope.org
https://doi.org/10.1016/j.solener.2013.08.002
https://doi.org/10.1016/j.solener.2013.08.002
https://doi.org/10.1109/PVSC.2011.6186347
https://doi.org/10.1109/PVSC.2011.6186347
http://wileyonlinelibrary.com


operation. Energies. 2018:11(4). https://doi.org/10.3390/

en11040977. [Online]. Available: http://www.mdpi.com/journal/

energies

12. Popovic I, Radovanovic I. Methodology for detection of photovoltaic

systems underperformance operation based on the correlation of irra-

diance estimates of neighboring systems. J Renew Sustain Energy.

2018;10(5):53701. https://doi.org/10.1063/1.5042579

13. Leloux J, Narvarte L, Desportes A, Trebosc D. Performance to peers

(P2P): a benchmark approach to fault detections applied to photovol-

taic system fleets. Sol Energy. 2020;202:522-539. https://doi.org/10.

1016/j.solener.2020.03.015

14. Leloux J, Narvarte L, Luna A, Desportes A. Automatic fault detection

on bipv systems without solar irradiation data. In: 29th European

Photovoltaic Solar Energy Conference and Exhibition; 2014.

15. Elsinga B, van Sark WG. Short-term peer-to-peer solar forecasting in

a network of photovoltaic systems. Appl. Energy. 2017;206:1464-

1483.

16. Korn GA, Korn TM. Mathematical Handbook for Scientists and Engi-

neers: Definitions, Theorems, and Formulas for Reference and Review.

Vol 15. Dover Publications; 1961:421. https://doi.org/10.2307/

2003035

17. Stojiljkovic M. Stochastic gradient descent algorithm with Python and

NumPy. Real Python. 2021. Available: https://realpython.com/

gradient-descent-algorithm-python/

18. Nelder JA, Mead R. A simplex method for function minimization.

Comput J. 1965;7(4):308-313.

19. Panda S, Padhy NP. Comparison of particle swarm optimization and

genetic algorithm for FACTS-based controller design. Appl Soft Com-

put J. 2008;8(4):1418-1427. https://doi.org/10.1016/j.asoc.2007.

10.009

20. Abraham A, Yue B, Xian C, Liu H, Pant M. Multi-objective peer-to-

peer neighbor-selection strategy using genetic algorithm; 2007:443-

451. https://doi.org/10.1007/978-3-540-77220-0_41

21. Rehman S, Khan B, Arif J, Ullah Z, Aljuhani AJ, Alhindi A, Ali SM. Bi-

directional mutual energy trade between smart grid and energy dis-

tricts using renewable energy credits. Sensors. 2021;21(9):3088.

22. Sun S, Kim K-Y, Shin O-S, Shin Y. Device-to-device resource alloca-

tion in lte-advanced networks by hybrid particle swarm optimization

and genetic algorithm. Peer-to-Peer Netw Appl. 2016;9(5):945-954.

23. Holland JH, et al. Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis With Applications to Biology, Control, and Artificial

Intelligence: MIT press; 1992.

24. Mitchell M. Genetic algorithms: an overview. In: Complex. Vol

1. Citeseer; 1995:31-39.

25. Blickle T, Thiele L. A comparison of selection schemes used in evolu-

tionary algorithms. Evol Comput. 1996;4(4):361-394.

26. Shir OM. Niching in evolutionary algorithms. In: Rozenberg G, Bäck T,

Kok JN, eds. Handbook of Natural Computing. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2012:1035-1069. https://doi.org/10.

1007/978-3-540-92910-932

27. Back T. Evolutionary Algorithms in Theory and Practice: Evolution Strat-

egies, Evolutionary Programming, Genetic Algorithms. Oxford university

press; 1996.

28. Solar Monkey - Market leader in solar panel software. https://

solarmonkey.io/

29. de Vries TNC, Bronkhorst J, Vermeer M, et al. A quick-scan method

to assess photovoltaic rooftop potential based on aerial imagery and

LiDAR. Sol Energy. 2020;209(February):96-107. https://doi.org/10.

1016/j.solener.2020.07.035

30. Bishop CM. Pattern recognition. Mach Learn. 2006;128(9).

31. Berdugo V, Chaussin C, Dubus L, Hebrail G, Leboucher V. Analog

method for collaborative very-short-term forecasting of power

generation from photovoltaic systems. Next Generation Data Mining

Summit (NGDM11), Athènes, Greece, 4 September 2011. https://hal.

univ-lille.fr/INRIA/hal-02278607

32. Vaz AGR, Elsinga B, van Sark WGJHM, Brito MC. An artificial

neural network to assess the impact of neighbouring photovoltaic

systems in power forecasting in Utrecht, the Netherlands. Renew

Energy. 2016;85:631-641. https://doi.org/10.1016/j.renene.2015.

06.061

33. Yang C, Xie L. A novel arx-based multi-scale spatio-temporal solar

power forecast model. In: 2012 North American Power Symposium

(naps) IEEE; 2012:1-6.

34. Spearman C. The proof and measurement of association between

two things. Am J Psychol. 1987;100(3/4):441-471.

35. Zhang J, Florita A, Hodge B-M, Lu S, Hamann HF, Banunarayanan V,

Brockway AM. A suite of metrics for assessing the performance of

solar power forecasting. Sol Energy. 2015;111:157-175.

How to cite this article: Alcañiz A, Nikam MM, Snow Y,

Isabella O, Ziar H. Photovoltaic system monitoring and fault

detection using peer systems. Prog Photovolt Res Appl. 2022;

1‐15. doi:10.1002/pip.3558

ALCAÑIZ ET AL. 15

https://doi.org/10.3390/en11040977
https://doi.org/10.3390/en11040977
http://www.mdpi.com/journal/energies
http://www.mdpi.com/journal/energies
https://doi.org/10.1063/1.5042579
https://doi.org/10.1016/j.solener.2020.03.015
https://doi.org/10.1016/j.solener.2020.03.015
https://doi.org/10.2307/2003035
https://doi.org/10.2307/2003035
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/
https://doi.org/10.1016/j.asoc.2007.10.009
https://doi.org/10.1016/j.asoc.2007.10.009
https://doi.org/10.1007/978-3-540-77220-0_41
https://doi.org/10.1007/978-3-540-92910-932
https://doi.org/10.1007/978-3-540-92910-932
https://solarmonkey.io/
https://solarmonkey.io/
https://doi.org/10.1016/j.solener.2020.07.035
https://doi.org/10.1016/j.solener.2020.07.035
https://hal.univ-lille.fr/INRIA/hal-02278607
https://hal.univ-lille.fr/INRIA/hal-02278607
https://doi.org/10.1016/j.renene.2015.06.061
https://doi.org/10.1016/j.renene.2015.06.061
info:doi/10.1002/pip.3558

	Photovoltaic system monitoring and fault detection using peer systems
	1  INTRODUCTION
	2  MODELS
	2.1  Performance-to-peer model
	2.2  Proposed model
	2.2.1  Distance calculation
	2.2.2  Expected yield calculation

	2.3  Model optimization
	2.4  Baseline models

	3  DATA
	4  RESULTS
	4.1  Optimization
	4.2  Models comparison
	4.3  Use-case analysis

	5  FAULT DETECTION
	5.1  Categorization
	5.2  Key examples
	5.2.1  Common fault
	5.2.2  Over-performance
	5.2.3  False positive


	6  CONCLUSION
	ACKNOWLEDGEMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


