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A B S T R A C T

The transition to renewable energy sources, particularly sources like wind and solar induces a dependency
on weather in the supply side of electrical grids. At the same time, the move to electric mobility with
uncontrolled charging induces extra peak loads on these grids. These developments can cause grid congestion
or an imbalance between the renewable power supply and the demand. Locally balancing the power supply and
demand in grid-connected microgrids can alleviate such issues on the main grid. This paper presents a model
based control strategy to address the challenge of locally balancing the power supply and demand in a grid-
connected microgrid to avoid reaching the threshold rated power output set for large buildings. The microgrid
under consideration consists of photovoltaic power sources and a large fleet of electric vehicle chargers (> 150).
A model predictive controller is developed that treats the daily vehicle charging as a batch process. Given
vehicle charge objectives, the controller utilizes vehicle charger occupancy and photovoltaic power generation
forecasting services to distribute power optimally over a fixed period of time. The optimization problem is
formulated as a quadratic programming problem and is implemented utilizing open-source Python libraries.
The controller was integrated into the control system of a microgrid situated at a corporate office in the
Netherlands. The control system oversaw the operation of 174 vehicle chargers. The effectiveness of the model
predictive control technology was demonstrated over a three-week period and led to an average daily grid peak
power reduction of 59%.
1. Introduction

The growing adoption of renewable energy sources such as wind
and solar leads to an increasingly decentralized and weather-dependent
power supply in electricity grids. The increasing need for electric
vehicle charging alters how the electricity grid is utilized. Increasing
the share of renewable power while not changing the demand results
in a power imbalance over time in the supply and demand [1], a
phenomenon apparent in the ‘Duck Curve’ [2,3]. The Duck Curve is
undesirable because it forces grid network operators to rapidly change
the power output of conventional power plants to balance the grid.
The increase in grid utilization may cause congestion, as seen in some
parts of the Dutch electricity grid [4]. Moreover, the recast Energy
Performance Building Directive (EPBD) would lower the effective rated
output of large buildings from >290 kW to >70 kW [5], making the
installation of building automation and control systems mandatory.

∗ Corresponding author at: Electrical Engineering Department, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands.
E-mail address: l.ozkan@tue.nl (L. Özkan).

Grid-connected microgrids are actors within the electricity grid that
can contain local power sources and consumers. Reducing the mismatch
between local power demand and supply in microgrids can decrease
the likelihood of congestion in the main grid. The goal of this study
is to mitigate the local power supply and demand imbalance of an
existing operational microgrid by controlling a set of vehicle chargers.
Minimizing the imbalance through vehicle charge control results in an
optimal control problem.

Solving the optimal control problem in systems that can provide
short term flexibility to the power grid and photovoltaic (PV) power
sources can be done by optimizing for grid fluctuations [6], opera-
tional cost [7], or self-consumption [8]. In such an optimal control
problem, if battery energy storage systems (BESSs) are utilized, BESSs
are charged when there is surplus PV power and discharged when
there is a lack of PV power. Another approach to solving the prob-
lem is by implementing vehicle charge control. Optimizing vehicle
vailable online 22 May 2024
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Nomenclature

Sets

R, R≥0 Real numbers and positive real numbers
Z, Z≥0 Integers and positive integers
KH Samples in prediction horizon, KH ⊂ Z
JH Days in prediction horizon, JH ⊂ Z

Variables

𝜏 Timestamp [–]
𝐸, 𝜉, 𝑥 Energy [J]
𝐼 Single phase RMS phase current [A]
𝑗 Day index [–]
𝑘 Discrete time index [–]
𝑀 Number of samples or number of days [–]
𝑁 Number of vehicles [–]
𝑃 , 𝑢, 𝑦 Active power [W]
𝑆 Apparent power [VA]
𝑇 Time period [s]
𝑡 Continuous time index [s]
𝑉 Single phase RMS phase voltage [V]

Controller variables

𝛽 Cost function weight parameter [–]
𝜂 Efficiency transmission bus bar [%]
𝑑1, 𝑃pv Disturbance photovoltaic power [W]
𝑑2, 𝑁connected Disturbance number of vehicles connected

[–]
𝐽 Cost function cost [–]
𝑠 Slack variable optimization problem [W]
𝑢1 Input power battery energy storage system

[W]
𝑢2 Input power vehicle charging [W]
𝑥1, 𝐸b Energy state battery energy storage system

[J]
𝑥2, 𝐸evs Energy state vehicle batteries [J]
𝑦, 𝑃grid Output main grid power [W]

Superscripts

̂ Measurement
̃ Prediction
⃗ Three phase current or voltage

Subscripts

0 Start of prediction horizon
𝑗 00:00 Midnight, start of day 𝑗
b Battery energy storage system
charging Charging number of vehicles
clip Clipping power
connected Connected number of vehicles
controlled Controlled vehicle charge power
daily Number of vehicles per day
days Number of days
ev Single electric vehicle
evs Aggregated set of electric vehicles
full Fully charged number of vehicles

charge control can be done based on the electricity market [9] or
by modeling a transportation network in parallel to modeling the
electricity network [10]. In literature, model predictive control (MPC)
2

grid Main electricity grid
H Prediction horizon
max Maximum
min Minimum
pv Photovoltaic
requested Requested vehicle charge power
s Sample time or slack variable
T1, T2 Vehicle charge energy objectives 1 and 2

and optimal scheduling algorithms appear to be dominant within such
applications. Out of these methods, MPC based applications provide
real time adaptability and handle dynamic constraints more effectively.
In [11] MPC is used to optimally schedule individual charging sessions
in a system containing vehicle chargers, PV power sources, and BESSs.
Optimal control solutions to minimize operational cost in systems
containing vehicle chargers are presented in [12,13], and [14]. In
contrast to the simulation studies [12,13], the solution proposed in [14]
is validated on an existing system. Nonetheless, [14] considers vehicle
chargers to be an uncontrollable load. Even though research regarding
MPC in vehicle charging stations is abundant, according to authors’
knowledge no paper presents a successful large-scale implementation
of the technology. This might be due to practical challenges such as
data availability, system integration or communication and control
infrastructure.

This study focuses on a microgrid wherein an MPC based control
mechanism is implemented to reduce power peaks induced by EV
charging. The study provides valuable insights to literature by demon-
strating a fully operational control system in a real-life environment,
discussing the lessons learned and results obtained by phenomena such
as peak shaving and valley filling while effectively minimizing power
imbalance.

The microgrid considered in this study is situated at a large office
building in The Netherlands. It consists of controllable vehicle chargers
at an aggregated level and a power supply in the form of PV cells.
Specifically, the load-balance controller in the infrastructure, which
remains unalterable but capable of receiving control inputs, enforces
that:

1. The vehicle charge power can only be controlled on an aggre-
gated level rather than controlling individual charging sessions.

2. Power distribution among individual vehicles and load-
balancing tasks are delegated to the existing low-level con-
trollers.

A model predictive controller is implemented as the system’s opti-
mal inputs depend on uncertain future events. The system is situated
near office buildings resulting in periodic behavior of the aggregated
vehicle charge power. Therefore, the total vehicle charge energy per
day is treated as a single batch of energy due to the periodicity in
the charge power. Consequently, the model predictive controller is
implemented batch-wise and has a dynamic prediction horizon length.
The controller’s objective is to minimize the maximum grid power
amplitudes while maximizing vehicle charge energy utilizing energy
supplied by PV cells. Controller operation depends on vehicle charger
occupancy and PV power generation forecasts, which are implemented
in a deterministic manner.

The controller is integrated into the existing supervisory control
and data acquisition (SCADA) system [15] of the building installa-
tion provider. In parallel to the controller development, a vehicle
charger occupancy forecast study is performed [16]. The most suitable
forecast model developed in [16] is integrated into the controller
implementation.

This paper is structured as follows. A dynamic system model of

the vehicle charging process and the corresponding controller solution
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Fig. 1. Simplified power flow diagram from the supervisory controller perspective.

are presented in Section 2 and Section 3, respectively. The controller
implementation and integration description is presented in Section 4.
The implementation results and conclusions are presented in Section 5
and Section 6, respectively.

2. Dynamic model of the vehicle charging process

The grid-connected microgrid comprises of vehicle chargers and
PV cells. A schematic representation of the microgrid is depicted in
Fig. 1. Vehicle charge power can only be measured and influenced on
an aggregated level since the system does not provide information on
individual vehicle chargers. Nonetheless, the total number of charging
and fully charged vehicles is available in real time. The dynamic model
outlined in this section is utilized to construct an optimal controller that
can be applied to any system with a comparable structure. A data anal-
ysis on historical charge behavior was conducted prior to modeling the
system. Relevant results of the analysis are provided as supplementary
material. It was observed that vehicles do not charge during nighttime
hours, and that the charging power and charged energy per vehicle
both converge to a predictable average when considering charging on
an aggregated level.

2.1. System representation

𝑃evs(𝑡) [W] is the cumulative vehicle charge power and 𝑃pv(𝑡) > 0
W] is solar power. The summation of the elements is the power flowing
o or from the main grid 𝑃grid(𝑡) [W] such that;

grid(𝑡) = 𝑃evs(𝑡) − 𝑃pv(𝑡) (1)

he grid power can never exceed the grid power limit 𝑃grid,max such
hat −𝑃grid,max ≤ 𝑃grid(𝑡) ≤ 𝑃grid,max.

.1.1. Vehicle charging
Given the observation that no vehicles charge at night, the vehicle

harge energy for one day is considered as a single batch. The cumula-
ive energy provided to the vehicles is 𝐸evs(𝑡) [J]. 𝐸evs(𝑡) follows a first
rder differential equation. Each day is initiated with 0 such that;

evs(𝑡) = ∫

𝑡

00:00
𝑃evs(𝜏)𝑑𝜏 (2)

evs(𝑡) is assumed to be measured at the single interface of the vehicle
ower distribution bus bar. Every connected vehicle charges within
he constraints set by the charging infrastructure. This implies that
he actual vehicle charge power depends on either the limit set by
he charging infrastructure or on the power requested by the vehicle.
evs,requested(𝑡) is the cumulative charge power requested by the vehicles
f no limits are set by the charging infrastructure. 𝑃evs(𝑡) can be set
o a controlled power level 𝑃evs,controlled(𝑡) if 𝑃evs,requested(𝑡) exceeds the

clipping threshold 𝑃evs,clip, formulated by;

𝑃evs(𝑡) =

{

𝑃evs,requested(𝑡) if 𝑃evs,requested(𝑡) ≤ 𝑃evs,clip

𝑃evs,controlled(𝑡) if 𝑃evs,requested(𝑡) > 𝑃evs,clip
(3)

with 0 ≤ 𝑃evs,clip ≤ 𝑃grid,max. This constraint is indirectly imposed
by the existing load-balancing controller. Furthermore, 𝑃evs,max is the
3

infrastructure charge limit and 𝑃evs,controlled(𝑡) ≤ 𝑃evs,max ≤ 𝑃grid,max
is enforced at any time. The cumulative requested charge power is
dependent on the requested power per vehicle 𝑃ev [W] and the number
of vehicles charging 𝑁charging(𝑡) ∈ Z≥0 [–]. It is assumed that the
harge processes are only controllable by the charge infrastructure if
ultiple vehicles are charging, 𝑁charging(𝑡) ≫ 0. Based on the previously
entioned data analysis, on a cumulative level, the charge power per

ehicle averages out and is assumed to be constant throughout the
harging process. Hence, the power per vehicle 𝑃ev is approximated
onstant and equal for all vehicles, resulting in;

evs,requested(𝑡) = 𝑁charging(𝑡)𝑃ev (4)

t is assumed that the power is distributed equally among charging
ehicles. 𝑁connected(𝑡) ∈ Z≥0 [–] is the number of connected and
full(𝑡) ∈ Z≥0 [–] is the number of fully charged vehicles, such that;

connected(𝑡) = 𝑁charging(𝑡) +𝑁full(𝑡) (5)

hich is bounded by the number of chargers present in the system
connected,max. Let 𝑗 ∈ Z be an index referring to days. The total number

f vehicles connected over the course of day 𝑗 is 𝑁evs,daily[𝑗] [–].
The system state, input, output, and disturbances are defined by,

espectively,

= 𝐸evs ∈ R 𝑢 = 𝑃evs ∈ R 𝑦 = 𝑃grid ∈ R 𝑑 =
[

𝑃pv
𝑁connected

]

∈ R2

Following (1) and (2), the system is described by

̇ (𝑡) = 𝑢(𝑡) (6)

𝑦(𝑡) = 𝑢(𝑡) − 𝑑1(𝑡) (7)

here 𝑥(𝑡) is set to 0 at midnight. The feasible state space is

= {𝑥 ∈ R ∣ 𝑥 ≥ 0} (8)

here an upper bound on the total charge energy 𝑥 is omitted in
his definition as it is dependent on the variable number of vehicles
harging. The time-invariant feasible input space is

=
{

𝑢 ∈ R|0 ≤ 𝑢 ≤ 𝑃evs,max
}

(9)

The actual decision space of the controller is a subset of U since
t is dependent on the number of charging vehicles and the control
hreshold from (3). The feasible output space is

=
{

𝑦 ∈ R ∣ −𝑃grid,max ≤ 𝑦 ≤ 𝑃grid,max
}

(10)

At any time, the disturbances are assumed to be in

D =

{

𝑑 ∈ R2
|

|

|

|

|

0 ≤ 𝑑1 ≤ 𝑃pv,max,

0 ≤ 𝑑2 ≤ 𝑁connected,max

}

(11)

The system is discretized using the sample time 𝑇s. To ensure that
every day is sampled identically, discretization starts at midnight and
Total time per day

𝑇s
∈ Z. 𝑘 is an index referring to discretized time. Assum-

ing zero-order hold for the inputs, the time-invariant model yields;

𝑥[𝑘 + 1] = 𝑥[𝑘] + 𝑇s𝑢[𝑘] (12)

𝑦[𝑘] = 𝑢[𝑘] − 𝑑1[𝑘] (13)

where 𝑥[𝑘] is set to 0 when 𝑡 = 00 ∶ 00.

3. Controller design for optimal vehicle charging demand

The controller’s objective is to maximize vehicle charging utilizing
energy supplied by PV cells while minimizing the maximum grid power
amplitudes. Maximizing vehicle charging utilizing PV power can be
formulated as maximizing self-sufficiency. A batch-type model predic-
tive controller is implemented to solve this problem. It operates in a
supervisory fashion as illustrated in the control structure in Fig. 2. The
translation from reference power to reference current is performed out-
side of the model predictive control structure to limit complexity and
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Fig. 2. Supervisory control structure. Items in blue are existing systems. All signals
re scalar valued, except 𝐷̃1 ∈ D𝑀H , 𝐷̃2 ∈ D𝑀H , 𝐼 ∈ R3 and 𝑉 ∈ R3.

o make the controller implementable on a wider variety of systems.
ny power converter losses are ignored, and it is assumed that control
ctions are executed instantaneously.

Each day 𝑗, energy targets are set to charge vehicles. The first ob-
ective is to deliver a minimal amount of energy 𝐸ev,min to each vehicle
y time 𝜏T1. The second objective is to deliver the total requested
nergy 𝐸ev,requested by time 𝜏T2. The second objective only needs to be
chieved if enough PV power is available over the day. The objectives
re active every day and are dependent on the total number of vehicles
harging per day 𝑁evs,daily[𝑗]. Two cumulative energy objectives are
stablished instead of individual vehicle objectives because the system
s only controllable on an aggregated level. The two objectives 𝐸T1𝑗 and
T2𝑗 refer to the total minimal amount and the total expected amount
f energy to be delivered by 𝜏T1𝑗 and 𝜏T2𝑗 , respectively. Both objectives
re defined for all days in the prediction horizon. An optimization
roblem over a prediction horizon 𝑇H [s] is solved on day 𝑗 = 𝑗0 at
ime 𝑡 = 𝑡0. Sample 𝑘0 corresponds to 𝑡0, and samples 𝑘T1𝑗 and 𝑘T2𝑗

correspond to 𝜏T1𝑗 and 𝜏T1𝑗 , respectively. The time-varying sets JH ⊂ Z
and KH ⊂ Z are the sets referring to the days 𝑗 and samples 𝑘 included
in the prediction horizon. Suppose a time-invariant 𝑇H is considered.
In that case, it can occur that for the day 𝑗, some samples are included
in the horizon, 𝑘 ∈ KH, while the energy objectives are excluded in
the horizon, i.e. 𝑘T2𝑗 ∉ KH or 𝑘T1𝑗 , 𝑘T2𝑗 ∉ KH. Excluding one energy
objective in the horizon may result in a sub-optimal result for the day
𝑗. Therefore, a batch-type model predictive controller is adopted to
ensure consistent inclusion of all energy objectives for all days in the
prediction horizon, 𝑘T1𝑗 , 𝑘T2𝑗 ∈ KH ∀ 𝑗 ∈ JH. This implies that 𝑇H is
dynamic and that 𝑡0 + 𝑇H is midnight for any 𝑡0. The static parameter
𝑀days ∈ Z>0 determines the number of (partial) days included in the
prediction horizon. The dynamic number of samples in the prediction
horizon is denoted by 𝑀H, which is dependent on 𝑘0 and 𝑀days. A
timeline characterizing the time and naming convention is depicted
in Fig. 3(a). During controller operation, the length of the prediction
horizon decreases over the day and is extended by one day at the start
of a new day, which is depicted in Fig. 3(b).

Optimizing over a prediction horizon requires knowledge of the
system’s disturbances 𝑑[𝑘] ∀ 𝑘 ∈ KH and 𝑁evs[𝑗] ∀ 𝑗 ∈ J. Disturbance
predictions are provided externally and denoted with a ̃ and it is
assumed that 𝑑[𝑘] ∈ D. Predictions for 𝑑1[𝑘] and 𝑑2[𝑘] ∀ 𝑘 ∈ KH are
stacked in the vectors 𝐷̃1 ∈ D𝑀H and 𝐷̃2 ∈ D𝑀H .

3.1. Control objectives

The control objectives are categorized and included in a cost func-
tion. The squared grid power captures both maximizing PV power
to charge vehicles and minimizing the grid peak power. Secondly,
the deviation from each energy objective in the prediction horizon is
included. The third category are slack variable corresponding to the
4

input path constraints, ensuring feasibility. v
Fig. 3. (a) Prediction horizon naming convention and (b) prediction horizon length
for 𝑀days = 2 such that JH =

{

𝑗0 , 𝑗1
}

. The optimization problem is solved at 𝑡0.

3.1.1. Grid power
𝑦[𝑘] > 0 implies that grid power is utilized to charge vehicles.

𝑦[𝑘] < 0 implies that PV power is supplied to the grid and not
tilized to charge vehicles. 𝑦[𝑘] = 0 implies PV power generation

and power utilization are in balance, which is the desired condition.
The objective to minimize grid power peaks implies that lower power
over a more extended period is preferred over high grid power over a
shorter period. A cost function with a quadratic structure captures the
described objectives

min
𝑘0+𝑀H−1

∑

𝑘=𝑘0

𝑦[𝑘]2 (14)

Given that this cost function is convex solidifies this choice.

3.1.2. Energy objectives
The daily energy targets depend on the total number of vehicles

charging daily. The minimal energy to be provided by 𝜏T1𝑗 and 𝜏T2𝑗 ,
respectively are

𝐸T1𝑗 =
1
𝜂
𝑁evs,daily[𝑗]𝐸ev,min (15)

𝐸T2𝑗 =
1
𝜂
𝑁evs,daily[𝑗]𝐸ev,requested (16)

𝐸ev,min is a pre-defined parameter referring the minimum required
charge energy per vehicle. 𝐸ev,requested is a pre-defined parameter repre-
senting the total expected requested charge energy per vehicle. 𝐸ev,min
and 𝐸ev,requested do not take into account any losses that may occur
in the internal vehicle’s charger. 𝜂 ∈ [0, 1] is assumed to be time-
invariant and incorporates transmission losses that may occur during
energy distribution from the bus bar interface down to the individual
chargers. Let 𝜉T1 ∈ R

𝑀days
≥0 and 𝜉T2 ∈ R

𝑀days
≥0 be decision variables

that refer to the positive deviation from the energy objectives in the
prediction horizon. Ideally, those are defined as

𝜉T1[𝑗] =

{

𝐸T1𝑗 − 𝑥[𝑘T1𝑗 ] if 𝑥[𝑘T1𝑗 ] ≤ 𝐸T1𝑗

0 otherwise
∀ 𝑗 ∈ JH (17)

T2[𝑗] = 𝐸T2𝑗 − 𝑥[𝑘T2𝑗 ] ∀ 𝑗 ∈ JH (18)

owever, the use of conditional statements is not preferred in a system
f equations. As a solution, 𝜉T1 and 𝜉T2 are implemented to act as slack
ariables in a cost function. The described behavior is captured in the
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linear cost function;

min
𝑗0+𝑀days−1

∑

𝑗=𝑗0

𝜉T1[𝑗] + 𝜉T2[𝑗] (19)

hich is constrained by the energy objectives;

T1𝑗 ≤ 𝑥[𝑘T1𝑗 ] + 𝜉T1[𝑗] ∀ 𝑗 ∈ JH (19a)

T2𝑗 ≤ 𝑥[𝑘T2𝑗 ] + 𝜉T2[𝑗] ∀ 𝑗 ∈ JH (19b)

T2𝑗 ≥ 𝑥[𝑘T2𝑗 ] ∀ 𝑗 ∈ JH (19c)

0 ≤ 𝜉T1 (19d)

0 ≤ 𝜉T2 (19e)

here constraint (19c) is added because it is impossible to deliver
ore energy than requested by the vehicles. A linear cost function is

hosen over a quadratic cost function because it offers flexibility in
he adjustment of tuning parameters. This allows better differentiation
etween the different energy objectives.

.1.3. Priorities
If not enough PV power is available, a trade-off should be made

etween the individual energy objectives and the grid power usage. The
riorities are ordered by;

(a) Deliver 𝐸T1𝑗 by 𝜏T1𝑗 ∀ 𝑗 ∈ JH
(b) Minimize 𝑦[𝑘]2 ∀ 𝑘 ∈ KH
(c) Deliver 𝐸T2𝑗 by 𝜏T2𝑗 ∀ 𝑗 ∈ JH

rioritizing is done by means of weight parameters. Parameter 𝑞𝑦 ∈ R≥0
etermines the weight per sample 𝑦[𝑘]2 ∀ 𝑘 ∈ KH. Parameters 𝑞T1 ∈
𝑀days
≥0 and 𝑞T2 ∈ R

𝑀days
≥0 determine the weight per energy objective

𝑗 ∈ JH. Because of the potentially significant variations in the
umber of vehicles charging and energy objectives per day, the weight
arameter values are dynamic and may change each control iteration.
he parameters depend on the disturbance forecast and time. Weight
arameter determination and the tuning methodology are described in
ection 3.3.3.

.2. Path constraints

Besides the static constraint 𝑢[𝑘] ∈ U ∀ 𝑘 as stated in (9), extra path
constraints are implemented in the optimal control problem, ensuring
desired behavior.

3.2.1. Vehicle charging
On top of the energy constraints captured by (19), path constraints

on 𝑢 are implemented determining the charge power limits. The con-
straints and the resulting decision space are depicted in Fig. 4. The path
constraints are determined before solving the optimization problem and
are captured by a lower and upper bound;

𝑢̃min[𝑘] ≤ 𝑢[𝑘] ≤ 𝑢̃max[𝑘] ∀ 𝑘 ∈ KH (20)

where both 𝑢̃min[𝑘] and 𝑢̃max[𝑘] are dependent on 𝑑[𝑘]. The upper bound
is;

𝑢̃max[𝑘] = 𝑃ev𝑑1[𝑘] ∀ 𝑘 (21)

where it is ignored that vehicles reduce the charge power when ap-
proaching or reaching the maximum state of charge (SOC). The lower
bound 𝑢̃min[𝑘] is dependent on the number of vehicles connected 𝑑2[𝑘],
the control clipping threshold stated in (3), and the provided charge
energy. As Fig. 4. indicates, 𝑢̃min[𝑘] is approximated to be 0 if the
vehicles are theoretically full if charged with 𝑢̃max[𝑘]. This approxima-
tion does not capture the system dynamics fully, but is chosen to limit
complexity. This exact definition of 𝑢̃[𝑘] ∀ 𝑘 ∈ KH yields

𝑢̃2,min[𝑘] =

{

𝑚𝑖𝑛(𝑃ev𝑑2[𝑘], 𝑃evs,clip) if 𝑥∗[𝑘] < 𝐸T2𝑗 (22)
5

0 otherwise
Fig. 4. Decision space 𝑢 for a single day in the prediction horizon. Constraints related
o energy are excluded in the figure.

here 𝑥∗[𝑘] is a hypothetical charge energy state if the vehicles are
harged with 𝑢̃max[𝑘]. The lower bound ignores scenarios where the
ehicles are not fully charged and still request some power by the end
f the day.

.2.2. Soft constraints
The combination of the path constraints in (20) and the energy

bjectives in (19) may be incompatible and result in an unfeasible
ptimization problem. Soft constraints are implemented using the slack
ariables listed in vector 𝑠 ∈ R𝑀H

≥0 . 𝑞𝑠 determines the weight for the
lack variables in the cost function.

.3. Optimization problem

The cost minimization objectives are combined into a single cost
unction 𝐽 (𝑢, 𝜉, 𝑠). Combining the cost function and corresponding con-
traints yields the optimization problem;

min
,𝜉T1 ,𝜉T2 ,𝑠

𝑘0+𝑀H−1
∑

𝑘=𝑘0

𝑞𝑦𝑦[𝑘]2 + 𝑞𝑠𝑠[𝑘]

+
𝑗0+𝑀days−1

∑

𝑗=𝑗0

𝑞T1j𝜉T1[𝑗] + 𝑞T2j𝜉T2[𝑗] (23)

ubject to

𝑦[𝑘] = 𝑢[𝑘] − 𝑑1[𝑘] ∀𝑘 ∈ KH (23a)

[𝑘 + 1] = 𝑥[𝑘] + 𝑇s𝑢[𝑘] ∀𝑘 ∈ KH (23b)

𝑦[𝑘] ∈ Y ∀𝑘 ∈ KH (23c)

𝑥[𝑘] ∈ X ∀𝑘 ∈ KH (23d)

𝑢[𝑘] ∈ U ∀𝑘 ∈ KH (23e)

𝑢[𝑘] ≤ 𝑑1[𝑘] ∀𝑘 ∈ KH (23f)

𝑢[𝑘] ≤ 𝑢̃max[𝑘] + 𝑠[𝑘] ∀𝑘 ∈ KH (23g)

−𝑢[𝑘] ≤ −𝑢̃min[𝑘] + 𝑠[𝑘] ∀𝑘 ∈ KH (23h)

𝐸T1𝑗 ≤ 𝑥[𝑘T1𝑗 ] − 𝑥[𝑘𝑗,00:00] + 𝜉T1[𝑗] ∀𝑗 ∈ JH (23i)

𝐸T2𝑗 ≤ 𝑥[𝑘T2𝑗 ] − 𝑥[𝑘𝑗,00:00] + 𝜉T2[𝑗] ∀𝑗 ∈ JH (23j)

−𝐸T2𝑗 ≤ −𝑥[𝑘T2𝑗 ] + 𝑥[𝑘𝑗,00:00] ∀𝑗 ∈ JH (23k)

0 ≤ 𝜉T1[𝑗] ∀𝑗 ∈ JH (23l)

0 ≤ 𝜉T2[𝑗] ∀𝑗 ∈ JH (23m)

0 ≤ 𝑠[𝑘] ∀𝑘 ∈ KH (23n)

where 𝑥[𝑘𝑗,00:00] in (23i) and (23j) is setting the charge energy state to
zero at midnight. It can either be a past measurement, if 𝑗 = 𝑗0, or a
function of 𝑢[𝑘], if 𝑗 > 𝑗0.

3.3.1. Convexity
Optimization problem (23) is classified as a quadratic program

with positive coefficients and linear constraints, indicating convexity.
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Fig. 5. Simplified schematic representation of the energy distribution system.
lso, 𝜉 ≥ 0, and 𝑠 ≥ 0, and U is a closed set, confirming that the
ptimization problem is bounded. The convexity and boundedness of
he optimization problem enable the identification of global optima,
nsuring consistent controller operation.

.3.2. Feasibility
It is assumed that the initial measurements and PV power predic-

ions are feasible: 𝑥[𝑘0] ∈ X, 𝑥[𝑘0] ≤ 𝐸T2𝑗0 , and 𝑑[𝑘] ∈ D∀ 𝑘 ∈ KH.
If the soft path constraints, (23g) and (23h), and the minimal energy
constraints, (23i), (23j), are ignored, then it is evident that 𝑢[𝑘] = 0 and
𝑠[𝑘] = 0, ∀ 𝑘 ∈ KH, and 𝜉T1 = 0 and 𝜉T2 = 0 ∀𝑗 ∈ JH is a feasible solution
in any situation. The slack variables in 𝑠 ensure feasibility for (23g) and
(23h). The energy target deviations in 𝜉T1 and 𝜉T2 ensure feasibility for
(23i) and (23j), respectively.

3.3.3. Tuning
The dynamic cost function weights in 𝑞𝑦, 𝑞T1, 𝑞T2, and 𝑞𝑠 are

determined by following a systematic approach first, followed by a trial
and error approach. The systematic approach is based on ‘‘Bryson’s
rule’’ [17, Chapter 9.5]. During the trial and error stage, the parameters
are chosen considering the priorities in Section 3.1.3. The parameter
𝐽max defines the maximum cost of 𝐽 (𝑢, 𝜉, 𝑠) if all variables are at
their maximum. The cost function weights are defined as functions
of 𝐽max, the horizon length 𝑀H, and the theoretical maximum of the
corresponding variable. The tuning parameter 𝛽𝑦 ∈ R≥0 sets the relative
importance of the squared output, the tuning parameters 𝛽T1 ∈ R≥0 and
𝛽T2 ∈ R≥0 set the relative importance of the energy objectives, and the
tuning parameter 𝛽𝑠 ∈ R≥0 sets the relative importance of the slack
variables. Let 𝛽𝛴 be the sum of all 𝛽-tuning parameters. With a slight
abuse of notation, the dynamic weights are described by

𝑞𝑦 =
𝛽𝑦𝐽max

𝛽𝛴𝑀H𝑦max2
𝑞𝑠 =

𝛽𝑠𝐽max
𝛽𝛴𝑀H𝑃evs,max

𝑞T1[𝑗] =
𝛽T1𝐽max
𝛽𝛴𝐸T1𝑗

𝑞T2[𝑗] =
𝛽T2𝐽max
𝛽𝛴𝐸T2𝑗

4. Implementation

4.1. System and actuation

The grid-connected microgrid powers 174 vehicle chargers and is
connected to the medium-voltage electricity grid. A detailed schematic
system representation is depicted in Fig. 5.

Vehicle chargers are connected to low-voltage distribution networks
via seven AC three-phase rail lines. The rail lines are connected to three
separate low-voltage AC distributors. Three 760 V DC grids consisting
6

of PV cells and batteries are connected to the low-voltage distribution
systems via bi-directional converters. The low-voltage AC distributors
are connected to medium to low-voltage transformers. Transformer,
converter, and other component losses are considered negligible.

The control system implementation oversees the operation of six
rails, whereas the seventh rail is excluded to accommodate vehicles
that might not be compatible with the new control system. The seventh
rail is ignored in the results. The six separate rails are each under the
control of a distinct load-balance controller, all of which are capable of
accepting one control input.

The PV power forecast is provided in real time by the service
Solargis [18]. Vehicle charging forecasts are performed in terms of the
number of vehicles connected, since this signal is independent of any
control signals. The load balance systems’ dynamics (see Fig. 2) depend
on the number of vehicles connected per rail, the number of phases
each vehicle utilizes, and the requested currents. The load balance
controller operates in a rule-based manner, and its behavior is out of
scope for this study.

4.2. Integration into SCADA system

Python is chosen to implement the control blocks shown in Fig. 2.
The state diagram depicted in Fig. 6 describes the behavior of the
implemented software and communication with hardware components.
A graphical user interface is designed to interact with the system and to
view historical, real-time, and predicted system behavior. A screenshot
is depicted in Fig. 7. The developed control structure is integrated into
the SCADA system of the building named InsiteSuite [15]. The Python
controller implementation communicates to InsiteSuite using remote
procedure and HTML calls. InsiteSuite communicates with the relevant
data acquisition, forecasting and control systems.

4.3. Controller system elements

4.3.1. Model predictive controller
Optimization problem (23) is implemented as a quadratic program,

which is solved using the Python library CVXOPT [19].

4.3.2. Heuristic control for current distribution
The reference charge power 𝑢2 is distributed equally among the

charging vehicles connected to the six rails. The calculation block ‘Cur-
rent controller’ in Fig. 2 is implemented in Algorithm 1. The algorithm
allocates the reference charge power 𝑢2 over the six rails by setting the
maximum allowable current per rail.

For simplicity of notation, 𝐏,𝐍 and 𝑃 ,𝑁 are used to denote the
charge power and number of charging vehicles, cumulatively and per
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Fig. 6. Simplified state diagram controller implementation.

rail, respectively. For each rail, the reference input current 𝐼ref is

Algorithm 1 Current controller

Initialize 𝐏 = 𝑢2, 𝐍 = 𝑁̂charging,total
for all Rails do

Obtain 𝑁 , 𝑃 , 𝑆, 𝐼 , 𝑉 ⊳ measurements
𝑃𝐹 = 𝑃

𝑆 ⊳ power factor
𝛥𝐼 = 𝑚𝑎𝑥(𝐼) − 𝐼 ⊳ mismatch in phase-currents
𝐼ref,min = 𝑚𝑖𝑛(32, 𝐼) ⊳ minimal current
𝑃ref,min = 𝑃𝐹𝑉 ⊤𝐼ref,min ⊳ minimal power
𝑃ref,optimal = 𝐏𝑁

𝐍 ⊳ optimal power
if 𝑃ref,optimal < 𝑃ref,min then ⊳ control impossible

𝐏 = 𝐏 − 𝑃ref,min
𝐍 = 𝐍 −𝑁
𝐼ref = 32 A ⊳ Minimal 𝐼ref yielding 𝑃 = 𝑃ref,min

end if
end for
for all Rails do

if 𝑃ref,optimal ≥ 𝑃ref,min then ⊳ control possible

𝐼ref = 𝐏 𝑁
𝐍

⏟⏟⏟
fraction

total
power

1
𝑃𝐹

⏟⏟⏟
power
factor

1
∑3

𝑖=1 𝑉 [𝑖]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

current
per phase

+ 𝑉 ⊤𝛥𝐼
∑3

𝑖=1 𝑉 [𝑖]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

phase
mismatch

compensation
end if

end for
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determined utilizing the measurements for three-phase currents 𝐼 ∈ R3,
three-phase voltages 𝑉 ∈ R3, apparent 𝑆 [VA] and active power 𝑃
[W]. A current-delta between the three phases, denoted by 𝛥𝐼 , may
be present because some vehicles exclusively use one or two phases to
charge. The reference input currents are applied without using error
feedback because the bandwidth of the load balance controller is equal
to the sampling time of the supervisory controller.

4.3.3. Forecast vehicle occupancy
During the data analysis on historical charge behavior, it was iden-

tified that the aggregated vehicle occupancy during the week follows
a periodic behavior. This behavior creates an opportunity to predict
vehicle charger occupancy using a data-driven approach. A heuristic
study that was conducted and published in [20–22] compared the
accuracy of different machine learning algorithms in vehicle charger
occupancy prediction and concluded that gradient boosting decision
tree algorithm (XGBoost) has better performances. However, XGBoost
does not predict well beyond the range in the training data [23],
which can be taken as a limitation but also can be useful to test the
robustness of the model predictive controller of this study. Vehicle
charger occupancy is forecasted using the XGBoost algorithm [24].
Given seven consecutive days of historical vehicle occupancy data, the
prediction model should return two days of predictions following:

𝑓XGBoost ∶ D
7𝑀j
2 → D

2𝑀j
2

𝑑2[𝑘0 −𝑀7 days ∶ 𝑘0] ↦ 𝑑2[𝑘0 + 1∶ 𝑘0 +𝑀2 days]

To extend the XGBoost model from a single-step prediction into a
multi-step structure, multiple models were used to forecast a time
series as shown in Fig. 8. For this prediction, the historical number
of vehicles {15, 30, 45, 60, 75, 90} minutes before, historical number of
vehicles {1, 2, 3, 4, 5, 6} days before, month, weekday, hour of the day,
holiday (boolean) were chosen as model features after performing a
feature importance analysis. Using a sample time of 15 min and a
prediction horizon of two days, the model training time (85 s) and
evaluation time (3 s) are considered adequate for the purpose of this
application.

4.4. Auxiliary systems

Auxiliary systems and checks are implemented to increase robust-
ness. These include faulty measurement checks, division by zero checks,
a minimal power factor check, and a system ensuring that all mea-
surements and control inputs are withing realistic limits. In the event
of a server communication error for any of the data-connections, the
controller will still function using the latest obtained data.

4.4.1. Faulty vehicle forecast detection and compensation
The probability of encountering input data that the XGBoost models

are not trained for increases with a larger fleet of vehicles or with a
change in the number of chargers. Hence, there is a theoretical possi-
bility that the XGBoost models produce forecasts that are unrealistic.
Through the use of an independent validation set, the one-step-ahead
error metrics for forecasts that are subjectively confirmed to be realistic
are determined. The analysis is provided as supplementary material
and its results are used as a baseline. Algorithm 2 is used to detect
and compensate for faulty predictions. A forecast is considered faulty
if the one-step-ahead prediction errors 𝑒[𝑘] ∈ R exceed the baseline
threshold. The decision to use the absolute error rather than a percent-
age error is based on the possibility of a percentage error becoming
disproportionately large in cases where the arrival or departure times
are predicted incorrectly.

4.4.2. Vehicle forecast adjustment for fully charged vehicles
The actual vehicle charge limit depends on the 𝑁charging instead of

𝑁connected. Therefore, for the samples belonging to 𝑗0, the forecast 𝑑2[𝑘]
is adjusted for the measured number of fully charged vehicles 𝑁̂full[𝑘0].

It is assumed that fully charged vehicles leave first.
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Fig. 7. Screenshot graphical user interface.
Fig. 8. Multi-step forecast.

4.4.3. Energy objective adjustments
Algorithm 3 is implemented to cope with situations where energy

objectives must be adjusted. The algorithm adds past energy targets to
future timestamps if that target is not yet met. It adjusts the energy
target downwards if the total charge energy left is out of proportion
with the number of vehicles still charging. Lastly, the energy target is
adjusted upwards if the total charged energy exceeds the anticipated
value.

Algorithm 2 Faulty vehicle forecast detection and compensation
1: for 𝑘0 − 3 ∶ 𝑘0 do ⊳ determine prediction error
2: 𝑒[𝑘] = 𝑑2[𝑘] − 𝑑2[𝑘|𝑘−1]
3: end for

4: if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝑒[𝑘0]| > 𝑒max1 ∨
𝑚𝑖𝑛(|𝑒[𝑘0 − 1∶ 𝑘0]|) > 𝑒max2 ∨
𝑚𝑖𝑛(|𝑒[𝑘0 − 2∶ 𝑘0]|) > 𝑒max3 ∨
𝑚𝑖𝑛(|𝑒[𝑘0 − 3∶ 𝑘0]|) > 𝑒max4 ∨

then ⊳
error
detection

5: for all 𝑘 ∈ KH do ⊳ compensate for faulty prediction
6: 𝑑2[𝑘] = 𝑑2[𝑘] +

𝑀H+𝑘0−𝑘
𝑀H

𝑒[𝑘0]
7: end for
8: end if

5. Results and discussion

The controller was operational for three weeks in February 2023.
An overview of the implementation parameters can be found in Sec-
tion 5.1. The results are presented and compared to situations where
8

Algorithm 3 Energy objective adjustments
1: if 𝑥̂[𝑘0] < 𝐸T1𝑗0 ∧ 𝑘0 ≥ 𝑘T1 then ⊳ Objective not met
2: 𝑘T1 = 𝑘0 + 1 ⊳ Push objective forward
3: end if
4: 𝛼 ∈ [0, 1] ⊳ Parameter: % of vehicles stopped charging
5: if 𝛼𝑁̂evs, daily[𝑗0] > 𝑁̂ch[𝑘0] then ⊳

Lower objective
if 𝛼 % stopped

6: 𝐸T1𝑗0 = 𝑚𝑖𝑛(𝐸T1𝑗0 , 𝑥̂2[𝑘0] + 𝑁̂ch[𝑘0]𝐸ev,min)
7: end if
8: 𝐸T2𝑗0 = 𝑚𝑎𝑥(𝐸T2𝑗0 , 𝑥̂[𝑘0]) ⊳

Change if charged more
than expected

the controller was not operational. Some practical implementation
problems are summarized in Section 5.4 and controller limitations are
identified in Section 5.5. Performance indicators such as daily grid peak
power and self sufficiency are utilized to demonstrate the before and
after performance of the implementation.

5.1. Parameters

The implementation parameters and setpoints are listed in Table 1.
Prior to implementation, simulation studies were conducted and

concluded that 𝑀days > 1 resulted in better performance than a
𝑀days = 1. With more than one day in the horizon, the controller could
anticipate the following day’s energy objectives and PV power supply.
Including more than two days in the horizon increased calculation
times while not significantly improving the results, so 𝑀days = 2 was
chosen in the implementation. The cost function tuning parameters
were selected following the strategy described in Section 3.3.3.

The efficiency term 𝜂 in Table 1c is based on historical charge
detail records of individual vehicle chargers. This data is compared
to the integrated power measurements 𝑃evs utilized by the controller.
The term does not consider internal vehicle charging losses. 𝑃ev,requested
and 𝐸ev,requested were initially chosen to be the arithmetic mean of the
charge detail records. However, initial implementation tests concluded
that overestimating the terms by respectively 0.31 kW and 0.83 kWh
yielded better overall performance. 𝐸ev,min was initially chosen to
satisfy the theoretical criterion of enabling each vehicle to cover a
round-trip commute distance. Its refinement was carried out iteratively
through collaboration with the company involved in the implementa-
tion study. The tests also concluded that utilizing a sample time 𝑇 < 15
s



Applied Energy 368 (2024) 123210B.A.L.M. Hermans et al.

t
8
l
𝑢
e
c
t
d

s
o
m
e
o
t
t
t
n
w

5

p

Table 1
Controller implementation parameters and setpoints.

(a) System constraints

Parameter 𝑃grid,max 𝑃evs,clip 𝑃evs,max 𝑃pv,max 𝑁connected,max

Unit kW kW kW kW –

Value 1000 88.32 1000 940 174

(b) Controller parameters

Parameter 𝑇s 𝑀days 𝐽max 𝛽𝑦 𝛽T1 𝛽T2 𝛽𝑠
Unit min days – – – – –

Value 15 2 1𝑒14 1 1 1𝑒−6 1𝑒5

(c) Vehicle charging setpoint and parameters

Parameter 𝜏1 𝜏2 𝜂 𝐸ev,min 𝐸ev,requested 𝑃ev,requested

Unit hh:mm hh:mm % kWh kWh kW

Value 16:00 23:00 98.5 21 23.5 7

(d) Faulty vehicle forecast and energy target adjustment parameters

Parameter 𝑒max1 𝑒max1 𝑒max1 𝑒max1 𝛼

Unit – – – –

Value 10 6 6 5 0.7

Table 2
Comparison 01-02-2023 to 13-02-2023.

Indicator Unit 01-02-2023 13-02-2023

Number of vehicles [–] 64 73
Energy per vehicle [kWh] 24.8 22.8
Energy per vehicle CDRa [kWh] 23.1 21.1
PV energy [kWh] 1651 1651
Self sufficiency [%] 47.8 88.2
Grid power peak [kW] 324 85
Grid negative power peak [kW] 240 63
Grid obtained energy [kWh] 829 196
Grid supplied energy [kWh] 891 180

a Values obtained from charge detail records.

minutes would result in inconsistent and dysfunctional behavior of the
load balance controller. Hence, 15 minutes was selected. The minimal
control threshold 𝑃evs,clip was set to a minimum of three-phase 32 A per
rail for five rails instead of six. It was observed that the sixth rail was
not utilized.

5.2. Single day evaluation

A single day evaluation was performed to check the uncontrolled
and controlled behavior of the system before and after implementing
the MPC controller. The controlled system results for 13-02-2023
(controlled day) are compared to the results for 01-02-2023 (uncon-
trolled day). Fig. 9(a) indicates that a similar number of vehicles
were connected to the charging infrastructure throughout both days.
On 01-02-2023, the charging behavior was independent of the PV
power. To make a fair comparison, on this day the PV power is
assumed to be equal to 13-02-2023, such that 𝑃pv[01-02-2023 00:00 to
01-02-2023 23:55] ∶= 𝑃pv[13-02-2023 00:00 to 13-02-2023 23:55].
The power for both days is plotted over time in Figs. 9(b) and 9(c).
A comparison of relevant measurements and corresponding indicators
are listed in Table 2.

The measured charge power 𝑃evs and the input 𝑢2 are plotted over
ime in Fig. 10. Vehicle charge behavior cannot be influenced before
:00 in the morning. Between 11:30 and 14:00, the charge power is
ower than the input. This is due to the overestimation of 𝑃ev,requested.
2 could have been followed with a lower error if 𝑃ev,requested was
stimated correctly. However, overestimating ensures that all vehicles
harge unrestricted during the peak PV power hours. The side-effect of
his approximation is that the energy objective may not be met every
ay.
9
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Fig. 9. Comparison uncontrolled day 01-02-2023 to controlled day 13-02-2023.

Fig. 10. Vehicle charge power and input over time 13-02-2023.

Fig. 11 depicts system behavior and its predicted trajectories at
pecific times throughout the day. Fig. 11(a) shows that the vehicle
ccupancy forecasts exhibit unrealistic fluctuations. These fluctuations
ay be reduced by implementing a forecast filter or by adding an

xtra feature to the forecasting XGBoost model. However, the effect
n the controller performance is not visible. Fig. 11(b) indicates that
he PV power ramped up later than initially predicted. The change in
he optimal input-trajectory is depicted in Fig. 11(c). The high sample
ime makes it impossible for the controller to compensate for PV power
oise over time. The charged energy over time is visible in Fig. 11(d),
here the adjustment of the first energy objective is emphasized.

.3. Three weeks evaluation

In this section, the controller behavior for a longer period is com-
ared with the uncontrolled scenario. The controller was operational
uring weeks 6, 7, and 8 of 2023, but it was not during weeks
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Fig. 11. MPC and external forecast over time. Only the first day in prediction horizon
is depicted.

3, 4, and 5. A comparison between the two sets of three weeks is
made. Again, to make a fair comparison, the PV power of the uncon-
trolled weeks is artificially set equal to the controlled weeks such that
𝑃pv[16-01-2023 00:00to 29-01-2023 23:55] ∶= 𝑃pv[30-01-2023 00:00
to 26-02-2023 23:55]. Daily statistics for all workdays (Mo. – Fr.) are
obtained. Per week, the minimum, maximum, and mean are plotted in
Fig. 12. For example, Fig. 12(e) indicates that the lowest daily positive
grid peak power for week 3 was 114 kW, while the average daily peak
power over that week was 347 kW. Histograms depicting the total
vehicle charge energy based on the charge detail records for the three
uncontrolled and controlled weeks are depicted in Fig. 13.

The day-to-day percent peak-power differences for the 15 controlled
and uncontrolled days are calculated. During the controlled days, the
positive peak powers are reduced by an average of 59%, while the
negative peak powers are reduced by an average of 47%. On average,
three more vehicles were charged per day during the controlled weeks.
10
Fig. 12. Based on Mondays to Fridays, weekly statistics of daily performance
indicators. Three uncontrolled (3, 4, 5) and three controlled (6, 7, 8) weeks.

Self-sufficiency increased from 41% to 62%. It has to be noted that
according to the charge detail records, the average energy per session
reduced from 24.4 kWh to 20.1 kWh. Also, a few vehicles had to re-
initiate a charging session, splitting the total charge energy over two
sessions instead of one.

5.4. Implementation issues

In the three weeks of operating the controller, 1226 charging ses-
sions took place with 160 different vehicles. Two of those vehicles
could not charge correctly after the MPC implementation. The vehicles
promptly terminated their charging session when the charge point
paused the session. Also, minimal current-amplitude values lower than
32 A per rail were tested. The load balance controller in those scenarios
could not distribute the current evenly and fluctuated in current per
vehicle chargers with an apparently too high frequency. This resulted
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Fig. 13. Charge detail records.

Fig. 14. Actual and available charging current for a single vehicle charging session.

n vehicles terminating the charging session. Load balance controller
esults are provided as supplementary material.

.5. Limitations

One limiting factor of the designed controller is the assumption
egarding charge power limits. The maximum vehicle charge power
s overestimated around noon, which is visible in Fig. 10. Meanwhile,
he maximum vehicle charge power is underestimated later in the
fternoon, which becomes apparent when analyzing the charge data of
he individual vehicles. A session where this is visible around 15:30 is
epicted in Fig. 14. The result is sub-optimal because power is delivered
ack to the grid around 15:30, as indicated in Fig. 9(c). More individ-
al charging session behavior results are provided as supplementary
aterial. The decision space of 𝑢2, visible in Fig. 4, depends on the

ssumptions of 𝑃ev. For 𝑘 = 𝑘0, 𝑁̂evs,charging is a measurement and 𝑃ev
is a parameter. If the controller can access real-time individual charge
pole data, it could infer if a vehicle charges with maximal available
power. This information can improve the estimation of the limits 𝑢̃2min
and 𝑢̃2max. Improving the estimated limits will improve the controller
performance.

The second limiting factor of the controller is visible in Fig. 9(c),
where the minimal charge power 𝑃evs,clip enforces grid power con-
sumption around 8:00 and 17:00. The choice of 𝑃evs,clip is based on a
minimum current per rail of 32 A, a constraint set by the load balance
controller. A vehicle needs at least a current of 6 A per phase to
initiate a charging session. The charger can pause the session directly
after initiation. The reason for the minimum of 32 A seems arbitrary,
and creating a load balance controller that pauses all vehicle charging
sessions simultaneously should be possible.
11
The controller is implemented to charge infrastructure that is part
of an office building complex. The power demand of the charging
infrastructure is altered with no consideration given to the power con-
sumption of the office buildings. The implementation can be extended
by including additional forecasts of extra disturbances to (23a). The
same objectives could be met while considering the actual grid load of
the entire office complex.

Finally, regarding adaptability to different systems, the control
solution can be implemented at locations with comparable charging
behavior. The periodic charging behavior of vehicles at office locations
allows for determining precise energy objective times. The controller
is flexible in terms of system size and can be applied to larger-scale
systems. The controller can likely be applied to smaller-scale systems if
improvement is made in estimating the charge power limits. However,
it may not be feasible to implement the control solution in places where
a higher variance in arrival and departure times of vehicles exists, such
as in public charging stations or very small EV occupation. The inability
to control individual charging sessions would be a limitation in such
cases.

6. Conclusion

This study successfully solved and implemented an optimal control
problem of minimizing the local power supply and demand imbalance
in a grid-connected microgrid through vehicle charge control. A batch-
type model predictive controller is developed and implemented to
minimize the grid power amplitude and maximize vehicle charging us-
ing PV power. Considering the daily energy needs for charging vehicles
as a batch is an essential aspect. The controller is effectively integrated
into an existing SCADA system by incorporating external forecasting
systems and setting reference signals for lower-level controllers. The
attainment of the control objectives demonstrated the overall effective-
ness of the system implementation. The study is deemed successful as
the controller was kept operational after the three-week test period.
Moreover, an average daily grid peak power reduction of 59% was
achieved.

Controlling the system on an aggregated level enables the imple-
mentation of the controller into existing systems. Performance may be
improved by enabling communication with individual vehicle chargers.
Regarding the specific use case, a recommendation can be made to
revise the internal workings of the load balance controller, as it seems
that the operating constraints are set conservatively. The control solu-
tion performs adequately in an office environment, but it might not be
suitable for charging infrastructure that exhibits a higher variance in
arrival and departure times.
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