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1
Introduction

Physics and mathematics are both studies in which we search for answers. The scientist in these fields are
driven to find an explanation or proof for every problem they encounter. With the goal of gaining an exact
understanding on the problem at hand. Especially in mathematics a lot of time and energy is spend on rig-
orously proving everything that falls within its domain. Unfortunately not all the problems have a definite
answer or solution. Sometimes we can show that these answers do not exists, but more often we are just
completely left in the dark.

However there is hope. With the invention of the computer we are now able to answer most questions nu-
merically. Even tough an exact answer is not known we can still understand a lot about a system with the
numerical result. The effective implementation of these problems in the computer has become a whole sub-
field of its own in physics and mathematics. Since, generally the computer needs a lot of help to find the
correct solutions.

With the discovery of quantum mechanics,at the turn of the last century, scientist immediately put all their
effort in solving the problems that arose in this field. The study of the quantum world has been an on-going
effort of millions of scientist ever since. Although a lot of progress has been made on this subject we are still
far away of a complete understanding of this topic. The difficulty in quantum mechanics is that even nu-
merical results are hard to obtain. This is due to entanglement whereby the complexity of the system grows
exponential with the amount of particles in that system. Our normal computers are incapable of handling
these problems effectively and so other approaches need to be sought. Currently a lot of time and resources
are being spend on developing the quantum computer which is said to solve this problem. But for the mo-
ment we need to use algorithms that can work with the classical computer.

The algorithms that are used at the present are able to numerically solve one dimensional Hamiltonians if
the system is low-entangled. The Density Matrix Renormalization group (DMRG) first developed by Steven
R. White [19] is one of the most efficient algorithms that is used over the past 20 years. However, following the
paper of S.Rommer and S.Ostlond [11], the new method of Matrix Product States is one of the most promising
algorithms for solving one dimensional quantum system numerically.
In this thesis we will use Matrix Product States (MPS) to solve systems involving many quantum particles. To
this extend we use a version of the TEBD algorithm (Time-Evolving Block Decimation) that exploits the form
of Matrix Product States. This method was first developed by G.Vidal [17] in order to compute the quantum
properties for an infinite chain in one dimension. In the thesis the idea of MPS is explained and used in the
TEBD algorithm, with the goal that we can stimulate the (imaginary) time evolution of a chain consisting of
spin particles. To validate that the results of this algorithm are indeed correct the quantum Ising chain has
been chosen as a test model.

The Ising model describes spin systems that only interact with other spin systems that are in its vicinity.
In this thesis the restriction is put that the particles only interact with its nearest-neighbours. Furthermore,
a magnetic field perpendicular to the interaction is applied to the spin particles as well, this is done to make
sure that the Hamiltonian is gapped-the reason that this is necessary will be explained in the thesis. The Ising
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2 1. Introduction

chain has been chosen as the trial system due to the fact that the Hamiltonian can be solved analytically [9].
Furthermore, the model falls in the class of Hamiltonians that can be analysed with MPS.

The thesis has the following structure: In chapter 1 the introduction to problem of the thesis is given. Chapter
2 is about solving the test system of the Ising model in a Transverse field analytically. The representation of
Matrix Product States is introduced in chapter 3, together with the explanation of why this representation is
so successful for using in the TEBD algorithm. In chapter 4 the TEBD algorithm is described and in chapter 5
the results of the algorithm are presented and discussed. Finally, in chapter 6 we give a short conclusion and
a few proposals for further research.



2
Exact Solution of the Ising Model in a

Transverse Field

2.1. The Model
In order to validate algorithms based on matrix Product States, we use the model of the quantum Ising chain
in a transverse field, of which the ground state can be found analytically [9]. This model was first used by
Ernst Ising to analyze phase transitions in 1924 [6]. The Ising model describes spin- 1

2 systems, where the
particles can be either in a spin up state or in a spin down state. It is possible for these spins to interact with
each other. In our case we restrict ourselves to only nearest-neighbours interactions. This local character of
the interactions is vital to the success of matrix product states as will be explained in the next chapter.
We use the formulation of Pfeuty [9], where the magnetic field is applied in the z-direction and the nearest-
neighbour interaction of the spin operator is in the x-direction,

H =−J
∑

i
Sx

i Sx
i+1 −Γ

∑
i

Sz
i . (2.1)

The variable J represents the interaction strength between neighbouring spins and the variable Γ is the mag-
netic field strength. A uniform magnetic field is assumed and the interaction between each spin site has the
same strength. In the Hamiltonian the spin angular momentum operators are used, for these operators the
fundamental commutation relation hold: [Sx

i ,S y
i ] = iħSz

i . To make further calculations easier, ħ is set to be
one from of now on.

Hamiltonian (2.1) describes a finite chain of length N . There are two different configurations for this chain,
either open boundary conditions with a starting point and an end point at which the spin- 1

2 particles have
only one neighbour, or a periodic chain which has the topology of a circle. The boundary conditions influ-
ence the summation of the Sx operators; for the open chain the sum runs from 1 to N −1 and for the periodic
chain from 1 to N , where we put Sx

N+1 = Sx
1 . We will first work out the problem for periodic boundary condi-

tions.

The goal for this chapter is to obtain the eigenstates and the corresponding eigenenergies of Hamiltonian
(2.1) analytically. This is done by getting equation the Hamiltonian in a diagonal form, to achieve this we
first have to perform a couple of transformations on the set of operators. The approach we take here is from
Schultz et al. [12].

2.2. The Raising and Lowering Operators
The first transformation is from the Cartesian spin operators Sx , S y and Sz , to the raising and lowering spin
operators. This pair of operators is defined at each site i as:

a+
i = Sx

i + iS y
i ; (2.2a)

ai = Sx
i − iS y

i . (2.2b)

3



4 2. Exact Solution of the Ising Model in a Transverse Field

To transform equation (2.1), the inverse relations of this transformation need to be known, so we will first

determine these equations. Clearly we have that Sx
i = a+

i +ai

2 . However for the inverse relation of the operator
Sz

i , one needs to perform a little more work. We use the well-known eigenvalues of the spin operators (see

Griffiths, page 171) [4]: S2|sm〉 = ħ2s(s + 1)|sm〉 and Sz |sm〉 = ħm|sm〉. In this case s = 1
2 and ħ = 1, thus

S2 = 1
2 ( 1

2 + 1) = 3
4 . For the spin operator in the z direction, we have m = 1

2 or − 1
2 , which are commonly

identified as the spin-up and spin-down state respectively. However if the Sz operator is applied twice, this
sign difference disappears and one just gets Sz Sz = 1

4 . This can be used to derive the inverse relation of Sz if
one uses the fact that S2 = (Sx )2 + (S y )2 + (Sz )2:

a+a = (Sx + iS y )(Sx − iS y ) = Sx Sx +S y S y − iSx S y + iS y Sx

= S2 −Sz Sz − i [Sx ,S y ] = 3

4
− 1

4
+Sz = Sz + 1

2
.

Where in the last line the fundamental commutation relation is used. With the inverse transformation known,
we can express Hamiltonian (2.1) in terms of the raising and lowering operator,

H =− J

4

∑
i

[a+
i a+

i+1 +a+
i ai+1 +ai a+

i+1 +ai ai+1]−Γ∑
i

[a+
i ai − 1

2
]. (2.3)

The new formulation is not in the diagonal form, to still make progress we need to perform another trans-
formation. The idea of the following transformation is to get the Hamiltonian in the second quantization
formalism, meaning that we need to obtain fermionic operators. To understand where we are going it is use-
ful to know what kind of commutation relations hold for the raising and lowering operators. It is quite easy to
compute these and we will just state them here without proof. The raising and lowering operators are a mix
of Fermi and Boson operators:

i 6= j [a+
i , a j ] = [a+

i , a+
j ] = [ai , a j ] = 0; (2.4a){

ai , a+
i

}= 1; (2.4b)

(a+
i )2 = (ai )2 = 0. (2.4c)

2.3. The Jordan-Wigner Transformation
As one can see from equations (2.4a)-(2.4c) the raising and lowering operators are not Fermion operators, we
would like to work with Fermion operators instead because they allow for finding the eigenvalues and -states.
The transformation that maps the spin raising and lowering operators to a set of Fermion operators was first
proposed by Jordan and Wigner. The transformation is just mapping the old raising and lowering operators
to the new operators by the identity transformation and in some cases adding a sign shift. This sign shift
depends on the amount of occupied states to the left of the chain:

ci = e
πi

∑i−1
j=1 a+

j a j ai ; (2.5a)

c+i = a+
i e

−πi
∑i−1

j=1 a+
j a j . (2.5b)

These operators are referred to as the annihilation and creation operators respectively and are again defined
per site i . In the exponent we have sum of operators, it is vital to have a sufficient understanding on how
the handle an operator of this form, since such operators will be used a lot throughout this thesis. For that
purpose we introduce the following theorem

Theorem 2.1: If two operators A and B commute the following decomposition can be done

e t (A+B) = e t Ae tB . (2.6)

Proof: To see why this is the case, we look at the following function f (t ) = e t (A+B)e−t Ae−tB and differentiate
this function with respect to t :

d f (t )

dt
= (A+B)e t (A+B)e−t Ae−tB +e t (A+B)(−A)e−t Ae−tB

+e t (A+B)e−t A(−B)e−tB .
(2.7)
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If the exponent e t (A+B) commutes with the operators A and B , we have that the last two terms cancel the first
term and the derivative vanishes for all t . For this purpose we will show that the these operators commute,
using the definition of an exponential operator. Now, since [A,B ] = 0 and [A, A] = 0 we have that (A+B)n A =
A(A +B)n for all n ∈ N. With this result we have that e(A+B) A = ∑

n
(A+B)n

n! A = ∑
n

(A+B)n A
n! = ∑

n
A(A+B)n

n! =
Ae(A+B). Thus the operators A and e t (A+B) commute with each other. Analogously it can be shown that the
operator B commutes with e t (A+B) and e−t A . We can conclude that equation (2.7) is always zero. The function
f (t ) is thus a constant function, calculating the value for this constant function can be done straightforwardly
for t = 0 and we find that f (t = 0) = I .

■

With the help of theorem 2.1 it is quite simple to see that c+i ci = a+
i e

−πi
∑i−1

j=1 a+
j a j e

πi
∑i−1

j=1 a+
j a j ai = a+

i ai , since
obviously an operator commutes with itself. This expression can be used to find the inverse Jordan-Wigner
transformation:

ai = e
−πi

∑i−1
j=1 c+j c j ci ; (2.8a)

a+
i = c+i e

πi
∑i−1

j=1 c+j c j . (2.8b)

Before we continue with expressing Hamiltonian (2.3) in the creation and annihilation operators, we are first
going to prove that these operators are indeed Fermi operators, otherwise all the hard work will be done for
nothing. The prove itself will use the following Lemma.

Lemma 2.2: The following equations hold for the raising and lowering operators:

eπia+
k ak ak = ak ; (2.9a)

a+
k eπia+

k ak = a+
k . (2.9b)

Proof: The Lemma can easily be proven, when one considers the definition of an operator in the exponent:

eπia+
k ak ak =

∞∑
n=0

(πia+
k ak )n

n!
ak = ak .

For every n 6= 0 the term becomes zero due to equation (2.4c). The second part of the lemma can be proven
in exactly the same way.

■
Another equation that is of importance in the proof is: [eπia+

k ak , a j ] = 0 if k 6= j , this result follows from the fact
that the raising and lowering operators commute with each other if they are not working on the same site. We
are now ready to prove that the creation and annihilation operators are Fermion operators:

Theorem 2.3: The creation and annihilation operators are Fermion operators where the following anti-commutation
relations for hold: {

ci ,c+j
}
= δi j ;

{
c+i ,c+j

}
= 0;

{
ci ,c j

}= 0. (2.10)

Proof: The first of these anti-commutation relations will be proven with the help of the following identity:
a+

k ak a+
k = a+

k (1− a+
k ak ) = a+

k here equations (2.4b) and (2.4c) have been used. Now suppose i > j with the
proof for i < j being similar. In this case we have:

{
ci ,c+j

}
= eπi

∑i−1
k=1 a+

k ak ai a+
j e−πi

∑ j−1
k=1 a+

k ak +a+
j e−πi

∑ j−1
k=1 a+

k ak eπi
∑i−1

k=1 a+
k ak ai .
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We can interchanging the exponents with the raising and lowering operator in the first term, since all opera-
tors act on different sites. We bring the exponents together as well and we note that a lot of terms in the sum
cancel each other,this all results in{

ci ,c+j
}
= ai e

πi
∑i−1

k= j a+
k ak a+

j +a+
j e

πi
∑i−1

k= j a+
k ak ai = e

πi
∑i−1

k= j a+
k ak ai a+

j + (a+
j e

πi a+
j a j )e

πi
∑i−1

k= j+1 a+
k ak ai .

In the last term we separated the only term in the exponent that does not commute with a+
j . For this term we

apply lemma 2.2:{
ci ,c+j

}
= e

πi
∑i−1

k= j a+
k ak a+

j ai +a+
j e

πi
∑i−1

k= j+1 a+
k ak ai = e

πi
∑i−1

k= j+1 a+
k ak (e

πia+
j a j a+

j )ai +e
πi

∑i−1
k= j+1 a+

k ak a+
j ai .

In the first term on the right we separated the exponent that was just canceled. Using the definition of the
exponent we can further simplify the expression{

ci ,c+j
}
= e

πi
∑i−1

k= j+1 a+
k ak [

∞∑
n=0

(πia+
j a j )n

n!
a+

j ai +a+
j ai ],

as stated before a+
j a j a+

j = a+
j , with this we obtain{

ci ,c+j
}
= e

πi
∑i−1

k= j+1 a+
k ak [

∞∑
n=0

(πi)n

n!
a+

j ai +a+
j ai ] = e

πi
∑i−1

k= j+1 a+
k ak [eπia+

j ai +a+
j ai ]

= e
πi

∑i−1
k= j+1 a+

k ak [−a+
j ai +a+

j ai ] = e
πi

∑i−1
k= j+1 a+

k ak [a+
j , ai ] = 0.

Where the last step follows from equation (2.4a). Now the only thing that rest us to do, is to show that{
c j ,c+j

}
= 1. Now if i = j the sum in the exponents will just cancel each other and we are left with

{
ci ,c+i

} ={
ai , a+

i

}= 1. Thus the first anti-commutation relation has been proven.

Now we will show that
{

c+i ,c+j
}
= 0, here we again assume that i > j with the proof of the reverse inequality

being extremely similar and in the case that i = j , the proof is trivial. Calculating the anti-commutation gives

{
c+i ,c+j

}
= a+

i e−πi
∑i−1

k=1 a+
k ak a+

j e−πi
∑ j−1

k=1 a+
k ak +a+

j e−πi
∑ j−1

k=1 a+
k ak a+

i e−πi
∑i−1

k=1 a+
k ak .

It is again possible to interchange the exponents and the operators that are acting on different sites;{
c+i ,c+j

}
= e−πi

∑i−1
k=1 a+

k ak e−πi
∑ j−1

k=1 a+
k ak a+

i a+
j +e−πi

∑ j−1
k=1 a+

k ak a+
j e−πi

∑i−1
k=1 a+

k ak a+
i

= e−πi
∑ j−1

k=1 a+
k ak e

−πi
∑i−1

k=1,k 6= j a+
k ak e

−πia+
j a j a+

j a+
i +e−πi

∑ j−1
k=1 a+

k ak e
−πi

∑i−1
k=1,k 6= j a+

k ak a+
j e

−πia+
j a j a+

i .

Using lemma 2.2 and the definition of the exponent we get:{
c+i ,c+j

}
= e−πi

∑ j−1
k=1 a+

k ak e
−πi

∑i−1
k=1,k 6= j a+

k ak [
∞∑

n=0

(−πia+
j a j )n

n!
a+

j a+
i +a+

j a+
i ]

= e−πi
∑ j−1

k=1 a+
k ak e

−πi
∑i−1

k=1,k 6= j a+
k ak [

∞∑
n=0

(−πi)n

n!
a+

j a+
i +a+

j a+
i ]

= e−πi
∑ j−1

k=1 a+
k ak e

−πi
∑i−1

k=1,k 6= j a+
k ak [−a+

j a+
i +a+

j a+
i ] = e−πi

∑ j−1
k=1 a+

k ak e
−πi

∑i−1
k=1,k 6= j a+

k ak [a+
j , a+

i ] = 0.

Where the last step follows from (2.4a). In the second line above we again made use of the fact that a+
j a j a+

j =
a+

j . The proof for
{
ci ,c j

}= 0 is similar to the prove above of
{

c+i ,c+j
}
= 0, so we will not discuss it here in detail.

■

We have shown that the creation and annihilation operators of the Jordan-Wigner transformation are indeed
Fermion operators. In order to facilitate the transformations of Hamiltonian (2.3) into the form of the cre-
ation and annihilation operators, we will first need a few more statements relating these operators with the
raising and lowering operators. These formulas are shown and proven in the following theorem.
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Theorem 2.4: For i = 1,2, ..., N −1 the following expressions hold:

a+
i ai = c+i ci ; (2.11a)

a+
i a+

i+1 = c+i c+i+1; (2.11b)

a+
i ai+1 = c+i ci+1; (2.11c)

ai a+
i+1 =−ci c+i+1; (2.11d)

ai ai+1 =−ci ci+1. (2.11e)

Proof: Equation (2.11a) was already shown to be true and is just repeated for completeness, note that in this
case it does hold for i = N as well. Now the sequence of the operators a+

i ai can only have the value one or

zero ( and from (2.11a) c+i ci has the same property!). Therefore we have that e2πia+
k ak = 1, this property will

assist us in proving the other relations. We will first show that equation (2.11b) is valid:

c+i c+i+1 = a+
i e−πi

∑i−1
k=1 a+

k ak a+
i+1e−πi

∑i
k=1 a+

k ak ,

now we move a+
i+1 to the left yielding,

c+i c+i+1 = a+
i a+

i+1e−πi
∑i−1

k=1 a+
k ak e−πi

∑i
k=1 a+

k ak = a+
i a+

i+1e−πia+
i ai e−2πi

∑i−1
k=1 a+

k ak ,

here we can apply lemma 2.2 to obtain:

c+i c+i+1 = a+
i+1(a+

i e−πia+
i ai ) = a+

i a+
i+1.

What we have just done is certainly not true for i = N , since in that case a+
i+1 = a+

1 due to the periodic bound-
ary conditions. This means that the operator a+

i+1 does not commute with one of the terms in the exponent
and as a result can not be interchanged. This makes the first step invalid. This is also the reason why the
relations (2.11c)-(2.11e) are incorrect for i = N .
Formula (2.11c) can be shown to be correc with the use of lemma 2.2

c+i ci+1 = a+
i e−πi

∑i−1
k=1 a+

k ak eπi
∑i

k=1 a+
k ak ai+1 = a+

i eπia+
i ai ai+1 = a+

i ai+1.

To derive formula (2.11d) we again use the definition of the exponent and the fact that ai a+
i ai = ai :

ci c+i+1 = eπi
∑i−1

k=1 a+
k ak ai a+

i+1e−πi
∑i

k=1 a+
k ak = ai a+

i+1e−πia+
i ai = a+

i+1ai

∞∑
n=0

(−πia+
i ai )n

n!

ci c+i+1 = a+
i+1ai

∞∑
n=0

(−πi )n

n!
= a+

i+1ai e−πi =−ai a+
i+1.

In the same way that we have just shown equation (2.11d) to be true, we can also show that equation (2.11e)
is correct.

■

With the use of theorem 2.4 one can express the Hamiltonian in the Jordan-Wigner operators. The only prob-
lem that still remains is that the previous results are not valid for i = N and the terms containing an operator
that acts on this site should be studied separately. However, this term is a result of the boundary alone and
since we are mainly interested in a chain which has a large length we can ignore the influence of this cor-
rection term, furthermore this term is of order 1, while the other terms in the Hamiltonian will grow with
linearly with order N and as a result can be safely neglected for large N . The final result of the Jordan-Wigner
transformation is the Hamiltonian in the second quantization formalism

H = ΓN

2
−Γ∑

i
c+i ci − J

4

∑
i

[c+i c+i+1 + c+i ci+1 − ci c+i+1 − ci ci+1]. (2.12)
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2.4. The Fourier Transformation
The objective is now to get Hamiltonian (2.12) in a diagonal form. The approach we take here is to transform
the creation and annihilation operators into the momentum space by computing the discrete Fourier trans-
formation. This can be done efficiently since we are working with periodic boundary conditions. Since, the
inverse Fourier transformation is going to be used to rewrite Hamiltonian (2.12), we will state them here as
well.

cq = 1p
N

∑
j

c j e iq j ; (2.13a)

cq = 1p
N

∑
j

c+j e−iq j . (2.13b)

c j = 1p
N

∑
q

e−iq j cq ; (2.13c)

c+j = 1p
N

∑
q

e iq j c+q . (2.13d)

In this case the index q can achieve the following values:q = 2πn
N where n = −(N−1)

2 , −(N−1)
2 , ..., N−1

2 . Observe
that this defines a complete set of the new operators. It is also important to state that these new operators
still follow the anti-commutation rules from theorem 2.3. This result can easily be proven from the defini-
tion of the Fourier transform and the fact that the creation and annihilation operators are Fermion operators.
To recast the Hamiltonian in these new operators is pretty straightforward, since the inverse transforma-
tion is already known. We state here a result from complex analysis which simplifies the transformation:∑N

j=1 e i(qn−qn′ ) j = Nδnn′ . We also define a new parameter λ, which helps to keep the notation clean in the
remaining calculations. λ is defined as the ratio between the interaction strength of the spin particles and the
magnetic field strength, i.e λ= J

2Γ . With all of this the new Hamiltonian becomes

H

Γ
= N

2
−∑

q
c+q cq − λ

2

∑
q

[e−iq c+q c+−q +e−iq c+q cq −e iq cq c+q −e iq cq c−q ]

= N

2
−∑

q
(1+λcos q)c+q cq − λ

2

∑
q

[e−iq c+q c+−q −e iq cq c−q ].
(2.14)

The cosine in equation (2.14) can be derived by using the fact the cq and c+q from (2.13a) and (2.13b) are
fermionic operators for which the anti-commutation relations hold. We also see immediately that the Hamil-
tonian scales with the interaction strength Γ. Now we are going to perform a trick that is also used in [14].
The idea is to split our Fourier operators into two sets, the ones with a negative index q into a set and a set
containing the positive indices. The two sums in equation (2.14) will only be carried out over the positive set
q . The q ’s with a negative sign will be incorporated by just writing them down. Since the index q is symmetric
around the value zero this can be done quite nicely. Still careful consideration has to be given if the amount
of spin particles is odd, cause then we have an operator cq=0 which is not contained in either set. Here we will
just put that term in an another operator H0 to keep the notation clean. Now, doing all this we obtain

H

Γ
= N

2
+H0 −

∑
q>0

(1+λcos q)[c+q cq + c+−q c−q ]

− λ

2

∑
q>0

[e−iq c+q c+−q +e iq c+−q c+q −e iq cq c−q −e−iq c−q cq ]

= N

2
+H0 −

∑
q>0

(1+λcos q)[c+q cq +1− c−q c+−q ]

− λ

2

∑
q>0

[e−iq c+q c+−q −e iq c+q c+−q +e iq c−q cq −e−iq c−q cq ]

=+H0 −
∑
q>0

(1+λcos q)[c+q cq − c−q c+−q ]

+ iλ
∑
q>0

sin q[c+q c+−q − c−q cq ],

(2.15a)

H0 =
{

0 ,If N is even
−(1+λ)c+0 c0 , If N is odd

(2.15b)

The constant N
2 is cancelled by the sum

∑
q>0 1, and the term

∑
q>0λcos q vanishes the sum ranges symmetri-

cally from 0 to π and the cosine is anti-symmetric. We can rewrite equation (2.15a) in a more insightful way, if



2.5. The Bogoliubov-Valatin transformation 9

we set all the terms inside the sum equal to an operator Hq , doing this we can write the Hamiltonian (2.15a)
as H

Γ = H0 +∑
q>0 Hq . With the new operator Hq defined as

Hq =−(1+λcos q)[c+q cq − c−q c+−q ]+ iλsin q[c+q c+−q − c−q cq ] (2.16a)

= (
c+q c−q

)(−(1+λcos q) iλsin q
−iλsin q 1+λcos q

)(
cq

c+−q

)
. (2.16b)

The last line is the operator in matrix notation, here we immediately see that the operator is not yet in diagonal
form, in the subsequent section we are going to explain the last transformation such that these off-diagonal
terms vanishes.

2.5. The Bogoliubov-Valatin transformation
The purpose of the next transformation is to have the Hamiltonian in the following form

H = Γ∑
k
Λqη

+
qηq +C . (2.17)

The transformation that accomplishes this feat was first formulated in 1958 by Bogoliubov and Valatin in-
dependently from each other [1] [16]. Hence, the Bogoliubov-Valatin transformation is named after both of
them. The transformation itself is used a lot in the BCS derivation and in the theory of superconductivity. In
our case we have that the old Fourier operators are mapped to the new operators by(

ηq

η+q

)
=

(
uq ivq

ivq uq

)(
cq

c+−q

)
(2.18a)

(
cq

c+q

)
=

(
uq −ivq

−ivq uq

)(
ηq

η+−q

)
(2.18b)

The restriction is put that the variables uq and vq have to be real numbers. Furthermore, the operators ηq

and η+q are again Fermion operators with the corresponding anti-commutation relations:{
ηk ,ηl

}= 0,
{
η+k ,η+l

}= 0,
{
ηk ,η+l

}= δkl . (2.19)

The last equation of (2.19) can be used to gain extra information about the numbers uq and vq

1 =
{
ηq ,η+q

}
= ηqη

+
q +η+qηq

= (uq cq + ivq c+−q )(ivq cq +uq c+−q )+ (ivq cq +uq c+−q )(uq cq + ivq c+−q )

= u2
q (cq c+q + c+q cq )+ v2

q (c+−q c−q + c−q c+−q )+ iuq vq (c+−q c+q + c+q c+−q − cq c−q − c−q cq )

= u2
q {cq ,c+q }+ v2

q {c−q ,c+−q }+ i({c+−q ,c+q }− {c−q ,cq }) = u2
q + v2

q .

This result can be used to calculate the inverse Bogoliubov-Valatin transformation, because this informs us
that the determinant of the matrix form of (2.18a) is equal to 1 and with this the inverse relation can be easily
computed. The equations for this inverse relation are given in matrix form in (2.18b), with these established
we can cast equation (2.16b) in terms of the operators ηq and η+q

Hq = (
η+q η−q

)(uq ivq

ivq uq

)
×

(−(1+λcos q) iλsin q
−iλsin q 1+λcos q

)(
uq −ivq

−ivq uq

)(
ηq

η+−q

)
.

(2.20)

It is possible to diagonalize equation (2.20), to do this we find the eigenvalues of the central matrix in (2.20),

with the eigenvectors given by

(
uq −ivq

−ivq uq

)
. Since it is a 2×2 matrix this is quite an easy task and we obtai

Λ±
q =±

√
1+λ2 +2λcos q . (2.21)

Where the Λ+
q corresponds with the first eigenvector and Λ−

q with the second eigenvector. Now there is still
some freedom in choosing the uq and vq , here we choose them in such a way that uq > 0 for 0 < q < π.
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Plugging in these results in the matrix notation of equation (2.20) we obtain

Hq = (
η+q η−q

)(uq ivq

ivq uq

)(
Λ+

q uq Λ−
q (−ivq )

Λ+
q (−ivq ) Λ−

q uq

)(
ηq

η+−q

)
= (

η+q η−q
)(Λ+

q (u2
q + v2

q ) 0
0 Λ−

q (u2
q + v2

q )

)(
ηq

η+−q

)
= (

η+q η−q
)(Λq 0

0 −Λq

)(
ηq

η+−q

)
=Λqη

+
qηq −Λqη−qη

+
−q =Λqη

+
qηq −Λq (1−η+−qη−q )

=Λq (η+qηq +η+−qη−q −1).

(2.22)

Thus with the Bogoliubov-Valatin transformation we have successfully diagonalized the Hamiltonian. Now if
we want to write out the total Hamiltonian it is useful to sum over all the q ’s. Careful consideration must be
again given to q = 0. Fortunately for us we have thatΛ0 = (1+λ), so it fits perfectly in the used notation of H0.
In the end we find the following diagonal Hamiltonian

H = ΓH0 +Γ
∑
q>0

Hq

= ΓH0 +Γ
∑
q>0

Λq (η+qηq +η+−qη−q −1)

= ΓH0 −Γ
∑
q>0

Λq +Γ ∑
q,q 6=0

Λqη
+
qηq

=−Γ
2

∑
q
Λq +Γ∑

q
Λqη

+
qηq

(2.23)

and with this we have finished what we have set out to accomplish. We have transferred the Hamiltonian (2.1)
of the Ising model in a transverse field to a diagonal form. For the attentive reader we will repeat the four dif-
ferent operator transformations we have done. We have gone from the Cartesian Spin operators to the raising
and lowering operators Sx

i ,Sz
i 7→ ai , ai+. From these operator we went to the creation and annihilation oper-

ators with the Jordan-Wigner transformation ai , a+
i 7→ ci ,c+i . Because of the periodic boundary conditions it

was fruitful to execute a Fourier Transform with which the site indices changed from i to q with q = 2πn
N and

n = −(N−1)
2 , −(N−1)

2 , ..., N−1
2 . The last transformation that was needed was to diagonalize the Hamiltonian was

the Bogoliubov-Valatin transformation cq ,c+q 7→ ηq ,η+q . Finally it was possible to diagonalize the found matrix
with an easy eigenvalue problem. In the end the solution for the ground state energy for the Ising model in a
transverse field with periodic boundary conditions is:

E0 =−Γ
2

N∑
n=1

√
1+λ2 +2λcos(

2π

N
[
−(N −1)

2
+n]) (2.24)

with λ= J
2Γ . Note that this expression is only valid if N is large enough, because a cyclic term was neglected

in the Jordan-Wigner transformation that has an order of O ( 1
N ).

2.6. Open Boundary Conditions
The result of equation (2.24) is valid when we have periodic boundary conditions for Hamiltonian (2.1). Now
in the next chapter where Matrix Product States is explained, we shall see that these can only be developed
for an open chain. Even more the periodicity of a circle introduces a non-locality in the Hamiltonian which
reduces the efficiency of the eventual TEBD algorithm. For these reasons we will state here also the solution
of Hamiltonian (2.1) with open boundary conditions. Finding the ground state energy for this problem goes
along the same process as described here for the periodic boundary conditions. Only the Fourier transform
does not work anymore and a different tactic needs to be employed. This case has been worked out in full by
Schultz et al. Schultz et al. [12], we will just copy the results here. The ground state energy for OBC has the
same excitation energy (2.21) as the case of PBC. The only difference is that the index q is now given by the
roots of the following equation

sin q(N +1)

sin qN
+λ= 0 (2.25)
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where 0 < q <π. For λ≤ 1 there are N distinct roots in this interval. If λ> 1 then there are N −1 distinct roots
and the last root that is needed is complex solution with a real part of π. The imaginary part ℑ(q) = a of this
root is given by the solution of the following equation sinh a(N+1)

sinh a =λ. All of these roots have to be determined
numerically. For large N it is quite a difficult task task to find N distinct roots and for that reason we will only
use this solution for validating the algorithm in the region where N is small. For large N the solution of the
periodic boundary condition is sufficient, since the boundary can be ignored.





3
Matrix Product States

3.1. Entanglement
For a general 1D quantum system with a local orthonormal basis denoted by {|σi 〉}, where the basis has di-
mension d , we can write a random wave function in the following way:

|ψ〉 = ∑
σ1,...,σN

cσ1,...σN |σ1...σN 〉, (3.1)

here, we assume that we have a chain of length N . Now cσ1,...σN is a tensor with dimensions d N , thus the
amount of information needed to store a random quantum state |ψ〉 grows exponentially with the length of
the chain. Hence it is impossible to perform any computations with (3.1) for all but the smallest chains.
Fortunately there is a way to rewrite |ψ〉 in a different way, called Matrix Product States (MPS) with which it is
possible to perform some computations. Before we derive this MPS form, we will first explain to what kind of
systems one can apply MPS. A key property in this context is the Von Neumann entropy, which is a measure
of the entanglement of an arbitrary quantum state. This is defined as

S(ρ) =−Tr(ρ log2ρ). (3.2)

The quantity ρ is the density matrix and for a pure state can be written down as ρ = |ψ〉〈ψ|. The Von Neumann
entropy for a random quantum state |ψ〉 scales linearly with the volume (N ) [8], which is what we expect
from the theory of statistical mechanics [15]. However, for gapped Hamiltonians with only a local character
this scaling property is not always true. The quantum states near the ground-state of such Hamiltonians
follow what we call an area law, meaning that the entropy scales linearly with the boundary of the system [3].
With the boundary we mean the cross section of the system. In one dimensions this boundary is off course
constant, thus as a result we have that the entropy of low-excited states does not scale with the system size,
but remains constant. Thus, when we search for the ground-states of low entangled Hamiltonians we can
restrict ourselves to only the states that follow this area law. Therefore, we do not have to investigate the total
Hilbert space of dimensions d N , but only a sub domain of the Hilbert space. For large N , this sub domain is
much smaller than the total Hilbert space. Matrix Product states provides a representation in which we can
naturally restrict ourselves to only the quantum states that fall within this area law.

3.2. The Schmidt Decomposition
An efficient method to calculate the entanglement of a quantum state |ψ〉 with equation (3.2) is to perform a
Schmidt decomposition. This decomposition is also used to transform equation (3.1) into the form of Matrix
Product States. To describe the Schmidt decomposition, we start with a bipartite system for which the wave
function can be written as

|ψ〉AB =∑
i j

Ci j |i 〉A | j 〉B , (3.3)

where |i 〉A and | j 〉B are orthonormal basis sets of system A and B respectively. Now the technique is to trans-
form this bipartite system (3.3) to another basis with a singular value decomposition:

C = (Ci j ) =UΛV † =∑
k
λk |uk × vk |, (3.4)

13
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where the λk are the singular values which are always positive and decreasing. The vectors uk and vk are
orthonormal and are form again a basis for system A and B. The matrix elements of C can now be written as:
Ci j = 〈i |C | j 〉 =∑

k λk〈i |uk〉〈vk | j 〉. If we plug this expression in to (3.3), we obtain

|ψ〉AB =∑
k
λk (

∑
i
〈i |uk〉|i 〉A)(

∑
j
〈vk | j 〉| j 〉B ) =∑

k
λk |uk〉A |v∗

k 〉B . (3.5)

The strength of the Schmidt decomposition is that quantum state |ψ〉AB , which first contained a double sum
over the indices i and j now only contains a single sum. Furthermore, it is possible to calculate the Von
Neumman entropy (3.2) with equation (3.5) [7] directly

S(ρ) =−∑
k
λ2

k log2λ
2
k . (3.6)

Thus the singular values λk ’s are a measure for the entanglement of a bipartite system. Now, the low sin-
gular values of |ψ〉 contain almost no information about the quantum state |ψ〉 and can be ignored without
resulting in a large error. In figure 3.1 we have plotted the singular values of two different bipartite states
|ψ〉AB . The first state is the ground state of the quantum Ising model in a transverse field where the analytic
solution has been discussed at length in chapter 2. The Hamiltonian of the Ising model has only a local char-
acter. Therefore the ground state falls within the area law. From the figure we see that the singular values
of this ground-state decreases exponentially to zero. As stated the vectors corresponding with the low sin-
gular values do not carry any important information and can therefore be ignored. This is the power of the
MPS formalism, in essence we can introduce a cut-off index χ from which on all the singular values can be
ignored. Vidal even proved that for all the quantum states that fall withing the area law, the corresponding
singular values decrease exponential [18].It is important to stretch that this is only true for quantum states
that fall within this area law. To see this we have also plotted the singular values for a random quantum state
in figure 3.1. From the graph it is obvious that even for a large index these singular values still play a crucial
role.

Figure 3.1: Evidence for the exponential decreasing of the singular values for a bipartite quantum state within the area law. Blue dots are
the singular values of the ground state of the Ising model with L = 14 and λ= 1. Red dots are the singular values of a random quantum
state with L = 14 sites.

3.3. Matrix Product States formalism
The MPS formalism is another way of writing down the tensor c in equation (3.1), now as a product of a set
of matrices, in order to reduce the amount of information needed to store the quantum state |ψ〉. A general
matrix product state can be written down as

|ψ〉 = ∑
σ1,...,σN

Aσ1 ...AσN |σ1...σN 〉. (3.7)
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The Aσi ’s are matrices and we have that Aσ1 and AσN are row and column vectors respectively. The matrices
have the size of χi ×χi+1. These numbers are referred to as the bond dimensions. The equations used from
now on are quite complex and the ideas behind the method we use can easily be lost. To make the steps
easier to follow we introduce a schematic representation for the tensor cσ1,...σN and the matrices Aσi . These
are shown in figure 3.2. The schematic representation used here is the same as used by Garnet Chan [2].

(a) Schematic representation for the row matrix
Aσ1 , the matrix Aσi and the column matrix AσN in
order.

(b) Schematic representation for what happens to the tensor cσ1 ,...σN (left), when it is written down in
the MPS formalism (right).

Figure 3.2: A schematic representation of the mathematical objects that are used in Matrix Product States. The amount of back legs refer
to the number of dimensions. The vertical legs of each site represent the physical indices and the horizontal legs represent the bond
indices.

In this diagram the blue circles are the tensors and the black legs represents a single index of the tensor.
The vertical legs have the size of the local basis d and the horizontal legs are the bond dimensions of the
corresponding matrix. In this representation it is also possible to visualize a tensor contraction, this occurs
if two tensors are connected to each other by a black leg and the index we sum over in the contraction is the
index of the leg. In 3.2b the schematic representation of equation (3.7) is visualized.
The Schmidt decomposition can be used to transform a random quantum state |ψ〉 in the form of MPS. The
discussion of the previous section indicates that we start with a singular value decomposition. We are going
to build the MPS form from left to right. To this end we start with the tensor cσ1,...σN and reshape it into a
matrix with dimensions d ×d N−1. On this new matrix we perform a SVD:

cσ1,...σN = cσ1,(σ2,...,σN ) =
∑
a1

Ua1σ1Λa1a1 (V †)a1(σ2,...,σN )

=∑
a1

Aσ1
a1
Λa1a1 (V †)a1(σ2,...,σN ).

The matrix Ua1σ1 was reshaped into a set of d vectors with dimension a1, so to give the correct dimensions for
the MPS formalism at the left boundary site. The index a1 can run from 1 to at most d . Now we can repeat this
process by multiplying the matrix Λ with the row-orthonormal matrix V † and reshaping the resulting tensor
into another matrix on which another SVD can be calculated. The matrix we obtain from that computation
is again reshaped and we get

cσ1,...σN = ∑
a1,a2

Aσ1
a1

Aσ2
a1a2

Λa2a2 (V †)a2(σ3,...,σN ),

with the index a2 running from 1 to at most d 2. Continuing the process in the same way we arrive at the form
of equation (3.7). The bond dimensions χi of the matrices Aσi grow with at worst d ×d , d ×d 2, d ×d 3, ... thus
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the growth of information is still exponential and the MPS form is not really more efficient than (3.1). The
technique to resolve this will be explained shortly. However, we first have to answer another complication
that equation (3.7) gives. The matrices Aσi in the equation are not unique, to view why we insert a matrix B
and its inverse B−1 between sites i and i +1

|ψ〉 = ∑
σ1,...,σN

Aσ1 ...Aσi BB−1 Aσi+1 ...AσN |σ1...σN 〉

= ∑
σ1,...,σN

Aσ1 ...Ãσi Ãσi+1 ...AσN |σ1...σN 〉.

The ambiguity of the MPS formalism can be eliminated by putting the matrices Λi from the singular value
decomposition between the corresponding sites. We therefore putΛiΛ

−1
i between site i and i +1 and rename

the matrix productΛ−1
i Aσi+1 = Γi+1. The resulting quantum state we obtain is

|ψ〉 = ∑
σ1,...,σN

Aσ1Λ1Λ
−1
1 Aσ2 ...ΛN−1Λ

−1
N−1 AσN |σ1...σN 〉

= ∑
σ1,...,σN

Γσ1Λ1Γ
σ2 ...ΛN−1Γ

σN |σ1...σN 〉. (3.8)

The structure of equation (3.8) is known as the Canonical form of Matrix Product States and this representa-
tion is unique [2]. In figure 3.3 the schematic representation of the Canonical form is shown in the notation
introduced before.

Figure 3.3: The schematic representation for the canonical form of the Matrix Product States formalism.

So far, we have not yet reduced the information needed to store a quantum state |ψ〉. It is important to realize
that the matrix dimensions grow from a size 1×d at the left by a multiple of d in size towards the middle of
the chain, after which they decrease towards the right, i.e the sites to the right of the first site are respectively
d ×d 2,d 2 ×d 3... in size.
All we did until this point is just a series of Schmidt decompositions. This can also be seen if we compute
the product of all the matrices to the left of Λi in formula (3.8) and also all the products of the matrices to its
right. Calculating the result gives us directly the Schmidt decomposition of a bipartite system |ψ〉AB . Where
system A contains all the sites until i and with system B containing all the sites from i +1 on-wards.

|ψ〉 =∑
ai

Λai ai |µai 〉A |µai 〉B ; (3.9a)

|µai 〉A = ∑
σ1,...,σi

∑
a1,...,ai−1

Γ
σ1
a1
Λa1a1Γ

σ2
a1a2

...Λai−1ai−1Γ
σi
ai−1ai

|σ1...σi 〉; (3.9b)

|µaB 〉B = ∑
σi+1,...,σN

∑
ai+1,...,aN

Γ
σi+1
ai ai+1

Λai+1ai+1Γ
σi+2
ai+1ai+2

...ΛaN−1aN−1Γ
σN
aN−1

×|σi+1...σN 〉.
(3.9c)

Here Λai ai are the singular values at site i . Now in the previous section we found, that these singular values
have a strong decreasing character and most of these values carry almost no information, if the state falls
in the area law. What we do now to make equation (3.8) more efficient is to keep only the largest χ singular
values and ignore the other values together with the corresponding Schmidt vectors. This reduction to a
constant bond dimension for the matrices is the strength of MPS. It is now possible to work with a random
quantum state |ψ〉, so long it is within the area law. The exponential growth of storing the chain is now gone
and replaced by a polynomial growth of O (d Nχ2).
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3.4. Efficient Computations on Matrix Product States
In chapter 4 the TEBD algorithm will be explained. The TEBD algorithm is a method that uses the MPS form
of equation (3.8). In the previous section we have concluded that it is possible to store a quantum state that
follows the area law in a polynomial size. Now it is desired that all computations that we are going to perform
with the TEBD algorithm are also polynomial in size, otherwise all the hard work we have just done has been
for nothing. Therefore we will first explain how to compute the known operations from quantum mechanics
on a state that is in the Canonical form om MPS in polynomial time.

Two-site operator
For the TEBD program we need to be able to compute the effect of a two-site operator on (3.8). To do this
efficient we use the method described by Pollmann [10]. Let the operator be acting on site i and on site i +1.
To calculate the effect of the operator Oi ,i+1 on the quantum state we first compute all the matrix products to
the left of Γσi and all the matrix products to the right of Γσi+1 . This is the same process as in equation (3.9b)
only now the two middle sites are not included in the calculation

|ψ〉 = ∑
σi ,σi+1

∑
ai−1,ai ,ai+1

Γ
σi
ai−1,ai

Λai ,aiΓ
σi+1
ai ,ai+1

|µai−1〉L |σiσi+1〉|µai+1〉R

= ∑
σi ,σi+1

∑
ai−1,ai+1

Θ
σi ,σi+1
ai−1,ai+1

|µai−1〉L |σiσi+1〉|µai+1〉R .
(3.10)

The tensor Θ contains the information of site i and i + 1. Now we update this information with the oper-
ator Oi ,i+1. The effect of this operator can be calulated efficiently with the help of the unit operator 1 =∑
σ′

i ,σ′
i+1

|σ′
iσ

′
i+1〉〈σ′

iσ
′
i+1|. Inserting this operator in equation (3.10) and letting the operator Oi ,i+1 act on it,

we obtain

Oi ,i+1|ψ〉 = ∑
σi ,σi+1

∑
ai−1,ai+1

∑
σ′

iσ
′
i+1

Θ
σi ,σi+1
ai−1,ai+1

〈σ′
iσ

′
i+1|Oi ,i+1|σiσi+1〉|µai−1〉L |σ′

iσ
′
i+1〉|µai+1〉R

= ∑
ai−1,ai+1

∑
σ′

iσ
′
i+1

Θ̃
σ′

i ,σ′
i+1

ai−1,ai+1
|µai−1〉L |σ′

iσ
′
i+1〉|µai+1〉R ,

(3.11)

as the updated quantum state. The new tensor is Θ̃
σ′

i ,σ′
i+1

ai−1,ai+1
= ∑

σi ,σi+1
Θ
σi ,σi+1
ai−1,ai+1

〈σ′
iσ

′
i+1|Oi ,i+1|σiσi+1〉, this

computation takes a polynomial time of O (d 4χ2), because we have four spin bases σ of dimension d and the
site matrices have a maximum dimension of χ×χ due to the performed truncations. Now we would like to
express the quantum state (3.11) in the canonical form of equation (3.8). This is computationally the most
time demanding step. To achieve the original form we first have to reshape the tensor Θ̃ into a matrix. On this
matrix we compute a SVD and we reshape the matrices of the SVD to the correct shape

Θ̃
σ′

i ,σ′
i+1

ai−1,ai+1
= Θ̃(σ′

i ai−1),(σ′
i+1ai+1) =U

σ′
i

ai−1,a′
i
Λ̃a′

i a′
i
V
σ′

i+1

a′
i ,ai+1

. (3.12)

Now the new index a′
i can be larger than the bond dimension χ so as to keep the information that we need to

store low enough, we also truncate all the Schmidt coefficients after χ. The truncated versions of the matrices
U and V are the new site matrices Γ̃σi and �Γσi+1 and we are back in the form of equation (3.8). The process just
described is also shown in figure 3.4 with the schematic representation defined in the previous section.

Dot product
To calculate the ground state energy in the TEBD algorithm we need to be able to compute a dot product.
There are two methods to calculate a dot product between two quantum states 〈ψ| and |φ〉 when both of
these states are in the canonical form of MPS. The first approach, although quite easy to grasp is incredibly
inefficient. It consist of just calculating all the contractions of the physical legs with each other at the same
time. The reason this method is not efficient is that this computation is similar to writing the states 〈ψ| and
|φ〉 down in the form of equation (3.1) and then computing the tensor product. But the total tensors have a
dimension of d N . So the dot product cannot be calculated in polynomial time. Fortunately, there is a second
algorithm to compute the dot product which does grow with polynomial size. We start by contracting the
matrices of the most left sites with each other over the physical index

Ω0 =
∑
σ1

(Γσ1

a′
1

)∗Γσ1
a1

(Λ′
1)∗Λ1, (3.13)
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Figure 3.4: The schematic representation of a two-site operator acting on a site i and i +1 and what steps need to be taken to efficiently
calculate the effect of the operator.

here the singular values are also taken into account. We will now move through the chains from left to right
with a kind of ’zipping’ method. At each site we compute the tensor product of the site matrices of 〈ψ| and
|φ〉. With this we update the tensorΩi

Ωi+1 =
∑

σi+1,ai+1,a′
i+1

(Ωi )ai+1,a′
i+1

(Γσi

a′
i+1,a′

i+2
)∗Γσ1

ai+1,ai+2
. (3.14)

Before this the singular values should be added to the site matrices as well. Since we have a column matrix at
the most right site this process will converge to a single numberΩN = 〈ψ|φ〉. Computing an update ofΩ takes
O (dχ4) polynomial time and since this calculation is repeated N times we find that the calculation of the dot
product grows with O (dχ4N ). In figure 3.5 we show the two different methods to calculate the dot product.

Figure 3.5: The schematic representation for the two algorithms to calculate the dot product between two quantum states in the canon-
ical form of MPS. Here the ’zipping’ method below is preferred due to its polynomial growth in N .

Hastings
We have just discussed how one can compute the effect of a two-site operator when the quantum state is in
the Canonical form. This operation can sometimes fail in the code. If the calculation is unstable, the function
to approximate the singular value decomposition is unable to converge. Fortunately, there is a technique to
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make the matrices on which we perform the SVD more stable. The technique was first described by Hastings
[5]. The idea is to include in the construction of the tensor Θ in equation (3.10) the singular values of the
site i −1 and the site i +1, thus adding the diagonal matrices Λai−1,ai−1 and Λai+1,ai+1 to equation (3.10). The
rest of the algorithm is completely the same only till in the end where the original canonical form needs to
be restored. Since we added the singular values to the calculation these need to be brought back, this can be
done by multiplying the site matrices with their inverse:

Γ̂
σi
ai−1,ai

= ∑
a′

i−1

(Λai−1,a′
i−1

)−1Γ̃
σi

ai−1,a′
i
; (3.15a)

Γ̂
σi+1
ai ,ai+1

= ∑
a′

i+1

Γ̃
σi+1

ai ,a′
i+1

(Λa′
i+1,ai+1

)−1. (3.15b)

By adding the singular value to equation (3.10) we amplify the most crucial information in the tensor, while
diminishing the inessential information ans as a result the SVD becomes more stable.





4
Time-Evolving Block Decimation

In the previous chapter the idea behind Matrix Product States was explained. It was shown how one can
construct the Canonical form of MPS and that if a quantum state |ψ〉 is in the the regime of the area law,
truncations can be performed on the singular values with minimal loss of information. This all resulted in an
efficient way to represent a quantum state. In this chapter an algorithm is explained which uses this represen-
tation to calculate the ground state energy of a local Hamiltonian. With this algorithm normal time evolution
can also be computed as long as the state falls within the area law. The algorithm is called Time-Evolving
Block Decimation (TEBD) and the reason it is so powerful is that all the computations in this algorithm can
be done in polynomial time. The algorithm and eventual code are based on an iTEBD code developed by
Pollmann [10].

4.1. Time-Evolution
With the TEBD algorithm one can not only compute the time evolution of a quantum state but the low-lying
eiegenstates of the Hamiltonian H as well. To see why this is, we introduce the well-known Schrodinger
equation

iħd|Ψ〉
dt

= Ĥ |Ψ〉. (4.1)

The general solution of the Schrodinger equation is |Ψ(t )〉 = e−iĤ t/ħ|Ψ(t = 0)〉, here the exponent e−iĤ t is a
complex operator (ħ is again set to be one). This solution can also be expressed in the basis of the eigenstates
of the Hamiltonian H . If we then let the time evolution operator act on it, we obtain

e−iĤ t |Ψ(t )〉 =∑
n

e−iĤ t cn |φn〉 =
∑
n

cne−iEn t |φn〉. (4.2)

Generally the eigenstates of a system are unknown and this form does not give us anything new. However, if
the time evolution is not done in real time but in imaginary time, i.e. t →−iτ expression (4.2) can be used to
compute the ground state. To do this we take the limit with respect to τ of equation (4.2)

lim
τ→∞ |Ψ(τ)〉 = lim

τ→∞
∑
n

cne−Enτ|φn〉. (4.3)

Now we assume that the Hamiltonian is gapped, i.e. E0 < Ei for all i ∈ N. In that case the limit of (4.3)
decreases exponentially faster for all the excited energies compared to the ground energy and as a result

lim
τ→∞ |Ψ(τ)〉∝ |φ0〉. (4.4)

If the ground state is degenerate than the limit is a superposition of these degenerate states. With this method
it is also possible to find the other excited states. If the quantum state |Ψ(0)〉 has no overlap with the ground
state, then limit (4.3) will converge to the first excited state and not to the ground state. With this method all
the eigenstates can be found, if one is able compute the effect of the time evolution operator.
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Ground-Energy
Equation (4.3) can also be used to calculate the ground state energy. Suppose that we have taken already a
large time step τ and that we have found a quantum state |φ〉 which is proportional with the ground state.

Now we let the operator e−Ĥδ work on it one more time, this gives |ψn+1〉 = e−Ĥδ|ψn〉 = e−E0δ|ψn〉. Now we
compute the inner-product of these two states with them self. The ratio of these dot products is a measure
for the ground state energy

Eg r ound =
ln 〈ψn+1|ψn+1〉

〈ψn |ψn〉
2δ

. (4.5)

The energy of the excited states can be found in a similar manner as long as the quantum state is proportional
to the excited state and the state falls within the area law.

4.2. Block Decimation
If one wants to perform real or imaginary time evolution, one needs to be able to compute the effect of the

operator e−iĤ t on the quantum state |φ〉. In the current form the operator e−iĤ t grows exponentially with
the system size d N , so it is generally not possible to calculate the numerical result of (4.2). With the TEBD
algorithm we decompose this complex tensor into different sub blocks, the effect of these sub blocks can
be computed individually. Putting these effects in a sequence we recreate the total time evolution. To be
able to conveniently describe the process of decomposing the Hamiltonian we are going to assume all the
Hamiltonians we are going to work with have the following form

H =
N∑

i=1
O[i ] +

N−1∑
i=1

O[i ,i+1]. (4.6)

That is to say, the Hamiltonian only consist of operators which either act on an individual site or on two sites
right next to each other. Note that such Hamiltonians have the local character that is needed for the MPS

formalism to work. To decompose the operator e−iĤ t into different blocks, the summation in the exponent
needs to be replaced with a product op exponents. Theorem 2.1 shows that this can be done without error
if the operators in the exponent commute with each other. The idea is now to decompose Hamiltonian (4.6)
into a group of sub Hamiltonians, such that each sub Hamiltonian only consists of operators that commute
with all the other operators that are in the same group. With theorem 2.1 we are able to decompose the sub
Hamiltonian in a series of exponential operators without creating any errors.
Theorem 2.1 says nothing about operators that do not commute with each other. Still, there are operators
in Hamiltonian (4.6) that do not commute with each other. Now there exists still a method to decompose
the sum in the exponent to a product of exponents if the operators do not commute, this process does in-

troduce a error in the computation. The exponent e−iĤ t can be divided into blocks with the Trotter-Suzuki
decomposition [13]

e t (A+B) = e t Ae tB +O (t 2). (4.7)

Since the error the Trotter-Suzuki decomposition introduces is quadratic in time, it is recommend to make
the size of the time steps as small as possible. On the other hand if the time step is too small the limit of
equation (4.4) will never converge. These two considerations need to be carefully studied in the code to have
an optimal balance in convergence speed and minimal error.
To further reduce the error equation (4.7) bestows, we make sure that the decomposition has to be carried out
only once. The decomposition we do here is taken from [7]. Hamiltonian (4.6) is split into a set of operators
that work on the even bonds (the bond indices are the same as the site indices ony they run from 1 to N −1)
and into a set of operators that work on the odd bonds. The operators that act on a single site are halved and
incorporated in the bond operators to the left and to the right. This is done to make the operators symmetric.
In the system contains an odd amount of spin particles the decomposition is

H = Hodd +Heven (4.8a)

Hodd =O[1] +O[N ] + 1

2

N∑
i=1

O[i ] +
N∑

odd i
O[i ,i+1] (4.8b)

Heven = 1

2

N∑
i=1

O[i ] +
N∑

even i
O[i ,i+1]. (4.8c)
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If N is even the term O[N ] moves from (4.8b) to (4.8c). With these two sub Hamiltonian we only need to
perform the Trotter-Suzuki decomposition (4.7) once. The single-site and two-site operators that act on the
same sites are brought together into one larger operator, i.e. 1

2 (O[i ] +O[i+1])+O[i ,i+1] = Õ[i ]. Observe that we

have that [Õ[i ],Õ[ j ]] = 0 if there is another bond between i and j . Thus all the operators in the Hamiltonian
Heven commute with each other and can be computed independently without yielding an extra error. The
same can be done for all the operators that act on a odd bonds. The decomposition we have just described is
also shown visually in figure 4.1, where the schematic representation as introduced before is used. In chapter

Figure 4.1: The schematic representation of the decomposition of Hamiltonian (4.6) in the TEBD algorithm.

3 we explained how to efficiently compute the effect of the two-site operators Õ[i ]. So, we are now able to
implement almost able to implement the TEBD algorithm into a functional code.
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4.3. Bond Dimensions
In this chapter we explain the idea behind TEBD algorithm. In the literature an easy implementation of this
algorithm is often used. This implementation is called iTEBD (i for infinite) and can be used if boundary
of the system can be ignored. Although both algorithms employ the same idea of MPS, time-evolution and
block decimation there is a difference between the two algorithms and non-surprisingly it has to do with the
boundary. Here we will explain how to implement the normal TEBD algorithm.
In chapter 3 we showed how to obtain the Canonical form (3.8) of a quantum state |φ〉. There it was demon-
strated that the dimensions of the bond indices grow from left to right with a multiplication of d each time.
The same process is happening from right to left and the real bond size is the minimum of the two, all in all
the bond dimensions grow like this

1×d ,d ×d 2,d 2 ×d 3, ...,d i−1 ×d i ,d i ×d i−1, ...,d 2 ×d ,d ×1. (4.9)

Now, since it is possible to truncate many of the singular values, we found that we only had to keep the χ

Schmidt vectors corresponding to the the largest SVD eigenvalues. However, clearly this result is not correct
at the boundary sites, since in most cases χ is larger than d or even higher powers of d . Fortunately, this only
means that at the boundaries we do not need to throw away any information and the information at the sites
is only more accurate. The matrix dimensions have to be in the form that the product of the matrices results
in a single number. In the algorithm we start with a random quantum state that falls within the area law and
is saved in the Canonical form of MPS. The matrices of the sites that are in the middle of the chain are already
truncated, to that end we have figure ?? where the dimensions of each leg are written down in the schematic
notation introduced before. Here the minimum of χ and the local bond dimension have been taken.

Figure 4.2: A quantum state |φ〉 in the Canonical form of MPS. The black legs represent the indices of the mathematical object. The
number at each leg is the dimension of that index.



5
Numerical results of the TEBD algorithm

and Error Analysis

In the previous chapter it was explained how one can implement the TEBD algorithm. It was found that
the ground state energy of a Hamiltonian in the form of equation (4.6) can be computed using the TEBD
algorithm. The algorithm was implemented in Python for the imaginary time evolution. In order to confirm
that the ground state energy found by the python code is indeed correct the results are compared with the
exact solution of the Ising model in a transverse field which were determined in chapter 2.

5.1. Ground State Energy
First we will verify that the ground state energy of both systems are the same. Since the TEBD code only
works for open boundary conditions we will use the solutions of Hamiltonian (2.1) with the same boundary
conditions. For the exact solution we have to find N distinct roots of equation (2.25). Sometimes python was
unable to find N distinct roots due to its numerical precision, therefore only the values are shown for which
the solution was found. The exact solution is plotted together with the solution of the TEBD algorithm in
figure 5.1a as a function of the total number of sites. Furthermore the same results are also plotted in 5.1b,
but now as energy per site. From figure 5.1 we can confirm that both solutions are in excellent agreement

(a) (b)

Figure 5.1: Plot of the ground state energy computed with the TEBD code as a function of the chain length. The exact solutions for OBC
are also plotted in the same graph. Here Γ = 1.0 and J = 0.5. The size of the time step is δ = 0.05 and we have a maximum bond size of
χ= 5.

with each other. To further research how accurate the TEBD algorithm is we compute the ground state energy
after every time step and plot this against the time. From equation (4.3) we expect that the code converges
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exponential to the ground state limit. The graph of this convergence can be seen in 5.2a. From the plot it
can be deduced that the TEBD code can compute an estimate of the ground state energy fairly quickly. To
obtain a better understanding of how fast the code converges to the ground state energy we made a log-
plot of the absolute error in the energy as a function of time. In figure 5.2b the graph of this result can be
seen. From the graph we observe that the code converges exponentially to the ground state energy just as
is expected. However, at t = 13000 something strange is happening we would expect that the successive
approximation of the energy keeps on converging to the exact limit. What happens is that the decomposition
of the Hamiltonian introduces a small absolute error to which the plot converges. The computed ground
state energy is eventually a little lower than the exact result. However at the start the random quantum state
is a sum of all the different excited states. Therefore the computed energy at the start of the time evolution
will always be higher than the ground state energy. Since the successive energy approximation converges to
a limit lower than the exact result we have that the graphs of the energies have to cross. The spike in figure
5.2b is the product of this crossing. Notice that quickly after the crossing the energy becomes constant in
time showing that the solution has converged. Figures 5.2 are further proof that the TEBD code does not only
produce correct results, the predictions of the TEBD algorithm on convergence are correct as well.

(a) The ground state energy is plotted with the blue dots, the red line is the exact
solution of the problem, here δ= 0.1.

(b) A log plot of the absolute error as a function of time, here δ= 0.001.

Figure 5.2: Plots of the successive approximation of the ground state energy versus the time t . The code was run for a chain with L = 14.
Here Γ= 1.0 and J = 0.5 and we have a maximum bond size of χ= 5
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We will now present the results of the TEBD algorithm for long chains. In this case we expect that the
energy per site will converge to the known limit of the energy per site of Hamiltonian (2.1) with periodic
boundary conditions. The reason periodic boundary conditions are considered is that for large N the bound-
ary effects can be neglected. In 5.3a the energy per site, computed by the TEBD code is plotted versus the
chain length N . The PBC solution is also plotted with equation (2.24). Clearly, for small chains the energies
do not coincide, since at this time we are ignoring boundary terms that still have a large influence. However,
for larger N the energy per site converges to the correct limit. To see how accurate these results are we have
also plotted the absolute error in figure 5.3b as a function of N in a log-log plot. Here we can see that for
the relative high N values up to N = 300 the error in the energy per site decreases as O ( 1

N )., while for larger
chains the convergence suddenly increaes after which it stops. In order to obtain the results for large N a few
optimizations had to be done, as the numbers would become so huge that the SVD could not converge or the
norm of the quantum state would become infinite. At this moment the code is optimized to work for values
up to N = 1600. We can conclude that the code is working for considerable large N .

(a) Energy per site for both the TEBD code and
the solution of the periodic boundary condition.

(b) Difference of the energy per site of the TEBD code and the peri-
odic boundary condition.

Figure 5.3: Plot of the ground state energy from the TEBD code versus the number of sites N . Here Γ= 1.0 and J = 0.5. The parameters
of the code are δ= 0.1 and we have a maximum bond size of χ= 5.

5.2. Error Analysis
To obtain the an efficient TEBD code a few assumptions and truncations have been made in the algorithm.
In this section we will investigate what the errors are of these simplifications on the ground state energy.

Truncation
In chapter 3 the idea of Matrix Product States was explained, there we saw that the reason MPS is so successful
is that it is possible to truncate a lot of useless information if a quantum state falls within the area law. In
figure 3.1 we already saw that the singular values belonging to a bond in the middle of the chain, decreases
exponential for the Ising model just as was proven by Vidal [18]. To gain further insight on what the resulting
error is from this truncation on the obtained ground state we show figure 5.4. Here the relative error of the
TEBD code is plotted as a function of the maximum bond sizes χ. In the graph we can not see any relation
between the two quantities. One would expect that the relative error decreases if more singular values are
taken into account. However, it turns that the singular values decrease so fast that for small N that it is already
sufficient to only keep the two Schmidt vectors corresponding with the two largest singular values. This result
is advantageous to us, not only are we fully inside the region of states where the area law holds, we can even
choose the bond size as low as 2. In chapter 3 we found that the computation of the two-site operator has a
polynomial growth of O (dχ4), thus being able to use such a low bond size is extremely useful.
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Figure 5.4: Relative error of the ground state energy computed with different maximum bond sizes χ for a of chain length N = 14. Here
Γ= 1.0 and J = 0.5 and δ= 0.01.

Decomposition
In order to compute the effect of the operator e−H t on a quantum state |ψ〉, we had to decompose the Hamil-
tonian into different blocks. If the operators that we separated into blocks commuted with each other this
did not pose any problems. However, if they did not commute we had to perform a Trotter-Suzuki decompo-
sition (4.7). This resulted into an extra error which grew with O (δ2), where δ is the size of a single time step.
In figure 5.5a this time step is plotted versus the absolute error of the TEBD code on a log-log plot. The green
line drawn in the graph is the function y = cx2, which presents the error of the Trotter-Suzuki decomposition.
The constant c is the value of the absolute error at δ = 1. Since all the blue points are close to the green line
we can conclude that the TEBD code has the same quadratic relation in its error of the time step, i.e O (δ2).
One does need to keep in mind that even tough, a twice as small τ results in error reduction of 1/4, that it
will take substantial more time for the code to converge. The code will reach its limit, but the total time steps
taken have to be increased. To show this effect figure 5.5b has been created. There the absolute error of the
successive approximation of the ground state energy has been plotted for various δ’s. We find that the total
time the TEBD code needs to convergence depend on the size of the time step with O 1

δ . This is also what we
expect from the theory on TEBD with equation (4.3).
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(a) The blue dots are a log-log plot of the absolute error versus the size of the time step δ as computed with the TEBD code. The green
line is the function y = cx2.

(b) A graph on the convergence speed of the TEBD code for various time step sizes, the total amount of time steps axis is log-scaled.

Figure 5.5: Graphs on the error dependence of the time step δ and the corresponding amount of time steps taken before the solution
converges to the ground state energy. Here Γ= 1.0 and J = 0.5 ,the chain has length L = 14 and we have a maximum bond size of χ= 5.





6
Conclusion and Suggestions for Further

Research

The excellent agreement of the numerical results with the exact solution combined with the manageable
computation times proves that the TEBD algorithm is an ideal method to compute the ground state energy
of Hamiltonians with a local character. We have seen that for small or large spin systems the TEBD code con-
verges exponentially to its result. Furthermore the resulting error decreases quadratically with the size of the
time step. Thus any precision can be achieved, albeit at the expense of longer run times. We have also seen
that the maximum bond size has little or negligible influence on the error of the TEBD code and as a result
for the Ising model this bond size could be chosen as low as χ= 2. We can conclude that the theory of Matrix
Product States can be implemented in the TEBD algorithm resulting in an efficient code for computing the
ground state energy.

Now that we have validated that the algorithm returns accurate results, we can use it to solve more diffi-
cult problems of which the exact solution of the Hamiltonian is unknown. Sadly, due to time constrains we
were not able to further develop the algorithm. Here we will present a few interesting upgrades that can be
done on the algorithm to increase the class of systems it is able to solve. One of these upgrades is to create a
function that calculates the addition or subtraction of two quantum states in the Matrix Product States form.
This function can be used to compute the excited states and energies. Another powerful upgrade that can be
implemented is to include real time evolution in the algorithm, with which it is possible to compute the wave
function for all times, if the quantum state falls within the area law.

To broaden the class of Hamiltonians that the TEBD algorithm is able to solve a swap operator can be de-
fined as in [7]. Hamiltonians consisting of two-site operators that are not acting on nearest neighbours sites
can be computed with the use of this swap operator. If implemented this swap operator could be able to solve
Hamiltonians which have periodic boundary conditions. Furthermore, it is possible to implement a function
that computes the effect of an operator that acts on three of four sites at once this would take a considerable
longer run time, but it can help solve more difficult systems. For all of these implementations the non-locality
of the problem is enlarged and as a result the maximum bond dimension should be increased. Finally, with
relative few changes the code could be used for higher spin values, as the only parameter in the code that
changes is d , the size of the local basis.

The Ising model in a transverse field could also be further explored to see what happens with the correla-
tion functions for different chain lengths. This can be done both analyticly and numerically with the TEBD
code. The Ising model was also a good candidate to confirm the results of the TEBD algorithm. Not only did
it fit the conditions necessary for the Matrix Product States representation to be applicable, the ability to cal-
culate exact results were useful for checking the accuracy of the code. The process described to analytically
solve the Hamiltonian can be copied for similar systems. In the end we can conclude that with Matrix Product
States and the Time-Evolving Block Decimation algorithm we can numerically solve low-entangled systems
in one dimension within a reasonable run time.
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The Python code

1 """
2 File for the TEBD algorithm for the Bachelor thesis project of Pim Vree ,
3 MPS with boundary conditions and the Hamiltonian of the Ising Model.
4 """
5

6 import matplotlib.pyplot as plt
7 import numpy as np
8 import scipy.special as sc
9 import copy

10 import math
11 from scipy import optimize
12 """
13 Functions for calculating the analytics solutions of the Ground state energies , depending on the Boundary conditions
14 """
15 def Ground_Energy_Pfeuty(g,Lambda ,N):
16 """ The ground energy of the Ising model with periodic boundary conditons , works only for large N"""
17 theta = np.sqrt (4* Lambda /(1+ Lambda )**2) # Lambda = J/(2*g) as defined in Pfeuty
18 return -g*2/np.pi * (1+ Lambda )*sc.ellipe(theta) # This function seems to be incorrect
19

20 def Ground_energy_Pim(Gamma ,J,N):
21 """ The ground energy of the Ising model with periodic condtiotns , calculated by Pim Vree for small N the result is not completely correct due to PBC and the neglection of a term in the Jordan -Wigner transformation """
22 m = np.linspace(-(N-1)/2 , (N-1)/2,N)
23 Lambda = J/(2*g)
24 k = 2*np.pi *m /N
25 res = np.sum(np.sqrt (1+ Lambda **2 + 2* Lambda*np.cos(k))) # Lambda = J/(2*g) as defined in Pfeuty
26 return -Gamma * res/2
27

28 def Ground_energy_OBC(g,Lambda ,N):
29 """ Returns the ground state energy for the Ising model with open boundary conditions , the

difficult part is that we have to find N distinct roots of the function ff and for large N this cannot not be done with the current numerical precision """
30 def ff(k): # Note this function is only valid when Lambda <= 1 !!!
31 return np.sin(k*(N+1))/ np.sin(k*N) + Lambda
32 sol = optimize.root(ff,np.arange (0.001 ,np.pi ,0.05) , tol = 10** -16).x # Find all roots
33 diff = []
34 test = []
35 sol2 = np.round(sol ,12)
36 for k in range(len(sol )):
37 if sol[k]<np.pi and sol[k]>0: # keep only the distinct roots
38 if sol2[k] not in diff:
39 diff.append(sol2[k])
40 test.append(sol[k])
41 diff.sort()
42 if len(diff) == N: # if a different number of distinct roots is found the solution is not correct!

33
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43 Lambda2 = 1+ Lambda **2 + 2* Lambda*np.cos(test)
44 res = sum(np.sqrt(Lambda2 ))
45 return -g*res/2
46 print(’Function failed ’)
47

48 def Hamiltonian_Ising_model(g,J):
49 """
50 Here the Hamitlonian we use is constructed , note that we have three different forms for a two site Hamiltonian , due to the OBC.
51 After this an array is filled with the e^H form per two site operator used for in the time evolution.
52 """
53 H = np.array([[-g/2,0,0,-J/4],[0,0,-J/4,0],[0,-J/4,0,0],[-J/4,0,0,g/2]])

# Hamiltonian for a bond that is located in the middle
54 H_left = np.array ([[ -3*g/4,0,0,-J/4],[0,-g/4,-J/4,0],[0,-J/4,g/4,0],[-J/4,0,0,3*g/4]])

# Hamiltonian for the most left bond
55 H_right = np.array ([[ -3*g/4,0,0,-J/4],[0,g/4,-J/4,0],[0,-J/4,-g/4,0],[-J/4,0,0,3*g/4]]) # Hamiltonian for the most right bond
56 return H,H_left ,H_right
57

58 def two_site_Hamiltonian(H,delta ):
59 """ Returns the two site operator version of Hamiltonian e^{-H*delta}, as (2,2,2,2)"""
60 w,v = np.linalg.eig(H)
61 return np.reshape(np.dot(np.dot(v,np.diag(np.exp(-delta*(w)))),np.transpose(v)),(2,2,2,2))
62

63 def Initializing_State(L,chi ,d):
64 """ For the OBC , the maxium bond size is smaller than chi at the boundaries and here we compute what the maximum bond size can be for every site """
65 arr = np.arange(0,L+1)
66 arr = np.minimum(arr , L-arr)
67 arr = np.minimum(arr ,chi) # For large L, d**arr returns negative values , this line prohibits this effect
68 loc_size = np.minimum(d**arr , chi)
69 """
70 Here a random state Phi is constructed which is in the canoncial form from the bachelor thesis. Only the information up to loc_size is created.
71 """
72 lambdas = np.zeros((L+1,chi))
73 gammas = np.zeros((L,chi ,chi ,d))
74 for j in np.arange(0,L):
75 lef_size = loc_size[j]
76 rig_size = loc_size[j+1]
77 lambdas[j,: lef_size] = np.random.rand(lef_size)

# last lambda is neglected
78 gammas[j,:lef_size ,:rig_size ,:d] = np.random.rand(lef_size , rig_size ,d)
79 lef_size = loc_size[L]
80 lambdas[L,: lef_size] = np.random.rand(lef_size)

# last lambda is neglected
81 lambdas [0,0] = 1
82 lambdas[L,0] = 1
83 return lambdas ,gammas ,loc_size
84

85 def calc_norm(gammas , lambdas , L):
86 """ function for calculating the norm of a state Phi with the ’zipping ’ method described in the thesis."""
87 m_total = np.eye(chi)
88 for j in range(0, L):
89 sub_tensor = np.tensordot(gammas[j,:,:,:],np.diag(lambdas[j+1,:]), axes =(1 ,0))
90 mp = np.tensordot(sub_tensor ,sub_tensor ,axes = (1,1))
91 m_total = np.tensordot(m_total ,mp,axes =([0 ,1] ,[0 ,2]))
92 if math.isnan(m_total [0 ,0]):

# For large N value can be too large
93 lambdas [1:L] = lambdas [1:L]/1.5

# These lines make sure that the function returns a value
94 m_total [0,0] = calc_norm(gammas ,lambdas ,L)
95 return m_total [0,0]

# Only the first element is non -zero
96
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97 def dotproduct(gammas1 ,lambdas1 ,gammas2 ,lambdas2 ,L):
98 """ This function can be used to calculate the dotproduct between two states , currently only works for real values """
99 m_total = np.eye(chi)

100 for j in range(0,L):
101 sub_tensor1 = np.tensordot(gammas1[j,:,:,:],np.diag(lambdas1[j+1,:]), axes =(1 ,0))
102 sub_tensor2 = np.tensordot(gammas2[j,:,:,:],np.diag(lambdas2[j+1,:]), axes =(1 ,0))
103 mp = np.tensordot(sub_tensor1 ,sub_tensor2 ,axes = (1,1))
104 m_total = np.tensordot(m_total ,mp,axes =([0 ,1] ,[0 ,2]))
105 return m_total [0,0]

# Only the first element is non -zero
106

107 def Two_site_Operator(i,gammas ,lambdas ,T,O_arr ,L,d,chi ,loc_size ):
108 """ The result of a two -site operator is computed with the process explained in the Bachelor thesis. Then a SVD is computed wherafter a truncation process is done and the objects are reshaped in the input form """
109 theta = np.tensordot(np.diag(lambdas[i,:]), gammas[i,:,:,:], axes =(1 ,0))
110 theta = np.tensordot(theta ,np.diag(lambdas[i+1,:]),axes =(1 ,0))
111 theta = np.tensordot(theta , gammas[i+1,:,:,:],axes =(2 ,0))
112 theta = np.tensordot(theta ,np.diag(lambdas[i+2,:]), axes =(2 ,0))
113 theta_prime = np.tensordot(theta ,O_arr[i,:,:,:,:],axes =([1 ,2] ,[0 ,1]))

# Two -site operator
114 theta_prime = np.reshape(np.transpose(theta_prime , (2,0,3,1)),(d*chi ,d*chi)) # danger!
115 #Singular value decomposition
116 X, Y, Z = np.linalg.svd(theta_prime ); Z = Z.T
117 #truncation
118 lambdas[i+1,:] = Y[:chi]
119 X = np.reshape(X[:d*chi ,:chi], (d, chi ,chi)) # danger!
120 tmp_gamma = np.tensordot(np.diag(lambdas[i,: loc_size[i]]**( -1)) ,X[:,: loc_size[i],:loc_size[i+1]], axes =(1 ,1))
121 gammas[i,: loc_size[i],:loc_size[i+1],:] = np.transpose(tmp_gamma ,(0,2,1))
122 Z = np.reshape(Z[0:d*chi ,:chi],(d,chi ,chi))
123 Z = np.transpose(Z,(0 ,2 ,1))
124 tmp_gamma = np.tensordot(Z[:,: loc_size[i+1],: loc_size[i+2]], np.diag(lambdas[i+2,: loc_size[i+2]]**( -1)) , axes =(2 ,0))
125 gammas[i+1,: loc_size[i+1],: loc_size[i+2] ,:] = np.transpose(tmp_gamma ,(1, 2, 0))
126 return gammas ,lambdas
127

128 def Time_evolution(gammas ,lambdas ,T,O_arr ,L,d,chi ,loc_size ,delta):
129 """ The Odd -Even time evoltuon is done here , after each time step the Ground state energy is computed and printed """
130 time = []; Ground_Energy = []
131 for t in range(T):
132 for i in range(1,L-1,2): # Odd bonds
133 gammas , lambdas = Two_site_Operator(i,gammas ,lambdas ,T,O_arr ,L,d,chi ,loc_size)
134 for i in range(0,L-1,2): # Even bonds
135 gammas , lambdas = Two_site_Operator(i,gammas ,lambdas ,T,O_arr ,L,d,chi ,loc_size)
136 norm = calc_norm(gammas , lambdas , L)
137 time.append(t)
138 Ground_Energy.append(-np.log(norm )/(2* delta ))
139 lambdas [1:,:] = lambdas [1: ,:]/ norm **(0.5/(L)) # Normalizing for stability and energy calculation
140 if math.isnan(Ground_Energy [ -1]): # Break before the code crashes
141 return time ,Ground_Energy
142 print(t,Ground_Energy [-1])
143 return np.array(time),np.array(Ground_Energy)
144

145 """
146 The different values for the parameters and variabels are created here
147 """
148 d = 2 # Dimension of the spins
149 chi = 5 # bond dimension
150 L = 14 # length of the Chain
151 J = 0.5 # coupling contant of the Nearest_Neigbour
152 g = 1.0 # The strength of the magnetic field
153 delta = 0.05 # The time step of the time_evolution
154 T = 200 # The total time
155
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156

157 def Converging_Plot(g,J,L,chi ,delta ,T):
158 H,H_left ,H_right = Hamiltonian_Ising_model(g,J)
159 O_arr = np.zeros((L-1,d,d,d,d))
160 for i in range(1,L-2):
161 O_arr[i,:,:,:,:] = two_site_Hamiltonian(H,delta)
162 O_arr [0,:,:,:,:] = two_site_Hamiltonian(H_left ,delta)
163 O_arr[L-2,:,:,:,:] = two_site_Hamiltonian(H_right ,delta)
164

165 lambdas ,gammas ,loc_size = Initializing_State(L,chi ,d)
166 time ,Ground_Energy = Time_evolution(gammas ,lambdas ,T,O_arr ,L,d,chi ,loc_size ,delta)
167

168 plt.semilogx(time [2:], Ground_Energy [2:])
169 plt.hlines(Ground_energy_OBC(g,J/(2*g),L),0,T)
170 plt.xlabel(’Time step t’)
171 plt.ylabel(’Energy ’)
172 plt.show()
173

174

175 Converging_Plot(g,J,L,chi ,delta ,T)
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