
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2021-4373715

M.Sc. Thesis

Population Step Forward Encoding
Algorithm

L. de Gelder

Abstract

Conversion from digital information to spike trains is needed for
Spiking Neural Networks. Moreover, it is one of the most important
steps for Spiking Neural Networks. This conversion could lead to
much information loss depending on which encoding algorithm is
used. Another major problem that can occur in a specific use-case
is the limited bandwidth for the spikes that get generated through
the encoding algorithm.

In this thesis, we propose population Step Forward Encoding
algorithm. This algorithm takes the signal encoding accuracy of
Step Forward encoding algorithm and makes it into a population,
generating multiple spike trains. This allows a higher threshold to
encode a large part of the signal, increasing the efficiency. We show
that population Step Forward Encoding algorithm doesn’t just work
good for the signal encoding accuracy, but also for the classification
accuracy. Moreover, population Step Forward Encoding algorithm
does not only have a high efficiency with a low spike count, it can also
achieve higher efficiency with higher spike count. Thus, population
Step Forward can make most use of a limited bandwidth of spikes.





Population Step Forward Encoding Algorithm
Improving the signal encoding accuracy and efficiency of spike

encoding algorithms

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

L. de Gelder
born in Katwijk, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2021 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Population Step Forward Encoding Algorithm” by L. de Gelder in
partial fulfillment of the requirements for the degree of Master of Science.

Dated: 8th February 2021

Chairman:
prof.dr.ir. René van Leuken

Committee Members:
prof.dr.ir. Sorin Cotofana

dr.ir. Sumeet Kumar

dr. Amir Zjajo



iv



Abstract

Conversion from digital information to spike trains is needed for Spiking Neural
Networks. Moreover, it is one of the most important steps for Spiking Neural Networks.
This conversion could lead to much information loss depending on which encoding
algorithm is used. Another major problem that can occur in a specific use-case is the
limited bandwidth for the spikes that get generated through the encoding algorithm.

In this thesis, we propose population Step Forward Encoding algorithm. This
algorithm takes the signal encoding accuracy of Step Forward encoding algorithm and
makes it into a population, generating multiple spike trains. This allows a higher
threshold to encode a large part of the signal, increasing the efficiency. We show that
population Step Forward Encoding algorithm doesn’t just work good for the signal
encoding accuracy, but also for the classification accuracy. Moreover, population Step
Forward Encoding algorithm does not only have a high efficiency with a low spike
count, it can also achieve higher efficiency with higher spike count. Thus, population
Step Forward can make most use of a limited bandwidth of spikes.

v



vi



Acknowledgments

I would like to thank my supervisors, Amir, René and Sumeet, for their comments and
constructive criticism.

I would also like to thank my colleagues at Innatera for their support and advice.

I would further like to thank my fellow Master students for their presence and
their help before and during the pandemic.

Thanks to my family and fiends, who provided me with relief, I was able to
persevere in this challenging time.

Thank you, God! For giving me the opportunity of the life that has brought
me to this point.

L. de Gelder
Delft, The Netherlands
8th February 2021

vii



viii



Contents

Abstract v

Acknowledgments vii

Contents ix

Acronyms xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and related work 3
2.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Encoding algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Rate encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Temporal encoding . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Population encoding . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methods 13
3.1 population Step Forward Encoding algorithm . . . . . . . . . . . . . . 13
3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Signal encoding accuracy . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Encoding efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Classification potential . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Encoding algorithm optimization . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Configuration sweeping . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Code analysis 23
4.1 Pseudo-codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



5 Datasets 35
5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Audio normalization . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Bank of bandwidth filters . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 Spike train normalization . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Results and evaluation 43
6.1 Signal encoding accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Encoding efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Classification potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Classification accuracy . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Noise resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion 71
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A MATLAB code 73
A.1 Ben’s Spiker Encoding algorithm . . . . . . . . . . . . . . . . . . . . . 73

A.1.1 BSA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.1.2 BSA causal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Latency Encoding algorithm . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.1 LA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.2 rangeTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Threshold Encoding algorithm . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.1 TA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.2 regularTA encode . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.4 Temporal Contrast Encoding algorithm . . . . . . . . . . . . . . . . . . 81
A.4.1 TCA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.4.2 TCA nobase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.5 Moving Window Encoding algorithm . . . . . . . . . . . . . . . . . . . 85
A.5.1 MWA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.5.2 MWA regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.6 Step Forward Encoding algorithm . . . . . . . . . . . . . . . . . . . . . 89
A.6.1 SFA encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.6.2 regularSFA encode . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 population Threshold Encoding algorithm . . . . . . . . . . . . . . . . 91
A.7.1 populationTA encode . . . . . . . . . . . . . . . . . . . . . . . . 91

A.8 population Step Forward Encoding algorithm . . . . . . . . . . . . . . 92
A.8.1 populationSFA encode . . . . . . . . . . . . . . . . . . . . . . . 92

B Supplementary data 93
B.1 Signal encoding accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Encoding efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



C Classification accuracy additional results 113

D Hardware implementation proposal 117

xi



xii



Acronyms

AER Address-Event-Representation.

AFR Average Fire Rate.

AI Artificial Intelligence.

ANN Artificial Neural Network.

backprop backward propagation of errors.

BSE Ben’s Spiker Encoding algorithm.

FIR Finite Impulse Response.

HSE Hough Spiker Encoding algorithm.

LE Latency Encoding algorithm.

MWE Moving Window Encoding algorithm.

p-SFE population Step Forward Encoding algorithm.

p-TE population Threshold Encoding algorithm.

RMSE Root-Mean-Square Error.

ROE Rank Order Encoding algorithm.

SER Signal-to-Error Ratio.

SFE Step Forward Encoding algorithm.

SNN Spiking Neural Network.

SNR Signal-to-Noise Ratio.

SVM Support Vector Machine.

TBR Threshold-Based Representation.

TCE Temporal Contrast Encoding algorithm.

TE Threshold Encoding algorithm.

xiii



xiv



List of Figures

2.1 Schematic image of a biological neuron. Image taken
from “Neuron: Function and its important types”
(https://simplestudynet.blogspot.com/2018/01/neuron-function-and-
its-important.html) on 2020-11-05. . . . . . . . . . . . . . . . . . . . . 4

2.2 Rate encoding and temporal encoding examples. Image taken from [25]
p.130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 An example for p-SFE, where the input signal is supplied with the
following values; 5, 7 and -2. In addition, p-SFE is configured with
two thresholds; 4 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The signal encoding accuracy metric will be based on the input signal
and the decoded output signal. The efficiency will be based on that signal
accuracy combined with the generated spike train(s). On the other hard,
the Classification Potential is based on the generated spike train(s) alone. 15

3.3 Overview of the classification methodology, where SVM stands for
Support Vector Machine (SVM). This SVM is trained on the spike trains
of the train set. Then the spike trains of the validation set are used to
calculate the classification accuracy of the SVM on the spike trains. . . 18

3.4 Overview of the classification methodology with noise. Here AWGN
stands for ’add white Gaussian noise’. If no noise is added to the train
set, you speak of miss-matched training, which is the worst case scenario.
If noise is also added there, then you speak of multi-condition training. 19

4.1 Ben’s Spiker Encoding algorithm pseudo-code . . . . . . . . . . . . . . 24

4.2 Latency Encoding algorithm pseudo-code . . . . . . . . . . . . . . . . . 25

4.3 Threshold Encoding algorithm pseudo-code . . . . . . . . . . . . . . . . 26

4.4 Temporal Contrast Encoding algorithm pseudo-code . . . . . . . . . . . 27

4.5 Moving Window Encoding algorithm pseudo-code . . . . . . . . . . . . 28

4.6 Step Forward Encoding algorithm pseudo-code . . . . . . . . . . . . . . 29

4.7 population Threshold Encoding algorithm pseudo-code . . . . . . . . . 30

4.8 population Step Forward Encoding algorithm pseudo-code . . . . . . . 31

5.1 The overview of the preprocessing steps to transform the datasets into
new ones: the normalized variant and the filtered variants. . . . . . . . 36

5.2 Example for the five different signals gotten from preprocessing. The
example is taken from a recording of ’Jackson’ saying ’zero’ from the
Free Spoken MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . 38

xv



5.3 The distributions for the Free Spoken MNIST dataset of the maximum
amplitudes and maximum differences from the raw and normalized audio
samples. The absolute maxima of the raw audio samples from the dataset
are 1 and 1.2849 for the amplitude and differences respectively. In the
case of the normalized audio samples do all the audio samples have a
maximum amplitude of 1 and is the absolute maximum of the differences
1.9915. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 The distributions for the Speech Command dataset of the maximum
amplitudes and maximum differences from the raw and normalized audio
samples. The absolute maxima of the raw audio samples from the dataset
are 1 and 2 for the amplitude and differences respectively. In the case of
the normalized audio samples do all the audio samples have a maximum
amplitude of 1 and is the absolute maximum of the differences 2. . . . . 40

5.5 The distributions of the maximum amplitudes and maximum differences
from the lower bandwidth filtered audio samples for both the Free
Spoken MNIST dataset and the Speech Command dataset. The absolute
maxima for the amplitude and differences are for the lower bandwidth
filtered audio of the Free spoken MNIST dataset 0.9244 and 0.1420
respectively, and of the Speech Commands are they 1.1621 and 0.0726
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 The distributions of the maximum amplitudes and maximum differences
from the middle bandwidth filtered audio samples for both the Free
Spoken MNIST dataset and the Speech Command dataset. The absolute
maxima for the amplitude and differences are for the middle bandwidth
filtered audio of the Free spoken MNIST dataset 0.3685 and 0.1026
respectively, and of the Speech Commands are they 0.7688 and 0.0905
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 The distributions of the maximum amplitudes and maximum differences
from the higher bandwidth filtered audio samples for both the Free
Spoken MNIST dataset and the Speech Command dataset. The absolute
maxima for the amplitude and differences are for the higher bandwidth
filtered audio of the Free spoken MNIST dataset 0.7925 and 0.1349
respectively, and of the Speech Commands are they 0.6750 and 0.0854
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 The classification accuracy achieved with an SVM on the validation set
from the FS MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Classification accuracies for different Signal-to-Noise values of p-SFE
with ten thresholds on the spike trains of the three filtered signals
combined. Lighter blue bars are the SNR at which the classification
of only noise outperforms the classification of the signal with noise. . . 68

C.1 The classification accuracy achieved with an SVM on the raw audio of
the validation set from the FS MNIST dataset for the different number
of thresholds of the p-TE and the p-SFE. . . . . . . . . . . . . . . . . . 113

xvi



C.2 The classification accuracy achieved with an SVM on the normalized
audio of the validation set from the FS MNIST dataset for the different
number of thresholds of the p-TE and the p-SFE. . . . . . . . . . . . . 113

C.3 The classification accuracy achieved with an SVM on the low filtered
signal of the validation set from the FS MNIST dataset for the different
number of thresholds of the p-TE and the p-SFE. . . . . . . . . . . . . 114

C.4 The classification accuracy achieved with an SVM on the mid filtered
signal of the validation set from the FS MNIST dataset for the different
number of thresholds of the p-TE and the p-SFE. . . . . . . . . . . . . 114

C.5 The classification accuracy achieved with an SVM on the high filtered
signal of the validation set from the FS MNIST dataset for the different
number of thresholds of the p-TE and the p-SFE. . . . . . . . . . . . . 114

C.6 The classification accuracy achieved with an SVM on the combined spike
trains of the filtered signal of the validation set from the FS MNIST
dataset for the different number of thresholds of the p-TE and the p-SFE.115

D.1 Block diagram schematic of the computation part from the proposed
simplified p-SFE hardware implementation. . . . . . . . . . . . . . . . . 117

D.2 Block diagram schematic of the controller part from the proposed
simplified p-SFE hardware implementation. . . . . . . . . . . . . . . . . 118

D.3 Logical gates to implement the truth-tables for both TT-ctrl and TT-
add, as defined in tables D.1 and D.2 respectively. . . . . . . . . . . . . 120

xvii



xviii



List of Tables

4.1 Overview of the operations used by each encoding algorithm for every
new signal value supplied. . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Frequency for the filters of the filter banks. These Frequencies are given
in both Hz and MEL for the Free Spoken MNIST dataset (FS MNIST)
and the Speech Command dataset (SC). . . . . . . . . . . . . . . . . . 38

6.1 The mean signal encoding accuracy of the results for the encoding
algorithms from the raw audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 The mean signal encoding accuracy of the results for the encoding
algorithms from the normalized audio of the Free Spoken MNIST
dataset. The parentheses behind the population encoding algorithms
show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation. . . . . . . . . . . . . . . . . . 46

6.3 The mean signal encoding accuracy of the results for the encoding
algorithms from the low filtered audio of the Free Spoken MNIST dataset.
The parentheses behind the population encoding algorithms show the
number of thresholds used, while the parenthesis behind the mean values
are the standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 The mean signal encoding accuracy of the results for the encoding
algorithms from the mid filtered audio of the Free Spoken MNIST
dataset. The parentheses behind the population encoding algorithms
show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation. . . . . . . . . . . . . . . . . . 48

6.5 The mean signal encoding accuracy of the results for the encoding
algorithms from the high filtered audio of the Free Spoken MNIST
dataset. The parentheses behind the population encoding algorithms
show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation. . . . . . . . . . . . . . . . . . 49

6.6 The mean signal encoding accuracy of the results for the encoding
algorithms from the raw audio of the Speech Commands dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.7 The mean signal encoding accuracy of the results for the encoding
algorithms from the normalized audio of the Speech Commands dataset.
The parentheses behind the population encoding algorithms show the
number of thresholds used, while the parenthesis behind the mean values
are the standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 51

xix



6.8 The mean signal encoding accuracy of the results for the encoding
algorithms from the low filtered audio of the Speech Commands dataset.
The parentheses behind the population encoding algorithms show the
number of thresholds used, while the parenthesis behind the mean values
are the standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.9 The mean signal encoding accuracy of the results for the encoding
algorithms from the mid filtered audio of the Speech Commands dataset.
The parentheses behind the population encoding algorithms show the
number of thresholds used, while the parenthesis behind the mean values
are the standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.10 The mean signal encoding accuracy of the results for the encoding
algorithms from the high filtered audio of the Speech Commands dataset.
The parentheses behind the population encoding algorithms show the
number of thresholds used, while the parenthesis behind the mean values
are the standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.11 The mean encoding efficiency of the results for the encoding algorithms
from the raw audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.12 The mean encoding efficiency of the results for the encoding algorithms
from the normalized audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.13 The mean encoding efficiency of the results for the encoding algorithms
from the low filtered audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.14 The mean encoding efficiency of the results for the encoding algorithms
from the mid filtered audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.15 The mean encoding efficiency of the results for the encoding algorithms
from the high filtered audio of the Free Spoken MNIST dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.16 The mean encoding efficiency of the results for the encoding algorithms
from the raw audio of the Speech Commands dataset. The parentheses
behind the population encoding algorithms show the number of
thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xx



6.17 The mean encoding efficiency of the results for the encoding algorithms
from the normalized audio of the Speech Commands dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.18 The mean encoding efficiency of the results for the encoding algorithms
from the low filtered audio of the Speech Commands dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.19 The mean encoding efficiency of the results for the encoding algorithms
from the mid filtered audio of the Speech Commands dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.20 The mean encoding efficiency of the results for the encoding algorithms
from the high filtered audio of the Speech Commands dataset. The
parentheses behind the population encoding algorithms show the number
of thresholds used, while the parenthesis behind the mean values are the
standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.21 Lowest SNR values in dB for which the algorithms failed to be more
accurate with the signal with noise data over data from only noise. These
SNR values can be from 30dB to -15dB. In some cases the signal with
noise always achieved better accuracy, then ’-’ is put there. . . . . . . . 69

B.1 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the raw audio of the Free Spoken MNIST
dataset, see table 6.1. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 93

B.2 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the normalized audio of the Free Spoken
MNIST dataset, see table 6.2. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the
parenthesis behind the mean values are the stnadard deviation. . . . . 94

B.3 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the low filtered audio of the Free Spoken
MNIST dataset, see table 6.3. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the
parenthesis behind the mean values are the stnadard deviation. . . . . 95

B.4 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the mid filtered audio of the Free Spoken
MNIST dataset, see table 6.4. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the
parenthesis behind the mean values are the stnadard deviation. . . . . 96

xxi



B.5 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the high filtered audio of the Free Spoken
MNIST dataset, see table 6.5. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the
parenthesis behind the mean values are the stnadard deviation. . . . . 97

B.6 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the raw audio of the Speech Commands
dataset, see table 6.6. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 98

B.7 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the normalized audio of the Speech Commands
dataset, see table 6.7. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 99

B.8 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the low filtered audio of the Speech Commands
dataset, see table 6.8. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 100

B.9 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the mid filtered audio of the Speech Commands
dataset, see table 6.9. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 101

B.10 Supplementary data to the results of signal encoding accuracy for the
encoding algorithms from the high filtered audio of the Speech Commands
dataset, see table 6.10. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 102

B.11 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the raw audio of the Free Spoken MNIST dataset, see
table 6.11. The parentheses behind the population encoding algorithms
show the number of thresholds used, while the parenthesis behind the
mean values are the stnadard deviation. . . . . . . . . . . . . . . . . . 103

B.12 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the normalized audio of the Free Spoken MNIST
dataset, see table 6.12. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 104

B.13 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the low filtered audio of the Free Spoken MNIST
dataset, see table 6.13. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 105

xxii



B.14 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the mid filtered audio of the Free Spoken MNIST
dataset, see table 6.14. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 106

B.15 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the high filtered audio of the Free Spoken MNIST
dataset, see table 6.15. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 107

B.16 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the raw audio of the Speech Commands dataset, see
table 6.16. The parentheses behind the population encoding algorithms
show the number of thresholds used, while the parenthesis behind the
mean values are the stnadard deviation. . . . . . . . . . . . . . . . . . 108

B.17 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the normalized audio of the Speech Commands dataset,
see table 6.17. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 109

B.18 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the low filtered audio of the Speech Commands dataset,
see table 6.18. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 110

B.19 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the mid filtered audio of the Speech Commands dataset,
see table 6.19. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 111

B.20 Supplementary data to the results of encoding efficiency for the encoding
algorithms from the high filtered audio of the Speech Commands dataset,
see table 6.20. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the stnadard deviation. . . . . . . . . . . . 112

D.1 Truth-table for the control from the state, TT-ctrl. This truth-table
should be implemented in the “TT-ctrl sub-component of the controller,
see figure D.2. The bold control bit on the other hand are essential to the
function of the proposed hardware implementation. The italic control
bits don’t have an impact on the function of the implementation and
can be chosen arbitrary, but have been set to these values so as little
logic gates would be needed. Though, they might need to be changed
for adding stability into controller, e.g. a bit flip would not impact the
result of the encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xxiii



D.2 Truth-table for the addition to the state, TT-add. This truth-table
should be implemented in the “TT-add” sub-component of the controller,
see figure D.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xxiv



Introduction 1
Artificial Intelligence (AI) tries to re-create the intelligence of humans and animals, for
instance, detecting and classifying objects of interest. Within the AI-space there are
many methods and algorithms, all with their own advantages and disadvantages. This
makes it for a designer more difficult to find the best fitting method for their task.

Spiking Neural Network (SNN) is one of the methods within the AI name-space,
which try to achieve a highly energy-efficient intelligent behavior. To that end, research
into the source of intelligence, the brain, was done. By mimicking the biological
behavior of a brain we can create a system, which acts intelligent.

1.1 Motivation

In the society of today saving power is of utmost importance. Computing chips are
limited on the power they can use, which is especially prominent in mobile phones and
applications. Moreover, transitioning to more renewable energy sources only gets us so
far, we should also be using as little power as possible. As AI is getting more accessible
and more widely used, making sure it is power efficient is getting more important as
well. SNNs are one of the most power efficient methods of AI, thus is it a very interesting
and rewarding research field.

1.2 Problem definition

As more spatio-temporal signals are used, use SNNs more inputs and bigger networks as
well. Temporal signals can be seen as a variable which changes with time. The spatio-
temporal signals are a multitude of temporal signals, which are related to one another.
With the more input signals, while keep encoding the same amount of information for
each of them, are the number of spikes from encoding algorithm inevitably increased
as well.

With the increasing number of input spikes, bandwidth will become an obstacle.
The encoding algorithm forms a bridge between the digital spatio-temporal signals and
the analog SNN. As the algorithm deals with the digital values, is it (generally) needed
to be a digital system itself. Sending the spikes from the encoder to the SNN is usually
done with the digital communication of Address-Event-Representation (AER). This
digital communication has per definition a limited bandwidth, which should limit the
number of spikes created by the encoding algorithm.

There exists a trade-off between the signal encoding accuracy and the signal
accuracy per spike. Usually, you could say that with a more accurate signal encoding
more information can be used by the SNN allowing the SNN to perform the best.
However, with a bandwidth limit on spikes getting the most signal accuracy per spike

1



would help to make sure that the highest signal accuracy is achieved by the spikes that
will get through. Moreover, having fewer spikes could make sure that less power is
consumed by the SNN. These to cases show that pure signal encoding accuracy might
not be best and a trade-off with the signal accuracy per spike should be made.

1.3 Objectives

In light of this problem, we propose with this thesis a new encoding algorithm,
population population Step Forward Encoding algorithm (p-SFE). This encoding
algorithm take the signal accuracy of Step Forward Encoding algorithm (SFE) and
expands its efficiency, which allows it to increase both the maximum achievable signal
accuracy and signal accuracy per spike. To show the potential of p-SFE it needs to be
compared with other encoding algorithms. The comparison of encoding algorithms
is done on three categories: signal encoding accuracy, efficiency and classification
potential.

1.4 Contributions

• Design/Introduction of new encoding algorithm, p-SFE.

• MATLAB functions for encoding signals with the following algorithms: BSE, LE,
TE, TCE, MWE, SFE, p-TE, p-SFE

• MATLAB scripts to find configurations for the algorithms for both signal encoding
accuracy and efficiency, while BSE and LE will have a Genetic Algorithm search
within the design space and for the other algorithms the design space can be
swept.

• MATLAB scripts to compare encoding algorithms and check their classification
potential.

• Code analysis of the encoding algorithms.

1.5 Thesis overview

Firstly, in chapter 2 we will give a short introduction about SNN and explain the other
encoding algorithms that p-SFE will be compared to. Secondly, in chapter 3 we will
define the metrics and methods used to compare the encoding algorithms and to find
the best configurations of the encoding algorithms for these comparisons. Thirdly, in
chapter 4 we will give a simple analysis of the codes of those encoding algorithms.
Fourthly, in chapter 5 the datasets that are used for the comparison will be given
and analyzed as well as the pre-processing steps will be given. Fifthly, in chapter 6
the results from each encoding algorithm will be given and comparisons will be made.
Lastly, in chapter 7 will show that the comparisons are in favor of p-SFE and give some
open endings for future work.

2



Background and related work 2
In this chapter we will establish the field of research and explore the related research
in encoding algorithms. First we will summarize the research leading up to the Spiking
Neural Networks. Secondly we will skim through all the major subjects regarding
Spiking Neural Networks. Thirdly, we will go into depth with the encoding of spike
trains used by the Spiking Neural Networks.

2.1 Artificial Intelligence

Artificial Intelligence (AI) is getting increasingly more important as it gets increasingly
more used in daily life. One of the most obvious examples are voice recognition
like Alexa and Siri [32] as well as recommendations by YouTube [10]. There are
also examples that are not as easily noticeable, like recommending video’s or post
in YouTube, twitter or other social media’s. These platforms also implement AI to flag
uploads containing content against their policies. If we look at Tesla and other electric
cars, we see that self-driving cars are becoming more and more a reality [2]. This could
even evolve to a point that everyone drives a self-driving car [30]. Not only is AI being
used in our daily life, it is also getting more integrated into it.

To define what AI is, we should first look at what Intelligence is. S. Legg and M.
Hutter have defined it as “Intelligence measures an agent’s ability to achieve goals in
a wide range of environments.” [29]. Building on this definition we can say that AI is
an artificial agent able to achieve a specific goal within a wide range of environments.
This is a very abstract definition. To make it more concrete we can even subdivide the
goal as: classification, regression, clustering, optimization, ranking and generation [9].
From this you can see that the goals can be very diverse. This has as a consequence
that there are many methods for AI [7], each tailored to certain goals.

2.2 Neural Networks

Neural Networks is one of these methods for AI. This method is specifically good at
regression and classification. Neural Networks are based on how brains work. To be
more specific the neurons that are the building blocks of our brains. By simulating these
neurons and connecting them to one another we create a network for a very specific
task, which can perform regression and classification with about the same performance
or even better than humans. Neural Networks can generally achieve their goal faster
than a human can, making it very attractive to replace humans with Neural Networks
where possible.

As Neural Networks try to mimic neurons, we need to know how those neurons
work. To understand the human neurons we started to look at the neurons of other

3



animals, such as squids [17] and frogs [20, 21]. As a result, we found that neurons
are built as shown figure 2.1. These neurons receive signals through their dendrites
from the axon terminals of other neurons. Each pair of axon terminal and dendrite is
called a synapse. The axon terminals release neurotransmitters that can open certain
receptors in the dendrites. These open receptors let specific ions flow into and out of
the neuron, either increasing or decreasing the voltage potential of the neuron. When
the voltage potential of a neuron exceeds a certain threshold it will fire and release
its own neurotransmitters through the synapses of its axon. The interaction of the
synapses can be modeled as an electrical pulse send from one neuron to another.

Figure 2.1: Schematic image of a biological neuron. Image taken from “Neuron: Function
and its important types” (https://simplestudynet.blogspot.com/2018/01/neuron-function-
and-its-important.html) on 2020-11-05.

Through the years we can distinguish three different generations of Neural Networks
[31, 14]. The first generation of neural networks is based on the first artificial neuron
model from Warren S. McCulloch and Walter Pitts [33]. This generation uses a step
function with the threshold: below the threshold 0 as output (no spike) and above
the threshold 1 (spike). The second generation introduces a differentiable activation
function instead of a ’rigid’ step function for the threshold. This allows learning
algorithms that are based on gradient descent, like backward propagation of errors
(backprop) [38]. Another advantage to the non-binary output is that it can be more

4



easily work with analog systems.

2.3 Spiking Neural Networks

The first two generations have a disadvantage, the state of the neurons do not change
with time. As new inputs are presented to a neuron, the output changes. However,
changing the order in which those inputs are presented does not change their respective
outputs (outside of training). This is not efficient with respect to temporal data, where
information is partially stored in time. Changing the order of inputs matters and should
therefore give different outputs of their respective inputs. Thus, the neurons of the first
two generations don’t have a temporal aspect.

Even without a temporal aspect in the neurons, there are networks with a temporal
aspect. These networks create a feedback loop, where outputs of neurons will be added
to the network inputs for the next time an input is supplied, for example recurrent
networks. Such an architecture will ensure that information of past inputs are partially
retained. Changing the order of the inputs, will now result in different outputs. A
temporal aspect can thus be achieved with such network.

Still, the temporal aspect of these networks don’t compare with the temporal aspect
of the third generation [31]. In the third generation the neuron model is made more
inline with the biological neuron. This makes for more complex models, as time is taken
into consideration. These models generate spikes at a certain times, making the times
these spikes occur very important (relative to the other spikes). This time dependency
of the third generation neurons make for a very strong temporal aspect. As the neuron
models themselves already contain a temporal aspect, do networks from these neurons
also contain this temporal aspect. For temporal signal the recurrence within a network
is thus not necessarily needed.

This third generation has been given a special name, Spiking Neural Network (SNN).
The neuron models create series of spikes, also called spike trains, with specific times for
each spike. These spikes are central to the generation, as it is the only way information
is sent and processed. This makes that the spike times relative to the other spikes are
essential to these neural networks. Therefore, Spiking Neural Network is a very fitting
name.

Unfortunately, with the more complex neuron models, the method for backprop
of the second generation does not apply anymore. This is because the error is not
differentiable in the same way. Time needs to be taken into consideration with the
backprop. In which case we get for example SpikeProp [5]. This learning method is
based on solving the same differential, but with different intermediate steps. However,
this method makes some assumptions, like each neuron spikes exactly only once. This
restricts the neuron models it can work with. Thus, there have been many neuron
models proposed [22, 3] and many learning algorithms accompany them [13, 47, 16, 11].

5



2.4 Encoding algorithms

As stated in the introduction, encoding and decoding is needed to convert the digital
data we normally work with to the trains of spikes the neurons can use. Just like
the neuron models are based on findings of research into the biological neurons, are
the encoding algorithms based on similar research. On the other hand, the decoding
algorithms are designed to invert their respective encoding algorithm. However, as there
are multiple neuron models from research, so are there multiple encoding algorithms
from research. We will differentiate two groups of encoding algorithms: rate encoding
and temporal encoding [8], see figure 2.2. Beside those groups can be a modification
of an encoding algorithm, population encoding [35], which transforms information of a
single input into multiple spike trains. We will first briefly discuss the rate encoding,
before going into more detail of the temporal encoding algorithms. Which will bring us
towards two population encoding algorithms, containing the proposed population Step
Forward Encoding algorithm.

Figure 2.2: Rate encoding and temporal encoding examples. Image taken from [25] p.130.

2.4.1 Rate encoding

Earlier studies of the brain have indicated that they likely work based on the firing
rate of the neurons [4]. In SNNs this is implemented as Rate encoding. Rate
Encoding transforms each new input value to a frequency of spikes, basically a frequency
modulation.

The biggest advantage of Rate Encoding is that the SNNs can be converted from
a neural network of the second generation. The numbers that the second generation
neurons output can be seen as the firing rate of that neuron. The synaptic weights
can therefore be translated to work with SNN neurons. This means that an ANN can
be trained and then transformed into a SNN with roughly the same performance [28].

6



This conversion is a big advantage as we can make use of the backprop that the second
generation has, which is simpler to implement.

This encoding schema has unfortunately an inherent downfall. To get the
information of frequency, several periods need to have elapsed. This means that
multiple spikes are needed to encode a single number, which makes it less efficient
than other encoding algorithms per definition, for example temporal encoding [8].
Furthermore, as multiple periods need to have elapsed, the response time is generally
much larger, thus less information can be processed in the same time frame. To
summarize Rate Encoding is generally not a great option and therefore will not be
compared to other algorithms in this thesis.

2.4.2 Temporal encoding

2.4.2.1 Rank Order Encoding algorithm

For Rank Order Encoding algorithm (ROE) [41] the main concept is that systems will
need to act on the information which is provided the earliest. The first information
received is thus the most important. Therefore, later received information should be
given less attention. To do this ROE uses an extra weight, where each input will also
get multiplied with this extra weight to the power of the rank in arrival time. This
extra weight must be between 0 and 1. For ROE the potential of a neuron i at time t
is given by:

potential(i, t) =
∑

j∈[1,m]

worder(aj)
r wj,i (2.1)

where there are m neurons with a dendrite to neuron i with a weight of wj,i and
rank of arrival is noted as order(aj). The extra weight is given by wr.

ROE has quite an advantage over Rate Encoding as it doesn’t need several periods,
but it still does have its own limitations. With the introduction of ROE, the theoretical
information per neuron and spike was calculated. Here it was found that Rank Order
would outperform Rate Encoding, but not Temporal Encoding. It was argued that
It would still be “a good second best” [41]. This still means that ROE is inferior to
Temporal Encoding with respect to efficiency.

ROE will also not be compared in this thesis, for two reasons. The first reason is
that it is, as just stated, theoretically inferior. The second reason that it is not as much
used for encoding as it is used for decoding in a learning rule [43]. This means that
transforming a floating-point number to a spike train with Rank Order is not trivial
[12]. These two reasons show that implementing these algorithms will be tough, while
they are unlikely to perform better than others.

2.4.2.2 Ben’s Spiker Encoding algorithm

Ben’s Spiker Encoding algorithm (BSE) [39] is based on the Hough Spiker Encoding
algorithm (HSE) [19]. These algorithms use a filter with the idea that the signal will
also directly be filtered. These algorithms generally work by checking if the filter fits

7



below the last values of the temporal signal. If so, a spike will be generated and the
filter will be subtracted.

BSE improved on HSE by even allowing it to spike if the error between the filter
and the signal is not too big instead of the filter fitting below the signal. This is done
by checking the difference between two sum of the absolutes; the signal values and
the error between the signal and the filter. The algorithm will spike if the difference
between these values are below a certain threshold.

The improvement comes with a cost however. BSE uses an extra threshold
besides the filter. This extra variable complicates the process of finding an optimal
configuration of this algorithm. More computational power will thus be needed.

Unfortunately, designing a filter is not so straight forward. This is because the
filter is not used as a regular FIR filter, as the values of the signal are not being
convoluted with the filter. This would have given floating-point values again instead
of the needed spike train. The act of checking whether the filter fits below the signal
will thus throw away a lot of information. Finding a filter which highlights the most
important information is therefore done by using a Genetic Algorithm. Using a Genetic
Algorithm however does not guarantee that an optimal filter will be found, not to
mention the most optimal filter.

2.4.2.3 Latency Encoding algorithm

Latency Encoding algorithm (LE) [35] encodes each input value of the signal to a
relative spike time. This relativity is with respect to the moment the value was supplied.
With a low value the spike should be generated very quickly, while for a high value the
spike should be generated much later. However, in the case of a later spike you still
want it to spike before the next input arrives lest it interferes with the next input, so a
maximum spike time should be set. In the case of a real-time application, there is also
some delay between input arrival and for it to be transformed to a spike time, thus a
minimum should also be set. We will combine these minimum and maximum into a
spike window. To transform an input value to the spike window, we can then also use
a signal window to map from one to another.

The advantage and disadvantage of this algorithm lies in the theoretical near infinite
signal encoding accuracy. If all values are within the signal window, they can all map
perfectly into the spike window. To decode these spikes we can map them back with
perfection, theoretically. However, if the spikes deviate slightly, the decoded value will
also deviate from the original value. This deviation in spike time will limit the maximum
signal accuracy achieved with this algorithm. As the hardware/software that creates
and reads the spikes gets more accurate, so does the signal accuracy achieved through
this algorithm. Thus, the hardware/software will determine the signal accuracy of the
algorithm, which in theory could be a perfect accuracy.

2.4.2.4 Threshold Encoding algorithm

With Threshold Encoding algorithm (TE) the temporal signal is being approximated
a bit similar to BSE. A threshold is specified and when the new value of the signal
exceeds the threshold, while the previous value did not, a positive spike is generated.

8



If the signal than get beneath the threshold, while the signal was previously above that
threshold, a negative spike is generated.

Because of its simplicity it has a big advantage, but also a disadvantage. With this
method you only need to remember whether the previous spike was positive or not.
This amounts to only a single bit needed in the memory for encoding. Unfortunately,
the simplicity has a disadvantage during decoding. We only know that the signal is
between the threshold and either positive or negative infinity. Thus determining the
original value is theoretically impossible. However, with a bounded upper and lower
limit, the best estimation of the original value would be the middle of the threshold
and either the upper or lower limit (depending on whether a positive or negative spike
was last), making it possible to estimate the original values and calculating the signal
encoding accuracy. Still, these bounds need to be defined based on the structure of the
input values, if even possible. It should also be noted that even with the bounds, only
two values can be encoded, while bigger datasets usually (also) contain non-boolean
data. To summarize, the simplicity has a low implementation cost, but creates an
inaccurate signal reconstruction.

2.4.2.5 Temporal Contrast Encoding algorithm

Although Temporal Contrast Encoding algorithm (TCE) [37]1 also uses a threshold, is
that threshold used differently. TCE doesn’t really encode the signal directly. It takes
the difference with the previous input value and spikes if that difference exceeds the
set threshold. This could be a positive spike if the difference is higher than the positive
of the threshold, or a negative spike if it is lower than the negative of the threshold.
Unlike TE, TCE spikes for every time the difference is either higher than the positive
or lower than the negative. As TCE only looks at the difference, is it actually encoding
the differential of the input signal.

The fact of encoding the differential and not the actual signal is a big disadvantage
of this algorithm. Reconstruction of the original signal can prove to be more and more
inaccurate in time. For example assume a signal with a slight drift, smaller than the
threshold. In that case TCE will not spike for that drift. When decoding the resulting
spike train, the drift will thus barely be present in the decoded signal. This means
that information is lost, but it not only happens with the drift. This information loss
happens in general, as all differences below the threshold is discarded. The accumulated
information discarded this way can really add up to a large decree over time.

A small advantage of this encoding algorithm lies in the easy, straightforward
implementation. Only the previous value needs to be remembered to calculate the
difference. Moreover, there are only three operations needed; calculate difference, check
positive threshold and check negative threshold. This is much less than BSA, where
each filter value has several operations.

1In the referenced paper TCE is called Threshold-Based Representation (TBR). Although it does use a
threshold, so does the Step Forward encoding Algorithm. However, with TCE the contrast, the difference, is
central. Moreover, without threshold in its name, is it more distinctly different from the described Threshold
encoding Algorithm.

9



2.4.2.6 Moving Window Encoding algorithm

Using a Moving Window Encoding algorithm (MWE) [24] is very similar to TCE.
However, with MWE the previous values are subjected to a moving window filter. The
difference is then calculated between the new value and the filtered previous values. If
we look at the drift issue again, we see that the filtered previous value is likely to be
further from the new input value, thus it is more likely to generate a spike. Through
this algorithm it is slightly more likely to decode correctly.

The drawback of this algorithm is likely to be more problematic than the added
signal encoding accuracy. To calculate the average of the moving window, all values
within that window need to be remembered. Of course, this can be done with a shifting
memory array, but it will still be multiple times bigger than the memory needed for
TCE, where only one value needs to be stored in the memory. The area and energy
(hardware implementation) or computation time (software implementation) will be
bigger than TCE.

2.4.2.7 Step Forward Encoding algorithm

With Step Forward Encoding algorithm (SFE) [24] the implementation is again similar
to TCE, and thus MWE as well. Instead, now the difference with the previous value is
taken with a baseline, which is remembered and not changed if no spike is generated.
When the difference between the current signal value with the baseline exceeds a given
threshold, a spike is generated and the threshold is added to the baseline. Just like
TCE, this goes both positive and negative, so if the difference is bigger than the positive
threshold a positive spike is generated, while a negative spike occurs for a difference
smaller than the negative threshold. With this algorithm the actual signal is encoded
instead of the differential.

The resulting advantage of SFA unfortunately also causes a slight disadvantage. The
advantage is that the signal encoding accuracy is much better as the decoded signal
usually don’t deviate more than the threshold value. Even if it does, the next new
value will likely fix it. Even though the signal can now be much better reconstructed,
the number of spikes that are encoded also increases. This could have as disadvantage
that the information per spike on average, the encoding efficiency, becomes less.

2.4.3 Population encoding

As stated before, some encoding algorithms have a population variant. The main idea
with population encoding is that instead of a single spike train per input signal, each
input signal is transformed to multiple trains. This can have the advantage that it will
be easier for the first layer of the SNN to distinguish between certain aspects of the
input(s).

However, population encoding has a common disadvantage. With encoding multiple
spike trains, generally more spikes are generated as well. Even though the spatially
separated spikes help with training, they can also be less information efficient as
the spikes added might exceed the information that is added and reduce the average

10



information per spike. Moreover, it will generally also take more resources and time to
generate spikes for each spike train, which needs to be taken into consideration.

In this thesis there are two population variants explored. First variant is from TA,
the population Threshold Encoding algorithm (p-TE) [35]. The second explored variant
is the proposed encoding algorithm, the population Step Forward Encoding algorithm
(p-SFE). p-TE will be discussed in this section, while p-SFE will be discussed in section
3.1.

2.4.3.1 population Threshold Encoding algorithm

The population variant from TE uses multiple thresholds instead of only one. Each
threshold creates its own spike train and is checked with each new value. These checks
are independent of each other and can thus be done parallel each other.

The advantage from p-TE does not only lie in the multiple spike trains, but also in
the improved decoding. As we found with TE, it has the problem that the upper and
lower bounds can go to infinity. On the other hand with p-TE, the multiple thresholds
make sure that when a threshold is passed, there is generally a threshold bigger and/or
smaller. This means that the signal needs to be between those thresholds, thus the
resulting decoded value will be much more accurate and much less ambiguous.

11



12



Methods 3
In this chapter, the methods used in the thesis are discussed except for encoding
algorithms other than population Step Forward Encoding algorithm (p-SFE) which are
discussed in 2.4. First we will talk about the proposed encoding algorithm, population
Step Forward Encoding algorithm. Secondly, we will define the methods to compare
configurations and different algorithms. Thirdly, we will show how the most optimal
configurations are found.

3.1 population Step Forward Encoding algorithm

USPTO patent number: 63/146,587

The algorithm proposed in this thesis, p-SFE, uses multiple thresholds instead of
one, each with its own spike train. The multiple thresholds is where p-SFE gets the
population from its name, similar to p-TE. The thresholds should be put in descending
order. Then from the biggest onward the difference between the baseline and the new
value should be checked. When the difference exceeds the threshold a spike should be
generated and the threshold should be added to the baseline, just like SFE. Only after
the bigger threshold is checked should the smaller thresholds be checked, because the
baseline could have changed. An example for how p-SFE works is given in figure 3.1.
As the spikes of the smaller thresholds get combined into a single spike of the bigger
threshold, are the number of spikes reduced while the same information is retained,
thus is the efficiency increased compared to SFE.

A disadvantage of p-SFE is that the thresholds need to be checked sequentially. p-
TE can parallelize the checking of the thresholds, because they are independent of each
other. For p-SFE this is not possible, as each threshold can change the baseline, can
the spike of one threshold make sure the next threshold won’t spike. As parallelization
is not possible, using more compute-units to accelerate the algorithm is not possible,
where with p-TE that is possible. The number of thresholds that can be check is thus
limited by the speed of the compute-units.

Although you could choose the thresholds for p-SFE arbitrarily, a simplified version
of p-SFE makes it easier to choose the thresholds. The simplified version will assume
a specific relation between the different thresholds. The simplification makes sure that
only the base threshold and the number of thresholds is needed to be specified, thus can
the configurations be swept, otherwise more difficult methods for finding an optimal
configuration is needed, such as genetic algorithms. Simplified p-SFE is also used in
this thesis, where the thresholds are set to half of the previous threshold. In the case
of example figure 3.1, would the configuration amount to two thresholds with the base
threshold of four.

13



1 2 3

time

-4

-2

0

2

4

6

8
v
a
lu

e
Step 1: t = 1, checking threshold 1

1 2 3

time

-4

-2

0

2

4

6

8

v
a
lu

e

Step 2: t = 1, checking threshold 2

1 2 3

time

-4

-2

0

2

4

6

8

v
a
lu

e

Step 3: t = 2, checking threshold 1

1 2 3

time

-4

-2

0

2

4

6

8

v
a
lu

e

Step 4: t = 2, checking threshold 2

1 2 3

time

-4

-2

0

2

4

6

8

v
a
lu

e

Step 5: t = 3, checking threshold 1

1 2 3

time

-4

-2

0

2

4

6

8

v
a
lu

e

Step 6: t = 3, checking threshold 2

input signal

decoded signal

1st threshold; 4

2nd threshold; 2

spikes 1st thres.

spikes 2nd thres.

Figure 3.1: An example for p-SFE, where the input signal is supplied with the following
values; 5, 7 and -2. In addition, p-SFE is configured with two thresholds; 4 and 2.

3.2 Metrics

In this section the metrics we will use are discussed. These metrics will be used for
Encoding Accuracy, Efficiency and Classification Potential. These metrics are needed,
because the spike trains from the encoding algorithms are not intuitive for us, as we
generally are used to numbers. Therefore, after encoding to spike trains will the trains
directly be decoded back to a signal consisting of regular values (in our case floats),
see figure 3.2. The reconstructed signals can be compared with the original signals
and the number of spikes to measure the signal Encoding Accuracy, Efficiency and
Classification Potential.

3.2.1 Signal encoding accuracy

In [37] several metrics for determining signal encoding accuracy are used, and we will
refine their choices. Using multiple metrics can give redundancy, but can also confuse

14



Figure 3.2: The signal encoding accuracy metric will be based on the input signal and the
decoded output signal. The efficiency will be based on that signal accuracy combined with
the generated spike train(s). On the other hard, the Classification Potential is based on the
generated spike train(s) alone.

someone of which metric is the indicator. Thus, our goal is to establish one metric to
be used for signal (encoding) accuracy. First we will evaluate the metrics from [37],
see equations 3.2, 3.3 and 3.4. Unfortunately, we will see some small issues with each
of them. Thus, we will slightly change the equation 3.4 and use that as the metric for
signal accuracy.

The first metric with an issue is the coefficient of determination, equation 3.2. This
metric is usually called R-squared and describes how much of the variance can be
explained. The definition of this metric is given in equation 3.1. In this equation SS
stands for Squared Sum and RC for Remaining Components. Moreover, the R in SSR
stands for Remainder, the T in SST is for Total and the E in SSE for Error. Usually,
the RC cancel out one another and the equation can be written as in the last step is
shown. The problem with the metric in [37] is with this simplification.

R2 =
SSR

SST
=

SST − SSE −RC

SST
= 1− SSE

SST
(3.1)

As can be seen in equation 3.2, is the simplified R-squared metric used. The
simplification assumes that RC equals to zero, but from tests with the datasets and
the encoding algorithms we find that this assumption might not be valid. This is most
likely caused by the fact that the time samples depend on one another, while this
metric is usually used for independent measurements. As the simplification is wrongly
applied, equation 3.2 does not correspond to the original intention of the metric. On
the other hand, this doesn’t mean that the metric shouldn’t be used, but there is a
more trustworthy metric as we will see later.

R2 = 1−
∑

t[signalinput(t)− signaldecoded(t)]
2∑

t[signalinput(t)−mean(signalinput)]2
(3.2)

The second metric with a slight problem is the RMSE, see equation 3.3. It roughly
describes the average error between the input and the decode signal. The normalization
(average) is done through the length of the signal, the number of time samples. There
lies the slight problem, because the length of the signal can be arbitrary. For example
if we extend the signal with noise, some encoding algorithms will be able to encode the
noise much better than others, while they could encode the spoken audio much worse.

15



Resulting in skewed metric values, because of the normalization with the signal length.
Though the described problem might not prop up, there is still a metric without such
an issue.

RMSE =

√∑
t[signalinput(t)− signaldecoded(t)]2

Ntime−samples

(3.3)

The last metric used in [37] is Signal-to-Noise Ratio (SNR), see equation 3.4, and
will be the base of the metric used in this thesis. This is also a widely known metrics
where both the signal and noise should be known. In this case the noise is defined as the
error of the decoded signal. However, in that case it should be called Signal-to-Error
Ratio (SER) to prevent the confusion that the error could be defined as Gaussian noise,
as usually is the case. The biggest advantage over the other two equations 3.2 and 3.3
is that this metric is not influenced by the length of the signal, not even through the
mean of the signal.

SNR = 20 · log(

∑
t[signalinput(t)]

2∑
t[signalinput(t)− signaldecoded(t)]2

)[dB] = SERinput (3.4)

Even tough so far we have seen that equation 3.4 would be the best choice, there
is one last potential improvement to make. For this improvement we will take the
decoded signal as a reference instead of the input signal. With a higher SER is the
signal even more prominent with respect to the error, which is thus better. In the case
that the signal input is used, the numerator stays the same for each encoding algorithm.
If instead the decoded signal is used, the numerator is bigger for a higher amplitude
signal. Combined with the need for a bigger SER, the encoding algorithms are being
forced to encode a bigger signal. As most encoding algorithms tend to encode a signal
below the input, will the bigger signal undoubtedly be closer to the input. Thus, would
this create a second component in the metric which encourages an encoding closer to
the input, creating a bigger contrast.

SERdecoded = 20 · log(

∑
t[signaldecoded(t)]

2∑
t[signalinput(t)− signaldecoded(t)]2

)[dB] (3.5)

3.2.2 Encoding efficiency

To define a metric for encoding efficiency, we first need to establish what efficiency we
talk about. In the introduction we showed that the bandwidth for sending spikes can
become a problem. In this case the most information per spike is preferred, as that
would mean that the most information is encoded with the limited number of spikes.
Therefore, the metric for efficiency we look for is information per spike.

For the spikes part we can take a look at another metric from [37], the Average Fire
Rate (AFR). In [37] this AFR is the number of spikes divided by the number of time
samples. This should actually be called the probability to spike, Pspike, see equation
3.6. If that spike probability is then divided with the sample time, would it give the

16



actual AFR, because that would amount to the total number of spikes divided by the
total elapsed time, see equation 3.7.

Pspike =

∑
t spikes∑

timesamples
(3.6)

AFR =

∑
t spikes

t
=

∑
t spikes

Tsample ∗
∑

timesamples
=

Pspike

Tsample

(3.7)

Combine the spike probability with the SER for signal encoding accuracy we can
make an estimation for efficiency. We can say that the SER for signal accuracy is also
similar to the information that is encoded. As the decoded signal is more similar to
the input signal, caries the decoded signal more of the same information as the input
signal. Unfortunately, the SER is a normalized metric for the entire signal, so we need
to transform it to a metric per spike. We can use the AFR for that. Moreover, we
can make it even simpler with the dataset we use, because it has a constant sampling
rate for all signals. As the sampling rate is constant, and we are only interested in
a comparison, can we use the spike probability. The resulting metric we will use for
encoding efficiency is thus given by

EncodingEfficiency =
information

spike
∼ accuracy

ΣAFR
∼ SER

ΣPspike

(3.8)

where the AFR is summed, because population encoding algorithms would create
multiple spike trains, each with their own AFR.

3.2.3 Classification potential

So far we have looked at how much of the input signal is encoded, however we should also
look at the spike trains themselves. As the spike trains will be used by the network, are
the spike trains themselves important to look at. Especially for classification problems,
since only a small portion of the encoded signal is usually already enough for correct
classification.

The biggest problem however is that the spike trains aren’t easily comprehensible
for us, so for classification problem we need a special method to test the algorithm
capabilities. The straightforward way would be to directly test the classification by
training an architecture and evaluate the classification accuracy. Unfortunately, this
does pose a potential biasing problem, as some architecture training methodologies
might have a bias towards certain encoding algorithms as they generally are designed
with a specific encoding algorithm in mind. Because of this biasing problem, we will
propose a method to estimate potential for classification problems.

3.2.3.1 Accuracy

There are multiple ways to calculate the ’distance’ between different spike trains [44,
42, 26, 27], so spike trains belonging to similar classes should have smaller distances
than spike trains from different classes. These spike train distances can be used to
find a distribution density for each class combination. If the similar class spike trains

17



indeed have a smaller distance, then the distribution density for spike trains of the
same class would have more mass towards zero than the other distribution densities.
The points below which the same class densities clearly have the most mass, can be
used to calculate the theoretical optimal classification accuracy.

Unfortunately, using such a method did not work in this case. We found that the
distribution densities were overlapping very much with one another, regardless where
it were same class densities or not. This proved finding areas were the same class
densities exceeded other (relevant) densities difficult if even possible. When such areas
were found, were they small and usually not towards zero. Whether such areas would
describe the classification potential with such spike trains, is therefore questionable.

So we turn to other AI methods to make a rough estimation on the classification
potential. These other methods are not as temporally based as SNNs are, thus the
temporal aspect of the signal will be transformed to a dimensional aspect usable by
the other AI methods. This transformation is done by regarding each time sample
as a separate feature, creating one vector for each data signal with many dimensions.
However, the fact that spikes only mean something relative to one another causes a
problem. Shifting these spikes in time equally should thus not impact the outcome.
While, for other AI methods this shift can make a huge difference in the outcome. To
minimize this issue we will normalize the spike trains in time relative to all other spike
trains (of the same encoding algorithm), see subsection 5.1.3.

To work with these highly dimensional data samples, we choose to use the Support
Vector Machine (SVM). The reason behind this is that SVM have proven to work
extremely well with highly dimensional datasets [6]. An SVM creates a hyperspace as
boundary, while trying to maximize the margin between that boundary and the samples
of the classes. To do this the boundary is described with even more dimensions, so it
becomes very flexible.

Figure 3.3: Overview of the classification methodology, where SVM stands for Support Vector
Machine (SVM). This SVM is trained on the spike trains of the train set. Then the spike
trains of the validation set are used to calculate the classification accuracy of the SVM on
the spike trains.

Using the SVM is as normal and thus very straightforward, see figure 3.3. We
separate the audio samples into sets (train, test and validation). The data from the
sets is encoded into spike trains. Then all spike trains are converted such that they
can be used by the SVM effectively. From the sets are the spike trains of the train set
first used to train an SVM. After which, the validation set can then be classified with
the SVM, resulting in a confusion plot and a classification accuracy. This classification
accuracy will show us the potential for classification of these spike trains. An algorithm

18



which would score higher in this accuracy is more likely to work better for classification
problems.

3.2.3.2 Noise resistance

Though checking the classification potential doesn’t end with just this; the resistance
to noise should also be checked. Noise is unavoidable in any system, as even every
resistor creates some noise. As every component adds some noise, combined they could
even overtake the signal of interest in power. For classification could this mean that
the noise would impact the class prediction more than the signal we should be using
for the prediction.

Figure 3.4: Overview of the classification methodology with noise. Here AWGN stands for
’add white Gaussian noise’. If no noise is added to the train set, you speak of miss-matched
training, which is the worst case scenario. If noise is also added there, then you speak of
multi-condition training.

There are two ways to take noise into consideration; miss-matched and multi-
condition, see figure 3.4. The first way, miss-matched, you assume that the noise
can not be learned with. This could be caused by not knowing the exact noise during
training. It would be the worst case and can be modeled by adding noise to the input
signal of the validation set, before encoding and validation. The second way, multi-
condition, you assume the noise is known while training. In this case the noise is also
added during training, which should mean that the trained network can take the noise
into consideration as well, making the network more robust to noise. In this thesis
multi-condition is used as it is commonly used.

Besides noise in these condition, the classification ‘accuracy’ with only noise supplied
is also quite useful. The classification accuracy with only noise as in put shows how
good the SVM can guess the classes without any information. The SVM could than
just randomly guess or always guess the same class. In both cases the probability
of guessing correctly would be the same (if all classes occur equally). If you set the
classification accuracy achieved through this method as a baseline for the achieved
classification accuracy for miss-matched or multi-condition training, you can find at
which Signal-to-Noise ratio the SVM degrades to random guesses, for an example see
figure 6.2.

19



3.3 Encoding algorithm optimization

From the related work we have seen that every encoding algorithm has its own
configuration that needs to be set. In most cases we talk about a threshold that
needs to be set, but there are also cases where that is not enough. For example MWE
needs a filter length as well and BSE even needs an entire filter to be specified. On
the other hand some encoding algorithm configurations don’t even need a threshold,
but other values need to get specified. For example LE, where the spike window and
value window are needed. To find the most optimal configuration of these encoding
algorithms different methods will be needed.

3.3.1 Configuration sweeping

For most algorithms only one or two values need to be configured, these can easily
be swept for the most optimal configuration. Sweeping just amounts to first setting
bounds, then picking points within those bounds (usually linearly spaced) and lastly
testing which of those points result in the best configuration. If the bounds are chosen
correctly, you see that around the points closest to the most optimal configuration
are only slightly worse and better than the points further from the most optimal
configuration. If the most optimal configuration is near a specified bound(s), it is
a good idea to stretch those bounds further as to check whether there might be a
better configuration is that direction.

However, other algorithms have more than two values to configure for which another
method is preferred. Sweeping with only one value puts the number of points to search
in a line. If two values need to be swept, the search points are put in a square.
With three values are the search points put in the volume of a cube, while for even
more values the points are space within a hyperspace. This means that the number
of search points grow exponentially with the number of configure values. Thus, the
computational complexity grows with the increasing configurable values.

3.3.2 Genetic algorithms

As an alternative, we use genetic algorithms [46] for configurations of more than two
values. A genetic algorithm views the configuration values as genes of a chromosome,
such that every chromosome represents a configuration. At the start, a population of
(semi) random chromosomes is created. Each chromosome of the population should
be evaluated (just like described in section 3.2), and from that a value should be
given of how good those individual chromosomes perform in the desired task, the
fitness. Chromosomes with a better fitness will get a higher chance to propagate to
the next generation as well as becoming a parent to the next generation. This will
mean that some chromosomes won’t propagate, while the population size should be
maintained, so new chromosomes need to be generated for which parents will be used.
To generate these new chromosomes operations will take parts from these parents and
slightly change them. These operations try to combine the best parts of the parents or
randomly slightly change values, in search for better fitting chromosomes. Combining
the operations with the selective nature of fitness, makes that a new population contain

20



chromosomes with a good chance to achieve a higher fitness. Eventually, a new
population won’t or barely increase the fitness, at which point an optimal configuration
would be found by the best fitting chromosome of that last generation.

We need to design the operations which will create new chromosomes.
Unfortunately, these operations need to be designed for each genetic algorithm
separately, because the interpretation of (certain) genes can be different. Some gene
interpretations might have a limit or other limitations, which might need to be taken
into consideration during these operations. However, these operations aren’t arbitrarily
designed. They should and are inspired by biological operations, which happen in DNA.
These operations can for example be: mutation, crossover and inversion. In this thesis
operations are designed for genetic algorithms of both BSE and LE.

3.3.2.1 Ben’s Spiker Encoding algorithm

The chromosomes for BSE will be constructed with one gene for the threshold and an
’arbitrary’ number of genes for the filter. This will mean that the first gene should
not mingle with the latter genes, as the ranges of the values don’t compare with one
another. For this genetic algorithm several operations were defined; crossover, length
extension/subtraction, mutation. Multiple operations can act on the same child.

• The crossover operation will need two parents. These two parents can have
different filter lengths. Therefore, a random number between 0 and 1 is picked
as crossover-point. The crossover-point will be multiplied by the filter length of
both parents and then those values will be rounded to get the indexes to divide
the filters of both parent in two parts. The filter of the child would have the
first filter part of the first parent and the second part of the second parent. The
crossover-point will also influence the threshold, as it would be used as a linear
interpolation between the threshold of the first and the second parent.

• For length extension/subtraction the number of filter values to add or remove
is picked. Then either adding or subtracting is picked with same probabilities.
Removing filter values is done fairly simple by selecting indexes at random and
discarding the filter values at those indexes. When adding filter values, it will
help to add values in a similar range as the rest of the filter values, thus the mean
and the standard deviation of the filter values is calculated. Based on the mean
and standard deviation random values with a normal distribution will be added
at the back of the filter.

• Mutation of the chromosomes is done fairly simple as well by adding ’noise’.
This noise also has a normal distribution with a standard deviation based on the
current filter values, but with a mean of zero. This standard deviation is first also
multiplied with a factor, which should be kept between 0 and 1 to avoid adding so
much that the noise becomes dominant (resulting in no converting solution). The
noise added to the threshold is done slightly differently; another factor is used
and a random value between the negative and the positive of that factor is picked
with a uniform probability distribution.

21



To get the configurations for BSE the probabilities for these operations have been set
among other settings. The crossover operation has a probability of 0.3, while mutation
has a probability of 0.95. For length extension/subtraction there is a probability of
changing the size by either one or two, with those probabilities being 0.1 and 0.05
respectively. Tough the size has also been limited to a minimum of 3 and a maximum
of 30, as smaller could hardly be called a filter and bigger would probably need a bit too
much computation. Another limitation is the number of generations have been limited
to 1000 with twenty chromosomes each generation. To make sure that the population
will not degrade the best three fitting chromosomes will automatically propagate tot
the next generation.

3.3.2.2 Latency Encoding algorithm

Unlike the ’arbitrary’ chromosome length of BSE, the chromosome length of LE is
always 4. The first two values describe the signal window with a minimum and a
maximum, while the last two values describe the spike window also with a minimum
and maximum. If the signal sampling time is constant, the values for the spike window
can be normalized. Then the spike window can be bounded by 0 (start of the signal
sample) and 1 (end of the signal sample). It is also preferred that the signal window
values are bounded by the minimum and maximum the signal can take, because it does
not make sense that these bounds are beyond the minimum and maximum of the signal,
as this would get the same result as shortening the spike window. Another difference
with BSE is that there are only two operations used; crossover and mutation.

• Where crossover with BSE is at an arbitrary point, with LE takes the signal
window of the first parent and the spike window of the second parent.

• For mutation random values are added. These random values are based on the size
of the windows. A factor (between 0 and 1) is multiplied with those window sizes
and the random value is chosen with a uniform probability distribution between
the negative and the positive of those factorized sizes.

The settings used to get the configurations for LE are mostly similar to those for
BSE with only a few differences. The number of generations is reduced to 500, because
there are fewer number of variables which make the configuration converge faster. Thus,
fewer generations are needed. Besides that, the size changing is not needed, so there is
no probability for that. This also mean that no limit on the size is needed, however a
limitation on the values of the windows is very useful. With the spike window bounded
by zero and one, while the signal window can be limited by the maximum and minimum
the signal could take.

22



Code analysis 4
In this chapter we will analyze the code used for the encoding algorithms into
more depth. These MATLAB functions will be transformed into pseudo-codes as an
intermediate step. Next, these pseudo-codes are analyzed for which operation are used,
how much and how they scale. The operations used by the encoding algorithms will
cost a certain amount of energy and limit how much can be encoded within a given
time, thus the operations can be seen as a cost of the encoding algorithms.

4.1 Pseudo-codes

Each of the pseudo-codes, see figures 4.1 to 4.8, have been created with a similar
structure. They are made for a single input stream, as the computational complexity
scales linearly with the input streams, because the input streams can be encoded in
parallel. It is assumed that the signal input will not contain NaN values, because these
values take generally much less computation to process and will thus not take part in
the limit of encoding values within a specified time.

The MATLAB codes for BSE, see A.1.1 and A.1.2, can be changed to the pseudo-
code given in figure 4.1. We can assume that the cutoff will either not cost any
computations or be insignificant in the case of a significantly longer signal than the
filter. First, we need to note that the last L minus 1 values need to be remembered.
Then, to calculate the errors L subtractions, two times L absolute operations as well
as L minus one times 2 summations. After that, in the worst case one comparison,
L subtractions and L plus one writing operations are still needed. However, in this
equation the differences between the ‘latestSignal’ and the filter is calculated twice,
but this could also only be done ones which would mean that L subtractions less are

23



needed and L values need to be temporarily remembered.

Input: signal → a T-length vector containing the signal values in chronological order
filter → a L-length vector containing the BSA filters, where L is the length
for the filter
threshold

Output: spikes → a T-length boolean vector containing at which signal values to
spike

1 foreach T → t do
2 if t < L then
3 cutoff filters to length t, so L = t;
4 end
5 latestSignal = signal(t-L+1 ... t);
6 E1 =

∑
L ‖latestSignal - filter‖;

7 E2 =
∑

L ‖latestSignal‖;
8 if E1 ≤ E2 - threshold then
9 spikes(t) = true;

10 signal(t-L+1 ... t) = latestSignal - filter ;

11 else
12 spikes(t) = false;
13 end

14 end

Figure 4.1: Ben’s Spiker Encoding algorithm pseudo-code

24



The MATLAB codes for LE, see A.2.1 and A.2.2, can be changed to the pseudo-
code given in figure 4.2. With respect to the memory, the value for warped will likely
need to be remembered for a short while. With regard to other operations, firstly the
calculation of the warped value two subtractions and one division is needed, then two
comparisons and a boolean operation is need. Secondly, in the worst case one more
subtraction as well as a multiplication and addition is needed. Lastly, one writing
operation is needed. However, it should be noted that a relative time is returned
that might need more computations before it can be used to generate the spike which
depends on the used hardware.

Input: signal → a T-length vector containing the signal values in chronological order
signal window
spike window

Output: relative fire time → a T-length vector of the relative fires times respective
to their signal moments and normalized to the sample time

1 foreach T → t do

2 warped = signal(t)−signal windowmin
signal windowmax−signal windowmin

;

3 if warped < 0 OR warped > 1 then
4 relative fire time(t) = NaN;
5 else
6 relative fire time(t) = (warped * (spike windowmax - spike windowmin)) +

spike windowmin;

7 end

8 end

Figure 4.2: Latency Encoding algorithm pseudo-code

25



The MATLAB codes for TE, see A.3.1 and A.3.2, can be changed to the pseudo-
code given in figure 4.3. In this pseudo-code we can already see that every input stream
will have a single boolean as a memorized value. For every signal value in the worst
case four comparisons, two boolean operations and two writing operations are needed.

Input: signal → a T-length vector containing the signal values in chronological order
threshold

Output: spikes → a T-length vector containing at which signal values to spike
(either positively or negatively)

1 memory = false;
2 foreach T → t do
3 if memory = false AND signal(t) ≥ threshold then
4 spikes(t) = 1;
5 memory = true;

6 else if memory = true AND signal(t) < threshold then
7 spikes(t) = -1;
8 memory = false;

9 else
10 spikes(t) = NaN;
11 end

12 end

Figure 4.3: Threshold Encoding algorithm pseudo-code

26



The MATLAB codes for TCE, see A.4.1 and A.4.2, can be changed to the pseudo-
code given in figure 4.4. With this algorithm the diff value needs to be remembered for
only a short while, but the previous signal value need to be remembered for a longer
time. Besides that we would need one subtraction operation, two comparisons, one
inversion and one write operation.

Input: signal → a T-length vector containing the signal values in chronological order
threshold

Output: spikes → a T-length vector containing at which signal values to spike
(either positively or negatively)

1 foreach T → t do
2 diff = signal(t) - signal(t - 1);
3 if diff ≥ threshold then
4 spikes(t) = 1;
5 else if diff ≤ -threshold then
6 spikes(t) = -1;
7 else
8 spikes(t) = NaN;
9 end

10 end

Figure 4.4: Temporal Contrast Encoding algorithm pseudo-code

27



The MATLAB codes for MWE, see A.5.1 and A.5.2, can be changed to the pseudo-
code given in figure 4.5. Besides the short term memory for diff, should the signal
values within the window be remembered for a longer time as well as their sum and
number. Furthermore, next to the one subtraction, two comparisons, one inversion and
one write operation, we will need and extra comparison, a subtraction or addition and
a division.

Input: signal → a T-length vector containing the signal values in chronological order
window size = W
threshold

Output: spikes → a T-length vector containing at which signal values to spike
(either positively or negatively)

1 windowSum = 0;
2 size = 0;
3 foreach T → t do
4 windowSum += signal(t);
5 if size = window size then
6 windowSum -= signal(t - window size);
7 else
8 size += 1;
9 end

10 diff = signal(t) - windowSum
size ;

11 if diff ≥ threshold then
12 spikes(t) = 1;
13 else if diff ≤ -threshold then
14 spikes(t) = -1;
15 else
16 spikes(t) = NaN;
17 end

18 end

Figure 4.5: Moving Window Encoding algorithm pseudo-code

28



The MATLAB codes for SFE, see A.6.1 and A.6.2, can be changed to the pseudo-
code given in figure 4.6. In this algorithm, we don’t need to remember the signal
values, but we do have two memorized values we need for both short term and long
term. Next, there are two subtraction, two comparisons, one inversion and two write
operations needed in the worst case.

Input: signal → a T-length vector containing the signal values in chronological order
threshold

Output: spikes → a T-length vector containing at which signal values to spike
(either positively or negatively)

1 memory = 0;
2 foreach T → t do
3 diff = signal(t) - memory;
4 if diff ≥ threshold then
5 spikes(t) = 1;
6 memory += threshold ;

7 else if diff ≤ -threshold then
8 spikes(t) = -1;
9 memory -= threshold ;

10 else
11 spikes(t) = NaN;
12 end

13 end

Figure 4.6: Step Forward Encoding algorithm pseudo-code

29



The MATLAB codes for p-TE, see A.7.1, can be changed to the pseudo-code given
in figure 4.7. In comparison to TE is it mostly the same, but with an extra FOR-loop
and a memorized boolean for each threshold. This means that the operations would
amount to four times H comparisons, two times H boolean operations and two times H
writing operations. However, the FOR-loop can be done in parallel which would mean
that the latency would be not much worse than the latency of TE, but more (hardware)
resources would be needed to enable parallel computing.

Input: signal → a T-length vector containing the signal values in chronological order
thresholds → a H-length vector containing the thresholds

Output: spikes → a T*H-sized matrix containing at which signal values to spike
(either positively or negatively)

1 memory(1 ... H) = false;
2 foreach T → t do
3 foreach H → h do
4 if memory = false AND signal(t) ≥ thresholds(h) then
5 spikes(t, h) = 1;
6 memory = true;

7 else if memory = true AND signal(t) < thresholds(h) then
8 spikes(t, h) = -1;
9 memory = false;

10 else
11 spikes(t) = NaN;
12 end

13 end

14 end

Figure 4.7: population Threshold Encoding algorithm pseudo-code

30



The MATLAB codes for p-SFE, see A.8.1, can be changed to the pseudo-code given
in figure 4.8. Just like p-TE, is p-SFE not much different then SFE, while having added
long term memory values of each threshold and a FOR-loop. Thus, does it amount to
two times H subtraction, two times H comparisons, H inversions and two times H write
operations. On the other hand does p-SFE not allow for parallel computing.

Input: signal → a T-length vector containing the signal values in chronological order
thresholds → a H-length vector containing the thresholds

Output: spikes → a T*H-sized matrix containing at which signal values to spike
(either positively or negatively)

1 memory = 0;
2 foreach T → t do
3 foreach H → h do /* order is important and can’t be done parallel */
4 diff = signal(t) - memory;
5 if diff ≥ thresholds(h) then
6 spikes(t) = 1;
7 memory += thresholds(h);

8 else if diff ≤ -thresholds(h) then
9 spikes(t) = -1;

10 memory -= thresholds(h);

11 else
12 spikes(t) = NaN;
13 end

14 end

15 end

Figure 4.8: population Step Forward Encoding algorithm pseudo-code

4.2 Operations

Analyzing the pseudo-codes from the previous section, we will arrive at the operation
summation seen in table 4.1 and some more info regarding the memory. All inputs
except the signal will need to be remembered for the entire encoding time, thus need a
long term memory. Whereas, the short term memory only needs to be remembered for
a short while and does not need to leave the cache of the processing unit. With respect
to the read operations, they are only needed for the long term memory to get those
bytes from memory back into the cache. This distinction between the two different
memory types can be important, as the short term memory will likely not need to leave
the cache whereas the long term memory will have to be put into the main memory,
which is likely to cost more.

31



Table 4.1: Overview of the operations used by each encoding algorithm for every new signal
value supplied.

ad
d.

op
.

su
b.

op
.

in
v.

op
.

ab
s.

op
.

m
ul

t.
op

.

di
v.

op
.

bo
ol
.
op

.

co
m

p.
op

.

sh
or

t
m

em
.

lo
ng

m
em

.

w
r.

op
.

BSE 2L-2 2L 2L 1 2L L+1

LE 1 1 1 1 1 2 2 4 2

TE 2 4 1 2 2

TCE 1 1 2 1 2 2

MWE 2 1 1 3 1 W+4 4

SFE 2 1 2 1 2 3

p-TE 2H 4H 1 2H 2H

p-SFE 2H H 2H 1 H+1 3H

We would prefer to change these operations into an energy and area cost needed
to implement, however it has proven to be difficult. In the paper [18] an exceptional
attempt is made to establish energy numbers for the multiply- and the add-operations.
This paper shows that the energy per operation has such a high overhead, that it is
the predominant factor for determining the operation cost and makes the energy cost
per operation roughly 70 pJ regardless of the operation type. However, the paper [18]
also shows the most energy will be preserved when a dedicated solution is taken, which
is thus the likely route taken for the encoding algorithms, so the encoding algorithm
would not negate the energy efficiency of the SNN.

Unfortunately, the dedicated solutions is where the comparisons become difficult
and/or time-consuming. Either estimations for the cost per operation can be used
to transform the values in table 4.1 to an area and energy consumption or all of the
encoding algorithms can be implemented into a dedicated solution and tested for area
and energy consumption. The later option would consume a lot of extra time, making it
outside the scope for this thesis. The first option proofs to be difficult to get an accurate
comparison, as the exact implementation can have a big impact. For example, in paper
[18] the operation energy depends on the data type used, moreover the ratio between
the energy cost for an add operation and a multiply operation is also different depending
on the data type. Even more challenging is finding energy cost for all operations as
defined in table 4.1. This will most likely take several sources which might not even be
comparable. Such a method to make a comparison for the energy cost would also take
a lot of time. So, an exact implementation would be preferred as it is more dependable.
Unfortunately, for this thesis would be making an exact implementation too much extra
work to do for all encoding algorithms and thus we will leave it at the results from table
4.1.

To end the code analysis, one last observation should be made. p-SFE of a singular
input can not be done in parallel as the thresholds act on the same memory. Where
with p-TE more resources can be used to speed up the encoding process, for p-SFE is it
only possible for the different inputs. This means that the number of thresholds limits
the time in which the encoding can take place, and consequently the maximum allowed

32



time for encoding will limit the number of thresholds that can be used by p-SFE.

33



34



Datasets 5
In this chapter, we will firstly define the datasets we use as well as give some
reasons for these datasets. Secondly, some preprocessing of the datasets are also
taking into consideration, so these preprocessing techniques are described as well.
Thirdly, analyzing the datasets a little, gives an advantage while looking for the best
configuration by limiting the search space for each parameter.

Spoken audio is chosen for datasets because of its ’small’ samples, while containing a
wide variety of information. A simple word can be spoken within a second, if that word
is recorded with a sampling rate of a few thousand, then the resulting record is also
’only’ a few thousand samples. Moreover, the recorded stream is only 1 dimensional
contrary to for example video. Video contains a picture at each sample time, where
thus each pixel will be a separate stream that needs encoding. Even though, there is
only one stream of data, that single data stream has a big variety of information it
contains. The human hearing works in the range of about 50 Hz to 22 kHz, which is
quite a big range. However, speech doesn’t cover the entire range, it is usually assumed
that the majority of the speech information is within the 500 Hz to 4 kHz bandwidth
[1].

In this thesis two datasets are used of which the Free Spoken MNIST [23] is the
first one. This dataset consists of spoken digits (0 to 9), thus there are ten classes.
Each digit is spoken 50 times by each speaker. The used dataset was created from
four speakers. However, the newest version of the dataset has increased to six in the
duration of the thesis (still all men unfortunately). This amounts to 2000 and 3000
audio samples, respectively. All of these audio samples are recorded with a sampling
rate of 8000 Hz. Nyquist theorem shows that the usable audio then ranges up to 4
kHz. The relatively small number of audio samples makes is faster to find and evaluate
configurations for encoding algorithms, making quick comparisons possible.

The second datasets, Speech Commands [45], is much larger which gives it several
advantages over the simpler Free Spoken MNIST. The first advantage is the increased
number of classes; in the Speech Commands dataset 35 words are spoken including the
digits. The bigger number of classes increases the difficulty for classification, which
should widen the gap between difficult to separate spike trains and the easier ones to
separate. Moreover, we can take up to 1500 samples for each word instead of only
200. More samples make sure that a single incorrect classification has less impact on
the estimated classification accuracy, so the estimation of the classification accuracy
will be more accurate. Another advantage of the Speech Commands dataset is the
sampling frequency of 16 kHz, making the usable audio range up to 8 kHz according
to the Nyquist theorem. Although most of the speech information is up to 4 kHz, the
frequency band of 4 kHz to 8 kHz could increase the intelligibility with a few percent [1].
One last difference is that the Speech Commands dataset already has audio samples
with different specific noises added, adding more difficulty which could also widen

35



the gaps between how well encoding algorithms work. These added difficulties might
also decrease classification accuracies so far, that the differences between encoding
algorithms can become difficult to see, so using both datasets is still preferred.

These two datasets will be split into three subsets to counteract overfitting. The
three subsets will be used for training, testing and validating. The test and validate
subsets will consist of 20% of the dataset, which is 200 and 5262 samples for the
Free Spoken MNIST and Speech Commands dataset, respectively. This leaves 1600
and 41820 samples for the training set for Free Spoken MNIST and Speech Command
dataset, respectively. The samples will be divided over the subsets semi-randomly
where each subset has the same number of samples from each class. With a separate
set for testing and validating, overfitting on only the training samples will not reflect
in the results form either sets, as the samples are different. Similarly, will overfitting
on the training and test samples combined reflect on the results from the validation
samples.

5.1 Preprocessing

There are three preprocessing methods used; audio normalization, using a bank of
bandwidth filters, and spike train normalization. The first two preprocessing steps
are meant to give an alternative to the raw audio data, such that different dataset
attributes/characteristics are covered. The last preprocessing step ensures that the
classification of the SVM will be representable as much as possible, as is already
described for a bit in section 3.2.3.1. The normalization step and the steps for the
bandwidth filtering are shown in the figure 5.1.

Figure 5.1: The overview of the preprocessing steps to transform the datasets into new ones:
the normalized variant and the filtered variants.

5.1.1 Audio normalization

In both datasets are the recordings not completely consistent with one another. Some
recordings are more pronounced than others, which is similar to how the real world

36



behaves. There are people who have a very loud voice, while others can hardly be
heard. Moreover, depending on how far you are from the microphone, is the recording
more clear or barely distinguishable. This can make it difficult for some encoding
algorithms to find a good configuration, so normalizing the recordings can give a more
even playing ground, but it should be noted that both normalized and non-normalized
cases are interesting to compare the encoding algorithms.

There are two audio normalization methods tested; maximum amplitude and signal
power. The first method finds the maximal value of the absolute of the audio recordings,
the maximum amplitude, then multiplies that audio sample such that the maximum
amplitude becomes 1. The second method works a bit similar, but calculates the signal
power, the squared Root-Mean-Square, and lets that become 1. Both methods were
used to determine the classification potential and both gave similar results, so either
methods worked just as good for normalization. However, it can be argued that using
the maximum amplitude is more like reality, because audio recording usually have a
bounded range that the values can take. Thus, it would make more sense that the
setup would be such that the recordings will be just within the range bounds, but with
different signal powers. Therefore, the normalization based on maximum amplitude is
chosen.

5.1.2 Bank of bandwidth filters

Beside raw audio and normalized audio, we will look at audio filtered through several
band filters. The reason is that bank filters are just like how the biology works, as
well as it provides opportunities for testing other circumstances for encoding. Much
research has been done to find filter-banks that would resemble the ones found in the
human ear [15, 48, 36, 34], but we will use the MEL-scale [40]. Besides resembling
biology, will it also allow us to test a different type of input. With a cochlear filter
bank usually, the output of the filters is put through an extra operation to get the
power of the filtered signal, which transforms the oscillating audio signal into a strictly
positive signal. Bank filtering the signal will give an entirely different environment for
the encoding algorithms be compared in.

The biggest problem with using a bank filter is that the data is multiplied several
times. Each filter will create a separate signal stream which needs a separate
configuration for each encoding algorithm. This means that the computation needed
scales linearly with the number of filters used both for finding configurations and for
assessing the metrics. Moreover, for training the SVM scales the size of the input
linearly with the number of filters, however this will likely cause an exponential increase
in the training time instead of the linear computation time increase of the other parts.

Because of the increasing computation time, is it preferred to use a minimal number
of filters for which we will use the MEL-scale. The MEL-scale transforms the frequencies
to a scale within which the pitch is linear, for example a frequency duplication does
not correspond to a pitch duplication, while a MEL duplication does. This means that
we can split any frequency range in other ranges with equal pitch distances, which can
be done by transforming the frequencies to the MEL-scale, then linearly spacing the
crossing points for the bandwidth filters, and lastly transforming those MEL values
back to frequencies. This method lets us create arbitrary number of filters contrary to

37



other research which define specific bandwidths to use for the bank filtering. Thus, for
this thesis we use three filters with the cutoff frequencies as defined in table 5.1 and a
filter order of ten.

Table 5.1: Frequency for the filters of the filter banks. These Frequencies are given in both
Hz and MEL for the Free Spoken MNIST dataset (FS MNIST) and the Speech Command
dataset (SC).

FS MNIST SC
MEL Hz MEL Hz

lowest F 77.755 50 77.755 50

low to mid Fcutoff 767.19 682.7 998.51 997.8

mid to high Fcutoff 1456.6 1849.3 1919.3 3143.3

highest F 2146.1 4000 2840.0 8000

Getting the power of the signal in time can also be seen as a filtering step. Getting
the power in time, we take the power of a small portion of the signal and move this
small portion in time. The window taken for this portion is set to 1 ms, which would
amount to 8 samples for the Free Spoken MNIST dataset and 16 samples for the Speech
Commands dataset. In MATLAB a moving Root-Mean-Square (RMS) is than applied
with that many samples. The result from this moving RMS is then squared to get the
resulting filtered signals as can be seen in figure 5.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time [s]

-0.5

0

0.5
Raw audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time [s]

-1

0

1
Normalized audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time [s]

0

0.2

0.4

0.6
Energy of low filtered audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time [s]

0

0.05

0.1

0.15
Energy of mid filtered audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time [s]

0

2

4
10

-3 Energy of high filtered audio

'zero' by jackson

Figure 5.2: Example for the five different signals gotten from preprocessing. The example is
taken from a recording of ’Jackson’ saying ’zero’ from the Free Spoken MNIST dataset.

38



5.1.3 Spike train normalization

As described in section 3.2.3.1, will an SVM classify the spike trains, but it will
need a spike train normalization to simulate the temporal classification potential more
accurately. In temporal classification are spikes important relative to one another, so
a shift in time for all spikes equally shouldn’t matter. This time shift occurs in the
dataset, because the starting times of the audio signals are not consistent; some audio
samples are cutoff at the start, while others are cutoff at the end. However, for the SVM
this amounts to shifting values through the dimensions. To minimize this dimension
shifting, we want to find a reference point for all spike trains such that the spike train
times align with one another.

We have explored two ways for this normalization; take the first spike as reference
and take the mean of the spikes as reference. In both cases were the classification
accuracies increased with a similar degree, indicating that spike train normalization
was important, but no clear advantage for either method was found. Thus, the simpler
method was chosen the first spike as reference. This method is simpler and less
computational expensive as only the first and last spike need to be taken into account,
while for the mean of the spikes all spike timings need to be checked. Moreover, the
mean of the spikes can create the need for ’longer’ spike trains. If we have two trains,
where the first spike train has many spikes at the front of the audio sample and a
single one at the back (thus the mean is much closer to the front), while the second
spike train has the opposite (and thus a mean much closer to the back). When those
spike time means are aligned with one another, you need to shift the first spike train
much later in time, thus a much larger time window is needed. On the other hand,
normalizing spike trains according the first spike is done by truncating time samples at
the front which can even lead to a smaller time window. Therefore, normalizing spike
trains based on the first spike time will be more computational efficient, while have
unnoticeable different impacts on the classification accuracy than using the mean spike
time.

5.2 Analysis

Analyzing the maximum amplitudes and maximum differences of the audio samples
will help us find the optimal configurations easier and faster. Most of the encoding
algorithms encode the new signal value or the difference. If we know the maximum
of the amplitude and the difference, will it allow us to know the absolute limit the
thresholds that the encoding algorithms can use. If we use the distribution, we can even
make an educated guess as to what the threshold for the most optimal configuration
will be. Thus, the search place for thresholds will be made smaller, making the search
for the most optimal configuration easier.

From figures 5.3 and 5.4, we can see that the differences of raw and normalized
audio can reach a twice as high as the maximum amplitude, which is not strange as the
signals can be within the range of the negative and positive of the amplitude. We can
also see that the shapes of the differences’ distributions of the two datasets are very
similar, indicating that the datasets are similar which can be expected.

39



Figure 5.3: The distributions for the Free Spoken MNIST dataset of the maximum amplitudes
and maximum differences from the raw and normalized audio samples. The absolute maxima
of the raw audio samples from the dataset are 1 and 1.2849 for the amplitude and differences
respectively. In the case of the normalized audio samples do all the audio samples have a
maximum amplitude of 1 and is the absolute maximum of the differences 1.9915.

Figure 5.4: The distributions for the Speech Command dataset of the maximum amplitudes
and maximum differences from the raw and normalized audio samples. The absolute maxima
of the raw audio samples from the dataset are 1 and 2 for the amplitude and differences
respectively. In the case of the normalized audio samples do all the audio samples have a
maximum amplitude of 1 and is the absolute maximum of the differences 2.

In figures 5.5, 5.6 and 5.7 the distributions for the filtered audio samples are given.
From these figures we can see that the shapes for the maximum amplitude distributions
for the Speech Commands dataset is similar to those of the Free Spoken MNIST dataset,
again indicating that the datasets are similar.

40



Figure 5.5: The distributions of the maximum amplitudes and maximum differences from
the lower bandwidth filtered audio samples for both the Free Spoken MNIST dataset and
the Speech Command dataset. The absolute maxima for the amplitude and differences are
for the lower bandwidth filtered audio of the Free spoken MNIST dataset 0.9244 and 0.1420
respectively, and of the Speech Commands are they 1.1621 and 0.0726 respectively.

Figure 5.6: The distributions of the maximum amplitudes and maximum differences from the
middle bandwidth filtered audio samples for both the Free Spoken MNIST dataset and the
Speech Command dataset. The absolute maxima for the amplitude and differences are for
the middle bandwidth filtered audio of the Free spoken MNIST dataset 0.3685 and 0.1026
respectively, and of the Speech Commands are they 0.7688 and 0.0905 respectively.

41



Figure 5.7: The distributions of the maximum amplitudes and maximum differences from the
higher bandwidth filtered audio samples for both the Free Spoken MNIST dataset and the
Speech Command dataset. The absolute maxima for the amplitude and differences are for
the higher bandwidth filtered audio of the Free spoken MNIST dataset 0.7925 and 0.1349
respectively, and of the Speech Commands are they 0.6750 and 0.0854 respectively.

42



Results and evaluation 6
In this chapter the results will be given as well as discussed. First the signal encoding
accuracy is covered. Secondly, the encoding efficiency is extensively explained. Thirdly,
the classification potential is estimated by first the rough classification accuracy and
then the resistance to noise. Lastly, some limitations and question regarding these
specific results are discussed.

6.1 Signal encoding accuracy

In tables 6.1 to 6.10 the results for signal encoding accuracy are shown. The validation
set is used to get these results, thus the mean and standard deviation of the results
from the validation set are put in the table, as the figures of the distributions would
take even more space. For each table one of the p-SFE is chosen to be compared it the
other encoding algorithms, and printed in bold. The chosen p-SFE is the configuration
with the least thresholds while exceeding the most encoding algorithms in the mean of
the signal encoding accuracy. The signal accuracies of the other encoding algorithms
that exceed the signal accuracies of the chosen p-SFE are also printed in bold.

The first issue that should be addressed is the difference between SERinput and
SERdecoded. For the majority are these two SERs not too different, with SERdecoded

generally being lower than SERinput. However, for p-TE and MWE is it the opposite,
where SERdecoded is higher than SERinput. For p-TE we can see that the difference
between the two SERs is less with more thresholds added. Another consistent exception
to the majority is TE, which has a significantly lower SERdecoded then SERinput. All
these differences don’t give an advantage to p-SFE and can even give a disadvantage or
are insignificant compared to p-SFE. Thus do these differences between SERinput and
SERdecoded not impact the comparison with p-SFE.

Another short issue that should be addressed is the lack of signal encoding accuracy
for BSE in the filtered signal cases. The issue lies with the difficulty of the filter design
which indirectly causes the algorithm to not spike for the validation set. As told before,
designing a filter is non-trivial and using a genetic algorithm is practically necessary.
Even with randomly splitting the datasets in three parts to prevent overfitting, we see
that overfitting still happens in the cases of the filtered signals, while overfitting doesn’t
happen for the audio cases. This shows the big downside of BSE, which is fragile in
design.

We can compare the maximum signal encoding accuracy reached by p-SFE with the
signal accuracies reached by the other encoding algorithms. In generally we can see that
the signal accuracy reached by p-SFE is higher than the signal accuracy of the other
encoding algorithms. There is a significant exception, LE manages to achieve a much
better signal accuracy for the raw audio and normalized audio, making it technically

43



the better option in these cases. Still, in the cases of the filtered signals we see a drastic
drop in the signal accuracy of LE. This decrease is even to such a degree that p-SFE
achieves better signal accuracies with only two or three thresholds, similar to the other
algorithms.

Another reason to disregard LE for signal encoding accuracy is its weakness to
spike time inaccuracy. For other encoding algorithms as the spike only need to occur
somewhere within sample time, can those spikes be perfectly decoded as long as they
are within half a sample time from the moment they should spike. On the other hand,
with LE will a slight deviation of the exact spike moment be reflected in the decoded
output. Thus, an error in spike time would get reflected into a similar error of the
decoding, which is not modeled in the results of tables 6.1 to 6.10. This kind of error
could have a significantly negative impact on the signal encoding accuracy, such that
p-SFE could become a comparable or perhaps even better option even for the raw
and/or normalized audio cases.

We can also compare the p-SFE with different number of thresholds. Here we see
that both SERdecoded and SERinput increase in the same way. However, we also see that
Σ Pspike (see equation 3.8) increases. This trend is visible in both the means and the
standard deviation. Thus, with more thresholds added we can expect a growth in signal
accuracy at the cost of more spikes generated. However, we can see that the growth is
much quicker than p-TE, which allows p-SFE to only need two or three thresholds to
standout above the other encoding algorithms with respect to the signal accuracy.

44



Table 6.1: The mean signal encoding accuracy of the results for the encoding algorithms from
the raw audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE 7.335 (± 5.116) 4.474 (± 9.024) 0.06035 (± 0.07052)

LE 467.4 (± 248.6) 467 (± 249.4) 0.9977 (± 0.006742)

TE 1.89 (± 1.647) -18.05 (± 7.295) 0.02677 (± 0.02732)

TCE 5.915 (± 3.897) -0.3927 (± 8.613) 0.1314 (± 0.1416)

MWE -42.81 (± 15.54) -0.07945 (± 0.4387) 0.3335 (± 0.2427)

SFE 6.722 (± 4.485) 0.1052 (± 9.14) 0.1311 (± 0.141)

p-TE (2) -20.03 (± 9.278) 1.482 (± 0.9156) 0.05067 (± 0.03502)
p-TE (3) -23.73 (± 13.51) 2.329 (± 1.863) 0.06311 (± 0.04859)
p-TE (4) -14.28 (± 18.16) 4.015 (± 3.884) 0.07053 (± 0.05841)
p-TE (5) 1.184 (± 7.602) 7.177 (± 5.411) 0.1176 (± 0.09425)
p-TE (6) 1.624 (± 8.182) 8.497 (± 6.57) 0.1194 (± 0.0961)
p-TE (7) 3.584 (± 10.46) 9.642 (± 7.837) 0.1207 (± 0.09776)
p-TE (8) 8.076 (± 9.958) 11 (± 9.682) 0.141 (± 0.1208)
p-TE (9) 10.17 (± 10.55) 11.87 (± 10.83) 0.1652 (± 0.1457)
p-TE (10) 11.68 (± 12.02) 13.02 (± 11.97) 0.1712 (± 0.1531)

p-SFE (2) 12.35 (± 7.504) 8.758 (± 9.951) 0.3358 (± 0.299)
p-SFE (3) 19.48 (± 11.32) 17.49 (± 13.07) 0.3212 (± 0.2804)
p-SFE (4) 25.25 (± 11.9) 23.54 (± 13.69) 0.8567 (± 0.5707)
p-SFE (5) 35.43 (± 14.09) 34.84 (± 14.6) 0.6703 (± 0.4461)
p-SFE (6) 44.42 (± 14.54) 44.1 (± 14.83) 0.9978 (± 0.5659)
p-SFE (7) 54.01 (± 15.95) 53.82 (± 16.13) 1.265 (± 0.6124)
p-SFE (8) 63.04 (± 16.9) 62.92 (± 17.05) 1.668 (± 0.6761)
p-SFE (9) 71.97 (± 18.61) 71.88 (± 18.76) 2.101 (± 0.7165)
p-SFE (10) 84.29 (± 20.33) 84.24 (± 20.4) 2.288 (± 0.6739)

45



Table 6.2: The mean signal encoding accuracy of the results for the encoding algorithms
from the normalized audio of the Free Spoken MNIST dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE 11.09 (± 4.122) 12.17 (± 5.529) 0.157 (± 0.07883)

LE 396.5 (± 277.2) 396.4 (± 277.3) 0.9998 (± 0.0003924)

TE 3.222 (± 0.9074) -12.94 (± 2.593) 0.02674 (± 0.01135)

TCE 11.38 (± 3.521) 8.469 (± 4.677) 0.1468 (± 0.04876)

MWE -49.33 (± 14.59) 0.08398 (± 0.1784) 0.1111 (± 0.0445)

SFE 12.3 (± 3.646) 9.139 (± 5.06) 0.1461 (± 0.04813)

p-TE (2) -9.54 (± 3.98) -0.6231 (± 0.649) 0.02989 (± 0.01236)
p-TE (3) 3.387 (± 3.05) 6.796 (± 1.735) 0.08697 (± 0.02926)
p-TE (4) 7.107 (± 2.522) 10.27 (± 1.533) 0.1659 (± 0.0528)
p-TE (5) 14.36 (± 2.104) 13.67 (± 2.606) 0.187 (± 0.05963)
p-TE (6) 17.04 (± 2.154) 18.57 (± 2.118) 0.1931 (± 0.0609)
p-TE (7) 19.24 (± 1.655) 21.02 (± 1.443) 0.2923 (± 0.08545)
p-TE (8) 21.6 (± 2.227) 22.62 (± 2.036) 0.3005 (± 0.08819)
p-TE (9) 23.53 (± 2.157) 24.34 (± 2.084) 0.3493 (± 0.1028)
p-TE (10) 25.37 (± 1.573) 26.2 (± 1.48) 0.4622 (± 0.136)

p-SFE (2) 22.69 (± 4.944) 21.37 (± 5.643) 0.3205 (± 0.09235)
p-SFE (3) 31.34 (± 4.148) 30.77 (± 4.428) 0.4269 (± 0.1181)
p-SFE (4) 41.18 (± 5.935) 40.86 (± 6.163) 0.7099 (± 0.1838)
p-SFE (5) 50.26 (± 8.482) 50.05 (± 8.686) 1.063 (± 0.2492)
p-SFE (6) 58.17 (± 12.05) 58.01 (± 12.23) 1.459 (± 0.3149)
p-SFE (7) 64.81 (± 16.21) 64.68 (± 16.38) 1.886 (± 0.368)
p-SFE (8) 70.27 (± 20.65) 70.16 (± 20.8) 2.329 (± 0.4026)
p-SFE (9) 74.92 (± 25.24) 74.82 (± 25.38) 2.78 (± 0.433)
p-SFE (10) 79 (± 29.87) 78.9 (± 30) 3.246 (± 0.467)

46



Table 6.3: The mean signal encoding accuracy of the results for the encoding algorithms
from the low filtered audio of the Free Spoken MNIST dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 31.94 (± 9.4) 31.5 (± 9.915) 0.2728 (± 0.135)

TE 7.133 (± 1.913) -4.922 (± 3.902) 0.01839 (± 0.01197)

TCE 19.02 (± 5.782) 18.8 (± 5.069) 0.1278 (± 0.086)

MWE -56.59 (± 10.24) 0.2443 (± 0.2204) 0.3053 (± 0.1458)

SFE 15.76 (± 5.848) 16.23 (± 4.419) 0.1258 (± 0.08578)

p-TE (2) 10.05 (± 2.683) 6.365 (± 4.798) 0.04711 (± 0.02049)
p-TE (3) 14.27 (± 5.097) 16.57 (± 3.018) 0.05153 (± 0.02363)
p-TE (4) 17.37 (± 4.679) 19.14 (± 3.258) 0.07674 (± 0.03615)
p-TE (5) 21.28 (± 5.864) 21.92 (± 4.926) 0.08758 (± 0.04303)
p-TE (6) 25.94 (± 3.996) 26.1 (± 4.19) 0.117 (± 0.04856)
p-TE (7) 27.75 (± 4.412) 28.52 (± 3.922) 0.1183 (± 0.04969)
p-TE (8) 29.45 (± 4.439) 30.12 (± 4.056) 0.1406 (± 0.06098)
p-TE (9) 31.51 (± 2.996) 32.06 (± 2.845) 0.141 (± 0.06102)
p-TE (10) 33.16 (± 3.699) 33.53 (± 3.567) 0.1485 (± 0.06626)

p-SFE (2) 27.69 (± 6.84) 27.87 (± 6.396) 0.2073 (± 0.1357)
p-SFE (3) 39.2 (± 7.256) 39.19 (± 7.186) 0.3256 (± 0.19)
p-SFE (4) 50.28 (± 7.905) 50.26 (± 7.906) 0.471 (± 0.2441)
p-SFE (5) 61.32 (± 8.72) 61.3 (± 8.731) 0.6515 (± 0.3039)
p-SFE (6) 72.37 (± 9.536) 72.35 (± 9.545) 0.8657 (± 0.3667)
p-SFE (7) 83.52 (± 10.33) 83.51 (± 10.33) 1.115 (± 0.4337)
p-SFE (8) 94.64 (± 11.52) 94.64 (± 11.52) 1.408 (± 0.5058)
p-SFE (9) 105.4 (± 13.96) 105.4 (± 13.96) 1.75 (± 0.5839)
p-SFE (10) 116.4 (± 16.12) 116.4 (± 16.12) 2.11 (± 0.6601)

47



Table 6.4: The mean signal encoding accuracy of the results for the encoding algorithms
from the mid filtered audio of the Free Spoken MNIST dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 34.9 (± 11.78) 34.4 (± 12.6) 0.3054 (± 0.1145)

TE 6.774 (± 2.015) -6.143 (± 4.696) 0.01561 (± 0.008679)

TCE 18.85 (± 6.07) 17.93 (± 6.765) 0.1083 (± 0.05091)

MWE -55.74 (± 10.04) 0.2236 (± 0.1999) 0.2939 (± 0.1179)

SFE 16.58 (± 5.002) 15.59 (± 5.961) 0.1218 (± 0.05565)

p-TE (2) 9.902 (± 3.31) 6.937 (± 4.995) 0.04324 (± 0.01867)
p-TE (3) 13.86 (± 4.317) 15.95 (± 2.791) 0.04649 (± 0.01959)
p-TE (4) 16.79 (± 3.579) 18.26 (± 2.48) 0.04684 (± 0.01962)
p-TE (5) 20.37 (± 2.873) 21.22 (± 2.825) 0.06843 (± 0.02943)
p-TE (6) 24.53 (± 4.201) 24.55 (± 4.376) 0.07611 (± 0.03213)
p-TE (7) 25.99 (± 4.409) 26.79 (± 3.929) 0.0769 (± 0.03246)
p-TE (8) 27.54 (± 4.409) 28.24 (± 4.037) 0.1022 (± 0.04354)
p-TE (9) 23.97 (± 6.152) 25.51 (± 5.064) 0.1022 (± 0.04354)
p-TE (10) 24.5 (± 6.491) 25.94 (± 5.368) 0.1073 (± 0.04515)

p-SFE (2) 26.94 (± 6.566) 26.44 (± 7.124) 0.2146 (± 0.09143)
p-SFE (3) 36.04 (± 8.627) 35.72 (± 8.997) 0.3291 (± 0.1289)
p-SFE (4) 44.43 (± 11.22) 44.22 (± 11.47) 0.4709 (± 0.1718)
p-SFE (5) 52.41 (± 14.13) 52.27 (± 14.3) 0.6425 (± 0.2224)
p-SFE (6) 60.27 (± 17.15) 60.17 (± 17.28) 0.8445 (± 0.2783)
p-SFE (7) 68.04 (± 20.55) 67.96 (± 20.64) 1.084 (± 0.3404)
p-SFE (8) 75.88 (± 24.06) 75.82 (± 24.13) 1.351 (± 0.4077)
p-SFE (9) 81.31 (± 28.98) 81.25 (± 29.06) 1.691 (± 0.4851)
p-SFE (10) 89.59 (± 32.88) 89.55 (± 32.94) 2.018 (± 0.5509)

48



Table 6.5: The mean signal encoding accuracy of the results for the encoding algorithms
from the high filtered audio of the Free Spoken MNIST dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 14.97 (± 10.33) 10.45 (± 15.26) 0.1185 (± 0.1061)

TE 4.258 (± 2.215) -15.53 (± 10.48) 0.01127 (± 0.0101)

TCE 9.136 (± 8.666) 6.047 (± 10.72) 0.08282 (± 0.08047)

MWE -52.37 (± 19.53) 0.1066 (± 1.546) 0.1452 (± 0.1336)

SFE 9.993 (± 7.93) 4.888 (± 12.84) 0.1463 (± 0.1148)

p-TE (2) -22.84 (± 19.85) 0.2549 (± 4.385) 0.003956 (± 0.005551)
p-TE (3) -23.03 (± 20.02) 3.313 (± 3.234) 0.004304 (± 0.006451)
p-TE (4) -22.99 (± 20.09) 3.698 (± 3.758) 0.004335 (± 0.00654)
p-TE (5) -21.68 (± 21.45) 3.881 (± 4.482) 0.005397 (± 0.008951)
p-TE (6) -21.45 (± 21.84) 3.974 (± 4.821) 0.005506 (± 0.009357)
p-TE (7) -21.41 (± 21.9) 4.062 (± 4.968) 0.005517 (± 0.009397)
p-TE (8) -21.37 (± 22) 4.12 (± 5.223) 0.005522 (± 0.009417)
p-TE (9) -21.34 (± 22.05) 4.132 (± 5.28) 0.005532 (± 0.00946)
p-TE (10) -21.32 (± 22.1) 4.148 (± 5.37) 0.005542 (± 0.009504)

p-SFE (2) 16.08 (± 10.66) 12.14 (± 14.84) 0.2559 (± 0.1987)
p-SFE (3) 22.06 (± 12.88) 19.12 (± 16.48) 0.3373 (± 0.2575)
p-SFE (4) 27.67 (± 15.89) 25.63 (± 18.31) 0.4308 (± 0.3109)
p-SFE (5) 33.59 (± 18.28) 31.75 (± 20.73) 0.5736 (± 0.3739)
p-SFE (6) 41.45 (± 19.98) 40.43 (± 21.45) 0.6166 (± 0.3845)
p-SFE (7) 48.07 (± 23.25) 47.06 (± 24.84) 0.8331 (± 0.4584)
p-SFE (8) 54.69 (± 27.05) 53.72 (± 28.58) 1.09 (± 0.5342)
p-SFE (9) 60.63 (± 31.54) 59.65 (± 33.05) 1.417 (± 0.6197)
p-SFE (10) 67.49 (± 36.14) 66.59 (± 37.52) 1.745 (± 0.6879)

49



Table 6.6: The mean signal encoding accuracy of the results for the encoding algorithms from
the raw audio of the Speech Commands dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE 7.378 (± 4.488) 6.485 (± 8.389) 0.05487 (± 0.05593)

LE 364.1 (± 279.5) 363.4 (± 280.4) 0.9973 (± 0.01099)

TE 2.1 (± 1.27) -18.02 (± 6.502) 0.009264 (± 0.01169)

TCE 11.25 (± 6.238) 7.188 (± 9.327) 0.06981 (± 0.06137)

MWE -54.25 (± 17.19) -0.03276 (± 0.9651) 0.1469 (± 0.09621)

SFE 11.48 (± 6.084) 7.357 (± 9.29) 0.06974 (± 0.06131)

p-TE (2) -34.08 (± 13.05) 0.1377 (± 0.287) 0.01006 (± 0.01278)
p-TE (3) -4.89 (± 5.68) 4.125 (± 2.931) 0.0247 (± 0.02859)
p-TE (4) -5.091 (± 6.258) 5.873 (± 3.986) 0.02525 (± 0.0298)
p-TE (5) 2.057 (± 7.812) 7.657 (± 5.984) 0.02811 (± 0.03451)
p-TE (6) 3.659 (± 7.83) 10.06 (± 5.35) 0.05233 (± 0.05601)
p-TE (7) 7.054 (± 9.401) 11.6 (± 6.6) 0.05527 (± 0.06038)
p-TE (8) 13.75 (± 5.447) 15.72 (± 7.737) 0.07962 (± 0.08287)
p-TE (9) 16.22 (± 5.886) 17.27 (± 8.407) 0.08666 (± 0.09156)
p-TE (10) 18.34 (± 7.407) 18.85 (± 9.436) 0.08765 (± 0.09359)

p-SFE (2) 20.36 (± 8.793) 18.4 (± 10.65) 0.1429 (± 0.1146)
p-SFE (3) 28.26 (± 10.87) 27.16 (± 12) 0.2478 (± 0.1754)
p-SFE (4) 36.23 (± 12.61) 35.55 (± 13.43) 0.3557 (± 0.227)
p-SFE (5) 43.25 (± 15.15) 42.73 (± 15.9) 0.5287 (± 0.2989)
p-SFE (6) 51.13 (± 17.31) 50.76 (± 17.93) 0.7002 (± 0.3583)
p-SFE (7) 57.67 (± 20.72) 57.33 (± 21.31) 0.9522 (± 0.4379)
p-SFE (8) 65.97 (± 23.33) 65.71 (± 23.82) 1.198 (± 0.5005)
p-SFE (9) 72.47 (± 27.45) 72.22 (± 27.92) 1.536 (± 0.5779)
p-SFE (10) 78.74 (± 31.86) 78.49 (± 32.31) 1.914 (± 0.6493)

50



Table 6.7: The mean signal encoding accuracy of the results for the encoding algorithms
from the normalized audio of the Speech Commands dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE 9.795 (± 3.243) 3.949 (± 6.622) 0.1277 (± 0.08479)

LE 602.1 (± 5.148) 602.1 (± 5.148) 1 (± 0)

TE 2.746 (± 0.9099) -15.12 (± 3.867) 0.009437 (± 0.007479)

TCE 14.2 (± 6.012) 11.43 (± 7.827) 0.08414 (± 0.04507)

MWE -57.14 (± 15.68) 0.03028 (± 0.4827) 0.06543 (± 0.04047)

SFE 14.82 (± 5.693) 12.01 (± 7.567) 0.08332 (± 0.04472)

p-TE (2) -8.753 (± 5.113) 0.301 (± 1.985) 0.1455 (± 0.07577)
p-TE (3) -10.07 (± 6.524) 2.852 (± 1.883) 0.1512 (± 0.07611)
p-TE (4) -2.025 (± 5.739) 5.403 (± 2.271) 0.1787 (± 0.08797)
p-TE (5) 10.07 (± 3.567) 12.3 (± 1.91) 0.2061 (± 0.1035)
p-TE (6) 13.81 (± 3.686) 14.61 (± 2.665) 0.2169 (± 0.1076)
p-TE (7) 14.8 (± 4.178) 16.64 (± 3.136) 0.218 (± 0.1079)
p-TE (8) 17.24 (± 4.553) 18.52 (± 3.779) 0.2313 (± 0.1141)
p-TE (9) 19.8 (± 3.827) 20.75 (± 3.284) 0.2706 (± 0.1428)
p-TE (10) 23.03 (± 2.74) 23.67 (± 2.434) 0.3098 (± 0.1731)

p-SFE (2) 24.59 (± 8.383) 23.19 (± 9.672) 0.1853 (± 0.09435)
p-SFE (3) 33.15 (± 10.42) 32.34 (± 11.36) 0.2929 (± 0.1408)
p-SFE (4) 39.65 (± 13.6) 39.04 (± 14.4) 0.4551 (± 0.2024)
p-SFE (5) 46.57 (± 16.36) 46.11 (± 17.01) 0.631 (± 0.263)
p-SFE (6) 53.2 (± 19.33) 52.84 (± 19.88) 0.8435 (± 0.3299)
p-SFE (7) 59.77 (± 22.51) 59.48 (± 22.97) 1.094 (± 0.4013)
p-SFE (8) 66.44 (± 25.89) 66.19 (± 26.29) 1.383 (± 0.4738)
p-SFE (9) 73.31 (± 29.45) 73.1 (± 29.8) 1.709 (± 0.5429)
p-SFE (10) 77.72 (± 33.95) 77.51 (± 34.28) 2.106 (± 0.6125)

51



Table 6.8: The mean signal encoding accuracy of the results for the encoding algorithms
from the low filtered audio of the Speech Commands dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 33.09 (± 11.61) 32.48 (± 12.65) 0.1526 (± 0.1058)

TE 6.573 (± 2.213) -6.53 (± 5.696) 0.003703 (± 0.002887)

TCE 21.73 (± 10.75) 22.4 (± 8.008) 0.0447 (± 0.03693)

MWE -58.09 (± 13.58) 0.1839 (± 0.3809) 0.3171 (± 0.228)

SFE 18.73 (± 8.297) 19.27 (± 6.678) 0.05554 (± 0.04394)

p-TE (2) 7.391 (± 5.499) 5.745 (± 4.704) 0.01064 (± 0.005552)
p-TE (3) 10.79 (± 7.53) 14.27 (± 4.032) 0.01149 (± 0.006199)
p-TE (4) 13.91 (± 7.345) 16.48 (± 4.683) 0.01716 (± 0.009323)
p-TE (5) 18.13 (± 5.293) 19.84 (± 3.809) 0.02372 (± 0.01184)
p-TE (6) 22.63 (± 6.846) 23.32 (± 5.591) 0.02583 (± 0.01316)
p-TE (7) 24.01 (± 7.455) 25.27 (± 5.937) 0.02608 (± 0.01345)
p-TE (8) 26.14 (± 6.413) 27.16 (± 5.193) 0.02614 (± 0.01345)
p-TE (9) 27.93 (± 5.994) 28.79 (± 5) 0.03277 (± 0.01681)
p-TE (10) 29.57 (± 6.129) 30.28 (± 5.261) 0.03751 (± 0.01954)

p-SFE (2) 30.26 (± 10.02) 30.64 (± 8.992) 0.08658 (± 0.06504)
p-SFE (3) 41.46 (± 10.82) 41.62 (± 10.3) 0.1279 (± 0.08855)
p-SFE (4) 52.62 (± 10.93) 52.67 (± 10.71) 0.1937 (± 0.1237)
p-SFE (5) 63.53 (± 11.27) 63.55 (± 11.18) 0.2715 (± 0.1625)
p-SFE (6) 74.65 (± 11.49) 74.65 (± 11.47) 0.3733 (± 0.2116)
p-SFE (7) 85.79 (± 11.87) 85.79 (± 11.87) 0.4941 (± 0.2674)
p-SFE (8) 96.73 (± 12.66) 96.73 (± 12.68) 0.6419 (± 0.3336)
p-SFE (9) 108.4 (± 12.92) 108.4 (± 12.93) 0.7749 (± 0.3904)
p-SFE (10) 120 (± 13.69) 120 (± 13.71) 0.9591 (± 0.4677)

52



Table 6.9: The mean signal encoding accuracy of the results for the encoding algorithms
from the mid filtered audio of the Speech Commands dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 37.15 (± 8.949) 36.83 (± 9.641) 0.1512 (± 0.09565)

TE 7.063 (± 1.796) -4.618 (± 3.626) 0.003604 (± 0.002457)

TCE 22.56 (± 9.366) 23.09 (± 7.423) 0.03932 (± 0.02675)

MWE -60.41 (± 11.55) 0.1585 (± 0.3404) 0.2911 (± 0.2088)

SFE -25.14 (± 8.163) 1.288 (± 1.506) 9.994e-05 (± 0.000417)

p-TE (2) 8.984 (± 3.58) 7.305 (± 3.407) 0.01055 (± 0.005065)
p-TE (3) 12.06 (± 5.171) 15 (± 3.235) 0.01131 (± 0.005484)
p-TE (4) 16.37 (± 5.159) 18.36 (± 3.9) 0.01699 (± 0.008363)
p-TE (5) 19.08 (± 6.402) 20.28 (± 5.251) 0.01899 (± 0.009505)
p-TE (6) 22.84 (± 4.795) 23.52 (± 4.237) 0.01905 (± 0.009505)
p-TE (7) 24.27 (± 4.821) 24.82 (± 4.423) 0.02579 (± 0.01276)
p-TE (8) 24.86 (± 5.102) 25.78 (± 4.538) 0.02596 (± 0.01296)
p-TE (9) 25.98 (± 5.394) 26.8 (± 4.885) 0.03058 (± 0.01548)
p-TE (10) 26.91 (± 5.79) 27.63 (± 5.311) 0.03349 (± 0.01716)

p-SFE (2) 32.27 (± 7.418) 32.37 (± 7.135) 0.08755 (± 0.05498)
p-SFE (3) 43.24 (± 7.828) 43.25 (± 7.742) 0.1329 (± 0.07875)
p-SFE (4) 53.83 (± 8.116) 53.83 (± 8.099) 0.1933 (± 0.1083)
p-SFE (5) 64.09 (± 8.555) 64.08 (± 8.56) 0.2704 (± 0.1443)
p-SFE (6) 74.24 (± 9.292) 74.23 (± 9.3) 0.3653 (± 0.1871)
p-SFE (7) 83.29 (± 11.46) 83.28 (± 11.47) 0.4932 (± 0.2429)
p-SFE (8) 94.67 (± 11.63) 94.66 (± 11.63) 0.6101 (± 0.2919)
p-SFE (9) 103.7 (± 14.86) 103.7 (± 14.86) 0.7769 (± 0.3599)
p-SFE (10) 114.4 (± 16.57) 114.4 (± 16.58) 0.9468 (± 0.4264)

53



Table 6.10: The mean signal encoding accuracy of the results for the encoding algorithms
from the high filtered audio of the Speech Commands dataset. The parentheses behind the
population encoding algorithms show the number of thresholds used, while the parenthesis
behind the mean values are the standard deviation.

SERinput [dB] SERdecoded [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 17.29 (± 14) 10.9 (± 21.96) 0.07746 (± 0.08808)

TE 4.06 (± 2.47) -18.74 (± 14.77) 0.002487 (± 0.00309)

TCE 9.131 (± 12.61) 8.706 (± 10.62) 0.06067 (± 0.07946)

MWE -68.47 (± 19.7) 0.08067 (± 0.7351) 0.1305 (± 0.1612)

SFE 7.23 (± 11.84) 6.496 (± 10.2) 0.07132 (± 0.0866)

p-TE (2) -20.9 (± 15) 2.837 (± 2.839) 0.0008471 (± 0.002293)
p-TE (3) -20.69 (± 15.45) 3.539 (± 3.909) 0.0008619 (± 0.002352)
p-TE (4) -18.82 (± 16.92) 3.681 (± 4.818) 0.001083 (± 0.003139)
p-TE (5) -18.58 (± 17.41) 3.779 (± 5.205) 0.001122 (± 0.003341)
p-TE (6) -18.51 (± 17.57) 3.907 (± 5.545) 0.001129 (± 0.003385)
p-TE (7) -18.16 (± 17.9) 3.866 (± 5.837) 0.001562 (± 0.004745)
p-TE (8) -18.07 (± 18.07) 3.89 (± 6.003) 0.001695 (± 0.005342)
p-TE (9) -18.02 (± 18.17) 3.911 (± 6.107) 0.00176 (± 0.00569)
p-TE (10) -18.02 (± 18.17) 3.911 (± 6.107) 0.00176 (± 0.00569)

p-SFE (2) 13.27 (± 13.74) 13.27 (± 12.1) 0.1143 (± 0.15)
p-SFE (3) 19.37 (± 15.19) 19.03 (± 14.6) 0.1659 (± 0.2144)
p-SFE (4) 25.51 (± 17.15) 25.41 (± 16.64) 0.1967 (± 0.2568)
p-SFE (5) 32.06 (± 18.77) 31.67 (± 18.99) 0.2532 (± 0.3124)
p-SFE (6) 38.81 (± 20.7) 38.41 (± 21.12) 0.3069 (± 0.3583)
p-SFE (7) 45.26 (± 22.92) 44.58 (± 23.94) 0.4111 (± 0.4342)
p-SFE (8) 53.28 (± 24.81) 52.86 (± 25.51) 0.4513 (± 0.4545)
p-SFE (9) 60.52 (± 27.53) 60.05 (± 28.36) 0.5665 (± 0.5211)
p-SFE (10) 68.13 (± 30.61) 67.69 (± 31.43) 0.6923 (± 0.5855)

54



6.2 Encoding efficiency

In tables 6.11 to 6.20 the results for encoding efficiency are shown. These results are
the mean and standard deviation from the validation set results, just like for the tables
of the signal encoding accuracy. In addition, the best efficiency with the least number
of thresholds is printed in bold as well as the efficiencies that exceed it, similar to the
tables of signal accuracy. Further, the p-SFE with the highest efficiency and a Σ Pspike

similar to the other encoding algorithms is underlined. The efficiencies that are higher
than the underlined efficiency of p-SFE are also underlined.

Although the differences between SERinput and SERdecoded for efficiency is mostly
similar to the differences for signal accuracy, there are some notable changes. Firstly,
for BSE is SERdecoded higher than SERinput in all cases, where with the signal accuracy
it was the opposite. Secondly, for p-TE with the signal accuracy the SERdecoded is
sometimes lower than the SERinput, but for efficiency SERdecoded is always significantly
higher than SERinput. Thirdly, for p-SFE in the cases with the filtered signals we see
that SER decoded becomes higher than SERinput for fewer thresholds. This would give
p-SFE an advantage with respect to other encoding algorithms, thus using SERdecoded

becomes questionable.

Where BSE didn’t spike with the signal accuracy test, it now does sometimes spike
for the efficiency. There are only two cases left where BSE doesn’t spike: the low
and high filtered signals. So BSE is less fragile while designing for efficiency, but is
still fragile enough to fail to spike in two cases. However, it should be noted that the
efficiency of BSE achieves much better results than the signal accuracy relative to the
other algorithms. It shows that BSEs specialty is being efficient, even though it is fairly
fragile.

Comparing the maximum efficiency achieved by p-SFE to that of other encoding
algorithms we see a better result than for the signal accuracy test. LE has been reduced
very significantly with respect to the signal accuracy. The result is that even for
raw and normalized audio the p-SFE achieves better efficiencies. This makes p-SFE
unchallenged for the maximum efficiency with one exception; p-TE achieves higher
SERdecoded / Σ Pspike for the high filtered signals on the Speech Commands dataset, see
table 6.20. However, as stated before, using SERdecoded for efficiency is questionable.
Moreover, looking at the rate that the maximum efficiency increases for each threshold
added to p-SFE shows that with eleven or twelve thresholds p-SFE would be likely to
also achieve higher efficiency in that specific case. This means that p-SFE is strongly
in the lead with respect to signal accuracy.

Unfortunately, achieving the highest efficiency doesn’t show that it is necessarily
best for the intended purpose. The efficiency metric should show that with a spike
bandwidth limit, because of the AER communication, the highest signal encoding
accuracy would be achieved even while dropping/forgetting spikes. However, this only
truly holds for roughly similar Σ Pspike as some spikes could have a bigger impact
on the signal accuracy than others. This could lead to an exponential drop of signal
accuracy relative to the number of spikes dropped. Therefore, we should compare
encoding algorithms with roughly similar Σ Pspike. The maximum efficiency for p-SFE
is achieved by those with the most number of thresholds in all cases, which also have the

55



highest Σ Pspike. So to get a better comparison we should look at the lesser performing
p-SFE with only a few thresholds.

Comparing p-SFE with fewer thresholds to the other encoding algorithms, we see
that p-SFE doesn’t get the highest efficiency anymore. Firstly, BSE achieves almost
always better efficiency. Secondly and similarly, TE also almost always achieves better
efficiency, but in two of the cases TE only has a higher SERinput / Σ Pspike by more
than 5. Thirdly, in half the cases TCE achieves a better efficiency; for the mid and
high filtered signals only with about 2, while for the normalized audio of the Speech
Commands it reaches a significant 18. Fourthly, LE achieves a higher SERinput / Σ
Pspike only for the high filtered signals. If we look at SERdecoded / Σ Pspike, we see that
p-SFE achieves better efficiency relative to the other encoding algorithms, while MWE
and p-TE achieve a higher efficiency than p-SFE.

Table 6.11: The mean encoding efficiency of the results for the encoding algorithms from
the raw audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 45.59 (± 11.63) 47.01 (± 5.721) 0.002281 (± 0.004252)

LE 28.49 (± 12.53) 15.9 (± 6.317) 0.1082 (± 0.1072)

TE 43.61 (± 17.62) 12.49 (± 10.41) 0.03012 (± 0.02943)

TCE 31.99 (± 12.74) 25.78 (± 9.983) 0.09434 (± 0.1098)

MWE -24.04 (± 24.85) 24.85 (± 17.24) 0.1043 (± 0.1261)

SFE 30.88 (± 11.71) 24.55 (± 10.78) 0.1109 (± 0.1249)

p-TE (2) -9.306 (± 8.603) 41.4 (± 18.69) 0.03091 (± 0.02979)

p-SFE (2) 37.43 (± 7.133) 33.14 (± 3.879) 0.0994 (± 0.1147)
p-SFE (3) 37.97 (± 6.007) 34.53 (± 4.759) 0.2209 (± 0.2113)
p-SFE (4) 38.8 (± 6.438) 37.34 (± 7.174) 0.3803 (± 0.3077)
p-SFE (5) 42.17 (± 8.581) 41.5 (± 9.151) 0.5719 (± 0.3985)
p-SFE (6) 47.41 (± 10.74) 47.07 (± 11.04) 0.8295 (± 0.5006)
p-SFE (7) 38.53 (± 26.15) 37.25 (± 27.88) 1.88 (± 0.8104)
p-SFE (8) 42.35 (± 30.54) 41.09 (± 32.22) 2.259 (± 0.8889)
p-SFE (9) 69.85 (± 16.53) 69.79 (± 16.6) 1.739 (± 0.6281)
p-SFE (10) 78.59 (± 18.75) 78.55 (± 18.81) 2.093 (± 0.6836)

56



Table 6.12: The mean encoding efficiency of the results for the encoding algorithms from the
normalized audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 52.15 (± 9.456) 52.35 (± 4.155) 0.001404 (± 0.001843)

LE 38.23 (± 8.316) 21.3 (± 3.968) 0.02209 (± 0.01686)

TE 43.91 (± 5.776) 22.36 (± 4.877) 0.009231 (± 0.005413)

TCE 56 (± 6.095) 35.59 (± 4.268) 0.002113 (± 0.002373)

MWE 19.16 (± 23.12) 62.02 (± 7.967) 0.0003124 (± 0.0008252)

SFE 63.16 (± 3.525) 36.21 (± 4.488) 0.0007745 (± 0.0004323)

p-TE (2) 20 (± 5.286) 40.93 (± 5.64) 0.01001 (± 0.0057)

p-SFE (2) 63.16 (± 3.525) 36.21 (± 4.488) 0.0007745 (± 0.0004323)
p-SFE (3) 39.12 (± 3.848) 38.55 (± 4.091) 0.4269 (± 0.1181)
p-SFE (4) 44.5 (± 5.346) 44.18 (± 5.569) 0.7099 (± 0.1838)
p-SFE (5) 50.01 (± 7.878) 49.8 (± 8.083) 1.063 (± 0.2492)
p-SFE (6) 55.12 (± 11.49) 54.97 (± 11.67) 1.459 (± 0.3149)
p-SFE (7) 59.49 (± 15.72) 59.36 (± 15.89) 1.886 (± 0.368)
p-SFE (8) 63.08 (± 20.26) 62.97 (± 20.41) 2.329 (± 0.4026)
p-SFE (9) 66.17 (± 24.94) 66.06 (± 25.08) 2.78 (± 0.433)
p-SFE (10) 68.89 (± 29.63) 68.79 (± 29.76) 3.246 (± 0.467)

57



Table 6.13: The mean encoding efficiency of the results for the encoding algorithms from the
low filtered audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 50.68 (± 8.608) 53.97 (± 7.59) 0.002896 (± 0.003772)

LE 38.14 (± 6.939) 30.59 (± 3.735) 0.04126 (± 0.04057)

TE 45.3 (± 6.371) 33.02 (± 6.264) 0.01517 (± 0.01119)

TCE 49.62 (± 7.295) 63.54 (± 7.197) 0.001428 (± 0.002684)

MWE 3.764 (± 28.07) 50.93 (± 11.25) 0.002191 (± 0.005416)

SFE 48.24 (± 6.596) 68.09 (± 7.55) 0.0007473 (± 0.001649)

p-TE (2) 37.31 (± 3.562) 42.17 (± 8.076) 0.01552 (± 0.01123)
p-TE (3) 36.03 (± 4.066) 46.64 (± 5.659) 0.01584 (± 0.01169)
p-TE (4) 36.03 (± 4.065) 46.67 (± 5.645) 0.01584 (± 0.01169)

p-SFE (2) 48.44 (± 6.74) 68.05 (± 7.8) 0.000802 (± 0.001793)
p-SFE (3) 46.75 (± 7.134) 64.23 (± 10.17) 0.002053 (± 0.003895)
p-SFE (4) 58.31 (± 6.192) 58.29 (± 6.209) 0.4539 (± 0.2359)
p-SFE (5) 66.21 (± 7.514) 66.2 (± 7.531) 0.6425 (± 0.3003)
p-SFE (6) 74.27 (± 9.453) 74.25 (± 9.466) 0.8761 (± 0.3714)
p-SFE (7) 83.08 (± 10.48) 83.08 (± 10.49) 1.126 (± 0.4358)
p-SFE (8) 91.64 (± 12.64) 91.63 (± 12.64) 1.43 (± 0.5133)
p-SFE (9) 100.6 (± 14.94) 100.6 (± 14.95) 1.764 (± 0.5889)
p-SFE (10) 109.9 (± 17.31) 109.9 (± 17.31) 2.121 (± 0.6626)

58



Table 6.14: The mean encoding efficiency of the results for the encoding algorithms from the
mid filtered audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 54.23 (± 6.867) 57.21 (± 3.817) 0.00192 (± 0.001663)

LE 40.09 (± 6.495) 39.21 (± 7.067) 0.1619 (± 0.06955)

TE 49.81 (± 5.617) 35.38 (± 5.43) 0.006549 (± 0.004485)

TCE 47.72 (± 7.238) 63.96 (± 6.92) 0.001156 (± 0.001708)

MWE -4.145 (± 29.62) 49.19 (± 11.22) 0.003476 (± 0.005539)

SFE 46.82 (± 6.436) 68.2 (± 6.865) 0.0006462 (± 0.001138)

p-TE (2) 37.9 (± 5.061) 49.57 (± 8.437) 0.006654 (± 0.004446)
p-TE (3) 36.69 (± 5.536) 51.21 (± 7.46) 0.006654 (± 0.004446)

p-SFE (2) 46.82 (± 6.331) 68.49 (± 6.661) 0.0006038 (± 0.001082)
p-SFE (3) 46.46 (± 7.843) 66.53 (± 8.6) 0.001014 (± 0.001712)
p-SFE (4) 39.51 (± 6.957) 50.61 (± 9.466) 0.008239 (± 0.007703)
p-SFE (5) 58.58 (± 13.25) 58.47 (± 13.38) 0.6087 (± 0.2122)
p-SFE (6) 64.15 (± 16.32) 64.07 (± 16.42) 0.813 (± 0.2687)
p-SFE (7) 69.97 (± 19.62) 69.91 (± 19.7) 1.049 (± 0.3318)
p-SFE (8) 73.74 (± 24.47) 73.68 (± 24.55) 1.351 (± 0.4077)
p-SFE (9) 80.04 (± 28.04) 79.99 (± 28.1) 1.653 (± 0.4746)
p-SFE (10) 86.89 (± 31.61) 86.85 (± 31.67) 1.979 (± 0.5445)

59



Table 6.15: The mean encoding efficiency of the results for the encoding algorithms from the
high filtered audio of the Free Spoken MNIST dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 56.26 (± 8.813) 57.17 (± 6.865) 0.0028 (± 0.007455)

LE 45.72 (± 8.589) 39.36 (± 8.831) 0.009941 (± 0.02141)

TE 49.85 (± 9.476) 31.19 (± 12.89) 0.006069 (± 0.007683)

TCE 42.59 (± 8.385) 53.48 (± 11.7) 0.007783 (± 0.01767)

MWE -13.68 (± 26.79) 40.06 (± 15.26) 0.01687 (± 0.02976)

SFE 38.44 (± 6.852) 54.91 (± 15.22) 0.009866 (± 0.02126)

p-TE (2) 34.9 (± 11.75) 58 (± 15.66) 0.003956 (± 0.005551)
p-TE (3) 34.01 (± 11.79) 60.93 (± 11.24) 0.004228 (± 0.006257)
p-TE (4) 33.96 (± 11.76) 61.17 (± 10.79) 0.004242 (± 0.006297)
p-TE (5) 33.99 (± 11.81) 61.23 (± 10.71) 0.004247 (± 0.006314)
p-TE (6) 33.99 (± 11.81) 61.24 (± 10.71) 0.004247 (± 0.006314)
p-TE (7) 34 (± 11.82) 61.24 (± 10.71) 0.004258 (± 0.00635)
p-TE (8) 34.15 (± 11.94) 61.3 (± 10.66) 0.004294 (± 0.006464)
p-TE (9) 34.16 (± 11.95) 61.3 (± 10.66) 0.004294 (± 0.006464)
p-TE (10) 35.16 (± 12.11) 61.34 (± 10.55) 0.004849 (± 0.008105)

p-SFE (2) 39.59 (± 6.198) 55.89 (± 13.27) 0.01021 (± 0.02285)
p-SFE (3) 40.24 (± 6.202) 56.32 (± 12.67) 0.01001 (± 0.02117)
p-SFE (4) 40.03 (± 6.507) 56.84 (± 12.82) 0.008623 (± 0.01884)
p-SFE (5) 40.36 (± 6.403) 56.44 (± 12.62) 0.009805 (± 0.02023)
p-SFE (6) 40.87 (± 6.469) 55.92 (± 12.56) 0.01121 (± 0.02239)
p-SFE (7) 40.69 (± 6.412) 56.12 (± 12.56) 0.0108 (± 0.02182)
p-SFE (8) 57.41 (± 26.88) 56.65 (± 28.23) 1.006 (± 0.5058)
p-SFE (9) 61.22 (± 31.32) 60.45 (± 32.62) 1.322 (± 0.59)
p-SFE (10) 65.29 (± 36.02) 64.52 (± 37.28) 1.678 (± 0.6705)

60



Table 6.16: The mean encoding efficiency of the results for the encoding algorithms from the
raw audio of the Speech Commands dataset. The parentheses behind the population encoding
algorithms show the number of thresholds used, while the parenthesis behind the mean values
are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 69.45 (± 11.58) 60.31 (± 6.674) 3.615e-05 (± 0.000332)

LE 39.06 (± 11.24) 27.29 (± 6.007) 0.0282 (± 0.03503)

TE 52.65 (± 9.559) 30.75 (± 6.361) 0.003389 (± 0.006187)

TCE 47.06 (± 8.927) 41.26 (± 6.476) 0.01719 (± 0.02431)

MWE 6.591 (± 30.85) 60.5 (± 14.67) 0.0007642 (± 0.005005)

SFE 48.11 (± 9.036) 41.7 (± 6.226) 0.01358 (± 0.02078)

p-TE (2) 35.56 (± 9.514) 60.11 (± 18.38) 0.004247 (± 0.008235)
p-TE (3) 35.53 (± 9.531) 60.54 (± 17.92) 0.004247 (± 0.008235)

p-SFE (2) 13.75 (± 11.64) 4.041 (± 17.01) 0.5236 (± 0.2473)
p-SFE (3) 21.8 (± 16.05) 17.28 (± 19.49) 0.5773 (± 0.3076)
p-SFE (4) 35.19 (± 18.34) 33.5 (± 20.17) 0.559 (± 0.3185)
p-SFE (5) 50.13 (± 16.75) 49.61 (± 17.55) 0.5287 (± 0.2989)
p-SFE (6) 53.29 (± 20.02) 52.84 (± 20.76) 0.7447 (± 0.3765)
p-SFE (7) 60.97 (± 20.99) 60.69 (± 21.52) 0.9071 (± 0.4207)
p-SFE (8) 67.06 (± 23.36) 66.84 (± 23.8) 1.152 (± 0.4852)
p-SFE (9) 71.75 (± 27.29) 71.54 (± 27.71) 1.481 (± 0.5629)
p-SFE (10) 78.87 (± 30.01) 78.7 (± 30.37) 1.803 (± 0.6215)

61



Table 6.17: The mean encoding efficiency of the results for the encoding algorithms from the
normalized audio of the Speech Commands dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 49.07 (± 10.23) 50.77 (± 5.906) 0.00351 (± 0.006029)

LE 47 (± 8.827) 30.26 (± 5.445) 0.008786 (± 0.01119)

TE 56.35 (± 7.731) 32.51 (± 6.17) 0.002429 (± 0.003654)

TCE 72.8 (± 6.619) 46.36 (± 6.396) 0.0004408 (± 0.001964)

MWE 25.71 (± 26.99) 70.47 (± 12.15) 0.0002195 (± 0.001725)

SFE 54.55 (± 6.288) 44.12 (± 5.995) 0.003139 (± 0.00395)

p-TE (2) 44.23 (± 8.126) 52.12 (± 9.989) 0.002968 (± 0.003417)
p-TE (3) 44.01 (± 8.172) 52.2 (± 9.767) 0.003031 (± 0.003429)

p-SFE (2) 54.54 (± 6.267) 44.15 (± 5.947) 0.00314 (± 0.003969)
p-SFE (3) 44.63 (± 5.258) 40.95 (± 5.532) 0.01839 (± 0.01354)
p-SFE (4) 50.96 (± 12.73) 50.52 (± 13.37) 0.3921 (± 0.1781)
p-SFE (5) 55.43 (± 15.16) 55.12 (± 15.68) 0.5597 (± 0.2364)
p-SFE (6) 58.78 (± 18.81) 58.5 (± 19.28) 0.7888 (± 0.3108)
p-SFE (7) 63.4 (± 21.85) 63.18 (± 22.25) 1.035 (± 0.3826)
p-SFE (8) 68.34 (± 25.11) 68.15 (± 25.46) 1.321 (± 0.4561)
p-SFE (9) 73.64 (± 28.54) 73.48 (± 28.84) 1.645 (± 0.5273)
p-SFE (10) 77.12 (± 33.1) 76.96 (± 33.39) 2.035 (± 0.5984)

62



Table 6.18: The mean encoding efficiency of the results for the encoding algorithms from the
low filtered audio of the Speech Commands dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 47.01 (± 8.734) 37.98 (± 5.846) 0.01587 (± 0.03388)

TE 60.14 (± 6.902) 46.65 (± 6.154) 0.002248 (± 0.002292)

TCE 53.34 (± 8.762) 55.12 (± 7.186) 0.02401 (± 0.02241)

MWE 11.41 (± 31.61) 63.2 (± 11.79) 0.0004748 (± 0.002307)

SFE 57.01 (± 8.561) 81.01 (± 8.286) 0.0001933 (± 0.0006746)

p-TE (2) 43.44 (± 6.574) 60.16 (± 12.18) 0.00231 (± 0.002292)
p-TE (3) 42.72 (± 6.818) 61.88 (± 10.97) 0.002321 (± 0.002335)
p-TE (4) 42.72 (± 6.816) 61.88 (± 10.97) 0.002321 (± 0.002335)

p-SFE (2) 57.14 (± 8.361) 82 (± 7.255) 0.0001417 (± 0.0005609)
p-SFE (3) 55.72 (± 8.929) 77.61 (± 10.35) 0.0003926 (± 0.001115)
p-SFE (4) 49.85 (± 8.721) 65.98 (± 12.19) 0.001766 (± 0.003005)
p-SFE (5) 76.33 (± 7.93) 76.35 (± 7.883) 0.2715 (± 0.1625)
p-SFE (6) 84.55 (± 8.571) 84.55 (± 8.563) 0.3668 (± 0.2082)
p-SFE (7) 93.12 (± 9.451) 93.11 (± 9.46) 0.4941 (± 0.2674)
p-SFE (8) 102.1 (± 9.959) 102.1 (± 9.975) 0.6109 (± 0.319)
p-SFE (9) 111.6 (± 10.84) 111.6 (± 10.86) 0.7749 (± 0.3904)
p-SFE (10) 121.4 (± 11.98) 121.4 (± 12) 0.9591 (± 0.4677)

63



Table 6.19: The mean encoding efficiency of the results for the encoding algorithms from the
mid filtered audio of the Speech Commands dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE 67.4 (± 9.425) 69 (± 6.092) 0.0006416 (± 0.001962)

LE 49.42 (± 7.534) 48.87 (± 8.163) 0.1119 (± 0.07611)

TE 60.27 (± 6.317) 47.77 (± 6.104) 0.002283 (± 0.001877)

TCE 60.59 (± 8.043) 80.1 (± 6.23) 0.0001883 (± 0.0005403)

MWE 37.51 (± 31.6) 73.39 (± 12.23) 0.0001644 (± 0.001603)

SFE 58.12 (± 7.639) 84.55 (± 3.98) 9.994e-05 (± 0.000417)

p-TE (2) 40.89 (± 4.113) 57 (± 7.461) 0.002345 (± 0.001877)
p-TE (3) 40.65 (± 4.211) 58.19 (± 6.762) 0.002387 (± 0.002049)
p-TE (4) 40.64 (± 4.206) 58.2 (± 6.753) 0.002387 (± 0.002049)

p-SFE (2) 58.12 (± 7.639) 84.55 (± 3.982) 9.995e-05 (± 0.000417)
p-SFE (3) 58.23 (± 7.639) 84.49 (± 4.117) 0.0001045 (± 0.0004464)
p-SFE (4) 52.21 (± 8.69) 71.4 (± 10.04) 0.0007344 (± 0.001414)
p-SFE (5) 76.8 (± 6.189) 76.8 (± 6.192) 0.2589 (± 0.1389)
p-SFE (6) 84.02 (± 7.637) 84.01 (± 7.648) 0.3653 (± 0.1871)
p-SFE (7) 92.41 (± 7.981) 92.4 (± 7.989) 0.465 (± 0.2306)
p-SFE (8) 99.87 (± 10.51) 99.86 (± 10.52) 0.6101 (± 0.2919)
p-SFE (9) 108.4 (± 12.15) 108.4 (± 12.15) 0.7605 (± 0.3531)
p-SFE (10) 115.7 (± 15.91) 115.7 (± 15.92) 0.9468 (± 0.4264)

64



Table 6.20: The mean encoding efficiency of the results for the encoding algorithms from the
high filtered audio of the Speech Commands dataset. The parentheses behind the population
encoding algorithms show the number of thresholds used, while the parenthesis behind the
mean values are the standard deviation.

SERinput/Σ Pspike [dB] SERdecoded/Σ Pspike [dB] Σ Pspike

BSE NaN NaN 0 (± 0)

LE 61.18 (± 11.14) 24.2 (± 17.43) 0.000513 (± 0.001456)

TE 60.49 (± 10.41) 40.34 (± 16.56) 0.001653 (± 0.00266)

TCE 50.95 (± 9.044) 63.32 (± 13.28) 0.006709 (± 0.02099)

MWE -28.57 (± 34.32) 43.56 (± 17.8) 0.01825 (± 0.06079)

SFE 46.93 (± 7.212) 64.03 (± 15.16) 0.005725 (± 0.01896)

p-TE (2) 27.83 (± 22.27) 75.16 (± 15.39) 0.0008201 (± 0.002046)
p-TE (3) 25.98 (± 21.39) 76.76 (± 12) 0.0008597 (± 0.002148)
p-TE (4) 25.97 (± 21.39) 76.85 (± 11.86) 0.000864 (± 0.002169)
p-TE (5) 25.97 (± 21.39) 76.86 (± 11.85) 0.000864 (± 0.002169)
p-TE (6) 25.97 (± 21.39) 76.86 (± 11.85) 0.0008659 (± 0.002184)

p-SFE (2) 48.06 (± 7.32) 65.33 (± 13.73) 0.005672 (± 0.02046)
p-SFE (3) 48.56 (± 7.892) 65.35 (± 13.19) 0.006287 (± 0.0216)
p-SFE (4) 48.87 (± 8.297) 65.31 (± 13.11) 0.006438 (± 0.02116)
p-SFE (5) 48.79 (± 8.379) 65.58 (± 13.2) 0.006071 (± 0.01988)
p-SFE (6) 48.67 (± 8.105) 66.64 (± 13.46) 0.004333 (± 0.01552)
p-SFE (7) 48.79 (± 8.38) 65.58 (± 13.2) 0.006071 (± 0.01988)
p-SFE (8) 65.57 (± 25.46) 65.25 (± 26.4) 0.4247 (± 0.4349)
p-SFE (9) 69.51 (± 29.13) 69.08 (± 30.07) 0.5535 (± 0.5122)
p-SFE (10) 74.46 (± 32.62) 74.03 (± 33.5) 0.6878 (± 0.5824)

65



6.3 Classification potential

6.3.1 Classification accuracy

Figure 6.1 shows the classification accuracies for the encoding algorithms on the
different input types of the FS MINST dataset. For classification potential we also
added an extra input type, the combination of the spike trains from the three filtered
signals. This means that the SVM is trained with the spike trains of all three
filtered power-analyzed signals. In appendix C the classification accuracies for the
different number of thresholds are given, while in figure 6.1 only the best performing
configuration from appendix C are used.

no noise, raw

 0.15

0.175

 0.14

0.195

 0.14

0.185

 0.15

0.335

BSE LE TE
TCE

MWE
SFE

p-TE (1
0)

p-S
FE (9

)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
c
c
u

ra
c
y

no noise, normalized

 0.23

0.155

  0.2

 0.25

  0.2
 0.21

0.365

0.345

BSE LE TE
TCE

MWE
SFE

p-TE (1
0)

p-S
FE (6

)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c
c
u

ra
c
y

no noise, low filtered

  0.1

0.265

0.185
0.195

 0.23
0.215

 0.36

 0.34

BSE LE TE
TCE

MWE
SFE

p-TE (9
)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c
c
u

ra
c
y

no noise, mid filtered

  0.1

 0.28

  0.2

 0.27

 0.23

 0.25

0.325

 0.36

BSE LE TE
TCE

MWE
SFE

p-TE (6
)

p-S
FE (5

)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c
c
u

ra
c
y

no noise, high filtered

  0.1

0.395

 0.24

0.365

0.395

 0.37

 0.16

0.405

BSE LE TE
TCE

MWE
SFE

p-TE (2
)

p-S
FE (2

)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
c
c
u

ra
c
y

no noise, combined filtered

  0.1

 0.55

0.325

0.485

 0.52
0.535

0.405

0.635

BSE LE TE
TCE

MWE
SFE

p-TE (9
)

p-S
FE (1

0)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
c
c
u
ra

c
y

Figure 6.1: The classification accuracy achieved with an SVM on the validation set from the
FS MNIST dataset.

66



From figure 6.1 we can see that p-SFE achieves the highest classification accuracy
in almost all cases. The only two cases where p-SFE doesn’t achieve the highest
classification accuracy is for the normalized audio and the lower filtered signal. Even
in these cases the classification accuracy of p-SFE is only 0.02 less than p-TE. Which
means that p-SFE either achieves the highest classification accuracy or comparable to
the highest classification accuracy, making it the best option in this regard.

6.3.2 Noise resistance

In figure 6.2 an example is shown for how the noise resistance is determined. In
this figure the classification accuracy for the signal with noise is given as well as the
classification accuracy for only the noise. When the classification accuracy of only the
noise exceeds the classification accuracy of the signal with noise, the signal does not
attribute to classifying correctly. The highest SNR where this happens is the crossing
point where the noise becomes destructive for the classification, thus this SNR will be
called the SNRcross. The example in figure 6.2 shows a SNRcross of 12dB.

In table 6.21 the SNRcross is given for each encoding algorithm. The SNRcross shows
how much noise is needed to be disruptive for the classification. As the noise power
is in the numerator, indicates a higher SNRcross that less noise is needed to impact
the accuracy of the prediction. Signals with an SNR higher than the corresponding
SNRcross from the table would give an ’accurate’ prediction by the SVM. On the other
hand, if the SNR is lower than the corresponding SNRcross, the prediction will become
inaccurate. So, having a lower SNRcross is better and gives a higher resistance to the
noise.

From table 6.21 we can see that the resistance to noise for p-SFE is worse than
other encoding algorithms. Most of the noise resistances for p-SFE are zero or above,
while for the other encoding algorithms only SFE, BSE and TCE have mostly a noise
resistance above zero. This means that most of the other encoding algorithms have a
lower, a better SNRcross.

6.4 Discussion

In case of efficiency, we see for p-TE that only results for a few thresholds are given,
while there should have been tests for up to ten thresholds. This is because at a certain
point adding thresholds to p-TE would not result to better efficiency. Thus taking
configurations with more thresholds were omitted and not taken into consideration.

There have been several decisions made to limit the computation time as many
comparisons already require a lot of computation. For example, the population
encoding algorithms were limited to ten thresholds. This would give enough samples
to see the growth of the metrics with the number of thresholds used. Another example
would be that only Free Spoken MNIST was tested for the classification accuracy, which
was mainly because training for the spike trains from the Speech Command needed a
lot of RAM memory and time. Moreover, the saved files needed became a bit too big to
comfortably work with. One more example would be the number of thresholds used by
the population encoding algorithms for the classification of the combined spike trains.

67



noisy, combined filtered, p-SFE (10)

0.545

0.51 0.50.4950.4850.475

0.415

0.470.46

0.43

0.395

0.435

0.345
0.37

0.330.34

30 27 24 21 18 15 12 9 6 3 0 -3 -6 -9 -12 -15

SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
u

ra
c
y

signal+noise

noise

Figure 6.2: Classification accuracies for different Signal-to-Noise values of p-SFE with ten
thresholds on the spike trains of the three filtered signals combined. Lighter blue bars are the
SNR at which the classification of only noise outperforms the classification of the signal with
noise.

For both population algorithms, the configurations with many thresholds are used even
though for the higher filtered case fewer thresholds give better results. This is because
for the combined spike trains the spike trains of the same amount of thresholds were
only combined, otherwise the number of combinations that would need to be tested for
these population encoding algorithms would be 93 instead of just 9.

In the case with only noise added to the SVM we would expect that the classification
accuracy would be around the same classification accuracy for randomly guessing the
class. However, from figure 6.2 we see that the classification of the noise reaches almost
50% which is much higher than the expected 10%, as there are 10 classes in the Free
Spoken MNIST dataset. As we use white Gaussian noise is there no aspect of the noise
that can be used for classification except for the power of the signal. So we can see
that the power of the signal becomes a big factor for determining the class.

68



Table 6.21: Lowest SNR values in dB for which the algorithms failed to be more accurate
with the signal with noise data over data from only noise. These SNR values can be from
30dB to -15dB. In some cases the signal with noise always achieved better accuracy, then ’-’
is put there.

ra
w

no
rm

al
iz
ed

lo
w

fil
te

re
d

m
id

fil
te

re
d

hi
gh

fil
te

re
d

co
m

bi
ne

d
fil

te
re

d

BSE -15 -9 30 30 30 30

LE 30 30 -15 - - -12

TE 3 -6 -15 - -12 -6

TCE -3 -3 12 9 6 6

MWE -9 -15 -6 -6 -12 3

SFE 0 -6 9 -3 0 6

p-TE (2) 15 -9 -12 - -3 -
p-TE (3) 15 - - - -9 -
p-TE (4) 15 - - - -9 -
p-TE (5) 15 - - - -12 -
p-TE (6) -3 - - -12 -12 -15
p-TE (7) 15 -12 - - -9 -
p-TE (8) 15 - - - -9 -
p-TE (9) 15 -15 - - -9 -
p-TE (10) 15 -9 - - -9 -

p-SFE (2) -9 -6 6 6 3 6
p-SFE (3) 6 -6 9 3 3 12
p-SFE (4) 6 0 12 3 6 12
p-SFE (5) 6 0 9 -3 12 12
p-SFE (6) 3 0 9 6 3 12
p-SFE (7) 0 0 9 12 9 12
p-SFE (8) 9 0 9 6 12 6
p-SFE (9) 9 3 12 6 21 12
p-SFE (10) 9 3 15 18 18 12

69



70



Conclusion 7
A new encoding algorithm is proposed to encode temporal digital data into spike trains
usable by Spiking Neural Network (SNN), population Step Forward Encoding algorithm
(p-SFE). The idea is to take the signal encoding accuracy of SFE and improve the
efficiency by using a population of thresholds, which would allow the bigger thresholds
to encode multiple spikes of the smaller thresholds. This should allow for better signal
accuracy when there is a limiting bandwidth of spikes. The proposed algorithm, p-
SFE is tested and compared for encoding signal accuracy, efficiency and classification
potential.

Firstly, the signal encoding accuracy of p-SFE was compared. p-SFE had a higher
maximum signal accuracy than almost all encoding algorithms, with only an exception
to LE. However, this only held for raw and normalized audio signals. Moreover, LE
is highly sensitive to spike time noise, which could make p-SFE a better solution even
for those cases. Thus, p-SFE is shown to be universally one of the best if not the best
choice regarding signal accuracy.

Secondly, the efficiency of the encoding algorithms were compared. The maximum
efficiency of p-SFE is higher than all other encoding algorithms for all cases. Even
though p-TE manages to have a higher efficiency in one case, the results suggest that
with only one or two thresholds added p-SFE would be likely to have a better efficiency.
However, a downside was noticed, which was the number of spikes needed to achieve
the best efficiency. The spikes needed was significantly higher, which could have a very
negative impact on the case of a limited bandwidth for spikes. When looking at the
p-SFE configurations with a spike count similar to the other algorithms, we could see
that the efficiency is lower, but similar to those of other encoding algorithms. This
shows that p-SFE can get the best efficiency and even when limited by the number of
spikes would it still be a good choice.

Thirdly, the classification potential was explored. When looking at the raw
classification accuracy p-SFE was a rarely beaten champion and performed in all cases
either the best or second best. Even when placing second best, p-SFE proved to be
almost just as good. However, p-SFE showed its weakness when the resistance to noise
was tested. The results show that p-SFE is relatively weak to the noise and even the
best resistances of p-SFE are among the worst resistances compared with the other
algorithms.

Looking back at the intention for p-SFE, it does not achieve the best efficiency when
the spike count is limited. This could mean that it would not achieve the best signal
encoding accuracy when the spike bandwidth is limited severely. However, p-SFE would
not be far behind the best efficiency of the other encoding algorithms. Moreover, when
the limitation would be slackened more p-SFE could easily make use of it and increase
the signal accuracy much faster than the other encoding algorithms could. This makes
p-SFE the encoding algorithm which is universally a good option if not the best.

71



This doesn’t only apply to regression problems as tested with the signal encoding
accuracy and efficiency, but also to classification problems. In which it also showed
universally one of the best potentials, if the noise doesn’t get too high.

7.1 Future work

The simplified version for p-SFE could get extended to be used with an arbitrary
factor. In this thesis the factor between thresholds is set to 2. However, it could be
that using another factor would give better results for certain datasets. This would add
only one extra variable and doesn’t add much complexity to the search for an optimal
configuration. The advantage for choosing a factor of 2 is that it can be done with a
simple shift operation.

The more complex version of p-SFE can also be explored. If the thresholds are
chosen arbitrarily, is the design space much bigger, because each threshold will add its
own dimension. With such a bigger design space is it more likely to contain better
configurations. Though finding these better configurations will be much harder, as the
design space grows with the number of thresholds. Thus is searching within that design
space likely best done by an evolutionary algorithm. Moreover, each threshold change
will have an impact on the behavior of the other thresholds; changing one threshold
would force you to change other thresholds as well.

One of the weak points is the method for determining the classification potential.
Using an SVM instead of an SNN makes the results inaccurate, as it deviates from
how the spike trains will be used. Still, the advantage or disadvantage should apply
to all encoding algorithms evenly and not change the comparison made in this Thesis.
However, finding a method for determining classification potential without prejudice
for any encoding algorithm is preferred. This could be achieved by either finding a spike
train distance that would give sensible results or prove that a certain SNN classification
method doesn’t have a prejudice to any encoding algorithm.

Tough it was theorized that dropping spikes could drastically reduce the signal
encoding accuracy and thus the efficiency, more research could be used. The rate of
signal accuracy and/or efficiency loss with dropping spike is useful to determine how
many spikes can be dropped without significant impact. This can be used to find how
close to the spike limit the encoding algorithms can be configured. This could also
show that dropping spike might affect certain encoding algorithms differently.

Comparing the encoding algorithms for the computational complexity is not really
straight forward. The main cause for this is that the exact implementation can have a
big impact on the complexity. Moreover, A direct hardware implementation for p-SFE
has not been made yet. Fortunately, in appendix D a first hardware implementation
draft for the simplified p-SFE is given. This implementation shows an implementation
with an even smaller footprint than that as given in chapter 4, as it is based on the
simplified p-SFE and only two threshold need to be remembered. From this example we
can see that a specific implementation could have a huge impact on the computational
complexity. Thus, finding an efficient hardware implementation for p-SFE is important.

72



MATLAB code A
A.1 Ben’s Spiker Encoding algorithm

A.1.1 BSA encode

1 function [ spikes , signal_rest , threshold ] = BSA_encode ( signal , filter ,
varargin )

%BSA_encode Ben’s Spiker encoding Algorithm - encode

% Encodes a time varying analog signal into spike trains using Ben’s

% Spiker encoding Algorithm.

% The writen algorithm is based on the pseudo code as given in the

paper

6 % "BSA, a Fast and Accurate Spike Train Encoding Scheme"

% (https://doi.org/10.1109/IJCNN.2003.1224019) by Benjamin Schrauwen

and

% Jan Van Campenhout.

%

% [spikes, threshold , signal_rest] = BSA_encode(signal, filter,

varargin)

11 %

% - The input ’signal’ should be a T-by-n matrix. Where ’T’ is the

number

% of time samples and ’n’ is the number of input signals. ’n’ can even

be

% a matrix.

%

16 % - The input ’filter’ should be a F-by-m matrix or a 1-by-F matrix,

% depending on the shape of the input ’signal ’. This specifies the

% filter used in the algorithm. Where ’F’ is the size of the filter and

% ’m’ is either 1 or equal to ’n’, the number of input signals.

%

21 % Optional inputs are ’fraction’, ’threshold ’, ’nonCausal ’ and ’Causal

’.

%

% - The option ’fraction’ should be followed by a float between the

% values 0 and 1. This will calculate a theshold value based on the

input

% filter(s). It will have a default value of 0.1, if not set.

26 %

% - The option ’threshold ’ should be followed by a float. This will set

% the threshold to the float value. If the threshold is set the ’factor

’

% option will be ignored.

%

31 % - The option ’nonCausal ’ will make sure that the filter will be

73



% subtracted from the following time samples.

%

% - The option ’Causal’ will make sure that the filter will be

subtracted

% from the previous time samples.

36 %

% From the options ’nonCausal ’ and ’Causal’, the last options in the

% input arguments will be applied. The default option is ’Causal ’.

%

% - The output ’spikes’ will contain the spike trains in the same

format

41 % as the ’signal’ input.

%

% - The output ’signal_rest ’ will return the leftover from the signal,

% which was not allowed to be sutracted by the filter.

%

46 % - The output ’threshold ’ will return the used threshold.

%

% To decode the spike train back to roughly the original signal use the

% function filtered_decode().

%

51 % Author: Luuk de Gelder

% default values

spikes = NaN ;
threshold = NaN ;

56 signal_rest = NaN ;
useFilterCausally = true ;
useMEX = false ;
fraction = 0 . 1 ;

61 % input parsing

if nargin >= 2

% variable input parsing

Narg = numel ( varargin ) ;
66 for i = 1 : Narg

if ischar ( varargin{i})
str = varargin{i } ;
nextIsFl = false ;
if i + 1 <= Narg

71 nextIsFl = isfloat ( varargin{i + 1}) ;
end

if nextIsFl

if strcmp (str , ’fraction’ )
76 fraction = varargin{i + 1} ;

elseif strcmp (str , ’threshold’ )
threshold = varargin{i + 1} ;

end

end

81
if strcmp (str , ’nonCausal’ )

74



useFilterCausally = false ;
elseif strcmp (str , ’Causal’ )

useFilterCausally = true ;
86 elseif strcmp (str , ’MEX’ )

useMEX = true ;
end

end

end

91
Ss = size ( signal ) ;
Sf = size ( filter ) ;

% calculate threshold if not set

96 if isnan ( threshold )
threshold = fraction ∗ sum ( abs ( filter ) ) ;

end

startFromCell = iscell ( signal ) ;
101 if startFromCell

spikes = cell (Ss ) ;
signal_rest = cell (Ss ) ;
Ns = prod (Ss ) ;

else

106 spikes = cell (1 ) ;
signal_rest = cell (1 ) ;
Ns = 1 ;
signal = {signal } ;

end

111
for i = 1 : Ns

signalM = signal{i } ;
SsM = size ( signalM ) ;

116 % check input shape

correctFilterSize = Sf (2 ) == 1 | | sameVectors (Sf ( 2 : end ) , SsM

( 2 : end ) ) ;

% construct some temporary variables

if ˜correctFilterSize
121 if Sf (1 ) == 1 | | Sf (1 ) == SsM (2 )

filter = filter ’ ;
else

error (’Filter size does not correspont to signal size

.’ ) ;
%return

126 end

end

% reshape if necesary

if numel ( SsM ) > 2
131 signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

if numel (Sf ) > 2

75



filter = reshape ( filter , [ Sf (1 ) prod (Sf ( 2 : end ) ) ] ) ;
end

136
% run BSA (in separate file for MEX optimization)

if useFilterCausally

if useMEX

if isa ( signalM , ’single’ )
141 [ spikesM , signal_restM ] = BSA_causal_mex_single (

signalM , filter , threshold ) ;
else

[ spikesM , signal_restM ] = BSA_causal_mex ( signalM ,
filter , threshold ) ;

end

else

146 [ spikesM , signal_restM ] = BSA_causal ( signalM , filter ,
threshold ) ;

end

else

if useMEX

if isa ( signalM , ’single’ )
151 [ spikesM , signal_restM ] =

BSA_noncausal_mex_single ( signalM , filter ,
threshold ) ;

else

[ spikesM , signal_restM ] = BSA_noncausal_mex (
signalM , filter , threshold ) ;

end

else

156 [ spikesM , signal_restM ] = BSA_noncausal ( signalM ,
filter , threshold ) ;

end

end

% reshape back

161 if numel ( SsM ) > 2
signal_restM = reshape ( signal_restM , SsM ) ;
spikesM = reshape ( spikesM , SsM ) ;

end

166 spikes (i ) = {spikesM } ;
signal_rest (i ) = {signal_restM } ;

end

if ˜startFromCell
171 spikes = spikes {1} ;

signal_rest = signal_rest {1} ;
end

end

end

A.1.2 BSA causal

function [ spikes , signal_rest ] = BSA_causal ( signal , filters , threshold )

76



Ss = size ( signal ) ;
Sf = size ( filters ) ;
Flen = Sf (1 ) ;

5 filters_windowed = filters ;
spikes = nan (Ss ) ;

% loop the signal values

for t = 1 : Ss (1 )
10 % cutoff the filter if necessary

if t <= Sf (1 )
Flen = t ;
filters_windowed = filters (end−Flen+1:end , : ) ;

end

15 T = (t−Flen+1:t ) ;

% no signal, no spike

if isnan ( signal (t , i ) )
continue

20 end

% check if the filter fits within the signal, then spike

for i = 1 : Ss (2 )
% pick corresponding filter

25 if Sf (2 ) ˜= 1
filter = filters_windowed ( : , i ) ;

else

filter = filters_windowed ;
end

30
% check for spike

E1 = sum ( abs ( signal (T , i ) − filter ) , 1 , ’omitnan’ ) ;
E2 = sum ( abs ( signal (T , i ) ) , 1 , ’omitnan’ ) ;
if E1 <= (E2 − threshold )

35 % apply spike, remove filter from the signal

spikes (t , i ) = 1 ;
signal (T , i ) = signal (T , i ) − filter ;

end

end

40 end

signal_rest = signal ;
end

A.2 Latency Encoding algorithm

A.2.1 LA encode

function spikesRT = LA_encode ( signal , windowReach , varargin )
%LA_encode Latency encoding Algorithm - encode

3 windowFrame = [ 0 1 ] ;
useMEX = false ;

% input parsing

if nargin >= 2

77



8
% variable input parsing

Narg = numel ( varargin ) ;
for i = 1 : Narg

if ischar ( varargin{i})
13 str = varargin{i } ;

nextIsFl = false ;
if i + 1 <= Narg

nextIsFl = isfloat ( varargin{i + 1}) ;
end

18
if nextIsFl

if strcmp (str , ’frame’ )
windowFrame = varargin{i + 1} ;

end

23 end

if strcmp (str , ’MEX’ )
useMEX = true ;

end

28 end

end

Ss = size ( signal ) ;

33 startFromCell = iscell ( signal ) ;
if startFromCell

spikesRT = cell (Ss ) ;
Ns = prod (Ss ) ;

else

38 spikesRT = cell (1 ) ;
Ns = 1 ;
signal = {signal } ;

end

43 for i = 1 : Ns
signalM = signal{i } ;
SsM = size ( signalM ) ;

% reshape if necesary

48 if numel ( SsM ) > 2
signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

% run LA (in separate file for MEX optimization)

53 if useMEX

if isa ( signalM , ’single’ )
spikesRTM = rangeTransform_mex_single ( signalM ,

windowReach , windowFrame ) ;
else

spikesRTM = rangeTransform_mex ( signalM , windowReach ,
windowFrame ) ;

58 end

78



else

spikesRTM = rangeTransform ( signalM , windowReach ,
windowFrame ) ;

end

63 % reshape back

if numel ( SsM ) > 2
spikesRTM = reshape ( spikesRTM , SsM ) ;

end

68 spikesRT (i ) = {spikesRTM } ;
end

if ˜startFromCell
73 spikesRT = spikesRT {1} ;

end

end

end

A.2.2 rangeTransform

function transformed = rangeTransform ( signal , signalRange , transformRange

)
% Warp the signal to the domain of [0 1] with respect to its

specified

% range.

4 warped = ( signal − signalRange (1 ) ) / ( signalRange (2 ) − signalRange (1 )
) ;

% Remove values outside of the signal range.

warped ( warped < 0 | warped > 1) = NaN ;
% Transform the warped signal to the specified transform range.

transformed = ( warped ∗ ( transformRange (2 ) − transformRange (1 ) ) ) +
transformRange (1 ) ;

9 end

A.3 Threshold Encoding algorithm

A.3.1 TA encode

1 function spikes = TA_encode ( signal , thresholds , varargin )
% default values

spikes = NaN ;
useMEX = false ;

6 % input parsing

if nargin >= 2

% variable input parsing

Narg = numel ( varargin ) ;
11 for i = 1 : Narg

if ischar ( varargin{i})
str = varargin{i } ;

79



% nextIsFl = false;

% if i + 1 <= Narg

16 % nextIsFl = isfloat(varargin{i + 1});

% end

%

% if nextIsFl

% end

21
if strcmp (str , ’MEX’ )

useMEX = true ;
end

end

26 end

% check input shape

Ss = size ( signal ) ;
Nthres = numel ( thresholds ) ;

31
startFromCell = iscell ( signal ) ;
if startFromCell

spikes = cell (Ss ) ;
Ns = prod (Ss ) ;

36 else

spikes = cell (1 ) ;
Ns = 1 ;
signal = {signal } ;

end

41
for i = 1 : Ns

signalM = signal{i } ;
SsM = size ( signalM ) ;

46 % reshape if necesary

if numel ( SsM ) > 2
signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

51 % run TA (in separate files for MEX optimization)

if Nthres > 1
if useMEX

if isa ( signalM , ’single’ )
spikesM = populationTA_encode_mex_single ( signalM ,

thresholds ) ;
56 else

spikesM = populationTA_encode_mex ( signalM ,
thresholds ) ;

end

else

spikesM = populationTA_encode ( signalM , thresholds ) ;
61 end

else

if useMEX

if isa ( signalM , ’single’ )

80



spikesM = regularTA_encode_mex_single ( signalM ,
thresholds ) ;

66 else

spikesM = regularTA_encode_mex ( signalM ,
thresholds ) ;

end

else

spikesM = regularTA_encode ( signalM , thresholds ) ;
71 end

end

% reshape back

if numel ( SsM ) > 2
76 if Nthres > 1

spikesM = reshape ( spikesM , [ SsM Nthres ] ) ;
else

spikesM = reshape ( spikesM , SsM ) ;
end

81 elseif Nthres == 1
spikesM = squeeze ( spikesM ) ;

end

spikes (i ) = {spikesM } ;
86 end

if ˜startFromCell
spikes = spikes {1} ;

91 end

end

end

A.3.2 regularTA encode

function spikes = regularTA_encode ( signal , threshold )
2 Ss = size ( signal ) ;

mem = zeros ( [ 1 Ss (2 ) ] , ’logical’ ) ;
spikes = nan (Ss ) ;
for t = 1 : Ss (1 )

spike_pos = signal (t , : ) >= threshold & ˜mem ;
7 spike_neg = signal (t , : ) < threshold & mem ;

mem = xor (mem , spike_neg ) | spike_pos ;
spikes (t , spike_pos ) = 1 ;
spikes (t , spike_neg ) = −1;

end

12 end

A.4 Temporal Contrast Encoding algorithm

A.4.1 TCA encode

function [ spikes , threshold ] = TCA_encode ( signal , varargin )
%TCA_encode Temporal Contrast encoding Algorithm - encode

81



3 % Encodes a time varying analog signal into spike trains using a

% Temporal Contrast encoding Algorithm.

% The writen algorithm is based on the pseudo code as given in the book

% "Time-Space, Spiking Neural Networks and Brain-inspired Artificial

% Intelligence" by Nikola K. Kasabov.

8 %

% [spikes, threshold] = TCA_encode(signal, varargin)

%

% - The input ’signal’ should be a T-by-n matrix. Where ’T’ is the

number

% of time samples and ’n’ is the number of input signals. ’n’ can even

be

13 % a matrix.

%

% Optional inputs are ’factor’ and ’threshold ’.

%

% - The option ’factor’ should be followed by a float. This will

18 % calculate a theshold value based on the input signal(s). It will have

a

% default value of 1, if not set.

%

% - The option ’threshold ’ should be followed by a float. This will set

% the threshold to the float value. If the threshold is set the ’factor

’

23 % option will be ignored.

%

% - The output ’spikes’ will contain the spike trains in the same

format

% as the ’signal’ input.

%

28 % - The output ’threshold ’ will return the used threshold.

%

% To decode the spike train back to roughly the original signal use the

% function generic_decode().

%

33 % Author: Luuk de Gelder

% default values

spikes = NaN ;
threshold = NaN ;

38 factor = 1 ;
useBase = true ;
useMEX = false ;

% input parsing

43 if nargin >= 1

% variable input parsing

Narg = numel ( varargin ) ;
for i = 1 : Narg

48 if ischar ( varargin{i})
str = varargin{i } ;
nextIsFl = false ;

82



if i + 1 <= Narg

nextIsFl = isfloat ( varargin{i + 1}) ;
53 end

if nextIsFl

if strcmp (str , ’factor’ )
factor = varargin{i + 1} ;

58 elseif strcmp (str , ’threshold’ )
threshold = varargin{i + 1} ;

end

end

63 if strcmp (str , ’MEX’ )
useMEX = true ;

elseif strcmp (str , ’withBase’ )
useBase = true ;

elseif strcmp (str , ’noBase’ )
68 useBase = false ;

end

end

end

73 % check input shape

Ss = size ( signal ) ;

% set threshold if not specified

if isnan ( threshold )
78 dif = diff ( signal , 1) ;

threshold = mean (dif , ’omitnan’ ) + factor ∗ std (dif , ’omitnan

’ ) ;
end

startFromCell = iscell ( signal ) ;
83 if startFromCell

spikes = cell (Ss ) ;
Ns = prod (Ss ) ;

else

spikes = cell (1 ) ;
88 Ns = 1 ;

signal = {signal } ;
end

for i = 1 : Ns
93 signalM = signal{i } ;

SsM = size ( signalM ) ;

% reshape if necesary

if numel ( SsM ) > 2
98 signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

% run TCA (in separate files for MEX optimization)

if useBase

83



103 if useMEX

if isa ( signalM , ’single’ )
spikesM = TCA_base_mex_single ( signalM , threshold )

;
else

spikesM = TCA_base_mex ( signalM , threshold ) ;
108 end

else

spikesM = TCA_base ( signalM , threshold ) ;
end

else

113 if useMEX

if isa ( signalM , ’single’ )
spikesM = TCA_nobase_mex_single ( signalM ,

threshold ) ;
else

spikesM = TCA_nobase_mex ( signalM , threshold ) ;
118 end

else

spikesM = TCA_nobase ( signalM , threshold ) ;
end

end

123
% reshape back

if numel ( SsM ) > 2
spikesM = reshape ( spikesM , SsM ) ;

end

128
spikes (i ) = {spikesM } ;

end

133 if ˜startFromCell
spikes = spikes {1} ;

end

end

end

A.4.2 TCA nobase

function spikes = TCA_nobase ( signal , threshold )
Ss = size ( signal ) ;

3
spikes = nan (Ss ) ;
% Loop the signal values

for t = 2 : Ss (1 )
% Calculate the diffrence and check for spikes

8 Diff = signal (t , : ) − signal (t − 1 , : ) ;
spikes (t , Diff >= threshold ) = 1 ;
spikes (t , Diff <= −threshold ) = −1;

end

end

84



A.5 Moving Window Encoding algorithm

A.5.1 MWA encode

function [ spikes , threshold ] = MWA_encode ( signal , windowSize , varargin )
%MWA_encode Moving Window encoding Algorithm - encode

3 % Encodes a time varying analog signal into spike trains using a

% Moving Window encoding Algorithm.

% The writen algorithm is based on the description as given in the book

% "Time-Space, Spiking Neural Networks and Brain-inspired Artificial

% Intelligence" by Nikola K. Kasabov.

8 %

% [spikes, threshold] = MWA_encode(signal, varargin)

%

% - The input ’signal’ should be a T-by-n matrix. Where ’T’ is the

number

% of time samples and ’n’ is the number of input signals. ’n’ can even

be

13 % a matrix.

%

% - The input ’windowSize ’ should be an integer value. This specifies

the

% size for the moving window which is used in the algorithm.

%

18 % Optional inputs are ’factor’ and ’threshold ’.

%

% - The option ’factor’ should be followed by a float. This will

% calculate a theshold value based on the input signal(s). It will have

a

% default value of 1, if not set.

23 %

% - The option ’threshold ’ should be followed by a float. This will set

% the threshold to the float value. If the threshold is set the ’factor

’

% option will be ignored.

%

28 % - The output ’spikes’ will contain the spike trains in the same

format

% as the ’signal’ input.

%

% - The output ’threshold ’ will return the used threshold.

%

33 % To decode the spike train back to roughly the original signal use the

% function generic_decode().

%

% Author: Luuk de Gelder

38 % default values

spikes = NaN ;
threshold = NaN ;
factor = 1 ;
useRegular = true ;

85



43 useBase = true ;
useMEX = false ;

% input parsing

if nargin >= 2
48

% variable input parsing

Narg = numel ( varargin ) ;
for i = 1 : Narg

if ischar ( varargin{i})
53 str = varargin{i } ;

nextIsFl = false ;
if i + 1 <= Narg

nextIsFl = isfloat ( varargin{i + 1}) ;
end

58
if nextIsFl

if strcmp (str , ’factor’ )
factor = varargin{i + 1} ;

elseif strcmp (str , ’threshold’ )
63 threshold = varargin{i + 1} ;

end

end

if strcmp (str , ’MEX’ )
68 useMEX = true ;

elseif strcmp (str , ’withBase’ )
useBase = true ;
useRegular = false ;

elseif strcmp (str , ’noBase’ )
73 useBase = false ;

useRegular = false ;
elseif strcmp (str , ’regular’ )

useRegular = true ;
end

78 end

end

% check input shape

Ss = size ( signal ) ;
83

% set threshold if not specified

if isnan ( threshold )
dif = diff ( signal , 1) ;
threshold = mean (dif , ’omitnan’ ) + factor ∗ std (dif , ’omitnan

’ ) ;
88 end

startFromCell = iscell ( signal ) ;
if startFromCell

spikes = cell (Ss ) ;
93 Ns = prod (Ss ) ;

else

86



spikes = cell (1 ) ;
Ns = 1 ;
signal = {signal } ;

98 end

for i = 1 : Ns
signalM = signal{i } ;
SsM = size ( signalM ) ;

103
% reshape if necesary

if numel ( SsM ) > 2
signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

108
% run MWA (in separate files for MEX optimization)

if useRegular

if useMEX

if isa ( signalM , ’single’ )
113 spikesM = MWA_regular_mex_single ( signalM ,

windowSize , threshold ) ;
else

spikesM = MWA_regular_mex ( signalM , windowSize ,
threshold ) ;

end

else

118 spikesM = MWA_regular ( signalM , windowSize , threshold )
;

end

elseif useBase

if useMEX

if isa ( signalM , ’single’ )
123 spikesM = MWA_base_mex_single ( signalM , windowSize

, threshold ) ;
else

spikesM = MWA_base_mex ( signalM , windowSize ,
threshold ) ;

end

else

128 spikesM = MWA_base ( signalM , windowSize , threshold ) ;
end

else

if useMEX

if isa ( signalM , ’single’ )
133 spikesM = MWA_nobase_mex_single ( signalM ,

windowSize , threshold ) ;
else

spikesM = MWA_nobase_mex ( signalM , windowSize ,
threshold ) ;

end

else

138 spikesM = MWA_nobase ( signalM , windowSize , threshold ) ;
end

end

87



% reshape back

143 if numel ( SsM ) > 2
spikesM = reshape ( spikesM , Ss ) ;

end

spikes (i ) = {spikesM } ;
148 end

if ˜startFromCell
spikes = spikes {1} ;

153 end

end

end

A.5.2 MWA regular

function spikes = MWA_regular ( signal , windowSize , threshold )
Ss = size ( signal ) ;

spikes = nan (Ss ) ;
5 windowSum = signal (1 , : ) ;

windowMean = signal (1 , : ) ;
windowN = double (˜ isnan ( windowSum ) ) ;
% Loop the signal values

for t = 2 : Ss (1 )
10 % Calculate the mean of the window

for i = 1 : Ss (2 )
if t > windowSize + 1 && ˜isnan ( signal (t − windowSize − 1 , i )

)
windowSum (i ) = windowSum (i ) − signal (t − windowSize − 1 ,

i ) ;
windowN (i ) = windowN (i ) − 1 ;

15 end

if isnan ( signal (t − 1 , i ) )
continue

end

if isnan ( windowSum (i ) )
20 windowSum (i ) = signal (t − 1 , i ) ;

else

windowSum (i ) = windowSum (i ) + signal (t − 1 , i ) ;
end

windowN (i ) = windowN (i ) + 1 ;
25 windowMean (i ) = windowSum (i ) / windowN (i ) ;

end

% Calculate the diffrence and check for spikes

Diff = signal (t , : ) − windowMean ;
30 spikes (t , Diff >= threshold ) = 1 ;

spikes (t , Diff <= −threshold ) = −1;
end

end

88



A.6 Step Forward Encoding algorithm

A.6.1 SFA encode

function spikes = SFA_encode ( signal , thresholds , varargin )
2 %SFA_encode Step Forward encoding Algorithm - encode

% Encodes a time varying analog signal into spike trains using a

% Step Forward encoding Algorithm. When multiple thresholds are

supplied

% a population variant is applied.

% The writen algorithm is based on the description as given in the book

7 % "Time-Space, Spiking Neural Networks and Brain-inspired Artificial

% Intelligence" by Nikola K. Kasabov.

% The population variant is thought up by the author of this code.

%

% [spikes] = SFA_encode(signal, thresholds)

12 %

% - The input ’signal’ should be a T-by-n matrix. Where ’T’ is the

number

% of time samples and ’n’ is the number of input signals. ’n’ can even

be

% a matrix.

%

17 % - The input ’thresholds ’ should be a 1D vector of floats in

descending

% order (length of 1 is allowed). This will be the threshold values

used

% by the algorithm.

%

% - The output ’spikes’ will contain the spike trains in the same

format

22 % as the ’signal’ input.

%

% To decode the spike train back to roughly the original signal use the

% function SFA_decode().

%

27 % Author: Luuk de Gelder

% default values

spikes = NaN ;
useMEX = false ;

32
% input parsing

if nargin >= 2

% variable input parsing

37 Narg = numel ( varargin ) ;
for i = 1 : Narg

if ischar ( varargin{i})
str = varargin{i } ;

42 if strcmp (str , ’MEX’ )

89



useMEX = true ;
end

end

end

47
% check input shape

Ss = size ( signal ) ;
Nthres = numel ( thresholds ) ;

52 startFromCell = iscell ( signal ) ;
if startFromCell

spikes = cell (Ss ) ;
Ns = prod (Ss ) ;

else

57 spikes = cell (1 ) ;
Ns = 1 ;
signal = {signal } ;

end

62 for i = 1 : Ns
signalM = signal{i } ;
SsM = size ( signalM ) ;

% reshape if necesary

67 if numel ( SsM ) > 2
signalM = reshape ( signalM , [ SsM (1 ) prod ( SsM ( 2 : end ) ) ] ) ;

end

% run SFA (in separate files for MEX optimization)

72 if Nthres > 1
if useMEX

if isa ( signalM , ’single’ )
spikesM = populationSFA_encode_mex_single ( signalM

, thresholds ) ;
else

77 spikesM = populationSFA_encode_mex ( signalM ,
thresholds ) ;

end

else

spikesM = populationSFA_encode ( signalM , thresholds ) ;
end

82 else

if useMEX

if isa ( signalM , ’single’ )
spikesM = regularSFA_encode_mex_single ( signalM ,

thresholds ) ;
else

87 spikesM = regularSFA_encode_mex ( signalM ,
thresholds ) ;

end

else

spikesM = regularSFA_encode ( signalM , thresholds ) ;
end

90



92 end

% reshape back

if numel ( SsM ) > 2
spikesM = reshape ( spikesM , SsM ) ;

97 end

spikes (i ) = {spikesM } ;
end

102
if ˜startFromCell

spikes = spikes {1} ;
end

end

107 end

A.6.2 regularSFA encode

function spikes = regularSFA_encode ( signal , threshold )
Ss = size ( signal ) ;

3 spikes = nan (Ss ) ;
base = zeros ( [ 1 Ss (2 ) ] ) ;
for t = 1 : Ss (1 )

D = signal (t , : ) − base ;
spike_p = D >= threshold ;

8 spikes (t , spike_p ) = 1 ;
spike_n = D <= −threshold ;
spikes (t , spike_n ) = −1;
base = base + threshold ∗ ( spike_p − spike_n ) ;

end

13 end

A.7 population Threshold Encoding algorithm

A.7.1 populationTA encode

function spikes = populationTA_encode ( signal , thresholds )
2 Ss = size ( signal ) ;

Nthres = numel ( thresholds ) ;
mem = zeros ( [ Ss (2 ) Nthres ] , ’logical’ ) ;
spikes = nan ( [ Ss Nthres ] ) ;
for t = 1 : Ss (1 )

7 for Tind = 1 : Nthres
threshold = thresholds ( Tind ) ;
spike_pos = signal (t , : ) >= threshold & ˜mem ( : , Tind ) ;
spike_neg = signal (t , : ) < threshold & mem ( : , Tind ) ;
mem ( : , Tind ) = xor ( mem ( : , Tind ) , spike_neg ) | spike_pos ;

12 spikes (t , spike_pos , Tind ) = 1 ;
spikes (t , spike_neg , Tind ) = −1;

end

end

end

91



A.8 population Step Forward Encoding algorithm

A.8.1 populationSFA encode

function spikes = populationSFA_encode ( signal , thresholds )
Ss = size ( signal ) ;
Nthres = numel ( thresholds ) ;

4 spikes = nan ( [ Ss Nthres ] ) ;
base = zeros ( [ 1 Ss (2 ) ] ) ;
for t = 1 : Ss (1 )

for p = 1 : Nthres
D = signal (t , : ) − base ;

9 spike_p = D >= thresholds (p ) ;
spikes (t , spike_p , p ) = 1 ;
spike_n = D <= −thresholds (p ) ;
spikes (t , spike_n , p ) = −1;
base = base + thresholds (p ) ∗ ( spike_p − spike_n ) ;

14 end

end

end

92



Supplementary data B
B.1 Signal encoding accuracy

Table B.1: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the raw audio of the Free Spoken MNIST dataset, see table 6.1. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.3055 0.23 0.77 0 NaN

LE 0.05214 0 1 0 NaN

TE 0.1425 0 0.315 0.685 1.082 (± 0.1871)

TCE 0.1256 0.19 0 0.81 0.9997 (± 0.002377)

MWE 0.1404 0.015 0 0.985 1.11 (± 0.4137)

SFE 0.1064 0.19 0 0.81 0.9998 (± 0.002663)

p-TE (2) 0.2033 0.03 0 0.97 1 (± 0)
p-TE (3) 0.1443 0 0.03 0.97 1.05 (± 0.1301)
p-TE (4) 0.1843 0 0.03 0.97 1.05 (± 0.1302)
p-TE (5) 0.2305 0 0.03 0.97 1.073 (± 0.2114)
p-TE (6) 0.2781 0 0.03 0.97 1.11 (± 0.3171)
p-TE (7) 0.3135 0 0.03 0.97 1.11 (± 0.3171)
p-TE (8) 0.3611 0 0.03 0.97 1.109 (± 0.3173)
p-TE (9) 0.404 0 0.03 0.97 1.144 (± 0.4235)
p-TE (10) 0.4447 0 0.03 0.97 1.18 (± 0.5295)

p-SFE (2) 0.2493 0.015 0 0.985 1.01 (± 0.03506)
p-SFE (3) 0.1987 0.015 0 0.985 1.023 (± 0.05479)
p-SFE (4) 0.2672 0 0 1 1.017 (± 0.04318)
p-SFE (5) 0.325 0 0 1 1.028 (± 0.06145)
p-SFE (6) 0.3887 0 0 1 1.026 (± 0.06153)
p-SFE (7) 0.45 0 0 1 1.027 (± 0.062)
p-SFE (8) 0.5229 0 0 1 1.022 (± 0.05655)
p-SFE (9) 0.5855 0 0 1 1.023 (± 0.05602)
p-SFE (10) 0.6459 0 0 1 1.021 (± 0.05557)

93



Table B.2: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the normalized audio of the Free Spoken MNIST dataset, see table 6.2. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.4874 0 1 0 NaN

LE 0.0515 0 1 0 NaN

TE 0.1457 0 0 1 1.03 (± 0.01382)

TCE 0.1293 0 0 1 0.9998 (± 0.002672)

MWE 0.1426 0 0 1 0.9428 (± 0.184)

SFE 0.1053 0 0 1 0.9997 (± 0.003374)

p-TE (2) 0.1606 0 0 1 1.026 (± 0.01191)
p-TE (3) 0.1379 0 0 1 1.009 (± 0.003389)
p-TE (4) 0.1854 0 0 1 1.009 (± 0.00353)
p-TE (5) 0.2284 0 0 1 1.008 (± 0.003065)
p-TE (6) 0.2739 0 0 1 1.011 (± 0.004369)
p-TE (7) 0.322 0 0 1 1.007 (± 0.002747)
p-TE (8) 0.3626 0 0 1 1.007 (± 0.002686)
p-TE (9) 0.3996 0 0 1 1.008 (± 0.003071)
p-TE (10) 0.4504 0 0 1 1.008 (± 0.003085)

p-SFE (2) 0.2039 0 0 1 1.011 (± 0.03164)
p-SFE (3) 0.1975 0 0 1 1.023 (± 0.0561)
p-SFE (4) 0.2636 0 0 1 1.022 (± 0.05626)
p-SFE (5) 0.3344 0 0 1 1.019 (± 0.05297)
p-SFE (6) 0.3925 0 0 1 1.018 (± 0.05462)
p-SFE (7) 0.4578 0 0 1 1.017 (± 0.05342)
p-SFE (8) 0.5222 0 0 1 1.016 (± 0.0527)
p-SFE (9) 0.5929 0 0 1 1.015 (± 0.05149)
p-SFE (10) 0.6532 0 0 1 1.015 (± 0.05072)

94



Table B.3: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the low filtered audio of the Free Spoken MNIST dataset, see table 6.3. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.4886 1 0 0 NaN

LE 0.08245 0 1 0 NaN

TE 0.183 0 0 1 1 (± 0)

TCE 0.1841 0 0 1 1.002 (± 0.006776)

MWE 0.2202 0 0 1 2.022 (± 0.533)

SFE 0.1615 0 0 1 1.009 (± 0.008126)

p-TE (2) 0.1618 0 0 1 1 (± 0.002946)
p-TE (3) 0.1423 0 0 1 1 (± 0.002143)
p-TE (4) 0.1866 0 0 1 1 (± 0.003536)
p-TE (5) 0.2311 0 0 1 1 (± 0.002828)
p-TE (6) 0.2825 0 0 1 1 (± 0.0034)
p-TE (7) 0.3156 0 0 1 1 (± 0.003245)
p-TE (8) 0.3583 0 0 1 1 (± 0.003893)
p-TE (9) 0.4084 0 0 1 1.006 (± 0.005238)
p-TE (10) 0.4464 0 0 1 1.006 (± 0.004762)

p-SFE (2) 0.245 0 0 1 0.9898 (± 0.05233)
p-SFE (3) 0.2014 0 0 1 0.9834 (± 0.06718)
p-SFE (4) 0.2712 0 0 1 0.9842 (± 0.07035)
p-SFE (5) 0.33 0 0 1 0.9821 (± 0.0702)
p-SFE (6) 0.3955 0 0 1 0.9822 (± 0.06853)
p-SFE (7) 0.4666 0 0 1 0.9827 (± 0.06466)
p-SFE (8) 0.5306 0 0 1 0.9837 (± 0.06305)
p-SFE (9) 0.6074 0 0 1 0.9857 (± 0.05859)
p-SFE (10) 0.6645 0 0 1 0.9839 (± 0.05816)

95



Table B.4: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the mid filtered audio of the Free Spoken MNIST dataset, see table 6.4. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.3021 1 0 0 NaN

LE 0.0494 0 1 0 NaN

TE 0.1353 0 0 1 1 (± 0)

TCE 0.1206 0 0 1 1.002 (± 0.006775)

MWE 0.1419 0 0 1 2.183 (± 0.6448)

SFE 0.1047 0 0 1 1.008 (± 0.007413)

p-TE (2) 0.1581 0 0 1 1 (± 0.003928)
p-TE (3) 0.1383 0 0 1 1 (± 0.003928)
p-TE (4) 0.1825 0 0 1 1.018 (± 0.01169)
p-TE (5) 0.2259 0 0 1 1.013 (± 0.01029)
p-TE (6) 0.2686 0 0 1 1.011 (± 0.008893)
p-TE (7) 0.3143 0 0 1 1.011 (± 0.008912)
p-TE (8) 0.3719 0 0 1 1.009 (± 0.008288)
p-TE (9) 0.3986 0 0 1 1.009 (± 0.008288)
p-TE (10) 0.4489 0 0 1 1.008 (± 0.007742)

p-SFE (2) 0.2225 0 0 1 0.9881 (± 0.03192)
p-SFE (3) 0.204 0 0 1 0.9792 (± 0.04728)
p-SFE (4) 0.2875 0 0 1 0.9744 (± 0.05291)
p-SFE (5) 0.3445 0 0 1 0.9714 (± 0.05757)
p-SFE (6) 0.3943 0 0 1 0.9695 (± 0.05872)
p-SFE (7) 0.4602 0 0 1 0.9697 (± 0.05876)
p-SFE (8) 0.5323 0 0 1 0.9707 (± 0.05604)
p-SFE (9) 0.596 0 0 1 0.9711 (± 0.05381)
p-SFE (10) 0.6621 0 0 1 0.9709 (± 0.05407)

96



Table B.5: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the high filtered audio of the Free Spoken MNIST dataset, see table 6.5. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.2807 1 0 0 NaN

LE 0.05574 0.08 0.92 0 NaN

TE 0.1425 0.145 0 0.855 1.001 (± 0.01315)

TCE 0.1194 0.035 0.01 0.955 1.008 (± 0.04518)

MWE 0.1401 0.04 0.035 0.925 3.014 (± 2.705)

SFE 0.1158 0.015 0.015 0.97 1.026 (± 0.1075)

p-TE (2) 0.1608 0 0.495 0.505 1.276 (± 0.3226)
p-TE (3) 0.1378 0 0.495 0.505 1.274 (± 0.3242)
p-TE (4) 0.1867 0 0.495 0.505 1.274 (± 0.3243)
p-TE (5) 0.2302 0 0.495 0.505 1.266 (± 0.3288)
p-TE (6) 0.2761 0 0.495 0.505 1.266 (± 0.329)
p-TE (7) 0.3203 0 0.495 0.505 1.266 (± 0.329)
p-TE (8) 0.3606 0 0.495 0.505 1.266 (± 0.329)
p-TE (9) 0.4074 0 0.495 0.505 1.266 (± 0.329)
p-TE (10) 0.4408 0 0.495 0.505 1.266 (± 0.329)

p-SFE (2) 0.2056 0.01 0.005 0.985 0.99 (± 0.04464)
p-SFE (3) 0.1941 0.01 0.005 0.985 0.9669 (± 0.04553)
p-SFE (4) 0.2635 0 0.01 0.99 0.962 (± 0.08923)
p-SFE (5) 0.3245 0 0.005 0.995 0.9605 (± 0.08958)
p-SFE (6) 0.3869 0 0 1 0.9585 (± 0.1011)
p-SFE (7) 0.4543 0 0 1 0.9525 (± 0.05637)
p-SFE (8) 0.51 0 0 1 0.9533 (± 0.05306)
p-SFE (9) 0.5856 0 0 1 0.9562 (± 0.05028)
p-SFE (10) 0.6575 0 0 1 0.9591 (± 0.04893)

97



Table B.6: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the raw audio of the Speech Commands dataset, see table 6.6. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 38.82 0.0361 0.9639 0 NaN

LE 1.826 0 1 0 NaN

TE 10.85 0 0.136 0.864 1.05 (± 0.1321)

TCE 8.504 0.01577 0 0.9842 0.9998 (± 0.01587)

MWE 8.019 0.00627 0.00342 0.9903 1.062 (± 1.214)

SFE 7.825 0.01653 0 0.9835 0.9999 (± 0.01423)

p-TE (2) 13.56 0 0.1229 0.8771 1.047 (± 0.1303)
p-TE (3) 20.3 0 0.05643 0.9436 1.027 (± 0.1009)
p-TE (4) 25.91 0 0.05643 0.9436 1.054 (± 0.2017)
p-TE (5) 30.79 0 0.05643 0.9436 1.053 (± 0.2019)
p-TE (6) 36.24 0 0.00836 0.9916 1.034 (± 0.1583)
p-TE (7) 42.2 0 0.00836 0.9916 1.044 (± 0.2111)
p-TE (8) 47.91 0 0.00551 0.9945 1.028 (± 0.171)
p-TE (9) 53.85 0 0.00551 0.9945 1.028 (± 0.1711)
p-TE (10) 59.98 0 0.00551 0.9945 1.028 (± 0.1711)

p-SFE (2) 18.25 0.00266 0.00019 0.9971 1.001 (± 0.0318)
p-SFE (3) 27.33 0.00057 0 0.9994 1.002 (± 0.04334)
p-SFE (4) 34.97 0.00038 0 0.9996 1.003 (± 0.05069)
p-SFE (5) 42.48 0 0.00038 0.9996 1.003 (± 0.05282)
p-SFE (6) 50.38 0 0.00019 0.9998 1.004 (± 0.06124)
p-SFE (7) 58.91 0 0.00019 0.9998 1.003 (± 0.05367)
p-SFE (8) 67.2 0 0 1 1.003 (± 0.05263)
p-SFE (9) 75.43 0 0 1 1.003 (± 0.05004)
p-SFE (10) 83.81 0 0 1 1.002 (± 0.04747)

98



Table B.7: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the normalized audio of the Speech Commands dataset, see table 6.7. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 44.34 0 1 0 NaN

LE 1.804 0 1 0 NaN

TE 10.45 0.00095 0.00019 0.9989 1 (± 0.01423)

TCE 8.196 0 0 1 1 (± 0.001939)

MWE 7.506 0.00019 0.00057 0.9992 1.043 (± 1.312)

SFE 7.676 0 0 1 1 (± 0.004257)

p-TE (2) 13.39 0 0.00019 0.9998 1.001 (± 0.001188)
p-TE (3) 20.05 0 0.00019 0.9998 1.002 (± 0.001909)
p-TE (4) 25.53 0 0.00019 0.9998 1.001 (± 0.001386)
p-TE (5) 30.83 0 0.00019 0.9998 1.002 (± 0.001538)
p-TE (6) 36.2 0 0.00019 0.9998 1.002 (± 0.001242)
p-TE (7) 43.07 0 0.00019 0.9998 1.002 (± 0.001553)
p-TE (8) 48.22 0 0.00019 0.9998 1.003 (± 0.001729)
p-TE (9) 53.96 0 0.00019 0.9998 1.003 (± 0.001607)
p-TE (10) 59.98 0 0.00019 0.9998 1.003 (± 0.00169)

p-SFE (2) 26.06 0 0 1 1.001 (± 0.02925)
p-SFE (3) 38.86 0 0 1 1.002 (± 0.04214)
p-SFE (4) 50.76 0 0 1 1.002 (± 0.0466)
p-SFE (5) 64.84 0 0 1 1.003 (± 0.04976)
p-SFE (6) 77.76 0 0 1 1.003 (± 0.05113)
p-SFE (7) 89.36 0 0 1 1.003 (± 0.05081)
p-SFE (8) 100.7 0 0 1 1.003 (± 0.04933)
p-SFE (9) 114.8 0 0 1 1.003 (± 0.04771)
p-SFE (10) 128.7 0 0 1 1.002 (± 0.04541)

99



Table B.8: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the low filtered audio of the Speech Commands dataset, see table 6.8. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 42.4 1 0 0 NaN

LE 5.704 0.00266 0.9973 0 NaN

TE 10.62 0.0513 0.00038 0.9483 1 (± 0.005289)

TCE 8.726 0.0019 0.00076 0.9973 1.001 (± 0.0351)

MWE 8.486 0 0.00019 0.9998 3.468 (± 13.92)

SFE 8.444 0.00171 0.00095 0.9973 1.006 (± 0.02905)

p-TE (2) 13.98 0.00171 0.00038 0.9979 1.001 (± 0.01029)
p-TE (3) 21.47 0.00171 0.00019 0.9981 1.001 (± 0.02272)
p-TE (4) 26.89 0.00171 0.00019 0.9981 1.001 (± 0.02983)
p-TE (5) 31.27 0.00057 0.00019 0.9992 1.001 (± 0.0355)
p-TE (6) 36.25 0.00057 0.00019 0.9992 1.001 (± 0.02876)
p-TE (7) 42.28 0.00057 0.00019 0.9992 1.001 (± 0.008191)
p-TE (8) 48.08 0 0.00076 0.9992 1.008 (± 0.01528)
p-TE (9) 54 0 0.00076 0.9992 1.006 (± 0.01506)
p-TE (10) 59.86 0 0.00076 0.9992 1.006 (± 0.01495)

p-SFE (2) 24.54 0.00057 0.00114 0.9983 0.9913 (± 0.04115)
p-SFE (3) 39.33 0 0.00057 0.9994 0.9834 (± 0.05472)
p-SFE (4) 48.86 0 0 1 0.9804 (± 0.06041)
p-SFE (5) 63.42 0 0 1 0.9788 (± 0.0604)
p-SFE (6) 72.62 0 0 1 0.979 (± 0.06159)
p-SFE (7) 83.57 0 0 1 0.9795 (± 0.06183)
p-SFE (8) 94.89 0 0 1 0.9802 (± 0.06112)
p-SFE (9) 107.9 0 0 1 0.9809 (± 0.06052)
p-SFE (10) 119.9 0 0 1 0.9818 (± 0.05933)

100



Table B.9: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the mid filtered audio of the Speech Commands dataset, see table 6.9. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 40.93 1 0 0 NaN

LE 5.295 0.00019 0.9998 0 NaN

TE 10.61 0.00627 0.00019 0.9935 1.001 (± 0.01478)

TCE 8.646 0 0.00038 0.9996 1.001 (± 0.01125)

MWE 8.592 0 0.00019 0.9998 3.687 (± 13.95)

SFE 8.476 0.09253 0.8655 0.04199 1.579 (± 0.4256)

p-TE (2) 13.62 0 0.00019 0.9998 1.001 (± 0.02844)
p-TE (3) 21.32 0 0.00019 0.9998 1.001 (± 0.006417)
p-TE (4) 26.75 0 0.00019 0.9998 1.001 (± 0.00623)
p-TE (5) 31.5 0 0.00019 0.9998 1.001 (± 0.006077)
p-TE (6) 36.66 0 0.00019 0.9998 1.009 (± 0.01005)
p-TE (7) 42.94 0 0.00019 0.9998 1.007 (± 0.009352)
p-TE (8) 48.9 0 0 1 1.007 (± 0.013)
p-TE (9) 55 0 0 1 1.006 (± 0.01357)
p-TE (10) 61.08 0 0 1 1.006 (± 0.01437)

p-SFE (2) 23.64 0 0 1 0.9883 (± 0.02875)
p-SFE (3) 36.55 0 0 1 0.9797 (± 0.04166)
p-SFE (4) 46.76 0 0 1 0.9765 (± 0.04812)
p-SFE (5) 60.57 0 0 1 0.9754 (± 0.0521)
p-SFE (6) 71.69 0 0 1 0.975 (± 0.05293)
p-SFE (7) 81.26 0 0 1 0.9763 (± 0.05219)
p-SFE (8) 92.89 0 0 1 0.9762 (± 0.05273)
p-SFE (9) 107.6 0 0 1 0.9775 (± 0.05135)
p-SFE (10) 119.3 0 0 1 0.9784 (± 0.05036)

101



Table B.10: Supplementary data to the results of signal encoding accuracy for the encoding
algorithms from the high filtered audio of the Speech Commands dataset, see table 6.10. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 45.41 1 0 0 NaN

LE 5.366 0.1161 0.8839 0 NaN

TE 10.83 0.2681 0.00019 0.7317 1.001 (± 0.02195)

TCE 8.966 0.03971 0.01121 0.9491 1.009 (± 0.09343)

MWE 8.429 0.03306 0.04294 0.924 8.271 (± 22.75)

SFE 8.393 0.02926 0.02869 0.942 1.029 (± 0.122)

p-TE (2) 13.64 0.6738 0 0.3262 1.002 (± 0.03629)
p-TE (3) 21.19 0.6738 0 0.3262 1.001 (± 0.02968)
p-TE (4) 26.4 0.6738 0 0.3262 1.001 (± 0.01521)
p-TE (5) 31.12 0.6738 0 0.3262 1.001 (± 0.01426)
p-TE (6) 36.15 0.6738 0 0.3262 1.001 (± 0.01426)
p-TE (7) 42.15 0.6738 0 0.3262 1.001 (± 0.01674)
p-TE (8) 48 0.6738 0 0.3262 1.001 (± 0.01452)
p-TE (9) 54.49 0.6738 0 0.3262 1.001 (± 0.0135)
p-TE (10) 54.5 0.6738 0 0.3262 1.001 (± 0.0135)

p-SFE (2) 24.03 0.019 0.01824 0.9628 1.004 (± 0.1057)
p-SFE (3) 35.92 0.00893 0.01368 0.9774 0.9838 (± 0.08319)
p-SFE (4) 45.99 0.00665 0.00779 0.9856 0.9744 (± 0.08786)
p-SFE (5) 59.01 0.0038 0.00361 0.9926 0.9665 (± 0.08581)
p-SFE (6) 69.6 0.00171 0.00323 0.9951 0.9615 (± 0.06498)
p-SFE (7) 82.21 0.00057 0.00114 0.9983 0.9615 (± 0.05252)
p-SFE (8) 93.25 0 0.00076 0.9992 0.9598 (± 0.04825)
p-SFE (9) 107.2 0 0.00019 0.9998 0.9615 (± 0.04308)
p-SFE (10) 116.8 0 0 1 0.9636 (± 0.0403)

102



B.2 Encoding efficiency

Table B.11: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the raw audio of the Free Spoken MNIST dataset, see table 6.11. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.3602 0.61 0.39 0 NaN

LE 0.05474 0.12 0.88 0 NaN

TE 0.1429 0 0.285 0.715 1.061 (± 0.1367)

TCE 0.125 0.26 0 0.74 0.9998 (± 0.003031)

MWE 0.1408 0.295 0.015 0.69 0.847 (± 0.4238)

SFE 0.1042 0.235 0 0.765 0.9997 (± 0.003334)

p-TE (2) 0.1657 0 0.285 0.715 1.046 (± 0.09876)

p-SFE (2) 0.2071 0.255 0 0.745 1.013 (± 0.05057)
p-SFE (3) 0.1984 0.045 0 0.955 1.018 (± 0.06553)
p-SFE (4) 0.2618 0 0 1 1.027 (± 0.06773)
p-SFE (5) 0.3187 0 0 1 1.026 (± 0.06604)
p-SFE (6) 0.3882 0 0 1 1.025 (± 0.06433)
p-SFE (7) 0.4569 0 0 1 1.009 (± 0.042)
p-SFE (8) 0.5153 0 0 1 1.012 (± 0.03861)
p-SFE (9) 0.5904 0 0 1 1.015 (± 0.05292)
p-SFE (10) 0.6463 0 0 1 1.02 (± 0.05467)

103



Table B.12: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the normalized audio of the Free Spoken MNIST dataset, see table 6.12.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.3875 0.385 0.615 0 NaN

LE 0.05309 0.015 0.985 0 NaN

TE 0.1415 0 0.01 0.99 1.124 (± 0.1605)

TCE 0.1266 0.025 0 0.975 1 (± 0)

MWE 0.1636 0.745 0.095 0.16 0.1145 (± 0.5329)

SFE 0.1092 0 0 1 1 (± 0)

p-TE (2) 0.1672 0 0.01 0.99 1.221 (± 0.2465)

p-SFE (2) 0.2043 0 0 1 1 (± 0)
p-SFE (3) 0.2049 0 0 1 1.023 (± 0.0561)
p-SFE (4) 0.2615 0 0 1 1.022 (± 0.05626)
p-SFE (5) 0.3356 0 0 1 1.019 (± 0.05297)
p-SFE (6) 0.394 0 0 1 1.018 (± 0.05462)
p-SFE (7) 0.4538 0 0 1 1.017 (± 0.05342)
p-SFE (8) 0.5263 0 0 1 1.016 (± 0.0527)
p-SFE (9) 0.5879 0 0 1 1.015 (± 0.05149)
p-SFE (10) 0.6572 0 0 1 1.015 (± 0.05072)

104



Table B.13: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the low filtered audio of the Free Spoken MNIST dataset, see table 6.13.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.4023 0.29 0.71 0 NaN

LE 0.05161 0.09 0.91 0 NaN

TE 0.1424 0.02 0 0.98 1 (± 0)

TCE 0.1309 0.225 0.06 0.715 1.055 (± 0.2088)

MWE 0.1586 0.64 0.325 0.035 23.2 (± 22.03)

SFE 0.1142 0.265 0.58 0.155 1.451 (± 0.3567)

p-TE (2) 0.1613 0 0.02 0.98 1.095 (± 0.1598)
p-TE (3) 0.1394 0 0.02 0.98 1.095 (± 0.1599)
p-TE (4) 0.1862 0 0.02 0.98 1.095 (± 0.1599)

p-SFE (2) 0.2002 0.255 0.585 0.16 1.446 (± 0.3563)
p-SFE (3) 0.1939 0.115 0.525 0.36 1.359 (± 0.331)
p-SFE (4) 0.2639 0 0 1 0.9834 (± 0.07291)
p-SFE (5) 0.3242 0 0 1 0.9808 (± 0.06819)
p-SFE (6) 0.3922 0 0 1 0.9825 (± 0.06782)
p-SFE (7) 0.4593 0 0 1 0.984 (± 0.06742)
p-SFE (8) 0.5279 0 0 1 0.9852 (± 0.06039)
p-SFE (9) 0.5893 0 0 1 0.9858 (± 0.05853)
p-SFE (10) 0.6646 0 0 1 0.9858 (± 0.05717)

105



Table B.14: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the mid filtered audio of the Free Spoken MNIST dataset, see table 6.14.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.4904 0.17 0.83 0 NaN

LE 0.0515 0 1 0 NaN

TE 0.1436 0.065 0 0.935 1 (± 0)

TCE 0.1186 0.13 0.11 0.76 1.038 (± 0.1816)

MWE 0.1402 0.465 0.375 0.16 16.42 (± 15.43)

SFE 0.1088 0.155 0.67 0.175 1.571 (± 0.3723)

p-TE (2) 0.1599 0 0.075 0.925 1.186 (± 0.2226)
p-TE (3) 0.14 0 0.075 0.925 1.186 (± 0.2226)

p-SFE (2) 0.2051 0.165 0.675 0.16 1.58 (± 0.3712)
p-SFE (3) 0.1973 0.1 0.64 0.26 1.413 (± 0.3054)
p-SFE (4) 0.2643 0 0.1 0.9 1.18 (± 0.2285)
p-SFE (5) 0.3236 0 0 1 0.9698 (± 0.05991)
p-SFE (6) 0.3941 0 0 1 0.9684 (± 0.05857)
p-SFE (7) 0.4494 0 0 1 0.97 (± 0.05766)
p-SFE (8) 0.5252 0 0 1 0.9707 (± 0.05604)
p-SFE (9) 0.581 0 0 1 0.9701 (± 0.05716)
p-SFE (10) 0.6563 0 0 1 0.9692 (± 0.05575)

106



Table B.15: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the high filtered audio of the Free Spoken MNIST dataset, see table 6.15.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 0.4056 0.565 0.435 0 NaN

LE 0.06569 0.62 0.38 0 NaN

TE 0.1395 0.31 0 0.69 1.002 (± 0.02128)

TCE 0.1241 0.38 0.045 0.575 1.031 (± 0.1376)

MWE 0.162 0.405 0.175 0.42 4.726 (± 5.857)

SFE 0.1081 0.27 0.28 0.45 1.212 (± 0.3145)

p-TE (2) 0.1604 0 0.495 0.505 1.276 (± 0.3226)
p-TE (3) 0.1377 0 0.495 0.505 1.274 (± 0.3239)
p-TE (4) 0.1816 0 0.495 0.505 1.274 (± 0.324)
p-TE (5) 0.2271 0 0.495 0.505 1.274 (± 0.324)
p-TE (6) 0.2694 0 0.495 0.505 1.274 (± 0.324)
p-TE (7) 0.3115 0 0.495 0.505 1.274 (± 0.324)
p-TE (8) 0.3618 0 0.495 0.505 1.274 (± 0.3241)
p-TE (9) 0.3991 0 0.495 0.505 1.274 (± 0.3241)
p-TE (10) 0.4426 0 0.495 0.505 1.271 (± 0.3258)

p-SFE (2) 0.2262 0.255 0.265 0.48 1.225 (± 0.387)
p-SFE (3) 0.2046 0.24 0.27 0.49 1.206 (± 0.3811)
p-SFE (4) 0.2647 0.27 0.28 0.45 1.202 (± 0.384)
p-SFE (5) 0.3248 0.24 0.27 0.49 1.205 (± 0.3817)
p-SFE (6) 0.3891 0.23 0.26 0.51 1.146 (± 0.3025)
p-SFE (7) 0.453 0.23 0.26 0.51 1.193 (± 0.3506)
p-SFE (8) 0.5188 0 0 1 0.9481 (± 0.05407)
p-SFE (9) 0.5828 0 0 1 0.952 (± 0.05362)
p-SFE (10) 0.6581 0 0 1 0.9556 (± 0.05102)

107



Table B.16: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the raw audio of the Speech Commands dataset, see table 6.16. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 54.32 0.9514 0.04864 0 NaN

LE 3.131 0.1313 0.8687 0 NaN

TE 9.937 0.3454 0 0.6546 1 (± 0.001603)

TCE 8.091 0.156 0 0.844 1 (± 0.004058)

MWE 7.638 0.8136 0.03895 0.1474 1.436 (± 3.622)

SFE 7.657 0.1898 0 0.8102 1 (± 0.005286)

p-TE (2) 13.47 0 0.3221 0.6779 1.092 (± 0.1844)
p-TE (3) 19.89 0 0.3221 0.6779 1.092 (± 0.1844)

p-SFE (2) 18.25 0 0.00038 0.9996 1 (± 0.01179)
p-SFE (3) 27.13 0 0.00038 0.9996 1.001 (± 0.02615)
p-SFE (4) 35.25 0 0.00038 0.9996 1.002 (± 0.0408)
p-SFE (5) 43.05 0 0.00038 0.9996 1.003 (± 0.05282)
p-SFE (6) 51.03 0 0.00019 0.9998 1.003 (± 0.05996)
p-SFE (7) 59.23 0 0.00019 0.9998 1.003 (± 0.05613)
p-SFE (8) 68.69 0 0 1 1.003 (± 0.05322)
p-SFE (9) 77.35 0 0 1 1.003 (± 0.05077)
p-SFE (10) 84.5 0 0 1 1.003 (± 0.04895)

108



Table B.17: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the normalized audio of the Speech Commands dataset, see table 6.17. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 39.03 0.0532 0.9468 0 NaN

LE 3.035 0.02204 0.978 0 NaN

TE 9.964 0.06289 0.00019 0.9369 1 (± 0.01487)

TCE 8.129 0.01767 0 0.9823 0.9995 (± 0.02809)

MWE 7.635 0.7823 0.07486 0.1429 0.7822 (± 1.65)

SFE 7.685 0 0.00038 0.9996 1 (± 0.009856)

p-TE (2) 13.62 0 0.04123 0.9588 1.102 (± 0.1663)
p-TE (3) 20.26 0 0.04104 0.959 1.099 (± 0.1621)

p-SFE (2) 24.66 0 0.00038 0.9996 1 (± 0.02995)
p-SFE (3) 36.36 0 0.00019 0.9998 1.001 (± 0.03729)
p-SFE (4) 47.69 0 0 1 1.003 (± 0.0516)
p-SFE (5) 58.99 0 0 1 1.003 (± 0.05406)
p-SFE (6) 71.58 0 0 1 1.003 (± 0.05337)
p-SFE (7) 82.99 0 0 1 1.003 (± 0.05238)
p-SFE (8) 93.29 0 0 1 1.003 (± 0.05089)
p-SFE (9) 106.3 0 0 1 1.003 (± 0.0488)
p-SFE (10) 118.6 0 0 1 1.002 (± 0.04635)

109



Table B.18: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the low filtered audio of the Speech Commands dataset, see table 6.18. The
parentheses behind the population encoding algorithms show the number of thresholds used,
while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 57.03 1 0 0 NaN

LE 5.277 0.1642 0.8358 0 NaN

TE 10.96 0.1414 0.00019 0.8584 1.001 (± 0.01585)

TCE 8.724 0.00304 0.00209 0.9949 1.003 (± 0.05159)

MWE 8.426 0.7374 0.2607 0.0019 0 (± 0)

SFE 8.394 0.2459 0.5605 0.1936 1.45 (± 0.3603)

p-TE (2) 13.6 0 0.1416 0.8584 1.123 (± 0.1886)
p-TE (3) 21.19 0 0.1414 0.8586 1.123 (± 0.1864)
p-TE (4) 26.46 0 0.1414 0.8586 1.123 (± 0.1864)

p-SFE (2) 24.4 0.2915 0.5599 0.1486 1.485 (± 0.3537)
p-SFE (3) 37.35 0.1668 0.4782 0.3549 1.404 (± 0.3561)
p-SFE (4) 47.52 0.05795 0.1991 0.7429 1.186 (± 0.2477)
p-SFE (5) 61.64 0 0 1 0.9788 (± 0.0604)
p-SFE (6) 70.39 0 0 1 0.9789 (± 0.06189)
p-SFE (7) 82.2 0 0 1 0.9795 (± 0.06183)
p-SFE (8) 93.98 0 0 1 0.9797 (± 0.06177)
p-SFE (9) 106.8 0 0 1 0.9809 (± 0.06052)
p-SFE (10) 117 0 0 1 0.9818 (± 0.05933)

110



Table B.19: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the mid filtered audio of the Speech Commands dataset, see table 6.19.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 58 0.1514 0.8486 0 NaN

LE 5.612 0.00038 0.9996 0 NaN

TE 11.22 0.02033 0.00019 0.9795 1 (± 0.007349)

TCE 9.07 0.07638 0.2457 0.6779 1.025 (± 0.1581)

MWE 8.544 0.8573 0.1423 0.00038 0 (± 0)

SFE 8.307 0.09253 0.8655 0.04199 1.579 (± 0.4256)

p-TE (2) 13.66 0 0.02052 0.9795 1.11 (± 0.1435)
p-TE (3) 21.13 0 0.02052 0.9795 1.109 (± 0.1431)
p-TE (4) 26.74 0 0.02052 0.9795 1.109 (± 0.1431)

p-SFE (2) 24.12 0.09253 0.8655 0.04199 1.574 (± 0.4264)
p-SFE (3) 35.15 0.08303 0.87 0.04693 1.572 (± 0.417)
p-SFE (4) 47.01 0.00969 0.2451 0.7452 1.374 (± 0.332)
p-SFE (5) 59.07 0 0 1 0.9744 (± 0.05279)
p-SFE (6) 69.21 0 0 1 0.975 (± 0.05293)
p-SFE (7) 82.03 0 0 1 0.9751 (± 0.05402)
p-SFE (8) 92.93 0 0 1 0.9762 (± 0.05273)
p-SFE (9) 104.3 0 0 1 0.9772 (± 0.0519)
p-SFE (10) 120 0 0 1 0.9784 (± 0.05036)

111



Table B.20: Supplementary data to the results of encoding efficiency for the encoding
algorithms from the high filtered audio of the Speech Commands dataset, see table 6.20.
The parentheses behind the population encoding algorithms show the number of thresholds
used, while the parenthesis behind the mean values are the stnadard deviation.

Texe PnoSp PposSp PmixSp ratio

BSE 53.2 1 0 0 NaN

LE 5.473 0.708 0.292 0 NaN

TE 11.17 0.4178 0.00019 0.582 1.001 (± 0.02126)

TCE 8.64 0.3789 0.04826 0.5729 1.051 (± 0.1917)

MWE 8.237 0.4144 0.1708 0.4148 14.29 (± 25.08)

SFE 8.094 0.4102 0.1524 0.4374 1.18 (± 0.2902)

p-TE (2) 13.75 0 0.674 0.326 1.26 (± 0.3376)
p-TE (3) 21.45 0 0.6738 0.3262 1.257 (± 0.3382)
p-TE (4) 26.89 0 0.6738 0.3262 1.257 (± 0.3382)
p-TE (5) 31.55 0 0.6738 0.3262 1.257 (± 0.3382)
p-TE (6) 36.45 0 0.6738 0.3262 1.257 (± 0.3382)

p-SFE (2) 24.08 0.4102 0.1524 0.4374 1.173 (± 0.2935)
p-SFE (3) 36.83 0.3768 0.1503 0.4729 1.165 (± 0.2929)
p-SFE (4) 48.31 0.369 0.1457 0.4853 1.168 (± 0.3011)
p-SFE (5) 60.27 0.3768 0.1503 0.4729 1.164 (± 0.2944)
p-SFE (6) 73.89 0.4465 0.1533 0.4002 1.178 (± 0.3046)
p-SFE (7) 82.34 0.3768 0.1503 0.4729 1.164 (± 0.2946)
p-SFE (8) 93.82 0.00019 0.00114 0.9987 0.9588 (± 0.05062)
p-SFE (9) 108 0 0.00019 0.9998 0.9614 (± 0.04353)
p-SFE (10) 122.1 0 0 1 0.9635 (± 0.04049)

112



Classification accuracy
additional results C

no noise, raw, p-TE

0.125
 0.12

0.115

 0.14
0.145

 0.14
0.145 0.145

 0.15

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.05

0.1

0.15

A
c
c
u

ra
c
y

no noise, raw, p-SFE

0.195   0.2

0.295

0.275

0.305   0.3
 0.31

0.335  0.33

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
c
c
u

ra
c
y

Figure C.1: The classification accuracy achieved with an SVM on the raw audio of the
validation set from the FS MNIST dataset for the different number of thresholds of the p-TE
and the p-SFE.

no noise, normalized, p-TE

0.215

0.285

 0.32 0.325  0.33

 0.35 0.345
 0.36 0.365

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c
c
u

ra
c
y

no noise, normalized, p-SFE

0.255

 0.31 0.305

 0.33
0.345 0.345

0.325

 0.29
  0.3

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
c
c
u

ra
c
y

Figure C.2: The classification accuracy achieved with an SVM on the normalized audio of
the validation set from the FS MNIST dataset for the different number of thresholds of the
p-TE and the p-SFE.

113



no noise, low filtered, p-TE

 0.28

 0.25

0.335

  0.3

0.325 0.325

0.345
 0.36

 0.33

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
c
c
u

ra
c
y

no noise, low filtered, p-SFE

0.245

 0.31  0.31
0.325

0.305

0.335
 0.32

 0.33
 0.34

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
c
c
u

ra
c
y

Figure C.3: The classification accuracy achieved with an SVM on the low filtered signal of
the validation set from the FS MNIST dataset for the different number of thresholds of the
p-TE and the p-SFE.

no noise, mid filtered, p-TE

0.285
0.295

 0.31  0.31
0.325  0.32

0.285  0.29
  0.3

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
c
c
u

ra
c
y

no noise, mid filtered, p-SFE

0.275

0.295

 0.32

 0.36

0.335
0.345

0.315

0.335 0.335

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
A

c
c
u

ra
c
y

Figure C.4: The classification accuracy achieved with an SVM on the mid filtered signal of
the validation set from the FS MNIST dataset for the different number of thresholds of the
p-TE and the p-SFE.

no noise, high filtered, p-TE0.16 0.16 0.16

0.15 0.15 0.15 0.15 0.15 0.15

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
c
c
u

ra
c
y

no noise, high filtered, p-SFE

0.405
0.385 0.385

  0.4

 0.35

0.385

0.345

0.385
 0.37

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
c
c
u

ra
c
y

Figure C.5: The classification accuracy achieved with an SVM on the high filtered signal of
the validation set from the FS MNIST dataset for the different number of thresholds of the
p-TE and the p-SFE.

114



no noise, combined filtered, p-TE

 0.38
  0.4

0.365

0.395 0.395  0.39  0.39
0.405 0.405

p-TE (2
)

p-TE (3
)

p-TE (4
)

p-TE (5
)

p-TE (6
)

p-TE (7
)

p-TE (8
)

p-TE (9
)

p-TE (1
0)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
c
c
u

ra
c
y

no noise, combined filtered, p-SFE

 0.55
 0.57 0.565

  0.6 0.605
 0.62  0.61

0.625 0.635

p-S
FE (2

)

p-S
FE (3

)

p-S
FE (4

)

p-S
FE (5

)

p-S
FE (6

)

p-S
FE (7

)

p-S
FE (8

)

p-S
FE (9

)

p-S
FE (1

0)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
c
c
u
ra

c
y

Figure C.6: The classification accuracy achieved with an SVM on the combined spike trains
of the filtered signal of the validation set from the FS MNIST dataset for the different number
of thresholds of the p-TE and the p-SFE.

115



116



Hardware implementation
proposal D
State descriptions:
State = 000; wait for input
State = 001; buffer := difference [buffer + input]
State = 010; buffer := abs(difference) [invert buffer]
State = 011; check for spikes and update the difference if needed
State = 100; reconstruct difference sign [invert buffer]
State = 101; reconstruct encoded signal [buffer + input]
State = 110; preprocess for next loop [invert buffer]
State = 111; unused, should not be reached

Figure D.1: Block diagram schematic of the computation part from the proposed simplified
p-SFE hardware implementation.

117



Figure D.2: Block diagram schematic of the controller part from the proposed simplified p-
SFE hardware implementation.

Table D.1: Truth-table for the control from the state, TT-ctrl. This truth-table should be
implemented in the “TT-ctrl sub-component of the controller, see figure D.2. The bold control
bit on the other hand are essential to the function of the proposed hardware implementation.
The italic control bits don’t have an impact on the function of the implementation and can
be chosen arbitrary, but have been set to these values so as little logic gates would be needed.
Though, they might need to be changed for adding stability into controller, e.g. a bit flip
would not impact the result of the encoding.

S2 S1 S0 Ci Cs Ct Ch Cl Cr Cf

0 0 0 0 0 0 1 1 0 0

0 0 1 0 1 1 0 0 1 1

0 1 0 1 1 1 0 0 1 0

0 1 1 0 0 0 1 1 Ro 0

1 0 0 1 1 1 0 0 1 0

1 0 1 0 1 1 0 0 1 0

1 1 0 1 1 1 0 0 1 0

1 1 1 0 0 0 1 1 0 0

118



Table D.2: Truth-table for the addition to the state, TT-add. This truth-table should be
implemented in the “TT-add” sub-component of the controller, see figure D.2.

S2 S1 S0 Ri Rs Rn Ms A1 A0

0 0 0 0 * * * 0 0
0 0 0 1 * * * 0 1

0 0 1 * 0 * * 1 0
0 0 1 * 1 * * 0 1

0 1 0 * * * * 0 1

0 1 1 0 * 0 * 0 0
0 1 1 * * 1 0 1 0
0 1 1 1 * * 0 1 0
0 1 1 * * 1 1 0 1
0 1 1 1 * * 1 0 1

1 0 0 * * * * 0 1

1 0 1 * * * * 0 1

1 1 0 * * * * 1 0

1 1 1 * * * * 0 1

119



Figure D.3: Logical gates to implement the truth-tables for both TT-ctrl and TT-add, as
defined in tables D.1 and D.2 respectively.

120



Bibliography

[1] Facts about speech intelligibility: human voice frequency
range. URL https://www.dpamicrophones.com/mic-university/

facts-about-speech-intelligibility.

[2] Mobility, public transport and road safety: Self-driving
vehicles, 2016. URL https://www.government.nl/topics/

mobility-public-transport-and-road-safety/self-driving-vehicles.

[3] Ahmed A. Abusnaina and Rosni Abdullah. Spiking Neuron Models:
A Review. International Journal of Digital Content Technology and
its Applications, 8(3):14–21, 2014. URL https://www.researchgate.net/

publication/317579637{_}Spiking{_}Neuron{_}Models{_}A{_}Review.

[4] E. D. Adrian and Yngve Zotterman. The impulses produced by sensory
nerve-endings: Part II. The response of a Single End-Organ. The Journal
of Physiology, 61(2):151–171, 4 1926. ISSN 14697793. doi: 10.1113/
jphysiol.1926.sp002281. URL https://physoc-onlinelibrary-wiley-com.

tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281https:

//physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.

1113/jphysiol.1926.sp002281https://physoc-onlinelibrary-wiley-com.

tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281.

[5] Sander M. Bohte, Joost N. Kok, and Han La Poutré. Error-backpropagation in
temporally encoded networks of spiking neurons, 10 2002. ISSN 09252312.

[6] Andreas Ch Braun, Uwe Weidner, and Stefan Hinz. Classification in high-
dimensional feature spaces-assessment using SVM, IVM and RVM with focus
on simulated EnMAP data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 5(2):436–443, 2012. ISSN 19391404. doi:
10.1109/JSTARS.2012.2190266.

[7] César Bravo, Luigi Saputelli, Francklin Rivas, Anna Gabriela Pérez, Michael
Nikolaou, Georg Zangl, Neil De Guzmán, Shahab Mohaghegh, and Gustavo
Nunez. State of the art of artificial intelligence and predictive analytics in the
E&P industry: A technology survey. SPE Journal, 19(4):547–563, aug 2014.
ISSN 1086055X. doi: 10.2118/150314-pa. URL http://onepetro.org/SJ/

article-pdf/19/04/547/2099035/spe-150314-pa.pdf.

[8] Romain Brette. Philosophy of the Spike: Rate-Based vs. Spike-Based Theories
of the Brain. Frontiers in Systems Neuroscience, 9:151, 11 2015. ISSN 1662-
5137. doi: 10.3389/fnsys.2015.00151. URL http://journal.frontiersin.org/

Article/10.3389/fnsys.2015.00151/abstract.

[9] Eliya Elon. AI Problem Types and Their Definitions, 2018. URL https://www.

razor-labs.com/ai-problem-types-and-their-definitions/.

121

https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
https://www.government.nl/topics/mobility-public-transport-and-road-safety/self-driving-vehicles
https://www.government.nl/topics/mobility-public-transport-and-road-safety/self-driving-vehicles
https://www.researchgate.net/publication/317579637{_}Spiking{_}Neuron{_}Models{_}A{_}Review
https://www.researchgate.net/publication/317579637{_}Spiking{_}Neuron{_}Models{_}A{_}Review
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1926.sp002281 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1926.sp002281
http://onepetro.org/SJ/article-pdf/19/04/547/2099035/spe-150314-pa.pdf
http://onepetro.org/SJ/article-pdf/19/04/547/2099035/spe-150314-pa.pdf
http://journal.frontiersin.org/Article/10.3389/fnsys.2015.00151/abstract
http://journal.frontiersin.org/Article/10.3389/fnsys.2015.00151/abstract
https://www.razor-labs.com/ai-problem-types-and-their-definitions/
https://www.razor-labs.com/ai-problem-types-and-their-definitions/


[10] Covington Paul;Adams Jay;Sargin Emre. Deep Neural Networks for YouTube
Recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems, New York, New York, USA, 2016.

[11] Rǎzvan V. Florian. The chronotron: A neuron that learns to fire temporally
precise spike patterns. PLoS ONE, 7(8):40233, 8 2012. ISSN 19326203. doi:
10.1371/journal.pone.0040233. URL www.plosone.org.

[12] Francesco Galluppi and Steve Furber. Representing and decoding rank order codes
using polychronization in a network of spiking neurons. In Proceedings of the
International Joint Conference on Neural Networks, pages 943–950, 2011. ISBN
9781457710865. doi: 10.1109/IJCNN.2011.6033324.

[13] Andrey V. Gavrilov and Konstantin O. Panchenko. Methods of learning for
spiking neural networks. A survey. In 2016 13th International Scientific-Technical
Conference on Actual Problems of Electronic Instrument Engineering, APEIE 2016
- Proceedings, volume 2, pages 455–460. Institute of Electrical and Electronics
Engineers Inc., 7 2016. ISBN 9781509040698. doi: 10.1109/APEIE.2016.7806372.

[14] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Third Generation Neural Networks:
Spiking Neural Networks. In Advances in Intelligent and Soft Computing, volume
61 AISC, pages 167–178. Springer, Berlin, Heidelberg, 2009. ISBN 9783642031557.
doi: 10.1007/978-3-642-03156-4 17. URL http://link.springer.com/10.1007/

978-3-642-03156-4{_}17.

[15] Brian R. Glasberg and Brian C.J. Moore. Derivation of auditory filter shapes from
notched-noise data. Hearing Research, 47(1-2):103–138, aug 1990. ISSN 03785955.
doi: 10.1016/0378-5955(90)90170-T.

[16] Robert Gütig and Haim Sompolinsky. Tempotron Learning. In Encyclopedia
of Computational Neuroscience, pages 1–3. Springer New York, 2014. doi:
10.1007/978-1-4614-7320-6 685-1. URL https://link-springer-com.tudelft.

idm.oclc.org/referenceworkentry/10.1007/978-1-4614-7320-6{_}685-1.

[17] A. L. Hodgkin and B. Katz. The effect of sodium ions on the electrical activity
of the giant axon of the squid. The Journal of Physiology, 108(1):37–77, 3
1949. ISSN 14697793. doi: 10.1113/jphysiol.1949.sp004310. URL https:

//physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.

1113/jphysiol.1949.sp004310https://physoc-onlinelibrary-wiley-com.

tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310https:

//physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/

jphysiol.1949.sp004310.

[18] Mark Horowitz. 1.1 Computing’s energy problem (and what we can do about it). In
Digest of Technical Papers - IEEE International Solid-State Circuits Conference,
volume 57, pages 10–14, 2014. ISBN 9781479909186. doi: 10.1109/ISSCC.2014.
6757323.

122

www.plosone.org
http://link.springer.com/10.1007/978-3-642-03156-4{_}17
http://link.springer.com/10.1007/978-3-642-03156-4{_}17
https://link-springer-com.tudelft.idm.oclc.org/referenceworkentry/10.1007/978-1-4614-7320-6{_}685-1
https://link-springer-com.tudelft.idm.oclc.org/referenceworkentry/10.1007/978-1-4614-7320-6{_}685-1
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1949.sp004310 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1113/jphysiol.1949.sp004310


[19] Michael Hough, Hugo de Garis, Michael Korkin, Felix Gers, and Norberto Eiji
Nawa. SPIKER: Analog waveform to digital spiketrain conversion in ATR’s
artificial brain (cam-brain) project. International Conference on Robotics
and Artificial Life, 1999. URL https://www.researchgate.net/publication/

2462190{_}SPIKER{_}Analog{_}Waveform{_}to{_}Digital{_}Spiketrain{_}Conversion{_}in{_}ATRaposs{_}Artificial{_}Brain{_}CAM-Brain{_}Project.

[20] A. F. Huxley and R. Stämpfli. Direct determination of membrane resting potential
and action potential in single myelinated nerve fibres. The Journal of Physiology,
112(3-4):476–495, 2 1951. ISSN 00223751. doi: 10.1113/jphysiol.1951.sp004545.
URL http://doi.wiley.com/10.1113/jphysiol.1951.sp004545.

[21] A. F. Huxley and R. Stämpfli. Effect of potassium and sodium on resting
and action potentials of single myelinated nerve fibres. The Journal of
Physiology, 112(3-4):496–508, 2 1951. ISSN 14697793. doi: 10.1113/
jphysiol.1951.sp004546. URL https://physoc-onlinelibrary-wiley-com.

tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546https:

//physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.

1113/jphysiol.1951.sp004546https://physoc-onlinelibrary-wiley-com.

tudelft.idm.oclc.

[22] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15(5):1063–1070, 9 2004. ISSN 10459227. doi:
10.1109/TNN.2004.832719.

[23] Zohar Jackson, César Souza, Jason Flaks, Yuxin Pan, Hereman Nicolas, and
Adhish Thite. Jakobovski/free-spoken-digit-dataset: v1.0.8. aug 2018. doi:
10.5281/ZENODO.1342401. URL https://zenodo.org/record/1342401.

[24] Nikola Kasabov, Nathan Matthew Scott, Enmei Tu, Stefan Marks, Neelava
Sengupta, Elisa Capecci, Muhaini Othman, Maryam Gholami Doborjeh,
Norhanifah Murli, Reggio Hartono, Israel Espinosa-Ramos, Lei Zhou, Fahad Bashir
Alvi, Grace Wang, Denise Taylor, Valery Feigin, Sergei Gulyaev, Mahmoud
Mahmoud, Zeng-Guang Hou, and Jie Yang. Evolving spatio-temporal data
machines based on the NeuCube neuromorphic framework: Design methodology
and selected applications. Neural Networks, 78:1–14, 2016. doi: 10.1016/j.neunet.
2015.09.011. URL http://dx.doi.org/10.1016/j.neunet.2015.09.011.

[25] Nikola K. Kasabov. Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence,
volume 7 of Springer Series on Bio- and Neurosystems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2019. ISBN 978-3-662-57713-4. doi:
10.1007/978-3-662-57715-8. URL http://link.springer.com/10.1007/

978-3-662-57715-8.

[26] Thomas Kreuz, Julie S. Haas, Alice Morelli, Henry D.I. I Abarbanel, and
Antonio Politi. Measuring spike train synchrony. Journal of Neuroscience
Methods, 165(1):151–161, sep 2007. ISSN 01650270. doi: 10.1016/j.
jneumeth.2007.05.031. URL https://linkinghub.elsevier.com/retrieve/

pii/S0165027007002671http://inls.ucsd.edu/.

123

https://www.researchgate.net/publication/2462190{_}SPIKER{_}Analog{_}Waveform{_}to{_}Digital{_}Spiketrain{_}Conversion{_}in{_}ATRaposs{_}Artificial{_}Brain{_}CAM-Brain{_}Project
https://www.researchgate.net/publication/2462190{_}SPIKER{_}Analog{_}Waveform{_}to{_}Digital{_}Spiketrain{_}Conversion{_}in{_}ATRaposs{_}Artificial{_}Brain{_}CAM-Brain{_}Project
http://doi.wiley.com/10.1113/jphysiol.1951.sp004545
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.
https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/full/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1113/jphysiol.1951.sp004546 https://physoc-onlinelibrary-wiley-com.tudelft.idm.oclc.
https://zenodo.org/record/1342401
http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://link.springer.com/10.1007/978-3-662-57715-8
http://link.springer.com/10.1007/978-3-662-57715-8
https://linkinghub.elsevier.com/retrieve/pii/S0165027007002671 http://inls.ucsd.edu/
https://linkinghub.elsevier.com/retrieve/pii/S0165027007002671 http://inls.ucsd.edu/


[27] Thomas Kreuz, Daniel Chicharro, Martin Greschner, and Ralph G. Andrzejak.
Time-resolved and time-scale adaptive measures of spike train synchrony. Journal
of Neuroscience Methods, 195(1):92–106, jan 2011. ISSN 01650270. doi:
10.1016/j.jneumeth.2010.11.020. URL http://neurodatabase.org/,https://

linkinghub.elsevier.com/retrieve/pii/S0165027010006564.

[28] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient
Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
Frontiers in Neuroscience, 14:439, 5 2020. ISSN 1662-453X. doi: 10.3389/fnins.
2020.00439. URL https://www.frontiersin.org/article/10.3389/fnins.

2020.00439/full.

[29] Shane Legg and Marcus Hutter. A Collection of Definitions of Intelligence.
Frontiers in Artificial Intelligence and Applications, 157(1):17–24, 2007. URL
http://arxiv.org/abs/0706.3639.

[30] Todd Alexander Litman. Autonomous Vehicle Implementation Predictions:
Implications for Transport Planning. Technical report, Victoria Transport Policy
Institute, 6 2020. URL www.vtpi.org.

[31] Wolfgang Maass. Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9):1659–1671, 12 1997. ISSN 08936080.
doi: 10.1016/S0893-6080(97)00011-7. URL https://linkinghub.elsevier.com/

retrieve/pii/S0893608097000117.

[32] Bernard Marr. Are Alexa And Siri Considered AI?, 2020. URL https://

bernardmarr.com/default.asp?contentID=1830.

[33] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 12
1943. ISSN 0007-4985. doi: 10.1007/BF02478259. URL http://link.springer.

com/10.1007/BF02478259.

[34] Brian C.J. Moore and Brian R. Glasberg. Suggested formulae for calculating
auditory-filter bandwidths and excitation patterns. Journal of the Acoustical
Society of America, 74(3):750–753, sep 1983. ISSN NA. doi: 10.1121/1.389861.
URL http://asa.scitation.org/doi/10.1121/1.389861.

[35] Zihan Pan, Jibin Wu, Malu Zhang, Haizhou Li, and Yansong Chua. Neural
Population Coding for Effective Temporal Classification. In 2019 International
Joint Conference on Neural Networks (IJCNN), volume 2019-July, pages 1–8.
IEEE, 7 2019. ISBN 978-1-7281-1985-4. doi: 10.1109/IJCNN.2019.8851858. URL
https://ieeexplore.ieee.org/document/8851858/.

[36] Roy D. Patterson and Mike H. Allerhand. Time-domain modeling of peripheral
auditory processing: A modular architecture and a software platforma. Journal
of the Acoustical Society of America, 98(4):1890–1894, oct 1995. ISSN NA. doi:
10.1121/1.414456. URL http://asa.scitation.org/doi/10.1121/1.414456.

124

http://neurodatabase.org/, https://linkinghub.elsevier.com/retrieve/pii/S0165027010006564
http://neurodatabase.org/, https://linkinghub.elsevier.com/retrieve/pii/S0165027010006564
https://www.frontiersin.org/article/10.3389/fnins.2020.00439/full
https://www.frontiersin.org/article/10.3389/fnins.2020.00439/full
http://arxiv.org/abs/0706.3639
www.vtpi.org
https://linkinghub.elsevier.com/retrieve/pii/S0893608097000117
https://linkinghub.elsevier.com/retrieve/pii/S0893608097000117
https://bernardmarr.com/default.asp?contentID=1830
https://bernardmarr.com/default.asp?contentID=1830
http://link.springer.com/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
http://asa.scitation.org/doi/10.1121/1.389861
https://ieeexplore.ieee.org/document/8851858/
http://asa.scitation.org/doi/10.1121/1.414456


[37] Balint Petro, Nikola Kasabov, and Rita M. Kiss. Selection and Optimization
of Temporal Spike Encoding Methods for Spiking Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems, 31(2):358–370, 2
2020. ISSN 2162-237X. doi: 10.1109/TNNLS.2019.2906158. URL https:

//ieeexplore.ieee.org/document/8689349/.

[38] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.
ISSN 00280836. doi: 10.1038/323533a0. URL https://www-nature-com.

tudelft.idm.oclc.org/articles/323533a0.

[39] Benjamin Schrauwen and I. Van Campenhout. BSA, a fast and accurate spike
train encoding scheme. In Proceedings of the International Joint Conference on
Neural Networks, 2003., volume 4, pages 2825–2830. IEEE, 2003. ISBN 0-7803-
7898-9. doi: 10.1109/IJCNN.2003.1224019. URL http://ieeexplore.ieee.org/

document/1224019/.

[40] S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measurement of
the Psychological Magnitude Pitch. Journal of the Acoustical Society of America,
8(3):185–190, jan 1937. ISSN NA. doi: 10.1121/1.1915893. URL http://asa.

scitation.org/doi/10.1121/1.1915893.

[41] Simon Thorpe and Jacques Gautrais. Rank Order Coding. In Computational
Neuroscience, pages 113–118. Springer US, Boston, MA, 1998. doi:
10.1007/978-1-4615-4831-7 19. URL http://link.springer.com/10.1007/

978-1-4615-4831-7{_}19.

[42] M. C.W. Van Rossum. A novel spike distance. Neural Computation, 13(4):751–
763, apr 2001. ISSN 08997667. doi: 10.1162/089976601300014321.

[43] Rufin Van Rullen, Jacques Gautrais, Arnaud Delorme, and Simon Thorpe. Face
processing using one spike per neurone. In BioSystems, volume 48, pages 229–
239. Elsevier, 11 1998. doi: 10.1016/S0303-2647(98)00070-7. URL https://www.

sciencedirect.com/science/article/abs/pii/S0303264798000707.

[44] Jonathan D. Victor and Keith P. Purpura. Metric-space analysis of spike
trains: theory, algorithms and application. Network: Computation in
Neural Systems, 8(2):127–164, jan 1997. ISSN 0954-898X. doi: 10.1088/
0954-898X 8 2 003. URL https://www.tandfonline.com/doi/full/10.1088/

0954-898X{_}8{_}2{_}003.

[45] Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. arXiv, apr 2018. URL http://arxiv.org/abs/1804.03209.

[46] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):
65–85, jun 1994. ISSN 09603174. doi: 10.1007/BF00175354. URL https://

link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF00175354.

125

https://ieeexplore.ieee.org/document/8689349/
https://ieeexplore.ieee.org/document/8689349/
https://www-nature-com.tudelft.idm.oclc.org/articles/323533a0
https://www-nature-com.tudelft.idm.oclc.org/articles/323533a0
http://ieeexplore.ieee.org/document/1224019/
http://ieeexplore.ieee.org/document/1224019/
http://asa.scitation.org/doi/10.1121/1.1915893
http://asa.scitation.org/doi/10.1121/1.1915893
http://link.springer.com/10.1007/978-1-4615-4831-7{_}19
http://link.springer.com/10.1007/978-1-4615-4831-7{_}19
https://www.sciencedirect.com/science/article/abs/pii/S0303264798000707
https://www.sciencedirect.com/science/article/abs/pii/S0303264798000707
https://www.tandfonline.com/doi/full/10.1088/0954-898X{_}8{_}2{_}003
https://www.tandfonline.com/doi/full/10.1088/0954-898X{_}8{_}2{_}003
http://arxiv.org/abs/1804.03209
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF00175354
https://link-springer-com.tudelft.idm.oclc.org/article/10.1007/BF00175354


[47] Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov. On-line learning
with structural adaptation in a network of spiking neurons for visual pattern
recognition. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
4131 LNCS - I, pages 61–70. Springer Verlag, 2006. ISBN 3540386254. doi:
10.1007/11840817 7. URL http:www.kedri.info.

[48] E. Zwicker and I. E. Terhardt. Analytical expressions for critical-band rate and
critical bandwidth as a function of frequency, nov 1980. ISSN NA. URL http:

//asa.scitation.org/doi/10.1121/1.385079.

126

http:www.kedri.info
http://asa.scitation.org/doi/10.1121/1.385079
http://asa.scitation.org/doi/10.1121/1.385079

	Abstract
	Acknowledgments
	Contents
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem definition
	Objectives
	Contributions
	Thesis overview

	Background and related work
	Artificial Intelligence
	Neural Networks
	Spiking Neural Networks
	Encoding algorithms
	Rate encoding
	Temporal encoding
	Population encoding


	Methods
	population Step Forward Encoding algorithm
	Metrics
	Signal encoding accuracy
	Encoding efficiency
	Classification potential

	Encoding algorithm optimization
	Configuration sweeping
	Genetic algorithms


	Code analysis
	Pseudo-codes
	Operations

	Datasets
	Preprocessing
	Audio normalization
	Bank of bandwidth filters
	Spike train normalization

	Analysis

	Results and evaluation
	Signal encoding accuracy
	Encoding efficiency
	Classification potential
	Classification accuracy
	Noise resistance

	Discussion

	Conclusion
	Future work

	MATLAB code
	Ben's Spiker Encoding algorithm
	BSA_encode
	BSA_causal

	Latency Encoding algorithm
	LA_encode
	rangeTransform

	Threshold Encoding algorithm
	TA_encode
	regularTA_encode

	Temporal Contrast Encoding algorithm
	TCA_encode
	TCA_nobase

	Moving Window Encoding algorithm
	MWA_encode
	MWA_regular

	Step Forward Encoding algorithm
	SFA_encode
	regularSFA_encode

	population Threshold Encoding algorithm
	populationTA_encode

	population Step Forward Encoding algorithm
	populationSFA_encode


	Supplementary data
	Signal encoding accuracy
	Encoding efficiency

	Classification accuracy additional results
	Hardware implementation proposal

