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Abstract
Autonomous robots are often successfully deployed in controlled environments. Operation in uncon-
trolled situations remains challenging; it is hypothesized that the detection of abstract discrete states
(ADS) can improve operation in these circumstances. ADS are high-level system states that are not
directly detectable and influence system dynamics. An example of a typical ADS problem that is used
in this thesis is that of a wheeled robot driving through puddles of mud that, when entered, alters the
velocity of the robot. When the robot is in such a puddle, it is in an ADS ’mud’, and when it is not, it is in
an ADS ’free’. ADS can be indirectly inferred through the analysis of lower-level data such as the veloc-
ity of the robot. The goal of this thesis is to design a general abstract discrete state estimator (ADSE)
operating with limited prior knowledge. An ADSE is a hierarchical system for detecting changes in ADS.
The ADSE should be general; applicable to multiple ADSE problems. The ADSE should further oper-
ate under limited prior knowledge; only assuming that the amount of ADS and the ADS that describes
the regular operation are known. The basis for the ADSE designed in this thesis is a Gaussian hid-
den Markov model (GHMM), a hidden Markov model enhanced with Gaussian emissions. Randomly
generated experiments are done on a simple but general ADSE problem. Two unsupervised learning
methods derived from Expectation Maximization are evaluated, namely Baum-Welch (BW) and forward
extraction (FWE). FWE is introduced in this thesis and is a simpler implementation of Viterbi extraction,
leveraging assumptions of ADSE to theoretically gain computational efficiency. We found that both BW
and FWE exhibit superior performance compared to a likelihood-based baseline estimator when the
maximum score of the learning curve is considered. When the final score is considered, in some cases,
FWE displays a deteriorating learning curve, resulting in worse final scores compared to the baseline.
Furthermore, it was found that there exists a relation between the overlap coefficient of the Gaussian
emissions of each state and the maximum reached score, suggesting the existence of a theoretical
limit: the lower the overlap coefficient (therefore the less similar the ADS), the higher the maximum
reached score. It was further shown that BW exhibits better convergence than FWE to the true model
parameters. Besides this, FWE obtained comparable or in some cases even superior scores compared
to BW. In general, from the results, the diversity of the experiments conducted, and the assumptions
made we can conclude that the GHMM can be a general method for an ADSE under limited prior knowl-
edge. To quantify the suitability of the GHMM for ADSE, further research should include the evaluation
of different ADSE methods on the same problem. There exists a tradeoff between the lower computa-
tional cost FWE and the more stable but more computationally intensive BW learning. Therefore, future
research can include a combination of these methods. Other extensions include extending the GHMM
to a Gaussian mixture hidden Markov model to allow for the modeling of more complex distributions,
or the application to multiple states or a changing environment.
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1
Introduction

Autonomous robots are a vastly researched topic and have the potential to forward industry and en-
hance lives. Most successful applications of autonomous robots include controlled environments, such
as warehouses and factories. However, the real world is uncontrolled and complex which produces
challenges for the deployment of autonomous robots. The circumstances the robot is in can affect
how to control it; if a robot encounters for instance component failure, obstacles, or rough terrain the
dynamics can differ, meaning that regular control input will not produce the expected results.

Modeling and in turn detection of these events can prove useful for the operation of robots in uncon-
trolled environments; when such a change in what in this work will be referred to as abstract discrete
states (ADS) occurs, a robot could adapt its dynamic model accordingly. The problem is that ADS are
often not directly detectable: for example, the presence of slippery terrain can be indirectly detected
by an increase in motor torque needed to maintain a certain speed or acceleration. In addition, the
sensors used are often not fully accurate, creating uncertainty about the ADS the system currently is
in.

In order to accurately estimate these ADS and in turn improve robustness in uncertain environments,
the goal of this thesis is to create what will be coined as an abstract discrete state estimator (ADSE).
This system can be seen as hierarchical: the ADSE estimates a higher-level state by analyzing data
from a lower-level state, creating a level of abstraction by classifying this data into discrete states. Con-
trol is not within the scope of the ADSE; the system will not handle nor consider in what manner an
input should differ for each ADS, acting more as an observer.

Readers with a background in control might find similarities with hybrid or switching-state systems.
Hybrid systems describe continuous systems that operate in ’modes’ with different dynamics, between
which can be switched based on conditions such as control input [7]. A difference is that hybrid sys-
tems generally assume that the conditions for switching states and the dynamics of these states are
known. An additional difference is that the hybrid systems approach focuses on the dynamics and
control of the system, including properties such as reachability or stability. In a way, ADSE is typically
applied on hybrid systems where these switching conditions are unknown. Another similarity can be
found in outlier detection. The main workflow of outlier detection (or anomaly detection) is to specify
normal behavior, and then classify behavior differing from this standard as an anomaly. Typically these
outliers are removed from the data, but how to exactly handle these is dependent on the situation [34].
It is important to note that handling outliers is not the main focus of the field of outlier detection, which
is on identifying these outliers. The difference between ADSE and outlier detection is that outliers are
typically sparse in outlier detection, while in ADSE ADS are considered part of the system and not an
anomaly. A subfield of outlier detection, called novelty detection, is the most similar to the concept of
ADSE to our knowledge. The focus, like outlier detection, lies on detecting events that are not present
in training data [24] [17]. Typically for novelty detection, these events are subsumed into the model, in
contrast to outlier detection. What is different from ADSE is that the focus lies in developing measures
for how different the novelty (outlier) is from normal data and what thresholds to conduct for classifica-
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tion [20]. Compared to novelty detection the idea of ADSE is more general; it is not necessarily needed
that ADS are absent in training data. During runtime it should adapt when these ADS are present, and
when a new ADS appears, this should not pose problems as well. Furthermore, ADSE fixates on online
state estimation, and not on developing measures for dissimilarity.

As a method for ADSE, the hidden Markov model (HMM) is possibly a suitable method. The HMM
is a stochastic model typically used in analyzing time series or sequences, such as biomolecular se-
quences in computational biology [3], finance[19], and speech recognition [27] and synthesis [32]. An
HMM assumes that the current state of the system is hidden, or in other words that it cannot be directly
observed. Through observations, a hint about the current state is obtained. Combined with an internal
model of the expected evolution of states, the HMM is able to estimate the current state while taking
uncertainty into account. In its basic form, the HMM handles a discrete system. Since for ADSE a
continuous space must be mapped into an abstract discrete space, it is necessary to adjust the HMM
to allow for the handling of continuous spaces. A possible extension for this problem is called the Gaus-
sian hidden Markov model (GHMM) and is the method that will be used in this thesis.

The goal of this thesis is to create a general ADSE with limited prior knowledge: the system should
be applicable to multiple types of ADSE problems without knowledge of the ADS to be classified. This
will be done using the GHMM framework, therefore this thesis will in turn answer the question: can the
GHMM be used for a general ADSE with limited prior knowledge? In order to do so, the performance
of two learning methods for GHMMs, Baum-Welch and the novel forward extraction is compared to a
baseline estimator on a typical ADSE problem.

In chapter 2, the HMM framework and related concepts to apply GHMMs to ADSE are explained. Then,
in chapter 3, a typical ADSE problem is defined using GHMMs. Furthermore, in this chapter forward
extraction is introduced and the details of the experiments are defined. Afterward, the results are
discussed in chapter 4. Finally, the implications of these results for ADSE and future work are discussed
in chapter 5.



2
Background Knowledge

This chapter serves as an in-depth reference to the concepts used in this thesis. In section 2.1, the
necessary basic concepts are explained, which includes the Markov process. Then, in section 2.2 the
key concept of this thesis, the hidden Markov model, is described by extending the Markov process.
Then, expectationmaximization, a general unsupervised learning algorithm is explained in section 2.3.1
with the help of an example on Gaussian mixture models. Finally, in section 2.3, learning methods for
a hidden Markov model are explained. These expectation maximization-based methods are Baum-
Welch and a lower-cost alternative Viterbi extraction.

2.1. Prerequisite Knowledge
This section serves as a recap for some basic concepts crucial for understanding the hidden Markov
model

2.1.1. Bayes’ Rule
The following subsection is taken from the literature research [4]

Bayes’ rule is an important concept in probability devised by Thomas Bayes (1701-1761), which en-
ables the use of evidence to calculate the likelihood of a phenomenon. Bayes’ rule is used for numerous
applications, including statistics, machine learning, AI, and medical diagnosis. Formally, the rule de-
scribes the chance of a hypothesis H (the phenomenon) being true, given the chance of observing
evidence E. The rule is written as in Equation 2.1:

P (H|E) =
P (H)P (E|H)

P (E)
(2.1)

The components of Equation 2.1 are formally defined as:

• P (H|E): posterior, the chance of H being true given that E is observed.
• P (H): prior, the total chance of H being true.
• P (E|H): likelihood, the probability of observing E given that H is true.
• P (E): marginal, the total probability of observing E.

2.1.2. Markov Process
Parts of this section are retrieved from the literature research [5]

A Markov process, also known as a Markov chain, describes a stochastic process and is named after
the Russian mathematician Andrey Markov (1856-1922).
In its discrete form, the Markov process consists of a sequence of length n containing random variables
(S0, S1, ...Sn) where n is the number of timesteps in the process. Furthermore, there exists a finite state
space, which consists of the possible values the random variables can assume. In a Markov process,
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2.1. Prerequisite Knowledge 4

Figure 2.1: A schematic diagram of a Markov process. A 1st order system is shown on top, a 2nd order system at the bottom.

each state only depends on a finite fixed amount of previous states, which is more commonly known
as the Markov property [25]. Formally, the Markov property can be written as in Equation 2.2.

P (St|S0, ..., St−2, St−1) = P (St|St−1) (2.2)

To be able to describe aMarkov process, the relation between states needs to be defined; the probability
of ending up in a specific state given the previous state. This relation is called the transition probability.
The probability of St being in state j given that St−1 is in state i is the following conditional probability:
P (St = j|St−1 = i) (or shorter: P (j|i)). The value of each transition probability needs to be defined
beforehand, and all these probabilities can be rearranged in a matrix called the transition model or
transition probability matrix. The transition model has a size of (N,N) where N is the size of the set of
states S. This is showcased in Equation 2.3 for a state space S = (i, j).

T(St, St−1) =

(
P (St = i|St−1 = i) P (St = i|St−1 = j)
P (St = j|St−1 = i) P (St = j|St−1 = j)

)
(2.3)

Summarizing, a Markov process can be described with the following model:

• S ∋ (sa, sb, ...), the set of possible system states or the state space
• T(St, St−1), the transition model (the transition probability matrix)

A Markov process of 1st and 2nd order is described schematically in Figure 2.1.

As a simple example, consider a wheeled robot driving across a path. This path contains puddles of
mud: let there be two states, St = mud for when the robot is driving through such a puddle at time t
and St = free when it is not. Therefore, the state space is given as S = (mud, free). Alternatively, this
can be considered a one-state system that can take on the values of true and false: S = (mud,¬mud).
From inspection of the path, the following transition model is derived:

T(St, St−1) =

[
P (St = mud|St−1 = mud) P (St = mud|St−1 = free)
P (St = free|St−1 = mud) P (St = free|St−1 = free)

]
=

[
0.7 0.2
0.3 0.8

]
(2.4)

This is also showcased in Figure 2.2.

Now, the probability of sequences can be calculated. The sequence (mud, free,mud, free,mud) can
be calculated by taking the product of the transition probabilities:

P (mud|free) ∗ P (free|mud) ∗ P (mud|free) ∗ P (free|mud) = 0.2 ∗ 0.3 ∗ 0.2 ∗ 0.3 = 0.0036 (2.5)

Similarly, the chance of four consecutive timesteps in a mud puddle given that initially the robot is in
a puddle of mud can be calculated by simply raising the relevant transition probability to the power of
four:

P (mud|mud) ∗ P (mud|mud) ∗ P (mud|mud) ∗ P (mud|mud) = 0.74 = 0.24 (2.6)



2.2. Hidden Markov Model 5

Figure 2.2: A diagram of the mud example. Arrows denote probabilities of state transitions.

2.2. Hidden Markov Model
Some parts from this section are taken from the literature review [6].

2.2.1. Definition
The hidden Markov model (HMM) is an extension of the Markov process where the system state is not
observable, but can only be observed through another set of stochastic processes that produce the
sequence of observed symbols [26]. In other words, the state is not directly observable but ’hidden’,
but can be inquired about by observations which themselves are generated stochastically.

To integrate the hidden state in the Markov process, some additional components must be added to
the model. First, a set of possible observations (sometimes called evidence [28]) needs to be defined
which provides information about the hidden state. To relate these to the hidden states, it is necessary
to define the probability of obtaining a specific observation for a specific hidden state. This probability is
often called the observation or (evidence) emission probability. Similarly to the transition model, these
can be arranged in a matrix, which will be referred to as the observation model (sometimes referred to
as the sensor model [28]). The observationmodel is of sizeN,M , where N is the size of the set of states
S and M is the size of the set of observations Z. The observation model can be constructed similarly
to the transition model, which is showcased in Equation 2.7 for an observation space Z = (a, b, c) and
a state space S = (i, j)

O(St, Zt) =

P (Zt = a|St = i) P (Zt = a|St = j)
P (Zt = b|St = i) P (Zt = b|St = j)
P (Zt = c|St = i) P (Zt = c|St = j)

 (2.7)

To illustrate this, the mud example from section 2.1.2 is extended with uncertain observations. This
extension is in the form of an inaccurate ’mud sensor’: a color sensor that can determine if the color
of the ground the robot is on is ’dark’ or ’light’. These discrete observations can be described with two
states, ’dark’ or ’light’, resulting in an observation space Z = (dark, light). Again, this can alternatively
be considered as a single state variable that can take on the values of true and false: Z = (dark,¬dark).
These readings ’hint’ about the state of the path, where it is more likely that a mud puddle is dark and
that a free path is light. This is reflected in the following observation model:

O(St, Zt) =

[
P (Zt = dark|St = mud) P (Zt = dark|St = free)
P (Zt = light|St = mud) P (Zt = light|St = free)

]
=

[
0.9 0.2
0.1 0.8

]
(2.8)

Lastly, due to the unobservability of the HMM, it is necessary to define an initial state distribution. This
allows for tracking the likelihood of the system being in each possible state. The estimated state distri-
bution at any point in time is referred to as the belief state, therefore the initial state distribution will be
referred to as the initial belief.

Summarizing, the model for a discrete-time HMM will consist of:

• S ∋ (sa, sb, ...), the set of possible system states or the state space
• T(St, St−1), the transition model
• Z ∋ (za, zb, ...), the set of possible observations
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• O(St, Zt), the observation model (the observation probability matrix)
• b0, the initial belief

A 1st and 2nd-order HMM are shown schematically in Figure 2.3.

Figure 2.3: A schematic diagram of a hidden Markov model. The above shows a 1st-order model, below a 2nd-order.

Problems
In literature, typically three problems are mentioned in regard to the HMM: 1) the likelihood problem, 2)
the decoding problem, and 3) the learning problem. In [12], these are described as follows:

• 1) Likelihood. Given a model λ, what is the probability of occurrence of an observation sequence
Z = Z0, Z1, ..., ZT : P (Z|λ)?

• 2) Decoding. What is a state sequence S = S0, S1, ..., ST so that the joint probability of the
observation sequence Z and S, P (Z, S|λ) is maximized?

• 3) Learning. How can the parameters of an HMM model be arranged so that P (Z|λ) is maxi-
mized?

The first problem of likelihood can be solved by the forward algorithm, which is described in the next
section. Solving the decoding problem means finding an optimal state sequence from a sequence of
observations and an HMM model. This is done by the Viterbi algorithm, which is briefly explained in
section 2.3.3. In turn, the learning problem tries to find the HMM model parameters (transition model
and observation model) such that the likelihood of an observation sequence is maximized. This is
described in section 2.3.2.

2.2.2. Forward Algorithm
To maintain a state estimate as the process continues, it is useful to condense the history in a single
vector, the belief state. The belief state is updated at every timestep with new information (observations)
with a process called the forward algorithm (also referred to as filtering or state estimation) [29]. This
process is shown in Equation 2.9. Here, Ft(S) denotes the belief (or ’forward probability’) of state S at
time t. In other words, the probability of the system being in a state given all observations (Z0:t) upon
that point. Furthermore, both the transition probability P (St|St−1) and observation probability P (Zt|St)
are used, along with a normalizing factor η so that the probabilities sum to one.
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Ft(S) = P (St|Z0:t) = η
∑
st−1

P (St|St−1)P (Zt|St)Ft−1(St−1) (2.9)

In essence, at each timestep, the current belief is ’propagated’ forward one timestep with the transition
model. Then, the belief is updated with the new information with the observation model. This recursion
is displayed in Equation 2.9; the previous forward probability is used for the next timestep.

Now, the forward algorithm will be applied to the mud example. The same path is used as in sec-
tion 2.1.2, therefore the transition model will be the same as in Equation 2.4. In other words, the
underlying dynamics of the world remain the same. For simplicity, the state space will be abbrevi-
ated as follows: S = (m, f). The observation model is the same as in the previous section, Equa-
tion 2.8. Lastly, since the robot has just got updated with knowledge of HMMs, the initial belief is ’flat’:
b0 = F0(S) = [P (S0 = mud), P (S0 = free)] = (0.5, 0.5).

Now suppose that the sensor reads ’light’ at the first timestep. Then, the probability of being in a mud
puddle is equal to:

F1(m) = η(P (m|m) ∗ F0(m) + P (m|f) ∗ F0(f)) ∗ P (light|m)

F1(m) = η(0.7 ∗ 0.5 + 0.2 ∗ 0.5) ∗ 0.1 = 0.045η
(2.10)

And the probability of the path being free:

F1(f) = η(P (f |m) ∗ F0(m) + P (f |f) ∗ F0(f)) ∗ P (light|f)
F1(f) = η(0.3 ∗ 0.5 + 0.8 ∗ 0.5) ∗ 0.8 = 0.44η

(2.11)

Then, calculating the normalizing constant η and multiplying gives the following forward probabilities:

η =
1

0.045 + 0.44

F1(S) = [F1(m),F1(f)] = [0.093, 0.907]
(2.12)

As Equation 2.12 shows, it is very likely that the robot is in state free at this timestep.

This belief can further be used for prediction: this is the same process as filtering but without an obser-
vation, only propagating the belief forward with the transition model. Since only the transition model is
used, this is equal to calculating the probability of a sequence in a Markov process (Equation 2.5).

Readers with a control backgroundmight find similarities with theKalman filter (An extensive description
can be found in [35]). In essence, a Kalman filter is an HMM where the hidden variables exist in a
continuous state space in addition to that all observed and hidden variables are described by Gaussian
distribution [14]. Welling [36] notes that HMMs can deal with nonlinear (or stochastic) evolution of states
and observations, while a Kalman filter is restricted to linear evolution and observation. In addition, he
explains that an HMM is limited to being in one state at a time.

2.2.3. Forward-Backward Algorithm
The forward algorithm is useful to maintain an estimate of the current system state with a small amount
of memory. But, when the process has advanced, earlier estimates can be revisited with the informa-
tion gained by new observations. This results in less variance in the belief state chain. This process
is called smoothing or the forward-backward algorithm. Note that for the forward-backward algorithm,
the observations need to be stored in memory.

What is of interest here is the probability of the system being in a state at time t given all observations
until the end of the chain T . More specifically: P (St|Z0:T ). In order to calculate this, we need the
backward probability: the chance of observing the observations from the next timestep t + 1 until the
end of the chain T given the system being in a state at the current time t. This probability, P (Zt+1:T |St),
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is given by the backward algorithm and is shown in Equation 2.13 [30]. Note that the ’first’ backwards
probability at time T is initialized as 1: the observation ZT+1:T is empty, therefore the probability of
observing it is 1.

βt(S) = P (Zt+1:T |St) =
∑
St+1

P (St+1|St)P (Zt+1|St+1)βt+1(St+1) (2.13)

This equation is similar to the forward algorithm, but then ’going back’ in time. Also, similar to the for-
ward probability, this is a recursive equation: the backward probability of the next timestep is used.

The forward-backward algorithm is then just the forward and backward probability multiplied and nor-
malized. This is shown Equation 2.14, where η is again a normalizing factor [30].

γt(S) = P (St|Z0:T ) =
Ft(S)βt(S)∑
S

Ft(S)βt(S)
= ηFt(S)βt(S) (2.14)

Now, consider the same example as used for the forward algorithm in section 2.2.2. The next two
timesteps are considered, which give two observations: Z2 = dark and Z3 = light. Then, the forward
probabilities are calculated as follows:

F2(m) = η(0.7 ∗ 0.093 + 0.2 ∗ 0.907) ∗ 0.9 = 0.222η

F2(f) = η(0.3 ∗ 0.093 + 0.8 ∗ 0.907) ∗ 0.2 = 0.151η

F2(S) = [0.595, 0.405]

F3(m) = η(0.7 ∗ 0.595 + 0.2 ∗ 0.405) ∗ 0.1 = 0.050η

F3(f) = η(0.3 ∗ 0.595 + 0.8 ∗ 0.405) ∗ 0.8 = 0.402η

F3(S) = [0.091, 0.909]

(2.15)

We see that the forward algorithm gives a larger chance of the system being in a mud puddle at timestep
2. To calculate the backward probabilities, first initialize the backward probability at time T , β3(S) =
[1, 1]. Then the backward probabilities for the other timesteps are derived as follows:

β2(m) = P (m|m) ∗ P (Z3|m) ∗ β3(m) + P (f |m) ∗ P (Z3|f) ∗ β3(f)

β2(m) = 0.7 ∗ 0.1 ∗ 1 + 0.3 ∗ 0.8 ∗ 1 = 0.31

β2(f) = P (m|f) ∗ P (Z3|m) ∗ β3(m) + P (f |f) ∗ P (Z3|f) ∗ β3(f)

β2(f) = 0.2 ∗ 0.1 ∗ 1 + 0.8 ∗ 0.8 ∗ 1 = 0.66

β1(m) = 0.7 ∗ 0.9 ∗ 0.33 + 0.3 ∗ 0.2 ∗ 0.66 = 0.245

β1(f) = 0.2 ∗ 0.9 ∗ 0.33 + 0.8 ∗ 0.2 ∗ 0.66 = 0.165

β2(S) = [0.31, 0.66]

β1(S) = [0.245, 0.165]

(2.16)

Which, when completing the forward-backward algorithm, gives the following smoothed probabilities:

γ3(S) = F3(S) = [0.091, 0.909]

γ2(S) = η[0.595 ∗ 0.31, 0.495 ∗ 0.66] = [0.361, 0.639]

γ1(S) = η[0.093 ∗ 0.245, 0.907 ∗ 0.165] = [0.132, 0.868]

(2.17)

The results in Equation 2.17 show that the smoothed probability of the system being in state mud at
timestep 2 is now lower than that of the system being in state free. The effect of the forward-backward
algorithm is displayed when these results are compared to the forward probabilities: the smoothed
probabilities are less susceptible to variance in the observations.
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Figure 2.4: A schematic depiction of a Gaussian mixture model [23]. It can be seen that a Gaussian mixture model (full line)
consists of a weighted sum of a number of univariate Gaussians (dashed lines).

Gaussian Hidden Markov model
Observations in an HMM do not have to be constricted to discrete values. These can be extended in a
case where every state emits a value drawn from aGaussian distribution: aGaussian (emission) hidden
Markov model (GHMM). For a GHMM, the set of observations is Z = (fa, fb, ...), where fi ∼ N (µi, σ

2
i ).

For determining the observation model of a GHMM, the reader is referred to section 3.3.2.

2.3. Learning
For learning the parameters of an HMM, a commonly used method is Baum-Welch (BW) learning. This
will be explained in this section by first laying out the concept of expectation maximization (EM). Then,
after describing BW, a lower-cost alternative called Viterbi extraction (VBE) is explained.

2.3.1. Expectation Maximization
Expectation maximization (EM) is an unsupervised learning method to find the parameters of a sta-
tistical model that is dependent on hidden variables: “It produces maximum-likelihood estimates of
parameters when there is a many-to-one mapping from an underlying distribution to the distribution
governing the observation” [22]. In other words, it is assumed that there exist multiple latent variables
on which the data is dependent. When learning, the parameters of the model are set so that the likeli-
hood of this data is maximized.

The algorithm consists of two steps: the E-step (expectation), which is followed by the M-step (maxi-
mization) [11]. These steps are then iteratively applied. In the E-step, the probabilities are estimated for
which latent variable generated what data point in what magnitude given the current model. Then in the
M-step, the model parameters are updated by maximizing the likelihood, assuming the assignments
estimated during the E-step are the true values.

The EM algorithm is guaranteed to converge to a local maximum: the likelihood function increases
at each iteration. The local maximum is not guaranteed to be the global maximum, however; if the
function has multiple maxima, the local maximum to which the algorithm converges is dependent on
the initial parameter estimates [22].

Gaussian Mixture Model
A common application and an intuitive example of EM is learning of Gaussian mixture models (GMM).
A GMM is a distribution consisting of a weighted combination of K Gaussian distributions and is used
for modeling probability distributions. The principle is shown schematically in Figure 2.4, taken from
[23].

Learning a GMM works as follows: first, the mean and variance of K Gaussian distributions are ini-
tialized, in addition to the mixing coefficient (weights). Then in the E-step, given a collection of data
points, for each data point the probability of it belonging to each single of the K Gaussian distributions
is computed. Finally, in the M-step, the parameters of each Gaussian distribution are updated to max-
imize the expectations of the data points calculated in the E-step. In simpler terms, data points are
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assigned to a Gaussian distribution, after which the distribution is fitted to best match the data. For a
Gaussian distribution fk (component) with likelihood function Lk(xi), mean µk, variance σ2

k and weight
wk, the E-step is given by Equation 2.18 [31] Here, κi,k = P (fk|xi, wk, µk, σ

2
k), the probability that GMM

component fk generated data point xi.

κi,k =
wkLk(xi)∑K
j=1 wjLj(xi)

(2.18)

Then, the parameters of a component are computed at the M-step, in the following order [31]:

w̃k =

N∑
i=1

κi,k

N

µ̃k =

∑N
i=1 κi,kxi∑N
i=1 κi,k

σ̃2
k =

∑N
i=1 κi,k(xi − µ̃k)

2∑N
i=1 κi,k

(2.19)

Here, N is the total amount of data points.

When more closely examining Equation 2.18 and Equation 2.19, a clear intuition can be found on the
EM algorithm. One can see that the weight is simply the probability of assigning a data point to a
component averaged over all data points. Similar for the mean and variance of the component, which
are a weighted average of κ and the data points; data points that are more probable to belong to the
component are weighted heavier.

2.3.2. Baum-Welch algorithm
The Baum-Welch (BW) algorithm is a learning algorithm for HMMs and can be considered a special
case of the EM algorithm [10][33]. Therefore, the algorithm also maximizes a likelihood function and
enjoys the same convergence properties. BW utilizes the forward-backward algorithm (section 2.2.3)
to gain an estimate of the system parameters. In this case, the transition model and the observation
model of the HMM. One more probability is necessary to gain these parameters: let us define the
ξ-function, the probability of a transition from i to j occurring at time t given all observations and the
model parameters θ: P (St = i, St−1 = j|Z0:T , θ). When omitting θ for simplicity, this is given by [2]:

ξt(St, St−1) = P (St, St−1|Z0:T ) =
Ft−1(St−1)βt(St)P (St|St−1)P (Zt|St)∑

st+1

Ft−1(St−1)βt(St)P (St|St−1)P (Zt|St)

ξt(St, St−1) = ηFt−1(St−1)βt(St)P (St|St−1)P (Zt|St)

(2.20)

Here, again η is a normalizing factor. The combination of a forward-backward pass through the sys-
tem data and the calculation of the ξ-function is considered the E-step of the algorithm: according to
the current parameters (transition model and observation model), probabilities are estimated of which
latent variable (hidden state) generated what data point (observation). Then, the parameters can be
re-estimated in the M-step (for a GHMM):

P (St = j|St−1 = i) =
P (St = j, St−1 = i|Z0:T )

P (St−1 = i|Z0:T )
=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt−1(i)

µS =

∑T
t=1 γt(S)Zt∑T
t=1 γt(S)

σS =

√√√√∑T
t=1 γt(S)(Zt − µS)2∑T

t=1 γt(S)

(2.21)



2.3. Learning 11

For a ’regular’ HMM, the equations for the transition model are similar, but logically a difference exists
for the now discrete observation model. Here, ẑt denotes the observation at timestep t:

O(St = i, Zt = a) =

∑T
t=1 γt(i)1ẑt=a∑T

t=1 γt(i)

1ẑt=a

{
1 ẑt = a

0 otherwise

(2.22)

Finally, when only the transition model is to be learned, there can be a computational saving by only
computing the ξ-function, which is related to the smoothed probabilities. This is shown by using that
all transitions from one state must sum to 1:

M∑
j=1

ξt(St = j|St−1 = i) = P (St = j, St−1 = i|Z0:T )

+ P (St = i, St−1 = i|Z0:T ) + ...+ P (St = M,St−1 = i|Z0:T )

= P (St−1 = i|Z0:T )

∗ [P (St = j, St−1 = i|Z0:T ) + P (St = i, St−1 = i|Z0:T ) + ...

+ P (St = M,St−1 = i|Z0:T )]

= P (St−1 = i|Z0:T ) ∗ 1 = γt−1(i)

(2.23)

Therefore, it is shown that the ξ-function summed over every possible transition from one state i is
equal to the smoothed probability of the same state i. This has the following implications for the M-step
of BW:

P (St = j|St−1 = i) =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt−1(i)

=

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑M
j=1 ξt(i, j)

(2.24)

2.3.3. Viterbi Extraction
While the Baum-Welch algorithm is the standard referred learning algorithm for HMMs, alternatives ex-
ist. One of these is the Baum-Viterbi algorithm or Viterbi extraction (VBE) [13][18]. Here, the learning
procedure is the same as for BW, but instead of a ’soft’ assignment, a binary assignment is assumed:
the most likely state is assigned a 1 and the rest of the states a 0. In VBE, this most likely state is
determined by the Viterbi algorithm [15]. This algorithm solves the decoding problem (section 2.2.1)
and gives the most likely state sequence given a sequence of observations.

The Viterbi algorithm is similar to the forward algorithm, but with ’backtracking’ [27]: the Viterbi algo-
rithm considers the full sequence, and finds the best state sequence given that this sequence is valid.
For example, when the transition probability between two states sa and sb is 0, the forward algorithm
could return a sequence physically impossible. This is because the forward algorithm considers a state
estimation at one instant. The Viterbi algorithm overcomes this issue by including ’backtracking’ which
is keeping track of the best path.

An upside compared to BW is that the Viterbi algorithm requires just one pass over the system data
compared to the two passes the forward-backward algorithm uses. Therefore, VBE has the potential
of being a faster learning method than BW.

For VBE, the estimated transition is determined by the optimal state sequence decoded by the Viterbi
algorithm. this concludes the E-step of VBE. Then, for the first part of the M-step, a transition model
can be derived by a frequentist approach: by dividing the amount of one type of transition from a state
by the total amount of transitions from that same state. This is shown in Equation 2.25, where na→b

denotes the total amount of transitions estimated from state a to b and whereM is the number of states
in the model.
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P (St = j|St−1 = i) =
ni→j∑M
j=1 ni→j

(2.25)

For estimating the observation model, the process is equal to BW, but with the ’hard’ count obtained by
the Viterbi algorithm. The M-step is given similarly as BW for a GHMM in Equation 2.26. Here Vt(St)
is equal to 1 if the optimal state sequence V at timestep t, decoded by the Viterbi algorithm, is equal
to the argument of St.

Vt(St) =

{
1 St = Vt

0 else

µS =

∑T
t=1 Vt(S)Zt∑T
t=1 Vt(S)

σS =

√√√√∑T
t=1 Vt(S)(Zt − µS)2∑T

t=1 ftmax
(S)

(2.26)

And similarly to Equation 2.22 for a regular HMM:

O(St = i, Zt = a) =

∑T
t=1 1ẑt=aVt(i)∑T

t=1 Vt(i)

1ẑt=a

{
1 ẑt = a

0 otherwise

(2.27)

Similar to the GMM, upon closer inspection of the M-step there is a clear intuition: only the ’relevant’
estimations are weighted in the calculation of the parameters.



3
Methods

In this chapter, the concept of abstract discrete states will be defined further in section 3.1. A typical
toy problem for abstract discrete states is defined in section 3.2. In addition, this section includes a
description of how experimental data can be generated from this toy problem Then, an ADSE method
based on a Gaussian hidden Markov model will be described in section 3.3. Afterward in section 3.4, a
practical learning algorithm coined forward extraction, derived from Viterbi extraction, is defined. Finally,
experiments for validating this model, evaluating the difference between two learning methods, and the
relation between abstract discrete states characteristics and performance are described in section 3.5.

3.1. Abstract Discrete States
Abstract discrete states (ADS) are high-level system states that influence system dynamics; discrete
events or system statuses that have an influence on the behavior of a system. An ADS is typically not
directly observable but can be inferred through the analysis of simpler system data, such as velocity
or temperature. Therefore, ADS are hierarchical in a way; estimations about a higher abstract state
are made by the analysis of a lower-level state. A typical ADS problem is depicted in Figure 3.1. Ex-
amples of ADS include rough terrain or a foreign object causing excessive axle friction for a wheeled
robot, changing the relation between input and velocity. Or, an improper cable connection causing
an increase in resistance and therefore resulting in a higher input signal needed to allow the same
movement of a robotic manipulator. An example of a high-abstraction ADS is part malfunction of a
factory robot causing anomalies in the end product. This thesis only considers one level of abstraction.
Still, it is expected that for future work more levels of abstraction can be hierarchically built on each
subsequent level similar to the methods described in this work.

The general, robust inference of unknown ADS is the goal of this thesis, that is the creation of a general
abstract discrete state estimator (ADSE) operating under limited prior knowledge; the nature of the ADS
should not be important for the functioning of the ADSE and the ADSE assumes only the amount of
ADS and that the behavior of the ADS that is ’normal’ operation is known. The behavior of the other
ADS is to be learned in an unsupervised manner. In order for the problem to be solvable, it is assumed
that an ADS exerts influence on at least one measurable system state. To capture the essence of ADS,
a general toy problem is defined in section 3.2.

3.2. Problem Description and Data Generation
For the toy problem we will use a 1D, endless world referred to as the ’mudworld’. A wheeled robot
with Gaussian movement is driving across this world in one direction. This Gaussian movement is de-
pendent on the current true ADS, which in this world can be either ’mud’ or ’free’; the world consists of
randomly generated patches of ’mud’ which, when entered, alter the mean and variance of the Gaus-
sian velocity of the robot. If the robot enters such a patch, the true ADS changes from ’free’ to ’mud’.
When the patch is left, the true ADS changes to ’free’ again. When the robot is in state ’free’ (f ), the
velocity is drawn from a probability distribution ff ∼ N (µff , σff ). When the state ’mud’ (m) is entered,

13
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Figure 3.1: Schematic depiction of a typical abstract discrete state problem. The box denotes a possible different abstract
discrete state. The challenge is to determine where to draw this box, and additionally, whether values such as those pointed

out by the arrows are to be classified as another abstract discrete state.

the velocity is drawn from another probability distribution fm ∼ N (µfm , σfm); now, the same input re-
sults in a different mean velocity and variance. Note that generally in this thesis dt = 1: therefore, the
distance moved after a timestep is equal to the velocity at the start of that timestep.

In turn, the size of patches of mud and mud-free patches are described by two Gaussian distributions,
Xm ∼ N (µxm

, σxm
) and Xf ∼ N (µxf

, σxf
) respectively. A mud patch is always followed by a free

patch and vice-versa. One exception exists: in the event that a patch is sized below 0, the patch size
is set to 0, meaning that the same patch type can follow up. It is randomly chosen if the starting patch
is a mud patch or a free patch. A schematic depiction of the world model is shown in Figure 3.2.

Figure 3.2: Schematic depiction of the world model with ’mud patches’ used in the experiments.

As an example, consider such an environment generated by a Gaussian distribution for free patches
Xf ∼ N (2, 1) and a Gaussian distribution for mud patches Xm ∼ N (1, 1). This results in an envi-
ronment consisting of one free patch Xf0 = 1, followed by a mud patch Xm0

= 0.5 and then a free
patch Xf1 = 2 again. The Gaussian distributions determining movement are ff ∼ N (1.0, 0.05) for free
patches, and fm ∼ N (0.75, 0.2) for mud patches.

The agent starts at position x0 = 0, therefore the ADS at t = 0 is f . The robot receives an input of 1;
since the true ADS is f , the velocity will be drawn from ff . This gives a velocity of 1.1, therefore the
position x1 = 1.1. Now, the true ADS is m: 1.0 ≤ x1 < 1.5. Therefore, the next input of 1 results in



3.3. Model Formulation 15

a velocity drawn from fm, which gives 0.7. Now, the position is x2 = 1.8. The current ADS changes
to f again: 1.5 ≤ x2 < 3.5. This gives a velocity of 0.95, and so on. These velocities are used as
observation in the ADSE; an example can be found in section 3.3.3.

This section described, apart from the general idea of the toy problem, how the data on which ADSE
will be performed is generated. This data generation part and the ADSE part of the problem described
in the next section are in fact separate: performing ADSE has no influence on the data generated. In
other words, the ADSE is essentially an observer of the dynamical system. In order to perform ADSE
in this problem, a mapping is needed from the continuous world to a discrete space; from the velocity
of the robot the current ADS, ’mud’ or ’free’, needs to be derived. This is done by approximating the
world dynamics by a GHMM, which is explained in the next section.

3.3. Model Formulation
The first step in creating an HMM is to formally define all parameters, as in section 2.2.1. When consid-
ering this problem, intuitively it differs from a classical HMM representation in two ways. First, since the
observation is a velocity that is observed after a timestep, it gives information about the state a system
was in only after the system has transitioned to the next state. In runtime, the current belief of the
system is lagging behind the true state by one timestep. Conceptually, this does not alter the HMM, but
it is useful to keep this in mind if the system is to be used for real-time operation. A schematic represen-
tation of the resulting HMM is shown in Figure 3.3. Secondly, the observations emitted are Gaussian,
transforming the HMM into a GHMM (See section 2.3.1). More detail on how this is translated to the
model can be found in section 3.3.2.

Figure 3.3: Schematic depiction of the hidden Markov model used. The length of the chain is n, b denotes the belief, Z an
observation, and S the state. The subscripts of these variables denote the timestep.

3.3.1. Transition Model
The transition model is defined as the probability of entering a state at the following timestep given a
state: P (St|St−1). The complete transition model T (St, St−1) is defined as a square matrix of size (N,
N) where N is the size of the set of states S:

S = {Mud(m), F ree(f)} (3.1)

Therefore, the transition model can be defined globally as:

T (St, St−1) =

[
P (St = m|St−1 = m) P (St = m|St−1 = f)
P (St = f |St−1 = m) P (St = f |St−1 = f)

]
(3.2)

Which will be referred to more compactly as:

T (St, St−1) =

[
P (m|m) P (m|f)
P (f |m) P (f |f)

]
(3.3)

Logically follows that the columns in the transition model sum to 1.

3.3.2. Observation Model
Since the observations are drawn from a Gaussian distribution the observation model is continuous, it
is not possible to fit the model in a table such as the transition model. A function has to be defined that
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captures the relation between observations and states: P (Zt|St). We assume that every state emits
observations from a distinct Gaussian distribution.

We are interested in the probability of the system being in a state given a data point (observation) Zt

and the Gaussians distributions belonging to each state, fmud = fm ∼ N (µfm , σfm) and ffree = ff ∼
N (µff , σff ). In other words, we are interested in which Gaussian distribution is more likely and by what
magnitude. This problem is described by the law of likelihood, where ϕ is the ratio of the two likelihood
functions:

ϕ =
P (ff |Zt)

P (fm|Zt)
(3.4)

Since the probability density function f(x) of a Gaussian distribution is defined on the interval [−∞,∞],
we can assume that both components from Equation 3.4 are possible for any value of Zt. In other
words, we can assume that all possible observations can be generated by any Gaussian distribution.
Then, assuming the models have equal prior probability (that is P (ff ) = P (fm)), follows from Bayes’
rule:

ϕ =
P (Zt|ff )P (ff )

P (Zt)
∗ P (Zt)

P (Zt|fm)P (fm)
=

P (Zt|ff )
P (Zt|fm)

(3.5)

This is equal to the ratio of the probability density functions, which for a Gaussian distribution is de-
scribed by:

f(zt) =
1

σ
√
2π

e−
1
2 (

zt−µ
σ )2 (3.6)

This is further displayed in Figure 3.4.

Figure 3.4: Probability density functions for two normally distributed abstract discrete states with ff ∼ N (1, 0.05) and
fm ∼ N (0.75, 0.2). The vertical lines denote the magnitude of the probability density function at a velocity of 0.95. The

normalized ratio of these magnitudes gives the observation model, see Figure 3.5.

The observation probabilities can then be described as the normalized ratio between probability density
functions:
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P (Zt|St = f) =
ϕ

ϕ+ 1

P (Zt|St = m) = 1− P (Zt|St = f) = 1− ϕ

ϕ+ 1

(3.7)

This gives a continuous observation function that can be directly used as in section 2.2. The function
is shown graphically in Figure 3.5.

Figure 3.5: Observation model and probability density functions for two normally distributed abstract discrete states with
ff ∼ N (1, 0.05) and fm ∼ N (0.75, 0.2).

3.3.3. Example
For an example of how ADSE with this model works, consider a similar setting as in section 3.2: one
free patch Xf0 = 1, followed by a mud patch Xm0

= 0.5 and then a free patch Xf1 = 2 again.
Three timesteps are considered, which result in a true ADS sequence of {f,m, f} and correspond-
ing velocities of {1.1, 0.7, 0.9}. Assuming that true distributions determining movement ff and fm are
learned as ff ∼ N (1.0, 0.06) and fm ∼ N (0.7, 0.15) and applying Equation 3.7 gives the following ob-
servation probabilities for each timestep: P (1.1|S = f) = 0.96, P (0.7|S = f) = 0, P (0.95|S = f) = 0.88.

The following transition model is used in the ADSE:

T (St, St−1) =

[
0.6 0.3
0.4 0.7

]
(3.8)

Starting from an initial belief binit(S) = [P (Sinit = m), P (Sinit = f)] = (0.5, 0.5) and applying the
forward algorithm gives the following estimates for the ADS at the first timestep:
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F0(m) = η(P (m|m) ∗ f0(m) + P (m|f) ∗ f0(f)) ∗ P (1.1|m)

F0(m) = η(0.6 ∗ 0.5 + 0.3 ∗ 0.5) ∗ 0.04 = 0.018η

F0(f) = η(0.4 ∗ 0.5 + 0.7 ∗ 0.5) ∗ 0.96 = 0.528η

b0(S) = (0.033, 0.967)

(3.9)

Then, using these probabilities as the current belief and using the forward algorithm two more times
yields: b1(S) = (1, 0) and b2(S) = (0.17, 0.83). When retrieving the maximum of each belief, we can
see that in this example the true ADS sequence is correctly estimated by the ADSE.

3.4. Forward Extraction
For the ADSE, state estimation will be done in realtime. Therefore, at every timestep a forward pass
is necessary, resulting in a current belief. Furthermore, since the ADSE represents a physical system
and ADS changes are by definition possible, we assume that the path generated by the forward pass
is always valid. In other words, we assume the HMM to be fully connected or ergodic. To leverage
this assumption, we propose a VBE (section 2.3.3) inspired learning method called Forward extraction
(FWE). For this simplified algorithm, only the estimated transition is necessary to track: for every es-
timated transition, one count is added. The estimated transition is determined by the states with the
maximum belief value, instead of the most likely sequence determined by the Viterbi algorithm. The
Viterbi algorithm assumes that the HMM is not necessarily ergodic and therefore requires access to
the whole history. FWE spreads the computational load by reusing the calculations that are necessary
anyway for ADSE at every timestep. This results in a learning method theoretically computationally
more efficient and more practical for ADSE compared to VBE. Since VBE is guaranteed to be more
efficient than BW, the same applies to FWE.

The E-step for FWE is just maximizing the belief retrieved from a forward pass, returning a belief. This
is similar to VBE, where instead of a forward pass the Viterbi algorithm is used. An example of the
application of Equation 2.25 is shown in Equation 3.12.

A transition model can be derived similarly to VBE, by a frequentist approach. This is shown in Equa-
tion 2.25.

For estimating the observation model, the process is equal to VBE, but with the count obtained by
maximizing the forward probabilities instead of the Viterbi algorithm. The M-step is given similarly as
VBE for a GHMM in Equation 3.10, here Ftmax

(St) is equal to 1 if the maximum argument of the forward
probability at timestep t is equal to the argument of St.

Ftmax
(St) =

{
1 St = argmax(Ft)

0 else

µS =

∑T
t=1 Ftmax

(S)Zt∑T
t=1 Ftmax(S)

σS =

√√√√∑T
t=1 Ftmax

(S)(Zt − µS)2∑T
t=1 Ftmax

(S)

(3.10)

And similarly to Equation 2.27 for a regular HMM:
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O(St = i, Zt = a) =

∑T
t=1 1ẑt=aFtmax

(i)∑T
t=1 Ftmax

(i)

1ẑt=a

{
1 ẑt = a

0 otherwise

(3.11)

Similar to the learning methods described in section 2.3, upon closer inspection of the M-step there is
a clear intuition: only the ’relevant’ estimations are weighted in the calculation of the parameters.

Supervised Learning
FWE lends perfectly as a simple method for supervised learning, in this context that is learning a model
for a (provided) true state sequence. Conceptually, this is equal to learning a model for fully accurate
state estimation. Thus, the parameters of the HMM can be derived by Equation 3.10 just by inserting
the true state sequence instead of the maximized forward probabilities.

3.5. Experiments
The goal of this thesis is to create a general ADSE with limited prior knowledge. To assess whether the
GHMM suits these requirements, experiments will be done in the mudworld (section 3.2). The agent in
the mudworld will be inferring ADS with a learning GHMM-based ADSE. The ADSE will be evaluated
on classification performance and how accurately the true parameters are learned. Both BW learning
(section 2.3.2) and FWE will be evaluated. To assess the effectiveness of learning and the addition of
a GHMM, these methods will be compared to a non-learning likelihood-based estimator with perfect
knowledge of the Gaussian distributions determining the agent’s movement (ff ∼ N (µff , σff ) and
fm ∼ N (µfm , σfm)). Apart from perfect knowledge of ff and fm, this baseline is similar to the ADSE
system with a transition model of [0.5, 0.5], and therefore will not take any sequence into account. This
estimator is referred to as the likelihood estimator (LE).

Training is done on a training set of 5000 transitions, and evaluation after each training iteration is done
on a test set of 1000 transitions. The world of the training and test set are different due to a differing
random seed, but are built in the same manner; the Gaussian distributions of the patch sizes Xm and
Xf are the same. Thus, the training data is representative of the test set. Furthermore, it is important
to note that due to the random seed the velocities at each timestep are also differing from the training
and test set. For each scenario, 30 training iterations will be done, resulting in 30 train scores and 31
test scores when the initial score is included.

To research if the ADSE is able to operate with limited prior knowledge, the assumption will be made
that only the regular movement is known, meaning that the Gaussian distribution ff that is fed into the
model is equal to the true Gaussian. For fm an initial Gaussian distribution N (0.1, 1.0) is used: there-
fore, the only prior knowledge that is fed into the ADSE is that there exist a total of two ADS, both with
Gaussian emissions, of which one is known. Note that the possibility to adjust ff during the learning
process still exists.

In order to determine if the GHMM is a general method for ADSE, three scenarios will be evaluated.
These scenarios exhibit different distributions of ADS; effectively, this corresponds to different prac-
tical problems. For example, an uncommon ’normal’ state or on the contrary when ’mud’ states are
sparse. These different problems can be condensed into three types of scenarios: 1) where mud
patches are significantly smaller than free patches (’Free’, µXf

> µXm ), 2) where free patches are
significantly smaller than mud patches (’Mud’, µXf

< µXm ) and 3) where patch sizes are equal (’Equal’,
µXf

= µXm
). Xf and Xm are chosen rather arbitrarily; it is expected that the ratio between patches

contributes to meaningful results more than the specific values. For all scenarios, a low variance, as
well as a high variance case, will be assessed to simulate the randomness of an environment, with low
variance simulating a more predictive environment. See Table 3.1.
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Table 3.1: Parameters chosen for scenario generation, with movement in m generated by a distribution N (1.0, 0.2). The mud
patches are scaled with µfm .

High variance Low variance
Scenario Free patch (Xf ) Mud patch (Xm) Free patch (Xf ) Mud patch (Xm)
1: Free µ = 20.4, σ = 3.0 µ = 3.6µfm , σ = 2.0µfm µ = 20.4, σ = 0.3 µ = 3.6µfm , σ = 0.2µfm

2: Mud µ = 3.6, σ = 2.0 µ = 20.4µfm , σ = 3.0µfm µ = 3.6, σ = 0.2 µ = 20.4µfm , σ = 0.3µfm

3: Equal µ = 8.7, σ = 3.0 µ = 8.7µfm , σ = 3.0µfm µ = 8.7, σ = 0.3 µ = 8.7µfm , σ = 0.3µfm

For each scenario the mean and variance of fm are altered to research the effect of similarity between
ff and fm on the difficulty of learning and state estimation. In addition, every combination is essentially
another ADS problem in itself. Therefore, experimenting with these variations can aid in evaluating if the
ADSE is general as well. The means (µfm ) used are {0.5, 0.75, 0.9, 1.0, 1.1, 1.25, 1.5} and the variances
(σfm ) used are {0.1, 0.2, 0.3}. This brings the total amount of experiments done on 3 ∗ 2 ∗ 2 ∗ 7 ∗ 3 = 252:
all combinations of 3 scenarios, 2 variances, 2 learning methods, 7 means, and 3 variances of fm.

The size of mud patches are scaled according to a factor equal to µfm : for example, when in the equal
scenario with high variance µfm = 0.5, then the patch sizes areXf ∼ N (8.6, 3.0) andXm ∼ N (4.3, 1.5).
This results in roughly the same amount of timesteps spent in each state on average for each exper-
iment. Therefore, when different means and variances for fm are used for an experiment, the only
changing variable is the mean and variance of fm.

A description of the programs used to simulate the environments, use the ADSE and run the experi-
ments can be found in Appendix A (A link to the code can be found here). It is recommended to briefly
examine this section for a deeper understanding of the differences between the data generation part
and the actual ADSE part of the simulation.

Determining the transition model
It is favorable for assessing learning effectiveness to have an indication of what transition model de-
scribes the world; then it can be considered if the ADSE learns the true transition model. Analytically,
it is hard to derive a transition model of the world; the patch sizes and the velocities are both drawn
from Gaussian distributions. A much easier way is a learning approach as in section 3.4. If this is done
supervised (by injecting the true ADS sequence), an accurate transition model can be generated. For
this HMM, using Equation 2.25 gives the following equations:

P (m|m) =
nm→m

nm→m + nm→f

P (m|f) = nf→m

nf→f + nf→m

P (f |m) =
nm→f

nm→m + nm→f
= 1− P (m|m)

P (f |f) = nf→f

nf→f + nf→m
= 1− P (m|f)

(3.12)

Measures
To determine whether the goal of this thesis is reached, that is the creation of a general ADSE with
limited prior knowledge, it is important to quantify the performance. Besides judging the classification
performance to an extent, such a measure is necessary to evaluate the learning process. Then, it
is possible to track improvements in performance across the learning process. A problem with perfor-
mance is that it is related to the difficulty of a problem. For a meaningful answer on how good a classifier
is, the difficulty of such a problem must be quantified; normally, this is done by comparison with other
systems on the same problem. This is not within the scope of this thesis. Therefore, in the context of
this thesis, a high classification score alone does not necessarily imply a competent classifier. The only
conclusions that can then be drawn from the performance in itself are 1) if the system improves upon
the baseline LE, 2) if the system performance increases due to learning, and 3) which learning method
performs better. Therefore, to answer if the GHMM can be used as a general method for ADSE with

https://github.com/Wouter-deBoer/adse
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limited prior knowledge it is crucial to consider how the learned parameters approach the true param-
eters as well. This can answer the question if the score earned is in fact the optimal score the ADSE
can reach for the problem; then, by assessing both the classification and learning performance, it can
be answered to what extent the GHMM can be used for an ADSE.

The classification performance of the ADSE will be evaluated by means of theMatthew’s correlation co-
efficient (MCC). The MCC is a weighted measure of classifier performance and is generally considered
more useful to assess performance on imbalanced datasets [9]. The score ranges from -1, a reversed
classifier, to 0, equal to a 50/50 random guess, to 1, a perfect classifier. The MCC only generates a
high score if the sensitivity, precision, specificity, and negative predictive value are high [8]. In practice,
this means that in an imbalanced dataset, only a high score can be achieved when both uncommon
and common states are classified correctly by a high degree. Since the ’patch’ scenarios can show
imbalance, this is considered a suitable performance measure for the ADSE. The MCC is given by
Equation 3.13 [9], where TP is a true positive, TN a false negative, FP a false positive, and FN a
false negative.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(3.13)

The learned parameters of the transition model will be compared to that derived by a frequentist ap-
proach on the true sequence of states of the training set, as described in section 3.5. Additionally,
the learned parameters of fm will be compared with the true values. This will be evaluated by the
closed-form expression of the Kullback-Leibler divergence (KLD) for two Gaussian distributions f1 and
f2 as described in Equation 3.14 [1]. Intuitively, the KLD (sometimes referred to as relative entropy)
describes the degree of similarity between two probability distributions.

KL(f1||f0) =
1

2
(ln

σ2
0

σ2
1

+
σ2
1

σ2
0

+
(µ1 − µ0)

2

σ2
0

− 1) (3.14)

Since the observation model is related to the overlap between the two probability density functions, the
hypothesis is that this overlap determines the difficulty of such an ADS problem with two univariate
Gaussian distributions. Therefore, the similarity will be evaluated by the overlap coefficient (OVL). The
OVL is a measure of ’agreement’ between two probability distributions or populations and is given
by Equation 3.15 [16]. Here, Φ denotes the cumulative distribution function of the standard normal
distribution (N (0, 1)) and X denotes the points of intersection, where X1 is the smaller of the two
points. The OVL is equal to 1 when the two distributions are exactly the same, and approaches 0 when
the overlap diminishes. The Python standard library ’statistics’ contains this function and will be used
to calculate the OVL.

OV L = Φ(
X1 − µ1

σ1
) + Φ(

X2 − µ2

σ2
)− Φ(

X1 − µ2

σ2
)− Φ(

X2 − µ1

σ1
) + 1 (3.15)

3.6. Conclusion
ADS are high-level discrete system states that influence system dynamics. Therefore, these states
can typically be inferred indirectly through lower-level system data. An ADS problem was introduced:
the 1D ’mudworld’. This is a randomly generated world containing patches of mud. A wheeled robot
drives through this world with Gaussian velocity. Two ADS exist in this world: ’free’, where the Gaus-
sian distributed velocity is not impaired, and ’mud’, where the mean and variance of this velocity differs.
An ADSE method based on GHMMs was described. Furthermore, a practical algorithm for ADSE,
FWE, was introduced. For the experiments, three scenarios are considered; three different patterns
of ’patches’. Patches are areas in the world that contain a single ADS. The size of these patches is
described by a Gaussian distribution, found in Table 3.1. Experiments for validating this model, evalu-
ating the difference between the two learning methods, and the relation between ADS characteristics
and performance were described. These experiments consist of trials in each scenario and for a set of
means and variances for the Gaussian velocity in the mud ADS, creating a total amount of 252 different
experiments.

https://docs.python.org/3/library/statistics.html
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Results

In this chapter, first the results of the experiments described in section 3.5 will be evaluated in sec-
tion 4.1. This is done by two measures: by considering the Matthews’ correlation coefficient of the
learned model and by considering the convergence to the true parameters of the transition model and
of the Gaussian distributions determining movement, ff and fm. Additionally, the overlap coefficient
will be utilized to assess the correlation between the Matthews’ correlation coefficient and classifica-
tion performance. Then, the two learning methods, Baum-Welch (section 2.3.2) and forward extraction
(section 3.4) will be compared in section 4.2.

4.1. Results
To evaluate the performance of the ADSE, the system was evaluated on the mudworld described in
section 3.2. Summarizing chapter 3, experiments were done by letting the robot ’travel’ through this
1D world. This world contained ’patches’ consisting of one of the two possible ADS: ’mud’ and ’free’.
These patches were configured according to six different scenarios, found in Table 3.1. Every timestep,
the agent received its current velocity. This normally distributed velocity was dependent on the current
ADS of the system: fm for ’mud’, and ff for ’free’. Based on this observation, an estimate was made
on the current ADS. An example of this process can be found in section 3.3.3. After each pass through
the complete simulation environment, a performance score was calculated. After this, the agent ad-
justed its parameters according to the classifications it made and the set of observations, the training
set. This concluded one training iteration. Then, the updated agent was evaluated on a representative
test set which was generated through the same principle as the training set. The learning was done by
either of the two learning methods: BW and FWE. Further details about the experiments can be found
in section 3.5.

Tables containing key points of the resulting learning curves can be found in Table 4.1 and Table 4.2
for test and train scores respectively. In this table, the maximum, initial, and final scores of the learn-
ing curve of both BW and FWE can be found. The initial score is the score obtained before the first
training iteration is completed, and the final score is the score obtained after the last training iteration.
In addition, the baseline score of the LE is shown in this table. All these values are for the case when
µfm = 0.75 and σfm = 0.2. The full learning curves for this case, in addition to the convergence to the
true parameters of the transition model and to the true Gaussian distributions determining movement,
can be found in Appendix B.

In Table 4.1, the maximum score for both learning methods exceeds the baseline score in all scenarios
and for both levels of scenario variance. For BW learning, this is also the case for the final scores. How-
ever, in the mud scenario, FWE obtained a final score lower than the baseline. The full learning curves
for this scenario are shown in Figure 4.1, in addition to the convergence to the transition model and the
convergence of the parameters of the learned fm to the parameters of the true fm. For comparison,
the learning curves of the same case for BW are displayed in Figure 4.2. From the learning curves, we
see that after reaching a maximum, improvement degraded until the classifier ended up worse than the

22
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Table 4.1: Summary of the maximum, first and final iteration test Matthews’ correlation coefficient. Baseline score of the
likelihood estimator with perfect knowledge of the Gaussian distributions determining movement (N ∼ (0.75, 0.2)) is included.

The highest score of the two methods is shown in bold.

Maximum Final
Scenario Variance Baum-Welch FWE Baum-Welch FWE Initial Baseline

1: Free High 0.877 0.881 0.877 0.881 0.841 0.778
Low 0.858 0.852 0.857 0.852 0.848 0.761

2: Mud High 0.804 0.719 0.782 0.556 0.614 0.655
Low 0.754 0.692 0.744 0.510 0.588 0.633

3: Equal High 0.828 0.828 0.824 0.828 0.787 0.797
Low 0.835 0.817 0.832 0.816 0.780 0.790

Table 4.2: Summary of the maximum, first and final iteration train Matthews’ correlation coefficient. Baseline score of the
likelihood estimator with perfect knowledge of the Gaussian distributions determining movement (N ∼ (0.75, 0.2)) is included.

The highest score of the two methods is shown in bold.

Maximum Final
Scenario Variance Baum-Welch FWE Baum-Welch FWE Initial Baseline

1: Free High 0.863 0.860 0.861 0.853 0.829 0.778
Low 0.859 0.853 0.857 0.853 0.834 0.777

2: Mud High 0.750 0.672 0.750 0.582 0.577 0.626
Low 0.728 0.660 0.721 0.571 0.574 0.621

3: Equal High 0.848 0.822 0.848 0.822 0.771 0.794
Low 0.836 0.814 0.835 0.813 0.770 0.794

baseline. A similar result for the training scores, even while exhibiting less steep degradation, makes it
hard to appoint this to overfitting: in that case, the training score should keep improving while the test
score degrades. When comparing the learning curves with the convergence to the transition model and
the convergence of the parameters of the learned fm to the parameters of the true fm in Figure 4.1,
remarkable is that the transition model estimate for P (m|f) eventually moved away from the actual
value. In turn for the Gaussian distributions, the estimates of the parameters of fm moved towards
those belonging to ff . This can be appointed to more data being classified as mud, since both P (m|m)
and P (m|f) converge towards 1, explaining why the parameters of ff are deviating as well; only even
higher values will be appointed to the free state, resulting in a higher mean. With this, the variance
grows lower too, which is a result of the remaining population of emissions classified as free being less
divided among the velocity space. Therefore, the convergence of these parameters explains the drop
in performance: the model starts to overclassify the mud state, entering a vicious circle until only the
most distinctive observations are classified as a free state.

Considering the baseline scores in Table 4.1 and Table 4.2, in the mud and equal scenarios the initial
scores were generally lower than the baseline score. This was expected since the initial fm was very
different from the actual fm: one would predict a lower score for the same transition model. Surprisingly,
in the free scenarios, this did not hold; here, the initial score was generally higher than the baseline
score. A likely explanation is that free states are relatively easy to distinguish due to the lower variance.
This is proven by the fact that the highest scores were all achieved within the free scenario, where the
total amount of free states was the highest. From this follows that if mud is an uncommon state it can
be preferable to use a significantly different Gaussian as initial fm. Then, only significantly different
observations will be classified as mud, while similar values are more likely to be appointed as a free
state. In a way, this can be seen as a certain bias or low-pass filter against the uncommon mud state.
As the parameters of the HMM were learned, the score improved. This suggests that the transition
model gradually compensated for this bias while the observation model converged to the true values.

When comparing variances in Table 4.1 and Table 4.2, in general, a higher variance gave a larger rel-
ative difference between the test and train score. An explanation is that low variance results in more
similar test and train data; in some of these cases, such as the free scenario with low variances, the
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(a) Scores, high variance case (b) Scores, low variance case

(c) Learned transition model parameters, high variance case (d) Learned transition model parameters, low variance case

(e) Learned parameters of Gaussian distributions, high variance case (f) Learned parameters of Gaussian distributions, low variance case

Figure 4.1: Matthews’ correlation coefficients, learned probabilities for the transition model and magnitude of means and
variances of learned Gaussian distributions when using Forward Extraction for the mud scenario. Here, µfm = 0.75 and

σfm = 0.2. For the Matthews’ correlation coefficients, the score of the baseline, the likelihood estimator with perfect knowledge
of the Gaussian distributions determining movement, is included.

test and train scores are almost identical. The detailed learning curves in Appendix B display this more
clearly.
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(a) Scores, high variance case (b) Scores, low variance case

Figure 4.2: Matthews’ correlation coefficients scores when using Baum-Welch for the mud scenario. Here, µfm = 0.75 and
σfm = 0.2. The score of the baseline, the likelihood estimator with perfect knowledge of the Gaussian distributions determining

movement, is included.

Figure 4.3a shows the KLD of the learned fm and ff relative to the true fm and ff . For each case, the
estimate at the final iteration was used. The estimates at every iteration can be found in Figure B.5 and
Figure B.6 for BW and FWE respectively. A correlation can be found between the total amount of mud
states and the KLD. When the total amount of mud states was higher, such as in the mud scenario, the
KLD tends to be lower. This is an indication that the Gaussian distribution is approximated more closely.
A simple explanation is that a higher amount of mud states gives more data on fm, thus increasing the
accuracy of the expectation maximization algorithm.

(a) Kullback-Leibler divergence of the learned fm relative to the actual
fm.

(b) Kullback-Leibler divergence of the learned ff relative to the actual
ff .

Figure 4.3: Kullback-Leibler divergence of learned Gaussian distribution relative to the actual Gaussian distribution. The value
of the final iteration is used to calculate the Kullback-Leibler divergence, the last value in the graphs of Figure B.5 and

Figure B.6.

In Table 4.3 the learned values of the transition model can be found (for additional insights, Figure B.3
and Figure B.4 contain curves showing the transition model estimate at every timestep). The table con-
tains the learned transition model at the final training iteration, in addition to the true transition model.
Furthermore, these values were for the case when µfm = 0.75 and σfm = 0.2. From the table, it be-
comes clear that BW was able to converge close to the true value in all cases, while FWE was further
off from the true estimate, only obtaining the best estimate in one case. Furthermore, there seems to
exist a correlation between the amount of mud or free states and the estimate for P (m|m) and P (m|f)
respectively; the more states, the more accurate the respective estimate. This is likely because more
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data exists on a state, improving the accuracy of classifying that state: this is the same principle as was
described above for the convergence to the true Gaussian parameters in Figure 4.3. This is presum-
ably no coincidence: better estimates of fm and ff produce more accurate ADS estimations, therefore
in turn producing more accurate transition model estimations. In other words, the transition model es-
timate is indirectly dependent on the accuracy of the learned Gaussian parameters.

It is further notable in Table 4.3 that in none of the cases, the true transition model was exactly reached.
This is likely because a single misclassification ’within’ a patch results in a transition from m to f and a
transition from f tom. Therefore, this number will always have some sort of inflation in a two-state case
with a non-perfect score; when the states are estimated perfectly, the transition model is by definition
equal to the learned model (section 3.4). This is further displayed by the fact that in the free and equal
scenarios (which can be considered easier to classify considering the maximum scores achieved), the
true transition model was approached more closely. This is the result of fewer misclassifications. The
expectation is that in a case with more than two states this would have less of an effect. In a two-state
case, a misclassification automatically results in an estimate for the ’opposite’ state, always degrading
the estimate for both transition probabilities. When there are more states, it is still possible to approach
the transition probabilities between some states even when the overall score is poor, as long as these
transitions are properly estimated.

Table 4.3: The learned transition models of both learning methods. The true transition model is included. The absolute
difference between the learned and the true probabilities are shown within brackets; the smallest difference is shown in bold.

Baum-Welch FWE True
Scenario Variance P (m|m) P (m|f) P (m|m) P (m|f) P (m|m) P (m|f)

1: Free High 0.706
(0.040)

0.049
(0.004)

0.599
(0.147)

0.053
(0.008) 0.746 0.045

Low 0.673
(0.044)

0.053
(0.004)

0.611
(0.106)

0.051
(0.002) 0.717 0.049

2: Mud High 0.934
(0.019)

0.307
(0.052)

0.900
(0.053)

0.583
(0.327) 0.953 0.255

Low 0.917
(0.033)

0.367
(0.100)

0.897
(0.054)

0.612
(0.353) 0.950 0.267

3: Equal High 0.856
(0.031)

0.127
(0.018)

0.750
(0.136)

0.173
(0.064) 0.887 0.109

Low 0.849
(0.034)

0.134
(0.022)

0.734
(0.149)

0.178
(0.066) 0.883 0.112

In Figure 4.5 and Figure 4.6 the learning curves from the test data of all µfm and for σfm = 0.2 are
shown. When closely examining these figures it can be found that most learning curves, especially
in the free and equal scenarios, eventually converge to a single score. One might expect small differ-
ences, even when converged. An explanation is that classification is evaluated as a discrete value,
meaning that tiny changes in the model will not have any substantial effect on the number of correct
classifications and therefore the MCC. In turn, the MCC is based on discrete amounts, meaning that
there is a set amount of values the MCC can assume.

Curious is that when considering the maximum score, we found that for all cases and both learning
methods the baseline score was beaten, generalizing the conclusions drawn from Table 4.1. When
considering the final score, this applies to almost all cases. Furthermore, in the mud scenario for FWE,
seen in Figure 4.6c and Figure 4.6d, the same problem of overclassifying the mud state appeared for
some µfm . Notable is that this effect diminishes for a higher absolute distance from µff to µfm . In
addition, there seems to exist a pattern in that scores of µfm > 1 are lower than the scores of µfm < 1
when considering the same absolute distance. This is likely the result of the initial µfm = 0.1 being
closer to the latter, giving a better initial estimate. In general, there is a relation between this absolute
distance and the score obtained, with 0.25 always outperforming 0.1, and 0.5 always outperforming
0.25.



4.2. Comparison 27

Figure 4.4: Matthews’ correlation coefficient versus overlap coefficient for the maximum scores of all test data, both learning
methods and all scenarios combined. The grey circles denote a single maximum score and a black cross denotes the mean of

a cluster; there are 12 clusters in total, 3 different variances times 4 unique absolute distances to µfm .

To further prove this point, Figure 4.4 displays the maximum MCC of all test data and all scenarios:
this data includes both learning methods, all patch variances and all values of µfm and σfm , producing
252 maximum scores. In total 12 clusters of data grouped by the OVL exist. When considering the
absolute distance from µff to µfm , 4 unique values exist. Then, with 3 unique variances 3 ∗ 4 = 12
values of the OVL exist. The means of these clusters are taken to evaluate the effect of the OVL on
the classifier performance. Interestingly enough these results show that, even for the results of a large
range of experiment parameters combined in one graph, there exists a negative correlation between
the OVL and the MCC.

When interpreting the results it is important to take the input of the system into account: in the experi-
ments, the input was set to 1 and is kept equal at each timestep, resulting in µff = 1. This was done
for simplicity. In the simulation, the mean and variance of ff and fm would scale accordingly. But,
varying the input is arbitrary for classification: the same relative effects apply to the velocity. This is
effectively the same as changing the size of the patches. Therefore, the conclusions drawn from the
results remain general for all inputs as long as it is assumed constant. Varying the input across the
training iteration is a different case: this results in a more complex problem, as the ADS sequence is
then dependent on the variation of the input as well.

4.2. Comparison
Apart from the overclassification problem of FWE, no direct comparison between the two learning meth-
ods is made yet, which is the goal of this section. First, it is important to stress the fact that for each
experiment the test and training data for both learning methods are equal, making direct comparison
possible.

When considering Table 4.1, BW demonstrated superior results for the maximum scores apart from
two cases. In these cases, FWE obtained a better final score as well. In general, in the free and
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equal scenario, FWE did approach the score obtained by BW very closely. In the mud scenario, FWE
suffered from the overclassification problem as described in the previous section. When comparing
Figure 4.5 and Figure 4.6 (containing the scores for all true µfm ) as additional evidence, BW can be
considered the more stable method of the two learning methods, at least for the mud scenario. In none
of the evaluated µfm , BW shows as much of a performance drop as FWE does. In addition, the final
score obtained by BW is in all of the cases better than the baseline, which is not the case for FWE in
the mud scenario for most µfm . It has to be noted however that in not all cases in the mud scenario,
total convergence was reached yet. Therefore, for BW in particular, it is not certain that the final score
remains better than the baseline when the number of training iterations is further increased.

For the case of convergence to the true parameters of fm and ff in Figure 4.3, we can see that in
general BW exhibited superior performance. While FWE seemed to produce a better estimate to fm in
the mud scenario when considering Figure 4.3a, it is shown in Figure 4.3b that this was at the cost of
a worse estimate of ff .

Comparing the convergence to the true transition model in Table 4.3, BW was able to outperform FWE
in most of the cases. Only one probability was better estimated by FWE (free scenario, low variance),
but when we consider the other estimated probability as well, the sum of the differences is still larger
than those of the estimates found by BW.

Surprisingly, learning the exact values of the transition model and the Gaussian distributions did not
seem to be crucial for a high score: in the free and equal scenarios with high variance, where FWE
exhibited respectively a slightly better and equal score compared to BW, the estimates of FWE for the
transition model and Gaussian distributions are substantially more off from the true values than BW.

In summary, it was found that while BW showed consistent performance, FWE suffered from degrading
performance in some cases. Essentially, BW was better able to approach the true values of both the
transition model and the Gaussian parameters. However, FWE can attain comparable or even superior
scores than BW in instances where its performance remains stable. Besides this, in all cases, both BW
and FWE outperformed the baseline.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure 4.5: Test set Matthews’ correlation coefficient for all mean scales when using Baum-Welch as learning method for the
three scenarios and a mud variance of 0.2. The scores of the baselines, the likelihood estimator with perfect knowledge of the

Gaussian distributions determining movement, are included as dotted lines.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure 4.6: Test set Matthews’ correlation coefficient for all mean scales when using forward extraction as learning method
for the three scenarios and a mud variance of 0.2. The scores of the baselines, the likelihood estimator with perfect knowledge

of the Gaussian distributions determining movement, are included as dotted lines.

4.3. Conclusion
In this chapter, the results of the experiments described in section 3.5 were evaluated. This was done
by considering the classification scores of the learned model and the estimates of the true parameters
of the GHMM. The scores were compared with a non-learning baseline estimator, that is a GHMM with
perfect knowledge of the Gaussians determining movement in free and mud but with a flat transition
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model, meaning that the transition model has no influence on classification. It was found that in all
cases the maximum score of the two learning methods, BW and FWE, exceeds the baseline score.
For the score at the final training iteration, BW outperformed the baseline in every case and FWE in
the ’free’ and ’equal’ scenarios. In some cases of the mud scenario, FWE displayed a gradual increase
in performance until a turning point, where the score deteriorated. Inspection with the convergence
charts showed that this problem was caused by an overclassification of the ’mud’ state. Furthermore,
it was shown that there is a relation between the maximum reached score and the OVL: the lower
the OVL (thus the less similar the ADS), the higher the maximum score. Considering the two learning
methods, it was found that BW displayed better convergence to the true Gaussian parameters than
FWE in addition to better scores. However, when the performance of FWE remained stable, it was
able to attain comparable or even superior scores compared to BW.



5
Discussion

Foundings
The goal of this thesis was to design a general ADSE system with limited prior knowledge. It was
found that a possible method for this is the GHMM. The results indicate that the GHMM can be used as
ADSE given the basic description of an ADSE: it is able to detect an ADS change from indirectly related
lower-level system data. Furthermore, from the results it was concluded that the GHMM improves upon
the baseline, the LE, as an ADSE method. The results further suggested that there exists a correla-
tion between the performance and the OVL of the two ADS; the less similar the ADS, the higher the
classification score. Considering the learning methods, it was found that BW learns closer estimates
of the true GHMM parameters. Besides this, FWE was still able to attain comparable or even superior
scores compared to BW. Furthermore, BW was found to be a more stable method than FWE; FWE is
theoretically much faster but prone to degrading performance in some cases. In some instances, such
as the mud scenario, the ADSE ends up performing worse than the baseline if the training process
continues.

Additionally, the GHMM outperforms the LE with limited prior knowledge: while the LE has access to the
true Gaussian emissions of the ADS, only the emission of the ’normal’ ADS is known for the GHMM-
based ADSE. It was found, especially for BW, that the learned distributions of the GHMM converge
closely to the true Gaussian emissions. In addition, the ADSE can learn an accurate representation of
an unknown environment by learning a transition model. Therefore, it can be concluded that it is possi-
ble to learn unknown ADS, given that the number of ADS is known. In other words: we can conclude
that the GHMM is suitable for an ADSE problem with limited prior knowledge on the ADS.

While the ADS of the problem is the concept of mud, it is safe to say that the same method applies
to other ADS as well; from the definition of ADS in section 3.1, all ADS which can be described by a
Gaussian distribution are in essence some form of the mudworld. For example, with a higher variance
or a lower mean. From the results, it was found that the ADSE can successfully handle these cases as
well, confirming that the GHMM can be considered a general method for this type of ADSE problem.

It remains difficult, however, to give an answer to how well exactly this system performs, or how suit-
able the system is for ADSE. It is problematic to connect the absolute difficulty of the problems to a
score value: for example, can an MCC of 0.9 for a particular problem be considered good? Or would
an MCC of 0.7 for that same problem be sufficient as well? For that, alternative ADSE systems have
to be evaluated on the same problems, which is out of the scope of this thesis.

Concluding, the main takeaway is that the GHMM is suitable as a general ADSE with limited prior
knowledge. The question remains to what extent the GHMM is suitable. For that, further research on
the difficulty of this ADS problem is necessary. This includes the application of other ADSE systems
on the same problems. Besides that, there exist some assumptions and further limitations to this study,
as described in the next section. After that, this chapter will be concluded with recommendations for
future work.
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Limitations
Considering the simulation, there are a few limitations that have to be taken into account when interpret-
ing the results. The first one is that the experiments are not run until convergence, therefore no general
conclusion can be made on the convergence of this method. In addition, no multiple runs with a differ-
ent random seed of the same case are done. The expectation is, however, that the conclusions still
hold: since every set of training data will be generated from the same Gaussian distributions, adding
more runs with a different random seed is in essence equal to extending the amount of evaluation data.
And one could argue that since no quantitative evaluation is possible, the additional value of multiple
runs is arbitrary. Another limitation is that one set amount of training data is used. It can be interesting
to experiment for each case on what the minimum amount of training data could be to obtain similar
results.

As described in section 3.4, FWE assumes a fully connected HMM. Therefore, it is assumed that this
is the case in this thesis. While this can be considered a valid assumption for the mudworld, this has
to be taken into account for different domains where ADS are unrelated; in this case, VBE is expected
to be a more effective method.

Another assumption is that the Gaussian determining own movement is known. While in most realistic
cases this applies and the system is able to work without this assumption, the performance may differ.
Convergence will most likely be slower or to a value further from the true values. Regardless, this must
be taken into account when applying the methods for a different study. A simple solution could be to
use the first or mean of a first group of observations as mean for an ADS: this will take only one or a
few timesteps and because a realistic initial guess is made for one of the ADS it is expected that less
training iterations will be needed to approximate the Gaussian distributions.

Another limitation is that it is assumed that the mean of two ADS scales in the same manner: the ratio
between the means of the two ADS remains constant. In these experiments, the same input of 1 is
used for every timestep. This is something to consider for other dynamical systems or when a varying
input is used, as not necessarily all ADS will scale linearly.

Recommendations for Future Work
The first and simplest recommendation for future work is to ’lock’ the parameters of the Gaussian of
the known ADS. While the true parameters are injected into the model at the start, these can be ad-
justed during the learning process; this is contradictory to the assumption that the own ADS is known.
From the results it was found that especially for FWE this distribution varied, possibly impacting the
performance. It is possible that disabling learning for these parameters can improve the performance;
essentially, the assumption was not fully leveraged.

An interesting piece of future work is the application to multiple ADS, firstmost where the number of
ADS is known. While it is expected that the GHMM can handle this without problems, the current
code would have to be extended. For further extending this to a setting where the amount of ADS
is unknown, it is recommended to train multiple models in parallel and to subsequently use a model
selection method such as the Bayesian information criterion [21] to assess which model is the best fit.
A related extension could be to incorporate information from multiple dimensions, as now the system
only has been tested on a 1D simulation. It is expected that the method is general enough to allow
for this, as the dimensionality of the observations can be reduced to 1. Obviously, the computational
needs will be greater as the world increases in complexity.

As an alternative method, the Gaussian mixture model (GMM, see section 2.3.1) was considered as
an observation model for an HMM: instead of comparing the likelihood of two univariate Gaussians, a
GMM was trained on the observation data. Then, samples were classified by the GMM and this clas-
sification was directly used as an observation model. It was found however that the problem is better
described by a GHMM, as the emissions for each state are generated by univariate Gaussians and not
a mixture. Using a GMM for this problem disables the knowledge that multiple ADS exist. Furthermore,
since a GMM uses weights to describe the occurrence of each Gaussian in the mixture, the GMM im-
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plicitly represents the frequency of states, but not the sequence. An interesting extension related to the
GMM is a Gaussian mixture hidden Markov model, where the emissions of each state are described
by a GMM. Since GMMs can approximate many types of distributions given enough components, this
can be an interesting extension to further generalize the ADSE. Simultaneously, this allows the ADSE
to handle more complex ADS. This would not require many additions to the method; how to learn the
parameters of a Gaussian mixture hidden Markov model is described in [2]. Note that in theory, Gaus-
sian mixture emissions are already supported by the ADSE method as is, but the representing power
of a univariate Gaussian is likely worse compared to that of a GMM for this kind of emission.

Within the methods evaluated, it is expected that a combination of these can be more computationally
efficient than a single one while not sacrificing performance. If knowledge of the domain is present, this
can be used to determine such a combination. For example, the low-computational cost LE is likely
sufficient for cases where the OVL between the two ADS is small. For cases where the OVL is larger,
a combination of the faster FWE and the more stable BW can prove useful: FWE could be used for
the first training iterations to quickly gain a reasonable estimate, after which BW can be used to further
improve the estimate and assure stable convergence. While it is apparent that FWE has the potential
to be faster than BW since it requires only one pass versus two passes over the training data, this is
not proven in this thesis: the focus of this thesis lies not within assessing the efficiency of an algorithm
or implementing the algorithm in a computationally efficient manner. Therefore, the recommendation
is to perform experiments on the computational speeds of these algorithms. This knowledge can then
be used to further tune a LE, FWE, and BW combined ADSE.

In this thesis, FWE is used only on the forward data. The binary labels are determined during runtime
after each timestep. This makes the algorithm very efficient, as a counter for each transition can be
maintained at the same time. An interesting study could be to apply FWE on smoothed data; in that
case, FWE will require more computational resources. But, then FWE is still slightly more efficient than
BW since it does not require the calculation of the ξ function (Equation 2.20). The hypothesis is that,
compared to only using forward data, this can improve results as well as aid in the performance drop
problem due to the smoothed data being less sensitive to misclassified observations.

Considering FWE, some potential improvements to improve stability were conceived but not executed.
This includes the introduction of a dynamic learning rate that changes the amount of data used for the
learning process depending on the current phase in the learning process or the current convergence.
Potentially, this could improve the stability by allowing quick learning of a reasonable estimate at the
start of the learning process, which will then be updated less frequently as the learning process fur-
ther continues. Another method is to apply an Exponential Weighted Moving Average or other similar
measures to the learned parameters, weighing earlier learned parameters in the calculation for param-
eters learned further in the process. The expectation is that this reduces variance in the learning curve,
therefore potentially overcoming the stability issues of FWE.

Another potential improvement that is not researched yet is to utilize early stopping. Since for most
cases, the optimal score is reached within the first few training iterations, it can prove useful to stop
the training process before the planned amount of iterations. The problem is that the training process
is unsupervised, therefore no knowledge is available to the ADSE on the performance of the estimator
during the training. What can be utilized is the convergence of parameters; if no change above a certain
threshold occurs, the training process can be stopped. In another case, when domain knowledge or
previous experience is available, this could be leveraged: for example, if the OVL is small, Figure 4.5
and Figure 4.6 show that only two or three training iterations can suffice.

Research on applying the system to a changing environment can be promising. A changing environ-
ment consists of different ADS that disappear or change over time. Essential for the application to a
changing environment is to realize a threshold for keeping an ADS or rejecting it. This will additionally
reduce the amount of prior information needed and further generalize the system. The KLD can be
a suitable measure for such a threshold, as displayed in an intrusion detection paper using an HMM-
based novelty detection method [37].
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A final suggestion for future work includes the application of a different model to the ADSE problem. A
Recurrent Neural Network (RNN) or Long Short-term Memory (LSTM) network seems fitting due to the
ability to learn sequence-dependency within data. These networks can contain more parameters than
an HMM, which is limited to the amount of pre-determined states. Therefore, these types of methods
could potentially allow for more accurate ADSE. Care has to be taken in the case of limited prior knowl-
edge, however: typically, RNNs and LSTMs are trained in a supervised manner, requiring data on the
ADS. Furthermore, the simplicity of the HMM allows for interpretability, which is a classic shortcoming
of deep learning methods.



6
Conclusion

For continuous dynamical systems, it can prove useful to construct a hierarchical model that detects
changes in the abstract discrete state (ADS) of the system. ADS are high-level discrete system states
that influence system dynamics. These are often not directly observable but can be inferred through
analysis of simpler system data such as velocity or temperature. Knowledge of what ADS a system is
in can aid in system control. For example, consider a wheeled robot in rough terrains, such as mud.
Mud can indirectly be detected by a lower velocity for the same motor inputs due to slip. When en-
tering a patch of mud, the system ADS changes from ’free’ to ’mud’; control of the system can then
change accordingly. The goal of this thesis was to create a general abstract discrete state estimator
(ADSE) operating under limited prior knowledge: The ADSE acts as a system observer and estimates
the current ADS of a system. Furthermore, the ADSE should be general as it should be applicable to
multiple ADS problems and should be able to do so without prior knowledge of the ADS to be classified.

In order to reach this goal, the Gaussian hidden Markov model (GHMM) framework was found to be
a suitable model for the ADS problem. The GHMM is an extension of the hidden Markov model, a
stochastic modeling framework used for sequences and time series. This framework contains the as-
sumption that the system state is not directly observable, fitting into the philosophy of the ADSE; the
same assumption applies to the ADS problem. The parameters of a GHMM can be learned in an
unsupervised manner by the Baum-Welch (BW) algorithm or by forward extraction (FWE). FWE was
introduced in this thesis and is a simpler, theoretically more computationally efficient method than BW
and is inspired by Viterbi extraction. FWE attains this efficiency by leveraging the assumptions of ADSE.
Both learning methods are based on expectation maximization.

In order to research the applicability of the GHMM to the ADSE problem, experiments were done for a
characteristic ADSE problem. Here, the observed data was generated by two Gaussian distributions,
each belonging to one ADS. In this problem, three scenarios were generated, producing consecutive
sequences of ADS of which the lengths are in turn generated by Gaussian distributions. Furthermore,
the mean and variance for the Gaussian distribution belonging to the unknown ADS were varied, creat-
ing a total of 126 experiments per learning method. Both learning methods were compared to a simple
likelihood-based baseline estimator. The baseline operated similarly to a GHMM with perfect knowl-
edge of the Gaussian distributions of the ADS. Additionally, the baseline used a flat transition model,
therefore not taking sequence into account.

The results of these experiments displayed superior performance for both learning methods compared
to the baseline when the maximum test score is considered. When the test score of the final training
iteration is considered, BW outperformed the baseline in every case, while FWE did not; a degrading
trend after a gradually increasing performance was shown in one of the scenarios. This was found to
be related to the overclassification of one ADS. Furthermore, it was shown that there exists a relation
between the maximum reached score and the overlap coefficient of the two ADS. This suggests that
the theoretical limit of this method is related to this measure. When comparing BW and FWE, BW
shows no overclassification issues like FWE, resulting in more stable usage. In addition, BW shows
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better convergence to the true parameters of the GHMM. Besides this, FWE was able to obtain scores
comparable to or even surpassing the scores obtained by BW.

The results suggest that the GHMM is a viable method for ADSE: besides consistently outperforming
the baseline, globally the GHMM is able to detect the current ADS of the system. It remains problematic
to judge the exact performance of the system since no quantitative measure for the problem difficulty
is known. For this, different ADSE systems need to be examined on the same problem. Furthermore,
the ADSE works for different variances and means belonging to the ADS, suggesting that different
concepts of ADS can also be estimated. While the scenarios in the experiments are defined within the
concept of ’mud’, the concepts of ADS for other cases will be similar: data generated by differing latent
dynamics. Therefore, the GHMM can be considered a general method for ADSE. Since the system is
able to estimate ADS with only the assumptions that the total number of ADS and the behavior of the
’normal’ ADS are known, it is safe to say that the GHMM can be considered a method for ADSE under
limited prior knowledge as well.

It is assumed that the observations emitted by an ADS are normally distributed, limiting the represen-
tation power of the ADSE. Therefore, a recommendation for future work is to extend the univariate
Gaussian assumption to a Gaussian mixture model. Then, the problem can be described by a Gaus-
sian mixture midden Markov model. With this extension, it is expected that the ADSE will be able to
accurately portray more complex ADS, as a GMM is able to model more complex distributions. Likely,
this can be built upon the current ADSE without many fundamental changes. Another suggestion for
future work is to combine BW and FWE during training. FWE is theoretically a much faster method than
BW, but unstable in some cases. This characteristic suggests that a combination of these methods can
be a viable option: the initial few training iterations can be done by FWE, after which BW can be used
for stable convergence. Further future work can include the extension to multiple states or dimensions,
or application to a changing environment.



A
Software Architecture

A large part of the work done in this thesis was the development of custom programs in Python to
create and validate the ADSE. The full code can be found here. A schematic, simplified depiction of
the software can be found in Figure A.1. The classes used are:

• Dynamics, a class that describes the environment and handles the dynamics (in other words, the
movement of the robot). This includes generating patches of mud.

• ADSE, the ADSE handles the classification of ADS from velocity data: the function ’Classify’ is
essentially a forward pass.

• Learner, this class handles the learning process of the ADSE for either BW or FWE learning. For
BW this includes the backward pass, smoothing, and the calculation of the ξ-function. The class
is built on an ADSE object.

• Noise, a utility class building on SciPy (scipy.stats.norm). This class contains functions for easier
manipulation of scipy.stats.norm objects. This class is used as an attribute in both Dynamics and
ADSE.

• Simulation/Visualisation, either a Simulation or Visualisation object can be used. This is a driver
class for Dynamics and the ADSE. It handles the input, which can be directly from a keyboard
or from data. A Visualisation adds various real-time plots to a Simulation, including a world plot
with the robot movement, histogram and current ADS estimate. Furthermore, the Simulation/Vi-
sualisation calls the ADSE to classify on the velocity data on each timestep coming from the
Dynamics.

• Experiment, a class containing and connecting a Simulation, Learner and ADSE object. It is
used for easy running of multiple experiments with multiple settings. Furthermore, this contains
functions to evaluate the performance of the ADSE and functions for handling and plotting data.

Globally, an experiment is run as follows: first, all classes are initiated. This includes defining the
Gaussian distributions for generating patches and movement, defining the initial ADSE conditions and
initializing the train and test dynamics. A pass through the test data is done with the initial model,
providing a score described by the MCC. Then, a simulation run is done by iteratively applying the input
data to the dynamics. In each timestep, the forward probabilities are calculated. When the simulation
run is complete, performance on the train data is evaluated. Then, the preferred learning method
is called and the new transition model and Gaussian estimates are injected into the learning ADSE.
This updated model is then passed through the test data to assess the performance. This process is
repeated until the desired number of training iterations is reached.
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Figure A.1: A schematic depiction of the software developed for this thesis.



B
Detailed Results

In this appendix additional figures for all scenarios can be found for the single variance and mean case
(µfm = 0.75, σfm = 0.75), which were evaluated in more detail in section 4.1. From these figures, the
values in Table 4.1, Table 4.2, Table 4.3, and Figure 4.3 are retrieved. More specifically, the scores co-
incide with the learning curves in Figure B.1 and Figure B.2, the transition model values withFigure B.3
and Figure B.4, and the KLD values with Figure B.5 and Figure B.6, all for BW and FWE respectively.
All these figures contain the evolution of their respective quantity throughout the learning process.

Note that some duplicate figures exist, which are in order of appearance in section 4.1: Figure B.6c,
Figure B.6d, Figure B.4c, Figure B.4d, Figure B.6c, Figure B.6d, Figure B.5c, Figure B.5d. These are
duplicated in this chapter to allow for a more direct comparison between each specific scenario.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.1: Matthews’ correlation coefficient when using Baum-Welch learning for the three scenarios and a mean scale of
0.75. The scores of the baselines, the likelihood estimator with perfect knowledge of the Gaussian distributions determining

movement, are included as dotted lines.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.2: Matthews’ correlation coefficient when using Forward Extraction as learning method for the three scenarios
and a mean scale of 0.75. The scores of the baselines, the likelihood estimator with perfect knowledge of the Gaussian

distributions determining movement, are included as dotted lines.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.3: Probabilities of learned transition model when using Baum-Welch learning for the three scenarios and a mean
scale of 0.75. The horizontal lines denote the probabilities determined by supervised learning.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.4: Probabilities of learned transition model when using Forward Extraction for the three scenarios and a mean
scale of 0.75. The horizontal lines denote the probabilities determined by supervised learning.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.5: Magnitude of means and variances of learned Gaussian distributions when using Baum-Welch learning for the
three scenarios and a mean scale of 0.75. The horizontal lines denote the true mean and variance of the noise attempted to

learn.
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(a) Free scenario, high variance (b) Free scenario, low variance

(c) Mud scenario, high variance (d) Mud scenario, low variance

(e) Equal scenario, high variance (f) Equal scenario, low variance

Figure B.6: Magnitude of means and variances of learned Gaussian distributions when using Forward Extraction for the
three scenarios and a mean scale of 0.75. The horizontal lines denote the true mean and variance of the noise attempted to

learn.
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