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Abstract

A comprehensive understanding of the stability of shear flows is a fundamental problem in fluid me-
chanics and it has been a subject of both theoretical and practical interest in engineering research.
A key aspect of these dynamic flows is the behaviour exhibited by the instabilities as it evolves
from initial small perturbations of an equilibrium state, and may lead to fluctuations. In order
to control these fluctuations, a study on the spatial and temporal evolution of the perturbations
must be carried out.

The objective of this thesis is to perform the spatio-temporal stability analysis on the plane, in-
compressible shear layers representing confined and unconfined shear flows. The analysis requires
the estimation of the response of the flow to the initial perturbations for fixed values of relevant
parameters. The numerical tools are developed for the low order piecewise linear profile approxi-
mations to the shear layers. The influence of typical flow features, like single and multiple shear
dynamics, on the stability behaviour is studied and the convective/absolute instability boundary
for various parameter combinations are identified. After validation for the analytical models, the
numerical tools are extended to the non-analytical models. The analysis is then performed for
higher order approximations of the experimental base flows in order to validate the results from
the toolkit.

A variation of the flow features and variables can change the stability behaviour of the shear
flows. The single shear layer dynamics cannot contribute to absolute instability in the absence of
a dispersive medium, like surface tension. The surface tension acts as a stabilising mechanism for
perturbations of short wavelength. The multiple shear layer dynamics dictates that the unconfined
jet or wake flow is more unstable than the single shear layer with equivalent parameter values,
and that very high values of surface tension stabilises all perturbations. For confined jet or wake
flows, the varicose mode perturbations are found to be highly absolutely unstable in the strongly
confined dense inner flow limit. The temporal branches obtained from the toolkit match with
the Linear Stability Theory (LST) results. This is a key result that allows the extension of the
numerical tools developed for the low order analytical models to be applied to the non-analytical
models obtained for higher order approximations of the experimental base flow.
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Chapter 1

Introduction

1.1 Motivation

During the re-entry of a space vehicle into the atmosphere at hypersonic speeds, an extremely hot
layer of charged particles, known as plasma, forms in the flow near the surface of the vehicle. The
vehicle is shielded from the large amount of heat generated in the plasma flow by the thermal
protection system (TPS). In order to test the TPS, the harsh re-entry conditions are replicated
in ground based test facilities. Particularly, in the VKI plasmatron facility, a subsonic plasma jet
discharging into a test chamber is generated. A probe is placed facing the jet which forces the
formation of a subsonic plasma boundary layer.

The hot plasma flow over the TPS can cause erosion of the surface. The surface irregularity may
contribute to surface roughness and influence the boundary layer flow. The similar phenomena
is encountered in flow over micro-ramps. Micro-ramps are sub-boundary-layer or micro-vortex
generators that are used to suppress the shock-wave/boundary-layer interaction (SWBLI), see
Groot et al. [9]. The micro-ramps reduce the extent of flow separation in the interaction by
generating two steady counter-rotating vortices. A train of hairpin vortices develops in the shear
layer surrounding the micro-ramp’s wake. The vortical structures can be interpreted as inviscid
Kelvin-Helmholtz (KH) modes.

In both the jet and wake flows, an initial perturbation may evolve as fluctuation in the downstream
flow domain. The fluctuations are associated with noise generation and energy dissipation in the
flow. This induces drag, and also enhances mixing if the two streams contain different fluids,
see Schmid & Henningson [27]. The dynamical behaviour of the the jet and wake flows must,
therefore, be studied in order to control the fluctuations. Classically, the jet and wake flows have
been modelled as a combination of shear layers. The plane shear layer is a classical example of
turbulent shear flow away from walls. A typical shear layer is formed by the merger of two parallel
streams of different velocities, initially separated by a thin plate.

An unsteadiness generated in the initial flow could be convected by the shear layer in the down-
stream direction or it may evolve locally at the source, often leading to instability. The main
sources of instability can be vortex shedding or hydrodynamic perturbations. Depending on the
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Introduction 2

spectral composition of the disturbance and the variable magnitudes of the shear flow, the distur-
bance can be either amplified or damped. An analysis of the shear layer unsteadiness, therefore,
needs to be performed for an understanding of the physics underlying the fluctuations. A compre-
hensive study of the evolution of the perturbations provides a necessary tool to control the flow
variables at desired spatial and temporal locations.

1.2 Background and literature review

The problem of stability appears in various dynamic flows in physics and engineering applications.
A striking aspect in these systems is the behaviour exhibited by instabilities as it evolves from ini-
tial small perturbations of an equilibrium state. This is especially true for fluid flow applications.
If the system is such that the flow parameters are concentrated at isolated points in the flow, in
order to describe the system by ordinary differential equations, then the stability problem can be
solved by using linear approximations. As a rule, for small amplitudes of perturbations, these lin-
earised flow models describe the instabilities. However, for flows where the system parameters are
not concentrated but distributed, the system is described by partial differential equations or ordi-
nary differential equations (both nonlinear). Also, when the amplitude of unstable perturbations
becomes appreciable, the linearised models cease to be valid. To estimate how linear instabilities
modify an equilibrium state to a nonlinear state, their evolution is studied using either temporal
theory and/or spatial theory.

For the derivation of spatial stability equations, the temporal growth of the disturbance (given by
imaginary frequency, ωi) is neglected. Therefore, we assume a complex streamwise wavenumber
(k ∈ C) and a real frequency (ω ∈ R). On the other hand, the temporal stability equations are
derived in an analogous manner by assuming real wavenumber (k ∈ R) and complex frequency
(ω ∈ C). The goal of the linear stability theory is then to determine the complex eigenvalues as a
function of the real frequency or wavenumber.

As a pre-requisite, a general system that is time-invariant and uniform in at least one spatial
dimension (y) is considered. In Cartesian coordinates, a generic flow variable, given by, say, the
vector q(x, t) can be decomposed as

q(x, t) = q(y;R) + q′(x, t) , (1.1)

where, q(y;R) is the steady base flow that satisfies the Navier-Stokes equations, q′(x, t) is the
linearised perturbations of the equilibrium state, and R is a control parameter. If we consider the
homogeneity in time and spatial dimensions x and z, q′(x, t) can be taken to be of the form

q′(x, t) = q̃(y)ei(αx+βz−ωt) , (1.2)

which is the decomposition of the perturbations into elementary stability waves of complex k
(where |k| =

√
α2 + β2) and ω. As evident from the discussion in Schmid & Henningson [27],

the distribution function q̃(y) satisfies the ordinary differential equation of Orr-Sommerfeld type.
Incorporating the boundary conditions, this leads to eigenvalue problem where the eigenfunctions
q̃(y) exist only if only when k and ω are constrained to satisfy the dispersion relation of the form

D(α, β, ω;R) = 0 . (1.3)
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If for some real value of wavenumber, certain complex value(s) of frequency ω exist(s) such that
Im(ω) > 0, then the plane monochromatic wave form of perturbation given by ansatz 1.2 will
increase as t→∞. The dynamic system, as a result, will be unstable.

In practical applications, the small perturbations are not in the form of individual plane monochro-
matic waves, but in the form of wave packets. The asymptotic behaviour of wave packets differs
from the behaviour of monochromatic waves. For instance, even though the individual components
of the wave packet increase unbounded in time, the entire wave packet as a whole, when observed
from a fixed reference frame, may still remain bounded as the perturbation can drift downstream.
Therefore, to get a clear understanding of the instability of a dynamic system, instead of restricting
the focus only to time growth, the development of the initial perturbations needs to be studied.

Most of the pioneering contributions to the theoretical fundamentals have been made by plasma
physicists. The distinction between convective and absolute instabilities was first formalized by
Sturrock [28]. In the paper, he suggests using wave kinematics interpreted from the dispersion
relation to distinguish between convective and absolute instability. Following Huerre & Monke-
witz [12], the objective of instability analysis is to characterize the relationship between global
and the local instability modes. To achieve this, it is essential to assume that the streamwise
variation of the basic flow is small over the typical instability wavelength (parallel-flow or WKBJ
approximation), and the instability is not dominated by long-range pressure feedback. The local
instability is defined by Yu & Monkewitz [33] as the instability of a hypothetical parallel flow
with velocity and density profiles matching the ones of the nonparallel flow at a given downstream
location. On the other hand, the global instability refers to the entire flow field. On a local level at
each streamwise location, the absolute and convective instabilities mentioned in the previous para-
graph characterize the linear impulse response of the parallel flow. In local absolute instability, the
localised disturbances grow in both the upstream and downstream directions and contaminate the
whole flow domain. By contrast, in local convective instability, the disturbances drift away from
the source. Huerre & Monkewitz [12] suggest that the temporal growth of a linear global mode
is only possible when the flow consists of a region of local absolute instability. However, a local
absolute instability does not necessarily lead to self-excited oscillations. Therefore, the search for
absolute instability gives an efficient, but case-dependent, way of searching the parameter space
of complex nonparallel flow for occurrence of self-sustained temporally growing global modes.

For ansatz 1.2, Gaster [7] proposes relations for the frequency and amplification rates for temporal
(T) and spatial (S) settings.

kr(T) = kr(S), ωr(T) = ωr(S), and
ωi(T)

ki(S)
= −∂ωr

∂kr
. (1.4)

In spatial stability analysis, these transformations are useful in deciding the initial guess value of
k, therefore, simplifying the analysis to the level of temporal stability analysis.

We will briefly discuss the hydrodynamic instability description. Traditionally, the experimental
observations of hydrodynamic instability of open flows have been compared with the results of local
spatial stability problems (given real ω and unknown complex k) dealing with the measured time
averaged mean velocity profile at each streamwise location. This approach has been successful in
describing the downstream evolution of vortical structures in controlled experiments. The analysis
performed by Gaster et al. [8] presents one example. However, majority of the hydrodynamic
stability literature has been devoted to the temporal theory (given real k and unknown complex
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ω) dealing with evolution of flow from a given initial state. The application of local spatial theory
with fixed real ω to some open shear flows (e.g. hot jets) is not sufficient. Both k and ω need
to be considered complex here. This analysis may give global temporal instability where the flow
admits self-sustained global modes.

The local or global and absolute or convective instability concepts discussed above can be applied
to differentiate the open shear flows based on their dynamic behaviour. According to Huerre
& Monkewitz [12], local convectively unstable shear flows (e.g. mixing layers) exhibit extrinsic
dynamics;,i.e., their evolution being determined by the excitation parameters. Such flows behave
like amplifiers. On the other hand, shear flows with pockets of absolute instability (e.g. bluff
-body wakes) exhibit intrinsic dynamics; temporally growing global modes are present in down-
stream convected perturbations. Such flows, that are dependant on the temporal growth of initial
perturbations and not on the spatial amplification of external excitation, are known as oscillators.

It was first remarked by Twiss [30–32], and Landau & Lifshitz [19] that in a perturbed medium,
a disturbance can evolve in two physically distinct ways. To arrive at this distinction, the per-
turbations q′(x, t) are assumed to satisfy the system of constant coefficient partial differential
equations. Following the work in Huerre & Monkewitz [12], it is realised that the differential op-
erator D [−i(∂/∂x), (∂/∂y),−i(∂/∂z), i(∂/∂t);R] in physical space (x, t) can be associated to the
relation 1.3 in the spectral space (k, ω). The perturbations therefore satisfy

D
[
−i

∂

∂x
,
∂

∂y
,−i

∂

∂z
, i
∂

∂t
;R

]
q′(x, t) = 0 . (1.5)

If the perturbations in a wave packet q′(x, t) remain bounded (or q′(x, t) → 0) for a stationary
frame of reference as t→∞, it is a convective instability. On the other hand, if the perturbations
are unbounded (or q′(x, t)→∞) for a fixed reference frame as t→∞, it is an absolute instability.

The mathematical framework for the study of plasma instabilities governed by Eq. 1.5 has been
an integral part of the problem of distinguishing between spatially amplifying and evanescent
waves. Sturrock [28], Briggs [3] and Bers [2] have developed methods that are now the standard
procedure to distinguish between the amplifying and evanescent waves. A comprehensive review
of the theoretical and experimental work for open shear flows (e.g. mixing layers, jets, wakes,
boundary layers, etc.) can be found in Huerre & Monkewitz [12].

The integro-differential equations of the form 1.5, and particularly the linearised Ginzburg-Landau
equations, have been studied extensively to identify the possible transition mechanisms in open-
flow systems. For these equations, the Green’s function G(x, t) defines the impulse response of the
system. It is defined for the general differential problem given by Eq. 1.5 as

D
[
−i

∂

∂x
,
∂

∂y
,−i

∂

∂z
, i
∂

∂t
;R

]
G(x, t) = δ(x)δ(z)δ(t) . (1.6)

The formal distinction between convective and absolute instabilities is obtained by obtaining
the asymptotic behaviour of the Green’s function at the source, which is defined along a ray
xn/t = 0, n = 1, 2, 3. The basic flow is convectively unstable if

lim
t→∞
G(xn, t) = 0 along the ray xn/t = 0 , (1.7)
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and absolutely unstable if

lim
t→∞
G(xn, t) =∞ along the ray xn/t = 0 . (1.8)

The Green’s function is evaluated as a double Fourier integral in the (k, ω)-space. Additionally,
the most significant contribution to the asymptotic response is given by the wavenumber k0 for
which the group velocity is zero. In other words, for focus is along the ray xn/t = 0 at a fixed
spatial location. For simplicity, the cross-stream variations are neglected and the spatio-temporal
evolution is restricted to the (x, t)-plane. Also, it is assumed that the system 1.3 admits only a
single temporal mode ω(k). The complex k0 is given by

∂ω

∂k
(k0) = 0 . (1.9)

The corresponding absolute frequency is given as ω0 ≡ ω(k0). The absolute growth rate is then
given as ω0,i ≡ ωi(k0). It characterises the asymptotic temporal evolution of the wavenumber k0

observed from a fixed location.

ω0,i > 0 for absolutely unstable flow, and

ω0,i < 0 for convectively unstable flow .
(1.10)

Typically, ω0 is an algebraic branch point of the mapping k(ω) in the complex ω-plane, or k0 is a
saddle point of the mapping ω(k) in the complex k-plane.

In the seminal works of Briggs [3] and Bers [2], it is highlighted that the conditions given by
Eqs. 1.9 and 1.10 are not sufficient to serve as an absolute-convective instability criterion. For
simplicity, it is assumed that the temporal mode ω(k) exhibits a quadratic algebraic branch-point
ω0 with only two spatial branches k+(ω) and k−(ω). During the simultaneous deformation of the
integral contours in the (k, ω) space to evaluate the response G(x, t), the condition arises the k-
plane when the Fourier contour is pinched between the branches k+(ω) and k−(ω). This pinching
happens exactly at the saddle point k0. As indicated by Kupfer et al. [18], the ω-plane consists of
a cusp at ω0 in the locus of ω(k) corresponding to the pinch point k0. As evident from Eq. 1.10,
for absolute (convective) instability, ω0 must be located in upper (lower) half of the ω-plane. This
procedure to distinguish the instability type is known as the Briggs or Briggs-Bers criterion.

Unlike the simple case discussed above, there might be flows (e.g. mixing layers) where the
temporal modes ω(k) exhibit non-analytical behaviour. Huerre & Monkewitz [11] provide a remedy
by associating the real signal with a complex analytical signal. Moreover, due to the complexity
of the physical problem (e.g. smooth shear layer profiles studied by Balsa [1]), the solution to the
dispersion relation in the temporal (linear eigenvalue problem in ω) or spatial (nonlinear eigenvalue
problem in k) setup is obtained numerically. Both types of eigenvalue problems can be solved using
shooting methods. To solve the problem of distinguishing between branches in complex k/ω-space
in a spatio-temporal stability analysis, Suslov [29], suggested an automatic eigenvalue tracking
algorithm.

In this thesis, jet/wake flows have been studied. The effect of density variations in promoting
absolute instability has been verified by Monkewitz & Sohn [23] for the axisymmetric jet and by
Yu & Monkewitz [33] for planar jet. The homogeneous, incompressible jets have been shown to be
convectively unstable everywhere. Experimental study to validate the existence of self-sustained
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global oscillations in jets was performed by Monkewitz et al. [23] for hot round jet and by Yu &
Monkewitz [33] for hot planar jet. An additional class of confined jet flows such as those found in
fuel injectors has been numerically and experimentally studied over the last five decades. Recently,
Juniper [17], [15], [16] gave a comprehensive study of the jet (and wake) flows. They considered
a continuous range of confinement defined by the ratio h of the outer flow thickness, h2, to inner
flow thickness, h1, or h = h2/h1. The range of h = 0.1, for strong confinement, to h = 10, for
weak confinement, was studied. This is physically equivalent to matching the wavenumber of the
principal flow-mode of the inner and outer flows. Other regions of high instability appear due
to the interaction of harmonics of the inner and outer flows. For certain confinement ratios, the
results from Juniper [17] indicate that the flow can be absolutely unstable.

1.3 Objectives

The main goal of the project is to perform a spatio-temporal stability analysis on the plane
shear layers for the three types of flows - unconfined single shear layer, confined and unconfined
jets/wakes, and semi-unconfined shear layer. To achieve this goal, the project can be subdivided
into following objectives.

The first objective is to develop and validate the numerical tool using Matlab and Maxima
to obtain the analytical dispersion relation for different configurations of shear flows, and use it
in conjunction with the Briggs-Bers criterion for spatio-temporal stability analysis. The detailed
study of the analytical models gives a better understanding of the underlying physics of the flow.
The application of the analytical approach includes, but is not limited to, calculating the impulse
response which gives the asymptotic evolution of the perturbation.

The second objective is to implement and validate the numerical tools for a shear flow with non-
analytical dispersion relation. The task is to combine the linear stability theory (LST) tools in the
VKI extensible stability and transition analysis (VESTA) toolkit with the numerical implemen-
tation performed for the analytical dispersion relations. This forms a new branch of the VESTA
toolkit which is capable of predicting the spatio-temporal behaviour of the shear flow. The results
need to be validated with the literature.

The third and last objective is to develop and verify a numerical tool to identify the convec-
tive/absolute instability boundary (CAIB). The tool is required to span the parameter space to
identify the locations where the growth rate ωi is zero and therefore traverse along the transition
boundary.

The spatio-temporal stability analysis has been studied under the small perturbations limit for
inviscid shear flows. The assumptions are explained in detail in the following paragraphs.

Firstly, the disturbances are assumed small in comparison with the mean flow and the problem is
linearised around the base solution,i.e., the laminar mean flow. For free shear layers, this is true
at a point immediately downstream of the location where the perturbation is triggered, exhibiting
oscillatory behaviour with small amplitudes. Further downstream, the perturbation amplitude
may increase up to a level where it is no longer small compared to the mean flow and the non-
linear effects take over. The perturbation amplitude could be so high that it may set transition
and the flow becomes turbulent. The current study is valid for study of experimental flows with
probe placement near the perturbation origin.
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Secondly, the instabilities in steady parallel flows can be classified in two groups. The inertial
instability is inviscid and is unstable as long as the Reynolds number is above a low threshold,
Re ≈ 1 − 10. The disturbances grow in time comparable to the turnover time of the base flow,
t = O(δv/∆U). These instabilities can be studied using the Rayleigh’s stability equation. The
second group of instabilities is appears in flows that are stable to the perturbations of the first
type and depend on the viscosity for destabilising mechanisms. The growth rates of the second
type of instabilities is much lower than the inertial type, see Jiménez [13], and therefore are not
considered in this study.

1.4 Outline

Chapter 2 is concerned with the development of the theoretical framework that is used to identify
the spatio-temporal behaviour of the shear flow. This theory has been used throughout the
thesis. The Briggs-Bers criterion for the identification of absolute/convective instability has been
introduced and a mathematical explanation of the criterion is given in Appendix A.

Chapter 3 develops the numerical procedure for the spatio-temporal stability analysis of the an-
alytical and non-analytical dispersion relations. The governing equation for the planar inviscid
shear flows with piecewise linear profiles is derived, with the details given in Appendix B and Ap-
pendix C. The numerical implementation for smooth profiles using VESTA toolkit is explained.

Chapter 4 reviews the stability of various simple shear layer models for which the analytical
dispersion relations has been derived using Maxima. These form the basis to implement and
validate the results of the non-analytical models in later part of the thesis. The complexity of
the model is increased from single shear layer without confinement to the double shear layer with
confinement.

Chapter 5 is concerned with the numerical implementation of the non-analytical model using
VESTA. The convergence study is performed and the results are validated with the literature.

Chapter 6 deals with the identification of the transition boundary where the flow changes its
behaviour from being convectively unstable to absolutely unstable or vice versa. The parametric
tracking method of the neutrally stable saddle point is developed. The method is then applied to
various shear flows and result is validated with the literature.

The conclusion of this project and research direction for the future work are discussed in Chapter 7.

�



Chapter 2

Theoretical framework

2.1 Modal stability theory

The instability of flows to small amplitude perturbations has been conventionally studied using
modal approach. In this section, the pedagogical treatment by Juniper et al. [16]) followed. In
this approach, an operator that describes the evolution of small perturbations is derived from
the governing equations. The modal approach considers the temporal or spatial development of
the individual eigenmodes of the operator. This leads to the modal linear stability theory (LST)
where a flow quantity q is decomposed into a steady part q, which is also the base flow 1, and an
unsteady part q′

q(x, t) = q(x) + εq′(x, t) , (2.1)

where x is the space coordinate vector, t is the time, and ε� 1 is the amplitude. The linearised
Navier-Stokes equations (LNSE) can be derived from the decomposition Eq. 2.1. For incompress-
ible flows, the LNSE is given as

∂u′

∂t
+ u′ · ∇u′ = −∇p′ + 1

Re
∇2u′ , (2.2)

∇ · u′ = 0 . (2.3)

The basic state q is calculated and inserted in the LNSE, which is solved as an in initial-boundary-
value problem and are valid for any small amplitude perturbation.

The stability of a basic state to an arbitrary small perturbation can be verified by either solving
the LNSE, which is rarely performed, or performing a direct numerical simulation (DNS), which is
more prevalent, of the full nonlinear equations of motion. These approaches are computationally

1Different from the term mean flow, which is used only for the time- and/or space-averaged turbulent flow

8
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expensive. LST offers a cheaper alternative. However, due to the lack of experimental results,
numerical solutions of the LNSE or DNS results are used to check the results of LST.

The framework of the LST is defined from the approximation of the homogeneous directions of
the basic state q, The LST models vary in the level of approximation from the local LST, which is
based on the assumption of homogeneous basic state along two spatial directions and parallel-flow
or WKBJ approximation, to the more general TriGlobal LST, where the basic flow is considered
inhomogeneous in all spatial dimensions.

Here, we will focus on the local stability analysis, i.e., the perturbations will be restricted to
feel the base flow changes only in the wall normal y-direction. This is achieved by assuming the
perturbation q′ to be of the form

q′(x, t) = q̃(y)ei(αx+βz−ωt) , (2.4)

where q̃(y) is the amplitude function and the terms inside bracket in the exponent is the phase
function, often represented as Θ(x, z, t). Inserting the above ansatz into the LNSE Eq. 2.2-2.3, we
obtain a one-dimensional eigenvalue problem.

Before going into the details of spatio-temporal stability, the concept of temporal instability, spatial
instability, and phase and group velocity will be introduced briefly.

2.1.1 Temporal local stability

The temporal linear stability analysis is performed by fixing the wavenumber parameters in Eq. 2.3
as real (α, β ∈ R). The desired eigenvalue is the complex frequency (ω ∈ C). In two dimensional
framework (β = 0), the perturbation formulation becomes

q′ = q̃(y)eiα(x−ct) + c.c. = q̃(y) exp [iα(x− (cr + ici)t)] + c.c. . (2.5)

Here, the complex eigenvalue (c = ω/α) contains a real part (ci) which is the phase speed and an
imaginary part (ci) which is the growth rate (either amplification or decay) of the perturbation.
The complex conjugate c.c. appears in the equation which results from the pair of complex con-
jugate roots (c) of the eigenvalue problem. As a result of the addition of c.c., the real, physical
perturbation q′ is retrieved.

The perturbation can be considered as a linear superposition of monochromatic waves that evolve
in x-direction periodic wave packets of lengths equivalent to the periodicity wavelength λx = 2π/α.
Individual waves propagate at their respective constant phase speed cr and grow at their respective
growth rate exp(αcit). For asymptotic response (t → ∞), only one of these wave packets with
leading eigenmode dominates.

2.1.2 Spatial local stability

In spatial approach, a constant real frequency (ω ∈ R) is considered to solve for complex eigenvalue
(α, β ∈ C). The linear perturbation equation is written as

q′ = q̃(y) exp [i ((αr + iαi)x− ωt)] + c.c. . (2.6)



Theoretical framework 10

Here, αi is the spatial growth rate of the wave while αr is the wavenumber. The eigenvalue problem
to be solved in this framework is nonlinear.

2.1.3 Phase velocity and Group velocity

From Eq. 2.5 it is observed that for a given value of α the value of perturbations q̃ becomes
constant along a ray with constant value of (x− ct). Therefore, for real α, c is the velocity of the
wave crests, the phase velocity. If each wavenumber has same phase velocity (i.e., ω is directly
proportional to α), the medium is known as nondispersive.

In a more general framework, the perturbation is the superposition of several waves. It has an
identifiable envelope (Fig. 2.1). The velocity of the envelope is given by group velocity (cg =
dω/dα). If the wavecrests of different wavenumbers move at different velocities, the interference
pattern changes shape with time and the envelope moves at a different velocity. The medium is
known as dispersive.

t

q̃

Figure 2.1: Wave packets (solid) and envelope(dashed). Wave crests propagate at phase velocity and
envelope travels at group velocity

2.2 Spatio-temporal analysis

As discussed in the previous chapter, a localized pulse on a uniform system can grow and propagate
away from the source so that the disturbance decays with time for a fixed point in space – a
convective instability. Alternatively, the pulse may grow with time at all the points in space – a
nonconvective or absolute instability. This definition will be illustrated below.

As discussed in the previous section, the linear stability analysis begins with deriving a linearised
set of equations that satisfy the governing equations subjected to small perturbations u′(x, t), and
describe the response of a simple basic state. Before treating the problem in a general fashion, a
standard instability behaviour will be introduced with a simple model.
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2.2.1 Stability of a toy model

Following the analysis similar to the one outlined in § 4.6 of Duffy [6], we will consider a linear
equation from the toy model proposed by Drazin [5] p70.

∂u′

∂t
+W

∂u′

∂x
=
∂2u′

∂x2
+ (R−Rc)u′; −∞ < x <∞; 0 < t; W,R,Rc ∈ R . (2.7)

The toy problem resembles the Ginzburg-Landau equation which governs the amplitude of pertur-
bations in the fluid flow. It is assumed that the perturbations remain homogeneous in space and
time. Therefore, the solutions to Eq. 2.7 can be expressed as a superposition of normal modes,

u′(x, t) = Aei(kx−ηt) . (2.8)

Note that this is a monochromatic perturbation. The relationship between the frequency (η) and
wavenumber (k) can be obtained by substituting the solution Eq. 2.8 in the governing equation
Eq. 2.7. This is called the dispersion relation D(k, η;R) = 0, given as

D(k, η;R) = −iη + iWk + k2 − (R−Rc) . (2.9)

Also, the governing equation Eq. 2.7 can be symbolically written as

D
(
−i

∂

∂x
, i
∂

∂t
;R

)
u′ = 0 . (2.10)

From the dispersion relation Eq. 2.9, it is evident that η = f(k), which is given as

η = Wk + i
[
(R−Rc)− k2

]
. (2.11)

As evident from Eq. 2.8, the perturbations amplify temporally when for a real wavenumber (k ∈ R),
a complex frequency with Im(η) > 0 is obtained. Therefore, the flow is unstable with respect to the
temporal growth of spatially periodic disturbances of infinite extent. In this example, instability
occurs when

Im(η) = (R−Rc)− k2 > 0, or |k| < (R−Rc) . (2.12)

In most practical applications however, the initial perturbations are not monochromatic. The
perturbations may now propagate away from the source (Bers [2]). Therefore, even for unstable
normal modes, the flow may remain stable in a fixed, local region. Identification of the transition
from convective to absolute instability is the prime focus of stability analysis. The application of
Green’s function2 to the problem gives a clear understanding of this phenomenon.

2The Green’s function provides an alternative method to solve ordinary differential equations posed as either
initial-value problems or boundary-value problems. A problem of the form Lu(x) = f(x), where L is an ordinary
linear differential operator, f(x) is a known function, and u(x) is the desired solution, can be written in Green’s
formulation as Lg = δ(x− ξ). The solution u(x) is then given as the integral involving the Green’s function g(x|ξ)
and f(ξ). Refer Duffy [6] for more details.
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The solution to the model subjected to an impulse perturbation can be expressed in terms of the
Green’s function. The Green’s function associated with the toy model Eq. 2.7 is given by

∂g

∂t
+W

∂g

∂x
− ∂2g

∂x2
− (R−Rc)g = δ(x− ξ)δ(t− τ); −∞ < x, ξ <∞; 0 < t, τ .

(2.13)

This is a two dimensional partial differential equation which is invariant with respect to the time
displacement and uniform in spatial dimension. Here ξ denotes the position of the source of
perturbation. The Eq. 2.13 governs the effect of an impulse as it propagates from the source at
x = ξ as time increases from t = τ . For t < τ , causality requires that g(x, t|ξ, τ) = 0 if the
impulse is the sole source of the disturbance. An additional requirement appears in the form of
homogeneous boundary condition for the perturbation u′ that needs to be satisfied by g.

The Laplace and Fourier transforms are now applied in time and space respectively, to obtain the
joint transform G(k, s|ξ, τ) as

G(k, s|ξ, τ) =
e−ikξ−sτ

s+ k2 + iWk − (R−Rc)
. (2.14)

Performing the inverse transforms, we get back the Green’s function in variables (x, t)

g(x, t|ξ, τ) =
1

4π2i

∫ c+i∞

c−i∞

∫ ∞
−∞

eik(x−ξ)+s(t−τ)

s+ k2 + iWk − (R−Rc)
dk ds . (2.15)

The Laplace transform in time is inverted first. This gives

g(x, t|ξ, τ) =
H(t− τ)

2πi

∫ ∞
−∞

exp
[
ik(x− ξ)−

[
k2 + iWk − (R−Rc)

]
(t− τ)

]
dk , (2.16)

where H is the Heaviside step function.

H(t− τ) =

{
1, t > τ

0, t < τ
(2.17)

Finally, performing the inverse Fourier transform in space, we obtain the Green’s function as

g(x, t|ξ, τ) =
exp

[
−(t− τ)W 2/4 + (x− ξ)W/2 + (t− τ)(R−Rc)

]
2
√
π(t− τ)

exp

[
−(x− ξ)2

4(t− τ)

]
H(t− τ) .

(2.18)

We can use the Green’s function from Eq. 2.18 to examine the definition of absolute and convective
instabilities given by Bers [2]. these are based on physical intuition. There are three types of
instabilities based on the asymptotic behaviour of the Green’s function.
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1 The first type of stability is governed by

lim
t→∞
|g(x, t|ξ, τ)| → ∞ , (2.19)

for any arbitrary value of x. This is the condition for absolute instability. From Eq. 2.18, it
can be inferred that condition 2.19 will be satisfied when W = 0 and

(R−Rc) >
W 2

4
⇒ R > Rc . (2.20)

2 The second type of stability is governed by

lim
t→∞
|g(Ξ + vt, t|ξ, τ)| → 0 , (2.21)

for some velocity v of the frame of reference and an arbitrary fixed value of Ξ. This is the
condition for absolute stability ; the disturbances will decay in any frame of reference. From
Eq. 2.18, the condition 2.21 is satisfied when

(R−Rc) <
(W − v)2

4
. (2.22)

As (W − v)2 is always positive, the condition 2.21 will always be satisfied if R < Rc and the
flow will be temporally stable.

3 Finally, the third type of stability is governed by

lim
t→∞
|g(x, t|ξ, τ)| → 0, and lim

t→∞
|g(Ξ + vt, t|ξ, τ)| → ∞ , (2.23)

for some velocity v of the frame of reference and arbitrary fixed values of x and Ξ. The
condition 2.23 is satisfied, inferring from the previous two conditions, for W 6= 0 and R > Rc.
This is the condition for convective or spatial instability. The disturbances will decay at
an arbitrary stationary point but there exists a moving frame of reference in which the
disturbances are amplified. As the disturbances convect away from the point of observation,
the system returns to its original, unperturbed state.

The system behaviour for different values of (R−Rc) and W is plotted in Fig. 2.2.

The Green’s function formulation discussed above can be adapted to apply for general problems
where g(x, t|ξ, τ) cannot be expressed in analytic form.

2.2.2 Stability of a generic system

We start the development of the general analytic tool by acknowledging that a linear, constant
coefficient partial differential equation in the perturbation u′(x, t) will have Green’s function of
the form

g(x, t|ξ, τ) =
1

4π2i

∫ c+i∞

c−i∞

∫ ∞
−∞

eik(x−ξ)+s(t−τ)

D(k, s)
dk ds

⇒ g(x, t|ξ, τ) =
1

4π2

∫ ∞+iσ

−∞+iσ

∫ ∞
−∞

eik(x−ξ)−iω(t−τ)

D(k, ω)
dk dω , (2.24)
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Figure 2.2: Response of the toy model 2.7 to impulse perturbation at (ξ, τ) = (2, 0). The plots
show possible stability scenarios for variable parameters (R − Rc) = [−1, 0, 4, 4] and
W = [4, 4, 4, 0]: (a) and (b) temporal and absolute stability, (c) convective instability,
and (d) absolute instability

where the the inverse Laplace transform has been converted to inverse Fourier transform by using
s = −iω. The integration contour in the complex frequency plane is called the Bromwich contour.
It is a straight horizontal line located above the singularities of the integrand to satisfy causality.
This condition is satisfied in Eq. 2.24 by setting the value of σ > Im(ω), where ω is obtained from
the dispersion relation D(k, ω) = 0 for a given path in the complex k-plane. The path initially
lies on the real k-axis. The maps of the Laplace and Fourier contours with possible closures of the
contour integral in k and ω-planes respectively are shown in Fig. 2.3.

We consider a simple case where Eq. 2.24 has a single discrete temporal mode ω(k). Using residue
theorem for the contour integration in ω-plane, the Green’s function is given as

g(x, t|ξ, τ) = − 1

2π
H(t− τ)

∫ ∞
−∞

ei[k(x−ξ)−ω(k)(t−τ)]

Dω [k, ω(k)]
dk . (2.25)

The Eq. 2.25 can be verified by using the the dispersion relationD(k, ω) = −iω+k2+iWk−(R−Rc),
obtained from Eq. 2.15. We have, Dω [k, ω(k)] = −i, and ω(k) = Wk + i

[
(R−Rc)− k2

]
. These

values can be substituted in Eq. 2.25 to recover the Eq. 2.16.
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Figure 2.3: (a) Map of the Laplace contour in the complex k-plane (dashed lines), and closures of
the Fourier integral contour F (dots) on k → ∞ for x > 0 and x < 0. (b) Map of the
real k-axis in the complex ω-plane (solid lines), and Laplace contour L satisfying causality
with closures (dots) on |ω| → ∞ for t < 0 and t > 0. (Bers [2])

In general, Eq. 2.25 cannot be evaluated exactly in a similar manner as Eq. 2.16. With careful
calculations, the Fourier integral Eq. 2.25 can be performed by the method of steepest descent for
t→∞ and fixed (x− ξ)/(t− τ). Again, for a simple case, it is assumed that there is only a single
stationary point (ks) where

∂ω(ks)

∂k
=
x− ξ
t− τ

. (2.26)

The integration contour in Eq. 2.25 can be deformed from the real k-axis to a steepest descent
path passing through the saddle point ks. The Green’s function therefore becomes

g(x, t|ξ, τ) ∼ −eiπ/4

√
2π

exp [i (ks(x− ξ)− ω(ks)(t− τ))]

Dω [ks, ω(ks)]
√
ω′′(ks)(t− τ)

, (2.27)

where ′′ represents the second derivative with respect to k. From the dispersion relation for the
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toy model, we obtain ω′′(ks) = −2i and

ks = − iW

2
+
i

2

(
x− ξ
t− τ

)
, and ω(ks) = i

[
(R−Rc)−

W 2

4
+

1

4

(
x− ξ
t− τ

)]
. (2.28)

By substituting these results into Eq. 2.27, the asymptotic evaluation of Eq. 2.25 matches the
exact solution Eq. 2.18; but this is not true generally.

The asymptotic response Eq. 2.25 is sufficient for the stability analysis. It is more intuitive to
think of the Green’s function behaving like a wave packet in the (x, t) plane. The asymptotic
response along each ray (x− ξ)/(t− τ) is dominated by a specific complex wavenumber such that
the real group velocity satisfies Eq. 2.26.

2.3 Briggs-Bers criterion

A stability analysis that allows the distinction between convective and absolute instabilities was
developed by Briggs [3] and Bers [2]. These are based on the study of pulse response of a continuous
medium. For small amplitude perturbations, the analytical treatment of the spatio-temporal
impulse response, i.e., Green’s function, is sufficient to develop the theory.

The development of the criteria in Briggs [3] and Bers [2] begins with plasma theory but the
generic formulation is applicable to fluid dynamic applications also. The Green’s function can be
expressed in terms of double Fourier integral in the (k, ω) space.

G(x, t) =

∫
L

dω

2π
e−iωt

∫
F

d2k

(2π)2
ei(αx+βz) 1

D(k, ω;R)
. (2.29)

The integral is formally evaluated from residue calculation. For simplicity, we will now only
consider the evolution of the instability waves in the (x, t)-plane and neglect the variations in the
y, z-directions. from Eq. 2.29

G(x, t) =

∫
L

dω

2π
e−iωt

∫
F

dk

2π
eikx 1

D(k, ω;R)︸ ︷︷ ︸
I(x, ω)

. (2.30)

The integration must be performed on contours placed in the domains of absolute convergence
(DAC) in the k- and ω-planes. In the k-plane, in order to obtain a well-behaved bidirectional
physical response, the DAC is a strip including the real k-axis. In the ω-plane, to satisfy causality,
i.e., G(x, t) = 0 ∀ (x, t < 0), the DAC is taken as a half plane.

Suppose that the F -contour is fixed on the real k-axis as shown in Fig. 2.3(a). This contour
produces a set of images ω(kF ) in the complex ω-plane through the dispersion relation D(kF , ω) =
0, as shown in Fig. 2.3(b). In order to satisfy causality, the L-contour is chosen to lie above the
highest branch of ω(kF ). The image of L given by k(ωL) similarly appears on the complex k-plane
through the dispersion relation D(k, ωL) = 0. It is worth noting that for the L and F contours
selected in this manner, the branches in the k-plane do not cross the real k-axis. Therefore, the
k-plane integration in Eq. 2.30 exhibits proper division of the modes generated for x > 0 and
x < 0.
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After defining the contours, the integrals in Eq. 2.30 are evaluated to obtain the response. As
evident from Eqs. 1.7 and 1.8, the time-asymptotic response of G(x, t) is sufficient to determine
the nature of instability. In Fig. 2.3(b), this instability corresponds to a ω(kr) branch having
ωi(kr) > 0. The instabilities are distinguished as convective and absolute. Their importance lies
in the transition of the linear perturbations to the nonlinear regime. Absolute instability exhibits
build-up of perturbation (oscillator) and the convective instability represents stable amplification
of signals (amplifier).

2.3.1 Absolute instability

In this section, the absolute instabilities will be characterized as the normal modes of linearly
unstable medium. From the Fig. 2.3, it is evident that the singularities in the ω-plane between
the L-contour and the real ω-axis can inhibit the extension of the domain of absolute convergence
to the lower-half ω-plane. This forces the deformation of the F -contour as shown in Fig. 2.4. The
singularities of the integral I(x, ω) (Eq. 2.30) ‘appear’ at the values of ω for which the F -contour
cannot be deformed further (without violating causality) as the L-contour is lowered. At ω = ωs,
the pinch point in the k-plane exhibits a double root at k = ks, implying

D(ks, ωs) = 0 and
∂D
∂k

(ks, ωs) = 0 . (2.31)

The Briggs-Bers criterion states that the pinch point will introduce singularity in I(x, ω) at ω = ωs

only for the double roots in the k-plane that merge by the pinching (by one k+ and one k− branch)
of the deformed F -contour.

Figure 2.4: Deformation of the F -contour to F̃ and
˜̃
F with corresponding lowering of the L-contour

to L̃ and
˜̃
L. Causality is satisfied across the deformations and the map of

˜̃
L in complex k-

plane pinches
˜̃
L at the saddle point ks with corresponding branch point ωs in the ω-plane.

(Bers [2])
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The criterion is discussed in detail and time-asymptotic response has been calculated in Ap-
pendix A. The response is given as the Green’s function

lim
t→∞
|G(x, t)| ∼

exp[i(ksx−ωst)][
2πi(∂D∂ω )

(
∂2D
∂k2

)]1/2
s
t
1/2

. (2.32)

The response is equivalent to the one represented in Eq. 2.27. If the branch point at ω = ωs has
Im(ωs)> 0, the time-asymptotic response grows in time at all locations x, resulting in absolute
instability.

The absolute instability can also be examined by tracking the pinch point
˜̃
O from the initial

unpinched position (O+ and O−). In Fig. 2.4(a), ω(O) on L is placed above the highest ω(kF )
branch, i.e., the temporal growth of the source is sufficiently high, which ensures that causality is
satisfied and therefore the localised response given by O+ and O− decays in space for x > 0 and
x < 0 respectively. As k+

r (ωL) 6= k−r (ωL), the spatial response at x = 0 is discontinuous which is
corrected by a source. In Fig. 2.4(b), as the L contour is lowered to L̃, the response given by Õ+

exhibits spatial growth for x > 0 as the temporal growth of the source at Õ is less than the highest
value of ω(kF ) at O. The response remains decaying for x < 0 and discontinuous at x = 0. Finally,
in Fig. 2.4(c), the spatial growth for both x < 0 and x > 0 coincide and the non-attributed source

at x = 0 is removed. The oscillations become self-sustained and therefore the response
˜̃
O appears

as a normal mode of the medium. The pinch point
˜̃
O with the maximum value of ωi dominates

the asymptotic response. Therefore, for absolute instability, we have the temporally amplifying
normal mode if Im(ωs)> 0.

2.3.2 Convective instability

In some cases, a part of the map of F -contour in the complex ω-plane (ω(kr)) may have ωi(kr) > 0,
but without any singularity in I(x, ω) (Eq. 2.30) in the upper half ω-plane. This allows the lowering
of the L-contour to at least L̃-contour, coincident with the real ω-axis as shown in Fig. 2.5. The
F -contour is simultaneously deformed to F̃ -contour. The asymptotic response from Eq. 2.30 can
then be expressed as

lim
t→∞
G(x, t) = lim

t→∞

∫
L̃

dωr

2π
exp (−iωrt) I(x, ωr) = 0 . (2.33)

Therefore, as the response at a given location decays to the unperturbed state, absolute instability
is absent. However, as a part of ω(kF ) branch has ωi > 0, some part of k(ω

L̃
) branch crosses the

real k-axis as the L-contour is deformed to L̃ as shown in Fig. 2.5. The part of k+(ωr) (k−(ωr))
branch which has ki < 0 (ki > 0) indicates spatially growing waves for x > 0 (x < 0). This
response is characteristic to convective instability.

The convective nature of the instability can be obtained from the Lagrangian formulation of the
Green’s function. For the case shown in Fig. 2.5, where the spatially growing wave is observed
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Figure 2.5: Deformation of the F -contour to F̃ with corresponding lowering of the L-contour to L̃
when absolute instability is absent. kui(ωs) is the maximum spatial growth rate associated
with the asymptotic response for a observer moving with velocity Vs. (Bers [2])

for x > 0, we consider x = V t > 0, where V is the speed of the observer. Thus, substituting the
expression for I+(x, ω) (as the k− branch is stable) from Eq. A.5 into Eq. 2.33, we get

lim
t→∞
G(V t, t) = lim

t→∞

∫ ∞
−∞

dωr

2π

∑
k+

iH(V t)

(∂D/∂k)k+
exp

[
−i
(
ωr − V k+(ωr)

)
t
]
. (2.34)

As no singularity of I(x, ω) exists on the ωr-axis, the integrand is analytic and the response is free
from absolute instability. The time-asymptotic response is obtained at the saddle point which is
given by

∂

∂ωr

[
ωr − V k+(ωr)

]
= 0

⇒ 1− V ∂k
+
r

∂ωr
− iV

∂k+
i

∂ωr
= 0 .

The saddle point is obtained by considering the real and imaginary parts of the relation individ-
ually. From the imaginary part,

∂k+
i

∂ωr
= 0 , (2.35)

we get the location of saddle point at ωr = ωs when the observer velocity is obtained from the real
part as

V = Vs =

(
∂k+

r

∂ωr

)−1

ωs

. (2.36)
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From Eq. 2.36, we have ωs = Vsk
+
r (ωs). Thus, in Eq. 2.34, for ωr = ωs and k+ = k+

r + ik+
i , we

have
[
ωs − Vsk

+
r (ωs)− iVsk

+
i (ωs)

]
= Vsk

+
i (ωs). Thus, The asymptotic response is given as

lim
t→∞
G(t) ∼ t−1/2 exp

[
−Vsk

+
r (ωs)t

]
. (2.37)

The Eq. 2.34 gives the evolution of the convective instability. The Eq. 2.37 gives the maximum
spatial amplification (k+

i (ωs)) of the signal around ω = ωs, travelling at speed V = Vs. If the
convectively unstable modes appear for both z > 0 and z < 0, in the same frequency range, the
system is inherently absolutely unstable.

2.4 Global analysis

The complete three-dimensional impulse response of the base flow to the perturbations can be
calculated from the global analysis. These analyses are usually computationally expensive and
require parallelised numerical schemes. The global analyses are classified as linear or nonlinear
valid for specific classes of developing flows.

The linear global analysis is valid for flows that exhibit slow temporal and spatial growth. The
near-transition physics of the self-sustained global structures can be obtained from this analysis.
The governing theory for this analysis was developed by Huerre and Monkewitz [12]. The theory
is based on WKBJ approximation which allows the analytical continuation of the local analysis in
the slowly varying x-direction to the complex x-plane. The linear global modes take the form of
the ansatz 1.2. The medium can allow self-sustained oscillations if the global modes are unstable.

The nonlinear global analysis is used for flows with low spatial growth and high temporal growth.
The post-transition physics can obtained from this analysis. The governing theory for this analysis
was developed by Pier and Huerre [24].

Both the linear and nonlinear approaches require finite regions of local absolute instability as a
necessary but not sufficient condition for global analysis. Therefore, computationally inexpensive
local analysis is used to estimate the global stability properties. The local analysis was performed
by Lingwood [20] and concluded that the absolute instability triggers the onset of transition in
flows.

�



Chapter 3

Numerical implementation for analytical
and non-analytical models

3.1 Analytical model

3.1.1 Inviscid theory

The inviscid theory is reviewed in this section. For a parallel two-dimensional flow, the basic
steady flow is given as

U = Ud(yd)̂i, yd
1 ≤ yd ≤ yd

2 . (3.1)

The superscript ‘d’ denotes dimensional variable.

The governing equations can be given in dimensionless form with respect to the reference quanti-
ties: reference velocity (Uref), reference density (ρref) and reference length (Lref). The average of
maximum and minimum velocities in co-flow, counter-flow jets/wakes gives Uref as

Uref =
Umax + Umin

2
. (3.2)

Similarly, the reference density is given by the average density such that no special preference is
given to either of the layers. Thus,

ρref =
ρmax + ρmin

2
. (3.3)

For confined flows yd ∈ [yd
1 , y

d
2 ], the reference length is given as,

Lref =
yd

1 + yd
2

2
. (3.4)

For unconfined flows, Eq. 3.4 is not valid and a more relevant reference length scale is used, as
suggested by Juniper [17] for instance, shear width or ratio of surface tension to dynamic pressure

21
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(σ/ρrefU
2
ref). Using the reference scales given by Eq. 3.2-3.4, the non-dimensional form of the flow

variables is given as

t =
tdUref

Lref
, x =

xd

Lref
, u =

ud

Uref
, p =

pd

ρrefU
2
ref

, ρ =
ρd

ρref
. (3.5)

Using this information and applying the inviscid assumption along to the Euler equation and the
continuity equation, the Rayleigh’s equation has been derived in Appendix B, which is rewritten
here

ρ
[
(U − c)(φ′′ − k2φ)− U ′′φ

]
= 0 , (3.6)

along with the boundary condition

kφ = 0 at y = y1, y2 . (3.7)

where the right-quote ′ represents differentiation with respect to y and φ = φ(y) is the perturbation
stream function amplitude given by Eq. B.14.

3.1.2 Linear profile approximation of flows

The flows that are studied in this thesis using the analytical treatment have piecewise linear
velocity profiles and piecewise constant density profiles, i.e., U ′′(y) = 0 and p′(y) = 0 respectively.
The Rayleigh’s equation simplifies to

ρ(U − c)(φ′′ − k2φ) = 0 . (3.8)

For the discrete spectrum with U 6= c, the equation is simplified as

φ′′ − k2φ = 0 . (3.9)

The eigenfunction is obtained as a solution of this ODE which is given as

φ = Ae−ξy +Beξy , (3.10)

where ξ ≡ +
√
k2. The use of linear profile approximation therefore simplifies the Rayleigh’s

equation in each section of the flow as U ′′ = 0. But it introduces complication at the points where
the derivatives become discontinuous. It is therefore necessary to use the matching condition at
these locations with discontinuity (y = yD). This will be discussed in the following section.

3.1.2.1 Matching conditions

The matching conditions are based on the condition that the eigenfunctions across the differ-
ent sections of the flow profile must be equal. The matching conditions have been derived in
Appendix B. The dynamic matching condition is rewritten as

q
ρ(U − c)φ′ − ρU ′φ

y
= 0 , (3.11)

where J·K gives the jump in a quantity. Also, the kinematic matching condition is given as
s

ρφ

(U − c)

{
= 0 . (3.12)
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For continuous U profile, this condition corresponds to the requirement of the normal velocity of
the fluid to be continuous across the discontinuity.

The two matching conditions and the Rayleigh’s equation 3.9 along with the boundary condi-
tion 3.7 are used to determine the coefficients of the fundamental solutions 3.10. This results in
an expression of c as a function of k, or in other words, the dispersion relation.

3.1.2.2 Boundary conditions

The fundamental solution given by Eq. 3.10 must satisfy the boundary conditions imposed on
the governing equation. For this reason, the eigenfunctions must be invariant under the transfor-
mation ξ → −ξ. The confined and unconfined flow cases will be discussed in the following sections.

Confined flows

Confined flows comprise of bounding walls at y1 = −1 and y2 = +1 where the zero normal velocity
is imposed. The solution given by Eq. 3.10 is applicable to the upper (+) and lower (−) regions
individually. The complete solution is a linear combination of both eigenfunctions

φ+ = A+e−ξ(y−1) +B+e+ξ(y−1) ,

φ− = A−e−ξ(y+1) +B−e+ξ(y+1) .
(3.13)

From Eq. B.15, it is observed that for v = 0, we should have φ = 0 at y = ±1. From Eq. 3.13,
this condition is satisfied for A+B = 0. Imposing the transformation ξ → −ξ, we get

φ+ = A+e+ξ(y−1) +B+e−ξ(y−1) ,

φ− = A−e+ξ(y+1) +B−e−ξ(y+1) .
(3.14)

The eigenfunction will satisfy the boundary condition again when A + B = 0. Therefore, for
confined flow, the solution is invariant in the transformation ξ → −ξ and it is sufficient to consider
ξ = +

√
k2.

Unconfined flows

the unconfined flow cases, the zero normal velocity condition is imposed at y1 = −∞ and y2 = +∞.
As the regions extend to infinity, only the spatially decaying component of the eigenfunction in
each of the upper and lower regions forms the solution. For Re(k) > 0, the eigenfunctions are
given as

φ+ = A+e−ξy ,

φ− = B−e+ξy .
(3.15)

Satisfying the boundary condition at y = ±∞ gives B = 0. Imposing the transformation ξ → −ξ,
we get

φ+ = B+e−ξy ,

φ− = A−e+ξy .
(3.16)

Satisfying the boundary condition at y = ±∞ gives A = 0. This is inconsistent with the condition
obtained before the transformation ξ → −ξ. Therefore. the solution is not invariant. The special
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treatment of such flows is discussed by Rees [26]. The transformation ξ → −ξ is equivalent to the
crossing of the branch cut by the saddle point solution. The spatio-temporal analysis is used to
follow the saddle point as the parameters are varied. The full impulse response is then used to
decide whether the flow is convectively or absolutely unstable.

3.1.2.3 Single shear layer dynamics

The plane shear layer appears downstream of a thin plate, located away from walls, by merger of
two parallel streams initially on either sides of the plate; see Fig. 3.1. The shear layer grows along
the stream from the initial velocity and/or density discontinuity. The region with velocity-gradient
between the two streams is also known as the mixing layer. The shear layer appears in various
flows, such as initial parts of jets, and on top of locally separated boundary layers.

U2

U1

y

x

U(y ; x)

Figure 3.1: Spatially developing mixing layer (Ho and Huerre [10]).

Figure 3.2: Profiles of velocity for the study of absolute instability of inviscid plane (a) jets and (b)
wakes by Huerre and Monkewitz [12]. The flow domain is considered infinite in both
streamwise and normal directions. The study on (c) confined flows was performed by
Juniper [17].

The focus of the thesis is on co-flow jets and wakes. A jet (wake) flow has a local region with
higher (lower) velocity than the surroundings. The jets and wakes exhibit oscillations around a
specific base flow, e.g. von Kármán vortex street in the wake behind a cylinder. Such flow is
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considered unstable and it is associated with the flow geometry and characteristic parameters.
Confined flow, i.e., flow near walls, appears when the mixing layer forms in a narrow channel. For
unconfined flow, the walls are located far from the shear layer; theoretically at y = ±∞.

The co-flow jets and wakes form when one inner and two outer streams enter the flow-field at
different velocities and mix together. The flow is symmetric about the centreline. For jet (wake)
flow, out of the two streams, the inner stream has a higher (lower) velocity. In the thesis, the theory
of weakly nonparallel flows is used to study the stability of co-flow jets and wakes. According to
Huerre and Monkewitz [12], in the weakly nonparallel flows, local streamwise velocity profiles can
be used to approximate the frequency, growth rates and shapes of the linear global modes. Then,
for a growing mode to exist, the presence of a finite region of local absolute instability is a sufficient
requirement. Therefore, the identification of absolute instability in the jet and wake profiles is of
great significance.

Huerre and Monkewitz [12] studied the local absolute instability of plane inviscid jets and wakes,
with constant velocity and density in the inner and outer streams (Fig. 3.2). It was concluded
that the absolute instability enhances with the degree of shear, given by the velocity difference.
In the jet, the varicose mode (symmetric for streamwise velocity, antisymmetric for normal ve-
locity) always become unstable before the sinuous mode (antisymmetric for streamwise velocity,
symmetric for normal velocity). For the wake, it is the sinuous mode that becomes unstable first
(Fig. 3.3).

Wake

centerline

Sinuous Varicose

Figure 3.3: Sinuous and varicose modes defined in terms of vertical perturbation velocity.

The co-flow jets and wakes as shown in Fig. 3.3 can be considered as a combination of two shear
layers which interact with each other as sinuous or varicose modes or with their image system in
the wall as varicose modes. The study of the dynamics of a single shear layer offers insight into
the interaction when a second shear layer or wall is introduced.

3.1.2.4 Multiple shear layer dynamics

As discussed in § 3.1.2.3, the single shear layer dynamics can be expanded to jet and wake flows
by including a second shear layer and, if needed, a confining wall. The confined double vortex
sheet and double shear layer models will be studied in this chapter. The models used here are
discussed by Juniper [17] and Juniper [14] respectively.

As shown in Fig. 3.3, the shear layers interactions can be categorised as sinuous or varicose motions.
As the governing equations given in § 3.1.2 are linear, the initial normal mode perturbation can
be decomposed into sinuous and varicose modes. Therefore, stability analysis can be performed
on each mode individually. The effect of confining wall can be introduced in computation by
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considering it as an additional shear layer which is obtained as an image of the physical shear
layer by reflecting it in the wall (see Fig. 3.4). For confined flows with two shear layers, the
confinement decides the dominance of interaction wither amongst the shear layers or with the
image system.

Jet/Wake

centerline

Wall

Images

Wall

Images

U2

U2

U1

h2

2h1

h2

Figure 3.4: Image systems of a confined varicose flow (Juniper [17])

The low order models discussed in this section will be used to develop an understanding of the
mechanisms for instability that can be used in design for specific applications. By establishing
the parameters that affect the instability, the flow can be controlled for a specific spatio-temporal
behaviour.

3.2 Non-analytical model

The analytical models described above sacrifice the C1-continuity of the flow profiles which enables
to derive and study the dispersion relations analytically. To study the physical base flow profiles,
a better approximation is obtained by considering the functions which are at least C2-continuous.
In Chapter 5, three such functions, namely algebraic function, ‘tanh’ function and error function,
are used to study the instability behaviour of a shear flow. The analytical expressions for the
dispersion relation cannot be obtained for these cases. Therefore, the flow is implemented and
verified using VESTA.

These high order models are capable of reproducing the flows well. The results from these simu-
lations do not tend to drive the design process but can be used to validate proposed alterations of
the flow configuration. These calculations can be provide an accurate description of the flow from
which the useful information about the dominant frequency spectra can be extracted, but these
do not provide any insight into the dominant mechanisms responsible for the instability.

3.3 Methodology

The procedure for numerical implementation of the analytical and non-analytical dispersion rela-
tions in order to obtain the convective/absolute instability transition boundary are discussed in
this section. The block diagram of the solution scheme is shown in Fig. 3.5.
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3.3.1 Saddle point calculation

The saddle point calculation forms the basis of the application of the Briggs-Bers criterion to
identify whether the flow is convectively or absolutely unstable. To begin with the calculation,
the Riemann sheet is first plotted in the complex k-space. The Riemann sheet is the complex ω
solution to the dispersion relation D(k, ω) = 0. The saddle point is a point on the Riemann sheet
that satisfies the additional criteria

∂D
∂k

(k, ω) = 0 . (3.17)

The value of the saddle point (ks, ωs) is calculated from a user selected initial guess (k0, ω0) on
the Riemann sheet which lies near the expected location of the saddle point. The exact value of
the saddle point is calculated iteratively using Matlab’s fsolve routine.

3.3.2 Pinch point identification

The saddle points that form valid k+/k− pinching are identified as the presence of such saddle
points indicates that the flow is absolutely unstable. These pinch points lie on the integration
contour that is obtained as a path of steepest descent.

The pinch points are also easily identified from the Riemann sheet with the contour plots of ωi

(or ωr) in the complex k-space where two hills meet with adjacent valleys on either side, with one
hill extending to the ki > 0 plane and the other hill extending to the ki < 0 plane.

3.3.3 Numerical method for solving general eigenvalue problem

To solve the Rayleigh’s equations for the inviscid flows, the linear stability analysis tools provided
by the VKI Extensible Stability and Transition Analysis (VESTA) toolkit has been used. The
toolkit provides all the necessary functions required to perform the stability analysis on a specific
base flow, see Pinna [25]. However, to include the capability to verify the criteria for the convec-
tive/absolute instability transition, the tools developed for the analysis in the previous chapters
are integrated with VESTA.

The numerical approach is accomplished with the compressible linear stability solvers in VESTA.
A short summary of the solver implementation and validation will be discussed here. For a more
comprehensive study, the reader is referred to Pinna [25].

The VESTA toolkit employs the Chebyshev collocation method for the solution in the compu-
tational domain. The Chebyshev collocation method offers flexibility in terms of application to
numerous base flow profiles. The resulting eigenvalue problem is solved using QZ algorithm. The
global solver calculates the whole spectrum of eigenmodes at once. A convergence study was per-
formed to reproduce the results in Table 2.2 of Pinna [25] to understand the solver before applying
the tool to the shear flow.

�
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• Flow: ud, d, hd , d

• Computaional domain: Ld, Nd

• Problem: setup, case

Header

script

P
ro

b
le

m
 

d
ef

in
it

io
n

R
ef

er
en

ce

v
al

u
es

• Scales: Uref , ref , Lref

• Non-dimensional parameters:

   , S, h, 

Non-dimensional profile

[ud(yd), d(yd)]  [u(y), (y)]

1. LST

2. Eigenspectrums

3. Temporal sweepS
o
lu

ti
o

n

in
 k

-s
p

ac
e

1. Analytical dispersion relation

2. Root sort

S
o

lu
ti

o
n

in
 k

-s
p
ac

e

1. Riemann sheet plot

2. Saddle points & integration path

S
ad

d
le

p
o

in
ts

Analytical approach Numerical approach

VESTA

1. Temporal branches

2. CAIB

3. Impulse response

P
o

st

Figure 3.5: Block diagram of the solution scheme for spatio-temporal analysis of a base flow using
analytical or numerical approach.



Chapter 4

Analytical models

In this chapter, the piecewise linear approximations to the plane shear layers will be studied with
varying complexities.

4.1 Inviscid planar single shear layer

4.1.1 Unconfined single vortex sheet

As shown in Fig. 3.3, the single shear layer can be approximated as a vortex sheet formed between
two inviscid, irrotational, and incompressible flows with a finite surface tension at the interface.
Both streams are semi-infinite in the normal direction, infinite in streamwise direction and uniform
in the spanwise direction.

Figure 4.1: The vortex sheet is formed at the interface of two co-flowing or counter-flowing streams,
each with a constant density and velocity, and a nonzero surface tension at the interface.

Surface tension was first introduced by Juniper [17] to make the stability problem suitable for
Briggs-Bers analysis. In the limit σ → 0, the effect of other flow parameters, like confinement, on
the stability of the flow can be studied.

29
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From Eq. B.14, the perturbation streamfunction for each stream (i = 1, 2) is given as

ψi(x, y, t) = φi(y)ei(kx−ωt) , (4.1)

and from Eq. 3.9, the governing equation for the each eigenfunction can be written as

φ′′i − ξ2
±φi = 0 , (4.2)

where ξ± = ±
√
k2. The eigenfunction obtained from the governing equation satisfies the boundary

condition given by Eq. 3.7 and the matching conditions in § 3.1.2.1.

4.1.1.1 Dispersion relation

The eigenfunctions for streams i = 1 and i = 2 are given as

φ1 = Ae−ξ
dyd ,

φ2 = Be+ξdyd ,
(4.3)

where, the superscript ‘d’ represents dimensional quantities. The solution in this form ensures
that the condition φi = 0 is satisfied at the boundaries yd = ±∞. The dimensional form of the
kinematic matching condition at the interface gives

s
φi

(Ui − cd)

{
= 0

⇒ A

(U2 − cd)
=

B

(U1 − cd)
.

(4.4)

The dimensional form of dynamic matching condition at the interface gives
r
ρi(Ui − cd)φ′i − ρiU ′iφi

z
ei(kdxd−ωdtd) = ∆pd . (4.5)

where ∆pd is the pressure jump as a result of the surface tension at the interface. Rees [26] gives a
solution of pressure jump by calculating the pressure jump across the perturbed interface in terms
of either of the eigenfunction amplitudes A or B. This is derived in Appendix B. Without loss of
generality, for i = 1, the pressure jump ∆pd is given as

∆pd = −A σ(kd)2

(U2 − cd)
ei(kdxd−ωdtd) . (4.6)

Inserting this expression of ∆pd in the RHS and substituting eigenfunctions for the stream i = 1, 2
in the LHS of Eq. 4.5, we get

−Aρ2(U2 − cd)ξd −Bρ1(U1 − cd)ξd = −A σ(kd)2

(U2 − cd)
. (4.7)

Now, as both the kinematic and dynamic matching conditions have been derived, we can now
formulate the dispersion relation. The coefficients of the eigenfunction amplitudes A,B can be
collected from the matching conditions given by Eq. 4.4 and Eq. 4.7 to give[

(U1 − cd) −(U2 − cd)
ρ2(U2 − cd)− σξd/(U2 − cd) ρ1(U1 − cd)

] [
A
B

]
= 0 . (4.8)
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For non-trivial cases, the determinant of the coefficient matrix must be zero. This gives the
dimensional dispersion relation as

Dd(kd, ωd) = ρ1(U1 − cd)2 + ρ2(U2 − cd)2 − σξd = 0 . (4.9)

The dispersion relation can be transformed to non-dimensional form by using the reference scales
for velocity, density and length as

Uref =
U1 + U2

2
, ρref =

ρ1 + ρ2

2
, Lref =

σ

2ρrefU
2
ref

. (4.10)

The dimensionless variables can be then derived from the dimensional counterparts using these
reference scales.

c =
cd

Uref
, k = kdLref, ξ = ξdLref, ω =

ωdLref

Uref
. (4.11)

The dimensionless parameters are also given as

Λ =
U1 − U2

U1 + U2
, S =

ρ1 − ρ2

ρ1 + ρ2
. (4.12)

Using the above quantities, the dimensionless dispersion relation is given as

D(k, ω) = (1 + S)(1 + Λ− c)2 + (1− S)(1− Λ− c)2 − 2ξ = 0 . (4.13)

4.1.1.2 Stability analysis

The benefit of considering piecewise linear profile for the shear layer can be easily seen now. The
dispersion relation given by Eq. 4.13 can be easily solved analytically. As explained in § 2.3,
the dispersion relation can be used to obtain the saddle point, which is required to identify the
convective/absolute nature of the instability.

The condition for saddle point given by Eq. 2.31 requires that apart from satisfying the condition
D = 0 given by Eq. 4.13, the saddle point must also satisfy

∂D
∂k

= 0

⇒ (1 + S)(1 + Λ− c)c+ (1− S)(1− Λ− c)c− ξ = 0 .
(4.14)

To solve for the saddle point, first the complex k-space is defined and the solution ω = ck is
obtained from the dispersion relation given by Eq. 4.13. Then Matlab’s fsolve routine is used
to solve Eq. 4.14 arrive at the saddle point iteratively.

Temporal stability analysis

For the temporal stability analysis, Eq. 4.13 is solved to obtain the value of complex ω for real
values of k. The solutions for ω = ck are obtained analytically as the roots of the dispersion
relation.

ω = ξ
[
1 + ΛS ± i

√
Λ2(1− S2)− ξ

]
. (4.15)
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It is inferred that temporal instability, given by ωi > 0 for k ∈ R, exists for the wavenumber values
in the range 0 < k < Λ2(1 − S2). Therefore, the flows with small density variations (|S| � 1)
exhibit temporal instability for higher value of wavenumber than that for the flows with large
density difference (S ' ±1).

The maximum temporal growth rate ωi,max can be calculated from Eq. 4.15 from the condition
∂ωi/∂k = 0. The value of kmax is then obtained as

kmax =
2

3
Λ2(1− S2) , (4.16)

for which the value of maximum temporal growth rate is obtained as

ωi,max = +kmax

√
Λ2

3
(1− S2) . (4.17)

The temporal growth rate plot with surface tension (σ = 1) and without surface tension (σ = 0)
is shown in Fig. 4.2. For non-zero surface tension, it is observed that the vortex sheet is stable
(ωi < 0) for k < 0 and becomes neutrally stable (ωi = 0) at kσ = Λ2(1 − S2) = 1. The range
of unstable dimensional wavenumbers is inversely related to the surface tension σ. On the other
hand, for zero surface tension, the flow is temporally unstable for all values of kr > 0. The maxi-
mum growth rate for the given parameter values is ωi = 0.6667 at kr = 0.3849.
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Figure 4.2: Temporal growth rate for the parameter (Λ, S) = (1, 0) for single vortex sheet with and
without surface tension. The × indicates the temporal mode with the highest growth
rate.

Spatio-temporal stability analysis

The dispersion relation D(k, ω;R) = 0 has four unknowns as ki, kr, ωi, ωr and two constraints
Re(D) = 0 and Im(D) = 0. Thus, as suggested by Juniper [17], the solution of the dispersion
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relation is a two-dimensional manifold in four dimensional space. For the vortex sheet, it is
observed from the dispersion relation 4.13 that ω can be explicitly expressed as a function of k as
ω(k) = f(k) ±

√
g(k), where both f(k) and g(k) are single-valued functions. The two solutions

are mapped conformally to two Riemann surfaces in the k-space. The Riemann surfaces meet at
branch points of order 1, locations where g(k) = 0. For dispersion relations with two roots, the
branch cuts are defined between arbitrarily chosen pairs of branch points.

For the given case, Eq. 4.13 and Eq. 4.14 can be solved analytically to obtain the saddle point
location in the complex k-space. The solution is given as

cs =
1

3

[
2(ΛS + 1)±

√
2ΛS(2ΛS + 1)− 3Λ2 + 1

]
,

ks =
1

9

[
−4ΛS(ΛS − 1) + 6Λ2 + 2± (2ΛS + 2)

√
2ΛS(2ΛS + 1)− 3Λ2 + 1

]
,

(4.18)

which can be used to obtain ωs = csks. The ωi contours for one of the Riemann sheets is plotted
in Fig. 4.3 for the homogeneous vortex sheet with parameter R ≡ (Λ, S) = (1, 0). The other
Riemann surface is mirror image about the kr-axis and is not shown here. No analytic minima
or maxima exists on the surface, therefore, the group velocity ∂ω/∂k is zero only at the saddle
point(s). As the mapping is conformal, the ωi and ωr contours are orthogonal except at the branch
points and poles of the dispersion relation. Therefore, if ∂ωi/∂k = 0 at an analytical point on the
Riemann surface, the point must be a saddle point and also ∂ωr/∂k = 0. The plot of contours of
ωi therefore gives all the saddle points corresponding to the wavenumbers with zero group velocity.
The saddle point value for the given parameter set which also satisfies the pinching condition is
(ks, ωs) = (0.8890− 0.3143i, 0.7407 + 0.2095i).

The eigenfunction corresponding to the saddle point is plotted in Fig. 4.4. The eigenfunction is
discontinuous at y = 0 and decays exponentially to φ = 0 as y → ±∞. Mathematically, the
discontinuity appears because B = A(1 − Λ − c)/(1 + Λ − c) ⇒ B < A and from Eq. 4.3, the
eigenfunctions have the peak defined by coefficients A and B at y = 0.

4.1.2 Unconfined single shear layer

The unconfined single shear layer is approximated by a piecewise linear profile as shown in Fig. 4.5.
A shear layer (i = 2) forms between two streams (i = 1, 3) of uniform velocity. The thickness of
shear layer is equal to the vorticity thickness1, 2d = δv. The flow is again considered inviscid and
incompressible. The shear layer has a linear velocity profile. However, for density in the shear
layer, it is assumed that the upper and lower streams are well mixed with a constant mean density
of ρref = (ρ1 + ρ2)/2.

1The vorticity thickness δv is calculated as

δv =
∆U

dU(y)

dy

∣∣∣∣
max

, where ∆U = U2 − U1.
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Figure 4.3: Solution to the dispersion relation D(k, ω) = 0 for unconfined single vortex sheet for
the parameter (Λ, S) = (1, 0) with non-zero surface tension. The solution is represented
by the contours of ωi in the complex k-plane. The contours of ωr (not shown) will be
orthogonal to these contours. The saddle point (circle) represents modes with zero group
velocity as ∂ω/∂k = 0 at saddle point. The saddle lies on the k+/k− pinch point.
Additionally, zero temporal growth rate is obtained for modes along the thick solid line,
and a branch cut (thick dashed line) is obtained along the real k-axis.

4.1.2.1 Dispersion relation

The eigenfunctions for the streams i = 1, i = 2 and i = 3 is given as

φ1 = A1e−ξ
d(yd−d) ,

φ2 = A2e−ξ
dyd +B2e+ξdyd ,

φ3 = B3e+ξd(yd+d) .

(4.19)

The solution in this form ensures that the condition φ = 0 is satisfied at the boundaries yd = ±∞.
The dimensional form of the kinematic matching condition at the interface gives

s
φi

(Ui − cd)

{
= 0 . (4.20)

The matching conditions can be applied at the two interfaces. Firstly, at yd = +d, we have the
interface between the streams i = 1 and i = 2. From Eq. 4.20, we get

A1e−ξ
d.0

U2 − cd
=
A2e−ξ

dd +B2e+ξdd

U2 − cd

⇒ A1 = A2e−ξ
dd +B2e+ξdd .

(4.21)
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Figure 4.4: Eigenfunction for unconfined single vortex sheet at the saddle point corresponding to the
parameter (Λ, S) = (1, 0). Note the discontinuity of the eigenfunction at y = 0.

Figure 4.5: The shear layer is formed in a region between two co-flowing or counter-flowing streams,
each with a constant density and velocity.

Similarly, at yd = −d, the matching condition gives

A2e−ξ
d(−d) +B2e+ξd(−d)

U1 − cd
=
B3e+ξd.0

U1 − cd

⇒ A2e+ξdd +B2e−ξ
dd = B3 .

(4.22)

The dimensional form of dynamic matching condition at the interface gives
r
ρi(Ui − cd)φ′i − ρiU ′iφi

z
= 0 . (4.23)

At yd = +d, we get

−A1ρ2(U2 − cd)ξd = ρref

[
(−A2e−ξ

dd +B2e+ξdd)(U2 − cd)ξd − (A2e−ξ
dd +B2e+ξdd)

(U2 − U1)

2d

]
,

(4.24)
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and at yd = −d, we get

B3ρ1(U1 − cd)ξd = ρref

[
(−A2e+ξdd +B2e−ξ

dd)(U1 − cd)ξd − (A2e+ξdd +B2e−ξ
dd)

(U2 − U1)

2d

]
.

(4.25)
The coefficients of the eigenfunction amplitudes can be collected from the matching conditions to
give

1 −e−ξ
dd −e+ξdd 0

−2ρ2d(U2 − cd)ξd 2ρrefd(U2 − cd)ξde−ξ
dd −2ρrefd(U2 − cd)ξde+ξdd 0

+ ρref(U2 − U1)e−ξ
dd + ρref(U2 − U1)e+ξdd

0 2ρrefd(U1 − cd)ξde+ξdd −2ρrefd(U1 − cd)ξde−ξ
dd 2ρ1d(U1 − cd)ξd

+ ρref(U2 − U1)e+ξdd + ρref(U2 − U1)e−ξ
dd

0 e+ξdd e−ξ
dd −1




A1

A2

B2

B3

 = 0 .

(4.26)
In a similar manner as the analysis of the single vortex sheet in the previous section, the determi-
nant of the coefficient matrix can be calculated to obtain the dispersion relation. The coefficient
matrix can be simplified from the 4 × 4 form to 2 × 2 form by performing the row operations2:
R2−R1×2ρ2d(U2 − cd)ξd and R3+R4×2ρ1d(U1 − cd)ξd. This gives

Dd(kd, ωd) =

∣∣∣∣∣∣∣∣∣∣
2d(ρ2 − ρref)(U2 − cd)ξde−ξ

dd 2d(ρ2 + ρref)(U2 − cd)ξdeξ
dd

− ρref(U2 − U1)e−ξ
dd − ρref(U2 − U1)eξ

dd

2d(ρ1 + ρref)(U1 − cd)ξdeξ
dd 2d(ρ1 − ρref)(U1 − cd)ξde−ξ

dd

+ ρref(U2 − U1)eξ
dd + ρref(U2 − U1)e−ξ

dd

∣∣∣∣∣∣∣∣∣∣
= 0 . (4.27)

We adopt the following reference scales for velocity, density and length. Unlike the unconfined
single vortex sheet discussed in the previous section, the single shear layer has a physical parameter
in the form of the half shear width d which can be used as the length scale.

Uref =
U1 + U2

2
, ρref =

ρ1 + ρ2

2
, Lref = d . (4.28)

The dimensionless variables can be then derived from the dimensional counterparts using these
reference scales.

c =
cd

Uref
, k = kdLref, ξ = ξdLref, ω =

ωdLref

Uref
. (4.29)

The dimensionless parameters are also given as

Λ =
U1 − U2

U1 + U2
, S =

ρ1 − ρ2

ρ1 + ρ2
. (4.30)

Using the above quantities, the dimensionless dispersion relation is given as

D(k, ω) =

∣∣∣∣ −S(1− Λ− c)ξe−ξ + Λe−ξ (2− S)(1− Λ− c)ξeξ + Λeξ

(2 + S)(1 + Λ− c)ξeξ − Λeξ S(1 + Λ− c)ξe−ξ − Λe−ξ

∣∣∣∣ = 0 . (4.31)

2The notations R1,R2,. . . are used to represent rows 1,2,. . . respectively.
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The dispersion relation can be verified by considering the value of the determinant in the long-
wave limit k → 0 or ξ → 0. To begin with the calculation, the exponentials in Eq. 4.31 must be
expanded as a Taylor series about ξ = 0 up-to O(ξ2).

e±ξ =
∞∑
n=0

(±1)nξn

n!
= 1± ξ +

ξ2

2
+O(ξ3) .

From Eq. 4.31, we get

O(ξ0) : − Λ2 + Λ2 = 0 X

O(ξ1) : 2Λ2 + ΛS [(1 + Λ− c)− (1− Λ− c)]
+ 2Λ2 − Λ [(2 + S)(1 + Λ− c)− (2− S)(1− Λ− c)]

= 4Λ2 + 2ΛS(1− c)− 2Λ [(1 + Λ− c)− (1− Λ− c)]
− ΛS [(1 + Λ− c) + (1− Λ− c)]

= 4Λ2 + 2ΛS(1− c)− 4Λ2 − 2ΛS(1− c) = 0 X

O(ξ2) : − 2 ∗ Λ2 − 2 [2ΛS(1− c)]− S2(1 + Λ− c)(1− Λ− c)
+ 2Λ2 − 2

[
4Λ2 + 2ΛS(1− c)

]
− (4− S2)(1 + Λ− c)(1− Λ− c)

= − 8Λ2 − 8ΛS(1− c)− 4(1 + Λ− c)(1− Λ− c)
= − 2

[
4Λ2 + 2(1 + Λ− c)(1− Λ− c)

]
− 2S × 4Λ(1− c)

= − 2
[
(1 + Λ− c)2 + (1− Λ− c)2

]
− 2S

[
(1 + Λ− c)2 − (1− Λ− c)2

]
= − 2

[
(1 + S)(1 + Λ− c)2 + (1− S)(1− Λ− c)2

]
.

Comparing the leading order expression in the long-wave limit with Eq. 4.13 (without surface
tension, the third term in the dispersion relation vanishes), we see that the dispersion relation for
unconfined vortex sheet is recovered. We infer that, up to O(ξ2), the dispersion relation Eq. 4.31
for shear layer gives the same result in the long-wave limit as the vortex sheet and therefore, the
dispersion relation is valid.

4.1.2.2 Stability analysis

The dispersion relation obtained from Eq. 4.31 is quadratic in c and is calculated from the deter-
minant as

D(k, ω) = ξ2
[
(e+2ξ − e−2ξ)S2 − 4e+2ξ

]
c2 +

[
2(e+2ξ − e−2ξ)(ξLS − ξ2S2) + 8e+2ξξ2

]
c

+ (e+2ξ − e−2ξ)
[
(ξS − L)2 − ξ2L2S2

]
+ 4

[
ξ2(L2 − 1)− ξL2

]
e+2ξ = 0 .

(4.32)
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Temporal stability analysis

For the temporal analysis, the value of complex ω is calculated for real k values from Eq. 4.32

ω = ξ
−p1 ±

√
p2

1 − 4p2p0

2p2
, (4.33)

where p0, p1, p2 are the coefficients of c0, c1, c2 in Eq. 4.32 respectively. For simplified case of
homogeneous flow, both upper and lower streams having same density, we have S = 0 and the
phase velocity can be calculated from Eq. 4.33 as

c =
ω

k
= 1± i

Λ

2ξ

√
e−4ξ − (1− 2ξ)2 . (4.34)

From Eq. 4.34, it is inferred that the neutral stability (ωi = 0) appears at k = kd, which is
calculated for e−4kd − (1 − 2kd)

2 = 0. The temporal growth rate plot for the shear layer and
unconfined vortex sheet without surface tension is shown in Fig. 4.6. Therefore, the shear layer is
temporally unstable for value of k in the range 0 < k < kd. For the parameter set (Λ, S) = (1, 0),
we have kd = 0.64. This value is less than that of unconfined vortex sheet, where kd = 1. This
indicates that the piecewise linear shear layer has a stabilising effect. The maximum temporal
growth rate for the homogeneous case can also be calculated from Eq. 4.34. We have

∂ω

∂k
= 1± iΛ

−e−4ξ − (1− 2ξ)√
e−4ξ − (1− 2ξ)2

= 0 , (4.35)

which gives the maximum temporal growth rate of ωi = 0.201 at k = 0.398. From the Fig. 4.6,
the recovery of the vortex sheet behaviour from the shear layer in the long wave limit (k → 0) can
also be observed.

Spatio-temporal stability analysis

The dispersion relation D(k, ω;R) = 0 given by Eq. 4.32 is second order in c. This yields two
Riemann surfaces in the complex k-space. The solution is plotted in Fig. 4.7. The saddle point
is given by the simultaneous solution of Eq. 4.32 and ∂D/∂k = 0. Due to appearance of several
exponential terms which introduce periodicity in the solution c(k;R) to the dispersion relation,
the Riemann surface has multiple saddle points in the complex k-space. The saddle point that
satisfies the pinching condition for the parameter (Λ, S) = (2, 0) is obtained at (ks, ωs) = (0.6658+
0i, 0.6157 + 0i). As ωi = 0, the shear layer is stable.

The eigenfunction corresponding to the saddle point is plotted in Fig. 4.8. The contribution from
Im(φ) is zero as is expected for the saddle point with ξi = 0.

4.1.3 Alternate reference scale and parameter definition

For consistency with the proceeding formulation in § 4.2 and § 4.3, an alternate set non-dimensionalising
parameters is introduced. The reformulated reference scales and parameters ensures that the be-
haviour of the dispersion relation is dominated by the relative, rather than absolute, velocity. As
the behaviour will also be dominated by the denser fluid, which is already captured by the average
density ρref, the density reference scale remains unchanged.
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Figure 4.6: Temporal growth rate for the parameter (Λ, S) = (1, 0) for single shear layer and uncon-
fined vortex sheet without surface tension. The × indicates the temporal mode with the
highest growth rate.

The reference velocity scale is redefined from the mean velocity to the characterisation of the shear
strength.

Uref =
U2 − U1

2
. (4.36)

The reference length scale for the flow with surface tension is determined by the value σ and
therefore it remains unchanged as well. Only a factor 2 is removed from the scale for brevity.

Lref =
σ

ρrefU
2
ref

. (4.37)

The non-dimensional parameter for velocity and density are also redefined as

Λ =
U2 − U1

U2 + U1
, S =

ρ2 − ρ1

ρ2 + ρ1
. (4.38)

The rest of the reference scales remain unchanged. The dispersion relations derived for the uncon-
fined vortex sheet and piecewise linear shear layer can be reformulated in terms of the alternate
scaling defined above.

We introduce non-dimensional parameters for mass flux (M) and momentum flux (J ) which will
be used to simplify the dispersion relation further.

M =
1
2(ρ1U1 + ρ2U2)

ρrefUref
=

1

Λ
+ S , and (4.39)

J =
1
2(ρ1U

2
1 + ρ2U

2
2 )

ρrefU
2
ref

=
1

Λ2
+

2S

Λ
+ 1 . (4.40)
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Figure 4.7: Solution to the dispersion relation D(k, ω) = 0 for unconfined shear layer for the parameter
(Λ, S) = (2, 0). The solution is represented by the contours of ωi in the complex k-plane.
The saddle point (circle) and branch cut (dashed line) are also indicated.

4.1.3.1 Unconfined single vortex sheet

From equation Eq. 4.9, the dispersion relation is given in terms of the scaling introduced in this
section as

D(k, ω) = (1− S)(1/Λ− 1− c)2 + (1 + S)(1/Λ + 1− c)2 − ξ = 0 . (4.41)

The saddle point location can be calculated from the condition ∂D/∂k = 0, which gives

k
∂D
∂k

= 2(1− S)(1/Λ− 1− c)c+ 2(1 + S)(1/Λ + 1− c)c− k = 0 . (4.42)

We note that ξ = k when the real part of k is positive and ξ = −k when the real part of k is
negative. Using this information for kr > 0 and the parameters given by Eq. 4.39 and Eq. 4.40,
the Eq. 4.41 and Eq. 4.42 can be simplified as

2c2 − 4Mc+ 2J − k = 0 , and (4.43)

−4c2 + 4Mc− k = 0 . (4.44)
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Figure 4.8: Eigenfunction for piecewise linear shear layer at the saddle point corresponding to the
parameter (Λ, S) = (2, 0).

The location of the saddle point is given as the solution of the two equations

c =
2

3
(1±Q1/2)M , and (4.45)

k =
8

9
(1− 2Q∓Q1/2)M2 , (4.46)

where Q = 1−3J /(4M2). The transition occurs when Q = 0, or 3J = 4M2. As J =M2−S2+1,
the transition condition is given as

1

3
M2 + S2 = 1 . (4.47)

Substituting the value ofM from Eq. 4.39 into Eq. 4.47, we recover the Eq. 6.13 for the CAIB, see
§ 6.2. The results discussed in § 4.1.1 remain qualitatively the same with this change of definition
of reference scales.

4.1.3.2 Unconfined single shear layer

From equation Eq. 4.27, the dispersion relation is given in terms of the scaling introduced in this
section as

D(k, ω) = 4Λ2ξ2c2 − 8Λξ2c+ 4ξ2 − (2ξ − 1)2Λ2 + Λ2e−4ξ = 0 . (4.48)

Because of the presence of exponential term, a closed form solution for the saddle point similar
to the unconfined single vortex sheet case cannot be obtained analytically and therefore the nu-
merical procedures are employed to obtain the solutions. The results discussed in § 4.1.2 remain
qualitatively the same with this change of definition of reference scales.
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4.1.4 Conclusion

The single shear layer with and without surface tension is examined to study the behaviour of an
isolated shear layer without the contribution from neighbouring shear layer interactions which will
be discussed in § 4.2.

The presence of non-zero surface tension and/or shear width act as stabilising mechanisms for
perturbations with short wavelengths. The neutral stability at long wave limits is expected to be
dictated by the more dominant mechanism. This behaviour can be used to formulate the criterion
for the surface tension dominated and shear layer dominated regimes. The flow is surface tension
dominated for kd

σ � kd
d and shear layer dominated for kd

σ � kd
d . As kσ = 1 and kd = 0.64, we have

kd
σ

kd
d

=
2kσU

2
ref/σ

kd/d
=

2dU2
ref

0.64σ
. (4.49)

We can use the Weber number, We ≡ 2dU2
ref/σ to define the criterion for surface tension dominated

regime as We� 0.64 and for shear layer dominated regime as We� 0.64.

4.2 Inviscid planar jets and wakes

4.2.1 Double vortex sheet

In this section, the spatio-temporal stability of inviscid jet and wake flow with surface tension
will be performed. This analysis follows from the stability analysis for the double vortex sheet
performed by Juniper [17]. In the solution, surface tension contributes to one mode and the
confinement contributes to several column modes. The instability arises due to interaction of the
two modes. The saddle point s1 due to the surface tension is more unstable (has a larger ωi value)
than the saddle point obtained for finite shear layer (see § 4.1.2.2). The surface tension causes
the interface to act as a elastic sheet, on which the perturbations can propagate upstream. The
interaction between the two shear layers for jet and wake cases also introduces infinite number of
saddle points s2. The variation of surface tension causes the s1 and s2 saddle points to interact
which will be examined in this section.

In this analysis, viscosity is neglected which makes the result applicable to only high Reynolds
number Re > 103. Also the plug velocity profile is considered which makes the analysis inde-
pendent of the stabilising effect of the finite shear thickness. Therefore, for practical flows with
finite shear width δv, if the saddle point corresponding to the absolute instability has wavenumber
ks > O(2π/δv), the flow will be actually stabilised.

4.2.1.1 Dispersion relation

The schematic for the flow is shown in Fig. 3.2(c). The parallel flow is infinite in the streamwise
x-direction and uniform in the spanwise z-direction.

The streamfunctions in the three streams i = 1, 2, 3 are given as

φ1 = A1 cosh(ξd(yd − h1 − h2)) +B1 sinh(ξd(yd − h1 − h2)) ,

φ2 = A2 cosh(ξdyd) +B2 sinh(ξdyd) ,

φ3 = A3 cosh(ξd(yd + h1 + h2)) +B3 sinh(ξd(yd + h1 + h2)) .

(4.50)
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As discussed in the previous section, the solution can be decomposed to represent sinuous or
varicose modes individually. As sinh(x) is an odd function and cosh(x) is an even function, the
eigenfunction associated with the inner stream i = 2 can be distinctly expressed for each mode.
For varicose mode, we have

φ2(−yd) = −φ2(yd) ⇒ A2 = 0 , (4.51)

and for sinuous mode, we have

φ2(−yd) = φ2(yd) ⇒ B2 = 0 , (4.52)

As the varicose and sinuous modes can be incorporated in the analysis by excluding the first and
the second terms respectively from φ2, the third streamfunction φ3 can be neglected. In order
to derive the dispersion relation D(k, ω), we apply the matching conditions at the two interfaces.
Using the dimensional form of kinematic matching condition

s
φi

(Ui − cd)

{
= 0 , (4.53)

we get for varicose mode

A1 cosh(ξdh2)−B1 sinh(ξdh2)

U2 − cd
=
B2 sinh(ξdh1)

U1 − cd
, (4.54)

and for sinuous mode

A1 cosh(ξdh2)−B1 sinh(ξdh2)

U2 − cd
=
A2 cosh(ξdh1)

U1 − cd
. (4.55)

Next, the dimensional form of dynamic matching condition gives

r
ρi(Ui − cd)φ′i − ρiU ′iφi

z
ei(kdxd−ωdtd) = ∆pd , (4.56)

where ∆pd is the pressure jump as a result of the surface tension at the interface. From Appendix B,
the pressure jump can be calculated. The matching condition for the varicose mode is given as

σ(ξd)2

U2 − cd
(A1 cosh(ξdh2)−B1 sinh(ξdh2)) + ρ2ξ

d(U2 − cd)(B1 cosh(ξdh2)−A1 sinh(ξdh2))

= B2ρ1ξ
d(U1 − cd) cosh(ξdh1) . (4.57)

Next, the matching condition for the sinuous mode is given as

σ(ξd)2

U2 − cd
(A1 cosh(ξdh2)−B1 sinh(ξdh2)) + ρ2ξ

d(U2 − cd)(B1 cosh(ξdh2)−A1 sinh(ξdh2))

= A2ρ1ξ
d(U1 − cd) sinh(ξdh1) . (4.58)

The eigenfunction represented in Eq. 4.50 satisfies the boundary condition φi = 0 at yd = ±(h1 +
h2) if A1 = A3 = 0. Thus, for the matching condition at the interface at yd = +h1, we have two
matching conditions and two constant eigenfunction amplitudes B1, B2 or B1, A2 corresponding to
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varicose and sinuous modes respectively. By eliminating the constants, we obtain the dimensional
form of dispersion relation Dd(kd, ωd). For varicose mode, we get

Dd(kd, ωd) = ρ1(U1 − cd)2 coth(ξdh1) + ρ2(U2 − cd)2 coth(ξdh2)− σξd = 0 . (4.59)

For sinuous mode, we get

Dd(kd, ωd) = ρ1(U1 − cd)2 tanh(ξdh1) + ρ2(U2 − cd)2 coth(ξdh2)− σξd = 0 . (4.60)

The dispersion relation can be made non-dimensional by using reference scales and non-dimensional
parameters. The reference scales for velocity and density are given as

Uref =
U2 − U1

2
, (4.61)

ρref =
ρ1 + ρ2

2
. (4.62)

The reference scale for length can be defined in terms of the surface tension or the distance between
shear layers.

Lref =
σ

ρrefU
2
ref

, (4.63)

href =

(
1

h1
+

1

h2

)−1

. (4.64)

For the current study of the confined double vortex sheet, the length scale Lref is used. The di-
mensionless variables can be then derived from the dimensional counterparts using these reference
scales.

c =
cd

Uref
, k = kdLref, ξ = ξdLref, ω =

ωdLref

Uref
. (4.65)

The dimensionless parameters are also given as

Λ =
U2 − U1

U1 + U2
, (4.66)

S =
ρ2 − ρ1

ρ1 + ρ2
, (4.67)

h =
h2 − h1

h2 + h1
, (4.68)

Σ =
σ

hrefρrefU
2
ref

=
Lref

href
. (4.69)

As discussed above, the model has limited application at extremely small surface tension, which
implies that Lref may be smaller than O(δv). In non-dimensional form, the varicose and sinuous
dispersion relations are given as

D(k, ω) = (1− S)(1/Λ− 1− c)2 coth

(
2ξ

Σ(1 + h)

)
+ (1 + S)(1/Λ + 1− c)2 coth

(
2ξ

Σ(1− h)

)
− ξ , (4.70)

D(k, ω) = (1− S)(1/Λ− 1− c)2 tanh

(
2ξ

Σ(1 + h)

)
+ (1 + S)(1/Λ + 1− c)2 coth

(
2ξ

Σ(1− h)

)
− ξ . (4.71)
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4.2.1.2 Spatio-temporal stability analysis

The stability analysis is performed to evaluate the response to an impulse at a spatial point or
the full impulse response in the outer flow. The saddle point needs to be tracked for each of
these analyses. The positions of the saddle point can be characterised by the components of the
dispersion relation.

To begin with identifying the location of the saddle points, we can look at the simple form of
non-dimensional dispersion relation for an unconfined vortex sheet with surface tension as given
by Eq. 4.13. The dispersion relation should be first rewritten in terms of the non-dimensional
parameters defined in the previous section.

D(k, ω) = (1− S)(1/Λ− 1− c)2 + (1 + S)(1/Λ + 1− c)2 − ξ = 0 . (4.72)

When compared with Eq. 4.70 and Eq. 4.71, it can be observed that the addition of the additional
shear layer manifests itself in the form of the factors coth(2ξ/Σ(1 + h) and tanh(2ξ/Σ(1 + h)
multiplied to the first term for varicose and sinuous perturbations respectively. For the unconfined
flow, we have coth(2ξ/Σ(1−h)→ 1 as h→ 1. The hyperbolic functions lead to an infinite number
of simple poles in the k space along the ki-axis where the function value is infinite. The poles
occur at

k = inπ
Σ(1 + h)

2
for varicose mode, and (4.73)

k = i

(
n+

1

2

)
π

Σ(1 + h)

2
for sinuous mode . (4.74)

where n ∈ Z. For confined flows, an additional coth(2ξ/Σ(1− h)) factor appears with the second
term in both varicose and sinuous dispersion relations. This factor introduces additional poles
along the ki-axis at

k = inπ
Σ(1− h)

2
. (4.75)

The third term in the dispersion relation (−ξ) represents the contribution of the surface tension
at the interface of two streams. For low values of surface tension parameter Σ→ 0, the hyperbolic
functions take the value ±1. Following the same temporal analysis as in § 4.1.1.2, the position of
the branch point in the k-space is obtained along the kr-axis at k = +∞ and k = 2(1 − S2) for
both varicose and sinuous modes. For higher values of surface tension parameter, we have

lim
Σ→∞

coth

(
2ξ

Σ(1± h)

)
=

Σ(1± h)

2ξ
, and (4.76)

lim
Σ→∞

tanh

(
2ξ

Σ(1 + h)

)
=

2ξ

Σ(1 + h)
. (4.77)

Using these values in Eq. 4.70 and Eq. 4.71, we can obtain the location of the branch point near
k = 0 in the k-space. For the varicose mode, the branch point appears at

k =

√
(1− h2)(1− S2)Σ

1− hS
. (4.78)
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Similarly, for the sinuous mode, the branch point appears at

k =

√
(1− h)(1 + S)(Σ(1 + h) + 8(S − 1))Σ

4(S − 1)
. (4.79)

The series of poles associated with the hyperbolic functions form the saddle points of the sinuous
and varicose dispersion relations along the ki-axis. These saddle points correspond to the modes
associated with the interaction between shear layers or the interaction between shear layer and its
image system. The location of these modes, referred as jet/wake column modes, is influenced by
parameters h and Σ. The presence of the surface tension branch point also introduces a saddle
point near the kr-axis. The surface tension saddle accounts for the influence of surface tension on
the shear layer instability.

4.2.2 Evaluation of impulse response

We recall from § 2.3 that the nature of response G(x, t) to a perturbation observed at the source of
the perturbation gives the nature of instability. If the response at the source grows temporally, the
flow is absolutely unstable. On the other hand, a temporally decaying response indicates either
convectively unstable or stable. According to Juniper [14], as a result of the kinematic response to
the perturbation at the shear layer, the perturbation that initiates and evolves in the shear layer
also propagates and evolves in the outer flow.

When the perturbations are restricted to real wavenumbers (k ∈ R), the waves propagate with con-
stant amplitude in the x-direction and with exponentially decaying amplitude in the y-direction.
However, for complex wavenumbers (k ∈ C), the perturbation waves propagate with constant
amplitude along a ray at an angle to the x-direction and exponentially decay in the direction or-
thogonal to the ray. The study of the modes that propagate and evolve in the outer fluid therefore
provides a better understanding of the response.

4.2.2.1 One-dimensional response

The one dimensional response for a unit impulse is given by Eq. 2.30. Following a similar analysis
as Juniper [14], the perturbations stream function for shear flows, given by Eq. 4.1 for example,
can be used to evaluate the response along the streamwise direction as

ψi(x, t) =
1

(2π)2

∫
F

∫
L
ψ̂i(k, ω)ei(kx−ωt) dω dk , (4.80)

where [̂·] represents the terms in (k, ω)-space obtained from double Fourier transform of functions
in (x, t)-space. Following Eq. 1.6, the unit impulse Si(x, t) = δ(x)δ(t) can be replaced by a generic
source Si(x, t). Therefore, the source of perturbation Si(x, t) can be given as the operation of dis-
persion relation D(k, ω) in the form of a differential operator on the perturbation streamfunction.

D
(
−i

∂

∂x
, i
∂

∂t

)
ψi(x, t) = Si(x, t) . (4.81)

By definition, the source can also be defined by the double Fourier integral of the normal modes

Si(x, t) =
1

(2π)2

∫
F

∫
L
Ŝi(k, ω)ei(kx−ωt) dω dk . (4.82)
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(a)

(b)

(c)

Figure 4.9: Contours of ωi for varicose perturbations in uniform density (S = 0) unconfined wake
(Λ > 1) flow with surface tension (Σ 6= 0). The saddle points near the kr-axis (say
s1) represent surface tension modes while saddle points along the ki-axis (say s2a, s2b,
etc. in order from top to bottom) represent jet/wake column modes. The position of the
maximum growth rate predicted by temporal analysis is shown by a triangle. As the surface
tension decreases, the integration path (white line) traverses both the saddle points s1
and s2a.
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Using Eq. 4.80 and Eq. 4.82, Eq. 4.81 can be rewritten as

ψ̂i(k, ω)D(k, ω) = Ŝi(k, ω) . (4.83)

For unit impulse, we have Ŝi(k, ω) = 1 and ψ(x, t) gives the impulse response.

4.2.2.2 Two-dimensional response

A mode of the perturbation stream function in two spatial dimensions is given by Eq. 4.1 as

ψi(x, y, t) = φi(y; ξ)ei(kx−ωt) . (4.84)

The eigenfunction φi(y; ξ) gives the mode shape and can be calculated by using Eq. 4.2 with
relevant boundary conditions. The full streamfunction is obtained in the similar form of Eq. 4.80
by taking the double Fourier transform of the product of normal mode perturbation ψ̂i and the
mode shape φi(y; ξ).

ψi(x, y, t) =
1

(2π)2

∫
F

∫
L
ψ̂i(k, ω)φi(y; ξ)ei(kx−ωt) dω dk . (4.85)

In a similar fashion, the two-dimensional form of source for a uniformly perturbed flow can be
obtained from Eq. 4.82 by taking the double Fourier transform of the product of the normal modes
in Eq. 4.82 and the mode shape

Si(x, y, t) =
1

(2π)2

∫
F

∫
L
Ŝi(k, ω)φi(y; ξ)ei(kx−ωt) dω dk . (4.86)

Substituting Eq. 4.85 and Eq. 4.86 in Eq. 4.81, the same spectral relation as Eq. 4.83 is obtained.
Therefore, the two-dimensional response can be obtained by substituting Eq. 4.83 into Eq. 4.85.
The integration method will be explained now.

4.2.2.3 Evaluation of double Fourier integral

The integration in ω can be performed using the residue theorem. The procedure is similar to
the one explained in Appendix A where the integration over k is performed first which results in
Eq. A.7. A similar result is obtained when the integration over ω is performed first. The modes
that are excited by the impulse and satisfy dispersion relation, D(k, ω) = 0 are only retained.
For each value of k, two values of ω exist that satisfy the dispersion relation. The solutions are
symmetric under the transformation Re{k+, ω+} ↔ −Re{k−, ω−}. Therefore, the integration
paths and ω-plane are mirror images of each other about the imaginary axis in the complex k-
and ω-planes. Thus, integration can be performed only over one of the branches to give the full
response as

ψi(x, y, t) = − i

2π

∫
F

φi(y; ξ)
∂D
∂ω (k, ω(k))

ei(kx−ω(k)t) dk . (4.87)

Therefore, the response in the outer fluid i = 1 to the eigenfunction of form φ1(y; ξ) = Ae+ξy is
calculated as

ψ1(x, y, t) = − i

2π

∫
F

A
∂D
∂ω (k, ω(k))

e−igt dk , (4.88)
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where, g ≡ ω(k) − kx/t − iξy/t. The growth rate corresponding to the impulse response in the
outer fluid is given by the imaginary part gi in the (x/t, y/t)-space. By definition, at the source
(x/t, y/t) = (0, 0), the flow is convectively unstable for gi < 0 and absolutely unstable for gi > 0.
This also allows to make the distinction alternatively from the value of y/t at x/t = 0 while
bringing the growth rate to gi = 0; if y/t < 0, flow is convectively unstable and if y/t > 0, flow is
absolutely unstable. The result from one such analysis is given in Table 4.1. The values correspond
to the dominant surface tension saddle s1. It is observed that for the given parameter set, the flow
transitions from absolute to convective instability as the magnitude of non-dimensional velocity
parameter Λ reduces.

Table 4.1: Example of impulse response in outer fluid for varicose perturbation of unconfined double
vortex sheet

(Λ, S,Σ, h) x/t y/t gi

(−2/3,−0.2, 0.001, 1) 0 +0.4873 0
(−1/3,−0.2, 0.001, 1) 0 −0.2930 0

For a given value of (x/t, y/t), the dominant contribution to the integral in Eq. 4.88 comes from the
saddle point of the function g(k;x/t, y/t). We have ∂g/∂k = 0 at the saddle points and therefore,
the group velocity becomes

∂ω

∂k
=
x

t
+ i

y

t
. (4.89)

This indicates that the dominant contributions come from the disturbances that travel with the
same group velocity as the observer.

4.2.2.4 Integration contour for asymptotic impulse response

The method of contour integration for asymptotic response has been discussed by Juniper [17].
The contours of gi for (x/t, y/t) = (0, 0) are plotted in Fig. 4.9 for decreasing value of surface
tension parameter Σ. The asymptotic impulse response is obtained from Eq. 4.88 by integrating
along the path that originally lies along the kr-axis and runs from kr → −∞ to kr → +∞. However,
the integral is more easily evaluated by deforming the path over the steepest descent line of saddle
points while simultaneously avoiding the branch points and poles of hgi. The deformed path is
shown by a white line in Fig. 4.9. The integration path passes through the s1 which results in the
most dominating contribution to the integral as it has a higher value of gi.

According to Briggs-Bers criterion explained in § 2.3, the saddle point contributes to the integration
only if it has a hill made of upstream-propagating k+-branches on one side and a hill of downstream
propagating k−-branches on the other side. It is seen from the Fig. 4.9 that the integration path
only traverses kind of saddle points. For saddle points lying in the ki < 0 half-plane, the k+

branches are identified as those which lie entirely in the ki > 0 half-plane for gi higher than
the maximum temporal growth rate. On the other hand, the k− remain in the lower half as gi

increases. Saddle s1 forms a valid k+/k− pinch point and therefore it lies on the integration path.

The steepest descent path must, ideally, have a constant gr to avoid oscillating terms (in eigt) but
the condition is relaxed at large negative values of gi with negligible contribution to the integral.
This is needed when the surface tension decreases and the column modes s2 also become valid
k+/k− pinch points. This is shown in Fig. 4.9(c) where the integration path passes through a s2
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saddle point. More saddle points form valid k+/k− pinch points as Σ→ 0. It must be noted that
the saddle integration path jumps to a different value gr at these column modes in order to pass
above the top branch point on the ki-axis. Also it is observed that the s1 saddle still remains the
most unstable k+/k− pinch point though it moves to a lower kr as the length scale associated with
surface tension Lref tends to zero.

4.2.3 Relevance of stability of unconfined single shear layer

The unconfined single shear layer with surface tension is discussed in § 4.1.1. The single shear layer
presents a simple case where the analytical solutions of the dispersion relation can be obtained
and used to develop a criteria for absolute instability. Therefore, before discussing the effect of
addition of a second shear layer or confinement on the stability of jet/wake flows, the relevant
results from the unconfined shear layer will be reviewed here.

When Σ � 1, the s2 saddles move towards the ki axis. This migration of the saddle point can
also be seen in Fig. 4.9 as the value of Σ is decreased. The integration path passes over the
s1-saddle point and the through any of the s2-saddles which lie between ki = 0 and the value of ki

where the integration path intersects the ki-axis. Therefore, the impulse response is contributed
by both the short wavelength (large kr), rapidly evolving (highest gi) surface tension modes (s1),
which causes the shear layers to behave independently, and the long wavelength, slowly evolving
jet/wake column modes (s2), which causes the shear layers to interact. In the limit Σ → 0, the
growth rate of the jet/wake column modes tends to zero (gi → 0) as can seen from the temporal
growth rate plot Fig. 4.2 at kr = 0. The response then is dominated by the surface tension
mode of the independent shear layers (s1). This behaviour of double shear layer response can
also be seen by considering the dispersion relations Eq. 4.70 and Eq. 4.71. As Σ → 0, we have
coth(2ξ/Σ(1 ± h)) → 1 and tanh(2ξ/Σ(1 + h)) → 1, for sufficiently large ξ, i.e., for modes lying
far from the ki-axis, like the s1-saddle. Therefore, the dispersion relation for the single shear layer
Eq. 4.41 is recovered far from the ki-axis in low surface tension limit.

When Σ ≈ 1, the shear layers interact with each other and with the walls. Again, the dispersion
relations given by Eq. 4.70 and Eq. 4.71 transform back to the dispersion relation for the single
shear layer given by Eq. 4.41 if the arguments of the hyperbolic functions are large. To obtain
the limiting value of the stream width parameter h, which identifies the transition point when the
spatio-temporal behaviour of the flow departs from the unconfined single shear layer behaviour,
it is sufficient to acknowledge the fact that the hyperbolic functions assume values different than
1 when the argument is O(1) or lower. This happens when 2ξ/(Σ(1± h)) ≈ 1, or

h ≈ ±
(

2ξ

Σ
− 1

)
. (4.90)

The analytical solution of k can be used as a first order approximation to predict the limiting value
from Eq. 4.90 when the influence of the second shear layer or the confinement becomes significant.
From Eq. 4.46, we have the value of k in leading order as k ≈ −8(1/Λ + S)2/9. Substituting this
value in Eq. 4.90 gives the sheet thickness parameter as

h ≈ ±
(

16(1/Λ + S)2

9Σ
− 1

)
, (4.91)
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which gives the minimum value of parameter h up to which the second shear layer or confinement
has no influence on the spatio-temporal behaviour while comparing the single and double shear
layers.

When Σ � 1, the dispersion relation can be simplified to the algebraic form by approximating
the hyperbolic functions in the strong surface tension limit. This will be discussed in § 6.3.2.

4.2.4 Conclusion

The effect of surface tension and confinement on the stability of jet/wake flows has been studied
in this section. The spatio-temporal analysis and full impulse response methods were used for this
purpose. It is shown that two modes govern the flow behaviour - one where the shear layers behave
independently, and contribute to the surface tension modes, or the one where shear layers interact
with the image system, and contribute to the jet/wake column modes. The surface tension mode
dominates the impulse response owing to the higher value of the growth rate (gi).

4.3 Semi-unconfined planar shear layer

The semi-unconfined shear layer flow is encountered in the wake of a micro-ramp which is used to
suppress the Shock-Wave/Boundary-Layer Interaction (SWBLI). Groot et al. [9], investigated the
applicability of the stability theory to reproduce the Kelvin-Helmholtz (KH) waves observed in
experiments. The study found that the stability analysis on the mean flow predicts the most un-
stable wavelength within the experimentally observed range. In this chapter, the spatio-temporal
analysis developed through § 4.1 and § 4.2 will be applied to the semi-unconfined shear layer and
the stability will be studied.

4.3.1 Linear approximations to shear profile

As this chapter deals with the analytical study of the shear flow, the piecewise-linear profiles are
considered to approximate the semi-unconfined shear layer and derive the algebraic dispersion
relation. The semi-unconfined shear layer is characterised by a shear layer flow in the domain
yd ∈ [−hw,+∞), where hw is distance of the confining wall from the centre of the shear layer.
Fig. 4.10 shows this flow configuration along with the piecewise linear approximations to the
physical, smooth shear layer.

The piecewise linear velocity profiles, overlapped with the ‘tanh’ velocity profile and experimental
base flow obtained from PIV (Particle Image Velocimetry) measurements by Groot et al. [9], is
shown in Fig. 4.11. For the non-dimensional representation of the experimental base flow, Groot
et al. [9] used the micro-ramp height hr and streamwise edge velocity U e(∼= U2) as the length
and velocity scales respectively. From Fig. 4.10, the values of the constants a and t define the
piecewise linear profiles. For 3-piece and 5-piece linear profiles in Fig. 4.10, assigning the value
t = 2.5 ensures that U2 ' 0.99Ue on the ‘tanh’ profile in Fig. 4.11. For the 5-piece linear profile,
the arbitrary value of a = 0.25 has been used in Fig. 4.11. For any other combination of values
(a, t), it must be ensured that 0 ≤ at < 1. For (a, t) = (0, 1), the 1-piece linear profile is obtained
back from the 3-piece and 5-piece linear profiles. Also note that the study by Groot et al. [9]
was performed for a homogeneous wake, i.e., ρ1 = ρ2. The analytical dispersion relations will
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Figure 4.10: Velocity and density distribution in the wall-normal direction for a planar shear layer
confined by a wall at yd = −hw and unconfined in the direction yd → +∞. The velocity
profile is approximated by (a) 1-piece, (b) 3-piece, and (c) 5-piece linear profiles. The
density follows the plug profile with values ρ1, ρ2 in the outer flows and ρref in the inner
flow. The representation of the shear layer by a ‘tanh’ function is shown by dotted line.
The small circles indicate the locations where the linear profile is concurrent with the
‘tanh’ profile.

be derived for the piecewise linear velocity profiles and compared with the results of the inviscid
calculations performed by Groot et al. [9].

From the Fig. 4.10 and Fig. 4.11, the reference scales for length, velocity and density are defined
as

Lref =
δv

2
, (4.92)

Uref =
∆U

2
=
U2 − U1

2
, (4.93)

ρref =
ρ1 + ρ2

2
, (4.94)

where δv is the vorticity thickness defined in § 4.1.2. Also, the mean velocity used in Fig. 4.11 is
given as Um = (U1 +U2)/2. The dimensionless variables can be then derived from the dimensional
counterparts using the reference scales given as

c =
cd

Uref
, k = kdLref, ξ = ξdLref, ω =

ωdLref

Uref
. (4.95)

The dimensionless parameters are also given as

Λ =
U2 − U1

U1 + U2
, (4.96)

S =
ρ2 − ρ1

ρ1 + ρ2
, (4.97)

h =
hw
δv/2

. (4.98)

The base flow itself has been analytically characterised in several ways which allows the numerical
implementation of profiles possible while preserving the physics of the flow. Meliga et al. [21] gave
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Figure 4.11: Velocity profiles to approximate the experimental base flow reported by Groot et al. [9]
at a downstream distance of xd = 10hr from the micro-ramp.

an algebraic representation of the jet/wake flows as

u(y) = 1 + Λ− 2Λ

1 + (2(y/h+1)2 − 1)η
, (4.99)

where η is an integer value that controls the width of the shear layer. The base flow can also be
represented in terms of an error function

u(y) = erf

(√
π

2
(y + h)

)
. (4.100)

Lastly, Michalke [22] used the ‘tanh’ profile to study free jets as

u(y) =
1

Λ
+ tanh(y) . (4.101)

Note that in the above profile definitions, the non-dimensional velocity u = ud/Uref and length
y = yd/Lref has been used. In this chapter the ‘tanh’ profile will be considered in order to
approximate the experimental base flow and to define the piecewise linear profiles.
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4.3.2 Dispersion relation

The dispersion relations can be obtained analytically for the piecewise linear approximations to the
‘tanh’ profile. The derivation of the dispersion relations is similar to the ones used in the previous
chapters, see e.g. § 4.1.2.1. For the 1-piece linear profile in Fig. 4.10(a), the eigenfunctions for the
streams i = 1 to 3 are given as

φ1 = A1e−ξ
d(yd−δv/2) , (4.102)

φ2 = A2e−ξ
dyd +B2e+ξdyd , (4.103)

φ3 = B3 sinh(ξd(yd + hw)) . (4.104)

This and the subsequent eigenfunctions are chosen so as to satisfy the boundary conditions given
in § 3.1.2.2. For the 3-piece linear profile in Fig. 4.10(b), the eigenfunctions for the streams i = 1
to 5 are given as

φ1 = A1e−ξ
d(yd−tδv/2) , (4.105)

φ2 = A2e−ξ
d(yd−atδv/2) +B2e+ξd(yd−atδv/2) , (4.106)

φ3 = A3e−ξ
dyd +B3e+ξdyd , (4.107)

φ4 = A4 cosh(ξd(yd + atδv/2)) +B4 sinh(ξd(yd + atδv/2)) , (4.108)

φ5 = B5 sinh(ξd(yd + hw)) . (4.109)

Finally, for the 5-piece linear profile in Fig. 4.10(c), the eigenfunctions for the streams i = 1 to 7
are given as

φ1 = A1e−ξ
d(yd−tδv/2) , (4.110)

φ2 = A2e−ξ
d(yd−(1+a)tδv/4) +B2e+ξd(yd−(1+1)tδv/4) , (4.111)

φ3 = A3e−ξ
d(yd−atδv/2) +B3e+ξd(yd−atδv/2) , (4.112)

φ4 = A4e−ξ
dyd +B4e+ξdyd , (4.113)

φ5 = A5 cosh(ξd(yd + atδv/2)) +B5 sinh(ξd(yd + atδv/2)) , (4.114)

φ6 = A6 cosh(ξd(yd + (1 + a)tδv/4)) +B6 sinh(ξd(yd + (1 + a)tδv/4)) , (4.115)

φ7 = B7 sinh(ξd(yd + hw)) . (4.116)

The matching conditions at the interfaces can be used to obtain the dispersion relations for the
three linear profiles. The final expression for the dispersion relations are given in matrix form in
the Appendix C. The dispersion relations are 2nd, 4th and 6th order in c for the 1-piece, 3-piece,
and 5-piece linear profiles respectively.

4.3.3 Stability analysis

The higher order dispersion relationsD(k, ω) for the piecewise linear shear profiles produce multiple
Riemann sheets in the complex k-space. As discussed earlier, each Riemann sheet corresponds to
a solution c of the dispersion relation. The solution c for the 1-piece linear profile is easily obtained
analytically as the dispersion relation is quadratic and the coefficients of cn, where n = 0, 1, 2,
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can be easily segregated. However, for the 3-piece and 5-piece linear profiles, the dispersion
relation loses this conciseness, it becomes tedious to segregate the coefficients of cn. To solve
these equations, the fact that the solution c to the dispersion relations of the order higher than
2 remains bounded by the the solution to the second order dispersion relation is used. As we are
only interested in the highest growth rate, calculating the upper and lower bounds of the solution
for a given value of complex k is sufficient. For this purpose, Matlab’s fsolve function is used
to obtain the solutions to the dispersion relations for 3-piece and 5-piece linear profiles by using
the solution to the dispersion relation of the 1-piece linear profile at the corresponding value of k
as the initial guess.

To validate the results, the temporal stability analysis is first performed for the piecewise linear
profiles and results are compared with that from Groot et al. [9]. Later, the spatio-temporal
analysis is also performed.

Temporal stability analysis

For the temporal stability analysis, the solutions to the dispersion relations of the piecewise linear
profiles are calculated for the real values of wavenumber (k ∈ R). The solutions are compared
with the results of the inviscid 1-piece linear and inviscid ‘tanh’ profiles studied by Groot et al. [9].
The temporal branches are plotted in Fig. 4.12 and compared with the analytical and LST results
from literature.
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Figure 4.12: Temporal branches from the analytical dispersion relations compared with the results of
Groot et al. [9].

It was determined by Groot et al. [9] that for the monochromatic perturbation, the maximum
growth rate is associated with the wavelength of (3.5±0.5)hr in the downstream range of xd = 8hr

to 10hr. The temporal branch of the 1-piece linear profile matches the linear inviscid result of Groot
et al. [9]. The comparison of the temporal branches for the 3-piece and 5-piece profiles with the
results for the ‘tanh’ profile shows that the results converge towards the LST result as the number
of linear pieces in the approximation increase. The temporal branch of the 5-piece profile shows
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deviation from the ‘tanh’ profile result in the low wavelength range but shows excellent agreement
in the higher wavelength range. The wavelengths associated with the maximum growth rate are
all within the experimentally obtained range of (3.5± 0.5)hr.

As the 1-piece linear profile offers the simplicity of analytical solution while approximating the
behaviour of the experimental base flow, the subsequent section uses this profile to study the
spatio-temporal behaviour.

Spatio-temporal stability analysis

The spatio-temporal stability analysis is performed for the 1-piece linear profile for the configura-
tion shown in Fig. 4.11. The Riemann sheet for one of the solutions to the dispersion relation is
shown in the Fig. 4.13. The saddle points are obtained near the ki-axis owing to the appearance of
the hyperbolic functions in the dispersion relation as a result of the confining wall. In the absence
of surface tension, none of the saddle points is a valid pinch point. This implies that the shear
flow confined by a wall on one side stays convectively unstable, as long as ωi > 0 for the maximum
temporal growth rate. A similar behaviour is encountered for the inhomogeneous shear layers.
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Figure 4.13: Contours of ωi uniform density (S = 0) semi-unconfined shear layer approximated by a
1-piece linear profile. No valid pinch points are obtained for the given flow configuration.
The saddles near the ki-axis (say s2a, s2b, etc. in order from top to bottom) represent the
column modes associated with the confinement. The position of the maximum growth
rate predicted by temporal analysis is shown by a triangle.
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4.3.4 Conclusion

The stability of a semi-unconfined shear layer has been studied in this chapter. The 1-piece linear
profile approximation of the base flow predicts the wavelength associated with the maximum
temporal growth rate in the same range as the experiment. However, the 5-piece linear profile
matches the result of the inviscid ‘tanh’ profile in the large wavelength range. From the spatio-
temporal analysis, it is concluded that the semi-unconfined shear layer is not absolutely unstable.

�



Chapter 5

Non-analytical models

From the study performed in the previous chapters, it is inferred that the simple models, with
linear profiles for velocity and density along the wall normal direction, are able to capture the
basic level of physics associated with a shear. The analytical solutions to the governing equations
offer an advantage of obtaining closed form solutions to the dispersion relations. This allows the
implementation of the instability criteria to a large range of parameter space inexpensively.

To incorporate more physics into the model, it is necessary to discard the linear profile approx-
imations. This implies that the analytical dispersion relations can no longer be derived for such
flows and the numerical approach must be adopted to solve the governing equations.

5.1 Validation case for shear flow

The semi-unconfined single shear layer discussed in § 4.3.2 will be studied for the purpose of
validation of the numerical approach and to perform a convergence check for the computational
parameters - domain length (Ld) and the number of spectral collocation points (N). The solution
to the eigenvalue problem is sensitive to the choice of the parameters Ld and N . It is essential to
verify the numerical solution by comparing it with analytical solution obtained a priori in order
to correctly set the parameters that influence the solver performance.

The solution of the analytical dispersion relation for an arbitrary value of wavenumber k can
be used as the target value that the numerical solution must approach. For current study, the
analytical solution for the parameter set (Λ, S, h) = (−3, 0, 225) at k = 0.02− 0.02i, given as

ω = 0.0122737781478568 + 0.0266598592148586i

is considered. One of the Riemann sheets corresponding to given parameter set and the eigen-
function, which corresponds to the amplitude of the wall normal perturbation velocity, are shown
in Fig. 5.1.

For the numerical counterpart, the spatio-temporal analysis begins with the selection of the most
unstable mode from the spectrum of eigenmodes. The spectrum corresponding to the parameter set

58
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Figure 5.1: (a) Contours of constant ωi in k-plane for an semi-unconfined single shear layer flow, and
(b) eigenfunction corresponding to the wall normal velocity perturbation at wavenumber
k = 0.02− 0.02i.

(Λ, S, h) = (−3, 0, 225) at k = 0.02−0.02i is shown in Fig. 5.2. The spectrum contains two distinct
types of modes – the continuous spectra corresponding to the outer flows and the discrete modes
corresponding to the inner flow which includes the shear layer. The discrete modes obtained here
are the non-spurious modes that are the solutions to the numerical dispersion relation. Further,
it is seen that only one of these discrete modes lies in the unstable ωi > 0 half plane. The
eigenfunctions corresponding to this mode is shown in Fig. 5.2(b). It can be seen that the shape
of the eigenfunction for the wall normal velocity perturbation matches the one obtained from the
analytical dispersion relation, as shown in Fig. 5.1(b).

The collocation dependence of solution is studied first by fixing the domain length Ld and varying
the number of collocation points. The solutions, or the eigenvalues, obtained from the spectral
calculations is listed in Table 5.1. As we are interested in the growth rate of the perturbations, it is
sufficient for the current study to focus on the convergence of the imaginary part of the frequency
(ωi). It is observed that, using the Chebyshev collocation method, the convergence to the fourth
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decimal place is reached in few steps. But as the number of nodes increases, the solution oscillates
which prevents the convergence up to higher decimal places.

Table 5.1: Eigenvalue for the semi-unconfined single shear layer flow for the parameters (Λ, S, h) =
(−3, 0, 225) at k = 0.02− 0.02i, Ld = 390.

N + 1 ω

51 0.0128142081559752 + 0.0236475682649652i
101 0.0124313027961779 + 0.0255915591025048i
151 0.0123337145233326 + 0.0266332136422957i
201 0.0122402879698834 + 0.0266712790020062i
301 0.0122300466612902 + 0.0266097081813941i

Next, the influence of the domain length for a fixed number of collocation nodes is studied next.
The calculated eigenvalues from the convergence study are shown in Table 5.2. Again, focusing on
the imaginary part of the eigenvalue, it is observed that the solution converges up to the fourth
decimal place as Ld increases, and then starts oscillating. The importance of selecting the right
domain length can be seen from the eigenfunction plots in Fig. 5.2(b). If the domain length is too
short, the eigenfunction does not decay to zero, which violates the boundary conditions. For the
current case, with ξr = 0.02 and Ld = 400, an approximation to the order of magnitude of the
eigenfunction at the boundaries can be obtained as exp(−ξdLd/2) ≈ O(10−6).

Table 5.2: Eigenvalue for the semi-unconfined single shear layer flow for the parameters (Λ, S, h) =
(−3, 0, 225) at k = 0.02− 0.02i, N + 1 = 151.

Ld ω

100 0.0121443706955975 + 0.0268628730307754i
200 0.0118350612641270 + 0.0266586623453859i
300 0.0126698427748996 + 0.0270006375294625i
400 0.0125631711622492 + 0.0268894996821126i

5.2 Solutions to smooth shear layer profiles

The main advantage offered by the numerical tool is that it allows the application of the stability
criteria to identify convective/absolute transition boundary, developed in the previous chapters, to
the physical flows. In this regard, the results of the temporal analysis performed on the piecewise
linear approximations of the experimental base flow in § 4.3 will be compared with the results
obtained from the numerical calculations. Next, the smooth shear layer profiles discussed in
introduced in § 4.3.1 will be solved using the numerical tool and the results will be compared with
the one reported by Groot et al. [9].

The numerical solution matches the analytical solution for a significant range of wavelengths as
shown in Fig. 5.3. The deviation in the small wavelength range is only because of the discretisation
of the k-space for obtaining the analytical solution, an artefact that is not present in the numerical
solution. Moreover, the maximum temporal growth rate is also correctly captured by the numerical
temporal branch. This comparison acts as a validation that the numerical tool can be applied to
smooth profiles for more physical solutions.
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Figure 5.2: (a) Spectrum showing the eigenmodes for the unconfined single shear layer flow at
(Λ, S, h) = (−3, 0, 225), k = 0.02 − 0.02i. The squares bound the discrete modes.
(b) Eigenfunctions corresponding to the most unstable mode selected from the spectrum
in (a).(Ld = 390, N + 1 = 151)
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Figure 5.3: Comparison of temporal branches calculated using the analytical dispersion relation with
the numerical solution (Ld = 460, N + 1 = 151).
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Figure 5.4: Comparison of temporal branches for the 1-piece linear, ‘tanh’, algebraic, and error-
function approximations of the experimental base flow obtained from the numerical tool
(Ld = 460, N + 1 = 151).
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As shown in Fig. 5.4, the temporal branches for the ‘tanh’, algebraic, and error-function profiles
– that approximate the experimental base flow discussed in § 4.3.1 – match with the temporal
branch of the inviscid ‘tanh’ profile solution reported by Groot et al. [9]. The smooth profiles are
chosen such as the vorticity thickness δv remains same as that of the experimental base flow. For
the algebraic profile, this requires η = 2h/ log(2).

5.3 Conclusion

The numerical tools in VESTA have been implemented to study the stability of the semi-unconfined
shear layer and the results are validated against the analytical solutions. The numerical solution
can be extended to smooth approximations of the physical mean flow profile to produce the
convective/absolute transition boundaries using the tools developed for piecewise linear profiles.

�



Chapter 6

Convective/Absolute instability
transition boundary

6.1 Saddle point and Convective-Absolute Instability Boundary

The implementation of the analytical dispersion relation D(k, ω) will be described in this section.

The saddle point (ks, ωs) can be evaluated by satisfying Eq. 2.31. In the current form, the two
complex equations have two complex variables k and ω. The real and imaginary parts can be
considered individually which gives four real equations in terms of four variables kr, ki, ωr, ωi. This
way of splitting the complex equation gives independent control over the tolerance of the solutions
to the real and imaginary equations.

The solution to Eq. 2.31 is obtained iteratively from a suitable initial guess (k0, ω0) using the
Newton-Raphson scheme. The root-search function fsolve from Matlab’s Optimisation Toolbox
has been used to solve the system of equations, allowing an maximum absolute tolerance of 10−8.

The saddle points are formed by the pinching of k-branches as described in §2.3. The pinch points
are distinctly identifiable form the contour plots of ωi or ωr in the complex-k space. The pinch
point lies in the region where two hills meet two adjacent valleys, with one hill extending in the
upper half k-plane and the other hill extending in the lower half k-plane.

The saddle point (k0s, ω0s) is located for an initial parameter R0 = (r10, r20) such that the dis-
persion relation given by Eq. 1.3 is satisfied. To determine the convective-absolute instability
boundary (CAIB), the saddle point must be tracked in the parameter space R = (r1, r2). The
methodology adopted by Rees [26] will be discussed here. The CAIB is given by the locations in
the k-space where the temporal growth rate is zero

ωs,i(r1, r2) = 0 . (6.1)

For analytical dispersion relations, the higher derivatives can be calculated a priori. This allows
for the parametrisation of solution with a parametric variable τ . For the dispersion relation
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D(k(τ), ω(τ);R), where k, ω ∈ C, the saddle point equation Eq. 2.31 can be expressed as

D(kr(τ), ki(τ), ωr(τ), ωi(τ), r1(τ), r2(τ)) = 0 ,

Dk(kr(τ), ki(τ), ωr(τ), ωi(τ), r1(τ), r2(τ)) = 0 .
(6.2)

The equations must hold for all τ and therefore, it must satisfy

dD
dτ

(kr(τ), kr(τ), ωr(τ), ωi(τ), r1(τ), r2(τ)) = 0 ,

dDk
dτ

(kr(τ), ki(τ), ωr(τ), ωi(τ), r1(τ), r2(τ)) = 0 .

(6.3)

As k = kr + iki and ω = ωr + iωi, we have

∂ω

∂ωr
= 1,

∂ω

∂ωi
= i,

∂k

∂kr
= 1,

∂k

∂ki
= i , (6.4)

which gives

dD
dτ

= Dk
dkr

dτ
+ iDk

dki

dτ
+Dω

dωr

dτ
+ iDω

dωi

dτ
+Dr1

dr1

dτ
+Dr2

dr2

dτ
= 0 ,

dDk
dτ

= Dkk
dkr

dτ
+ iDkk

dki

dτ
+Dkω

dωr

dτ
+ iDkω

dωi

dτ
+Dkr1

dr1

dτ
+Dkr2

dr2

dτ
= 0 .

(6.5)

The real and imaginary parts of Eq. 6.5 give the four equations for the six unknowns. As the
problem is ill-posed, two additional equations are required.

In non-trivial cases, the initial choice of parameters (r10, r20) will not give a saddle point that
satisfies Eq. 6.1. Therefore, firstly, it is required to track the saddle point until the growth rate
becomes zero. This gives one of the two additional parametric equations

dωi

dτ
= 1 or

dωi

dτ
= −ωs0,i . (6.6)

The first equation above characterises ωi with respect to τ . As the change in τ requires equivalent
change in ωi, the parametric curve must be traversed over the interval τ ∈ [0, ωs0,i] for locating
the CAIB. The second equation is just a normalised version of first equation where the parametric
curve is traversed over the interval τ ∈ [0, 1].

The last additional equation is given by considering the conservation of one of the variables
(kr, ki, ωr, r1, r2) as the parametric curve is traversed. As the CAIB lies in the (r1, r2)-plane,
the last equation can be given by either of the following expressions

dr1

dτ
= 0 or

dr2

dτ
= 0 . (6.7)

The system of parametric equations Eq. 6.5, Eq. 6.6 and Eq. 6.7 can be written in matrix form as



(Dk)r −(Dk)i (Dω)r −(Dω)i (Dr1)r (Dr2)r

(Dk)i (Dk)r (Dω)i (Dω)r (Dr1)i (Dr2)i

(Dkk)r −(Dkk)i (Dkω)r −(Dkω)i (Dkr1)r (Dkr2)r

(Dkk)i (Dkk)r (Dkω)i (Dkω)r (Dkr1)i (Dkr2)i

0 0 0 1 0 0

0 0 0 0 0 or 1 1 or 0





dkr
dτ
dki
dτ
dωr

dτ
dωi

dτ
dr1
dτ
dr2
dτ


=



0

0

0

0

1

0


. (6.8)
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When the saddle point is tracked, the values of v = (kr, ki, ωr.ωi, r1, r2)T are initialised for any
given parametric value. Then the coefficient matrix in Eq. 6.8 is taken to the RHS to give the
differentials as

dv

dτ
= F(v, τ) . (6.9)

The solution v is obtained by numerical integration of Eq. 6.9. This serves as the initial condition
v0 for the next step where the growth rate of the saddle point is brought to zero such that it lies
on the CAIB. As the growth rate is invariant, we get

dωi

dτ
= 0 . (6.10)

The additional equation is given by the rate of traverse of the parameter space by the flow param-
eters

dr1

dτ
= ±1 or

dr2

dτ
= ±1 . (6.11)

The system of parametric equations Eq. 6.5, Eq. 6.10 and Eq. 6.11 can be written in matrix form
as 

(Dk)r −(Dk)i (Dω)r −(Dω)i (Dr1)r (Dr2)r

(Dk)i (Dk)r (Dω)i (Dω)r (Dr1)i (Dr2)i

(Dkk)r −(Dkk)i (Dkω)r −(Dkω)i (Dkr1)r (Dkr2)r

(Dkk)i (Dkk)r (Dkω)i (Dkω)r (Dkr1)i (Dkr2)i

0 0 0 1 0 0

0 0 0 0 0/1 1/0





dkr
dτ
dki
dτ
dωr

dτ
dωi

dτ
dr1
dτ
dr2
dτ


=



0

0

0

0

0

±1


. (6.12)

As the parameters (r1, r2) are functions of τ only, the integration domain with respect to τ can
be chosen such that the upper and lower bounds of the (r1, r2)-space are traversed.

6.2 Unconfined single vortex sheet

From Eq. 4.18, it is observed that the growth rate ωi is characterised by the quantity Q ≡
2ΛS(2ΛS + 1)− 3Λ2 + 1. For Q > 0, the quantities c, k and ω are real and the saddle point will
be located on the real k-axis with ωi = 0. When Q < 0, the saddle point is situated at a location
with (possibly) complex k-value with ωi > 0; spatio-temporal instability. The convective/absolute
transition occurs when Q = 0, which gives

1

3

(
1

Λ
+ S

)2

+ S2 = 1 , (6.13)

which has a shape of the ellipse in the parametric space (1/Λ, S) as shown in Fig. 6.1.
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Figure 6.1: Absolutely unstable region (grey) of an unconfined vortex sheet with surface tension as a
function of shear Λ, and density ratio S.

6.3 Inviscid planar jets and wakes

6.3.1 Effect of density (S), shear (Λ), and surface tension (Σ) for unconfined
jet/wake flows

The conventional spatio-temporal stability analysis is performed to estimate the regions of absolute
instability in the parameter space. The region is formed by the convective-absolute instability
boundary (CAIB) which is obtained by following the procedure explained in § 6.1.

The varicose and sinuous dispersion relations in the limit of unconfined double shear layer flow
can be obtained from Eq. 4.70 and Eq. 4.71 as

(1− S)(1/Λ− 1− c)2 coth(ξ/Σ) + (1 + S)(1/Λ + 1− c)2 − ξ = 0 , and (6.14)

(1− S)(1/Λ− 1− c)2 tanh(ξ/Σ) + (1 + S)(1/Λ + 1− c)2 − ξ = 0 , (6.15)

where the fact that h → 1 and href → h1 as h2 → ∞ has been used. The Fig. 6.2 shows the
CAIB in the (1/Λ, S)-space. The simply connected boundary is obtained by following the most
dominant saddle point (s1) as the parameter S assumes discrete values and value of parameter
1/Λ is calculated such that the saddle point represents marginally stable mode, i.e., ωi = 0.

The Fig. 6.3 shows the variation of the CAIB with the surface tension Σ. At low surface tensions,
the wavelength of the most unstable mode is very small compared to the distance between the
shear layers and therefore the shear layers do not interact. The instability is governed by the
single shear layers which is evident from the CAIB for both varicose and sinuous perturbations at
Σ = 0.1 which is identical to the CAIB obtained for single shear layer Fig. 6.1.

As surface tension Σ increases, the absolutely unstable region shifts to low density (S) region for
varicose perturbations while it shifts to higher density region for sinuous perturbations.
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Figure 6.2: CAIB for varicose perturbations of an unconfined jet/wake flow at Σ = 0.1. The computed
values are compared against the values obtained by Rees [26] after the transformation
1/Λ→ −1/Λ and S → −S.

The value of Σ at which the surface tension starts to influence the stability of the jet/wake column
mode is predictable analytically. For low values of Σ, the s2-saddles are clustered in the vicinity
of the ki-axis and far from the dominant s1-saddle, as seen from Fig. 4.9. As the value of Σ
increases, the column modes move away from the ki-axis and starts interacting with the dominant
s1-saddle. From the analytical dispersion relation and following the same procedure as in § 4.2.3
for the current unconfined case (h = 1), we obtain the limit that the two modes start interacting
when Σ & 8(1/Λ + S)2/9. From Fig. 6.3, it can be seen that for S ∼ 0 and Σ = 1, the transition
boundary matches with that for the single shear layer. This is because for |1/Λ| > 0, we have
8(1/Λ +S)2/9 > 1, which means that there is no interaction of the modes. On the other hand, for
|S| ∼ 1, the transition boundaries are not same as that for the single shear layer. As |1/Λ| ∼ 1,
|(1/Λ + S)| ∼ 1 and 8(1/Λ + S)2/9 < 1. For values of Σ ≥ 1, therefore, the modes interact and
the transition boundary deviates from that obtained for the single shear layer. The deviation is
negligible for Σ = 0.1 and it gets significant as the parameter value Σ increases.

6.3.2 Effect of confinement (h), density (S), shear (Λ), and surface tension (Σ)
for unconfined jet/wake flows

In this section, the conventional spatio-temporal analysis will be used to estimate the CAIB in the
(1/Λ, h)-space for discrete values of density (S) and surface tension (Σ) parameters. The value
covers a range from the weak surface tension limit (Σ→ 0), where the single shear layer instability
is the dominating phenomenon, to the strong surface tension regime (Σ → ∞), where the shear
layers interact.
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Figure 6.3: CAIB for varicose (a) and sinuous (b) perturbations of an unconfined jet/wake flow at
discrete values of surface tension Σ. The boundary in the (1/Λ, S)-plane is simply con-
nected. The region inside the boundary indicates absolute instability while the region
outside the boundary represents convective instability.

6.3.2.1 Strong surface tension limit

When Σ � 1, the surface tension forces dominate over the inertial forces. The small wavelength
disturbances are strongly stabilised. The unstable wavelengths are therefore of order Lref, which
are much larger than the scale of confinement href. In this limit, the hyperbolic terms in the
dispersion relations Eq. 4.70 and Eq. 4.71 can be approximated by the leading order term in the
Taylor expansion, as given by Eq. 4.76 and Eq. 4.77.

For the varicose perturbations, Eq. 4.70 is simplified to the algebraic form as

D(k, ω) =
Σ(1 + h)(1− S)(1/Λ− 1− c)2

2ξ
+

Σ(1− h)(1 + S)(1/Λ + 1− c)2

2ξ
− ξ . (6.16)

The first two terms in Eq. 6.16 represent the pressure fluctuations in the inner and outer flows
while the third term represents the pressure jump across the interface due to surface tension. As
seen, both the terms are O(Σ). Therefore, at long wavelengths (small ξ), the two terms are large
enough to overcome the strong surface tension and are therefore responsible for sustaining the
oscillations at the interface.

The range of wavenumbers for which the unconfined varicose flow is unstable can be rewritten
from Eq. 4.78 as

0 < k <

√
(1− h2)(1− S2)Σ

1− hS
. (6.17)

Therefore, the flow is stable for the values of S = ±1 or h = ±1. In dimensional framework, the
range of unstable wavenumbers scales with σ−1/2 as kd = k/Lref. Thus, the stability results at
high Σ differ from the ones at low Σ in which k scales with σ−1.
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For the unconfined single shear layer, the reference density is formulated as ρref = (ρ1 + ρ2)/2,
which allows the fact that the denser stream has dominant influence on the velocity of the unstable
wavepacket. In strong surface tension limit, the unstable modes have wavelengths that are larger
than the width of either streams. Therefore, the confining walls and neighbouring shear layer
influence the perturbation behaviour, as also seen in § 4.2.3. The dominant stream in this case is
determined from the weighted density with respect to the width of the streams. The new reference
density is given as

ρ′ref =

(
ρ1

h1
+
ρ2

h2

)
h′ref

2
, (6.18)

where, the new reference width scale h′ref is given as the geometric mean of the two stream widths

h′ref = (h1h2)1/2 . (6.19)

The reference length scale is also given as the geometric mean of h′ref and the surface tension length
scale.

L′ref =

(
h′refσ

ρ′refU
2
ref

)1/2

. (6.20)

The dimensionless variables are given as

c′ =
cd

Uref
, k′ = kdL′ref, ξ′ = ξdL′ref, ω′ =

ωdL′ref

Uref
. (6.21)

The dimensionless parameter in terms of the weighted densities is given as

S′ =
ρ2/h2 − ρ1/h1

ρ2/h2 + ρ1/h1
=

S − h
1− Sh

. (6.22)

The dispersion relation for varicose perturbations in the strong surface tension limit given by
Eq. 6.16 is given in terms of the new reference scales and parameters as

D′ = (1− S′)(1/Λ− 1− c′)2 + (1 + S′)(1/Λ + 1− c′)2 − 2ξ′2 . (6.23)

The dispersion relation in this form is similar to the form of dispersion relation for unconfined
single vortex sheet given by Eq. 4.41. The only difference is in the last term, where the term ξ for
single shear layer is replaced by 2ξ2 in the double shear layer case.

The saddle points can be obtained analytically by following the same steps as performed for
the unconfined single vortex sheet in § 4.1.3.1. First, we redefine the mass flux and momentum
flux, defined by Eq. 4.39 and Eq. 4.40 respectively, in terms of the new non-dimensional density
parameter as

M =
1

Λ
+ S′ , and (6.24)

J =
1

Λ2
+

2S′

Λ
+ 1 . (6.25)

Using the above definition and the dispersion relation given by Eq. 6.23, the location of the saddle
point is given as

c′ =
1

4
M′

(
1±

(
1− 2

3
Q′
)1/2

)
, and (6.26)

k′ = ± M
′

2
√

2

(
±
(

1− 2

3
Q′
)1/2

− (1−Q′)

)1/2

, (6.27)
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where, Q′ = 4J ′/(3M′2). From Eq. 6.26 and noting that J ′ = M′2 − S′2 + 1, we obtain the
equation for the CAIB in the (1/Λ, S, h)-space as Q′ = 3/2, or

1

8
M′2 + S ′2 = 1 . (6.28)

The minimum shear at which the absolute instability occurs can be obtained by calculating the
value of S′ for which 1/Λ is maximum. The value of 1/Λ is obtained from Eq. 6.28 as

1

Λ
= ±2

√
2(1− S′2)− S′ . (6.29)

The maximum value of 1/Λ is obtained by solving d(1/Λ)/ dS′ = 0 for S′, which gives S′ = ±1/3.
The corresponding value of shear is Λ = ∓1/3, ‘+′ for wakes (U2 > U1) and ‘−′ for jets (U1 > U2).
Using Eq. 6.22, the analytical relation between the parameters S and h that requires least shear
to achieve absolute instability is given as

h =
3S − 1

S − 3
, for jets, and (6.30)

h =
3S + 1

S + 3
, for wakes. (6.31)

Fig. 6.4 shows the CAIB for the varicose perturbations of confined jet/wake shear flow as a function
of shear (Λ), density parameter (S), confinement parameter (h), and surface tension parameter
(Σ). The analytical expression for the absolutely unstable region in the strong surface tension
limit is calculated from Eq. 6.28 as

1

Λ
=
±
√

8(h2 − 1)(S2 − 1) + S − h
Sh− 1

, (6.32)

and is shown as a shaded area along with the instability transition boundaries at discrete values
of Σ = 0.1, 1, 10, 1000. The numerical calculation for Σ = 1000, which represents Σ � 1, is in
excellent agreement with the analytical expression. For S = 0 in Fig. 6.4(a), the boundary is
elliptical in the (1/Λ, h)-plane. This is similar to the boundary for the unconfined case, which is
also elliptical in the (1/Λ, S)-plane, as shown in Fig. 6.3(a). Also, for values of S and h equal to
±1, the inner flow, corresponding to S = h = +1, or the outer flow, corresponding to S = h = −1,
fluctuations vanish and the flow becomes stable.

For the sinuous perturbations in the strong surface tension limit Σ → ∞, the dispersion relation
Eq. 4.71 can be transformed into an algebraic relation by using the first-order approximations of
the hyperbolic terms given in Eq. 4.76 and Eq. 4.77.

D =
2ξ(1− S)(1/Λ− 1− c)2

Σ(1 + h)
+

Σ(1− h)(1 + S)(1/Λ + 1− c)2

2ξ
− ξ . (6.33)

As with the general dispersion relation Eq. 4.71, the simplified dispersion relation for sinuous
case given by Eq. 6.33 remains asymmetric. Unlike the varicose case, the analytic solutions for the
sinuous case does not provide any additional information about the convective/absolute transition.
Alternatively, the physical interpretation of the terms in the dispersion relation can be derived.
The pressure fluctuation in the inner flow, given by the first term, is an O(Σ2) smaller than the
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pressure fluctuations in the outer flow, given by the second term. Therefore, the magnitude is
not large enough to overcome the pressure jump across the interface due to surface tension, given
by the last term, and the perturbations at the interface cannot be sustained. The pressures in
the inner and outer flows can be balanced only around the value (1 + h) ∼ O(Σ−2). This can be
observed from Fig. 6.5 where the region of absolute instability for the high value of Σ (Σ = 1000),
such that Σ−2 → 0, is virtually absent as it is confined to a very small area near the h = −1 line.

6.3.2.2 General values of surface tension

The influence of confinement parameter h can be observed for a general parameter set (Λ, S,Σ).
For varicose perturbations, it can be observed from Fig. 3.4 that the flow is symmetric in the
transformation (U1, U2, ρ1, ρ2, h1, h2, σ) ↔ (U2, U1, ρ2, ρ1, h2, h1, σ). This transformation is repre-
sented in terms of the non-dimensional parameters as (Λ, S, h,Σ)↔ (−Λ,−S,−h,Σ). In the limit
of strong confinement (h → −1) it can be inferred from Fig. 3.4 that the sinuous perturbations
also obey the same transformation (Λ, S, h,Σ) ↔ (−Λ,−S,−h,Σ) as the varicose perturbations.
This may also be understood by observing that the distinguishing hyperbolic terms in the dis-
persion relations Eq. 4.70 and Eq. 4.71 assume equivalent values coth(2ξ/((1 + h)Σ)) → 1 and
tanh(2ξ/((1 + h)Σ)) → 1 in the limit h → −1. From Eq. 4.91, the strong confinement limit for
which the sinuous-varicose symmetry is valid, is given as

|h| � 16(1/Λ + S)2

9Σ
− 1 . (6.34)

The symmetry is therefore valid in a band around h = −1 with the size of the band decreasing
with the increasing value of Σ. This allows the calculation of transition boundary in the strong
confinement limit for sinuous and varicose perturbations from the unconfined (h = 1) varicose
results. This can be clearly observed from Fig. 6.4 and Fig. 6.5 where the convective/absolute
instability boundary for the sinuous and varicose cases at strong confinement (h = −1) can be
obtained from the varicose case at weak confinement (h = 1) under the transformation (Λ, S) ↔
(−Λ,−S).

For general values of surface tension parameter Σ, it can be seen that the regions of absolute
instability expands with decreasing value of S or reduces with increasing value of Σ. For S = 0,
the confined varicose case conforms to the symmetric transformation (Λ, h) ↔ (−Λ,−h). The
absolutely unstable regions are also widest for h > 0 for the values of S > 0, which becomes more
prominent as S or Σ increases. For S < 0 (not plotted), the CAIB is mirror about the h = 0 line.

For sinuous perturbations, the region of absolute instability reduces with increasing S and vanishes
for values of Σ � 1. The symmetric transformation, similar to the varicose perturbations, is not
obeyed by the sinuous perturbations. The plots, along with the dispersion relation Eq. 4.71, also
highlight the fact that for weak confinement (0 < h < 1), the pressure fluctuations are subdued
by the surface tension, which reduces the absolute stability region. On the other had, for strong
confinement (−1 < h < 0), the absolute instability region exists even for the strong values of
co-flow (|1/Λ| > 1).
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Figure 6.4: Convective/absolute instability transition boundaries for varicose perturbations of a con-
fined jet/wake shear flow as a function of (Λ, S, h,Σ). At each discrete value of S, the
CAIB is plotted in the (1/Λ, h) for Σ = 1000 (solid), Σ = 10 (dot-dashed), Σ = 1
(dashed), Σ = 0.1 (circle). The shaded region is obtained from the analytic relation for
the CAIB for strong surface tension limit, Σ� 1.
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Figure 6.5: Convective/absolute instability transition boundaries for sinuous perturbations of a con-
fined jet/wake shear flow as a function of (Λ, S, h,Σ). At each discrete value of S, the
CAIB is plotted in the (1/Λ, h) for Σ = 10 (dot-dashed), Σ = 1 (dashed), Σ = 0.1
(circle).
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6.3.3 Conclusion

The effect of surface tension and confinement on the stability of jet/wake flows is studied as an
extension of the study performed in § 4.2. For the unconfined jets and wakes, the surface tension
mode does not interact significantly with the primary jet/wake column mode when Σ < 8M2/9,
where M is the mass flux. At low values of Σ, the surface tension mode is always more unstable
than the jet/wake column mode. When Σ > 8M2/9, the surface tension mode and jet/wake
column modes start to interact. Increasing the surface tension causes the varicose perturbations
to be more unstable at S < 0 (dense inner fluid) and more stable at S > 0 (light inner fluid).
The sinuous perturbations behave in reverse manner. At moderate values of Σ, therefore, jet/wake
flows with surface tension are more unstable than equivalent single shear layers with surface tension
and much more unstable than equivalent jets/wakes without surface tension. Anyway, increasing
Σ stabilises all the perturbations.

For confined jets and wakes in strong surface tension limit, the behaviour of varicose perturbations
is symmetric under the transformation (S, h)↔ (h, S). In other words, the change in confinement
acts as change in density ratio between the fluids. Therefore, for uniform density ratio, the
absolutely unstable region is an ellipse in the (1/Λ, h)-space. which extends to 1/Λ = ±3. For other
density ratios, the flow is absolutely unstable when 8J ′ > 9M′2. At high value of Σ, the varicose
mode is highly absolutely unstable for strongly confined dense jet/wake flows (h > 0, S < 0). Also,
the varicose perturbations are more unstable than the sinuous perturbations.

It can be concluded from this analysis that surface tension and confinement considerably influences
the stability of planar jet/wake flows. It must be noted that the results have been derived for plug
flow velocity profiles and inviscid fluids. The results will be not accurate Re < 102 but accurate
for Re > 103. Also, the results will not be applicable when the actual shear layer thickness exceeds
the wavelength of the surface tension mode that is predicted by this model, λ ∼ πσ/(ρrefU

2
ref).

�



Chapter 7

Conclusion and future work

This thesis aims at studying the instability of the shear flows by using the low order models.
Simple analytical flows are considered first which offer an insight into the important features that
affect the stability of jet and wake flows. These results are useful in validating the instability
analysis results of the smooth approximations of experimental base flows.

7.1 Conclusion

The analytical shear layer models represent simple features, e.g. shear strength and confinement,
that give rise to instability. The importance of studying these models lies in the fact that the simple
features contribute to the instability of the realistic flows. It is observed that the shear layer models
in general cannot give rise to absolute instability without the presence of a dispersive medium, e.g.
when the surface tension has a finite non-zero value. When the temporal stability is considered,
both the surface tension and finite thickness of the shear layer act as stabilising mechanisms for
the flow at short wavelengths, the cut-off wavelength being governed by the magnitude of the
surface tension and/or the shear width. The CAIB of the single shear layer with surface tension
is an ellipse in the (1/Λ, S)-space. The absolutely unstable region extends to a significant region
of co-flow, |Λ| < 1.

The jet and wake flows are studied and it is observed that the effect of surface tension and
confinement for varying velocity and density ratios is significant in deciding the spatio-temporal
behaviour. Two distinct modes – the surface tension modes, where the shear layers behave inde-
pendently, and the jet/wake column modes, where the shear layers interact in sinuous or varicose
manner – govern the response of the flow. The surface tension mode dominates the asymptotic
response.

For unconfined jets and wakes with varicose perturbations, the flow is more unstable when the
inner fluid is more dense than the outer fluid (S < 0) and more stable when the inner fluid is
less dense than the outer fluid (S > 0). The sinuous perturbations behave in reverse manner. It
is observed that, jet/wake flows with moderate value of surface tension are more unstable than
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the equivalent single shear layers with surface tension and much more unstable than the jet/wake
flows without surface tension. Very high value of surface tension stabilises all the perturbations.

For the confined flows in strong surface tension limit, it is observed that the change in confinement
is similar to the change in the density ratio of the flows. For jet/wake flows with non-uniform
densities, absolute instability is obtained when 8J ′ > 9M′2. For high values of surface tension,
the varicose mode is found to be highly absolutely unstable for strongly confined dense jet/wake
flows (h > 0, S < 0).

The semi-unconfined planar shear layer is studied analytically and successfully implemented nu-
merically for smooth profile approximations to the experimental base flows. Due to absence of
a dispersive medium in the form of viscosity and surface tension, the flow does give rise to ab-
solute instability. However, the temporal branches obtained numerically for the smooth profiles
show excellent agreement with the literature, which indicates that the linear profile approxima-
tions offer great insight into the instability mechanism without sacrificing simplicity and that the
spatio-temporal analysis can be extended to realistic flow profiles.

7.2 Future work

The future extension of this work mostly includes the application of the numerical tools developed
for the low order models to the high order models such as the experimental base flows can be
considered in a more general manner. The following extensions will improve the applicability of
the numerical tools to more general cases:

1. Though the inviscid solution to the Rayleigh’s equation was sufficient for the scope of current
thesis, for several applications the viscous Orr-Sommerfeld equation can be considered. Vis-
cosity will influence the diffusion of the perturbations and may change the spatio-temporal
behaviour of the flows where viscosity cannot be neglected. Rees [26] observed that the
viscosity can be exclusively destabilising.

2. As many flow geometries are axisymmetric, especially jet/wake flows, it will be beneficial to
adopt cylindrical coordinate system. The planar flows studied in thesis can be considered as
validation cases for the round flows where the curvature effects are negligible and the shear
and confinement continue to destabilise the flow.

3. It has been shown that the density ratio influences the instability behaviour of the flows.
Therefore, the influence of temperature in a realistic reacting flow on the density profile
must be considered. The spatio-temporal stability behaviour needs to be recalculated for
the cases considered in this thesis to study the influence of temperature variations.

4. The LST tool used in this thesis requires the flow to be locally parallel. The variation of the
streamwise component of the wavenumber is therefore neglected. To study more realistic non-
parallel flows, more sophisticated stability theories like the Parabolised Stability Equations
or the BiGlobal Theory can be applied with the numerical tools developed here for the
spatio-temporal analysis.

�



Appendix A

Proof of Briggs-Bers criteria

The general formulation for the response of a spatially infinite system to a sinusoidal source
introduced at t = 0 is given as

G(x, t) =

∫ +∞+iσ

−∞+iσ

dω

2π
e−iωtI(x, ω) (A.1)

where

I(x, ω) =

∫ ∞
−∞

dk

2π

eikx

D(k, ω)
(A.2)

The unstable, time-asymptotic behaviour of G(x, t) is determined by the singularities in the ω-
plane between the L-contour and the real ω-axis. These singularities prevent the extension of the
region of absolute convergence into the lower-half ω-plane (as shown in Fig. A.1). The causality
condition requires that the integral I(x, ω) should be analytic for ωi > σ for the response G(x, t)
to be zero for t < 0. Therefore, the analytic continuation of I(x, ω) below the original L-contour
leads to a situation where the branches of ω(ki) are encountered. As these branches cannot be
crossed without violating causality, lines of discontinuity form in the function I(x, ω).

The lines of discontinuity can be deformed as long as the F -contour remains within the strip
of convergence (as shown in Fig. A.1(a)). The singularities of I(x, ω) appear at the values for
which F -contour cannot be deformed, and thus, restricting the further lowering of L-contour.
This condition can be verified for simple cases where it is assumed that D−1 is single valued with
isolated singularities only, and limk→∞D−1 → 0 at least as fast as |k|. Therefore, for ω within the
domain of absolute convergence, these assumptions allow the integral in Eq. A.2 to be calculated
by closure of the contour at |k| → ∞ in the upper half of k-plane for x > 0 (as shown in Fig. A.2)
and in the lower half of k-plane for x < 0.

Here, for the simple case, the integrand in Eq. A.2 has poles in the complex k-plane for fixed value
of ω on the L-contour at the normal modes, i.e., at the roots of D(k, ω) = 0. However, for practical
cases, in place of isolated poles, branch lines are obtained in the k-plane for fixed value of ω. This
is interpreted as a continuum of normal modes. The current assumptions can be extended to these
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Figure A.1: Domains of absolute convergence for the Green’s function G. In the (a) complex k-plane,
for a spatially finite, bidirectional (i.e., for x < 0 and x > 0) response, the domain is a
strip including the real k-axis. In the (b) complex ω-plane, to satisfy causality condition,
the domain is considered as a half-plane.

cases. Returning to our current problem, the integral I+(x, ω) ≡ I(x > 0, ω) from Eq. A.2 can be
evaluated using residue theorem as the sum of normal modes

I+(x, ω) = +��2π i
∑

enclosed
poles k+

Res
k=k+

{
1

��2π
· eikx

D(k, ω)

}
. (A.3)

Here, the integration is positive for the counter-clockwise orientation of the contour. The residual
is evaluated at each normal mode as follows

Res
k=k+

{
eikx

D(k, ω)

}
= lim

k→k+
(k − k+)

eikx

D(k, ω)

= lim
k→k+

(k − k+)
eikx

�
��*

0
D|k+ + ∂D

∂k

∣∣
k+

(k − k+) + 1
2
∂2D
∂k2

∣∣∣
k+

(k − k+)2 +O(k3)

= lim
k→k+

eikx

∂D
∂k

∣∣
k+

+ 1
2
∂2D
∂k2

∣∣∣
k+

(k − k+) +O(k2)

=
eik+x

∂D
∂k

∣∣
k+

.

(A.4)
Thus, from Eq. A.3, we get

I+(x, ω) = iH(x)
∑
k+

eik+(ω)x

∂D
∂k

∣∣
k+

. (A.5)
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Figure A.2: Integration contour for I(x, ω) for z > 0 with isolated poles (×) given by the roots of
dispersion relation D(k, ω) = 0.

Similarly, for the lower half of k-plane, the integral is given as

I−(x, ω) = −iH(−x)
∑
k−

eik−(ω)x

∂D
∂k

∣∣
k−

. (A.6)

Here, H is the Heaviside step function in x. The integrand in Eq. A.2 is finally given as the sum
of I+ and I− from Eqs. A.5 and A.6

I(x, ω) = iH(x)
∑
k+

eik+(ω)x

∂D
∂k

∣∣
k+

− iH(−x)
∑
k−

eik−(ω)x

∂D
∂k

∣∣
k−

. (A.7)

In Eq. A.7, the residues are calculated at the first-order poles in the k-plane for fixed value of
ω taken within the region of absolute convergence, as shown in Fig. A.1. This means that for
ω = ωL, the corresponding branches in k-plane (k(ωL)) are divided in two sets: the branches
lying in upper k-plane, ki(ωL) > 0, designated as k+, and the branches lying in lower k-plane,
ki(ωL) < 0, designated as k− (see Eq. A.7). Also note that both terms on the right side of Eq. A.7
are spatially decaying.

The detailed response of a system can be calculated from the Laplace contour integration as given
in Eq. A.1. For defining asymptotic response, the Laplace contour in Fig. A.1(b) needs to be
deformed to the lower ω-plane. From Eq. A.1 and the causality condition, it is evident that the
asymptotic response will be governed by the highest singularity of I(x, ω) in the ω-plane.

The analyticity of I(x, ω) is explored by traversing the complex ω-plane. From Fig. A.2, it is
evident that the I(x, ω) is a well-behaved function as long as the poles (given by the roots of
D(k, ω)) do not cross the real k-axis. As the frequency ω′ = ω′i + iσ′ is crossed by the Laplace
contour, the value of I(x, ω) jumps by an amount equal to the residue at the pole that crossed the
real k-axis.

We note here that in order to allow the pole of D−1(k, ω) to cross the real k-axis, the dispersion
relation must provide complex ω solutions with ωi > 0 for some real values of k. This means
that the infinite, homogeneous system must support unstable modes. Therefore, the value of σ in
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integral Eq. A.1 must be selected larger than the maximum temporal growth rate of any unstable
wave, as stated before.

The integral I(x, ω) can be analytically continued across the branch point by deforming the inte-
gration contour to F̃ as shown in Fig. A.3. The contour deformation ensures that the poles which
have ki > 0 (ki < 0) when ωi > σ′ enter the sum as modes k+ (k−) in the Eq. A.7. The number
of poles for x > 0 and x < 0 remain same and there is no discontinuity in the value of I(x, ω)
when the Laplace contour crosses ω′. It is easily observed that the pole B (and A) represents an
amplifying wave for x > 0 (x < 0) as it crossed the real k-axis, thus making the term ek

+x (ek
−x)

in Eq. A.7 growing.

O

B

A

Figure A.3: Deformation of Fourier contour F̃ around the poles crossing the real k-axis. (Briggs [3])

However, the contour deformation gets inhibited at some ω = ωs when the F̃ -contour becomes
pinched by two merging poles at a corresponding complex k = ks as shown in Fig. A.4. As
(ω − ωs) → 0, the function I(x, ω) → ∞. The double root at ks is a saddle point of ω(k) and ωs
is the branch point of k(ω). In this situation, I(x, ω) exhibits a singularity due to the double root
in k at ks implying D = 0 and (∂D/∂k) = 0. The singularity criterion as stated by Bers [2] is

Among all double (or multiple) roots in k that occur for ω below ωL, and are given
by the simultaneous solutions of D = 0 and (∂D/∂k) = 0, only the ones that coalesce
by pinching the deformed F -contour give rise to a singularity in I(x, ω) at the ω
corresponding to the pinch. [2]

The statement can be validated analytically from the behaviour of I(x, ω) in the neighbourhood
of the double pole (ks, ωs). The double pole satisfies

∂D
∂k

∣∣∣∣
(ks,ωs)

= 0 and D(ks, ωs) = 0 . (A.8)
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Figure A.4: Merging of poles through contour F̃ . (Briggs [3])

The Taylor expansion of the dispersion relation near the singularity (ks, ωs) is

D(k, ω) = �
��>

0
D|s + (k − ks)

�
�
��

0
∂D
∂k

∣∣∣∣
s

+ (ω − ωs)
∂D
∂ω

∣∣∣∣
s

+
(k − ks)2

2!

∂2D
∂k2

∣∣∣∣
s

+O(k3, ω2) = 0 . (A.9)

The lowest order approximation gives

D(k, ω) = (ω − ωs)
∂D
∂ω

∣∣∣∣
s

+
(k − ks)2

2

∂2D
∂k2

∣∣∣∣
s

= 0

⇒ (k − ks) = ±i

[
2

(
∂D
∂ω

)(
∂2D
∂k2

)−1
]1/2

s

(ω − ωs)
1/2 .

(A.10)

The positive value (+ sign) in Eq. A.10 corresponds to the region above the F -contour as we have
k+ > ks. Similarly, the negative value (- sign) corresponds to the region below the F -contour
where k− < ks.

As our primary interest is in the behaviour of I(x, ω) near the double pole, we need to use Eq. A.10
to calculate the derivative ∂D/∂k and substitute in Eq. A.4. We begin with taking the k-derivative
of Eq. A.9.

∂D
∂k

(k.ω) =
∂D
∂ω

∣∣∣∣
s

dω

dk
+
∂2D
∂ω2

∣∣∣∣
s

(ω − ωs)
dω

dk
+
∂2D
∂k2

∣∣∣∣
s

(k − ks) +O(k2, ω2) . (A.11)

In the limit k → ks and ω → ωs, the Eq. A.11 reduces to

∂D
∂k

(ks.ωs) =
∂D
∂ω

∣∣∣∣
s

dω

dk
+ 0 . (A.12)

For the double pole, we have (∂D/∂k)S = 0 and generally (∂D/∂ω)S 6= 0. Thus, for Eq. A.12 to
be satisfied, we require

dω

dk
= 0 at k = ks (A.13)
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This result will be used to calculate the derivative ∂D/∂k. Taking the k-derivative of the first
expression in Eq. A.10

∂D
∂k

∣∣∣∣
s

=
∂D
∂ω

∣∣∣∣
s�
�
��

0
dω

dk

∣∣∣∣
s

+
∂2D
∂k2

∣∣∣∣
s

(k − ks) =
∂2D
∂k2

∣∣∣∣
s

(k − ks) . (A.14)

Substituting the value of (k − ks) from Eq. A.10, we get

∂D
∂k

∣∣∣∣
s

=
∂2D
∂k2

∣∣∣∣
s

±i

[
2

(
∂D
∂ω

)(
∂2D
∂k2

)−1
]1/2

s

(ω − ωs)
1/2


= ±C(ω − ωs)

1/2, where C = i

[
2

(
∂D
∂ω

)(
∂2D
∂k2

)]1/2
s

.

(A.15)

The derivative ∂D/∂k can now be substituted from Eq. A.15 into Eq. A.7.

I(x, ω) =
iH(x)eik+(ω)x

C(ω − ωs)1/2
− iH(−x)eik−(ω)x

−C(ω − ωs)1/2
+ IR(x, ω) , (A.16)

where IR represents the contribution from the k+ and k− poles that are not in the vicinity of ks.
Using the property H(−x) = 1−H(x), Eq. A.16 can be re-written as

I(x, ω) =
ieik−(ω)x

C(ω − ωs)1/2
+ iH(x)

[
eik+(ω)x − eik−(ω)x

C(ω − ωs)1/2

]
+ IR(x, ω) . (A.17)

For the limit ω → ωs, k
+ → ks and k− → ks, and using Eq. A.10 and Eq. A.10

I(x, ω) =
ieiks(ω)x

C(ω − ωs)1/2
+ iH(x)

[(
∂2D
∂k2

)−1
∂(eik(ω)x)

∂k

]
s

+ IR(x, ωs) . (A.18)

It is clearly observed that the first term applies to the complete k-plane and has a branch-pole
singularity at ω = ωs. The second and third terms, on the contrary, are regular in ω. An important
conclusion can be now drawn from the singularity term in Eq. A.18 regarding the double pole. If
the double pole is formed by the merging of either two k+ roots or two k− roots, the first two
terms in Eq. A.16 would both contain either H(x) or H(−x) and the singularity term would not
exist. Thus, as stated by Bers [2], the ωs solutions of Eq. A.8 will be the singular points of I(x, ω)
only if the corresponding ks is obtained by the pinching of the deformed F -contour.

Figure A.5: Laplace contour for evaluating asymptotic response F̃ . (Briggs [3])
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The contour deformation in both k and ω complex planes is performed and all the pinch points are
identified by continuous lowering of the L-contour. The time-asymptotic response is dominated
by the contribution of the pinch-point singularity which has ωi = max(ωs,i) as shown in Fig. A.5.
The singularity term in Eq. A.18 dominates near this pinch point and the asymptotic response is
obtained by substituting I(x, ω) into Eq. A.1

lim
t→∞
G(x, t) ∼

∮
ωs

dω

2π
e−iωtI(x, ω)

=
ei(ksx−ωst)[

2
(
∂D
∂ω

) (
∂2D
∂k2

)]1/2
s

∫
e−i(ω−ωs)t

(ω − ωs)1/2
dω

2π
.

Performing the integration, we get, for the asymptotic response,

lim
t→∞
|G(x, t)| ∼ ei(ksx−ωst)[

2πi(∂D∂ω )
(
∂2D
∂k2

)]1/2
s
t
1/2

, (A.19)

where the contour has been deformed around the branch point and branch cut at ωs. As ks is, in
general, complex, the asymptotic response can have a exponential envelope in space. The expres-
sion is not valid for large values of x (distance from the source) as we have kept x fixed as t→∞.

�
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Rayleigh’s equation and matching
conditions

B.1 Rayleigh’s equation

Proceeding with the base flow form of Eq. 2.2 and Eq. 2.3 and applying inviscid assumption, the
Euler equation and the continuity equation is written in non-dimensional variables as

ρ
∂u

∂t
+ ρu · ∇u = −∇p , (B.1)

∇ · u = 0 . (B.2)

Similar to Eq. 2.1, the flow quantities are decomposed as

u(x, y, z, t) = U(y) + u′(x, y, z, t) ,

v(x, y, z, t) = v′(x, y, z, t) ,

w(x, y, z, t) = w′(x, y, z, t) ,

p(x, y, z, t) = P0 + p′(x, y, z, t) .

(B.3)

The Eq. B.3 is substituted in Eq. B.1 and Eq. B.2, and subsequently linearised to obtain

ρ

(
∂

∂t
+ U

∂

∂x

)
u′ + ρv′

dU

dy
i = −∇p′ , (B.4)

∇ · u′ = 0 . (B.5)

The stability of the base flow is studied by introducing linear perturbations similar to the form
given by Eq. 2.4. The decomposition of the perturbations into elementary stability waves is
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therefore given as
u′(x, y, z, t) = ũ(y)ei(αx+βz−αct) ,

v′(x, y, z, t) = ṽ(y)ei(αx+βz−αct) ,

w′(x, y, z, t) = w̃(y)ei(αx+βz−αct) ,

p′(x, y, z, t) = p̃(y)ei(αx+βz−αct) ,

(B.6)

where c = ω/α is the phase velocity. The components of Eq. B.5 can be expressed as

iαρ(U − c)ũ+ ρU ′w̃ = −iαp̃ ,

iαρ(U − c)ṽ = −p̃′ ,
iαρ(U − c)w̃ = −iβp̃ ,

i(αũ+ βw̃) + ṽ′ = 0 ,

(B.7)

where the right-quote ′ in Eq. B.7 above represents differentiation with respect to y (not to be
mistaken with linear perturbation terms q′ introduced in Eq. B.3). The boundary condition is

ṽ = 0 at y = y1, y2 . (B.8)

The governing equations derived above can be reduced to two-dimensional form by applying
Squire’s theorem 1. This is achieved by applying transformations as given below

k̂ ≡
√
α2 + β2, k̂û ≡ αũ+ βw̃,

p̂

k̂
≡ p̃

α
or

p̃

β
, v̂ ≡ ṽ, ĉ ≡ c . (B.9)

The governing equation given by Eq. B.7 and the boundary condition given by Eq. B.8 can be
now transformed to equivalent two-dimensional form

ik̂ρ(U − c)û+ ρU ′v̂ = −ik̂p̂ ,

ik̂ρ(U − c)v̂ = −p̂′ ,

ik̂û+ v̂′ = 0 ,

(B.10)

where the x- and z-direction momentum equations in Eq. B.7 have been added. The boundary
condition is also transformed as

v̂ = 0 at y = y1, y2 . (B.11)

As the problem has been now transformed to two-dimensional form, the streamfunction can be
introduced. The total streamfunction can be decomposed as

ψ(x, y, t) =

∫ y

U(y′) dy′ + ψ′(x, y, t) , (B.12)

where ψ′ is the linear perturbation about the mean streamfunction. Therefore, by definition of
the streamfunction, the perturbation velocities in two-dimensional incompressible flow regime are
given as

u′ =
∂ψ′

∂y
and v′ = −∂ψ

′

∂x
. (B.13)

1According to Squire (1993) three-dimensional disturbances in the classical, inviscid problem can be transformed
into an equivalent two-dimensional problem, i.e., to each unstable three-dimensional disturbance there corresponds
a more unstable two-dimensional one (Drazin [5]).
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The Fourier transform of the perturbation streamfunctions gives

ψ′(x, y, t) = φ(y)eik̂(x−ĉt) , (B.14)

where φ(y) is the perturbation streamfunction amplitude which characterises the distribution of
the disturbance in the normal direction. From Eq. B.13, we get

û = φ′ and v̂ = −ik̂φ . (B.15)

The final step in deriving the inviscid governing equation is the elimination of the pressure term
p̂ from Eq. B.10. The x-direction momentum equation is used to get an expression for p̂

p̂ = −ρ(U − c)û+ ρU ′
v̂

−ik̂

= −ρ(U − c)φ′ + ρU ′φ ,

(B.16)

and
p̂′ = −ρ(U − c)φ′′ + ρU ′′φ . (B.17)

Using Eq. B.17, pressure term can be eliminated from the y-direction momentum equation in
Eq. B.10.

k̂2ρ(U − c)φ = ρ(U − c)φ′′ − ρU ′′φ . (B.18)

Rearranging the terms and dropping the hat [̂·] for brevity, we get an ordinary differential equation
with the cross-stream streamfunction amplitude as the eigenfunction

ρ
[
(U − c)(φ′′ − k2φ)− U ′′φ

]
= 0 , (B.19)

and the boundary condition is also given in terms of the eigenfunction as

kφ = 0 at y = y1, y2 . (B.20)

The Eqs. B.19-B.20 together form the Rayleigh’s equation.

B.2 Matching conditions

To derive the first matching condition, the Rayleigh’s equation Eq. B.19 is first rewritten in the
following form by using chain rule[

ρ(U − c)φ′ − ρU ′φ
]′

= ρk2(U − c)φ . (B.21)

As the eigenfunction φ is continuous across the sections, this equation can be integrated over the
discontinuity at yD [

ρ(U − c)φ′ − ρU ′φ
]yD+ε

yD−ε
= k2

∫ yD+ε

yD−ε
ρ(U − c)φ dy . (B.22)

The integral on the RHS vanishes in the limit ε→ 0 which gives the dynamic matching condition

q
ρ(U − c)φ′ − ρU ′φ

y
= 0 , (B.23)
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where J·K gives the jump in a quantity. This matching condition for φ is equivalent to equating
the pressure across the discontinuity. This can be verified from the Eq. B.16 also which has the
same form as the terms inside brackets in Eq. B.1. The second matching condition is obtained by
dividing the expression for pressure from Eq. B.16 by (U − c)2

p̂

(U − c)2
= − ρφ′

(U − c)
+

ρU ′φ

(U − c)2
= −

[
ρφ

(U − c)

]′
. (B.24)

Integrating this equation over the discontinuity at yD gives[
ρφ

(U − c)

]yD+ε

yD−ε
= −

∫ yD+ε

yD−ε

p̂

(U − c)2
dy . (B.25)

Again, the integral on the RHS vanishes in the limit ε → 0 which gives the kinematic matching
condition s

ρφ

(U − c)

{
= 0 . (B.26)
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Dynamic matching condition for
interface with non-zero surface tension

For shear layers with a finite value of surface tension σ, the dynamic matching condition includes
the resulting pressure jump ∆pd, which is given as

r
ρi(Ui − cd)φ′i − ρiU ′iφi

z
ei(kdxd−ωdtd) = ∆pd . (C.1)

The instantaneous shape of the perturbed interface is shown in Fig. C.1. In three-dimensions, for

High

pressure

High

pressure

Low

pressure

Low

pressure

(i = 1)

(i = 2)

y

x

Perturbed

interface

Figure C.1: Instantaneous shape of the perturbed interface y = η(x, t)

an interface with the principal curvatures as R1 and R2, the pressure jump is given as

∆pd = σ

(
1

R1
+

1

R2

)
. (C.2)

While calculating ∆p, the pressure is higher on the concave side of the interface. The curvature
can also be defined in terms of the outward unit normal of the interface as R−1

1 + R−1
2 = ∇ · n̂.

Thus,
∆pd = σ∇ · n̂d . (C.3)
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The superscript ‘d’ representing dimensional quantities can be dropped for brevity. The perturbed
interface can be expressed in the modal decomposed form as

η(x, t) = η̃0ei(kx−ωt) . (C.4)

The normal to the interface is given as n = ±∇(y − η). The sign of the normal vector is decided
by the outward normal which in turn is decided by the definition of the two streams as outer and
inner flows. If i = 1 corresponds to outer flow and i = 2 corresponds to inner flow, the outward
normal points upwards and the normal vector is positive. Thus, the unit normal vector is given
as

n̂ =

(
∂η
∂x , 0, 1

)
1 +

(
∂η
∂c

)2 . (C.5)

Linearising the equation gives

n̂ =

(
∂η

∂x
, 0, 1

)
+O . (C.6)

The pressure jump then becomes

∆p = σ∇ · n̂ = σ
∂2η

∂x2
. (C.7)

Substituting the expression for η(x, t) from Eq. C.4 to Eq. C.7, we get

∆p = −σk2η0ei(kx−ωt) . (C.8)

We need to express the perturbation amplitude of the interface η0 in terms of the amplitude of
the perturbation eigenfunctions A and B. For this, the kinematic condition at the interface

D(y − η)

Dt

∣∣∣∣
y=η

= 0 , (C.9)

is used. The equation can be rearranged as

Dy

Dt

∣∣∣∣
y=η

=
Dη

Dt
. (C.10)

The LHS can be expanded using Taylor’s expansion as

Dy

Dt

∣∣∣∣
y=η

= v(x, η, t)

= v(x, 0, t) + η
∂v

∂y
(x, 0, t) +O(η2) .

(C.11)

Then, using the identity

v(x, y, t) =
∂ψi(x, y, t)

∂x
= ikφi(y)ei(kx−ωt) , (C.12)
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we get
Dy

Dt

∣∣∣∣
y=η

= ik
[
φi(0) + ηφ′i(0)

]
ei(kx−ωt) +O(η2)

= ikφi(0)

[
1 + η

φ′i(0)

φ(0)

]
ei(kx−ωt) +O(η2)

(C.13)

The RHS of Eq. C.10 can also be expanded as

Dη

Dt
=
∂η

∂t
+

dx

dt

∂η

∂x

=
∂η

∂t
+ Ui

∂η

∂x
= ik(Ui − c)η
= ik(Ui − cd)η0ei(kx−ωt) .

(C.14)

Linearising the LHS Eq. C.13 to O(η) and equating with the RHS Eq. C.14, we get

ikφi(0) = ik(Ui − c)η0

⇒ η0 =
φi(0)

(Ui − c)
.

(C.15)

The interface perturbation amplitude η0 can be calculated from the appropriate eigenfunction
φi corresponding to any of the streams. Finally, η0 can be substituted in Eq. C.8 to give the
expression for pressure drop

∆p = −σk2 φi(0)

(Ui − c)
ei(kx−ωt) . (C.16)
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Dispersion relations for piecewise linear
profiles of plane semi-unconfined shear

layer

The dispersion relations for the piecewise linear profiles for plane semi-unconfined shear layers is
derived using the computer algebra system, Maxima. For the derivation, the matching condi-
tion was applied to the eigenfunctions given in § 4.3.2. From the two matching conditions, the
coefficients of the constants Ai, Bj can be collected in matrix Dd(kd, ωd), which is given as

D(k, ω)

[
A
B

]
= 0 , (D.1)

where, A and B are the column vectors with n element each representing the 2n constants Ai, Bj
in the ascending order the values of i and j. For example, for 1-piece linear profile, A = [A1A2]T

and B = [B2B3]T. The determinant of the 2n × 2n matrix D gives the dispersion relation as
D(k, ω) = det D. Note that the coefficient matrix D is in terms of non-dimensional variables given
by Eq. 4.95.

The non-zero elements of the matrix D are listed in the following sections.

D.1 1-piece linear profile

For the 1-piece linear profile, the matrix D is a 4 × 4 matrix which gives a dispersion relation
D(k, ω) which is second order in c.
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D[1, 1] = 1 ,

D[1, 2] = −e−ξ ,

D[1, 3] = −e+ξ ,

D[2, 2] = e+ξ ,

D[2, 3] = e−ξ ,

D[2, 4] = − sinh(ξ(h− 1)) ,

D[3, 1] = ξ((c− 1)Λ− 1)(1 + S) ,

D[3, 2] = −(ξΛ(c− 1)− ξ − Λ)e−ξ ,

D[3, 3] = (ξΛ(c− 1)− ξ + Λ)e+ξ ,

D[4, 2] = (ξΛ(c+ 1)− ξ − Λ)e+ξ ,

D[4, 3] = −(ξΛ(c+ 1)− ξ + Λ)e−ξ ,

D[4, 4] = −ξ cosh((h− 1)ξ)((c+ 1)Λ− 1)(S − 1) .

D.2 3-piece linear profile

For the 3-piece linear profile, the matrix D is a 8 × 8 matrix which gives a dispersion relation
D(k, ω) which is fourth order in c.

D[1, 1] = 1 ,

D[1, 2] = −e+(a−1)tξ ,

D[1, 5] = −e−(a−1)tξ ,

D[2, 2] = 1 ,

D[2, 3] = −e−atξ ,

D[2, 5] = 1 ,

D[2, 6] = −e+atξ ,

D[3, 3] = e+atξ ,

D[3, 4] = −1 ,

D[3, 6] = e−atξ ,

D[4, 4] = cosh((a− 1)tξ) ,

D[4, 7] = sinh((a− 1)tξ) ,

D[4, 8] = sinh((t− h)ξ) ,
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D[5, 1] = 2(a− 1)t(1 + S)((c− 1)Λ− 1)ξ ,

D[5, 2] = 2e+(a−1)tξ(−(c− 1)(a− 1)tξΛ + (at− 1)Λ + (a− 1)tξ) ,

D[5, 5] = 2e−(a−1)tξ((c− 1)(a− 1)tξΛ + (at− 1)Λ− (a− 1)tξ) ,

D[6, 2] = −2((a− 1)(at− c)tξΛ + (at− 1)Λ + (a− 1)tξ) ,

D[6, 3] = 2(a− 1)te−atξ((at− c)ξΛ + Λ + ξ) ,

D[6, 5] = 2((a− 1)(at− c)tξΛ− (at− 1)Λ + (a− 1)tξ) ,

D[6, 6] = −2(a− 1)te+atξ((at− c)ξΛ− Λ + ξ) ,

D[7, 3] = 2(a− 1)te+atξ((at+ c)ξΛ− Λ− ξ) ,
D[7, 4] = 2(at− 1)Λ ,

D[7, 6] = −2(a− 1)te−atξ((at+ c)ξΛ + L− ξ) ,
D[7, 7] = 2(a− 1)t((at+ c)Λ− 1)ξ ,

D[8, 4] = −2((a− 1)tξ((c+ 1)Λ− 1) sinh((a− 1)tξ) + (at− 1)Λ cosh((a− 1)tξ)) ,

D[8, 7] = −2((a− 1)tξ((c+ 1)Λ− 1) cosh((a− 1)tξ) + (at− 1)Λ sinh((a− 1)tξ)) ,

D[8, 8] = 2(a− 1)t(1− S) cosh((t− h)ξ)((c+ 1)Λ− 1)ξ .

D.3 5-piece linear profile

For the 5-piece linear profile, the matrix D is a 12 × 12 matrix which gives a dispersion relation
D(k, ω) which is sixth order in c.

D[1, 1] = 1 ,

D[1, 2] = −e+(a−1)tξ/2 ,

D[1, 7] = −e−(a−1)tξ/2 ,

D[2, 2] = 1 ,

D[2, 3] = −e+(a−1)tξ/2 ,

D[2, 7] = 1 ,

D[2, 8] = −e−(a−1)tξ/2 ,

D[3, 3] = 1 ,

D[3, 4] = −e−atξ ,

D[3, 8] = 1 ,

D[3, 9] = −eatξ ,

D[4, 4] = eatξ ,

D[4, 5] = −1 ,

D[4, 9] = e−atξ ,

D[5, 5] = cosh((a− 1)tξ/2) ,

D[5, 6] = −1 ,
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D[5, 10] = sinh((a− 1)tξ/2) ,

D[6, 6] = cosh((a− 1)tξ/2) ,

D[6, 11] = sinh((a− 1)tξ/2) ,

D[6, 12] = sinh((t− h)ξ) ,

D[7, 1] = (a− 1)((c− 1)Λ− 1)tξ ,

D[7, 2] = −((a− 1)((c− 1)Λ− 1)tξ − 2Λ tanh((a+ 1)t/2) + 2Λ)e+(a−1)tξ/2 ,

D[7, 7] = ((((a− 1)c− a+ 1)Λ− a+ 1)tξ + 2Λ tanh((a+ 1)t/2)− 2Λ)e−(a−1)tξ/2 ,

D[8, 2] = ((1− a)Λt tanh((a+ 1)t/2) + ((a− 1)cΛ− a+ 1)t)ξ − 2Λ tanh((a+ 1)t/2) + 2Λ ,

D[8, 3] = (((a− 1)Λt tanh((a+ 1)t/2) + ((1− a)cΛ + a− 1)t)ξ

− 2Λ tanh((a+ 1)t/2) + 2aΛt)e+(a−1)tξ/2 ,

D[8, 7] = ((a− 1)Λt tanh((a+ 1)t/2) + ((1− a)cΛ + a− 1)t)ξ − 2Λ tanh((a+ 1)t/2) + 2Λ ,

D[8, 8] = −(((a− 1)Λt tanh((a+ 1)t/2) + ((1− a)cΛ + a− 1)t)ξ

+ 2Λ tanh((a+ 1)t/2)− 2aΛt)e−(a−1)tξ/2 ,

D[9, 3] = ((a− a2)Λt2 + ((a− 1)cΛ− a+ 1)t)ξ + 2Λ tanh((a+ 1)t/2)− 2aΛt ,

D[9, 4] = (((a2 − a)Λt2 + ((1− a)cΛ + a− 1)t)ξ + (a− 1)Λt)e−atξ ,

D[9, 8] = ((a2− a)Λt2 + ((1− a)cΛ + a− 1)t)ξ + 2Λ tanh((a+ 1)t/2)− 2aΛt ,

D[9, 9] = (((a− a2)Λt2 + ((a− 1)cΛ− a+ 1)t)ξ + (a− 1)Λt)eatξ ,

D[10, 4] = (((a2 − a)Λt2 + ((a− 1)cΛ− a+ 1)t)ξ + (1− a)Λt)eatξ ,

D[10, 5] = 2aΛt− 2Λ tanh((a+ 1)t/2) ,

D[10, 9] = −(((a2 − a)Λt2 + ((a− 1)cΛ− a+ 1)t)ξ + (a− 1)Λt)e−atξ ,

D[10, 10] = ((a2 − a)Λt2 + ((a− 1)cΛ− a+ 1)t)ξ ,

D[11, 5] = ((1− a)Λt tanh((a+ 1)t/2) + ((1− a)cΛ + a− 1)t)ξ sinh((a− 1)tξ/2)

+ (2Λ tanh((a+ 1)t/2)− 2aΛt) cosh((a− 1)tξ/2) ,

D[11, 6] = 2Λ tanh((a+ 1)t/2)− 2Λ ,

D[11, 10] = (2Λ tanh((a+ 1)t/2)− 2aΛt) sinh((a− 1)tξ/2) + ((1− a)Λt tanh((a+ 1)t/2)

+ ((1− a)cΛ + a− 1)t)ξ cosh((a− 1)tξ/2) ,

D[11, 11] = ((a− 1)Λt tanh((a+ 1)t/2) + ((a− 1)cΛ− a+ 1)t)ξ ,

D[12, 6] = (((1− a)c− a+ 1)Λ + a− 1)tξ sinh((a− 1)tξ/2)

+ (2Λ− 2Λ tanh((a+ 1)t/2)) cosh((a− 1)tξ/2) ,

D[12, 11] = (2Λ− 2Λ tanh((a+ 1)t/2)) sinh((a− 1)tξ/2)

+ (((1− a)c− a+ 1)Λ + a− 1)tξ cosh((a− 1)tξ/2) ,

D[12, 12] = (((a− 1)c+ a− 1)Λ− a+ 1)tξ cosh((t− h)ξ) .
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