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1 Introduction

1.1 Deforestation

Forests play a key role in the functioning of ecosystems at a local and global scales, providing
important services such as habitats for over 80% of terrestrial biodiversity and the sequestra-
tion of around 289 Gt carbon [20]. However, forests are also under significant threat due to
human activities such as commodity extraction, urbanization, and agricultural intensification,
with severe and long-term impacts on ecological and human well-being including ”temper-
ature rise, habitats depletion, extreme weather events, soil degradation, infectious diseases,
rising GHGs, and environmental pollution” [20, p.21]. One of the major contributing factors
to deforestation is agricultural production for export to the European Union [10]. In response,
the European Union approved a law in December 2022 that aims to reduce the impact of Euro-
pean consumption on global deforestation by banning the import of products that are issued
from deforested areas, with a particular focus on cattle, wood, palm oil, soy, cocoa and coffee
[10]. Due to the due diligence requirements for companies that produce such commodities
and derived products [10], the enforcement of this law will require highly accurate and timely
tracking of farm extents using geodata and advanced geospatial analysis.

1.2 Cocoa production

Around 16% of the world’s forested areas are located in Africa [15, p. 14], and this region faces
particularly high rates of deforestation: ”the highest annual deforestation rate in 2015–2020
was in Africa (4.41 million ha)” of which 1.90 million hectares were located in Central and
Western Africa” [15, p. 19]. The focus of this research is the detection of cocoa crops, of which
West Africa is one of the main producing regions [4] and which are estimated to cause 7.54
% of EU-driven deforestation [10, p. 27]. The research in this thesis has emerged from a need
identified by Meridia Land B.V., a company that works to improve data transparency and
traceability in smallholder supply chains [21]. According to recent conversations with rep-
resentatives from Meridia, the company is working with several clients who are seeking to
develop more accurate ways of systematically tracking the cocoa farm extents of smallholder
farmers in Ghana, where ”over a quarter of agricultural conversion stems from cocoa expan-
sion” [6, p. 1]

1.3 Cocoa detection challenges

While the classification of multispectral satellite imagery is frequently applied to map crops
and farm extents [4], cocoa presents unique challenges. First, West Africa has frequent cloud
cover due to the Monsoon climate, which limits the availability of cloud-free multispectral
datasets and the temporal resolution of those datasets [5]. Second, agroforestry land cover,
a common practice which integrates shade trees to improve cocoa growing conditions, has a
spectral signature and canopy structure similar to nearby forest [5, p. 2], and the canopy struc-
ture of cocoa can vary widely, as shown in figure 1. Researchers have addressed these chal-
lenges by using machine learning algorithms trained with Synthetic Aperture Radar (SAR)
and/or multispectral datasets to identify cocoa crops. While many of these implementations
use a pixel-based classification that does not consider the spatial context, recent work has
applied a Convolutional Neural Network (CNN) trained with multispectral data and shows
promising results in Ghana and Cote d’Ivoire [18]. The objective of this thesis is to build on
this deep learning approach by using SAR data in the training of a CNN in order to test the
impact of inputs on the accuracy of cocoa detection.
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Figure 1: ”Proportion of shaded cocoa typologies in Nicaragua (NIC) and Peru (PER) as ex-
pressed by in-country experts” [25, p. 5]

2 Related work

This section highlights methods that have been used to detect cocoa crops from remotely
sensed data. In particular, it emphasizes two main approaches and two types of satellite data
used as input. Pixel-based classification aims to assign a class to individual pixels based on
their spectral attributes ([31]). In contrast, object-based classification (or segmentation) aims to
identify features in an image (e.g. land parcels) before classifying them and therefore adding
additional spatial context [17]. These methods have been implemented for cocoa detection
based on multispectral satellite imagery (e.g. optical, Near Infrared (NIR), and Shortwave In-
frared (SWIR) bands), Synthetic Aperture Radar (SAR, captured in the microwave bands), or
a combination of the two data types.

2.1 Pixel-based classification of cocoa

The majority of existing cocoa detection studies focus on pixel-based classification by imple-
menting a variety of machine learning algorithms and different combinations of datasets.
Some researchers have considered only multispectral imagery (such as Landsat or Sentinel
2 data), which are classified using Maximum Likelihood Algorithm (Overall Accuracy [OA] =
82.6 %) [30], Random Forest (OA = 89.8 %) [6] and XGBoost, a type of boosted Random Forest
(OA = 95.17 %) [7].

The effectiveness of multispectral data is limited considering that frequent cloud cover of-
ten impedes the collection of passively sensed data in moist tropical regions, and that agro-
forest cocoa parcels have spectral signatures very similar to surrounding jungle [23]. For this
reason, some researchers have focused on classification methods that are based on SAR data
only, which can ”capture the water content (a dielectric property) and structure (a geomet-
ric property)” of land cover [23, p. 2]. SAR-based classification has been implemented using
Supervised Maximum-likelihood Classifier (OA = 89 %) [27], Random Forest combined with
Grey Level Co-occurrence Matrix (GLCM) (OA = 88.1 %) [23], and Multi-Layer Perceptron
(MLP) Neural Networks Regression (Root Mean Square Error [RMSE] = 7.18 %) [22].

Two recent articles perform classification on a combination of SAR and multispectral data:
the penetration of SAR can improve the detection of shrubs grown under a tree canopy, and
differentiate between different types of trees [4]. In a 2021 study to measure the encroach-
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Figure 2: Classifier using SAR and Multispectral datasets (Abu et al., 2021)

ment of cocoa farms on protected forest reserves, Abu et al. created composite images of each
Sentinel 1 (SAR) and Sentinel 2 (multispectral) datasets, and performed textural (Grey-Level
Co-occurence Matrix [GLCM]) and spectral (Normalized Difference Vegetation Index [NDVI],
Tasseled Cap index) analyses before applying a multi-feature Random Forest classifier [4], see
figure 2. The producer’s accuracy and user’s accuracy were respectively evaluated at 82.9%
and 62.2% [4]. In a 2022 paper, Tamga et al. explore the spatial distribution of classification er-
rors with a focus on cocoa mapping in Ghana and Côte d’Ivoire [28]. The authors use Sentinel
1 datasets acquired with Interferometric Wide swath [IW] mode and with Vertical-Vertical
[VV] and Vertical-Horizontal [VH] polarisations as well as red, green, blue, near-infrared and
red-edge bands from Sentinel 2 multispectral data to perform textural (GLCM) and spectral
analyses before applying a multi-feature Random Forest classifier [28]. The main differences
between the two studies is that Tamga et al. applied many more different vegetation indices
for spectral analysis (NDVI, GLI, EVI, SAVI, MSAVI, TCARI, VARI) and they calculated Shan-
non entropy per pixel to remove pixels with a high probability of error [28]. The higher pro-
ducer’s accuracy (88%) and user’s accuracy (91%) compared to the work by Abu et al. is
attributed to the fact that this study area is considerably smaller and focused only on a cocoa
producing region [28].

As can be seen in figure 3, the results of pixel-based classifications can lead to a ”salt and
pepper” effect, even when smoothing filters are applied [28]. This effect does not necessarily
reflect the reality of cocoa parcels on the ground and may be improved by employing a method
that detects parcels of cocoa, rather than focusing on pixel-level classification. In both articles,
the authors conclude that the classification output could be improved with the use of deep
learning, with one paper specifically suggesting the use of ”semantic image segmentation”
[4].
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Figure 3: ”Improved classification of agroforestry systems in southern Côte d’Ivoire using
entropy value threshold derived from field plot” (Tamga et al., 2022, p. 9)

2.2 Object-based classification of cocoa

Beyond pixel-based classification, cocoa farm detection may be improved with methods that
take into account the spatial dimension of cocoa production; in other words, detecting and
classifying parcels rather than individual pixels. This approach can be implemented via al-
gorithms that first detect image objects and then classify them: ”[c]ombining spectral and
backscatter pixels and image objects implies harnessing the spectral and textural capabilities of
a satellite dataset and spatial patterns of the landscape and incorporating into the classification
process” [5, p. 3]. One early example of such an approach combines optical (Landsat-ETM+)
and dual-polarimetric radar (Envisat-ASAR) satellite data to map rice and cocoa parcels in
Indonesia [11]. The authors detect image objects from a panchromatic dataset, then use a time
series of co- and cross-polarized SAR datasets at a resolution of 15 meters and multispectral
datasets at resolution of 30 meters for classification of each object [11]. This study makes
use of an object-based nearest neighbour classifier and applies it to different combinations of
datasets, and the highest OA (89%) obtained by using multispectral and cross-polarized SAR
data [11].

Another more recent example of object-based classification is a study from 2020 which aims
to detect and differentiate between open forest and agroforestry cocoa [5]. The authors first
detect image objects from combined SAR and multispectral datasets using the Multiresolution
Segmentation algorithm, and then apply Random Forest classification to three experimental
datasets: multispectral only (OA = 79.02%), multispectral and SAR (OA = 80.49%), and finally
multispectral, SAR and image objects (OA = 89.76) [5]. As shown in figure 4, not only is the
accuracy of the object-based classification higher, but the visual output is also a more realistic
representation of the spatial characteristics of cocoa parcels on the ground. One significant
limitation of the detecting objects prior to classification is that ”image objects created from
the image segmentation process depends on the segmentation scale, the spatial resolution of
the dataset used, and class definitions,” ”different datasets and mapping extent or scale will
require different levels of image objects,” and incorrectly defined image objects will cause the
mis-classification of all pixels in that object [5, p. 11]. Deep learning, specifically Convolutional
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Neural Networks, may offer an alternative to these challenges, and they have been used to de-
tect cocoa parcels without relying on supervised classification or object detection, as described
in the following section.

Figure 4: Visual Comparison of pixel-based and object-based classification results (Ashiagbor
et al., 2020, p. 10)
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2.3 Convolutional Neural Networks for cocoa parcel segmentation

Convolutional Neural Networks [CNNs] offer the possibility to detect and classify cocoa parcels
by considering spectral and spatial characteristics in a deep learning architecture by automat-
ing feature selection rather than relying on supervised machine learning processes [18]. A
theoretical background on CNNs can be found in section 4.1. In a 2018 Bachelor thesis, Filella
adapts the U-NET architecture to detect cocoa based on Sentinel 2 imagery (using bands 2, 3,
4, 5, 6, 7, 8, 11 and 12) in Ghana and Ecuador in order to measure the impact of different inputs
on the detection of full-sun and agroforestry cocoa [14]. Figure 21 in Appendix 7 provides a
diagram of the U-NET, which takes as input satellite imagery and ouputs a mask indicating
the class of each pixel (i.e. cocoa, non-cocoa, and unknown). The network is trained with an
Adam optimizer with a mini-batch size of 32, learning rate of 10−5 and L2 regularization of
10−2.

The loss score is calculated using the Softmax cross-entropy function:

Li = − log
(

esyi

∑j esj

)
(1)

”where syi is the class score of the correct class and ∑j esj is the sum of all the class scores. The
Softmax function takes a vector and squeezes it into a vector with values between zero and
one, that sum up to one” [14].

In order to account for an unbalanced and small dataset that over-represents ”unknown”
pixels and under-represents ”cocoa” pixels, Filella uses the following evaluation metrics:

• Recall: ”the part of the positive conditions that has been correctly predicted” [14, p. 33]

• Precision: ”predictions that are correct and thus actually useful” [14, p. 34]

• Intersection Over Union (IoU): ”ratio between the intersection and the union of the pre-
dictions and the conditions [...] a good a midpoint between Recall and Precision” p.
34

By training the U-NET with a multispectral image (divided into small batches) and an
Ecuadorean ground-truth polygon dataset (full-sun cocoa), the final recall is 93%, the final
precision is 98% , and the IoU is 92% . Results are less reliable for agroforest cocoa, shown
in figure 5, for which the U-NET is trained using 12 farm polygons and a time-series of 4
multispectral images from December 2017 to January 2018. In order to measure the impacts
of under-sampling and temporal data on segmentation outputs, the U-NET is trained and
validated separately with temporal and non-temporal data, and different levels of undersam-
pling. Non-temporal data provides the worst results across all metrics, with undersampling
leading to an IoU of 47.2%. The use of temporal data performs better: the highest IoU of 58.2%
is achieved with a batch size of 64 and a minimum of 100 cocoa pixels. Attempting to reduce
batch size to increase the proportion of cocoa is not effective: the model predicts forested ar-
eas rather than cocoa crops, which is attributed to a lack of background (”non-cocoa”) labels.
While the author concludes that their model is effective for full-sun cocoa segmentation, the
study is inconclusive regarding agroforestry cocoa. Some of the key areas of future research
mentioned in this paper include training the network with a larger dataset and a longer time
series, improving the labelling of non-cocoa data, detecting and processing clouds separately,
and implementing a more powerful network.

In another CNN-based paper by Kalischek et al. (2022), a CNN is trained using 100,000
cocoa farm polygons, 10,000 non-cocoa polygons and a time-series of 10 Sentinel 2 images
collected from each 6-month time period between October 2018 and December 2021. As part
of the data pre-processing, cloud-covered samples are marked as “nodata” and the authors
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Figure 5: Visualization of validation batch for agroforest cocoa prediction (Filella, 2018, p. 46)

Figure 6: ”Results of the final validation using undersampling on temporal data” (Filella, 2018,
p. 42)

choose input patches that are at least 10% labelled. In order to save time and provide ad-
ditional data, the authors train a deep learning network with Sentinel 2 and canopy height
LiDAR data, then feed the predicted height values into the CNN.

The architecture used is not openly available, however the paper indicates that it is based
on the architecture described in Lang et al. (2019), shown in figure 22 in Appendix 7. The ar-
chitecture developed by Kalischek et al. takes as input an image patch with 9 bands (32x32x9);
there are three consecutive residual blocks with learnable 1x1 convolutional filters, six residual
blocks with 3x3 depth-wise separable convolutional layers, the input of the vegetation height
map, followed by two further separable residual blocks, and the final output is computed by
a single convolutional layer with two 1x1 filters, whose 2-channel output is passed through
a Sigmoid transformation. The CNN runs for 32,500 epochs (40,000 iterations) using Adam
optimizer, with a base learning rate of 10−5, with the Dice coefficient as loss function:

L = ∑
c

(
1 − 2 ∑i pcigci + ϵ

∑i pci + ∑i gci + ϵ

)
(2)

”where c is the number of classes, i the pixel index, p and g the prediction and ground
truth, respectively.” [18, p.9]. The output of this model is a probability map that indicates, for
each pixel, the probability of that pixel containing cocoa (between 0 and 1). This probability
map can be converted to binary map based on desired level of confidence; in figure 7, 65%
probability is used as the minimum threshold for symbolizing a pixel as ”cocoa.” The authors
create 10 replicas of the network using the same data but with different random initializations.
To evaluate the quality of the output, the authors use recall and precision, similar to Filella, as
well as an additional metric called the F1-score: ”the harmonic mean of precision and recall”
[18, p. 2]. The results of the segmentation are shown in figure 8; compared to the pixel-
based classification implemented to map cocoa at a similarly large scale [4], this deep learning
approach improved ”precision and recall by more than 26% and 4% respectively” [18, p. 2].
While the implementation of this CNN had good results, it requires the use of time-series
datasets due to the limitations of multispectral data when dealing with cloud cover. Therefore,
the authors suggest that integrating the use of SAR datasets could allow for monthly or even
weekly cocoa mapping updates [18].
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To conclude this section, existing research has demonstrated the potential for CNNs to de-
tect the extent of cocoa farms based on multispectral data; however, neither of the CNN-based
cocoa detection studies found in the literature integrate SAR datasets as input to their deep
learning network. Therefore, this research builds on opportunities for further research that in-
tegrates a larger ground truthing dataset in the implementation of a U-NET architecture and
evaluates the impact of SAR data on the segmentation of cocoa parcels.

Figure 7: ”Cocoa map for Côte d’Ivoire and Ghana. Probability map with 10x10m ground
sampling distance.” (Kalischek et al., 2022, p. 3)

Figure 8: Evaluation of cocoa segmentation (Kalischek et al., 2022, p. 4)
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3 Research questions

The research conducted in this MSc thesis builds upon existing work on cocoa detection via
machine learning, with a focus on advancing deep learning approaches. The overarching
research question is as follows: To what extent can a Convolutional Neural Network trained with
multispectral and SAR datasets enable the automated detection of cocoa crops in Ghana?

The sub-questions guiding this research include:

1. How does the combination of multispectral and SAR data affect the results of cocoa
parcel segmentation trained with data from a single day?

2. How does the combination of multispectral and SAR data affect the results of cocoa
parcel segmentation trained with a 6-month time series multispectral dataset?

3. What is the effect of different combinations of Sentinel 2 bands on the results of satellite
imagery segmentation (i.e. Visible, NIR and/or SWIR)?

4. How might the use of different polarizations (i.e. VV or VH) affect the influence of SAR
datasets on the cocoa segmentation results?

5. How might the use of seasonal SAR data affect the influence of SAR on the cocoa seg-
mentation results?

Additional questions of interest that are beyond the scope of this MSc thesis include:

1. How does the use of high resolution (0.5-3 m) multispectral imagery in visible and NIR
bands compare with segmentation results of the same bands at 10 m resolution?

2. How might the attributes of cocoa polygons affect the segmentation accuracy? (e.g. den-
sity, age, intercropping vs monocropping)

3. How might seasons of training and testing datasets affect the segmentation results? (e.g.
training on Summer datasets, testing on Spring and vice-versa. . . )

4. How might the characteristics of non-cocoa ground truth polygons affect the segmenta-
tion accuracy? (e.g. number of polygons, types of land cover. . . )

5. How does the time resolution of a time series datasets affect the segmentation output
(e.g. yearly, monthly, or weekly images)?
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Figure 9: MuSCoW chart for research sub-questions

4 Methodology

4.1 Theoretical Background

In the field of computer vision, deep learning has been enabling unprecedented accuracy in
computers’ ability to derive information from images [3]. The foundation of deep learning
is the Artificial Neural Network (ANN), which has been modelled after human brain. Just
as a brain contains neurons that receive information and can output signals which have a
varying degree of influence and inform a person’s understanding or action, the ANN contains
nodes which receive data, activate, and send the signal on to the next layer of nodes [19]. The
complex combination of signals between nodes and layers leads to the performance of a task.
For the purpose of machine vision, an ANN would take image data as input, whose pixels are
fully connected to a series of hidden layers, which means that all neurons in the input layer
are connected to all layers in the next layer, and so on. As shown in figure 10, each neuron
applies the activation function to the input (x) and outputs a value (y) that is carried forward
to the next layer. The final layer would contain neurons indicating the probability of an image
belonging to each class.

Each connection between neurons (as seen in figure 11) represents a weight, which indi-
cates the influence of the previous node activation on the next node. For example, nodes
connected pixels in a specific region of the image may have more influence than other regions.
The network is initialized with random weights, and is trained by inputting raw data which
has already been labelled with a classification in order to otimize the weights and activations
across all layers. By detecting patterns in a large number of images and generating a series of
weights and activations for the neurons in the hidden layers, the network can then take a new
input image, detect the patterns in its pixels, and output a probability of it belonging to each
of the potential classes.

The challenge with a fully connected ANN is that the number of parameters that need to be
computed grows quickly, especially when using input images that have multiple bands (e.g.
R,G,B, other satellite bands). To avoid the high computation cost, a more appropriate model
for image processing is the Convolutional Neural Network [CNN]. A CNN enables the detec-
tion of patterns by connecting neurons with a subset of the neurons in the previous layer, as
shown in figure 12. A CNN uses a number of filters (matrices containing weights) which rep-
resent the relationship between an input and subsequent layers. As the convolutional layers
are applied, the features and patterns detected become increasingly abstract. This allows the
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Figure 10: ”A cartoon drawing of a biological neuron (left) and its mathematical model
(right).” [19]

network to learn both complex and simple spatial patterns which inform the classification of
an image. This type of network is useful for classifying an entire image, such as determining
if an image is a cat or a dog.

Figure 11: ”A 3-layer neural network with three inputs, two hidden layers of 4 neurons each
and one output layer.” [19]

However, in many cases, it is equally as important to identify the location of a feature, not
only its class [24]. In the case of cocoa, we not only want to know if there is cocoa in the
image, but where the parcel is located. This technique is called segmentation: it involves
pixel-wise classification and simultaneous detection of object instances. In their 2017 paper,
Garcia-Garcia et al. provide an overview of existing datasets and methods which apply deep
learning for semantic segmentation [3]. Most state-of-the-art semantic segmentation is based
on the Fully Convolutional Network, an architecture developed by Long et al. in 2015 which
replaces fully connected layers with convolutional layers and ”output spatial maps instead of
classification scores” [3, p.9]. Convolutional networks designed with segmentation in mind
involve upsampling the spatial maps back to ”dense per-pixel labeled outputs” [3, p.9]. This
upsampling can take the form of a kind of ”reverse max pooling” or ”deconvolution filters.”

Figure 12: ”Each neuron in the convolutional layer is connected only to a local region in the
input volume spatially, but to the full depth (i.e. all color channels)” (Karpathy, 2018)
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One popular CNN used for image segmentation is the U-NET, which was developed in
2015 by Ronneberger et al. for bio-medical image analysis and is named based on the shape
of its architecture as seen in figure 13 [24]. The U-NET takes raw image data as its input,
which it carries through two main components: the encoder (“contracting path”) and the de-
coder (“expansive path”) [24]. The encoder is responsible for detecting the high and low level
patterns in the image as described above, therefore progressively convolving the image to a
higher abstraction. Each encoder block is made up of two convolutional + ReLU activation
layers followed by a max pooling layer to downsample the image and increase computation
efficiency [24]. Prior to max pooling, the convolution output is saved separately for future use
as it contains important contextual information that will be used in the decoding process. Each
downsampling step involves reducing the spatial dimension of the image by a factor of 2, and
a doubling of the feature channels [24]. The final level of the encoder (the bottleneck) includes
only two convolution / activation layers and no max pooling. The decoder takes as input the
output of the bottleneck and gradually up-convolves the image while bringing back the spa-
tial context that had been saved in each level of the encoder. Each expansive step upsamples
the image via a 2x2 convolution and halves the feature channels, concatenates the feature map
to the results of the corresponding encoder level, then performs two convolutions [24]. The
addition of spatial context allows for the features in the image to be detected and grouped
into segments of a class. The final level of the decoder applies 1x1 convolutions for each class
being detected, therefore producing a segmentation map for each class. The U-NET is a pop-
ular architecture due to its ability to reach a high accuracy with a relatively small number of
training images [24].

Figure 13: ”U-net architecture” (Ronneberger et al., 2015, p. 235)
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4.2 Data pre-processing

This thesis is concerned with the segmentation of a specific type of vegetation (cocoa) that is
often surrounded by other vegetation types including forest and crops. As described earlier in
this paper, two types of remotely sensed satellite data will be used in the training of a CNN for
this task: Multispectral Imagery and SAR data. Multispectral imagery is obtained via passive
remote sensing from the energy that is reflected from the Earth’s surface due to the properties
of surface objects [1]. The bands of interest are detected in the visible, Near- and Shortwave-
infrared regions of the electromagnetic spectrum. Different objects reflect the sun’s energy in
different ways, which makes it possible to differentiate between them; for instance, the chloro-
phyll in vegetation causes it to reflect visible light in the green part of the spectrum which leads
vegetation to appear green. This phenomenon also occurs in non-visible parts of the spectrum:
healthy plants will reflect more NIR radiation than their unhealthy counterparts. Combined,
these surface characteristics give land cover types unique ”spectral signatures” which refers
to amount of radiation they reflect in different parts of the electromagnetic spectrum (see fig-
ure 14). Different vegetation types will often have different spectral signatures, enabling, for
instance, the identification of different crops. This becomes more challenging when nearby
land covers have similar signatures, as is the case with cocoa and surrounding jungle [7].

Figure 14: Example of spectral signatures from a cocoa-producing region in Brazil, showing
the similarity between cocoa and forest [7]

In this case, Synthetic Aperture Radar [SAR] can provide additional information that may
further differentiate between vegetation types. SAR is an active remote sensing technology
that involves sending microwave pulses from the satellite to the surface of the Earth, and re-
ceiving back a signal (backscatter) with a certain phase and amplitude. The phase provides
information on the distance of the surface objects from the sensor (i.e. height), whereas, as
seen in figure 16, the amplitude indicates the intensity of the signal that is returned, varying
based on geometry, surface roughness and water content [13]. The size of the wavelength used
determines the types of surface features that will affect the backscatter: microwaves will pen-
etrate objects smaller than their wavelength, and reflect off objects of a similar size. Sentinel 1
uses C-band, which has a 5 cm wavelength and is therefore able to penetrate tree canopies to
a limited extent and capture some characteristics of the vegetation below [23]. The polariza-
tion of a radar pulse refers to the ”direction of travel of an electromagnetic wave,” or how the
wave oscillates in relation to the surface it is imaging (horizontal or vertical) [13]. As shown
in figure 15 the polarization of the pulse that is transmitted and that which is measured upon
return can be the same (co-polarization, such as vertically transmitted and vertical received
[VV]) or opposite (cross-polarization, such as vertical transmitted and horizontally received
[VH]) [13]. In previous cocoa-related experiments, crop classification was found to be most
accurate when both VV and VH data were used for supervised machine learning [23] and VV
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was found to most accurately predict the presence of gaps in the canopy [22].

Figure 15: ”SAR signals are transmitted and received either vertically (V) or horizontally (H).
This gives the potential for four different polarization combinations (transmit listed first,
receive second): VV, VH, HH, and HV.” [13]

Figure 16: ”Rough surfaces give bright returns due to the wide scattering. Vegetated surfaces
cause volumetric scattering, which gives a darker return to the imaging platform.” [13]

The quality of a dataset is of extreme importance in deep learning applications and is often
one of the most complex and time-consuming aspects of a network implementation[3] The
following steps will be carried out in order to prepare the datasets:

1. Collect and quality-control ground truth polygons: conduct visual checks on cocoa ground
truth to check for possible misclassification, check for overlaps between cocoa and non-
cocoa ground truth

2. Rasterize ground truth polygon layers into mask raster (1 = cocoa, 2 = non-cocoa)

3. Process multispectral data: resample all bands to 10 m resolution using bilinear interpo-
lation

4. Process SAR data: project to UTM zone, resample to 10 m resolution

5. Combine multispectral bands and SAR layers: clip SAR to multispectral tile(s), create
virtual raster from SAR and multispectral data, apply mask to virtual raster setting any
unlabelled pixels = 0 (no data)

6. Prepare small images for input to CNN:

a) Initialize moving window (e.g. 128 x 128 pixels)
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b) Check: is there cocoa within the window? [note: to address data imbalance, poten-
tially set minimum number of cocoa pixels [14, p. 16]]

c) If so, crop and save a copy of the class raster, save a corresponding cropped portion
of the masked virtual raster.

d) Move the window slightly while maintaining some overlap in order to augment the
data, and continue the process until the entire area has been visited.

Figure 17: Steps involved in pre-processing data
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4.3 Machine Learning Experiments

A U-NET will be constructed and trained with different types of datasets in order to ad-
dress the research questions in quantitative and repeatable ways. The U-NET architecture
will be adapted based on the cocoa segmentation work of Filella (2018) and the Jupyter note-
book U-NET implementation by Bhatia (2021) with the following characteristics which may
be changed over the course of the research based on the results:

• Input: 128x128x12

• Number of filters: 32

• Number of classes: 3

• Encoder: 5 blocks of two Conv Layers (3x3 filters, ’same’ padding) with relu activation
and HeNormal initialization, max pooling

• Decoder: 4 blocks of transpose convolution, concatenate with skip connection from en-
coder, two Conv layers (3x3 filters, ’same’ padding)

• Model output: one Conv layer (3x3 filters, ’same’ padding) followed by one 1x1 convo-
lution layer to get image to same size as input.

Figure 18: U-NET training experiments, based on priority research questions

Figure 19 summarizes the experiments that will be carried out by training the U-NET with
different datasets in order to address the key research sub-questions. In each of the experi-
ments, the network will be trained using datasets that contain at least 10% non-cocoa labels
overall. The results of each experiment will be evaluated using the same metrics as Filella
(2018): Recall, Precision and Intersection over Union. All experiments will first be carried out
on the scale of one Sentinel 2 image ( 10,000 x 10,000 m) before upscaling to a larger number
of tiles, and eventually aiming to apply segmentation to the the entire study area ( 400,000 x
600,000 m) if time allows.
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4.4 ”Must Have”: Comparing multispectral-only to multispectral + SAR

To set a benchmark, the U-NET will be trained with Sentinel 2 single-day dataset with ¡10%
cloud cover, and then it will be trained again with the single-day multispectral image stacked
with a single-day SAR dataset (both polarizations) for the same date (within a 1-month time-
frame). To test the impact of time-series data on this comparison, based on the work of Kalis-
chek et al. (2022), the U-NET will be trained with Sentinel 2 time series dataset that selects 10
images with the lowest cloud cover over a 6-month period. It will then be trained again with
the same time-series dataset stacked with a single-day SAR dataset.

4.5 ”Should Have”: Testing different combinations of multispectral bands, SAR
polarizations and SAR temporal data

Building off the work of Filella (2018) which tested the influence of different bands on the
segmentation of full-sun cocoa parcels in Ecuador, this thesis will conduct similar tests to
quantify the importance of different bands on the output of segmentation for intercrop cocoa
in Ghana by training the network with the following combinations of bands which are critical
to vegetation detection:

• Visible only

• Visible + NIR

• Visible + SWIR

• Visible + NIR + SWIR

The above combinations will be tested with both the single-day dataset and the timeseries
dataset to account for the influence of seasonal variation on the results. In order to evaluate
the impact of SAR polarization on the segmentation, the U-NET will be trained with the single-
day multispectral dataset stacked with each VV and VH polarizations separately. Considering
the two distinct seasons in Ghana (the wet and dry seasons [4]), the time of year during which
the SAR data is obtained may affect its influence on the segmentation, and the way(s) in which
the SAR amplitude and phase change over the year may be different from surrounding vegeta-
tion. To test whether the seasonal variation in texture and water content captured by SAR may
influence results, the U-NET will be trained with the single-day and timeseries multispectral
data stacked each stacked with two SAR images (one from each season).
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5 Preliminary Results

The U-NET architecture was adapted based on the Jupyter notebook created by Bhatia (2021)
[8] to classify imagery into 3 classes (cocoa, non-cocoa and unknown) and can be viewed
in this Google Colab notebook. The network was trained and tested three times, with three
different datasets of thirty 128x128 px images overlapping the Sentinel 2 tile shown in figure
23 of Appendix 7. Due to the limited availability of non-cocoa ground truth at the time of
writing this graduation plan, the experiments were limited to cocoa-only labels for the first
two experiments.

1. Multispectral Data

2. Multispectral and SAR Data

3. Multispectral and SAR Data, including non-cocoa ground truth

Figure 19: Visualization of initial U-NET segmentation: (1) Actual cocoa mask (2) Prediction
from multispectral-only training (3) Prediction from training with multispectral and SAR

Visually, a comparison of the ground truth mask and the predicted masks for multispectral
only and SAR + multispectral data show some slight difference. As can be seen in figure 19,
the predicted mask from the U-NET trained with SAR seems to reflect the shape of the train-
ing polygon with more precision, although it is not possible to draw any conclusions given
the small dataset used in this trial. The evaluation metric used was TensorFlow’s ’Accuracy’,
which computes the number of times that a predicted pixel value matches the ground truth
pixel value [29]. As shown in figure 24 of Appendix 7, in all three experiments, the validation
accuracy reached very high values (over 0.90) from the first or second epoch. These results
are likely deceptive and related to the over-representation of the ”unknown” class and under-
representation of the ”non-cocoa” class in the training data [14]. Considering that there is a
very high representation of ”unknown” pixels, the number of predicted ”unknown” pixels is
also high, which skews the overall accuracy value. To address this challenge going forward,
the output evaluation will be performed with the use of the metrics previously described (Pre-
cision, Recall and Intersection over Union) for the cocoa and non-cocoa classes only. An initial
attempt was made to compute IoU for the ”unknown” class and the ”cocoa” class separately
and the results are shown in figure 25 of Appendix 7. As expected the IoU was very high
for the unknown class (0.9691) and very low for the cocoa class (0.2541). In addition, fur-
ther efforts will be invested in obtaining non-cocoa ground truth labels to better differentiate
between cocoa and other classes with similar spectral signatures.
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6 Time planning

The initial theoretical background and data exploration has taken place prior to the graduation
plan submission. Prior to the P3 mid-point check-in, all experiments will be carried out at a
single tile scale. Following a discussion and evaluation of the results, the experiments will
be refined and upscaled to a larger study area prior to submission of P4. Finally, the time
between P4 and P5 will be used for the cleaning of code, production of illustrative visuals and
refinement of the final report.

Figure 20: Gantt chart for the completion of this MSc thesis

7 Tools and datasets used

The tools used for this MSc thesis include the following:

• WEkEO: an online platform that facilitates the retrieval and analysis of data produced
by Copernicus, the European Union’s Earth Observation Programme. Remotely sensed
data will be retrieved via the user interface or directly via the Harmonized Data Access
API by specifying an area of interest and requesting specific datasets. [32]

• QGIS: an open source geographic information system that enables the visualization and
analysis of geospatial datasets. QGIS will be used to conduct individual tasks such as
clipping, projecting and merging vector and raster datasets. [26]

• Visual Studio Code: an Integrated Development Environment that will be used to create
and run python scripts to automate data pre-processing and repetitive tasks such as
splitting a large satellite datasets into small input images for the network. [9]

• Google Colaboratory: a cloud-based platform that enables the creation, sharing and run-
ning of Jupyter notebooks for Python scripting. This platform will be used to script and
run the U-NET and visualize results. A ”Pro” subscription enables the code to run using
a Google Cloud GPU. The U-NET will be implemented using the Tensorflow library. [16]

The datasets used in this research include:
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• Cocoa polygons: 3 shapefiles containing 88,975 polygons covering 1,332,112,046.91 sq.
meters in Ghana. These parcels were collected by Meridia field agents, who mapped the
farms alongside the farmers/farm owners or their representatives. Mapping accuracy
of all datasets is around 2m on average. Many polygons contain data attributes such as
trees age, farm productivity, crop composition (e.g. intercrop vs mono-crop) which are
estimates by farmers or their representatives.

• Non-cocoa polygons: 1,011 polygons covering 28,473,219.38 sq. meters in Ghana. As
above, these parcels were collected by Meridia field agents, who mapped the farms
alongside the farmers/farm owners or their representatives. For the purpose of ground
truthing, the aim is to train the network with around 8,000 non-cocoa polygons ( 10%
of number of cocoa polygons, based on the CNN work of Kalischek et al.). Therefore,
additional non-cocoa areas (including from other regions) will be labelled manually and
sought from alternative sources.

• Sentinel 1 SAR data (C-band, wavelength = 5 cm): Radiometric terrain corrected, dB
gamma0, VV and VV-VH polarization, IW mode [12]

• Sentinel 2 Multispectral data: All bands of 10 m or 20 m resolution, filtered for containing
less than 10% cloud cover.[2]

– Band 2: Visible (blue), 490 nm - 10 m

– Band 3: Visible (green), 560 nm - 10 m

– Band 4: Visible (red), 655 nm - 10 m

– Band 5: NIR, 705 nm - 20 m

– Band 6: NIR, 740 nm - 20 m

– Band 7: NIR, 783 nm - 20 m

– Band 8: SWIR, 842 nm - 10 m

– Band 8A: SWIR, 865 nm - 20 m

– Band 11: SWIR, 1610 nm - 20 m

– Band 12: SWIR, 2190 nm - 20 m
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Appendix A

Figure 21: ”Modified U-NET Architecture” (Filella, 2018, p. 22)

Figure 22: ”CNN architecture to predict vegetation height, later adapted for Kalischek et al.
cocoa research (Lang et al., 2019, p. 6)
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Appendix B

Figure 23: Extent of Sentinel 2 tile used for initial experiments (the dark polygons represent
cocoa and non-cocoa ground truth polygons)
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Figure 24: Plotted accuracy and loss values of initial U-NET segmentation: (1) Training with
multispectral data (2) Training with multispectral and SAR data (3) Training with multi-
spectral and SAR data with non-cocoa labels
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Figure 25: IoU preliminary results (1) Cocoa class (2) Unknown class
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