
Deep Learning-Based
Algorithms for Stochastic
Control of Jump Diffusion

in Finance

Rodney Voskamp

October 2, 2023

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and

Computer Science
Delft Institute of Applied Mathematics

........

MSc Thesis Applied Mathematics

Deep Learning-Based
Algorithms for Stochastic
Control of Jump Diffusion

in Finance

Rodney Voskamp

October 2, 2023

Delft University of Technology

Thesis Committee
Dr. S. Liu, TU Delft and ING Bank, Supervisor
Prof.dr.ir, C. Vuik, TU Delft
Dr. F. Yu, TU Delft

To be defended on October 9, 2023

Delft, the Netherlands

Acknowledgements

I would like to express my gratitude to Dr. Shuaiqiang Liu for the guidance he
gave me during this thesis. He provided important background material and his
knowledge of neural networks proved invaluable. I would like to thank Prof.dr.ir
Kees Vuik for being the responsible professor. At last, I would like to mention
Dr. Fenghui Yu for being part of the examination committee.

ii

Abstract

PDEs, like HJB-equations, can be solved using grid-based methods. These
methods are inefficient for solving high-dimensional HJB-equation, because they
suffer from the Curse of Dimensionality. Neural networks may overcome this
problem. In this research, we solve high dimensional Partial Integro Differential
Equations (PIDE) using neural networks. PIDE are PDEs that are associ-
ated with a jump-diffusion process. In this work, we only use finite activity
jump processes. This means that the jump has a compensation component
that to make it a martingale. We show two methods to solve PIDEs: a forward
method (H-dBSDE, dBSDE-Jump) and a backward method (DBDP-MC). Both
methodologies use neural networks to regress the solution and its derivative. The
DBDP-MC is extended to jumps by calculating the compensation of the jumps
with an offline Monte Carlo simulation. We tested this methodology on Bermu-
dan basket options with 50 dimensions. The method was able to price them
correctly. The dBSDE was extended by adding a new set of neural networks.
These networks are learned with a different extra loss function. We argue that
we can learn the two losses in a hierarchical way, leading to the Hierarchical
dBSDE (H-dBSDE) method. Other work was done by minimizing the two loss
functions simultaneously by using the sum of them. Easier problems like pricing
European option can be solved correctly by the dBSDE-Jump method. How-
ever, we show that this can lead to wrong terminal fits, which makes it difficult
to solve complex problems efficiently.

Keywords— HJB-equation, Lévy process, DBDP, dBSDE

iii

Table of Contents

1 Introduction 1

2 The Hamilton-Jacobi-Bellman equation and the curse of dimension-
ality 4
2.1 Basics of Stochastic Calculus . 4
2.2 The Hamilton-Jacobi-Bellman equation and the dynamic programming

principle . 5
2.2.1 Dynamic Programming Principle 5
2.2.2 Deterministic Hamilton-Jacobi-Bellman equation 5
2.2.3 General Hamilton-Jacobi-Bellman equation 6

2.3 Curse of dimensionality . 7

3 Numerical schemes for PDEs in stochastic control with Itô-processes 8
3.1 Neural Networks . 8

3.1.1 Feed Forward . 8
3.1.2 Back-propagation . 10
3.1.3 Universal Approximation Theorem 11

3.2 Numerical schemes . 11
3.2.1 Deep learning Backward Dynamic Programming (DBDP) . . . 13
3.2.2 deep Backward Stochastic Differential Equation (dBSDE) . . . 14
3.2.3 Comparing the dBSDE and DBDP methods 15
3.2.4 Other neural network algorithms 16

3.3 Connection between the HJB-equation and neural networks 17
3.3.1 Barron Space . 17
3.3.2 Other Arguments . 18

4 Jump Diffusion 20
4.1 HJB for jump processes . 20

4.1.1 Lévy Process . 20
4.1.2 Bernoulli approximation . 22

4.2 Schemes . 23
4.2.1 Forward Backward SDE with jumps (FBSDEj) 23
4.2.2 Extensions to DBDP . 24
4.2.3 deep BSDE with Jumps . 25

4.3 Theoretical results for the FBSDEj and DBDP-MC 29
4.3.1 Uniqueness and Existence FBSDEj 29
4.3.2 Convergence of DBDP-MC . 30

5 Numerical Results 33
5.1 Hyperparameters . 33
5.2 Bermudan Options . 34

5.2.1 Setting . 34
5.2.2 A reference method: SGBM . 35
5.2.3 Test Case . 35
5.2.4 High dimensional Bermudan Options 36
5.2.5 Other options . 37
5.2.6 Poisson process and Bernoulli approximation 39
5.2.7 Conclusion . 40

iv

5.3 dBSDE-Jump . 40
5.3.1 Conclusion . 42

6 Discussion and Conclusion 43

References 43

Appendix A: Proofs of section 2 48

Appendix B: Proof of Itô lemma with jumps 52

Appendix C: dBSDE-Jump might lead to an incorrect solution 54

v

1 Introduction

Many modern tasks in mathematical finance can be described as an optimal control
problem. For example, option pricing can be described by a stochastic control problem.
Hedging is also a control problem [10]. Here we have a choice to buy, for example,
some stocks, bonds and options. The goal is to minimize the risk under the constraint
that we only have a finite amount of capital, the control. But stochastic control can
also price Credit Valuation Adjustment (CVA) [25, 29] and is even able to describe
the strategy used in High-Frequency-Trading [5, 16].

In this work, we price European, American and Bermudan basket options. Eu-
ropean options earn a pay-off at the end of their contract, the terminal time. For
example, an arithmetic-mean-put option sells the mean of the basket of assets for a
certain strike price. The goal is to determine the fair price for this option at the start
of the contract. American and Bermudan options can be exercised before the terminal
time. Bermudan options have a few early exercise opportunities. Here we are allowed
to wait for the next exercise chance or to earn the pay-off immediately. American
options are similar but can be exercised at any time before maturity. The early ex-
ercise choice makes this a more difficult problem. We can price Bermudan options
by comparing the pay-off at an exercise opportunity with the current expected price
of the option. Bermudan and American options should therefore be solved backward
through time.

We solve the optimal stochastic control problem by rewriting it into a PDE. To this
end, we first transform the control problem into a backwards recursive optimization
problem using the Dynamic Programming Principle. From here it is easy to derive
the PDE, the Hamilton-Jacobi-Bellman (HJB) equation. This HJB equation still has
an inner optimization problem. In this work, we solve the optimization problems
analytically. However, this analytic solution is not always available and may need to
be calculated using some numerical scheme. We substitute the analytic solution of the
optimization problem in the PDE, which we can solve using grid-based techniques.
From this, we can determine the desired solution to the optimal control problem.

However, when we get a high-dimensional PDE, grid-based methods suffer from the
Curse of Dimensionality (CoD). Solving the PDE becomes exponentially harder when
we increase the dimension of this PDE. A potential solution is to use neural networks,
since they are expected to be able to overcome the CoD. We use the networks as a
regression, where we fit the underlying asset to the value of the PDE. The target values
can be obtained from the boundary conditions of the PDE. The time is discretized
and we can use the PDE to calculate the relation between the solution at different
time steps. In this work, we use two methods, one method that is solved backwards
in time (Deep Backward Dynamic Programming: DBDP) and another that solves the
problem forward in time (deep Backward Forward Stochastic Differential Equation:
dBSDE).

Both the DBDP and dBSDE algorithms have shown good results for PDE that
can be associated with a simple Itô diffusion. However, this model may not describe
reality sufficiently. Sudden large price movements, jumps, often occur in financial
markets. For example, a stock can crash due to an economic crisis like in the financial
crisis in 2008 or the COVID pandemic. Theoretical and Empirical experiments have
demonstrated that these jumps can have a significant impact on various financial
problems, like option pricing and risk management. We can simulate these jumps
with a Lévy process. The problem becomes a lot more difficult, because we have an
additional term to learn. Moreover, in most models, the jumps are modeled using a

1

distribution. This means that we have two extra types of randomness we have to take
into account, namely when the jump happen and the size of these jumps. At last,
the paths are not continuous when simulating jumps, which makes the underlying
mathematics more complicated. In this work, we only use finite activity jumps. This
means that we can turn the processes into a martingale by compensating the jumps.
This compensation needs to be calculated analytically or simulated with a Monte Carlo
simulation.

(a) Stock values for Unilever. source:[36] (b) The price of the S&P 500 index.

Figure 1: Jumps happen frequently in the financial markets, for example, dur-
ing the Asian crisis in 1997-1998 (a) or the 2008 financial crisis and COVID
pandemic (b).

While the jumps make the problem more complicated, it still has similarities with
the simple Itô-diffusion problems we could solve with the DBDP and dBSDE methods.
This suggests that we only need to add extra terms to these algorithms. For the
backwards DBDP method, the theoretical groundwork was already done in [17]. A
new set of neural networks is introduced to describe the jumps, while the compensation
part is obtained with an online Monte Carlo simulation. However, an online Monte
Carlo simulation is inefficient and is often too slow, especially for large dimensional
problems. Therefore, we change it into an offline Monte Carlo simulation. We test this
algorithm by pricing Bermudan basket options. We were able to obtain good results
for options with 50 underlying stocks.

Similarly, the dBSDE was adapted in [24] to allow jumps. Here we added an
additional set of networks to emulate the compensation of the jumps. These networks
need to be learned using a different loss function: the Jump Loss. The original loss
function (Terminal Loss) and the Jump Loss are both minimized simultaneously by
summing them up. This means that the loss functions try to find some ”balance”
and that they both are non-zero. We will show that this algorithm is able to price
European options correctly, but it will be almost the same as a simple Monte Carlo
simulation. The dBSDE-Jump methodology may fit non-initial times incorrectly. This
means that it is questionable whether the dBSDE-Jump method is able to solve more
complex problems. We argue that we can overcome this problem by either solving the
problem in a hierarchical structure or by minimizing both loss function separately.

2

This work is structured as follows. First, we show some basic stochastic calculus.
We use this to prove the Dynamic Programming Principle and to derive the HJB-
equations. This is followed by a short explanation of the Curse of Dimensionality. In
Chapter 3, we start with an explanation of neural networks. This is then followed by
a description of the DBDP and dBSDE algorithms. At last, we show some arguments
why neural networks are able to overcome the CoD. In the next chapter, we extend
the results from chapters 2 and 3 to jump processes. First, we show some stochastic
calculus with jumps, followed by the description of the DBDP and dBSDE with jump
methods. This includes the explanation of why the dBSDE-Jump algorithm may not
work as intended. At last, the convergence of the DBDP method is shown. Chapter 5
shows the results.

3

2 The Hamilton-Jacobi-Bellman equation and
the curse of dimensionality

In this section, we derive the Hamilton-Jacobi-Bellman equation (HJB-equation). To
do this, we first recall some basic stochastic calculus and derive the Itô lemma for
Itô-diffusion processes. We continue by defining the optimal control problem. We
transform this problem into a backwards recursive relation with the dynamic pro-
gramming principle. This allows us to derive the HJB-equation. This PDE can easily
be solved in low dimensions. In the final section, we show why it is difficult to solve it
for higher dimensions. All proofs from this section can be found in Appendix A.

2.1 Basics of Stochastic Calculus

In this section, we derive the Itô lemma for simple diffusion processes. We do this
using the quadratic variation:

Definition 1. Let 0 = t0 ≤ t1 · · · ≤N= t be a partition of [0,t]. Let h be the maximum
distance between ti, ti+1. Then the quadratic (co)variance is

< X,Y >t= lim
h→0

∑
i

(Xti −Xti−1)(Yti − Yti−1)

In the case of Brownian motion W , we have E((Wti − Wti−1)2) = ti − ti−1 and
Var((Wti −Wti−1)2) = 2(ti − ti−1)2. This suggests that < W,W >t= t and similarly
< t,W >= 0. This is summarized in the Itô table

dt dW

dt 0 0
dW 0 dt

From the Itô table and using Taylor’s expansion theorem, we can prove Itô lemma.
We now state Itô formula:

Theorem 1. Let Xt be a process. Let f(t,x) be twice differentiable and Yt = g(t,Xt).
Then

dYt =
∂f

∂t
dt +

∂f

∂x
dX +

∂2f

∂x2
d < X,X >

Which gives us the Itô lemma for the Itô-diffusion process.

Corollary 1.1. Let Xt be an Itô diffusion process

dXt = µ(t, x)dt + σ(t, x)dWt

Let f(t,x) be twice differentiable and Yt = g(t,Xt). Then

dYt = (
∂f

∂t
dt + µ

∂f

∂x
+ σ

∂2f

∂x2
)dt + σ

∂f

∂x
dWt

We can use this theorem to derive the infinitesimal generator of a diffusion process.
This generator will appear in the HJB equation.

4

Lemma 2. The infinitesimal generator given by

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

of an Itô diffusion process is

Lf = (
∂f

∂t
+ µ

∂f

∂x
+ σ2 ∂

2f

∂x2
)

2.2 The Hamilton-Jacobi-Bellman equation and the dy-
namic programming principle

2.2.1 Dynamic Programming Principle

In this section, we show the Bellman equation or Dynamic Programming Principle
(DPP). The DPP allows us to rewrite a problem backward and recursively. In the
current application, we want to optimize actions for a Markovian process. Therefore,
we pick a process Xt,x

t0
with a cost function as follows:

• Markovian process Xt,x
t0

, where t0 ≤ t ≤ T and Xt0,x
t0

= x

• J(t, x, α) = E[g(XT,x
t0

) +
∫ T

t0
l(s,Xs,x

t0
, αs)ds]

• v(t, x) = infa∈AJ(t, x, a)

Here a show the results from our actions. We have different possible actions, which
are restricted to an action space A. The goal is to minimize the cost function J ,
which consist out of a terminal cost(g) and some instantaneous or holding cost (l).
We rewrite the cost function J by stopping the process at τ . This makes it possible
to express the cost function recursively:

Theorem 3. For all stopping times τ ∈ [t0, T],
J(t, x, α) = E[J(τ,Xτ,x

t0
, α) +

∫ τ

t0
l(s,Xs,x

t0
, αs)ds]

The DPP is similar to the equation above, except here we use the optimal control.
We state the DPP and use theorem 3 to prove this result.

Theorem 4. Let Xt be a controlled Markov process, then for all τ ∈ [t0, T]
v(t0, x) = infa∈AE[

∫ τ

t0
l(s,Xs,x

t0
, αs)ds + v(τ,Xt0,x

τ)]

This theorem shows that we solve optimal control problems recursively. We split
the problem in two parts by setting a stopping time τ . Theorem (4)shows that obtain-
ing v(t0, x) requires v(τ,Xt0,x

τ), which is the same problem on a smaller time-interval.
On top of that, we need to solve another optimization problem: minimize the right-
hand-side of theorem (4). By splitting the problem multiple times, we note that we
can solve the problems backwards.

2.2.2 Deterministic Hamilton-Jacobi-Bellman equation

We can derive a PDE from a controlled stochastic process. The idea is to use the DPP.
The unused terminal cost term will act as the terminal condition for the PDE. First,
we show the derivation for a HJB equation of a deterministic process:

Let there be a controlled deterministic process

dXt = b(Xt, αt)dt

5

Here αt is the control defined on a convex set A. An agent tries to minimize a cost
function J(a) based on this deterministic process.

J(a) = g(xT) +

∫ T

t0

l(xs, αs)ds

With t0 the initial time and T the terminal time. The cost function is split into a
terminal cost (g(XT)) and a cost for the duration for the process (l(xt, αt). We denote
the wanted minimum cost as u(t0, x):

u(t0, x) = infa∈Ag(xT) +

∫ T

t0

l(xs, αs)ds

We use the dynamic programming principle (DPP) followed by a Taylor expansion:

u(t0, x) = infa∈Au(t, x) +

∫ t

t0

l(xs, αs)ds

u(t0 + ∆t, x(t0 + ∆t) = u(t0, x(t0)) +
∂u

∂t
∆t +

∂u

∂x
∆xt + o(∆t)

= u(t0, x(t0)) +
∂u

∂t
∆t +

∂u

∂x
b(a, α)∆t + o(∆t)

We substitute this into the DPP for t = t0 + ∆t

u(t0, x) = infa∈Au(t0), x(t0)) +
∂u

∂t
∆t +

∂u

∂x
b(a, α)∆t +

∫ t

t0

l(xs, αs)ds

0 = infa∈A
∂u

∂t
∆t +

∂u

∂x
b(a, α)∆t +

∫ t

t0

l(xs, αs)ds

We divide the equation above by ∆t and take its limit to zero, this gives

0 = infa∈A
∂u

∂t
+

∂u

∂x
b(a, α) + l(x, αt)

This is the Hamilton-Jacobi-Bellman equation (HJB) of this process.

2.2.3 General Hamilton-Jacobi-Bellman equation

Deriving the HJB equation for a general Itô-diffusion is similar as in the previous
section. This results in the following theorem:

Theorem 5. Let Xt be a Feller (and therefore Markovian) process. Take the cost
function

J(a) = Ex(g(xT) +

∫ T

t0

l(xs, αs)ds)

, where
Ex(·) = E(·|X0 = x)

Then this is equivalent to the PDE

infa∈ALu(t, x) + l(xt, αt)) = 0

where L the infinitesimal generator given by

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

6

Theorem (5) suggest that we can derive the HJB equation quickly when we can
obtain the infinitesimal generator of the process. This generator for the Itô diffusion
process was already shown in lemma (2).

2.3 Curse of dimensionality

In this work, we will solve high dimensional PDEs. For low dimensions, we can solve
such a PDE with for example, the finite difference or finite elements method. Al-
ternatively, we can use methods that use bundling or basis functions [12, 19, 44].
These methods require a discretization in X. This will lead to an error decay of order

ϵO(− 1
d
). So for high dimensions, we will need a very fine discretization to solve the

PDEs. Therefore, these methods cannot solve high dimensional PDEs. This is called
the Curse of Dimensionality (CoD) [9].

One method that is in some cases able to overcome the CoD is the Monte Carlo
algorithm. Currently the Longstaff-Schwarz algorithm ([33]) is used to price Bermudan
options. This algorithm requires a regression at every exercise opportunity. This is
inefficient for high dimensions. Moreover, Monte Carlo algorithms solve the PDE at
a single point Xi. If we want to obtain the solution over a region, we notice that we
will need to discretize this region. This is again inefficient for high dimensions. In this
work, we will use neural networks to solve PDEs. We will also show arguments why
it may solve the CoD.

7

3 Numerical schemes for PDEs in stochastic con-
trol with Itô-processes

In this section we show how we can solve high dimensional HJB-equations. The main
idea is that neural networks are likely to overcome the curse of dimensionality. There-
fore, we start by introducing neural networks. We show that neural networks are able
to approximate functions by showing the Universal Approximation Theorem. We can
then use the neural networks in numerical schemes to solve PDEs. We discretize the
time and show a method that solves the problem backwards through time and one
that solves it forwards through time. We continue by showing the differences between
the methodologies and quickly note two other neural network methods that can be
used. In the final section, we give a short reasoning of why neural networks are able
to overcome the curse of dimensionality.

3.1 Neural Networks

High dimensional numerical schemes to solve HJB-equations, like finite differences,
suffer from the curse from dimensionality. We try to overcome this problem by in-
troducing schemes that incorporate neural networks. In this section, we first describe
describe the main idea behind neural networks. Afterwards, we show some arguments
why neural networks can be free from dimensionality.

3.1.1 Feed Forward

Originally, neural networks were inspired by a model of the human brain. The idea was
that the many connections between neurons should describe how the brain processes
information. This was used to create neural networks. A perceptron or neuron uses
simple operations to calculate an output. Many of these neurons are put in layers
and these layers are connected in succession. The final layer gives the output of the
network.

We describe the perceptron in more detail. It calculates a weighted sum of the
output of the previous layer and an extra bias term. This bias term gives more
flexibility to the network. For example, without bias, if we take xi = 0, we get that the
output always becomes σ(0) = 0. The summed output is mapped by some nonlinear
function σ, the activation function. This gives the network some non-linearity and
therefore allows the network to learn a non-linear target. In general, the output in
neuron j is given by σ(bj +

∑
i wixi). Next, we show the structure of a whole network.

In the next figure, we show a single neuron in one of these layers.

8

Figure 2: A single neuron, it has 3 inputs from neurons on the previous layer
and a bias. This output is σ(w1x1 + w2x2 + w3x3 + b1).

Figure 2 shows a neuron with 3 neurons in the previous layer or as the input for
the network. Its output is used in another layer of the network. This is seen in the
figure 3.

Figure 3: A neural network with a 2 dimensional input (blue) and a one dimen-
sional output (yellow). It has 2 hidden layers with3 neurons each (orange).

We see that the input moves through 2 hidden layers before it gives an output.
Writing the weights between layers as a matrix (Wi) and the biases as a vector (Bi),
we can calculate this output by

AL ◦ σ ◦AL−1 ◦ . . . ◦ σ ◦A1(x)

with
Ai(x) = Wix + Bi

The output differs when using different weights and biases. The aim is to adapt
the parameters Wi and Bi such that for all input x we get the desired output. This
adaption is done using back propagation algorithms. From this point, we set all weights

9

and biases as θ(θi per layer). This means that we only need to choose an activation
function σ. Szanda la [43] gives an overview of the most important functions. In
this work, we will use the Tanh and ELU activation function. The Tanh activation
function is used since the used algorithms emulate recurrent neural networks. When
pricing options, we sometime use ELU , since this is a smooth activation function that
is similar to pay-off functions.

3.1.2 Back-propagation

In this section, we describe how we can adept the parameters. For this, we use a loss
function ell(x, y), which is 0 when x = y. We will try to minimize this loss function.
The most common method is Stochastic Gradient Descent (SGD). We calculate the
gradient of the loss function. This is done backwards starting from the output and
using the chain rule. We decrease the loss by taking step into the direction of the
minimum. θn+1 = θn − ηn∇θℓ(x, y). Here we get another hyper parameter ηn, which
we call the learning rate. This leads to the following pseudo-code:

Algorithm 1 Stochastic Gradient Descent

1: initialize θ0
2: for batch do
3: sample (x, y)
4: calculate output ŷ from input x using the neural network
5: calculate the loss ℓ(y, ŷ)
6: adept the parameters: θn+1 = θn − ηn∇θℓ(y, ŷ)
7: end for

SGD can be slow and it has a constant learning rate. The improved algorithm
RMSProp uses an automatically adapting learning rate. The idea is that the learning
rate should become smaller depending on how much the parameters have changed.

Algorithm 2 RMSProp

1: initialize θ0 and let ϵ be some small positive number. Set v0 = 0 and choose
decay parameter β.

2: for batch do
3: sample (x, y)
4: calculate output ŷ from input x using the neural network
5: calculate the loss ℓ(y, ŷ)
6: vt = βvt−1 + (1− β)(∇θℓ(x,y))2

7: adept the parameters: θn+1 = θn − ηn√
vt+ϵ
∇θℓ(y, ŷ)

8: end for

We can extend RMSProp by using the momentum of the previous movements.
This means that we remember the previous gradients and use this information in the
current step. This can increase the speed of this optimization problem. This algorithm
is called ADAM and is the current state of the art for training parameters in neural
networks.

10

Algorithm 3 ADAM

1: initialize θ0 and let ϵ be some small positive number. Set m0 = v0 = 0 and
choose decay parameter β1 and β2.

2: for batch do
3: sample (x, y)
4: calculate output ŷ from input x using the neural network
5: calculate the loss ℓ(y, ŷ)
6: vt = β1vt−1 + (1− β1)(∇θℓ(y, ŷ))2

7: mt = β2mt−1 + (1− β2)∇θℓ(y, ŷ)
8: v̂t = vt

1−β1
▷ Correct bias

9: m̂t = mt

1−β2
▷ Correct bias

10: adept the parameters: θn+1 = θn − ηn√
v̂t+ϵ

m̂t

11: end for

3.1.3 Universal Approximation Theorem

A key part of the algorithms we will use is making neural networks approximate known
functions. Therefore, we restate the Universal Approximation Theory (UAT), which
shows that neural networks are able to do this.

First, we look into shallow neural networks. This simple neural network structure
is well studied and various results for the UAT are proven [20, 30, 32]. We show a
sketch of a proof that a shallow neural network with the sigmoid activation function is
a universal approximator. A key idea is that we can use multiple activation functions
to act as a step- or block- function. This requires appropriate properties on the acti-
vation function. We can approximate a function with a simple function (see Lesbeque
integration), which means that we can use the block-functions to approximate any
function.

While we are able to approximate any function with shallow neural networks, but
this requires a lot of neurons. Empirical results show that deep neural networks are
more efficient in approximating functions. There already exist some results that show
that deep networks are more efficient than shallow networks [34, 46].

3.2 Numerical schemes

In this section, we describe how we can solve high-dimensional HJB-PDE using neural
networks. To do this, we discretize the time and use neural networks to approximate
the solution at each time step. The function we want to approximate can be calculated
by using a different time step and the forward-backward stochastic differential equation
(FBSDE). We can easily derive this FBSDE by using Itô lemma. The structure of this
section is as follows: First, we start by deriving the FBSDE. Afterwards, we describe
the two algorithms that we will use, DBDP and dBSDE. In the final section, we show
some other methods that use neural networks, but will not be used in this work.

We will derive three different FBSDEs, which corresponds to different PDEs. First,
we derive the classic FBSDE for nonlinear parabolic PDEs. We continue with the
derivation of the FBSDE of fully nonlinear PDEs. Afterwards, we show the 2BSDE,
an alternative way to obtain a fully nonlinear FBSDE.

We start with a simple Itô diffusion process

dXt = µ(t,Xt)dt + σ(, Xt)dWt. (1)

11

We have the nonlinear PDE

∂u

∂t
+ Lu + f(t, x, u,∇xu) = 0, (2)

u(T, x, u,∇xu) = g(x, u,∇xu), (3)

where L the infinitesimal generator of the Itô process given by Equation (1). We
denote the following doublet of parameters (Yt, Zt):

Yt = u(t,Xt)........Zt = ∇xu(t,Xt) (4)

Next, we use Itô formula (Yt on Itô diffusion (Equation 1)):

dYt = [
∂u

∂t
+ µ(t,Xt)∇xu +

1

2
tr(σσT ∆xu)]dt + σ(t,Xt)∇xudWt. (5)

Substituting the PDE (Equation (2)) gives:

dYt = −f(t, x, y, z)dt + σ(t,Xt)ZtdWt (6)

At last, we only need to integrate this expression to obtain the FBSDE:

Yt = g(XT) +

∫ T

t

f(t, x, y, z)ds−
∫ T

t

σ(s,Xs)ZsdWs (7)

.
If we have a control on the volatility term, we get an HJB-PDE that cannot be

described by Equation (2). Therefore, we quickly show the FBSDE when using a fully
nonlinear PDE:

∂u

∂t
+ f(t, x, u,∇xu,∆xu) = 0. (8)

The main difference is that the Hessian is part of the PDE. Moreover, the infinitesimal
generator is already described in f(t, x, u,∇xu,∆xu). We denote the following triplet
of parameters (Yt, Zt):

Yt = u(t,Xt)........Zt = ∇xu(t,Xt)........Γt = ∆xu(t,Xt) (9)

We can now get the FBSDE by following the same steps as before. This leads to the
following FBSDE:

Yt = g(XT)−
∫ T

t

[µ(s,Xs)Zs+
1

2
tr(σσT Γs)−f(t, x, y, z)]ds−

∫ T

t

σ(s,Xs)ZsdWs (10)

There is also an alternative way to write this FBSDE, namely the 2BSDE. This
2BSDE has 2 forward components. One of these components is the already derived
FBSDE (Equation (10)). The goal is to obtain a second forward equation such that
the triplet (Yt, Zt,Γt) is unique. To do this, we use similar steps on Zt = ∇xu. First
we use Itô lemma:

dZt = ∇xzdXt + [
∂z

∂t
+

1

2
tr(σσT ∆xu)]dt. (11)

Note that the first term on the right-hand-side gives the Hessian. Now write

At =
∂

∂t

∂u

∂x
+ L(

∂u

∂x
). (12)

This gives the 2BSDE:

Yt = g(XT)−
∫ T

t

[µ(s,Xs)Zs+
1

2
tr(σσT Γs)−f(t, x, y, z)]ds−

∫ T

t

σ(s,Xs)ZsdWs (13)

Zt = Z0 +

∫ t

0

Asds +

∫ t

0

ΓsdXs (14)

12

3.2.1 Deep learning Backward Dynamic Programming (DBDP)

In this section, we describe the Deep learning Backward Dynamic Programming (DBDP)
algorithm. This method was first explored by Huré et al. [31], where they explain it
for a simple nonlinear PDE (equation (2)). This means that we use the FBSDE given
by equations (1) and (7). First, we discretize the FBSDE with the Euler-Maruyama
method:

Xti+1 = Xti + µ(t,Xti)∆ti + σ(t,Xti)δWti . (15)

Yti+1 = Yti − f(ti, x, y, z)∆ti + σ(ti, Xti)Zti∆Wti = F (ti, Xti , Yti , Zti ,∆ti,∆Wti).
(16)

The idea is to use neural networks for all Yti and Zti . When using enough neurons,
the universal approximation theorem holds and therefore the networks are able to act
as the desired functions.

As the name implies, the algorithm goes backward in time. This means that
we first need to learn the terminal networks, which can be done using the terminal
condition. This problem is the same as standard regression using neural networks. We
can now calculate the wanted output of the networks a time step earlier by using the
FBSDE (equation (16)) and the networks of the final layer. We continue this for each
time step. This gives the following pseudocode given in Algorithm 4:

Figure 4: The schematic overview of the DBDP algorithm

13

Algorithm 4 DBDP

train UN and ZN by minimizing E(UN − g(xtN))2 and E(ZN −Dg(xtN))2

for i← N − 1 to 0 do
train Ui and Zi by minimizing E(Ui+1 −

F (ti, Xti ,Ui,Zi, DZi+1,∆ti,∆Wti))
2

end for

This algorithm has been extended to the fully nonlinear case by Pham et al. [39].
Here they use the FBSDE representation as in equation (10). The Hessian is calculated
using automatic differentiation of the Z networks. This guarantees that the triplets
(Ui,Zi,Γi) give unique solutions. For some complex PDEs, the Hessian can become
very oscillating at the edge of the attained domain. These oscillations can propagate
and lead to a wrong solution or even non-convergence. They solve this by truncating
the Hessian to make sure the oscillations cannot become too large. A multistep version
of the DBDP algorithm was proposed by Germain et al. [23]. The main difference
is that in the simple DBDP method, we learn Ui only from Ui+1. The multistep
method learns Ui from Ui+1,Ui+2,Ui+3, . . .UN−1 and UN . The idea is that this reduces
error propagation. This means that we are able to obtain a more accurate solution.
Moreover, it is able to solve fully nonlinear PDEs.

3.2.2 deep Backward Stochastic Differential Equation (dBSDE)

Some problems do not follow the DPP and cannot be solved by the DBDP method
[3]. Also, the DBDP is a backward algorithm and this can make solving certain
problems more complicated. Therefore, we introduce a different method to solve HJB-
equations: the deep Backward Stochastic Differential Equation (dBSDE) algorithm
as introduced by Han et al. [28]. This method solves the corresponding FBSDE in
a forward direction, whereas the DBDP does this in a backward direction. Similar
as in the DBDP case, we use the Euler-Maruyama method to discretize the FBSDE
(equation (7)). We will then, for every time step, use a neural network Zi to emulate
the Z-component. We also let Y0 be a trainable parameter. We can now use the Euler
discretization and Zi to calculate Yti for ti > 0. We then compare the output after
all the steps with the terminal condition. This leads to the following pseudocode in
Algorithm 5:

14

Figure 5: The schematic overview of the dBSDE algorithm

Algorithm 5 dBSDE

initialize networks Zi and Y0.
for iteration do

for i← 0 to N − 1 do
Calculate Yi+1 = F (ti, Xi, Yi,Zti ,∆ti,∆Wti)

end for
minimize E(YN − g(T,XN))2

end for

We can extend this method to solve fully nonlinear PDEs. This was done by Beck
et al. [8] by using the 2BSDE (equation (14)).

3.2.3 Comparing the dBSDE and DBDP methods

The main difference between these two methods is that the DBDP goes backward
through time, while the dBSDE goes forward. Some problems are easier to solve by
choosing the correct direction in time. This is especially true for problems that do
not follow the DPP. The DBDP method is not able to solve these problems directly
while the dBSDE method can. However, even if the problem follows the DPP, there
can still be an algorithm that solves the problem in a more direct and convenient
way. For example, coupled FBSDEs can be simulated easily by the forward dBSDE
method. The backward DBDP methodology requires us to calculate the Yi components
implicitly. Similarly, barrier or Asian options can be priced easier by using the forward
method. In barrier options, we can remember whether the barrier has been reached
before and use it directly in the dBSDE networks, see [22]. If we want to price
barrier options with the DBDP method, we need a different way to account for the
barrier. One way is to calculate the chance of breaking the barrier using a Monte
Carlo simulation. This is less efficient than using the dBSDE method. Moreover, we
need to use a Brownian bridge construction for this Monte Carlo simulation. For more
complex processes, there may not be an easy way to find an equivalent process to this

15

Brownian bridge. On the other hand, backward processes are able to price American
options efficiently. We can rewrite the problem into a DPP-like problem. This means
that we will compare the price at the current time to the next (possible) exercise date.
This is not possible with forwards methods like the dBSDE.

There are also some other differences between the methods. [1, 23, 31] argue that
the DBDP is generally more likely to converge to the desired functions. The dBSDE
is similar to a recurrent neural network, which makes it more vulnerable for exploding
and vanishing gradients. Changing the algorithm slightly, like [2], may solve this issue.
Another advantage for the DBDP method is that the solution is easily obtainable for
all time steps. The dBSDE only gives a clear solution for the initial time. For all
other time steps, we need all Xi until this time step. Since these are random variables,
the obtained solution is also a random variable. Moreover, if the underlying process is
complex, we may not be able to create a Brownian bridge like path. This means that
we need to find a different way to get the solution at a certain point.

However, the dBDSDE methodology also has an advantage over the DBDP method.
In the dBSDE method, all time steps are learned at the same time. Therefore, we can
continuously refine the networks. We can check the current loss and decide to con-
tinue training. It even allows us to choose a different learning rate if we notice that the
networks are not learning correctly. In contrast to the simultaneously learned dBSDE
networks, the DBDP method is solved consecutively. This means that we need to stop
learning a networks after a certain amount of iterations, which lead to an error. This
error propagate through the next networks and can lead to an inaccurate solution.
Moreover, when we refine this later network to obtain a more accurate approximation,
we will also need to relearn all the earlier other networks.

3.2.4 Other neural network algorithms

DBDP and dBSDE are not the only algorithms that have been developed. In this
section, we briefly mention 2 other methods that solve HJB equations using neural
networks.

First, we show the Deep Galerkin Method (DGM) [42]. This algorithm does
not need a time discretization and is inspired by Physics-Informed Neural Networks
(PINN). We let f(t, x; θ) be a neural network. For the DGM, we sample 3 different
type of points:

1. (tn,xn) ∈ ([0, T], Ω): these are the point that describe the PDE. We calculate
the loss that corresponds to these points with E(∂f

∂t
(tn, xn) +Lf(tn, xn))2. The

derivative and L can be calculated using automatic differentiation.

2. (τn,zn) ∈ ([0, T], ∂Ω): These are the boundary points. The loss is calculated as:
E(f(τn, zn) − gboundary(τn, zn))2.

3. wn ∈ Ω: This is the terminal condition. This has E(f(T,wn) − g(wn))2 loss.

In the DGM, we generate the 3 different type of points and sum the (weighted) losses.
We then use backward propagation to adapt θ. To make sure that the terminal and
boundary conditions are learned correctly, we need to weight the losses. This makes
the DGM hard to train. The advantage of this method is that we only need 1 network
and there is no time discretization error.

16

Another method is deep Splitting (DS). This method is similar as the DBDP. It
uses a time discretization and the FBSDE is solved backward. As with DBDP, DS
uses a new set of neural networks at all t. It differs from DBDP by using a regression
argument in the FBSDE. We write out the argument we use to learn network Ui for
both the DBDP and the DS methods.

DBDP: E(Ui+1(Xi+1) − Ui(Xi) − f(ti, Xi,Ui,Zi)∆t−Zi(Xi)∆Wi)
2

DS: E(Ui+1(Xi+1) − Ui(Xi) − f(ti, Xi,Ui, DxUi)∆t)2

So the Z∆Wi term does not appear in the deep splitting method, while it does in
the DBDP. Moreover, we cannot use a second type of networks for the derivatives (Z),
it needs to be calculated using automatic differentiation. There also exists a DBDP
version that uses automatic differentiation [31], but it will not be used in this work.

At last, we note a possible extension to the algorithms. Solving an HJB-equation
requires the solution of an optimization problem and the solution of a PDE. We solve
the HJB equation by finding an analytic solution to the optimization problem and
substituting it in the HJB to obtain a simple PDE. Finding an analytic function
is not always easy and using a numerical scheme needs to overcome the curse of
dimensionality. [4] solves this problem for the DGM. They solve the optimization
problem with a Policy Improvement Algorithm (PIA). They alternatively take a back
propagation step between the DGM algorithm and the PIA, creating the hybrid DGM-
PIA algorithm. This idea should also be useful for solving HJB-equation without
the analytic solution of the optimization problem with the dBSDE, DBDP and DS
algorithms.

3.3 Connection between the HJB-equation and neural net-
works

In this section we describe why neural networks are able to solve high dimensional
HJB-equations. Darbon et al. [21] show that some HJB-equations can be written as a
special type of neural network, the dynamics of the HJB-PDE are directly described
by neural networks. They show that we can approximate the wanted functions using
neural networks without relying on the universal approximation theorem. However,
we will try to solve more general HJB-equations and cannot initialize the data as
described by Darbon et al. [21] Moreover, we will use a Tanh or ELU activation
function instead of argmax. Therefore, we require other reasons why neural networks
can solve high dimensional problems. Proving this is out of the scope of this work,
but we will give arguments why it is reasonable to suspect that neural networks can
overcome CoD.

3.3.1 Barron Space

First, we show the argument that shallow neural networks are CoD free using Barron
spaces. The idea is to write out the whole architecture of this network. We introduce
a Barron norm that uses this architecture formula. Then we can show that there exist
some functions in this Barron norm and that they can be approximated CoD free. We
use the ReLU activation function as an example.

We choose a shallow neural network with the ReLU activation function and n
neurons. This can be represented as ϕ(x) =

∑
i w1,iσ(w2,ix+bi). Using an appropriate

17

probability density µ, we can describe this as:

ϕn(x) =
1

n

∫
w1σ(w2x + b)dµ(w1, w2, b) = E(w1σ(w2x + b)). (17)

We introduce the Barron norm for shallow ReLU networks.:

||ϕ||Bp = infµ(E(|w1|p(||b||1 + w2)p))
1
p ,where 1 ≤ p ≤ ∞. (18)

The Barron Space consist of all functions with a finite Barron norm:

B = {ϕ : ||ϕ||Bp < ∞}. (19)

Not every function has a finite Barron norm. But we will need a finite Barron norm
to show that it is possible to approximate this function CoD-free. For this example,
we have a finite Barron norm when the following holds:

γ(g) =

∫
||w||21|ĝ(w)dw < ∞, (20)

where ĝ the Fourier transform of g(x).

Theorem 6. If γ(g) < ∞, than there exist a constant c such that ||ϕn(x) − g(x)||2 ≤
c||g||B

n

The proof of this theorem and other Barron spaces can be found in [7, 11, 15]. It has
been shown that for function in the Barron space, it is also learnable without CoD [14].
However, for high dimensions, there are functions that cannot be approximated well
by Barron functions, even though they are Lipschitz-continuous [45]. These functions
are inefficient to learn and may suffer from the CoD.

Not every problem has been successfully described using Barron spaces, Therefore,
we also look at some other reasons why neural networks may overcome the CoD.

3.3.2 Other Arguments

First, we argue the usefulness of deep neural networks. [40] show that in some classes
deep neural networks are exponentially better than shallow neural networks. In [40] it
is shown that some subclasses of compositional functions (like hierarchical functions)
can be regressed CoD free using convolutional neural networks. The main idea is
that hierarchical functions can be written in a tree-like structure. Shallow neural
networks cannot use this information, while deep neural networks can. These deep
neural networks can restructure itself to such a tree-like graph, assuming it has enough
width and depth. It does not need to approximate the tree exactly. We can use a
different graph in the neural network if this leads to a small enough error. The small
subgraphs are neural networks on its own, which means that we can approximate this
function with a lower effective dimension. This shows that it can be used to solve high
dimensional financial problems. Notice that the payoff of a simple European option
can be described by a hierarchical function. This allow us to use DBDP or dBSDE to
price options with a lower effective dimension.

A lower effective dimension can also be obtained in a different way. The idea is that
we can rewrite the data as if they lay on a lower dimensional manifold. We can solve
this problem using finite differences on this lower dimensional manifold. This can,
depending on the problem, effectively be emulated by a neural network. Theoretical
results have been in shown in [11, 18, 41].

18

Not all problems fit the requirements in the arguments above. A useful method is
to show that a problem is similar or the same as a different problem which has been
shown to be CoD-free. For example, [27] shows that the Black-Scholes PDE can be
solved by neural networks CoD-free. The proof uses that the drift rate µ and volatility
σ of the paths are affine and they relate it to Monte Carlo. For a different example,
[26] shows that HJB equations can be solved CoD-free if we take some restrictive
assumptions.

19

4 Jump Diffusion

In this section we extend the work of the previous chapter to Jump processes. We start
by defining the Lévy process and derive its corresponding Itô lemma. Afterwards, we
extend the DBDP and dBSDE methods. The DBDP method is easily adapted by
emulating the jumps with the U-networks and an offline Monte Carlo simulation.
However, we cannot extend the dBSDE method in a similar way. We add a new
set of neural networks to simulate the jumps. These networks need to be learned,
which means that we will get a second loss function. We argue that when we solve
them hierarchically or simultaneously, we will get the desired solution. However, some
work was already done by minimizing the sum of these loss functions. We show
why summing these losses can lead to wrong solutions, but that it is always to price
European options correctly. At last, we show that the FBSDE with jumps (FBSDEj)
exist and is unique. Moreover, we show results for the convergence of the DBDP
method with jumps.

4.1 HJB for jump processes

In this section we show how we can derive HJB-equations for jump (Lévy) processes.
We will see that these processes can be split in a continuous part (the Itô diffusion
part) and a jump-only part. We continue by deriving the Itô lemma for Lévy processes.
This allows us to form a PDE from this Lévy process and to derive its infinitesimal
generator. We use this to derive the HJB equation in the same way as we derived the
Itô diffusion case.

4.1.1 Lévy Process

First we show the definition of a Lévy process and the definition of a jump in this
Lévy process.

Definition 2. A process ηt that is adapted to its filtration is a Lévy process if it
satisfies the following conditions

1. η0 = 0 almost surely

2. ηt is cadlag in probability, e.g. it is right continuous with left limits

3. ηt has stationary increments, ηt − ηs
d
= ηt−s

4. ηt has independent increments

Definition 3. A jump in a Lévy process ηt is given by

∆ηt = ηt − ηt−

To simulate the Lévy process, we need to sum the jumps in a certain time interval.
The jumps all have a certain size, which can be random or deterministic. In this work,
we choose random jump sizes, so the jumps are described using a distribution. We will
integrate functions with respect to jumps. This requires us to have a measure to sum
the amount of jumps, independent of their size. This is done in the Poisson Random
Measure (PRM, jump measure).

20

Definition 4. Let U ∈ B0, where B0 be the Borel sets without 0 in its closure. The
Poisson Random Measure (PRM) is given by

N(t, U) = N(t, U, ω) =
∑

0<s≤t

XU (∆ηs)

The PRM gives the amount of jumps till time t. From now on, we will not specify
that jumps of size 0 are not allowed. Generally all jumps appear in Rd. We use the
PRM to define the Lévy measure.

Definition 5. The Lévy measure of ηt is given by

ν(U) = E(N(1, U))

We will use the Poisson Process to simulate when there is a jump. We will see
that this allows us to rewrite any Lévy process with finite Lévy measure in a process
that uses the Poisson process. We state the Poisson Process and use this to define the
Compound Poisson Process.

Definition 6. The Poisson process P(t) is a Lévy process with intensity factor λ with
values in N ∪ {0} given by

P(P (t) = n) =
(λt)n

n!
e−λt

Definition 7. Let µX be a distribution. Now let X(1), X(2) ... X(P(t)) be i.i.d.
random variables distributed from µx and P (t) an independent Poisson Process. The
compound Poisson process is then given by

Yt =

P (t)∑
i=0

X(i) =

∫ T

0

∫
Rd

zN(dt, dz)

Note that the compound Poisson Process is a Lévy process. From this point, we
will assume that the jump process is a compound Poisson process. Therefore, it is
useful to calculate the Lévy measure of this process. We also define the compensated
PRM, which is a martingale.

Theorem 7. The Lévy measure of a compound Poisson process is λµx

Definition 8. The compensated PRM is defined as

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt

When the PRM converges, we say that it is a finite activity jump process. If
it does not converge, it is an infinite activity process. In the following theorem, it
is shown that any Lévy process can be decomposed in a sum of finite and infinite
activity processes. In this work, we will only try to solve the finite activity case, but
we will show Itô lemma for the general Lévy process. First, we write the Lévy-Itô
decomposition.

Theorem 8. Let R ∈ R. We can decompose a Lévy this process in

dXt = µ(t, x)dt + σ(t, x)dWt +

∫
||z||<R

γ(s, z, x)Ñ(dt, dz) +

∫
||z||≥R

γ(s, z, x)N(dt, dz)

= µ(t, x)dt + σ(t, x)dWt +

∫
R
γ(s, z, x)N̄(dt, dz)

21

[35] claims that this decomposition is always possible for R = 1. In our case, we will
only use finite activity jumps. This corresponds with R = ∞. Note that compensating
the Poisson process will give a different Itô lemma. If we want the infinite activity
case or do not discount the jumps, we have to set R = 0. We now show Itô lemma for
Lévy processes.

Theorem 9. The Itô formula of a Lévy process as described in theorem (8) is

df(Xt) = (
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
)dt + σ

∂f

∂x
dWt

+

∫
R
f(Xt− + γ(t, z, x)) − f(Xt−))N̄(dt, dz)

+

∫
||z||<R

[f(Xt− + γ(t, z, x)) − f(Xt−)) − γ(t, z, x)
∂f

∂x
]ν(dz)dt

This is proven in Appendix B. In this work, we only use finite activity jumps. This
means that the Itô formula can be written as

df(Xt) = (
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
−

∫
R
γ(t, z, x)

∂f

∂x
ν(dz))dt + σ

∂f

∂x
dWt

+

∫
R
f(Xt− + γ(t, z, x)) − f(Xt−))N(dt, dz)

We use the Itô formula to obtain the infinitesimal operator of this Lévy process. We
will only show this generator for the finite activity case, e.g. R = ∞.

Theorem 10. The infinitesimal generator given by

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

of a finite activity Lévy process is

Lf = (
∂f

∂t
+ µ

∂f

∂x
+ σ2 ∂

2f

∂x2
) +

∫
R
[f(Xt− + γ(t, z, x)) − f(Xt−)) − γ(t, z, x)

∂f

∂x
]ν(dz)

The proof is similar as in Lemma (2). Here we use that Ñ is a martingale. We
have now derived the HJB-equation for finite activity Lévy processes. We have to plug
the infinitesimal generator of Theorem (10) into Theorem (5).

4.1.2 Bernoulli approximation

Let P (t) be a Poisson process. We calculate the chance that k jumps happen in
[t, t + ∆t].

P(P (t + ∆t) − P (t) = k) =
(λ∆t)k

k!
e−λ∆t

In our schemes, we will discretize the time. This means that ∆t becomes small.
We note from the equation above that the chance of 2 or more jumps can get very
small.

22

P(P (t + ∆t) − P (t) = 1) =
λ∆t

1
e−λ∆t = λ∆t + O(dt)

P(P (t + ∆t) − P (t) = 2) =
(λ∆t)2

2
e−λ∆t = O(dt2)

Therefore, we can ignore multiple jumps in a time interval. The chance for no
jumps is e−λ∆t = 1 − λ∆t + O(dt). This suggest that we can approximate a Poisson
process by a Bernoulli distribution with parameter p = λ∆t.

The mean of this Bernoulli distribution is E(Pber(∆t)) = λ∆t. This is the same as
the Poisson process. We can now also get the compensated Bernoulli process

P̂ber(t) = Pber(t) − λt (21)

In this work, we will use the Poisson process unless we state that we use the Bernoulli
approximation.

4.2 Schemes

Theoretically, extending the DBDP and dBSDE schemes to include jumps should be
simple. It can quickly be shown that the FBSDEj (FBSDE with jumps) simply adds
a new non-local term to the non-jump FBSDEs. The non-locality combined with the
randomness of the jumps makes it a lot more difficult in practise. It may be easy to
directly estimate the finite activity Poisson process directly, but the compensation part
is often non-trivial. In this section, we will first show the simple FBSDEj. Afterwards,
we use an offline Monte Carlo approach to extend the DBDP. In the final section, we
show why extending the dBSDE to jumps is more difficult.

4.2.1 Forward Backward SDE with jumps (FBSDEj)

We try to solve the following PDE:

−∂u

∂t
= Lu + f(t, x, y, I) (22)

u(T, ·) = g(·) (23)

Here L is the infinitesimal generator given by a Lévy process, as derived in Theorem
(10). I is an extra term that is related to jumps, as can be seen in the Partial Integro
Differential Equation (PIDE):

−∂u

∂t
= (µ

∂u

∂x
+

1

2
σ2 ∂

2u

∂x2
)dt + σ

∂u

∂x
dWt

+

∫
Rd

[u(Xt− + γ(t, z, x)) − u(Xt−)) − γ(t, z, x)
∂u

∂x
]ν(dz)dt

+ f(t, x, u,
∂u

∂x
,

∫
Rd

[u(Xt− + γ(t, z, x)) − u(Xt−))]ν(dz)dt)

We will use the same reasoning as in the Itô-Diffusion case. We take the Itô
lemma of the underlying Lévy process and we substitute the time derivative using

23

the PIDE. This gives us an Forward Backwards Stochastic Differential Equation with
jumps (FBSDEj). We use the following parameters

Yt = u(t,Xt),Zt = ∇xu(t,Xt),Γt = u(Xt− + γ(t, z, x)) − u(Xt−) (24)

Yt = g(XT) +
∫ T

t
f(s,Xs, Ys, Zs,

∫
Γsν(dz))ds−

∫ T

t
σ(s,Xs)ZsdWs −

∫ T

t

∫
Rd ΓsN̄(ds, dz)

(25)
We note that there are two differences compared to the Itô FBSDE, Equation (7).

First, there is an extra integral term in f(·). This integral will not appear be used
in this work. Notice that this is a deterministic integral, which means that we can
either calculate it analytically or by using Monte Carlo. The second difference is that
we have an extra term in the FBSDEj. The rest of the FBSDEj is the same as the
FBSDE, which may suggest that we only need to find an extensions to DBDP and
dBSDE.

4.2.2 Extensions to DBDP

As seen in the FBSDEj, we can simply use the Itô-diffusion DBDP method with the
addition that we calculate the non-local jumps in some way. We approximate the
compensation term using a Monte Carlo algorithm. We pick L paths:∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN̂ =

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN

− λ

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)ds

=
∑

jump in [ti,ti+1]

u(s, x + γ(s, z, x)) − u(s, x)

− λ

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)ds

=
∑

jump in [ti,ti+1]

u(s, x + γ(s, z, x)) − u(s, x)

− λ∆t
1

L

∑
L

u(ti+1, x + γ(ti+1, z, x)) − u(ti+1, x)

Note that we can choose whether we do the Monte Carlo simulation on time ti or
ti+1. Since we have already trained the networks for time ti+1, we already have the
correct solutions at this time. This allows us to do the Monte Carlo simulation offline.
Note that this is different from [17], who first published this method.

We now only need to specify how we calculate u(s, x + γ(s, z, x)) − u(s, x). For
this, we propose 3 methods:

1. Deterministic: We substitute u(s, ·) for Neural networks Ui+1(·). We do this for
both the jump and compensation components.

2. U-Net: The substitution for the jump component becomes Ui, while we keep
the offline Monte Carlo Ui+1 in the compensation part. The main difference is
that the jump component now enters the learning loop.

24

3. G-Net: We follow [17] more closely and set u(s, ·+γ(s, ·))−u(s, ·) = Gi(·). Here
G are new neural networks. Again, we keep the compensation terms offline by
using Gi+1. For time tN−1, we need GN , which has not been learned. Therefore,
we will use method as 1 for the tN−1 time step.

4.2.3 deep BSDE with Jumps

We may think that we can extend the dBSDE algorithm similarly as for the DBDP-MC
method. Here, DBDP-MC uses an offline Monte Carlo part to calculate the compen-
sated jumps. In the dBSDE algorithm, we learn all networks at the same time. This
means that we cannot pick an already learned network to approximate the compen-
sation component. Therefore, we can only extend the dBSDE method with online
Monte Carlo. This is inefficient, as was also noted in [24]. We first show a hierarchical
dBSDE method to solve PDEs with an an underlying Lévy process. Afterwards, we
show the Gnoatto’s method, which is similar to the hierarchical dBSDE.

4.2.3.1 Hierarchical dBSDE In this section we introduce the hierarchical dB-
SDE (H-dBSDE), which consists of 2 loss functions. We state the general structure of
the method and then show how we can calculate or learn its components.

The difference between the FBSDEj and the FBSDE are the jumps. As we already
saw in the DBDP-MC method, we only need a way to simulate the compensation part
of the jumps. Since theses compensations are deterministic functions of t and X, we
can approximate them with a new set of Neural Networks Vi. These networks need to
be learned, so we have a second minimization problem. We call the loss that appears
in the dBSDE without jumps the Terminal Loss and the other the Jump Loss. This
leads to the following optimization problem:

minimizeUi Terminal Loss

such that (26)

minimizeVi Jump Loss

FBSDEj

The hierarchical structure is important. We will see that the Jump Loss is generally
non-zero, while we need the Terminal Loss to be zero. Therefore, we can get a different
solution if we neglect this hierarchy. We also note that the two losses are not minimized
using the same variable. We can also have both minimization problems depend on
both the U and the V networks, but following equation (26) is more convenient. The
Terminal Loss in equation (26) is the same as in the no-jump dBSDE method. We
derive an expression for the Jump Loss, which immediately shows how we can simulate
the FBSDEj.

We derive the Jump Loss for a single time step. We use the same idea as in Gnoatto
et al. [24]. They start with noting that the integral with respect to the compensated
Poisson measure is a martingale.

E(

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN̂ |Fti) = 0 (27)

25

We know that the conditional expectation is a minimizer for the L2 loss. When we
combine this property with the martingale property, we get

arg minCE((

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN̂ − C)2) = 0 (28)

Therefore, we can obtain the correct solution when we drop the C in the expectation.
We can now use the new set of neural networks V to simulate the compensated jump
components:

Jump Loss = E((

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN̂)2)

= E((

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)dN (29)

− λ

∫ ti+1

ti

u(s, x + γ(s, z, x)) − u(s, x)ds)2)

= E((
∑

jump in [ti,ti+1]

[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x))2)

This is added to the loss function, while∑
jump in [ti,ti+1]

[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x) (30)

is used to simulate the jumps in the FBSDEj.
Using equation (29) as the Jump Loss and add equation (30) in the FBSDEj gives

us the full expression of our hierarchical structure, equation (26).

minimizeUi E((g(XN) − YN)2)

such that

minimizeVi

∑
i

E((
∑

[ti,ti+1]

[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x))2)

Xti+1 = Xti + µ(t,Xti)∆ti + σ(t,Xti)∆Wti (31)

+
∑

jump in [ti,ti+1]

γ(ti, z, x) − ∆t

∫
Rd

γ(ti, z, x)ν(dz)

Yti+1 = Yti − f(ti, Xti , Yti ,Ui,Vi)∆t + σ(ti, Xti)Zti∆Wti

+
∑

jump in [ti,ti+1]

[Ui(Xti + γ(ti, z,Xti)) − Ui(Xti)] − λ∆tVi(Xti)

Given weights and biases of the neural networks, we can easily calculate both loss
functions and the FBSDEj. The Xt-paths have an integral, but it can be simulated
directly using Monte Carlo. Remember that we introduced the Jump Loss to simulate
the compensation component of the jump only. Therefore, Ui and Vi can be learned
independently. We can alternatively solve both optimization problems to minimize
both losses simultaneously. This is similar as the PIA method we can use to solve
HJB equation, as mentioned in [4].

26

4.2.3.2 Gnoatto’s dBSDE method We compare equations (26) and (31)
with Gnoatto et al. [24] method. The latter uses the sum of both loss functions as its
function.

minimize Terminal Loss + Jump Loss

E((g(XN) − YN)2) +
∑

i E((
∑

[ti,ti+1]
[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x))2)

such that (32)

Xti+1 = Xti + µ(t,Xti)∆ti + σ(t,Xti)∆Wti

Yti+1 = Yti − f(ti, x, y, z)∆ti + σ(ti, Xti)Zti∆Wti

+
∑

jump in [ti,ti+1]

[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x)

This structure may produce a wrong solution, since the Terminal Loss should be zero,
while the Jump Loss is generally non-zero. We show the latter by looking at a single
time step.

E((
∑

[ti,ti+1]

[Ui(x + γ(s, z, x)) − Ui(x)] − λ∆tVi(x))2) = E((U − V)2)

Here U shows the effects of the Ui network. This mean that U is a function that
depends on the number of jumps and the sizes of these jumps. Both of these are
random variables. Therefore, U is a random variable. V on the other hand is a
deterministic value. Therefore, the mean squared error can only be 0 when Vi can
describe U perfectly. This can only happen when U is not a random variable, which
only happens when there cannot be any jumps.

So, when using equation (32), it can converge to a non-zero Jump Loss. Since this
structure is minimizing the sum of the loss functions, the optimal Terminal Loss can
be non-zero as well. A simplified example for this behaviour is show in Appendix C.
This means that it may not fit the Terminal condition well enough, which makes it
for example unlikely to price American options correctly with this method. We try to
overcome this problem by introducing an extra hyperparameter α ∈ [0, 1] to weight
the losses. We can substitute the loss function in equation (32) for:

minimize α · Terminal Loss + (1 − α) · Jump Loss. (33)

The error Equation (32) makes depends on how close α is to 1. If α is almost 1, the
dBSDE-Jump method will prioritize the Terminal Loss over the Jump Loss. This is
similar to the H-dBSDE method, equation (31). However, when we do this, the Jump
Loss is decreased slowly. This means that this algorithm is slow when we want to
include jumps.

Despite these problems, the dBSDE-Jump method can still give the desired solu-
tion in some special cases. The dBSDE-Jump method is successful when the Terminal
Loss is small. This is guaranteed when the Jump Loss is small, which happens when
the jump intensity is low or the jump sizes are small. Also, all terms in the Jump Loss
depends on ∆t. So when we use a fine grid, the Jump Loss gets small too. Gnoatto et
al. [24] showed that the dBSDE-Jump method can price European options correctly.
In the next section, we show that this holds, although it may simultaneously fit the
terminal time incorrectly.

27

4.2.3.3 Gnoatto’s method is able to price European options correctly
In this section, we show that equation (32) prices European options correctly at t =
0. We do this by showing that the method is equivalent to a simple Monte Carlo
simulation:

Y0 = e−rTE(YN)

We can show this equivalence in two steps. First, we show that E(YN) is equal to
E(g(XN)), where g(·) the pay-off function. Afterwards, we show that the dBSDE-
Jump method emulates the discounting factor.

Mean of the Terminal Fit

First, we show that
E(YN) = E(g(XN)) (34)

We do this by assuming a non-specified regression method Pi = f(Qi, β)+ϵi. f(Qi, β)
denotes the regression method where the goal is to make ϵi as small as possible. Also,
we make sure that f(Qi, β) is unbounded before specifying the regression parameters.
for example f(Qi, β) = sin(βQi) is not allowed, because it will always be in [−1, 1].
On the other hand, a constant regression method, f(Qi, β) = β, is allowed. Do note
that the regression is not perfect and may even be bad. For example we can regress
points (Qi, Pi) that lay on a parabola with the constant regression method. We can
do this because we are only interested in the mean error: E(Pi − f(Qi, β)). At last,
note that this does not mean that the mean squared error is 0.

Theorem 11. Let f(Qi, β) be a fit for Pi. Assume E(Pi) ̸= E(f(Qi, β)). Now set
k = E(Pi−f(Qi, β)) ̸= 0. Than we can improve the fit in MSE by adding k to f(Qi, β).

Proof.

E((Pi − (f(Qi, β) + k))2) = E((Pi − f(Qi, β) − k)2)

= E((Pi − f(Qi, β))2) − 2E(k(Pi − f(Qi, β))) + E(k2)

= E((Pi − f(Qi, β))2) − 2kE((Pi − f(Qi, β))) + k2

= E((Pi − f(Qi, β))2) − 2k2 + k2

= E((Pi − f(Qi, β))2) − k2

< E((Pi − f(Qi, β))2)

This shows that we can always improve a regression by adding E(Pi − f(Qi, β)) to
the regression function. Therefore, any regression method will have E(Pi−f(Qi, β)) =
0. For the dBSDE method, this means that E(YN − g(XN)) = 0, when we are able
to add a constant to YN . Note that YN is a sum of multiple neural networks: YN =
Y0 + G(U ,Z, X). This shows that we can improve the regression by adding k to Y0.
Therefore the dBSDE-Jump algorithm gives E(YN) = E(g(XN)).

Discounting factor

Next, we show that the dBSDE-Jump method leads to

Y0 = e−rTE(YN) (35)

28

We start with the FBSDEj, Equations (25) and discretize it.

dYt = −f(·)dt + σZtdWt +

∫
Rd

ΓtN̄(ds, dz)

For option pricing, f(·) = −rYi.

E(Yi+1) = E(Yi + rYidt + σZtdWt +

∫
Rd

ΓtN̄(ds, dz))

= E(Yi + rYidt)

= E((1 + rdt)Yi)

We use this recursively to obtain E(YN) = (1 + rdt)NY0. Here we note that Y0 is a
deterministic variable, so E(Y0) = Y0. We remember that dt = T

N
and take the limit

the amount of time steps to infinity.

Y0 =
1

(1 + rdt)N
E(YN) =

1

(1 + rT
N

)N
E(YN)

Y0 = lim
N→∞

1

(1 + rT
N

)N
E(YN) =

1

erT
E(YN) = e−rTE(YN)

This shows Equation (35). We can now combine both Equation (34) and Equation
(35) to obtain

Y0 = e−rTE(YN) (36)

This means that the dBSDE-Jump algorithm is similar to simple Monte Carlo. The
advantage this dBSDE-Jump has over Monte Carlo is that dBSDE-Jump is able to
price multiple European options which lay in some initial price range X0 ∈ Rd simul-
taneously. A simple Monte Carlo simulation requires to divide this range into a grid,
which is inefficient for large dimensions. dBSDE-Jump is not able to obtain correct
values for Yi with i ̸= 0. This makes it impossible to solve problems that uses a
DPP-argument to price options (Bermudan option) and coupled FBSDEj.

4.3 Theoretical results for the FBSDEj and DBDP-MC

In this section, we first show existence and uniqueness of the FBSDEj. Afterwards,
we show the theorem in Castro et. al [17] that shows convergence of the DBDP-
MC method. We introduce the terms used in this theorem and afterwards state this
theorem. In this section, we use dt = h and

Ei(·) = E(·|Fti)

4.3.1 Uniqueness and Existence FBSDEj

In this section we show that the FBSDEj has always a solution and that this solution
is unique. We structure the theorems as in [17], so we do not prove any results. First,
it is shown that the finite activity Lévy process is unique.

Theorem 12. There exist a unique finite activity Lévy process Xt, such that

E(supt<s<T (Xs −Xt)) ≤ h(1 + E(Xt)
2)

This result will be used in the proof that shows convergence of the DBDP-MC
method. Next, the backwards equation of the FBSDEj is shown to exist.

29

Theorem 13. There exists a unique solution of (Yt, Zt,Γt) (see equation (24)) to the
FBSDEj, equation (25).

[17] does not specify that the solution is unique. however, this follows immediately
from theorem 2.1 in [6]. This shows that there exists a unique solution to the FBSDEj
given by (Xt, Yt, Zt,Γt).

4.3.2 Convergence of DBDP-MC

We now show that the DBDP-MC converges. Again, we use the structure in [17].
First, we introduce a term for the integral of the compensation part of the compen-
sated Poisson process. We also show how the DBDP-MC uses neural networks to
approximate this term.

Gt =

∫
Rd

u(Xt + γ(t, z, x)) − u(Xt)λ(dz) (37)

Gi =

∫
Rd

Ui(Xt + γ(t, z, x)) − Ui(Xt)λ(dz) (38)

We will now give a measure of the discretization error. We do this by giving the total
L2 error between the desired processes and the average of their discretization.

Zti =
1

h

∫ ti+1

ti

Ztdt (39)

Gti =
1

h

∫ ti+1

ti

Gtdt (40)

εZ = E(

N∑
i=0

∫ ti+1

ti

|Zt − Zti |
2dt) (41)

εG = E(

N∑
i=0

∫ ti+1

ti

|Gt −Gti |
2dt) (42)

The discretization errors εZ and εG become small fast enough. This is shown in the
following theorem.

Theorem 14. There exist a constant C ≥ 0, such that

εZ < Ch

εG < Ch

Time discretization gives an error on Yt too. [13] proves that its error is O(h).

N∑
i=0

∫ ti+1

ti

(Ys − Yti)
2ds) ≤ Ch (43)

Now we show that neural networks can learn the wanted processes. This requires
that these processes must be written as deterministic functions. We do this using a
new Lévy processes that are connected to the wanted process. We use the Martingale

30

Representation Theorem on the martingale Ei(Ui+1(Xti+1)) for t ∈ [ti, ti+1]. We show
both this martingale and the original process.

Ui+1(Xti+1) = Ui(Xti) − f(t,X,Ui,Zi,

∫
Γsν(dz))∆ti (44)

+

∫ ti+1

ti

ZdWi +

∫ ti+1

ti

Γs(z)dN̂(ds, dz)

Ui+1(Xti+1) = Ei(Ui+1(Xti+1)) +

∫ ti+1

ti

ẐsdWs +

∫ ti+1

ti

Γ̂s(z)dN̂(ds, dz) (45)

We will write new processes in terms of Ei(Ui+1(Xti+1)). To obtain the deterministic
function that will be approximated by Ui, we notice the similarities between the two
Lévy processes and propose

V̂i = Ei(Ui+1(Xti+1)) + f(·)h (46)

This process is well-defined, assuming h is small enough. This was proven in [17]
using Banach’s fixed point theorem. We will need similar processes for Zi and for
the neural network representation of the jumps. We use the martingale obtained by
the Martingale Representation Theorem, the left-most two term in Equation (45).
We multiply these two terms by

∫ ti+1

ti
dWi and

∫ ti+1

ti

∫
Rd dN̂(ds, dz). We take the

conditional expectation and use Itô isometry. This gives the following processes:

Ẑtih = Ei(Ui+1(Xti+1)dWi) = Ei(

∫ ti+1

ti

Ẑsds) (47)

Γ̂tih = Ei(Ui+1(Xti+1)dN̂) = Ei(

∫ ti+1

ti

∫
Rd

Γ̂s(z)λ(dz)ds) (48)

Ĝtih = = Ei(

∫ ti+1

ti

∫
Rd

Γ̂s(z)ds) (49)

We will use Ĝ to create a function for the jumps instead of Γ̂ti . Using conditional
Fubini, we see the connection between the two processes:

Γ̂ti =

∫
Rd

Ĝtiλ(dz) (50)

We now define the deterministic functions. Notice the similarities between the two
Lévy processes.

vi = V̂i(Xi)........zi = Ẑti(Xi)........gi = Ĝti(Xi) (51)

This gives the following error estimates:

Ev
i = inf E(vi(Xi) − Ui(Xi))

2 (52)

Ez
i = inf E(zi(Xi) −Zi(Xi))

2 (53)

Eg
i = inf E(

∫
Rd

(gi(Xi) − Gi(Xi))
2λ(dz)) (54)

From the UAT, we can get these error arbitrarily small. We can now state the theorem:

31

Theorem 15. There exist a constant C ≥ 0 which is independent of h, such that for
small h

max E(Yti − Ui(Xi))
2 +

N∑
i=0

E(

∫ ti+1

ti

|Zt − Zti |
2 + |Gt −Gti |

2dt) ≤

C[E(g(Xh
T) − g(XT))2 + h + εZ + εG +

N∑
i=0

(NEv
i + Ez

i + Eg
i)] (55)

The theorem shows that when we use a finer grid, we can approximate the solution
better. The right-hand-side shows the triplet (Yt, Zt,Γt), where we have the maximum
error in Yt and the average error of the other parameters. Note that all terms on the
right-hand-side were constructed to be O(h). This means that the solution converges
to the correct solution with O(h), assuming the networks are trained correctly.

In our DBDP-MC method, we use an offline Monte Carlo simulation. This means
that we need to change the argument slightly. [28] proved that the DBDP without
jumps can also be solved using automatic differentiation of Zt. A similar method can
be used to show that our offline Monte Carlo method is valid.

32

5 Numerical Results

In this section, we show some results for the DBDP-MC and dBDSE-jump methods.
But first we start by describing the used structure of these methodologies and the
used hyperparameters. Afterwards, we show that the DBDP-MC method is able to
price Bermudan options correctly under the Merton-Jump-Diffusion process (MJD).
Here we first explain the problem and then show the used parameter sets. This is
followed by describing the used reference method before we show the results of the
algorithm. We continue by pricing European option with the dBSDE-Jump method
under the MJD process. This shows that our theoretical explanation of the dBSDE-
Jump method is likely correct, but that the method can still be effective and useful in
solving PDEs.

5.1 Hyperparameters

Structure and Hyperparameters

For all experiment, we use 2 hidden layers. Both layers have 30+d neurons. We will
have 100 networks per DBDP or dBSDE algorithm. This means a time discretization
of 100. We will slightly change the amount of networks when pricing a Bermudan or
American option. Here we will use the closest integer to 100, such that the amount
of early exercise opportunity times is divisible by this number (e.g. choose N = 104
when we have 8 early exercise opportunities). In most papers that solve PDEs using
the DBDP or dBSDE method use the Tanh activation function. For the dBSDE-
Jump algorithm and in the first test example for the DBDP-MC method, we also use
this activation function. However, we will use the DBDP-MC methodology on higher
dimensional problems, where the Tanh activation function was not able to make a
correct fit for the pay-off function. This should be possible due to the UAT, but we
decided to use a different activation function: ELU . So we use the Tanh activation
function, except when we have a high-dimensional problem, then we use ELU .

Tanh: σ(x) = Tanh(x)

ELU: σ(x) =

{
x x > 0

ex − 1 x ≤ 0

Training Neural Networks

We use the ADAM gradient descent method to back-propagate. When using
DBDP, we start with an initial learning rate of 0.01 for the terminal time and an
initial learning rate of 0.0001 for non-terminal times. If we use the dBSDE method,
the learning rate is 0.01 for all networks. Note that the initial learning rate is not an
important hyperparameter, since the ADAM algorithm will adapt this rate. We use
a batchsize of 1000 and set a maximum amount of iterations: 40000 for the DBDP
method and 4000 for the dBSDE. In the DBDP method, we use early exercise op-
portunity. We check the loss every 100 gradient steps. We then check whether the
difference compared to the loss 100 steps ago is less then 0.001. We also check whether
the loss is small enough, this is done by setting a threshold which is a tenth of the
terminal loss. For the terminal time, the threshold is 0.001.

33

5.2 Bermudan Options

5.2.1 Setting

In this section, we calculate the price of Bermudan options under the Merton Jump
Diffusion process (MJD). This is a Lévy process with γ(z, x) = ez − 1 and z is normal
distributing. Thus the stocks paths are simulated using

dXi
t = rXi

tdt + σXi
tdW

Q
t +

∫
R
[ez − 1]N̄(dt, dz).

The problem is d-dimensional. All stocks have the same initial price X0. The stocks
can be correlated with coefficient ρi,j , where i and j denote different stocks. This
means that all stocks have the same correlation. If a jump occurs, all stocks jump
simultaneously at this time. Therefore we can write the jump intensity with a single
parameter: λ. The jump sizes follow a normal distribution N (µJ , σJ) and are also
correlated with ρJi,j . In this section we price European, Bermudan and American
options. For a European option, we earn the pay-off function at terminal time T . This
pay-off usually depends on a strike price K. In the case of American options, we are
allowed to exercise the option at any time t < T . Bermudan options can be exercised
in some finite time points. We take these early exercise opportunity opportunities
equidistant and the amount of opportunities is denoted by M . For example, when
M = 3, we can early exercise at T

4
, 2T

4
, 3T

4
and at the terminal time. We will use

3 different options: Arithmetic Put options, Geometric Put options and Put-on-Min
options. Next we show the pay-off function for the European equivalent of these 3
options types.

Arithmetic Put Option: max(0,K − 1

d

d∑
i=1

Xi
T)

Geometric Put Option: max(0,K − (

d∏
i=1

Xi
T)

1
d)

Put-on-Min Option: max(0,K − maxi(X
i
T))

Unless specified otherwise, we use the Arithmetic mean Put option. We show the used
parameter sets in Table 1.

We need to make sure that the DBDP-MC takes the early exercise opportunities
into account. We note that we can easily see whether we should exercise by comparing
the payoff at this exercise time with its value at the same time. The option contract
will be exercised when the current value is higher than the payoff. Set Vi as the value
of the option at time ti

Vi = max{Yi, g(Xi)} (56)

We emulate this using neural networks. When we have successfully learned Ui with

the DBDP-MC algorithm and there is an early payoff opportunity at i, we set

update Ui = max{Ui, g(Xi).}

We continue the DBDP as normal, but in step i− 1, we will use Ui to learn Ui−1 and
Zi−1.

34

Table 1: Bermudan Sets for arithmetic mean basket put options

Set 1: A test set from [19]
d = 5, T = 1, M = 8, X0 = 100, K = 100, r = 0.05, σ = 0.15,
ρij = 0.3, λ = 0.5, µJ = [-0.3, -0.2, -0.1, 0.1, 0.2]’,
σJ = 0.1, ρJij = -0.2

Set 2: No jump setup
d = 1, T = 1, X0 = 100, K = 100, r = 0.1, σ = 0.2, ρij = 0.5

Set 3: Main set
d = 1, 20 or 50, T = 1, M = 3, X0 = 100, K = 100, r = 0.1,
σ = 0.2, ρij = 0.5, λ = 0.5, µJ = -0.1, σJ = 0.3, ρJij = 0.0

Set 4: Intense jumps
d = 5, T = 1, M = 0, X0 = 100, K = 100, r = 0.1, σ = 0.2,
ρij = 0.5, λ = 5.0, µJ = [-.1, -.1, -.1, -.1, -.1]’, σJ = 0.3, ρJij = 0.0

Set 5: Intense jumps 2
d = 5, T = 1, M = 0, X0 = 100, K = 100, r = 0.1, σ = 0.2,
ρij = 0.5, λ = 10.0, µJ = [-.1, -.1, -.1, -.1, -.1]’, σJ = 0.1, ρJij = 0.0

Set 6:
d = 20, T = 2, M = 0, X0 = 100, K = 90, r = 0.02, σ = 0.15,
ρij = 0.3, λ = 0.3, σJ = 0.1, ρJij = 0.2,
µJ = [-.3, -.2, -.1, .1, .2, -.3, -.2, -.1, .1, .2, -.3, -.2, -.1, .1, .2,

-.3, -.2, -.1, .1, .2]’

5.2.2 A reference method: SGBM

To show whether the DBDP-MC method can solve Bermudan options correctly under
the MJD model, we compare the results against a different method, the Stochastic Grid
Bundling Method (SGBM) [19]. In this method, Monte Carlo paths are generated and
the payoff at terminal time is calculated. Now the paths at the previous payoff time are
bundled. The asset values at this time are bundled into B non-overlapping partitions.
K basis functions ϕk(x) are chosen with corresponding regression parameters αk. All
the option values are regressed in the bundle on the basis functions.

Vi(Xi) ≈
K∑

k=1

αkϕk(Xi)

This is done for all bundles. Afterwards, continuation value is calculated. This can only
be done when appropriate basis functions are used. Equation (56) is used to obtain
the real option values at this early exercise opportunity. This process is repeated until
the price at initial time is obtained.

There are also some other methods we use to obtain a reference value. For Euro-
pean options, we use a Monte Carlo simulation. When we have a 1D problem, we use
the binomial tree method by using [37].

5.2.3 Test Case

In this section, we test the DBDP-MC algorithms. We will use all 3 versions of this
algorithm on a 5-dimensional test case. We can than compare it to a reference value

35

and look at the differences between the results. We use Set 1, which was already solved
in [19]. This set is reasonably complicated because it has a different jump mean µJ

for all stocks and all stocks are correlated in both their jumps and its Brownian paths.

Table 2: Set 1 test for 3 methods. We use 10 different runs. s.e. is the standard
error and larg diff shows the largest percentage error of the 10 runs. Reference
value from [19].

ref value mean value s.e. larg diff time (s)
Deterministic 2.576 2.5757 0.0108 2.08% 1267
U-Net 2.576 2.5827 0.0082 1.90% 1300
G-Net 2.576 2.5644 0.0147 2.21% 2097

This shows that all 3 versions of DBDP-MC give the correct solution. The most
notable difference is that G-Net is almost twice as slow as the other algorithms. In
all versions, the obtained solution is within a standard error of the real solution,
which suggest that they work correctly. The differences between the algorithms seems
insignificant. In the rest of this work, we will only use the deterministic version.

5.2.4 High dimensional Bermudan Options

We continue to show that we can obtain correct prices for European, American and
Bermudan options in low and high dimensions. For these high dimensions, it is hard to
fit the terminal condition using the Tanh-activation function. The ReLU -activation
function seems like a natural fit for this arithmetic mean options, but it is difficult to
learn the non-terminal networks. Therefore, we use the ELU -activation function.

We use the deterministic DBDP-MC algorithm on sets 2 and 3. We use the Eu-
ropean equivalent (E) or the American equivalent (A) of these Bermudan (B)options.
Some options do not have a reference value.

Table 3: Results for Bermudan options. Given as (Set, type, dimension). We
use 5 different runs. s.e. is the standard error and larg diff shows the largest
percentage error of the 5 runs.

ref value mean value s.e. larg diff time (s)
Set 2, E, 1 3.7535 3.8061 0.0059 1.92% 1095
Set 2, A, 1 4.8160 4.8744 0.0229 2.45% 1132
Set 3, E, 1 6.52 6.5150 0.0303 1.72% 1213
Set 3, A, 1 - 7.5761 0.0063 - 1268
Set 3, E, 20 2.42 2.4393 0.0384 4.71% 3073
Set 3, B, 20 - 3.2869 0.0418 - 3044
Set 3, A, 20 - 3.5479 0.0271 - 3118
Set 3, E, 50 2.2 2.1899 0.0365 4.91% 1728
Set 3, B, 50 - 3.0624 0.0482 - 1740
Set 3, A, 50 - 3.2956 0.0251 - 1759

This shows that DBDP-MC can correctly price European, American and Bermu-
dan options.

36

We continue by showing plots from Set 3, European with jumps. Here we plot
the option price when the current price is between 50 and 200 (100 points, spaced
equidistantly). This is to show that DBDP-MC gives the correct answer at all Yt.

Figure 6: We price a 1-dimensional option using the DBDP-MC method and
compare it to simple Monte Carlo simulations. The DBDP-MC prices options
correctly for all time steps.

We note that for t = 0.25T , the correct option price is not obtained for Xt ≥ 16.
This happens because there was insufficient training data. This can be solved by
making sure more Xt-paths reach this value by either using more paths or by using a
different initial time. Because Xt is rarely larger than 16 at t = 0.25T , this does not
lead to a large error for the price at t = 0.

5.2.5 Other options

In this section, we show the results of some non-arithmetical mean basket options.
We use the geometric mean basket option and the Put-on-Min option. These are
more difficult than the arithmetic mean option. We use Set 1, so we can compare
the result for the Bermudan geometric option with [19]. We also show the result for
the equivalent European option, where we use a Monte Carlo simulation to obtain a
reference value. At last, we will try the 20-dimensional geometric basket option from
Set 6, which is a more complicated problem.

37

Table 4: Results for geometric (g) and Put-on-Min (pm) options. Given as (Set,
type, option). K represents the strike price. We use 5 different runs. s.e. is the
standard error and larg diff shows the largest percentage error of the 5 runs.

K ref value mean value s.e. larg diff time (s)
Set 1, E, g 110 8.19 8.1714 0.0695 3.40% 1172
Set 1, B, g 110 9.8020 9.7978 0.0100 0.34% 1438
Set 1, E, pm 80 3.855 3.8349 0.0450 3.44% 1474
Set 1, B, pm 80 - 4.0601 0.0360 - 1509
Set 6, E, g 90 1.38 1.3301 0.0158 6.11% 3316

First, we note that we do get good results for the Set 1 problems. Therefore, we
can conclude that the DBDP-MC can solve 5-dimensional geometric and Put-on-Min
options. In the geometric case, the Bermudan option has a significantly lower standard
error than the European equivalent. Here, he Bermudan option was often exercised at
its earliest opportunity. Therefore, the paths will emulate a European option with a
smaller terminal time. This is easy to solve accurately.

The results for Set 6 are not as good as the results from Set 1. The solution is
still close to the desired price, but is clearly smaller than it. This happens because
the terminal time did not fit correctly. We explain this by plotting the terminal
time. Because it is difficult to plot a 20-dimensional fit, we show the terminal fit on
a geometric put option for Set 1. To show the problem, we use a smaller batchsize of
100. Moreover, we stop learning before it has fully converged.

Figure 7: The plot of the fit at terminal time for a geometric put option for Set
1. We use a smaller batchsize and a smaller amount of iterations to demonstrate
that the output of the neural network is always higher than the desired result.

Figure 7 shows that the neural network overestimates the terminal time. Since we
try to price a put option, this means that we underestimate the price at t = 0. The

38

error that was made at the terminal time propagates backwards through time in all
networks. If we want to price this option more accurately, we would need to make
sure we have a better terminal fit. This can be achieved with better hyperparameter
tuning, since this is a classical regression problem.

The Put-on-Min option is significantly more difficult to price in higher dimensions.
As the problem in Set 6 shows, we need to make a good terminal fit. For the Put-
on-Min option, only a single stock is used to determine its payoff. The fit requires
enough data to describe all possibilities. The Put-on-Min option is more sensitive to
this problem than the arithmetic option. The latter will always use all the stocks in
its calculation.

5.2.6 Poisson process and Bernoulli approximation

In this section, we price a 5-dimensional arithmetic European basket options as given
in Sets 4 and 5. These sets have a higher jump intensity. The goal is to show that
the DBDP-MC method is able to price Bermudan options with intense jumps. The
approximation error becomes larger when the jumps are larger or there are more jumps.
Therefore, we price the Bermudan options in two ways. One where we simulate the
Poisson process directly, as in the previous sections and another one using a Bernoulli
approximation. We calculate the reference values using the corresponding process.

Table 5: Pricing European options using the Poisson (P) process and it Bernoulli
(B) approximation. Errors calculated using 5 paths

ref value mean value s.e. largest diff time (s)
Set 4, P 10.12 10.1032 0.0514 1.68% 2688
Set 4, B 10.04 9.9659 0.0758 2.75% 2422
Set 5, P 9.6 9.5793 0.0335 1.90% 2470
Set 5, B 9.1 9.1687 0.0884 4.04% 2294

first, we notice that using the Bernoulli approximation changes the price of the
Bermudan option significantly even when using a Monte Carlo simulation. In Set 4,
this difference is small. Here, the DBDP-MC algorithm does show that both methods
can approach the reference value reasonably well. However, the largest value in the
Bernoulli approximation was larger than 10.12 and the smallest in the Poisson algo-
rithm was smaller than 10.04. In Set 5, we got values such that the smallest value of
the Poisson process was larger than the largest value in the Bernoulli approximation.
Therefore, the results show that while using the Bernoulli approximation creates a
bias, as seen in the Monte Carlo reference price, the DBDP-MC algorithm is able to
obtain this biased reference price correctly. The error the Bernoulli approximation
makes does not come from the DBDP-MC algorithm directly, but from the incorrect
sample paths. Both the Bernoulli approximation method as the Poisson process give
the desired results. The accuracy is similar as seen in Table 3. Another difference
is that the Bernoulli process is slightly faster. This happens because the stocks are
easier to simulate using this approximation. so when we have a small jump intensity
or we can use a very fine time discretization, the Bernoulli approximation is a more
efficient method.

39

5.2.7 Conclusion

In this section, we demonstrated that the DBDP-MC algorithm is able to price Euro-
pean, Bermudan and American options correctly.

• The algorithm was successful for problems up till dimension 50. We did not try
higher dimensional options. Using a strong enough computer and implementing
the algorithm in an efficient way, higher dimension, like 100, should be solvable
with this method.

• When the jumps are not too large and the jump intensity is low, it is useful to
use the Bernoulli approximation to simulate the Poisson process. However, the
Bernoulli approximation may lead to a bias when the jump intensity is high or
when using a coarse time grid. If the Bernoulli approximation leads to a biased
solution, it is better to use the full Poisson process. Both methods were able to
solve a 5-dimensional Bermudan options with a high jump intensity.

• The DBDP-MC methodology is sensitive to the accuracy of its terminal fit.
Options where this terminal fit are more difficult, like Put-on-Min, can therefore
be difficult to price in higher dimensions.

5.3 dBSDE-Jump

In this section, we show some results for the dBSDE-Jump algorithm. First we show
that it is able to price European options correctly. This was already shown in [24]
using a Bernoulli approximation. We show that it still works in our code. We chose
Set 3 with 1 dimension and plot Y0 for every iteration.

(a) N=100 and equal
weights nothing

(b) N = 10 and equal
weights

(c) N = 100 and Jump
Loss = 10 · Terminal Loss

Figure 8: Convergence in iterations of pricing a European option using the
dBSDE-Jump algorithm. Large time steps and more wight on the Jump Loss
increase the convergence speed.

We see that the dBSDE-Jump algorithm is able to price European options cor-
rectly. The convergence is quicker when we put more weight on the Jump Loss or
when we take larger time steps.

We now show the terminal time fit. We show a non-jump version as a benchmark.
This non-jump version is obtained by setting λ very small, such that no jumps occur1.

1The idea is to use the dBSDE-Jump algorithm without jumps. However, setting λ = 0
gives a division by 0 error. Therefore, we choose a small λ and afterwards inspect whether a
jump occurs.

40

Afterwards, we let λ = 0.5 and use the dBSDE-Jump method with different weights
(see Equation (33)).

(a) No jumps and equal weights. This is
used as the benchmark.

(b) Weight the Jump Loss as much as
the Terminal Loss.

(c) α = 0.1 (d) α = 0.02

(e) α = 0.01 (f) α = 0.001

Figure 9: figure (a) shows the terminal plot of the dBSDE-Jump algorithm
without jumps. We add jumps in figure (b,c,d,e,f).

We note that when we put a lot of weight on the Jump Loss, the solution becomes
close to a constant. This can easily be understood by trying to minimize only the
Jump Loss. We can always minimize this loss by setting U(X) = Y = c and V(X) = 0.
When using equal weights, the terminal plot seems to fit reasonably well. This is not
unexpected, since the jump intensity is not that high, while we have a large enough
N . If we would do the dBSDE-Jump algorithm in the correct hierarchical setting, the
Jump Loss would still be small. Therefore, the fit will always be somewhat close. We
compare the loss per iteration for the benchmark no-jump case and the equal weight

41

case for the dBSDE-Jump algorithm.

(a) No jumps (b) λ = 0.5, equal weights

Figure 10: The Terminal Loss of the dBSDE-Jump algorithm. Without jumps,
the error seems to get smaller than with jumps. Also, the version with jumps
seems to have obtained its minimum value.

The Terminal Loss with jumps is 0.0010, whereas the one without jumps is 5 ·10−5.
The loss of the one with jumps is larger than the one without jumps. This holds even
if we only take the Terminal Loss into account, which was 0.0002. The dBSDE-Jump
algorithm is not able to minimize this Terminal Loss, because it also has to take the
Jump Loss into account. The two loss functions try to balance each other, which
leads to a slightly wrong terminal fit. If we can guarantee that the Jump Loss is
sufficiently small by using small time steps or not having large or many jumps, the
dBSDE algorithm can give solutions that are good enough.

5.3.1 Conclusion

In this section, we quickly state the conclusions that were obtained from numerical
experiment with the dBSDE-Jump algorithm.

• The dBSDE-Jump algorithm is able to price European options correctly, as was
already shown in [24]. Convergence is faster when we put a lot of weight on the
Jump Loss or when we use a coarse time grid.

• The Total Loss can be large when using the dBSDE-Jump algorithm. This
means that the pay-off function is not fitted correctly. This issue can be resolved
by making sure that the Jump Loss cannot be too large. This happens when the
jump intensity is small or when the jump sizes are small. For problems where
we have large or many jumps, we can still achieve a small Jump Loss by using
a fine grid or by putting most of the weight on the Terminal Loss.

42

6 Discussion and Conclusion

In this research, we solved high dimensional HJB-equations with jumps. Since grid-
based methods suffer from the Curse of Dimensionality, we used methods where the
solution is obtained using regression with neural networks. These algorithms discretize
the time and use the underlying paths to fit the networks. Different time steps are
connected by the FBSDEj, which describes the dynamics of the PDE we try to solve.
Since the terminal conditions of the PDE were known, neural networks were able
to learn this terminal time. We solved the problem both in the forward direction
(dBSDE) and in the backward direction (DBDP).

The used DBDP methodology was slightly changed from the original algorithm by
changing the online Monte Carlo simulation into an offline Monte Carlo. We tested this
method by pricing Bermudan options. This method was able to price options correctly
in 50 dimensions. When we have high intensity jumps or have many jumps, the
algorithm showed a bias when we simulate the jumps with a Bernoulli approximation.
Using the Poisson process still gave the desired result, but it can be significantly slower.
When using the DBDP-MC algorithm, it is important that the neural networks are
learned correctly, since we can only improve the solution by redoing (part of) the
algorithm. This is important when the terminal payoff function is hard to learn,
which occurs in high dimensional pay-off functions. When we do not use large enough
batchsizes or iterations, it will likely give a wrong or biased solution. However, by
using the DBDP carefully, we were able to solve high dimensional PDEs with this
method.

Some problems cannot be directly solved by the DBDP-MC methodology. Other
problems are more convenient to solve them in the forward direction. Therefore, we
also extend the dBSDE such that it could solve PDEs with jumps. This methodology
uses an extra set of neural networks to obtain the discounted jumps. These neural
networks could then be learned by adding an extra term in the loss function. However,
this leads to the possibility that the dBSDE algorithm does not give the wanted
solution. In this work, we showed that the dBSDE can get the correct mean at
terminal time, even if a correct fit cannot be made. When we want to price European
options, this results in the correct solution at initial time. However, this made the
method similar to a plain Monte Carlo simulation. The benefit is that it can price
options with different initial asset prices at the same time. This problem can be solved
by adding more weight on the terminal time loss and less on the new Jump Loss. This
made learning the solution slower.

This work can be improved by trying more complicated examples. For the DBDP-
MC, it will be important to tune the hyperparameters carefully. Alternatively, re-
member that HJB-equations are PDEs with an inner optimization problem. In this
work, we solve all optimization problems analytically and substitute the solution into
the PDE. However, the analytic solution of the optimization problem can be hard or
impossible to calculate. This suggest that it is useful to solve the optimization problem
and the HJB-equation simultaneously. The Deep Galerkin Method has been able to
do this by alternating between the DGM and a Policy Improvement Algorithm (PIA).
It is interesting to show whether the DBDP-PIA algorithm can solve HJB-equations.
At last, we noticed that the dBSDE-Jump method may not solve the PDE associated
with a jump process correctly. We can overcome this problem by using a hierarchical
structure of the loss functions. This structure may be solved learning the Terminal
Loss and Jump Loss in an alternating order.

43

References

[1] Oscar Christian Ameln. “Deep Learning Algorithms for Solving PDEs-
Presentation and Implementation of Deep Learning Algorithms for Solving
Semi-Linear Parabolic PDEs with an Extension to the Fractional Laplace
Operator”. MA thesis. NTNU, 2020.

[2] Kristoffer Andersson, Adam Andersson, and Cornelis W Oosterlee. “Con-
vergence of a robust deep FBSDE method for stochastic control”. In:
SIAM Journal on Scientific Computing 45.1 (2023), A226–A255.

[3] Kristoffer Andersson and Cornelis W Oosterlee. “D-TIPO: Deep time-
inconsistent portfolio optimization with stocks and options”. In: arXiv
preprint arXiv:2308.10556 (2023).

[4] Ali Al-Aradi et al. “Extensions of the deep Galerkin method”. In: Applied
Mathematics and Computation 430 (2022), p. 127287.

[5] Marco Avellaneda and Sasha Stoikov. “High-frequency trading in a limit
order book”. In: Quantitative Finance 8.3 (2008), pp. 217–224.

[6] Guy Barles, Rainer Buckdahn, and Etienne Pardoux. “Backward stochas-
tic differential equations and integral-partial differential equations”. In:
Stochastics: An International Journal of Probability and Stochastic Pro-
cesses 60.1-2 (1997), pp. 57–83.

[7] Andrew R Barron. “Universal approximation bounds for superpositions of
a sigmoidal function”. In: IEEE Transactions on Information theory 39.3
(1993), pp. 930–945.

[8] Christian Beck, Weinan E, and Arnulf Jentzen. “Machine learning approx-
imation algorithms for high-dimensional fully nonlinear partial differential
equations and second-order backward stochastic differential equations”.
In: Journal of Nonlinear Science 29 (2019), pp. 1563–1619.

[9] Richard Ernest Bellman. “Dynamic Programming”. In: (1957).

[10] Alberto Bemporad, Leonardo Bellucci, and Tommaso Gabbriellini. “Dy-
namic option hedging via stochastic model predictive control based on
scenario simulation”. In: Quantitative Finance 14.10 (2014), pp. 1739–
1751.

[11] Julius Berner et al. The modern mathematics of deep learning. 2021.

[12] J Frédéric Bonnans, Élisabeth Ottenwaelter, and Housnaa Zidani. “A fast
algorithm for the two dimensional HJB equation of stochastic control”.
In: ESAIM: Mathematical Modelling and Numerical Analysis 38.4 (2004),
pp. 723–735.

[13] Bruno Bouchard and Romuald Elie. “Discrete-time approximation of de-
coupled forward–backward SDE with jumps”. In: Stochastic Processes and
their Applications 118.1 (2008), pp. 53–75.

[14] Alina Braun et al. “The smoking gun: Statistical theory improves neural
network estimates”. In: arXiv preprint arXiv:2107.09550 (2021).

44

[15] Andrei Caragea, Philipp Petersen, and Felix Voigtlaender. “Neural net-
work approximation and estimation of classifiers with classification bound-
ary in a Barron class”. In: The Annals of Applied Probability 33.4 (2023),
pp. 3039–3079.

[16] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. “Buy low, sell high:
A high frequency trading perspective”. In: SIAM Journal on Financial
Mathematics 5.1 (2014), pp. 415–444.

[17] Javier Castro. “Deep learning schemes for parabolic nonlocal integro-
differential equations”. In: Partial Differential Equations and Applications
3.6 (2022), p. 77.

[18] Ke Chen, Chunmei Wang, and Haizhao Yang. “Deep Operator Learn-
ing Lessens the Curse of Dimensionality for PDEs”. In: arXiv preprint
arXiv:2301.12227 (2023).

[19] Fei Cong and Cornelis W Oosterlee. “Pricing Bermudan options under
Merton jump-diffusion asset dynamics”. In: International Journal of Com-
puter Mathematics 92.12 (2015), pp. 2406–2432.

[20] George Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–
314.

[21] Jérôme Darbon, Gabriel P Langlois, and Tingwei Meng. “Overcoming the
curse of dimensionality for some Hamilton–Jacobi partial differential equa-
tions via neural network architectures”. In: Research in the Mathematical
Sciences 7.3 (2020), pp. 1–50.

[22] Narayan Ganesan, Yajie Yu, and Bernhard Hientzsch. “Pricing barrier
options with deepBSDEs”. In: arXiv preprint arXiv:2005.10966 (2020).

[23] Maximilien Germain, Huyen Pham, and Xavier Warin. “Deep backward
multistep schemes for nonlinear PDEs and approximation error analysis”.
In: arXiv preprint arXiv:2006.01496 (2020).

[24] Alessandro Gnoatto, Marco Patacca, and Athena Picarelli. “A deep solver
for BSDEs with jumps”. In: arXiv preprint arXiv:2211.04349 (2022).

[25] Alessandro Gnoatto, Athena Picarelli, and Christoph Reisinger. “Deep
xVA Solver: A Neural Network–Based Counterparty Credit Risk Man-
agement Framework”. In: SIAM Journal on Financial Mathematics 14.1
(2023), pp. 314–352.

[26] Philipp Grohs and Lukas Herrmann. “Deep neural network approximation
for high-dimensional parabolic Hamilton-Jacobi-Bellman equations”. In:
arXiv preprint arXiv:2103.05744 (2021).

[27] Philipp Grohs et al. “A proof that artificial neural networks overcome the
curse of dimensionality in the numerical approximation of Black-Scholes
partial differential equations”. In: arXiv preprint arXiv:1809.02362 (2018).

45

[28] Jiequn Han, Arnulf Jentzen, and Weinan E. “Solving high-dimensional
partial differential equations using deep learning”. In: Proceedings of the
National Academy of Sciences 115.34 (2018), pp. 8505–8510.

[29] Pierre Henry-Labordere. “Deep primal-dual algorithm for BSDEs: Ap-
plications of machine learning to CVA and IM”. In: Available at SSRN
3071506 (2017).

[30] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-
forward networks are universal approximators”. In: Neural networks 2.5
(1989), pp. 359–366.

[31] Côme Huré, Huyên Pham, and Xavier Warin. “Deep backward schemes
for high-dimensional nonlinear PDEs”. In: Mathematics of Computation
89.324 (2020), pp. 1547–1579.

[32] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolyno-
mial activation function can approximate any function”. In: Neural net-
works 6.6 (1993), pp. 861–867.

[33] Francis A Longstaff and Eduardo S Schwartz. “Valuing American options
by simulation: a simple least-squares approach”. In: The review of financial
studies 14.1 (2001), pp. 113–147.

[34] Jianfeng Lu et al. “Deep network approximation for smooth functions”.
In: SIAM Journal on Mathematical Analysis 53.5 (2021), pp. 5465–5506.

[35] Bernt Øksendal and Agnes Sulem. Stochastic Control of jump diffusions.
Springer, 2006.

[36] Cornelis W Oosterlee and Lech A Grzelak. Mathematical modeling and
computation in finance: with exercises and Python and MATLAB com-
puter codes. World Scientific, 2019.

[37] Options Calculator. http://math.columbia.edu/~smirnov/options13.
html. Accessed: 2023-10-02.

[38] Huyên Pham. Continuous-time stochastic control and optimization with
financial applications. Vol. 61. Springer Science & Business Media, 2009.

[39] Huyen Pham, Xavier Warin, and Maximilien Germain. “Neural networks-
based backward scheme for fully nonlinear PDEs”. In: SN Partial Differ-
ential Equations and Applications 2.1 (2021), pp. 1–24.

[40] Tomaso Poggio et al. “Why and when can deep-but not shallow-networks
avoid the curse of dimensionality: a review”. In: International Journal of
Automation and Computing 14.5 (2017), pp. 503–519.

[41] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. “Provable ap-
proximation properties for deep neural networks”. In: Applied and Com-
putational Harmonic Analysis 44.3 (2018), pp. 537–557.

[42] Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learning
algorithm for solving partial differential equations”. In: Journal of com-
putational physics 375 (2018), pp. 1339–1364.

46

http://math.columbia.edu/~smirnov/options13.html
http://math.columbia.edu/~smirnov/options13.html

[43] Tomasz Szanda la. “Review and comparison of commonly used activa-
tion functions for deep neural networks”. In: Bio-inspired neurocomputing.
Springer, 2021, pp. 203–224.

[44] Jan Hendrik Witte and Christoph Reisinger. “A penalty method for the
numerical solution of Hamilton–Jacobi–Bellman (HJB) equations in fi-
nance”. In: SIAM Journal on Numerical Analysis 49.1 (2011), pp. 213–
231.

[45] Stephan Wojtowytsch and E Weinan. “Can shallow neural networks beat
the curse of dimensionality? a mean field training perspective”. In: IEEE
Transactions on Artificial Intelligence 1.2 (2020), pp. 121–129.

[46] Dmitry Yarotsky. “Error bounds for approximations with deep ReLU net-
works”. In: Neural Networks 94 (2017), pp. 103–114.

47

Appendix A: Proofs of section 2

Theorem 1. Let Xt be a process. Let f(t,x) be twice differentiable and Yt = g(t,Xt).
Then

dYt =
∂f

∂t
dt +

∂f

∂x
dX +

∂2f

∂x2
d < X,X >

Proof. Let 0 = t0 ≤ t1 · · · ≤N= t be a partition of [0,t]. Set dt = tj − tj−1 and
dX = Xtj −Xtj−1 . We calculate he Taylor expansion of f

f(t,Xt) = f(0, Xt0)+
∑
i

∂f(tj , Xtj)

∂t
dt+

∑
i

∂f(tj , Xtj)

∂x
dX+

∑
i

∂2f(tj , Xtj)

∂t∂x
d < t,X >

+
∑
i

∂2f(tj , Xtj)

∂x2
d < X,X > +

∑
i

Ri

With Ri = o(dt + (dX)2). Since < t,X > = 0, the 3rd term is 0. By creating finer
meshes, we get ∑

i

∂f(tj , Xtj)

∂t
dt →

∫ t

0

∂f(s,Xs)

∂t
ds

∑
i

∂f(tj , Xtj)

∂x
dX →

∫ t

0

∂f(s,Xs)

∂x
dXs

∑
i

∂2f(tj , Xtj)

∂x2
d < X,X > →

∫ t

0

∂2f(s,Xs)

∂x2
d < X,X >s

This shows what we wanted.

Corollary 1.1. Let Xt be an Itô diffusion process

dXt = µ(t, x)dt + σ(t, x)dWt

Let f(t,x) be twice differentiable and Yt = g(t,Xt). Then

dYt = (
∂f

∂t
dt + µ

∂f

∂x
+ σ

∂2f

∂x2
)dt + σ

∂f

∂x
dWt

Proof. First, we can note that

d < X,X >t = (dXt)
2

= (µ(t, x)dt + σ(t, x)dWt)(µ(t, x)dt + σ(t, x)dWt)

= µ2(dt)2 + 2µσdtdWt + σ2(dWt)
2

From Itô table, we can directly see that

d < X,X >t= σ2dt

Substituting Xt in theorem1 gives.

48

dYt =
∂f

∂t
dt +

∂f

∂x
dX +

∂2f

∂x2
d < X,X >

=
∂f

∂t
dt +

∂f

∂x
d(µdt + σdWt) +

∂2f

∂x2
σ2dt

= (
∂f

∂t
dt + µ

∂f

∂x
+ σ

∂2f

∂x2
)dt + σ

∂f

∂x
dWt

Lemma 2. The infinitesimal generator given by

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

of an Itô diffusion process is

Lf = (
∂f

∂t
+ µ

∂f

∂x
+ σ2 ∂

2f

∂x2
)

Proof. We use Itô lemma for diffusion processes (corollary 1.1) to show:

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

= lim
∆t↓0

E((∂f
∂t

+ µ ∂f
∂x

+ σ2 ∂2f
∂x2)dt + σ ∂f

∂x
dWt)

∆t

= lim
∆t↓0

(∂f
∂t

+ µ ∂f
∂x

+ σ2 ∂2f
∂x2)dt

∆t

=
∂f

∂t
+ µ

∂f

∂x
+ σ2 ∂

2f

∂x2

Similarly, we can use a Taylor expansion to proof this.

Theorem 3. For all stopping times τ ∈ [t0, T],
J(t, x, α) = E[J(τ,Xτ,x

t0
, α) +

∫ τ

t0
l(s,Xs,x

t0
, αs)ds]

Proof. Fix a stopping time τ then

J(t, x, α) = E[[g(XT,x
t0

) +

∫ T

t0

l(s,Xs,x
t0

, αs)ds]

= E[E[g(XT,x
t0

) +

∫ T

t0

l(s,Xs,x
t0

, αs)ds|F t0
τ]]

= E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + E[g(XT,x
t0

) +

∫ T

τ

l(s,Xs,x
t0

, αs)ds|F t0
τ]]

= E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + E[g(X
T,X

τ,x
t0

τ) +

∫ T

τ

l(τ,X
s,X

τ,x
t0

τ , αs)ds|F t0
τ]]

= E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + J(τ,Xt0,x
τ , α)]

49

Which is what we wanted. We used Markov property in step 4 and E(X) =
E(E(X|Y)) in step 2.

Theorem 4. Let Xt be a controlled Markov process, then for all τ ∈ [t0, T]
v(t0, x) = infa∈AE[

∫ τ

t0
l(s,Xs,x

t0
, αs)ds + v(τ,Xt0,x

τ)]

Proof. Using theorem 3 and the definition of v(t, x), we get

J(t, x, α) = E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + J(τ,Xt0,x
τ , α)]

≥ E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + v(τ,Xt0,x
τ)]

Since this holds for all cost function, it also holds for v(t, x)

v(t, x) ≥ E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + v(τ,Xt0,x
τ)] (57)

We show the converse. We rewrite the control as followed:

α̂ =

{
αs, s ∈ [0, τ]

αϵ
s, s ∈ [τ, T]

(58)

Here αϵ
s is a ϵ-optimal control for v(t, x):

v(τ,X) + ϵ ≥ J(τ,X, αϵ
s)

The control α̂s is progressively measurable, as shown in [38]. This control allows the
following argument using theorem 3:

v(t, x) ≤ J(t, x, α̂)

= E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + J(τ,Xt0,x
τ , αϵ)]

≤ E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + v(τ,Xt0,x
τ) + ϵ]

Letting ϵ go to zero gives the wanted result.

v(t, x) ≤ E[

∫ τ

t0

l(s,Xs,x
t0

, αs)ds + v(τ,Xt0,x
τ)] (59)

Combining (1) and (2) gives the desired result.

Theorem 5. Let Xt be a Feller (and therefore Markovian) process. Take the cost
function

J(a) = Ex(g(xT) +

∫ T

t0

l(xs, αs)ds)

50

, where
Ex(·) = E(·|X0 = x)

Then this is equivalent to the PDE

infa∈ALu(t, x) + l(xt, αt)) = 0

where L the infinitesimal generator given by

Lf = lim
∆t↓0

Ex(f(Xt+∆t)) − f(Xt)

∆t

Proof. Take a starting time t and a stop time t + ∆t. From theorem 4, we have

u(t, x) = infa∈AEx(u(t + ∆t, x) +

∫ t+∆t

t

l(xs, αs)ds)

0 = infa∈AEx(u(t + δt, x)) − u(t, x) + Ex(

∫ t+∆t

t

l(xs, αs)ds)

Now divide by ∆t end let it go to zero. This gives

0 = infa∈A + Lu(y, x) + l(x, α)

51

Appendix B: Proof of Itô lemma with jumps

In this section, we proof Itô lemma for Lévy processes. We will proof it for the
combined finite and infinite activity process. First, we show the Itô lemma of a pure,
non-compensated jump process.

Theorem 16. The Itô formula of dXt =
∫
A
γ(t, z, x)N(dt, dz), where A a set with a

lower bound, is

df(Xt) =

∫
A

f(Xt− + γ(t, z, x)) − f(Xt−))N(dt, dz)

Proof. We will use that ∧ denotes the minimum. Let the time of the jump be given
by τ , with τ0 = 0.

τn = inf{t > τn−1; ∆X ∈ A}
since, X is a pure jump process, the whole process is described by these jumps at
times τi.

f(Xt) − f(X0) =
∑

0≤s≤t

∆X

=
∑

0≤s≤t

f(Xs) − f(Xs−)

=

∞∑
i=1

f(Xt∧τi) − f(Xt∧τi−1)

=

∞∑
i=1

f(Xt∧τi− + γ(t ∧ τi,∆X,X) − f(Xt∧τi−)

=

∫ t

0

∫
A

f(Xt− + γ(t, z, x) − f(Xt−)N(dt, dz)

Writing this in differential form gives the desired result.

We want to extend Theorem (16) by adding its continuous Itô-diffusion part. The
proof uses a similar decomposition as in the proof of Theorem (16).

Theorem 17. The Itô formula of dXt = µ(t, x)dt+σ(t, x)dWt+
∫
A
γ(t, z, x)N(dt, dz),

where A a set with a lower bound, is

df(Xt) = (
∂f

∂t
+µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
)dt+σ

∂f

∂x
dWt+

∫
A

f(Xt−+γ(t, z, x))−f(Xt−))N(dt, dz)

Proof. Define τ as in the previous proof.

f(Xt) − f(X0) =

∞∑
i=1

f(Xt∧τi) − f(Xt∧τi−1)

=

∞∑
i=1

f(Xt∧τi) − f(Xt∧τi−) + f(Xt∧τi−) − f(Xt∧τi−1)

=

∞∑
i=1

f(Xt∧τi) − f(Xt∧τi−) +

∞∑
i=1

f(Xt∧τi−) − f(Xt∧τi−1)

52

The left-hand-side shows that we have split it between the jump component (left sum)
and a continuous part (right sum). The jump sum was already shown in Theorem
(16). Note that there are no jumps in the left sum. This means that it is a sum of the
Itô lemma for he Itô-diffusion case, Theorem (1). Adding both Itô formula and taking
the differential form shows what we want.

The only difference between the Itô lemma for the process in Theorem (17) and the
Itô lemma for the wanted process in Theorem (8) is the compensation of the Poisson
process.

Theorem 9. The Itô formula of a Lévy process as described in theorem (8) is

df(Xt) = (
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
)dt + σ

∂f

∂x
dWt

+

∫
R
f(Xt− + γ(t, z, x)) − f(Xt−))N̄(dt, dz)

+

∫
||z||<R

[f(Xt− + γ(t, z, x)) − f(Xt−)) − γ(t, z, x)
∂f

∂x
]ν(dz)dt

Proof. First, we rewrite the Lévy process such that the compensation part is put in
the drift of the process.

dXt = [µ(t, x) −
∫
||z||<R

γ(t, z, x)νdz]dt + σ(t, x)dWt +

∫
R
γ(s, z, x)N(dt, dz)

We can now obtain the Itô formula using Theorem (17). Rearranging finishes the
proof.

53

Appendix C: A simple example: dBSDE-Jump
might lead to an incorrect solution

In this section, we will give a very simple example to show that the dBSDE-Jump
method can reach a wrong solution. This example assumes a pure jump process,
e.g. b(t,X) = σ(t,X) = 0 and that we have a deterministic jump sizes Γ(t,X) = 1.
This means that the compensation component of the jumps in this underlying path
is V = 1

2
. We assume that there can only be one jump per time step and simulate

this using a Bernoulli distribution. The results will no be the same as when we would
use a Poisson distribution, but we ignore this to make the example easier. We set the
chance for a jump at 0.5, λ = 0.5. At last, we only look at 1 time step. We set X0 = 1
and we set g(XT) = XT as the terminal condition. The solution Yi,Ui can in this
example be written as G(X) = U(X + Γ)−U(X) and we write the compensation part
of the jumps as V. This gives the following FBSDEj.

X1 = X0 +
∑
jump

Γ − V =
1

2
+

∑
jump

1

Y1 = Y0 +
∑
jump

G(X0) − V

We note that we have 3 networks Y0,G and V. We now write the Terminal Loss
and Jump Loss. Note that when no jump occurs, G = 0

Terminal loss = E((g(X1) − Y1)2)

= E((
1

2
+

∑
jump

1 − (Y0 +
∑
jump

G(X0) − V))2)

=
1

2
((

1

2
− (Y0 − V))2 + (

3

2
− (Y0 + G − V))2)

Jump loss = E((G(X) − V(X))2)

=
1

2
(V2 + (G − V)2)

We show the optimal answer that the dBSDE-Jump algorithm obtains and compare
it to the desired values.

Table 6

Y0 G V Jump Loss Terminal Loss Total Loss
dBSDE-Jump 1 1

2
1
4

1
16

1
16

1
8

Desired 1 1 1
2 0 1

4
1
4

This shows that the dBSDE-Jump obtain incorrect values for G and G, but the
correct value for Y0. Moreover, the Total Loss of this algorithm is less than what
we should get when solving the FBSDEj correctly with, for example, the H-dBSDE.
The problem is that the Jump and Terminal Loss ”balance” each other out. Table 6
demonstrates this.

54

	Introduction
	The Hamilton-Jacobi-Bellman equation and the curse of dimensionality
	Basics of Stochastic Calculus
	The Hamilton-Jacobi-Bellman equation and the dynamic programming principle
	Dynamic Programming Principle
	Deterministic Hamilton-Jacobi-Bellman equation
	General Hamilton-Jacobi-Bellman equation

	Curse of dimensionality

	Numerical schemes for PDEs in stochastic control with Itô-processes
	Neural Networks
	Feed Forward
	Back-propagation
	Universal Approximation Theorem

	Numerical schemes
	Deep learning Backward Dynamic Programming (DBDP)
	deep Backward Stochastic Differential Equation (dBSDE)
	Comparing the dBSDE and DBDP methods
	Other neural network algorithms

	Connection between the HJB-equation and neural networks
	Barron Space
	Other Arguments

	Jump Diffusion
	HJB for jump processes
	Lévy Process
	Bernoulli approximation

	Schemes
	Forward Backward SDE with jumps (FBSDEj)
	Extensions to DBDP
	deep BSDE with Jumps

	Theoretical results for the FBSDEj and DBDP-MC
	Uniqueness and Existence FBSDEj
	Convergence of DBDP-MC

	Numerical Results
	Hyperparameters
	Bermudan Options
	Setting
	A reference method: SGBM
	Test Case
	High dimensional Bermudan Options
	Other options
	Poisson process and Bernoulli approximation
	Conclusion

	dBSDE-Jump
	Conclusion

	Discussion and Conclusion
	References
	Appendix A: Proofs of section 2
	Appendix B: Proof of Itô lemma with jumps
	Appendix C: dBSDE-Jump might lead to an incorrect solution

