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Modeling Piezoelectric Actuators

Han J. M. T. A. Adriaens, Willem L. de Koning, and Reinder Banning

Abstract—The piezoelectric actuator (PEA) is a well-known de- on the modeling of the dynamics of a PEA as a standalone

vice for managing extremely small displacements in the range from  system and on the dynamics of a PEA and a positioning mech-
10 pm (1 pm = 10~*? m) to 100 pm. When developing a con- 4nicm together.

trol system for a piezo-actuated positioning mechanism, the actu- o . .
ator dynamics have to be taken into account. An electromechan- Awell-known description of PEAs was publishedin 1987 by a

ical piezo model, based on physical principles, is presented in this Standards committee of the IEEE [20]. This description consists
paper. In this model, a first-order differential equation is adopted  of two linear constitutive relations. Although this description is
to describe the hysteresis effect, and a partial differential equation the most widely recognized one, we share the criticism in [11]
is used to describe the mechanical behavior. Since, in practice, ayya¢ these relations fail to describe the hysteresis nonlinearity
PEA is most often used as an actuator for positioning mechanisms, . . . .
we considered the influence of such a mechanism on the overall presentin all PEAs and fail to describe the dynamical aspects of
mechanical behavior of PEA and positioning mechanism together. the actuator. Therefore, inthis paper, this model is not considered
For a well-designed mechanism, the overall mechanical behavior anymore. In many other models, either only the linear dynamics
practically equals that of a single mass-spring-damper system, of or only the hysteresis nonlinearity is taken into account. Both

which the undamped eigenfrequency and the relative damping can ; ; ; _
be designed favorably. With respect to traditional voltage steering, types fail to describe one of the two important aspects. There

charge steering has the advantage that no hysteresis is encountereofore’ althou.gh these mo,de's are sometimes used as a basis for
between electrical input and elongation. Electrical steering config- Control design, we consider them not accurate enough for our
urations for both cases of steering are presented. Finally, for the purposes. However, for the sake of completeness, we mention
case of charge steering, we derived the total model of a piezo-actu-some references. Examples where only the linear dynamics has

ated positioning mechanism. This model is dominated by the me-
chanical model, which could be designed favorably. Therefore, this been modeled are, e.g., [6] and [18], and examples where only

model gives a broad range of possibilities for model-based con- the hysteresis has been modeled are, e.g., _[9]’ [101’, [121’ and
troller design. [19]. In [23], the PEA has been modeled as a time-varying linear

, . system where the time variance of the parameters is modeled
Index Terms—Charge steering, distributed parameter system, b I network. A simil h fi dinf3
hysteresis, piezo-actuated positioning, piezoelectric actuator. y aneural ne wor -ASImI ar_approac Wa_s mentioned in [13],
where a self-tuning regulator is used to estimate the parameters
of a linear model at every sampling instant. Recently, a model
. INTRODUCTION that consists of the series connection of a hysteresis operator and

HE piezoelectric actuator (PEA) is a well-known comlinear dynamics has been proposed in [5] and [8]. Although this
T mercially available device for managing extremely smalnodel has no strong physical base, it seems an obvious choice for
displacements in the range of 10 pingm = 10~2 m) to 100 taking actgator ponlinearities intp account. In both references,
;M. The ratio of the input voltage and the output elongatio®d @Pproximate inverse hysteresis model has been used to cancel
is very favorable for this purpose. A disadvantage, however,tRe hysteresis nonlinearity. In [15], the series connection of
its highly nonlinear input/output behavior. More specifically‘,i”ear first-order dynamics and a hysteresis operator, i.e., the
a PEA shows hysteresis behavior. In simple terms, this medf¥ersed order as above, has been used as a model for a so-called
that for a certain input, there is no unique output. Instead, tRBape memory alloy actuator. In these actuators, hysteresis is
output depends on the input history. For high-accuracy pngcountered betweentempergture.and elongat.|on. In[2],a PEA
tioning and tracking systems, the piezo-actuated positioniﬁ@Pdel has been proposed, which differs only a little from the se-
mechanism should be equipped with a controller. Modern coiies connection of a hysteresis operator and linear second-order
troller design is based on a model of the system to be controlléynamics. In 1997, Goldfarb and Celanovic proposed a model
For piezo-actuated positioning mechanisms, the dynamical f-the PEAthatis completely based on physical principles [11].

aswell as the connection between the two domains. Furthermore,

this model describes both the hysteresis nonlinearity and the
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electr. piezo mech. TABLE |
voltage <—= charge force elongation DIFFERENCESBETWEEN VOLTAGE AND CHARGE STEERING
Fig. 1. Schematic representation of the different relations in a PEA. Closed | Open
Steering source voltage | charge
recent literature on charge steering of PEASs, we present the basic Resmtanf?e of source | 0 oo
principle of a charge-steering configuration. Furthermore, we g}’smrf?s fﬁe"t yes no
consider the influence of a positioning mechanism on the overall 1620 eflec yes e

dynamical behavior of a PEA and a positioning mechanism

together. For a positioning mechanism that may be modeled piezo wafer
with a mass-spring-damper system, we consider this influence / electrode
in detail. + ] /

In Section Il, some physical properties are discussed and an " J
electromechanical model is presented. For the larger part, this pea
model is due to [11]. In Section lll, the differential equation I A I N A
describing the hysteresis phenomenon is introduced. A partial | |
differential equation (PDE) as a mechanical model is derived 03-1mm
and analyzed in Section IV. In Section V, the PEA is applied to 40 - 120 mm

a positioning mechanism and the influence of this mechanism
on the mechanical model is analyzed. Basic configurations fge- 2. Schematic representation of the stacked configuration of a PEA.
both voltage and charge steering are introduced in Section VI.
In Section VII, we consider the total model of a piezo-actuated It is apparent from the scheme in Fig. 1 that, between charge
positioning mechanism for the case of charge steering. Finaf@y)d elongation, no hysteresis effect is encountered because,
in Section VIII, some conclusions are drawn. as mentioned, this effect is encountered between voltage and
charge. Equally obvious, the hysteresis effect is encountered
II. PHYSICAL BACKGROUND AND AN ELECTROMECHANICAL  between voltage and elongation. The former situation can be
MODEL realized by charge steering, while the latter situation occurs for

vqltage steering. Voltage and charge steering may be realized

Dielectric materials are insulators, thus, there is an electri%a a voltage and charge source, respectively, which have an

relation between electrical voltage and electrical charge. Piez ) A " .
. : . o internal resistance zero and infinite, respectively, and which
electrics are a special type of dielectric in the sense that, in : .
. . . . . may be called the (galvanically) closed and (galvanically) open
piezoelectric materials, an externally applied force induces an

electrical charge. Conversely, an applied electrical charge tuation. In both cases of steering, a charge is mdu_ced on
duces a force. The former effect is known as the piezoelect e electrodes of the PEA. In the case of voltage steering, the

effect and was discovered in 1880 by the Curie brothers. T ?ésteresw effect is present between voltage and charge. The

latter effect is the inverse piezoelectric effect. The word “piez@’ ectrical chqrge mduces a force and, asa result,.an elongation
derives from the Greek word “piezen,” which means “to push.Gf the ceramic. This means that the piezo effect is present for

The effect was discovered when a pushing force or, in oth%?th cases of electrical steering. All of this is summarized in

words pressure, was applied to the material. In the beginniﬂ—@ble .

both pressure electricity and piezoelectricity were used to de-The most widely spread PEA configuration is the stacked one,

scribe the same phenomenon. Besides the piezoelectric andPf¥ich a schematic representation is given in Fig. 2. Such a
verse piezoelectric effect, we have the already mentioned elB&A Stack consists of the series connection of anumber of piezo
trical relation between voltage and charge, and a mechanit&fers with an electrode between every two wafers. Clearly the
relation between force and elongation. In Fig. 1, a schema‘ﬂ’@fer$ arein series mechanically and in parallelelectr_lca!ly. The
representation of the different relations is given. The piezo éftter is done in order to strengthen the effect of the individual
fect is the connection between the electrical and mechanical ¥6fers. The piezo wafers have athickness of 0.3—1 mm. For max-
mains. Due to this effect, piezoelectrics are potentially useful #8Um elongationranging from 10 to 1pn, the length ofa PEA
electromechanical actuators. ranges from approximately 40 to 120 mm, respectively, is

In naturally occurring piezoelectric materials, such as quarth€ voltage over every piezo wafer and over the total PEA.
the (inverse) piezoelectric effect is too small to be of practical AS mentioned in Section |, a fairly accurate overall electro-
use. Man-made piezoelectric polycrystalline ceramics afechanical model of a PEA is given in [11]. It is reproduced
much more suitable for actuator purposes because the us#fufig. 3. Here, the hysteresis and piezo effect are separated.
properties, such as maximum elongation, can be influenced Byrepresents the hysteresis effect afdis the voltage due to
the proper mixture of ingredients. A disadvantage of man-matiés effect. The piezo effect is representedy,, which is an
piezoelectric ceramics is that a hysteresis effect is encounteedectromechanical transducer with transformer rétiq. The
between electrical voltage and electrical charge. Since origpacitanc€’ represents the sum of the capacitances of the indi-
man-made ceramics are useful for actuator purposes, they \dgal piezo wafers, which are electrically in parallel. The total
meant when we talk about PEAs. The piezoelectric effect (ourrent flowing through the circuit ig. Furthermoreg may be
the piezo effect for short) and the hysteresis effect play aeen as the total charge in the PEA. The chapgs the trans-
important role in the dynamical behavior of these actuators. duced charge from the mechanical side. The voltages due
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Fig. 4. Realistic hysteresis loop.

Fig. 3. Electromechanical model. IIl. HYSTERICS MODEL

) , In this section, we consider the hysteresis operator of (5),
to the piezo effect. The total voltage over the PEAiS.. The \ hich is part of the total electromechanical model of (4)—(9)
force F}, is the transduced force from the electrical side. The By definition, a hysteresis effect is dynamic, rate-indepen-
force I, is externally applied. In practice, this is most often §ent and nonlinear. By rate-independent, we mean independent
pushing force. The resultant forég — /. mechanically drives ¢ he time scale. In [11], this effectis modeled by a combination
the piezo material. The resulting elongation of the PEA is dgt elementary elements. Therefore, the number of parameters in
noted byy. The mechanical relation betweéfy andy is de- his model is relatively large. Furthermore, such a model is not
noted byM . Note that we have equal electrical and mechanicglyy syitable for controller design purposes. Therefore, in [1],
energy at the ports of interaction, i.@,q, = I7,y. The piezo 4 giterential equation, with only three parameters, is used as a
material has elasticity modulus, viscosityr, and mass den-  steresis model. A differential equation is also more attractive
sity p. Furthermore, the geometrical properties of the PEA afghan, we want to use the model as a basis for controller design.
length L and cross-sectional areh Massm,, stiffnessk,, and |, his section, we consider this equation in more detail. How-
dampmg coefﬂuent?, can be calculated from the material a”%ver, in [1], a much more extensive discussion may be found.
geometrical properties as follows: A hysteresis loop is defined as the stationary loop in the

input/output plane for a quasi-static monotone oscillating input,

my = pAL @) e.g., a low-frequency sinusoid.
ky = EA ) The equation under consideration is a first-order differential
L equation, which is proposed in [3]. It has been developed to
¢p = ﬁ () describe magnetic hysteresis, but in [1], it has experimentally
L been verified that this differential equation is also suitable for

The complete set of electromechanical equations is as sgescribing electric hysteresis such as in a PEA. The model for
the hysteresis effect betweep andq is given by

lows:
Upea = Uk + Up 4) g = alun| (f(urn) — @) + tng(un) (10)
¢ =H(un) ®) where f(u;,) and g(u;) are functions with which you can
q=Cup+qp (6) “shape” the hysteresis loop. In [1], it has been proven that, for
Op = Tomy (7) asinusoid with offset:, ., the center point of a hysteresis loop
Fy =T, 8) is given byg. = f(u ). Furthermore, it has been proven that

the average slope of a hysteresis loop is equaltg,. ..).
In theory, PEAs show lengthening saturation. In practice,
owever, we stay far away from saturation, i.e., we deal with
steresis loops that are similar in shape to the one in Fig. 4.
herefore, the functiong(w;,) andg(w;,) may be chosen as

y=M(F, - F.) 9)

whereH and M represent the hysteresis and mechanical op

ators, which are discussed in Sections Ill and IV, respective

Since in a PEA the individual piezo wafers are mechanically i

series, itis to be expected that the longitudinal dynamics play an

important role in the mechanical operator. It is well known that Fun) = auy,

this often leads to a PDE model. Furthermore, because the indi- g(un) =b (11)

vidual piezo wafers are electrically in parallel, it is very accurate

to take the sum of the capacitances of the individual wafers Wgerea andb are constants.

electrical model, resulting in the capacitar@én (6). Using the previously mentioned results, the equations for the
The transduced forcé, is, in fact, present in every piezocenter point and the average slope of a hysteresis loop are given

wafer. However, because every wafer tends to elongate, e

forces at the connection of two wafers cancel out. Therefore,

macroscopically there are only forces at the first and last Qe = QURp, c 12)

electrodes, as in Fig. 3. Qur — qu =b02A (13)
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whereg,,. andg;; are the upper right- and lower left-hand-side g—z~—"+-
points of a hysteresis loop, respectively, ahds the input am- -
Pitude.
In (10) and (11), there are three independent parameters, ,L”E?.
namely, o, a, and b. This means that there should be three ey

independent characteristic quantities in a hysteresis loop. : 5

_ : / ) Ey(0 - F () F () -F (0
Besides the center point and the average slope in [1], a relation
has been derived for the hysteresis ardar relatively small : '

amplitudes of the sinusoidal input (Fig. 4)
mass:pAh

4
€= g(a — b)aA®. (14)
Having experimentally determinedandb from center points Fig. 5. PEA in undeformed and deformed state.
and average slopes, the parametean then be experimentally

determined from hysteresis areas. the PEA is shown in the undeformed and deformed states. The

For de_creasmg input amplitudes, it follows from the PreVIOUs,sition variable of a piezo slice is while A is the thickness of
expression that, because of the power three, the hysteresis ar fee. At position, we have that(z, £) andN(z, ¢) are the

decreases faster. This has first been noted in [7]. As a result, §placement and the so-called normal force, respectively.

;mall dewatlons from a center point, the hysteresis nonllnearlty.l.he impulse balance for a piezo slice can easily be obtained
is well approximated by its average slope from Fig. 5

Aqg = bAuy, (15) 2
N(z+h,t)—N(z,t)= pAh%Z;t)
where A is used to indicate that we deal with deviation vari- at

ables. This approximation allows for linear analysis of the tOtﬁJividing by h and taking the limit for: to zero gives the equa-
model. tion of motion

. (16)

In[1], it has been proven that for physically correct hysteresis,
i.e., convergence to hysteresis loops and counterclockwise ori- ON(z,t) A82v(z, t) 17
entation and monotony of hysteresis loops, it is required that 9. P o2 a7

a > 0andthat) < (1/2)a < b < a. ] ) )
Secondly, we have to specify the material behavior. The rela-

IV. MECHANICAL MODEL tion by which this is specified is thg .con.stitutive relation, which
solely depends on material quantities likeandr. Therefore,

In this section, we consider the mechanical operator of (Yhe constitutive relation is formulated in terms of stresand
which is part of the total electromechanical model of (4)—(9). straine, of which the definitions are

In[11], the mechanical behavior is modeled by a single mass-
spring-damper system. In a Bode plot, such a system only shows
one peak, while experimental results in [6] indicate that there are

many more peaks and valleys in between every two peaks. How- | o . .
ever, in the model in [6], only two peaks and one valley are také}s @ fairly accurate constitutive relation for many solids, among

into account. In fact, there are infinitely many peaks and valthich the piezo ceramics, we take the Kelvin-Voigt model. It
leys because the PEA is, in fact, a distributed parameter syst&@1Sists of the parallel connection of a spring element obeying
i.e., the mass of the PEA is not concentrated in some poi ,oke’s law an_d a viscous elem_ent.behavmg like a Newtonian
as in linear mass-spring-damper systems of arbitrary order, Bg¥- Mathematically, the model is given by

the mass is distributed over the element. Such a distributed pa- Oe(z, 1)
rameter system may be modeled by a PDE. The PDE for the a(z, t) = Ee(z, t) + n—>—.
case that damping is not taken into account is well known and ot
can be found in every standard textbook on PDEs. This is r@4sed on (18) and (19), the following relation for the normal
the case when damping is taken into account. In [14] and [2Zbrce N can be derived:

PDEs were used to describe the mechanical behavior of the PEA

N(z1t)
A

Ou(z, t)

2, 1) =
0—(77 ) az

ez, 1) = (18)

(19)

ingi ' - g 0?
where damping is accounted for. However, in both of these refer N = pga A v (20)
ences, the damping has not correctly been modeled. Therefore, oz 9z0t
we derive a PDE ourselves. Since the individual piezo Wafevrv%ere the argumentsands are omitted for notational conve-

are mechanically in series, it was, as mentioned in Section Il, to ) ) . .
be expected that the longitudinal dynamics would play an ifience. Using the equation of motion and the equation for the
rmal force, i.e., (17) and (20), the PDE describing the me-

} . n

Eg;\t:cito:ole, which leads to a PDE model for the meChangﬁanical PEA behavior can be derived to be
As a first step in the derivation of the PDE, we derive the 92v v 92

equation of motion. To this purpose, we consider Fig. 5, where E@ + o2t~ Pae (21)
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An alternative formulation can be found by using the definitionat a free end, the normal force equals zero fortahd, there-

of mass, stiffness, and damping coefficient, i.e., (1)—(3) fore, Z/(L) = 0. The nontrivial solution of this equality gives
52 o8 52 values fory;
v v m v
kyl— 4+ cpL—— = -2 ——. 22 i
PHa2 TP 929t T L o2 (22) Ni(L,)=0 — m:%, i=1,3,5.... (31

Here, we are not interested in the analytic solution of the PDE ) . )
for a specific input. Instead, our main interest is in the eigeri"US; taking the boundary conditions into accodptz) can be

modes and corresponding eigenfrequencies and relative dafifiemined up to a constant

ings. In order to determine these, it suffices to consider the free (in ‘

responsek, — F. = 0). Z;(z) = B;sin <Ez> , 1=1,3,5,.... (32)
Systems described by a PDE are said to be infinite di-

mensional because infinitely many eigenmodes can ber i = 1,3,5,..., |Z;(L)| is maximal, which corre-

distinguished. The free response can be written as the infinieonds with a trough for the elongation(t). Note that

sum of the eigenmodes fori = 2,4,6,..., Z;(L) = 0, which corresponds with

y;(t) = 0, i.e., with a node for the elongation of the PEA.

We continue with the evaluation of the eigenfrequencies and
the relative dampings of the eigenmodes, i.e., we consider (27).
The well-known general differential equation for linear time-
Each eigenmode is determined using the principle of separatiomariant second order systems is

of variables, i.e., its expression is taken to be of the following . . )

v(z, t) = ivi(z, t). (23)
i=1

_ herew, ; stands for the undamped, or natural, eigenfrequency
i\ t) = Z;(z ,Tz t). W ’ . . . .
vilz 1) ()T.() (24) and¢; denotes the relative damping. By comparing (27) with
Substitution of this form in the PDE of (22), after some manig33) and using (31), these characteristics can be derived to be
ulations, gives

Py k
} . W= [P35, (34)
A _ T (25) ’ 2\ my
_4 - C . k q
i plgqgplg =02 =135, (35)
My mp 4 \/kymy

where “accent” and “dot” refer to derivatives with respectto From this result, we conclude that even for small values

andt, respectively. The left- and right-hand side only depend @i c,,, the higher modes are strongly damped. Note that for
z andt, respectively, and, thus, the above equality is a constapt— 2, 4, 6, ..., these characteristics can also be calculated,
which is denoted by-;;. The following two ordinary differen- which gives eigenfrequencies corresponding to eigenmodes
tial equations can now be derived: with w;(t) = 0.

The roots of (33) are given b
2!+ 4322, =0 (26) (33) are given by

. . k oo G s o a1 — g2
T+ N?LQ ;_Pﬂ + N?LQm_PCR =0. (27) Szwu,z ide,zv W, ¢ Wy, 4 1 Sz (36)
i i where it is assumed thét < 1, which is not true for large, as

We start determining the amplitude of the eigenmodes, i.@ill be clear from (35). Furthermorey, ; are the damped eigen-
we consider (26), of which the general solution is given by  frequencies, which are the frequencies that actually appear. Sub-
stitution of (34) and (35) in (36) gives, fédd, the poles of the
Zi(z) = Aicos(piz) + Bisin(piz). (28)  transfer functionV(s) = y(s)/(F,(s) — F.(s)), wheres is the
é_a_place variable and wheng as defined before, is the elon-
eg tion of the PEA. In case of a fixed endat= 0, we have
éas) = v(L, s). Fori, even we obtain the zeros 81 (s). It can
e proven that the poles and zeros for wijcke 1 lie onacircle
with center ¢k, /c,,, 0) and radiusk, /c,,. The other poles and
zeros are located on the real axis. In Fig. 6, the pole—zero pat-
tern of the mechanical model of a PEA with = 4 x 107 N/m,
¢, = 1 x 10?2 kg/s, andm,, = 0.1 kg is presented.
0i(0,8) =0 — A; = 0. (29) In a Bode plot ofM(s), the poles and zeros appear as peaks
and valleys, respectively. In Fig. 7, a Bode plot is presented for
From (1)—(3), (20), and (24) the normal forcezat= L can be a PEA withm,, andk,, as in the previous plot, but with, =
derived to be given by 10 kg/s in order to have well-visible peaks and valleys.
For i odd, as well as even, the corresponding eigenmode is
Ni(L, t) = Lk, Z/(L)T;(t) + Le, ZH(L)Ti(t). (30) a standing wave in the spatial domain. For a fixed tiniese

By specifying the boundary conditions, the constants can be
termined. For instance, consider the practical situation wher
z = 0andz = L the PEA is fixed and free, respectively. Th
displacement at = 0 is given byw;(0, t) = Z;(0)T;(¢). Ata
fixed end, the displacement equals zero fort@hd, therefore,
Z;(0) = 0. Using this, the constam; can be determined as
follows:
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TABLE 1l

SUBSEQUENT EIGENMODES FORFIXED t TOGETHER WITH THE
CORRESPONDINGDAMPED EIGENFREQUENCIES ANDPOLE—ZERO INDICATIONS

i | Eigenmode Damped eigenfreq. | pole/zero
1 M T _kil’.. m Cp 2 l

Wm —l2ms pole
) 3/\ PRASY

LRV Rl Cit Zero
3 %N 3x [ kp 3r cp 2 1

2\ m, (T m,,) pole
NES S P

T s — ( T s Z€ero

waves are shown in Table Il together with the corresponding
damped eigenfrequencies and pole/zero indications. Of course,
we deal with longitudinal waves, but for visualization reasons,

they are shown as transversal waves.
Having determined the poles and zeros, we can give a transfer
function description of the mechanical behavior of a PEA

M(s) =

y(s)

_ Nyp(s)

Fp(s) = Fe(s)

Dy (s)

(37)
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F, F, F,
F, nk, F,
m,/2n g
n- h

Fig. 8. Chain of mass-spring-damper systems as an approximate mechanical
model of the PEA.

with the polynomialsi,(s) and D,(s) in a nonmonic form
given by

Nys)=]] 2‘225 +cps+k (38)
i=1 Ha;
1:[ 2 1L28 +cps+ k. (39)

Approximations of arbitrary order can be made by taking an
arbitrary number of poles and zeros into account. We deal with a
physical system and, therefore, in the approximation the number
of pole pairs should exceed the number of zero pairs with one.
For such approximations, it is easy to see that the static gain of
the transfer function i$/%,. This corresponds with the PDE of
(22). The approximate models obtained in this way are called
modal approximation models.

Finite-difference approximation models can be obtained by
numerical approximation of the position derivatives in the PDE.
The numerical approximation of the second derivative with re-
spect toz is

v vy —2u U
= 40
022 h? (40)
wherev; = v(z, t) with z; = lhforl = 0, 1, ..., n. Substi-

tution in (22) and introduction of = L/h after some simple
manipulations gives

7’L/€p(1}1+1 — Ul) — nkp(vl — 11171) + ﬂcp(@l+1 — Ul)
I=1,...

. mp ..
—ncy(U — V1) = 7])1/17 ,n—L

(41)

Physically, this corresponds with a chain of mass-spring-damper
systems, as in Fig. 8. Here, the ends of the PEA are modeled by
one-half of the mass of the other elements. Note that (41) does
not give us the equations of motion for these ends of the PEA.
These can easily be derived to be

nkp(vl_H—Ul)—i-Tch(i}l_H—1}1)—FP+F€ I%i}l, {=0
(42)
. mp ..
nkp(vi—vim1) —nep(Ui— v )+ Ep— Fe :%vl, l=n.
(43)

The symmetric model of Fig. 8 reflects the practical situation,

where the PEA does not show a preferable direction. The ele-
ment consisting of a spring and damper and at both sides half of
an elements mass can be considered as an elementary element of
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Fig. 11. Block diagram of the mechanical model of PEA and stage together.
Fig.9. Total system of PEA and stage where the latter is a mass-spring-damper
system.
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Fig. 10. Visualization of the interaction force between PEA and stage. x: poles \ J
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the chain. Note that the transduced forces cancel out at the con- -3 w oS ]
nection between two elements. Thus, macroscopically there are, e TR e e o-f'é !
justasin Section Il, only forces at the first and last electrode. The Real Axs x10°

advantage of finite-difference approximation models, with re-

spect to the modal approximation models, is the flexibility Witg'ogl'C 12

respect to different boundary conditions. The boundary condi-

tions can be incorporated in the equations for the ends of the ] . ]

PEA, i.e., in (42) and (43). on the elongation of.the PEA. The mechanical relation between
The approximation of the PDE converges to the PDEfer  » @ndy can be derived to be

oo. By choice ofn, approximations of arbitrary order can be N

made. y(s) = NG (P;)Szr NG F,(s). (46)

Root locus for increasing value of the stage stiffns<( ks <

V. MECHANICAL MODEL OF A PIEZO-ACTUATED POSITIONING

It may be seen the numerator polynomial has not changed, de-
MECHANISM

spite the fact that we have a stage. Physically this can be un-
Up to now, we have considered a PEA as a standalone glerstood from the fact that, in case of a zero, the elongation
ment. In practice, however, a PEA is most often used as an att) = 0, which means that the stage is at rest. Therefore, the
tuator for positioning mechanisms. We restrict ourselves to pgeros are invariant for the stage properties.
sitioning mechanisms that are accurately modeled by a simpldn order to determine the new pole locations, we separately
mass-spring-damper system. In the following, we use “stageonsider the cases where we have only stage stiffness, only stage
for positioning mechanism. In Fig. 9, the total system of PEAamping, and only stage mass. In the case of only stage stiffness
and stage is presented. At one side, the PEA is fixed and at hewe have the denominator polynomisi},(s)k, +D,(s). The
other side, it is connected to the stage of whieh ¢,, andk, analogy with arootlocus problemisto be remarked upon. Afirst
are the mass, damping, and stiffness, respectively. basic rule for root locus is that, fdr, = 0, the poles coincide
The interaction force between PEA and stage, i.e., the fore#h the original poles. A second basic rule is that,¥pr— oo,
acting on the PEA due to the presence of the stage and vibe poles tend to the zeros. The remaining poles tend to infinity.

versa, is denoted h¥, and may be derived from Fig. 10. In our case, there are infinitely many poles and zeros. However,
The expression for the interaction force is as mentioned in the previous section, in an approximation, the
number of pole pairs exceeds the number of zero pairs by one. In

Fy = myg+ ey + ksy. (44)  Fig. 12, the root locus fab < k, < 50 k, is shown. Clearly, the

poles tend to zeros. However, one of the poles at the top (and at
the bottom) of the circle tends to infinity. This is not visible yet
F,(s) = Dy(s)y(s) Dy(s) =mss?+ces+k,. (45) duetothenotlarge enough valuesiofalthough ever, =k,
is already unrealistically large.

In[7], the presence of a stage is accounted for in a block diagranin case of only stage damping, the denominator polynomial
for the case that the mechanical model of the PEA is a massgiven byN,(s)sc, + D,(s), wheres can be considered as an
spring-damper system. A similar block diagram is presentedémtra zero in the origin, to which a pole tends for increasing
Fig. 11. Note that the stage stiffness, damping, and mass wattkus, in this case, only one pole tends to infinity. The root locus
as position, velocity, and acceleration feedback, respectivelyfor 0 < ¢, < 50 ¢, is shown in Fig. 13.

Comparison of Figs. 3 and 10 or (37) and Fig. 11 teachesWhen we only have stage mass, the denominator polynomial
us thatZ; influences the PEA behavior in a similar way as ais given by N,(s)s?m; + D,(s), wheres? can be considered
externally applied force. The only difference is tl#gtdepends as two extra zeros in the origin, to which two poles tend for

After Laplace transformation, we may write
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Fig. 13. Root locus for increasing value of the stage damping(c; <

50 ¢p). Fig. 15. Pole—zero pattern of the mechanical model of PEA and stage together
with well-designed stage properties.
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S _. "‘"“{. designed favorably. Summarizing, for a practical stage design,
9 . “ the poles tend to the unchanged zeros, which means that poles
2 gy \ and zeros cancel out in a transfer function. Therefore, in a Bode
A4 : y plot, no peaks and valleys are to be observed. The first pole pair
] could be designed to our wish and, therefore, in a Bode plot, this
g [1] SRR MU W O s PP PPN One |S V|S|b|e as the Cutoﬁ frequency A good approx|mat|on Of
Tt % the relation betwee#,, andy in differential form is
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Fig. 14. Root locus for increasing value of the stage mass (., < m,). c=c, +c
g ]
k=kp+ k. (48)

increasingn. In this case, none of the poles tends to infinity.
In Fig. 14, the root locus fob < m, < m,, is shown. This approximate model reflects the influence of the stage on
For increasingn,, the poles seem to stay on the circle. Furthe first eigenmode. We aim at an undamped eigenfrequency
thermore, the effect ofn, is strong because already for veryof 1 kHz and a relative damping ¢1/2)+/2. The value ofk,
small values the pole locations change significantly. Note thiastdesigned such that it is considerably smaller than the PEA
the first pole pair tends to the origin, i.e., the first eigenfrequensyiffness, but still realistic for a mechanical system, ikg.—
decreases. Typically, the first eigenfrequency of a PEA is b&x 10 N/m. Sincek,, = 4 x 107 N/m, the overall stiffness is
tween 5-10 kHz. The reason for this is its relatively high stiffe = 4.5 x 107 N/m. The value ofn, is designed to achieve the
ness and its relatively low mass. By stage design, we, therefaratoff frequency of approximately 1 kHz. Singg, = 0.1 kg, it
usually aim at decreasing this eigenfrequency or, in other wordisllows that we need., = 1.1 kg. Furthermoreg, is designed
the bandwidth of the system. This enhances digital control of teach that the favorable relative damping is obtained. Since the
system. Thus, the effect of increasing is favorable. damping in the PEA is estimated to bg = 1 x 10% kg/s, it
For increasing:., the effect is less strong than fer,. More-  follows that we need, = 1 x 10* kg/s. In Fig. 15, the pole—zero
over, because of the already high stiffness of the PEA, we do matttern of the mechanical model of a PEA and a stage together
aim at a stiff stage design. Thus, in practice, the influence of tleepresented, with the stage properties as derived above, i.e., a
stage stiffness on the pole locations is negligible. well-designed stage. Note that all pole pairs, except for the first
The structural damping of a PEA is very small and, thergair, indeed approximately cancel all zero pairs.
fore, with stage design, we aim at adding damping in order toln Fig. 16, the Bode plot of the total mechanical model of
obtain well-damped behavior of the total system. Note that, fRIEA and stage is shown together with the Bode plot of the ap-
increasingc,, the poles tend to the zeros located on the othproximate model. Only at & 10* Hz, i.e., the frequency that
side of the original poles than for increasing . corresponds with the first valley/zero, a small difference is vis-
Simulations showed that, especially for the higher eigenfrisle. Here, the pole does not perfectly cancel the zero.
guencies, the effect of increasing, is so strong that it domi-  With a well-designed stage, the behavior of the total mechan-
nates the effect of,. For the first pole pair, the effects of bothical system of PEA and stage practically equals that of a single
mg ande, have to be taken into account. Thus, both undampethss-spring-damper system. The model simplification is con-
eigenfrequency and relative damping of this pole pair can ba&erable.
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Bumax = U/pea, max- (49)
Fig. 16. Bode plots of the mechanical model of PEA and stage together with o ) ) )
well-designed stage properties and of the approximate mechanical model. This equality is considered to be a design rule. For maximum
elongation,tipeq max = 1000 V. The design variable® and
Finally, we briefly want to consider the design of the positmax should be chosen such that this is possible. Note that the
ign constraints are the electronic possibilities, i.e., the design

tioning mechanism that has the desired properties we derived’ ; S
above. The low stiffness we aimed at can be achieved in a Cgpr_rlables have to be chosen such that the configuration is prac-

struction with leaf springs. The required mass can be achieJi !l realizable. ,
in a metal construction. However, in such a metal construc—':Orthls configuration, the charge in the PEA clearly depends

tion, there is almost no intrinsic damping. To introduce thi&" the PEAs impedance, which is partly determined by the hys-

we could use a system based on the concept of Eddy curriiesis effect (Fig. 3).
damping. This system consists of a copper ring attached to

fixed world and a ferromagnetic backplane with a number o
strong permanent magnets attached to the moving mass. By add Section II, we have argued that, in case of charge steering,
justing the gap between the copper p|ate and the magnets7th%hystereSiS effect is not encountered. In the early 1980’s, this
damping constant can be tuned to our desired value. We remiikult has independently been reported in [4] and [17]. A charge-
that this construction may indeed be accurately modeled bytgering configuration has to be designed such that the charge
Simp|e maSS_Spring_damper system, as we assumed earlier. a';p@lled tothe PEA s independent of the PEAs impedance. This
mass is concentrated in the moving part, the stiffness, or in f&&completely analog to a current-steering configuration, which

weakness, is concentrated in the leaf springs, and prelimin&gs to be designed such that the current applied to a certain

experiments with the Eddy current damping system show thattPedance is independent of that impedance.
gives linear damping. In[17], a current source is used as a basis for charge steering.

A more direct approach is followed in [4], where a simple con-

V1. VOLTAGE AND CHARGE STEERING CONFIGURATIONS figuration is _p_roposed consisting of a voItagg source, an oper-

] _ ational amplifier (opamp), an external capacitance, and a high-
As we have learned from Section Il, two ways of electricglotage amplifier. In [16] and [21], the same basic configura-
steering may be d|st|ngL{|shed, namely, v(?ltage and Chaﬁ%h is introduced. Especially in [16], it is clearly noted that this

steering. A voltage-steering configuration is simple, but igimple configuration has two apparent drawbacks: both sides of
this case, hysteresis is present in the input/output behavioryfs peA are floating with respect to ground and the configu-
charge-steering configuration is more complicated, but onggion is very sensitive to opamp bias current. In [21], various
established, hysteresis does not play a role anymore. countermeasures are proposed to overcome these problems.
For maximum elongation, the voltage difference over a high- Here we only consider the basic configuration, which is

voltage PEA has to be in the order of 1000 V for almost any corgpown in Fig. 18, 1, andw, are the input voltages and

mercially available type. Most piezo-actuated mechanisms gk output voltage of the opamf, and B, are high-voltage
computer controlled and, thus, the maximum steering voltagejgplifiers, andC. is the external capacitance.

fiers is, therefore, unavoidable. . . rules. In the analysis, we assume to have an ideal opamp, i.e.,
In the remainder of this section, we design the basic, or prip- — 4, andi, = 0. From Fig. 18, it is clear that, = » and,

ciple, configurations for both voltage steering (Section VI-Ajyys 4, = «. Sinces, = 0, the chargey in the PEA equals that

.eCharge-Steering Configuration

and charge steering (Section VI-B). in C., which can easily be derived to be
A. Voltage-Steering Configuration g= %u (50)
By

As mentioned at the beginning of this section, the configu-
ration for voltage steering is simple. The principle is shown ithus, it can now already be concluded that the charge applied to
Fig. 17, whereu represents the voltage generated by the corthe piezo is independent of the piezo impedance. However, there
puter andB signifies the amplification factor. are more requirements that have to be met. Namely, the voltage
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Of the complete set of electromechanical equations (4)—(9),
the following play a role in the case of charge steering:

qg=Cup+qp (53)

dp = Temy (54)

Fy =Temuy, (55)
mij+ cy + ky =F, (56)

where the mechanical model is equal to (47), i.e., the mechan-
ical model of a well-designed piezo-actuated positioning mech-

Fig. 18. Basic configuration for charge steering. anism. After simple manipulations, the following equation may
be obtained:
difference over the piezo should be able to attain 1000 V in order mi+ et + koy = Bog (57)

to achieve maximum elongation. _ _
From (12), it can easily be concluded that the maximum valWéerek, ands, are as defined in [7]
of w;, is attained for the maximum value gfand is given by

2
U1, max = (1/a)gmax. From (6) and (7), we can also derive the ko =k + % (58)
maximum value ofs,, as a function of the maximum values of T
¢ andy to be given byu,, max = (1/C)gmax — (Tem/C)Ymax- B, = gn- (59)
Substitution of the previous results in (4) then gives the max- ) o
imum value for the voltage over the PEA, i.@co max = The index ‘v” is used because the case of charge steering in

((a+C)/(aC)) gmax — (Tom/C)tme. A relation forguas as a Section Il is also referred to as the galvanically open situation.
fUNCtion 0ftpea, mesx ANYmax can easily be obtained from this Using the relation for charge steering (50), i.e., the relation

relation. Using (50), another relation fgy,... may be derived, bﬁtweep tEe ;)né):t \r/]oltagei ger&eﬁtedhm the ccf:mrf)uter and the
L., G — (Co) Ba )i From these two relations fag,.,, C12d€ in the PEA, the total model for the case of charge steering

the following design rule can be derived: can easily be derived to be given by

C. aC'

L Ce
Tem my + cy + koy = /30 —U. (60)
o Umax = T~ (51) B,
BQ a+ C

<U'pea, max + Fymax
Summarizing, by changing traditional voltage steering

The right-hand side only contains PEA properties, while tHer charge steering and by proper design of the positioning
left-hand side contains the design variables, i.e., the variabfegchanism, it is possible to bypass both the hysteresis effect
from the charge-steering circuit of Fig. 18. These are chos@nd the distributed parameter character. Therefore, the total
such that they fit with a specific PEA. model of a piezo-actuated positioning mechanism for the case

The voltage over the PEA is given by,., = Of charge steering is significantly simplified with respect to
Biu, — (1/Bx)u. When we think ofu. as a constant the PEA model, as presented in Sections II-IV. The obtained
factor timesw, it can easily be seen that the maximum value fdnodel is very suitable as a basis for controller design.

Upea IS attained for maximum input. The second design rule
is now given by VIIl. CONCLUSION

1 In this paper we have, based on [11], formulated an electro-
Biue max = Upea, max + 5 Umax- (52) mechanical model for the PEA. What we added is the use of
By a nonlinear first-order differential equation to describe the hys-

The right-hand side contains a PEA property and design vagresis e_ffect andthe use ofaPDE,_incIuding structural damping,
ables that have been chosen according to the first design ruld®fiescribe the mechanical behavior.

(51). The left-hand side contains the other two design variables Eig€nmodes and their corresponding eigenfrequencies and
Finally, we state that, as in the case of voltage steering ti;%atlve dampings associated with the mechanical behavior have
five design variables., Bs, tyax, B1, aNd e s have to been analytically determined. The poles and zeros of the me-

be chosen based on electronic possibilities in order to obtair‘f?ﬂ"’m'caI model lie on aC'rCIe of which the center point and ra-
. . - dius have been determined. In a Bode plot, the peaks and valleys
practically realizable design. ) . .
associated with the poles and zeros appear alternatingly.

Based on a transfer-function representation of the mechanical
model of the PEA, the influence of a positioning mechanism

In this section, we derive the total model of a piezo-actuatemh the overall behavior of a PEA and a positioning mechanism
positioning mechanism for the case of charge steering. We red¢atiether has been considered. Determining this influence can
that, for this case of electric steering, the hysteresis effect ddesconsidered as a root locus problem. Except for the first pole
not play a role. In Fig. 9, we presented the total system of PEir, the poles of the overall mechanical model tend to the un-
and stage. changed zeros of the model. This has been shown in pole—zero

VII. ToTAL MODEL FOR THECASE OF CHARGE STEERING
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maps. For the transfer function description of the overall mef16] J. A. Main, E. Garcia, and D. V. Newton, “Precision position control

chanical model this means that, except for the first pole pair,
all poles and zeros cancel out. The first pole pair can be deh?]
signed to our wish and, therefore, the overall mechanical system
can be designed such that it practically equals a single masg]
spring-damper system with favorable eigenfrequency and rela-
tive damping.

Contrary to the case of voltage steering, hysteresis does n
play a role in the case of charge steering. The basic configura-

tions
here.

For the case of charge steering, we derived the total model %2]
a piezo-actuated positioning mechanism. This model is domi-
nated by the mechanical model, which could be designed favof23l

ably.
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