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Modeling Piezoelectric Actuators
Han J. M. T. A. Adriaens, Willem L. de Koning, and Reinder Banning

Abstract—The piezoelectric actuator (PEA) is a well-known de-
vice for managing extremely small displacements in the range from
10 pm (1 pm = 10

12 m) to 100 m. When developing a con-
trol system for a piezo-actuated positioning mechanism, the actu-
ator dynamics have to be taken into account. An electromechan-
ical piezo model, based on physical principles, is presented in this
paper. In this model, a first-order differential equation is adopted
to describe the hysteresis effect, and a partial differential equation
is used to describe the mechanical behavior. Since, in practice, a
PEA is most often used as an actuator for positioning mechanisms,
we considered the influence of such a mechanism on the overall
mechanical behavior of PEA and positioning mechanism together.
For a well-designed mechanism, the overall mechanical behavior
practically equals that of a single mass-spring-damper system, of
which the undamped eigenfrequency and the relative damping can
be designed favorably. With respect to traditional voltage steering,
charge steering has the advantage that no hysteresis is encountered
between electrical input and elongation. Electrical steering config-
urations for both cases of steering are presented. Finally, for the
case of charge steering, we derived the total model of a piezo-actu-
ated positioning mechanism. This model is dominated by the me-
chanical model, which could be designed favorably. Therefore, this
model gives a broad range of possibilities for model-based con-
troller design.

Index Terms—Charge steering, distributed parameter system,
hysteresis, piezo-actuated positioning, piezoelectric actuator.

I. INTRODUCTION

T HE piezoelectric actuator (PEA) is a well-known com-
mercially available device for managing extremely small

displacements in the range of 10 pm (pm m) to 100
m. The ratio of the input voltage and the output elongation

is very favorable for this purpose. A disadvantage, however, is
its highly nonlinear input/output behavior. More specifically,
a PEA shows hysteresis behavior. In simple terms, this means
that for a certain input, there is no unique output. Instead, the
output depends on the input history. For high-accuracy posi-
tioning and tracking systems, the piezo-actuated positioning
mechanism should be equipped with a controller. Modern con-
troller design is based on a model of the system to be controlled.
For piezo-actuated positioning mechanisms, the dynamical as-
pects of the PEA play a dominant role. In this paper, we focus
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on the modeling of the dynamics of a PEA as a standalone
system and on the dynamics of a PEA and a positioning mech-
anism together.

A well-known description of PEAs was published in 1987 by a
standards committee of the IEEE [20]. This description consists
of two linear constitutive relations. Although this description is
the most widely recognized one, we share the criticism in [11]
that these relations fail to describe the hysteresis nonlinearity
present in all PEAs and fail to describe the dynamical aspects of
the actuator. Therefore, in this paper, this model is not considered
anymore. In many other models, either only the linear dynamics
or only the hysteresis nonlinearity is taken into account. Both
types fail to describe one of the two important aspects. There-
fore, although these models are sometimes used as a basis for
control design, we consider them not accurate enough for our
purposes. However, for the sake of completeness, we mention
some references. Examples where only the linear dynamics has
been modeled are, e.g., [6] and [18], and examples where only
the hysteresis has been modeled are, e.g., [9], [10], [12], and
[19]. In [23], the PEA has been modeled as a time-varying linear
system where the time variance of the parameters is modeled
by a neural network. A similar approach was mentioned in [13],
where a self-tuning regulator is used to estimate the parameters
of a linear model at every sampling instant. Recently, a model
that consists of the series connection of a hysteresis operator and
linear dynamics has been proposed in [5] and [8]. Although this
model has no strong physical base, it seems an obvious choice for
taking actuator nonlinearities into account. In both references,
an approximate inverse hysteresis model has been used to cancel
the hysteresis nonlinearity. In [15], the series connection of
linear first-order dynamics and a hysteresis operator, i.e., the
reversed order as above, has been used as a model for a so-called
shape memory alloy actuator. In these actuators, hysteresis is
encountered between temperature and elongation. In [2], a PEA
model has been proposed, which differs only a little from the se-
ries connection of a hysteresis operator and linear second-order
dynamics. In 1997, Goldfarb and Celanovic proposed a model
for the PEA that is completely based on physical principles [11].
This model consists of both an electric and a mechanical domain,
aswell as the connection between the twodomains.Furthermore,
this model describes both the hysteresis nonlinearity and the
linear dynamical aspects. In this section, we introduce more
accurate and better applicable hysteresis and dynamical models
than those proposed by Goldfarb and Celanovic [11] for use in
their overall electromechanical model. From the very beginning
of applying piezoelectric materials as actuators, they are voltage
steered, and this is still the standard way of electrical steering.
However, in the early 1980’s, it has been independently reported
in [4] and [17] that, in case of charge steering of PEAs, no
hysteresis behavior is encountered. Based on the early and more
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Fig. 1. Schematic representation of the different relations in a PEA.

recent literature on charge steering of PEAs, we present the basic
principle of a charge-steering configuration. Furthermore, we
consider the influence of a positioning mechanism on the overall
dynamical behavior of a PEA and a positioning mechanism
together. For a positioning mechanism that may be modeled
with a mass-spring-damper system, we consider this influence
in detail.

In Section II, some physical properties are discussed and an
electromechanical model is presented. For the larger part, this
model is due to [11]. In Section III, the differential equation
describing the hysteresis phenomenon is introduced. A partial
differential equation (PDE) as a mechanical model is derived
and analyzed in Section IV. In Section V, the PEA is applied to
a positioning mechanism and the influence of this mechanism
on the mechanical model is analyzed. Basic configurations for
both voltage and charge steering are introduced in Section VI.
In Section VII, we consider the total model of a piezo-actuated
positioning mechanism for the case of charge steering. Finally,
in Section VIII, some conclusions are drawn.

II. PHYSICAL BACKGROUND AND AN ELECTROMECHANICAL

MODEL

Dielectric materials are insulators, thus, there is an electrical
relation between electrical voltage and electrical charge. Piezo-
electrics are a special type of dielectric in the sense that, in
piezoelectric materials, an externally applied force induces an
electrical charge. Conversely, an applied electrical charge in-
duces a force. The former effect is known as the piezoelectric
effect and was discovered in 1880 by the Curie brothers. The
latter effect is the inverse piezoelectric effect. The word “piezo”
derives from the Greek word “piezen,” which means “to push.”
The effect was discovered when a pushing force or, in other
words pressure, was applied to the material. In the beginning,
both pressure electricity and piezoelectricity were used to de-
scribe the same phenomenon. Besides the piezoelectric and in-
verse piezoelectric effect, we have the already mentioned elec-
trical relation between voltage and charge, and a mechanical
relation between force and elongation. In Fig. 1, a schematic
representation of the different relations is given. The piezo ef-
fect is the connection between the electrical and mechanical do-
mains. Due to this effect, piezoelectrics are potentially useful as
electromechanical actuators.

In naturally occurring piezoelectric materials, such as quartz,
the (inverse) piezoelectric effect is too small to be of practical
use. Man-made piezoelectric polycrystalline ceramics are
much more suitable for actuator purposes because the useful
properties, such as maximum elongation, can be influenced by
the proper mixture of ingredients. A disadvantage of man-made
piezoelectric ceramics is that a hysteresis effect is encountered
between electrical voltage and electrical charge. Since only
man-made ceramics are useful for actuator purposes, they are
meant when we talk about PEAs. The piezoelectric effect (or
the piezo effect for short) and the hysteresis effect play an
important role in the dynamical behavior of these actuators.

TABLE I
DIFFERENCESBETWEEN VOLTAGE AND CHARGE STEERING

Fig. 2. Schematic representation of the stacked configuration of a PEA.

It is apparent from the scheme in Fig. 1 that, between charge
and elongation, no hysteresis effect is encountered because,
as mentioned, this effect is encountered between voltage and
charge. Equally obvious, the hysteresis effect is encountered
between voltage and elongation. The former situation can be
realized by charge steering, while the latter situation occurs for
voltage steering. Voltage and charge steering may be realized
by a voltage and charge source, respectively, which have an
internal resistance zero and infinite, respectively, and which
may be called the (galvanically) closed and (galvanically) open
situation. In both cases of steering, a charge is induced on
the electrodes of the PEA. In the case of voltage steering, the
hysteresis effect is present between voltage and charge. The
electrical charge induces a force and, as a result, an elongation
of the ceramic. This means that the piezo effect is present for
both cases of electrical steering. All of this is summarized in
Table I.

The most widely spread PEA configuration is the stacked one,
of which a schematic representation is given in Fig. 2. Such a
PEA stack consists of the series connection of a number of piezo
wafers with an electrode between every two wafers. Clearly the
wafers are in series mechanically and in parallel electrically. The
latter is done in order to strengthen the effect of the individual
wafers. The piezo wafershave a thickness of 0.3–1 mm. For max-
imum elongation ranging from 10 to 100m, the length of a PEA
ranges from approximately 40 to 120 mm, respectively. is
the voltage over every piezo wafer and over the total PEA.

As mentioned in Section I, a fairly accurate overall electro-
mechanical model of a PEA is given in [11]. It is reproduced
in Fig. 3. Here, the hysteresis and piezo effect are separated.

represents the hysteresis effect andis the voltage due to
this effect. The piezo effect is represented by , which is an
electromechanical transducer with transformer ratio. The
capacitance represents the sum of the capacitances of the indi-
vidual piezo wafers, which are electrically in parallel. The total
current flowing through the circuit is. Furthermore, may be
seen as the total charge in the PEA. The chargeis the trans-
duced charge from the mechanical side. The voltageis due
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Fig. 3. Electromechanical model.

to the piezo effect. The total voltage over the PEA is . The
force is the transduced force from the electrical side. The
force is externally applied. In practice, this is most often a
pushing force. The resultant force mechanically drives
the piezo material. The resulting elongation of the PEA is de-
noted by . The mechanical relation between and is de-
noted by . Note that we have equal electrical and mechanical
energy at the ports of interaction, i.e., . The piezo
material has elasticity modulus, viscosity , and mass den-
sity . Furthermore, the geometrical properties of the PEA are
length and cross-sectional area. Mass , stiffness , and
damping coefficient can be calculated from the material and
geometrical properties as follows:

(1)

(2)

(3)

The complete set of electromechanical equations is as fol-
lows:

(4)

(5)

(6)

(7)

(8)

(9)

where and represent the hysteresis and mechanical oper-
ators, which are discussed in Sections III and IV, respectively.
Since in a PEA the individual piezo wafers are mechanically in
series, it is to be expected that the longitudinal dynamics play an
important role in the mechanical operator. It is well known that
this often leads to a PDE model. Furthermore, because the indi-
vidual piezo wafers are electrically in parallel, it is very accurate
to take the sum of the capacitances of the individual wafers as
electrical model, resulting in the capacitancein (6).

The transduced force is, in fact, present in every piezo
wafer. However, because every wafer tends to elongate, the
forces at the connection of two wafers cancel out. Therefore,
macroscopically there are only forces at the first and last
electrodes, as in Fig. 3.

Fig. 4. Realistic hysteresis loop.

III. H YSTERICSMODEL

In this section, we consider the hysteresis operator of (5),
which is part of the total electromechanical model of (4)–(9)

By definition, a hysteresis effect is dynamic, rate-indepen-
dent, and nonlinear. By rate-independent, we mean independent
of the time scale. In [11], this effect is modeled by a combination
of elementary elements. Therefore, the number of parameters in
this model is relatively large. Furthermore, such a model is not
very suitable for controller design purposes. Therefore, in [1],
a differential equation, with only three parameters, is used as a
hysteresis model. A differential equation is also more attractive
when we want to use the model as a basis for controller design.
In this section, we consider this equation in more detail. How-
ever, in [1], a much more extensive discussion may be found.

A hysteresis loop is defined as the stationary loop in the
input/output plane for a quasi-static monotone oscillating input,
e.g., a low-frequency sinusoid.

The equation under consideration is a first-order differential
equation, which is proposed in [3]. It has been developed to
describe magnetic hysteresis, but in [1], it has experimentally
been verified that this differential equation is also suitable for
describing electric hysteresis such as in a PEA. The model for
the hysteresis effect between and is given by

(10)

where and are functions with which you can
“shape” the hysteresis loop. In [1], it has been proven that, for
a sinusoid with offset , the center point of a hysteresis loop
is given by . Furthermore, it has been proven that
the average slope of a hysteresis loop is equal to .

In theory, PEAs show lengthening saturation. In practice,
however, we stay far away from saturation, i.e., we deal with
hysteresis loops that are similar in shape to the one in Fig. 4.
Therefore, the functions and may be chosen as

(11)

where and are constants.
Using the previously mentioned results, the equations for the

center point and the average slope of a hysteresis loop are given
by

(12)

(13)
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where and are the upper right- and lower left-hand-side
points of a hysteresis loop, respectively, andis the input am-
plitude.

In (10) and (11), there are three independent parameters,
namely, , , and . This means that there should be three
independent characteristic quantities in a hysteresis loop.
Besides the center point and the average slope in [1], a relation
has been derived for the hysteresis areafor relatively small
amplitudes of the sinusoidal input (Fig. 4)

(14)

Having experimentally determinedand from center points
and average slopes, the parametercan then be experimentally
determined from hysteresis areas.

For decreasing input amplitudes, it follows from the previous
expression that, because of the power three, the hysteresis area
decreases faster. This has first been noted in [7]. As a result, for
small deviations from a center point, the hysteresis nonlinearity
is well approximated by its average slope

(15)

where is used to indicate that we deal with deviation vari-
ables. This approximation allows for linear analysis of the total
model.

In [1], it has been proven that for physically correct hysteresis,
i.e., convergence to hysteresis loops and counterclockwise ori-
entation and monotony of hysteresis loops, it is required that

and that .

IV. M ECHANICAL MODEL

In this section, we consider the mechanical operator of (9),
which is part of the total electromechanical model of (4)–(9).

In [11], the mechanical behavior is modeled by a single mass-
spring-damper system. In a Bode plot, such a system only shows
one peak, while experimental results in [6] indicate that there are
many more peaks and valleys in between every two peaks. How-
ever, in the model in [6], only two peaks and one valley are taken
into account. In fact, there are infinitely many peaks and val-
leys because the PEA is, in fact, a distributed parameter system,
i.e., the mass of the PEA is not concentrated in some points,
as in linear mass-spring-damper systems of arbitrary order, but
the mass is distributed over the element. Such a distributed pa-
rameter system may be modeled by a PDE. The PDE for the
case that damping is not taken into account is well known and
can be found in every standard textbook on PDEs. This is not
the case when damping is taken into account. In [14] and [22],
PDEs were used to describe the mechanical behavior of the PEA
where damping is accounted for. However, in both of these refer-
ences, the damping has not correctly been modeled. Therefore,
we derive a PDE ourselves. Since the individual piezo wafers
are mechanically in series, it was, as mentioned in Section II, to
be expected that the longitudinal dynamics would play an im-
portant role, which leads to a PDE model for the mechanical
behavior.

As a first step in the derivation of the PDE, we derive the
equation of motion. To this purpose, we consider Fig. 5, where

Fig. 5. PEA in undeformed and deformed state.

the PEA is shown in the undeformed and deformed states. The
position variable of a piezo slice is, while is the thickness of
a slice. At position , we have that and are the
displacement and the so-called normal force, respectively.

The impulse balance for a piezo slice can easily be obtained
from Fig. 5

(16)

Dividing by and taking the limit for to zero gives the equa-
tion of motion

(17)

Secondly, we have to specify the material behavior. The rela-
tion by which this is specified is the constitutive relation, which
solely depends on material quantities likeand . Therefore,
the constitutive relation is formulated in terms of stressand
strain , of which the definitions are

(18)

As a fairly accurate constitutive relation for many solids, among
which the piezo ceramics, we take the Kelvin–Voigt model. It
consists of the parallel connection of a spring element obeying
Hooke’s law and a viscous element behaving like a Newtonian
flow. Mathematically, the model is given by

(19)

Based on (18) and (19), the following relation for the normal
force can be derived:

(20)

where the argumentsand are omitted for notational conve-
nience. Using the equation of motion and the equation for the
normal force, i.e., (17) and (20), the PDE describing the me-
chanical PEA behavior can be derived to be

(21)



ADRIAENS et al.: MODELING PEAs 335

An alternative formulation can be found by using the definitions
of mass, stiffness, and damping coefficient, i.e., (1)–(3)

(22)

Here, we are not interested in the analytic solution of the PDE
for a specific input. Instead, our main interest is in the eigen-
modes and corresponding eigenfrequencies and relative damp-
ings. In order to determine these, it suffices to consider the free
response ( ).

Systems described by a PDE are said to be infinite di-
mensional because infinitely many eigenmodes can be
distinguished. The free response can be written as the infinite
sum of the eigenmodes

(23)

Each eigenmode is determined using the principle of separation
of variables, i.e., its expression is taken to be of the following
form:

(24)

Substitution of this form in the PDE of (22), after some manip-
ulations, gives

(25)

where “accent” and “dot” refer to derivatives with respect to
and , respectively. The left- and right-hand side only depend on

and , respectively, and, thus, the above equality is a constant,
which is denoted by . The following two ordinary differen-
tial equations can now be derived:

(26)

(27)

We start determining the amplitude of the eigenmodes, i.e.,
we consider (26), of which the general solution is given by

(28)

By specifying the boundary conditions, the constants can be de-
termined. For instance, consider the practical situation where at

and the PEA is fixed and free, respectively. The
displacement at is given by . At a
fixed end, the displacement equals zero for alland, therefore,

. Using this, the constant can be determined as
follows:

(29)

From (1)–(3), (20), and (24) the normal force at can be
derived to be given by

(30)

At a free end, the normal force equals zero for alland, there-
fore, . The nontrivial solution of this equality gives
values for

(31)

Thus, taking the boundary conditions into account can be
determined up to a constant

(32)

For is maximal, which corre-
sponds with a trough for the elongation . Note that
for , which corresponds with

, i.e., with a node for the elongation of the PEA.
We continue with the evaluation of the eigenfrequencies and

the relative dampings of the eigenmodes, i.e., we consider (27).
The well-known general differential equation for linear time-
invariant second order systems is

(33)

where stands for the undamped, or natural, eigenfrequency
and denotes the relative damping. By comparing (27) with
(33) and using (31), these characteristics can be derived to be

(34)

(35)

From this result, we conclude that even for small values
of , the higher modes are strongly damped. Note that for

these characteristics can also be calculated,
which gives eigenfrequencies corresponding to eigenmodes
with .

The roots of (33) are given by

(36)

where it is assumed that , which is not true for large, as
will be clear from (35). Furthermore, are the damped eigen-
frequencies, which are the frequencies that actually appear. Sub-
stitution of (34) and (35) in (36) gives, forodd, the poles of the
transfer function , where is the
Laplace variable and where, as defined before, is the elon-
gation of the PEA. In case of a fixed end at , we have

. For , even we obtain the zeros of . It can
be proven that the poles and zeros for which lie on a circle
with center ( ) and radius . The other poles and
zeros are located on the real axis. In Fig. 6, the pole–zero pat-
tern of the mechanical model of a PEA with N/m,

kg/s, and kg is presented.
In a Bode plot of , the poles and zeros appear as peaks

and valleys, respectively. In Fig. 7, a Bode plot is presented for
a PEA with and , as in the previous plot, but with

kg/s in order to have well-visible peaks and valleys.
For odd, as well as even, the corresponding eigenmode is

a standing wave in the spatial domain. For a fixed time, these
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Fig. 6. Pole–zero pattern of a PEA.

Fig. 7. Bode plot of a PEA.

TABLE II
SUBSEQUENTEIGENMODES FORFIXED t TOGETHER WITH THE

CORRESPONDINGDAMPED EIGENFREQUENCIES ANDPOLE–ZEROINDICATIONS

waves are shown in Table II together with the corresponding
damped eigenfrequencies and pole/zero indications. Of course,
we deal with longitudinal waves, but for visualization reasons,
they are shown as transversal waves.

Having determined the poles and zeros, we can give a transfer
function description of the mechanical behavior of a PEA

(37)

Fig. 8. Chain of mass-spring-damper systems as an approximate mechanical
model of the PEA.

with the polynomials and in a nonmonic form
given by

(38)

(39)

Approximations of arbitrary order can be made by taking an
arbitrary number of poles and zeros into account. We deal with a
physical system and, therefore, in the approximation the number
of pole pairs should exceed the number of zero pairs with one.
For such approximations, it is easy to see that the static gain of
the transfer function is . This corresponds with the PDE of
(22). The approximate models obtained in this way are called
modal approximation models.

Finite-difference approximation models can be obtained by
numerical approximation of the position derivatives in the PDE.
The numerical approximation of the second derivative with re-
spect to is

(40)

where with for . Substi-
tution in (22) and introduction of after some simple
manipulations gives

(41)

Physically, this corresponds with a chain of mass-spring-damper
systems, as in Fig. 8. Here, the ends of the PEA are modeled by
one-half of the mass of the other elements. Note that (41) does
not give us the equations of motion for these ends of the PEA.
These can easily be derived to be

(42)

(43)

The symmetric model of Fig. 8 reflects the practical situation,
where the PEA does not show a preferable direction. The ele-
ment consisting of a spring and damper and at both sides half of
an elements mass can be considered as an elementary element of
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Fig. 9. Total system of PEA and stage where the latter is a mass-spring-damper
system.

Fig. 10. Visualization of the interaction force between PEA and stage.

the chain. Note that the transduced forces cancel out at the con-
nection between two elements. Thus, macroscopically there are,
just as in Section II, only forces at the first and last electrode. The
advantage of finite-difference approximation models, with re-
spect to the modal approximation models, is the flexibility with
respect to different boundary conditions. The boundary condi-
tions can be incorporated in the equations for the ends of the
PEA, i.e., in (42) and (43).

The approximation of the PDE converges to the PDE for
. By choice of , approximations of arbitrary order can be

made.

V. MECHANICAL MODEL OFA PIEZO-ACTUATED POSITIONING

MECHANISM

Up to now, we have considered a PEA as a standalone ele-
ment. In practice, however, a PEA is most often used as an ac-
tuator for positioning mechanisms. We restrict ourselves to po-
sitioning mechanisms that are accurately modeled by a simple
mass-spring-damper system. In the following, we use “stage”
for positioning mechanism. In Fig. 9, the total system of PEA
and stage is presented. At one side, the PEA is fixed and at the
other side, it is connected to the stage of which, , and
are the mass, damping, and stiffness, respectively.

The interaction force between PEA and stage, i.e., the force
acting on the PEA due to the presence of the stage and vice
versa, is denoted by and may be derived from Fig. 10.

The expression for the interaction force is

(44)

After Laplace transformation, we may write

(45)

In [7], the presence of a stage is accounted for in a block diagram
for the case that the mechanical model of the PEA is a mass-
spring-damper system. A similar block diagram is presented in
Fig. 11. Note that the stage stiffness, damping, and mass work
as position, velocity, and acceleration feedback, respectively.

Comparison of Figs. 3 and 10 or (37) and Fig. 11 teaches
us that influences the PEA behavior in a similar way as an
externally applied force. The only difference is thatdepends

Fig. 11. Block diagram of the mechanical model of PEA and stage together.

Fig. 12. Root locus for increasing value of the stage stiffness (0 < k <

50k ).

on the elongation of the PEA. The mechanical relation between
and can be derived to be

(46)

It may be seen the numerator polynomial has not changed, de-
spite the fact that we have a stage. Physically this can be un-
derstood from the fact that, in case of a zero, the elongation

, which means that the stage is at rest. Therefore, the
zeros are invariant for the stage properties.

In order to determine the new pole locations, we separately
consider the cases where we have only stage stiffness, only stage
damping, and only stage mass. In the case of only stage stiffness

, we have the denominator polynomial . The
analogy with a root locus problem is to be remarked upon. A first
basic rule for root locus is that, for , the poles coincide
with the original poles. A second basic rule is that, for ,
the poles tend to the zeros. The remaining poles tend to infinity.
In our case, there are infinitely many poles and zeros. However,
as mentioned in the previous section, in an approximation, the
number of pole pairs exceeds the number of zero pairs by one. In
Fig. 12, the root locus for is shown. Clearly, the
poles tend to zeros. However, one of the poles at the top (and at
the bottom) of the circle tends to infinity. This is not visible yet
due to the not large enough values of, although even
is already unrealistically large.

In case of only stage damping, the denominator polynomial
is given by , where can be considered as an
extra zero in the origin, to which a pole tends for increasing.
Thus, in this case, only one pole tends to infinity. The root locus
for is shown in Fig. 13.

When we only have stage mass, the denominator polynomial
is given by , where can be considered
as two extra zeros in the origin, to which two poles tend for
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Fig. 13. Root locus for increasing value of the stage damping (0 < c <

50 c ).

Fig. 14. Root locus for increasing value of the stage mass (0 < m < m ).

increasing . In this case, none of the poles tends to infinity.
In Fig. 14, the root locus for is shown.

For increasing , the poles seem to stay on the circle. Fur-
thermore, the effect of is strong because already for very
small values the pole locations change significantly. Note that
the first pole pair tends to the origin, i.e., the first eigenfrequency
decreases. Typically, the first eigenfrequency of a PEA is be-
tween 5–10 kHz. The reason for this is its relatively high stiff-
ness and its relatively low mass. By stage design, we, therefore,
usually aim at decreasing this eigenfrequency or, in other words,
the bandwidth of the system. This enhances digital control of the
system. Thus, the effect of increasing is favorable.

For increasing , the effect is less strong than for . More-
over, because of the already high stiffness of the PEA, we do not
aim at a stiff stage design. Thus, in practice, the influence of the
stage stiffness on the pole locations is negligible.

The structural damping of a PEA is very small and, there-
fore, with stage design, we aim at adding damping in order to
obtain well-damped behavior of the total system. Note that, for
increasing , the poles tend to the zeros located on the other
side of the original poles than for increasing .

Simulations showed that, especially for the higher eigenfre-
quencies, the effect of increasing is so strong that it domi-
nates the effect of . For the first pole pair, the effects of both

and have to be taken into account. Thus, both undamped
eigenfrequency and relative damping of this pole pair can be

Fig. 15. Pole–zero pattern of the mechanical model of PEA and stage together
with well-designed stage properties.

designed favorably. Summarizing, for a practical stage design,
the poles tend to the unchanged zeros, which means that poles
and zeros cancel out in a transfer function. Therefore, in a Bode
plot, no peaks and valleys are to be observed. The first pole pair
could be designed to our wish and, therefore, in a Bode plot, this
one is visible as the cutoff frequency. A good approximation of
the relation between and in differential form is

(47)

with

(48)

This approximate model reflects the influence of the stage on
the first eigenmode. We aim at an undamped eigenfrequency
of 1 kHz and a relative damping of . The value of
is designed such that it is considerably smaller than the PEA
stiffness, but still realistic for a mechanical system, i.e.,

N/m. Since N/m, the overall stiffness is
N/m. The value of is designed to achieve the

cutoff frequency of approximately 1 kHz. Since kg, it
follows that we need kg. Furthermore, is designed
such that the favorable relative damping is obtained. Since the
damping in the PEA is estimated to be kg/s, it
follows that we need kg/s. In Fig. 15, the pole–zero
pattern of the mechanical model of a PEA and a stage together
is presented, with the stage properties as derived above, i.e., a
well-designed stage. Note that all pole pairs, except for the first
pair, indeed approximately cancel all zero pairs.

In Fig. 16, the Bode plot of the total mechanical model of
PEA and stage is shown together with the Bode plot of the ap-
proximate model. Only at 1 10 Hz, i.e., the frequency that
corresponds with the first valley/zero, a small difference is vis-
ible. Here, the pole does not perfectly cancel the zero.

With a well-designed stage, the behavior of the total mechan-
ical system of PEA and stage practically equals that of a single
mass-spring-damper system. The model simplification is con-
siderable.



ADRIAENS et al.: MODELING PEAs 339

Fig. 16. Bode plots of the mechanical model of PEA and stage together with
well-designed stage properties and of the approximate mechanical model.

Finally, we briefly want to consider the design of the posi-
tioning mechanism that has the desired properties we derived
above. The low stiffness we aimed at can be achieved in a con-
struction with leaf springs. The required mass can be achieved
in a metal construction. However, in such a metal construc-
tion, there is almost no intrinsic damping. To introduce this,
we could use a system based on the concept of Eddy current
damping. This system consists of a copper ring attached to the
fixed world and a ferromagnetic backplane with a number of
strong permanent magnets attached to the moving mass. By ad-
justing the gap between the copper plate and the magnets, the
damping constant can be tuned to our desired value. We remark
that this construction may indeed be accurately modeled by a
simple mass-spring-damper system, as we assumed earlier. The
mass is concentrated in the moving part, the stiffness, or in fact
weakness, is concentrated in the leaf springs, and preliminary
experiments with the Eddy current damping system show that it
gives linear damping.

VI. V OLTAGE AND CHARGE STEERINGCONFIGURATIONS

As we have learned from Section II, two ways of electrical
steering may be distinguished, namely, voltage and charge
steering. A voltage-steering configuration is simple, but in
this case, hysteresis is present in the input/output behavior. A
charge-steering configuration is more complicated, but once
established, hysteresis does not play a role anymore.

For maximum elongation, the voltage difference over a high-
voltage PEA has to be in the order of 1000 V for almost any com-
mercially available type. Most piezo-actuated mechanisms are
computer controlled and, thus, the maximum steering voltage is
limited to much smaller values. The use of high-voltage ampli-
fiers is, therefore, unavoidable.

In the remainder of this section, we design the basic, or prin-
ciple, configurations for both voltage steering (Section VI-A)
and charge steering (Section VI-B).

A. Voltage-Steering Configuration

As mentioned at the beginning of this section, the configu-
ration for voltage steering is simple. The principle is shown in
Fig. 17, where represents the voltage generated by the com-
puter and signifies the amplification factor.

Fig. 17. Basic configuration for voltage steering.

As a relation for the maximum voltage difference over the
PEA, we have

(49)

This equality is considered to be a design rule. For maximum
elongation, V. The design variables and

should be chosen such that this is possible. Note that the
design constraints are the electronic possibilities, i.e., the design
variables have to be chosen such that the configuration is prac-
tically realizable.

For this configuration, the charge in the PEA clearly depends
on the PEAs impedance, which is partly determined by the hys-
teresis effect (Fig. 3).

B. Charge-Steering Configuration

In Section II, we have argued that, in case of charge steering,
the hysteresis effect is not encountered. In the early 1980’s, this
result has independently been reported in [4] and [17]. A charge-
steering configuration has to be designed such that the charge
applied to the PEA is independent of the PEAs impedance. This
is completely analog to a current-steering configuration, which
has to be designed such that the current applied to a certain
impedance is independent of that impedance.

In [17], a current source is used as a basis for charge steering.
A more direct approach is followed in [4], where a simple con-
figuration is proposed consisting of a voltage source, an oper-
ational amplifier (opamp), an external capacitance, and a high-
voltage amplifier. In [16] and [21], the same basic configura-
tion is introduced. Especially in [16], it is clearly noted that this
simple configuration has two apparent drawbacks: both sides of
the PEA are floating with respect to ground and the configu-
ration is very sensitive to opamp bias current. In [21], various
countermeasures are proposed to overcome these problems.

Here, we only consider the basic configuration, which is
shown in Fig. 18. , , and are the input voltages and
the output voltage of the opamp, and are high-voltage
amplifiers, and is the external capacitance.

As for the case of voltage steering, we want to derive design
rules. In the analysis, we assume to have an ideal opamp, i.e.,

and . From Fig. 18, it is clear that and,
thus, . Since , the charge in the PEA equals that
in , which can easily be derived to be

(50)

thus, it can now already be concluded that the charge applied to
the piezo is independent of the piezo impedance. However, there
are more requirements that have to be met. Namely, the voltage
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Fig. 18. Basic configuration for charge steering.

difference over the piezo should be able to attain 1000 V in order
to achieve maximum elongation.

From (12), it can easily be concluded that the maximum value
of is attained for the maximum value ofand is given by

. From (6) and (7), we can also derive the
maximum value of as a function of the maximum values of

and to be given by .
Substitution of the previous results in (4) then gives the max-
imum value for the voltage over the PEA, i.e.,

. A relation for as a
function of and can easily be obtained from this
relation. Using (50), another relation for may be derived,
i.e., . From these two relations for ,
the following design rule can be derived:

(51)

The right-hand side only contains PEA properties, while the
left-hand side contains the design variables, i.e., the variables
from the charge-steering circuit of Fig. 18. These are chosen
such that they fit with a specific PEA.

The voltage over the PEA is given by
. When we think of as a constant

factor times , it can easily be seen that the maximum value for
is attained for maximum input. The second design rule

is now given by

(52)

The right-hand side contains a PEA property and design vari-
ables that have been chosen according to the first design rule of
(51). The left-hand side contains the other two design variables.

Finally, we state that, as in the case of voltage steering, the
five design variables , , , , and have to
be chosen based on electronic possibilities in order to obtain a
practically realizable design.

VII. T OTAL MODEL FOR THECASE OFCHARGE STEERING

In this section, we derive the total model of a piezo-actuated
positioning mechanism for the case of charge steering. We recall
that, for this case of electric steering, the hysteresis effect does
not play a role. In Fig. 9, we presented the total system of PEA
and stage.

Of the complete set of electromechanical equations (4)–(9),
the following play a role in the case of charge steering:

(53)

(54)

(55)

(56)

where the mechanical model is equal to (47), i.e., the mechan-
ical model of a well-designed piezo-actuated positioning mech-
anism. After simple manipulations, the following equation may
be obtained:

(57)

where and are as defined in [7]

(58)

(59)

The index “ ” is used because the case of charge steering in
Section II is also referred to as the galvanically open situation.

Using the relation for charge steering (50), i.e., the relation
between the input voltage generated in the computer and the
charge in the PEA, the total model for the case of charge steering
can easily be derived to be given by

(60)

Summarizing, by changing traditional voltage steering
for charge steering and by proper design of the positioning
mechanism, it is possible to bypass both the hysteresis effect
and the distributed parameter character. Therefore, the total
model of a piezo-actuated positioning mechanism for the case
of charge steering is significantly simplified with respect to
the PEA model, as presented in Sections II–IV. The obtained
model is very suitable as a basis for controller design.

VIII. C ONCLUSION

In this paper we have, based on [11], formulated an electro-
mechanical model for the PEA. What we added is the use of
a nonlinear first-order differential equation to describe the hys-
teresis effect and the use of a PDE, including structural damping,
to describe the mechanical behavior.

Eigenmodes and their corresponding eigenfrequencies and
relative dampings associated with the mechanical behavior have
been analytically determined. The poles and zeros of the me-
chanical model lie on a circle of which the center point and ra-
dius have been determined. In a Bode plot, the peaks and valleys
associated with the poles and zeros appear alternatingly.

Based on a transfer-function representation of the mechanical
model of the PEA, the influence of a positioning mechanism
on the overall behavior of a PEA and a positioning mechanism
together has been considered. Determining this influence can
be considered as a root locus problem. Except for the first pole
pair, the poles of the overall mechanical model tend to the un-
changed zeros of the model. This has been shown in pole–zero
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maps. For the transfer function description of the overall me-
chanical model this means that, except for the first pole pair,
all poles and zeros cancel out. The first pole pair can be de-
signed to our wish and, therefore, the overall mechanical system
can be designed such that it practically equals a single mass-
spring-damper system with favorable eigenfrequency and rela-
tive damping.

Contrary to the case of voltage steering, hysteresis does not
play a role in the case of charge steering. The basic configura-
tions for both cases of electrical steering have been presented
here.

For the case of charge steering, we derived the total model of
a piezo-actuated positioning mechanism. This model is domi-
nated by the mechanical model, which could be designed favor-
ably. Therefore, this model gives a broad range of possibilities
for model-based controller design.

Finally, we repeat the most important conclusion. By
changing traditional voltage steering for charge steering and
by proper design of the positioning mechanism, it is possible
to bypass the hysteresis effect and the distributed parameter
character of a PEA, respectively. Therefore, the total model of
a piezo-actuated positioning mechanism can be significantly
simplified. The obtained model is very suitable as a basis for
controller design.
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