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Abstract. An efficient domain decomposition method is developed for discretized Helmholtz

equations resulting from acoustical geological survey problems. A Schwarz-type multiplica-

tive preconditioner is constructed using a fast direct method in subdomains by embedding

them to rectangular domains. The GMRES iterations are reduced to a subspace cor-

responding to interfaces. Numerical experiments with several two-dimensional problems

demonstrate the effectiveness and scalability of the proposed method.

1 INTRODUCTION

Acoustical geological survey problems are often modeled using the Helmholtz equation
with varying wave number. The discretization of this equations requires sufficiently many
nodes per wavelength7 and due to this the resulting system of linear equations is very large.
It is usual that grids have from 500 to a few thousands grid points in each direction. Thus,
the resulting problem can have several million unknowns for a two-dimensional problem
and several billion unknowns for a three-dimensional problem. The system matrix is
indefinite and complex-valued. Thus, many efficient solution procedures available for
positive definite problems are not applicable.

Iterative methods without a good preconditioner converge slowly for Helmholtz prob-
lems which leads to too high computational cost. Furthermore, while direct methods like
LU decomposition might be applicable for two-dimensional problems they are compu-
tationally too expensive for three-dimensional problems. Thus, the research on efficient
solvers for the Helmholtz equation with varying wave number has concentrated on devel-
oping good preconditioners. The main techniques employed to construct these precondi-
tioners are domain decomposition methods, multigrid methods, and fast direct solvers.
Plessix and Mulder13 studied tensor product form preconditioners based on fast direct
solvers. While for low frequency problems they were very effective their performance
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deteriorated severely when the frequency approached practically interesting level. The
authors6,8 used a similar approach with good success for almost perfectly vertically lay-
ered media. Larson and Holmgren12 developed a domain decomposition preconditioner
employing a fast direct solver and tested it on a parallel computer. Erlangga, Ooster-
lee, and Vuik3 developed a multigrid preconditioner which is fairly effective for geological
survey problems.

In this paper, we develop a Schwarz-type multiplicative domain decomposition pre-
conditioner. The subdomain preconditioners employ a fast direct solver via embedding
the subdomains into rectangles. By fast direct methods, we mean direct methods based
on FFT or cyclic reduction, for example, which require order of m log m or m(log m)2

operations to solve a system with m unknowns. With a piecewise constant wave number,
the preconditioner can be made to match the system matrix in the interior of the sub-
domains. This has two important consequences: The residual vanished in the interior of
the subdomains and due to this the iterations can be reduced on the interfaces and their
near-by grid points. Thus, the solution procedure can be considered as a preconditioned
iterative method on a sparse subspace9,10. Due to this the memory requirement of the
GMRES method15 is greatly reduced. Secondly, the conditioning of the preconditioned
system is improved due to the matching in the interior of the subdomains. The numerical
examples demonstrate the effectiveness of the developed approach.

2 MODEL PROBLEMS

In the rectangular computational domain Π, the pressure field p satisfies the Helmholtz
partial differential equation

−∆p − k2p = g, (1)

where k is the wave number given by k = ω
c
, ω is the angular frequency, c is the speed of

sound, and g corresponds to a sound source. We assume the speed of sound and, thus,
also the wave number to be piecewise constant functions. On the boundaries ∂Π, we
impose a second-order absorbing boundary condition1,8
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where n and s denote the unit outward normal and tangent vectors, respectively, and C
denotes the set of the corner points of ∂Π.

3 NUMERICAL METHOD

3.1 Discretization

We discretize the Helmholtz equation on a uniform grid with the grid step size h. The
discretization stencils for interior grid points, boundary grid points, and corner grid points
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are given by Figure 1, where the diagonal weights are defined by
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Figure 1: The discretization stencil at (x, y) for an interior grid point (left), a grid point on the left
boundary (middle), and the left lower corner point (right). The weights d, b, and a are given by (3).

The discretization leads to a system of linear equations

Ap = b. (4)

3.2 Iterative solution procedure

Instead of solving the system of linear equations (4), we solve iteratively using the
GMRES method15 a left preconditioned system

AB−1q = b, (5)

where B is the preconditioner. Once we have obtained q the solution of the original
problem is given by p = B−1q.

In order to describe our domain decomposition preconditioner B, we define each sub-
domain as the union of cells in which the speed of sound is a given constant. More
precisely, let cj, j = 1, . . . , n, denote the different speeds of sound. The closure of the jth
subdomain Ωj is defined by

Ω̄j =
⋃

c(x, y) = cj

(x, y) ∈ M

[x − h/2, x + h/2] × [y − h/2, y + h/2], (6)
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where M is the set of cell midpoints. Let the rectangular matrix Rj correspond to the
restriction operator into the subdomain Ωj. Multiplying a vector by it results a vector
containing the components associated to the subdomain Ωj and its boundary. We denote
the preconditioner in Ωj by Bj and it will be defined in Section 3.3.

We employ a Schwarz-type multiplicative domain decomposition preconditioner B =
Pn which is defined recursively as

P−1
j = P−1

j−1 + RT
j B−1

j Rj(I − AP−1
j−1), j = 2, . . . , n, (7)

where P−1
1 = RT

1 B−1
1 R1. Thus, we obtain y = y(n) = B−1x by performing the following

sequence of operations:

y(1) = RT
1 B−1

1 R1x,

y(2) = y(1) + RT
2 B−1

2 R2(x − Ay(1)),

...

y(n) = y(n−1) + RT
nB−1

n Rn(x − Ay(n−1)).

(8)

3.3 Subdomain preconditioners

Systems of linear equations corresponding to general shaped subdomains cannot be
solved using a fast direct solver. For this reason, we embed each subdomain into a larger
rectangular domain and we defined the subdomain preconditioner as a Schur complement
matrix. In order to describe this more precisely, we define the minimum and maximum
values of the coordinates for each subdomain Ωj as

xj
min = argmin

(x,y)∈Ω̄j

x, xj
max = argmax

(x,y)∈Ω̄j

x,

yj
min = argmin

(x,y)∈Ω̄j

y, and yj
max = argmax

(x,y)∈Ω̄j

y.
(9)

Similarly, we define xmin, xmax, ymin, and ymax for the computational domain Π. Then the
extended rectangular subdomains are defined by

Ω̂j =
[
max{xj

min − lh, xmin}, min{xj
max + lh, xmax}

]

×
[
max{yj

min − lh, ymin}, min{yj
max + lh, ymax}

]
,

(10)

where l is a nonnegative integer.
The jth subdomain preconditioner is based on the Helmholtz equation

−∆p − k2
j p = g in Ω̂j, (11)

where kj = ω/cj and the absorbing boundary conditions (2) are posed on the boundaries

∂Ω̂j. By using the same grid and discretization for the problem (11), we obtain a matrix
Cj which has a block form

Cj =

(
Cj,dd Cj,de

Cj,ed Cj,ee

)
(12)
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once the unknowns corresponding to the subdomain Ω̄j are numbered first (subscript d)

and the unknowns corresponding to the extension Ω̂j\ Ω̄j are numbered second (subscript
e). The preconditioner Bj for the jth subdomain is given by a Schur complement matrix

Bj = Cj,dd − Cj,deC
−1
j,eeCj,ed. (13)

A system of linear equations Bjyj = xj can solved as

yj =
(
1 0

)
C−1

j

(
1
0

)
xj (14)

using a fast direct solver like the cyclic reduction method5,14. This solution requires order
of mj log mj floating point operations, where mj is the size of Cj.

3.4 Sparse subspace iterations

The GMRES method15 forms and stores basis vectors for a Krylov subspace which
after l iterations is

Kl(v) =
{
v, AB−1v, (AB−1)2v, . . . , (AB−1)lv

}
, (15)

where v is the initial residual. For example, if the initial guess for solution in the GMRES
method is zero then v = b. In general case, storing the basis vector requires a vast amount
of memory for large problems unless the iterations converge already after a few iterations.
The vectors vj, j = 1, . . . , l, defining Kl(v) are given by

vj = AB−1vj−1 = [(A − B) + B] B−1vj−1 = (A − B)B−1vj−1 + vj−1, (16)

where we have denoted v0 = v. It is easy to see from (16) using induction that vj+1 ∈
X ∪ {v}, where

X = range(A − B). (17)

The subspace X corresponds to the rows of the matrices A and B which differ. Due to
the construction of the preconditioner, these rows are associated to the interfaces between
subdomains and their near-by grid points4,9,10. Thus, the subspace X is very sparse. For a
two-dimensional problem, the number of nonzero components in vectors on X is of order√

m, where m is the size of the system of linear equations. If the initial guess is chosen
to be b then the initial residual v belongs to X and, thus, Kl(v) ⊂ X, that is, the Krylov
subspaces are sparse. Alternatively, X ∪ {v} is sparse when b is sparse and the initial
guess is zero. These observations reduce the memory usage by a large factor and allows us
to use the GMRES method without restarts. Furthermore, the so-called partial solution
technique2,11 can be used to solve the systems of linear equations with B on the sparse
subspace4,9.
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4 NUMERICAL RESULTS

In all experiments, the stopping criterion for the GMRES method was that the norm of
the residual is reduced by the factor 10−6. In all embeddings, we extended the subdomains
by one mesh step, that is, l = 1 in (10). The sound source is always a point source at
the midpoint of the upper boundary. The initial guess for the solution in the GMRES
method is zero for all problems. All experiments are performed without GMRES restarts.

4.1 Perfectly vertically layered medium

These test problems are defined in the unit square and we use a 1001 × 1001 grid to
solve these problems. In the first test problem, the speed of sound is constant c = 1 in
the whole domain. However, we divide the unit square into two and four equally sized
subdomains which are extended according to (10) for preconditioning. The number of
GMRES iterations for the resulting preconditioned systems are given by the third and
fourth column of Table 1. The next two problems have perfectly vertically layered media
shown in Figure 2. The number of GMRES iterations for these problems are given by
the two last columns of Table 1. The real part of the solution at the frequency f = 25 is
shown by Figure 2.

c = 2

c = 1

s s

c = 4

c = 3

c = 2

c = 1

Figure 2: Layered test problems in the unit square and the solution for the four layer problem at f = 25.

homog. homog. layered layered
subdomains 2 4 2 4

f grid iter. iter. iter. iter.
25 1001 × 1001 3 5 32 36
50 1001 × 1001 3 6 26 29
100 1001 × 1001 4 7 22 26

Table 1: The number of iterations for different test problems and frequencies f .
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4.2 Wedge problem

The speed of sound for the wedge test problem3,13 is shown in Figure 3. The domain
decomposition is given by Figure 4 together with the one grid step extensions for the
subdomains. Table 2 gives the number of GMRES iterations and CPU times in seconds
at different frequencies on a PC with 3.8 GHz Xeon processor. The real parts of the
solutions at f = 30 Hz and 50 Hz are plotted in Figure 3.
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Figure 3: The wedge test problem and the solutions at f = 30 Hz and 50 Hz.

subdomain Ω1 subdomain Ω2 subdomain Ω3

Figure 4: The subdomains Ωj for the wedge test problem (red and black), their extensions Ω̂j\Ω̄j (green),
and the associated parts of the sparse subspace X ∪ {v} (black).

4.3 Salt deposit problem

This test problem mimics a simple salt deposit. The length of the side of the square
computational domain is chosen to be 600 meters. The profile for the speed of sound is
shown in Figure 5. It is perfectly vertically layered except for the salt disk with the radius
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f [Hz] grid iter. time
30 232 × 386 18 0.78
40 301 × 501 20 1.49
50 376 × 626 22 2.62
60 481 × 801 23 4.50
80 721 × 1201 26 11.53
100 901 × 1501 28 18.95
160 1441 × 2401 34 60.08

Table 2: The number of iterations and CPU times in seconds for different frequencies f for the wedge
problem.

of 150 meters and the center at (300 m, 250 m) when the lower left corner is at origin.
We consider three frequencies f = 30 Hz, 60 Hz, and 120 Hz and three grids 301 × 301,
601×601, and 1201×1201. Table 3 gives the number of GMRES iterations for all possible
combinations of frequencies and grids. Figure 6 shows the real parts of the solutions at
the considered frequencies. The domain decomposition is shown in Figure 7.

1500 m/s

2500 m/s

3500 m/s

4500 m/s

5500 m/s

Figure 5: The speed of sound for the salt deposit problem.

Figure 6: The solutions for the salt deposit problem at f = 30 Hz, 60 Hz, and 120 Hz.
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subdomain Ω1 subdomain Ω2 subdomain Ω3 subdomain Ω4 subdomain Ω5

Figure 7: The subdomains Ωj for the salt deposit problem (red and black), their extensions Ω̂j \ Ω̄j

(green), and the associated parts of the sparse subspace X ∪ {v} (black).

grid
f [Hz] 301 × 301 601 × 601 1201 × 1201

30 18 23 31
60 19 22 31
120 22 24 27

Table 3: The number of iterations for different frequencies f and grids for the salt deposit problem.

5 CONCLUSIONS

We proposed a Schwarz-type multiplicative domain decomposition preconditioner for
the Helmholtz equation with a piecewise constant wave number. The computational
efficiency results from the use of fast direct solvers for subdomain preconditioning and the
good conditioning of the preconditioned system. Furthermore, iterations can be reduced
on the subdomain boundaries and their neighboring grid points. The number of GMRES
iterations required to reduce the residual by a given factor depends only mildly on the
grid step size and frequency. The numerical experiments demonstrated the method to be
efficient for two-dimensional problems with realistic frequencies and jumps of the speed of
sounds encountered in acoustical geological survey problems. The proposed method can
be generalized in a straightforward manner for three-dimensional problems.
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