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Preface
This MSc thesis report details my work over the past year, researching a ’human pilot skill level iden-
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amazing supervisors Max Mulder and Daan Pool. My sincerest appreciation goes to their 24/7 support
(answering my emails any time of the day, any day of the week), their positive and inventive attitude
during our meetings (always bringing new insights and ideas to the table), and their incredibly detailed
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and brother, who always support me and cheer me on. Without their nonstop encouragement, my time
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M.J.L. de Jong
Den Haag, November 2021
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Real-time Explainable Human Control Skill
Classification Using Deep ANN

M.J.L. de Jong, Author, D.M. Pool, Supervisor, and M. Mulder, Supervisor

Abstract—To fully optimize the synergy between human op-
erators and machines in modern day’s highly automated vehicle
control tasks, a real-time quantitative feedback of skill level is
required. Direct feedback of skill level could be used to enable
scalable levels of autonomy of the controlled system, or to provide
a warning when sudden skill level deterioration is detected,
improving safety. Cybernetics has proven to be a useful tool to
assess pilot skill level, but most traditional methods suffer from
the fundamental issue of assuming the human controller to be
constant over time, ignoring subtle changes in control behavior.
Employing deep artificial neural networks directly to raw time
series of control behavior may be a solution to this problem.
Using a deep residual convolutional neural network (ResNet)
architecture, this research shows that 1.2 second windows of
experimental human control data—from a previously conducted
compensatory tracking experiment in the SIMONA Research
Simulator at Delft University of Technology—can be classified as
either ’skilled’ or ’unskilled’ with an average validation accuracy
of 92% in a moving-base setting and 88% in a fixed-base
setting. Results indicate that the trained network is not a one-
size-fits-all classifier in its current state, as the skill levels of
isolated subjects with off-nominal learning curves are difficult to
predict. Introduction of SHapley Additive exPlanations and class
visualizations with activation maximization add transparency to
the trained classifier’s predictions, offering a new perspective on
distinctive characteristics of manual control skill level in the time
domain. This explainable deep learning approach to skill level
identification enables real-time quantitative evaluation of control
behavior, opening a new realm of possibilities to enhance safety
in automated systems that rely on smooth interaction with the
human operator.

Keywords: Manual control, time series classification, deep
learning, explainable artificial intelligence, pilot modeling,
skill level

I. INTRODUCTION

Automation in manual control has become a common
element in almost all human-machine interactions, from au-
tonomously driving cars, to today’s highly automated aircraft.
Although automation can enhance control performance and
reduce workload, it can also reduce situation awareness of
the human operator and degrade the ability to regain manual
control. Across all domains, there is a raised concern about
the integrity of manual control of the human operator in
these highly automated systems [1–4]. Although some research
conclude that the manual control skill of human operators
remains—for the most part—intact, there are also aviation
industry experts and pilots who are concerned with the in-
creased reliance on automation and question whether pilots are
provided enough training and experience to maintain manual
flying proficiency [5, 6]. A real-time quantitative measure of
manual control skill level would greatly benefit the evaluation

of pilot skill retention and improve safety. Direct feedback of
skill level could also be used to improve the human-machine
synergy through scalable levels of autonomy, or to provide a
warning signal whenever skill level deterioration is detected.

Effectively quantifying a pilot’s skill level in a manual
control task is no easy task. Cybernetics has proven to be
a useful tool to assess pilot skill level [7, 8], but most of
its currently available methods suffer from the fundamental
limiting requirement of assuming the human controller to be
constant over a substantial time basis, ignoring any subtle
changes in control behavior [9]. Although efforts have been
made to model the time-varying nature of the human controller
[10–13], capturing short-duration temporal variations in the
pilot control behavior from inherently noisy data remains a
difficult task [14]. Recent studies [15, 16] have investigated the
applicability of artificial neural networks to solve this difficult
task. Their work concluded that exploiting deep learning
models in time series classification [17] may be a solution
to recognize human adaptive control behavior in real-time.

Although recent years have shown a large amount of
research on machine learning applications for identifying
behavior of the human controller [18–21], the identification of
pilot skill level using artificial intelligence remains relatively
untouched. Xi et al. [22] employed machine learning to
identify pilot skill level, but their work required manual input
feature engineering and the resulting model was most accurate
when using 60 s of data, falling into the time range where
classic cybernetic methods would be equally effective [14].
Additionally, all of the aforementioned research requires the
use of additional sensors such as face cameras, eye tracking
devices, outside cameras, and electrocardiograms, making the
implementation of these methods impractical. Utilization of
the automatic feature extraction capability of deep networks
on raw time series control data may be the key to real-time
pilot skill level identification without the need of additional
apparatuses. Deep learning may be especially useful for the
classification of untrained pilots, since they are known to
exert inconsistent nonlinear control behavior [23], also known
as remnant. Classic cybernetic evaluation usually ignores this
portion of the manual control behavior [8], but the automatic
feature extraction capabilities of deep learning may incorporate
it in its skill level prediction, utilizing the full range of pilot
control behavior.

This paper will introduce a novel pilot skill level classifica-
tion method using deep learning with only readily available
task related time signals (e.g., pilot control input, tracking
command, and tracking error). A deep artificial neural network
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is trained to classify raw time series data of either ‘skilled’
or ‘unskilled’ pilots. Due to the few (and rudimentary) time-
domain input signals required, this method would not need
any additional sensors to be added to the cockpit of most
modern aircraft. Experimental human control data from a
previously conducted compensatory tracking experiment by
Pool et al. [8] is used to train and validate the classifier in
this paper. These data contain time traces of human pilots
performing training in a pitch tracking task—with and with-
out motion feedback—in the SIMONA Research Simulator
at Delft University of Technology. To expand the body of
knowledge on the time-varying nature of the human controller,
the skill level predictions of the trained classifier will also
be interpreted using eXplainable Artificial Intelligence (XAI)
techniques [24]. SHapley Additive exPlanations (SHAP) [25]
are used to compute the input feature importance of local
predictions, which can be aggregated into global explanations.
Activation Maximization (AM) [26] is utilized to visualize the
internal class representations of the trained classifier, so that
class specific input patterns can be recognized.

The paper is structured as follows. Section II introduces
the data sets used and data handling steps taken. Section III
explains the optimization of the proposed deep artificial neural
network classification method. Section IV details the explain-
ability methods utilized to make the deep learning model
interpretable. The results of this research are presented in
Section V. All results are discussed in Section VI. Section VII
concludes the paper.

II. DATA SETS AND DATA HANDLING

A. Data Set

This paper studies the applicability of deep learning to
distinguish raw time signals of untrained versus trained pilot
behavior. As such, a data set is required that contains pilot
control behavior time traces of both inexperienced and expe-
rienced individuals performing the same task.

In this paper, data from an experiment by Pool et al. [8] are
used. This experiment, which was performed in the SIMONA
Research Simulator at Delft University of Technology, studied
the effects of simulator motion feedback on the training of
multimodal skill-based human operator control behavior. Here,
24 fully task-naive participants underwent training in a com-
pensatory pitch tracking task designed for multimodal human
control behavior identification. In the experiment, consisting
of a training- and evaluation-phase, the participants were split
into two groups. The first group was trained in a fixed-
base setting with only a visual indication of their tracking
error e, shown on a compensatory display (example shown
in Figure 1), before being transferred to a moving-base setting
for evaluation. The second group was trained in a moving-base
setting (in addition to the compensatory display), before being
evaluated on a fixed-base setting. Each participant completed
a total of 100 training runs and 75 evaluation runs, with
each run lasting 90 s of which the last 81.92 s were used
as measurement data.

A schematic depiction of the pitch tracking task is shown
in Figure 1. Here e indicates the tracking error, u the human
control input, and x the controlled state (i.e., the pitch angle).
The dotted line connecting x directly to the human pilot is
only active if motion feedback is provided. As illustrated
in Figure 1, this tracking task requires the human operator
to follow a target pitch angle as accurately as possible,
while rejecting an additional disturbance signal placed on the
controlled element. The controlled element in this experiment
simulated the elevator-to-pitch dynamics of a Cessna Citation
I, by means of the reduced-order linearized model given in
Eq. (1) [27]. This combined target-following and disturbance-
rejection task enables reliable separation and identification of
the human operator response to visual cues and motion cues
[28]. The described task design was substantiated by a number
of previous studies that successfully identified multimodal
human control behavior [27, 29, 30]. An example of the time
traces recorded during one tracking run are shown in Figure 2.

Hθ,δe (s) = 10.62
s+ 0.99

s (s2 + 2.58s+ 7.61)
(1)

compensatory

display

human

pilot

aircraft

dynamics

target trajectory

external

disturbance

𝑒 𝑢 x
𝑒

Fig. 1. Schematic depiction of human pilot performing pitch tracking task.
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Fig. 2. Example time traces of one tracking run.

Evidently, the data acquired during the training portion
of the experiment by Pool et al. [8] are a fitting selection
for the objective of this machine learning pilot skill level
classification research, as it contains time traces of both
inexperienced human control behavior (at the start of training)
and experienced control behavior (at the end of training). Both
the fixed-base and moving-base data are used, these data sets
are referred to as Data-NM (No Motion) and Data-M (Motion),
respectively. Each of these data sets contains a total of 98,304
s of pilot tracking data recorded at 100 Hz.
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B. Data Preparation and Preprocessing

Although this research aims to utilize the capability of
deep learning models to handle raw time series data (i.e,
without the need of manual feature engineering), a few simple
data preparation and preprocessing steps have to be taken to
optimize model performance and attain desired classification
behavior. First, the input time series must be scaled to improve
convergence [31]. Specifically, standardization is used to scale
the input data, as this method was found to be the most
effective in a similar classification study [15]. Second, a
number of data handling steps with adjustable settings are
taken.

To understand the adjustable data handling steps taken in
this research, first observe the classification process as sum-
marized in Figure 3. As illustrated, the input to the classifier
is an observed window of the previously introduced e, u,
and x time signals. Every observed window (or sample) has
two dimensions: the number of time steps and the number
of input variables. The outputs of the classifier, P (Y1) and
P (Y2), indicate the classifier’s predicted probabilities that the
observed window belongs to class Y1 or class Y2 (i.e., ‘skilled’
or ‘unskilled’ in this paper). The presented task definition
opens some questions, namely: 1) What is the definition of
‘skilled’/‘unskilled’ behavior and how are the data labeled
accordingly? 2) What is the best window size and at what
sampling frequency is it observed? And 3) which combination
of input variables should be used? The following sections will
elaborate on the relevance of these questions and explain the
methods that are used to answer them in this paper.

𝑒(𝑡)

𝑢(𝑡)

x(𝑡)

Window size

Classifier

𝑃(𝑌1)

𝑃(𝑌2)

Fig. 3. Schematic description of pilot skill level classification task.

1) Labeling the Data: As this is a supervised learning task,
every sample of pilot control data requires a corresponding
class label to enable training of the classifier. Two distinct
labels (and therefore classifier outputs) are considered in this
research: ‘skilled’ and ‘unskilled’ pilot control behavior. This
raises the question of what the definition of skill level is
and how it is identified. Two options to define skill level
(and thereby label the data) were considered: 1) every run
is labeled based on the level of experience (by the run index,
Figure 4a) or 2) every run is labeled based on a performance
measure (e.g., the root mean square tracking error, Figure 4b).
Preliminary research [32] concluded that using experience-
based labeling resulted in the desired classification behavior.

The amount of runs that are labeled as ‘unskilled’ and
‘skilled’ (i.e., the lengths of the arrows in Figure 4a) is
determined empirically. In this paper, this parameter is referred

to as the labeling width Lw. The labeling of data is done
symmetrically (equal amount of samples under each class),
to prevent class imbalance and potential bias in the trained
classifier [33, 34]. After the data are labeled, they are randomly
split into a train (80%) and validation (20%) set. The validation
accuracy of the trained classifier is used to compare—and
ultimately optimize—different hyperparameter settings.

A drawback of the experience-based labeling method is that
it provides a single class label per subject tracking run. Ideally,
the data would be labeled per sample, since the human pilot
is a time-varying system that may exert variations of control
character due to factors such as fatigue, loss-of-attention, and
learning [35, 36]. Seeing these factors are considered to induce
“slow” variations in control behavior [37] and because they are
not known a priori when the data are labeled, the human pilot
is assumed to be time-invariant per tracking run for labeling.
This assumption has to be made, as alternative methods to
determine these changes in control behavior are currently
lacking or nonexistent [14]. Considering there were no sudden
changes to the controlled environment in the experiment by
Pool et al. [8], assuming the human controller to be time-
invariant per tracking run is reasonable [14].

Individual runs

Average
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 d

eg

Run indexRun index

SkilledUnskilled Skilled

Unskilled

(a) Experience-based labeling method.
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(b) Performance-based labeling method.

Fig. 4. Visual explanation of the two considered labeling methods.

2) Window Size and Sampling Frequency: As was shown in
Figure 3, the classification of time series is done per observed
window of a specified size. This technique, also known as
window slicing [38], takes a time series T with N time steps
T = {t1, . . . , tN} and produces multiple (shorter) snippets
defined as Si:j = {ti, ti+1, . . . , tj} , 1 ≤ i ≤ j ≤ N . The size
of each slice is a parameter of this method that is empirically
optimized in the Results section.

Window slicing is beneficial to the goal of this research
for two reasons: 1) Training the classifier model with short
time series samples will result in a trained classifier that can
predict the class of short recordings of pilot control behavior.
This allows for real-time feedback, enabling applications such
as sliding scale autonomy or skill deterioration warnings. 2)
By extracting a larger set of smaller snippets from the original
time series, more training data become available to the clas-
sifier. Increasing the amount of training data, also known as
data augmentation, helps to avoid overfitting and improve the
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generalization ability [38, 39]. This data augmentation aspect
of window slicing can be further exhausted by overlapping
consecutively sliced windows, as is shown in Figure 5.

The amount of time steps in a fixed window size is deter-
mined by the sampling frequency. Originally, the experiment
data from Pool et al. [8] were recorded at 100 Hz. Down-
sampling these data, especially at larger window sizes, may
be advantageous for good classification performance [15]. In
the Results section of this paper, it is shown how well the
classifier performs under different combinations of window
sizes and sampling frequencies.

𝑒(𝑡)

𝑢(𝑡)

x(𝑡)

Window 1

Window 2

Overlap

Fig. 5. Consecutively sliced windows can be overlapped to produce more
training samples.

3) Input Variables: The last data preparation setting to be
researched, is the selection of input variables. As previously
explained, there are three input variables in the original
experiment data set of Pool et al. [8]: e, u, and x. However,
following the suggestion by Versteeg [15], three additional
input variables can be introduced as the first-order time deriva-
tives of these signals, i.e., ė, u̇, and ẋ. These time derivatives
are calculated using a central difference approximation (and
one-sided forward or backward approximation at the boundary
points of each tracking run). This provides a total of six
potential input variables, which results in 63 possible unique
input combinations. Each of these combinations is tested in
the Results section.

To conclude this section on data preparation and preprocess-
ing, the initial data hyperparameter settings (before optimiza-
tion) are provided in Table I. These settings were either taken
from Versteeg [15] or found during the preliminary phase
of this research [32]. Additionally, the values that are tested
during optimization are also indicated. The overlap will not be
optimized, because it was discovered during preliminary test-
ing that higher overlap always resulted in better classification
performance [32]. The effect of different train/validation splits
is not investigated.

TABLE I
DATA HYPERPARAMETERS.

Setting Symbol Baseline value Values to be tested
Train/validation - 80% / 20% [15] fixed
Overlap - 90 % [32] fixed
Labeling width Lw 15 runs [32] [1 run - 40 runs]
Window size WS 1.6 s [15] [0.1 s - 30 s]
Sampling frequency Sf 50 Hz [15] [25 Hz - 100 Hz]
Input variables - e+ė+u+u̇ [32] [e, ė, u, u̇, x, ẋ]

III. TIME SERIES CLASSIFICATION USING DEEP
ARTIFICIAL NEURAL NETWORKS

A. Deep Neural Networks

Traditionally, Time Series Classification (TSC) has been
carried out using conventional machine learning techniques
[40]. However, these conventional machine learning tech-
niques often require thorough engineering—and substantial
domain expertise—to design feature extractors that transform
the raw data into internal representations (or feature vectors)
from which a classifier could detect patterns in the input
[41]. Contrarily, deep learning methods automatically discover
the representations needed for classification by composing
modules that each transform the representation into a higher,
more abstract, level, starting with the raw input and ending at
a class representation [41]. In relatively recent work [17, 42],
performance comparisons have been made between traditional
TSC methods and deep learning TSC methods. From this
work it was found that deep learning methods can achieve
comparable—and sometimes better—performance than state-
of-the-art traditional TSC methods (with the added benefit
of not requiring manual feature engineering). Based on these
findings, this research will limit its scope to deep learning
methods only.

1) Architectures: The implementation of the deep network
architectures is done in Python v3.8, using the artificial
neural network library Keras v2.6.0 [43] running on top of
TensorFlow v2.6.0 [44]. The following four deep learning
architectures are tested as candidates:

a) Long Short-Term Memory (LSTM): These are a special
kind of Recurrent Neural Network (RNNs) introduced by
Hochreiter and Schmidhuber [45] and specifically built
to overcome the problem of “vanishing gradient” [46],
allowing the learning of long term context. In the work
of Versteeg [15], a stacked LSTM model was used to
perform TSC on pilot control data. This stacked LSTM
structure was inspired by the architecture used by Saleh
et al. [19], combined with the rule of thumb hyperpa-
rameter settings from Reimers and Gurevych [47]. By
stacking LSTM layers the network becomes deeper. This
way the learned representation from the first layer can be
passed on to the next layer, which creates representations
at a higher level of abstraction. Each layer will take on
a part of the task and pass it to the next, until finally the
last layer provides the output [48].

The model that is tested here, consists of two stacked
LSTM layers, each containing 100 LSTM cells. Both
layers use dropout [49] as regularization method to de-
crease overfitting. Lastly, the output of the second (last)
LSTM layer is fully connected to two output neurons
with softmax activation. These settings are optimized for
sequence labeling tasks [47] and have been successfully
used for the classification of human manual control time
traces [15, 32].

b) Fully Convolutional Networks (FCN): Long et al. [50]
showed that end-to-end trained FCNs—without further



5

machinery—exceeded state-of-the-art performance in se-
mantic mapping. Wang et al. [42] adopted the FCN
architecture as a feature extractor for TSC, with its final
output coming from a softmax layer. Simply stacking con-
volutional layers, without pooling operations in between,
turned out to be an effective architecture for TSC [17, 42].

The aforementioned TSC FCN architecture con-
sisted of three convolutional blocks. Here each convolu-
tional block is made out of a convolutional layer with
Kn filters with kernel size Ln, followed by a Batch
Normalization (BN) layer [51] and a ReLU activation
layer [52]. Specifically, the number of filters between
the three blocks are {128, 256, 128}, with 1D kernels
with sizes {8, 5, 3}. The three blocks are followed by
a Global Average Pooling layer (GAP) [53] instead of
a fully connected layer, to largely reduce the amount of
weights [42]. Lastly, the final class label is produced by
a softmax layer.

c) Residual Networks (ResNet): He et al. [54] introduced
this class of networks as a framework to train deep
neural networks for image recognition. Simonyan and
Zisserman [55] showed that adding more convolutional
layers (thus making the network deeper) is beneficial for
the accuracy in image classification. However, adding
more layers also makes training of the network more
difficult. He et al. [54] developed a method that uses
‘shortcut’ residual connections to overcome these training
difficulties, whilst still profiting the enhanced accuracy
from increased network depth.

Wang et al. [42] adopted ResNet for TSC, the
resulting structure (as displayed in Figure 7) is somewhat
similar to the previously described FCN architecture.
However, now each block is replaced by a residual
block containing three convolutional layers with an equal
amount of filters per block, but with varying kernel sizes,
again followed by a BN and ReLU layer. A shortcut
connection combines the input of the first convolutional
layer with the output of the third (last) convolutional
layer, before passing it through the final BN + ReLU
layer. Taking the proposed settings from Wang et al. [42];
the three residual blocks have {64, 128, 128} number of
filters, with 1D kernel (filter) sizes {8, 5, 3} per block.

d) InceptionTime (IncTim): Out of the network architectures
to be tested, this is the most recent development.
Fawaz et al. [56] introduced InceptionTime as a novel
architecture specifically designed for TSC. This network
is similar to the TSC adaptation of ResNet, in the
sense that it also uses residual blocks and a GAP
layer followed by a fully connected layer with softmax
activation. However, there are two residual blocks,
instead of three, and each of the residual blocks is
composed of three Inception modules [57] instead of
the traditional convolutional layers. What is unique
about the Inception module is that it uses multiple
sliding filters with an increasingly large receptive field
that simultaneously extract features from the same

time series. For a more elaborate explanation of this
architecture, the reader is referred to the original work
[56]. This network is tested here with the default settings
as they were proposed by Fawaz et al. [56].

2) Optimization: Two levels of optimization are discussed:
trainable parameter optimization and hyperparameter opti-
mization. Trainable parameters are internal to the model, they
are learned from data during training as the model tries to map
input to output. Hyperparameters are parameters that control
the learning process, these can be tuned to make networks
train better and faster [58].

a) Trainable parameter optimization: In order to optimize
the internal model parameters, there must first be a
definition of loss. As was depicted in Figure 3, the output
of the classifier is a probability distribution over the
possible classes. Attaining such a probability distribution
is achieved by using a softmax activation function over
the two output neurons of the classifier. To optimize
for maximum likelihood (i.e., predicting the most likely
probability of each class) a categorical cross-entropy loss
function is used [59]. The cross-entropy loss L for N
samples with M classes can be calculated as follows:

L(y, ŷ) = −
N∑
i=1

M∑
j=1

yij · log ŷij , (2)

where y is the ground truth and ŷ is the model prediction.
Trainable parameter optimization is done by mini-

mizing the loss, using Adam optimiser [60] with default
settings (β1 = 0.9, β2 = 0.999, ε = 1e-7) and
learning rate α = 5e-4 (finding the optimal learning
rate is discussed in Appendix B-2). The updated trainable
parameter values will only be saved if the validation loss
improved with respect to the previous epoch.

b) Hyperparameter optimization: There are two categories
of hyperparameters that are optimized: those that pertain
to the data handling (Section II-B, Table I) and those that
pertain to the neural network architecture and training
(Section III-B, Table II). The method of optimization
is the same for both these categories. Namely, different
combinations of hyperparameters are tested to empirically
determine which settings result in the best model classi-
fication performance.

The validation accuracy is used as the measure
of model performance. The models are trained for 20
epochs with a batch size of 128, here 80% of the data
are used for training and 20% are used for validation.
Each model is evaluated at the epoch with minimal
validation loss. To account for the stochastic training
outcome, every network is tested 30 times and the average
performance is used as final comparison measure. For
fair evaluation, every network is tested under the same
30 random train/validation splits.
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3) Selection: The first step in the optimization process is
selection of the classifier. Therefore an empirical performance
comparison between the different classifiers—with their de-
fault hyperparameters (as described in Section III-A1)—is
made, leaving only one model to be considered for model-
specific hyperparameter optimization. The models are com-
pared using the performance comparison method described in
Section III-A2 with the data settings kept at their initial values
(Table I). The results of this performance comparison are
shown in Figure 6. Based on these results, ResNet is selected
as the appropriate architecture for time series classification of
pilot skill level.

LSTM FCN ResNet IncTim
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Fig. 6. Performance of different deep learning architectures. N = 30,
Data set = Data-NM

B. ResNet Hyperparameters

The following model-specific hyperparameters are opti-
mized: depth of network d, number of filters K, and filter
(kernel) length L. In order to explain these hyperparameters,
the fundamental working principal of a 1D convolutional layer
is described first.

Figure 8 displays how a 1D convolutional layer with K
filters of length L sliding across an input X with step size
(stride) S, produces an output C. If X is Multivariate Time
Signal (MTS) of length Nin with c channels, then a 1D
convolutional layer with K filters outputs C: an MTS with
K feature maps of length Nout, where every element in Ct,m
at time step t on feature map m is given by Eq. (3). Here km
is a kernel of size L by c, where L is the user-defined kernel
length and c is equal to the number of channels of the input
signal X . Every kernel has c×L trainable weights wm{1:c,1:L}
and a bias bm.

Ct,m = Xt−L/2:t+L/2 · km + bm

for t = [1, Nout] and m = [1,K]
(3)

A TSC-adapted-ResNet [42] architecture is shown in Fig-
ure 7. As was explained in Section III-A1, this architecture
consists of multiple residual blocks. The number of residual
blocks are referred to as the depth d of the network. Each
residual block has three 1D convolutional layers with varying
kernel lengths L1, L2, L3, but an equal number of filters K.
The length of the output Nout of each convolutional layer is
a function of input length Nin, kernel size L, and stride S. In
this implementation, S is set to 1 for all convolutional layers,

and padding is used to ensure equal length of the input and
output (Nin = Nout).

The default hyperparameter settings, as proposed by Wang
et al. [42], are as follows: network depth d = 3, with number
of filters K = {64, 128, 128}, and kernel sizes L = {8, 5, 3}.
These hyperparameters are optimized by using a grid search.
Networks up to a depth of 4 are tested, where the number
of filters double at every even residual block. For example,
if d = 4 and K1 = 64, then K = {64, 128, 128, 256}. The
kernel sizes to be tested are {5, 3, 2}, {8, 5, 3}, {16, 10, 6},
and {32, 20, 12}. All hyperparameter values are summarized
in Table II.

TABLE II
MODEL HYPERPARAMETERS.

Setting Symbol Baseline value Values to be tested
Number of epochs - 20 fixed
Batch size - 128 fixed
Learning rate α 5e-4 fixed
Depth d 3 [1, 2, 3, 4]
First number of filters K1 64 [16, 32, 64]
First kernel size L1 8 [5, 8, 16, 32]

C. Performance Analysis

Once all hyperparameters are optimized, an evaluation of the
performance of the trained classifier is performed. To get a fair
measure of performance, a third data split is introduced: the
test split. This means there will now be a training set to fit the
model by learning the trainable model parameters, a validation
set to keep track of validation loss during training to prevent
overfitting, and a test set to evaluate the classification accuracy
of the trained model (i.e., test accuracy). Using the validation
accuracy as a performance measure may yield inflated results
because—although the model has never ‘seen’ the validation
data during training—its trainable parameters were only saved
at minimal validation loss (thus the model has been optimized
to perform well on the validation set). The introduction of a
test set overcomes this problem.

To construct the test set, control data of one subject is
designated as the test data, after which the data of the
remaining eleven subjects are again randomly distributed as
80% training data and 20% validation data (i.e., the model used
to evaluate Subject 1 was trained on 80%/20% train/validation
split of Subjects 2-12, etc.). This process is repeated twelve
times, so that the data of every subject have once served the
role of test set. Excluding the test subject entirely from the
training/validation data provides a realistic representation of
how the classifier would perform in a real life application
where it is utilized to predict the skill level of pilots it has not
‘seen’ before. The average test accuracy across all subjects is
used as a final measure of classification performance.

IV. EXPLAINABLE ARTIFICIAL INTELLIGENCE

A. Explanation Methods

In machine learning there is a trade-off between model
interpretability and performance [24]. Simpler models (e.g.,
rule-based learning, linear regression, or decision trees) are
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inherently interpretable, but may lack in accuracy [24, 61].
On the other hand, models such as artificial neural networks,
support vector machines, and random forests may have better
generalization capabilities [61], but their complexity prevents
tracing of the logic behind predictions [62]. This means that
the explanation of the predictions made by the deep learning
classifier in this paper require post-hoc explainability [24].

Both model-specific and model-agnostic post-hoc explain-
ability methods were considered to compute the input feature
relevance of local skill level predictions. Class Activation
Mapping (CAM) [63] and Gradient-weighted Class Activation
Mapping (Grad-CAM) [64] were tested as model-specific ex-
planation methods. However, since this paper uses a classifier
with 1D convolutional layers, only the temporal dynamics of
multivariate time series input are preserved in the forward pass,
eliminating the possibility of feature importance computation
(this problem is displayed in Appendix D-1). A solution to
this problem is using the model-agnostic feature relevance
explanation method proposed by Lundberg and Lee [25] called
SHAP (SHapley Additive exPlanations). Lundberg and Lee

build forth on a game theory approach to compute explanations
of model predictions [65–67]. Their work provides feature
importance allocations that are more consistent with human
inituition than other methods like LIME [68] and DeepLIFT
[69].

As a means to interpret the trained classifier’s internal rep-
resentation of ‘skilled’ and ‘unskilled’ behavior, the following
Convolutional Neural Network (CNN) visualization methods
were considered: Activation Maximization [70], Deconvolu-
tional Neural Networks (DeconNet) [71], and Network Inver-
sion [72], each of which has a different purpose. Activation
Maximization can be used to produce synthetic inputs that
maximize the activation of a selected neuron, DeconNet can
highlight patterns in an original input that maximize a specific
neuron activation, and Network Inversion can visualize what
input information is preserved in each layer of the CNN.
Since the latter two methods—like SHAP—provide local
explanations, the decision was made to utilize the synthetic
class representation generation with activation maximization
as CNN visualization method.
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B. SHAP

Given an input x and its corresponding model output
ŷ = f(x), SHAP (SHapley Additive exPlanations) [25] can be
utilized to determine the relative contribution of every element
in x leading to ŷ. This approach uses classical Shapley values
[73] from cooperative game theory. Given a situation where
multiple players contribute to an outcome, cooperative game
theory studies how groups of players (“coalitions”) can be
formed to maximize payoff. In essence, Shapley values are
the average expected marginal contributions of each player in
all possibly formed coalition. SHAP employs this concept to
interpret machine learning model predictions.

SHAP is part of the class of additive feature attribution
methods. These methods use an explanation model, as shown
in Eq. (4), that is a linear function of binary variables each with
their own attributed effect φi [25]. Here g is the explanation
model of an original prediction model f , x′ are simplified
binary inputs that map to the original original input through
a mapping function x = hx (x′), and M is the number
of simplified input features. The explanation model g is
constructed such that it is locally accurate g (x′) ≈ f (x), i.e.,
summing the effects of all feature attributions φ approximates
the output f (x). The base rate φ0 = f (hx (0)) represents the
model output with all simplified inputs omitted [25], this will
also be referred to as the expected model output E [f (x)].

g (x′) = φ0 +

M∑
i=1

φix
′
i (4)

For the current pilot skill level classification study, the input
X consists of c input variables with N time steps, resulting in
M = N × c input features. To express the relative importance
of each input variable i, the marginal contributions at all time
steps t are summed first. This results in the expression shown
in Eq. (5), where Φi indicates the total marginal contribution
of input variable i across its sequence length N . The (local)
importance of each input variable for a certain prediction can
now be expressed as the absolute percentage-wise contribution
to the final model output. To illustrate this, consider Figure 9,
where it can be seen how every input variable—ranked from
the most important (top) to the least important (bottom)—
marginally contributes to reach the final model output. The
model output, in this case, is of the neuron indicating ‘skilled’
behavior, i.e., an output of 0.0 means ‘unskilled’ and an
output of 1.0 means ‘skilled’. Starting at the expected value
E [f (X)], each input sequence Xi ‘pushes’ the model by
a distance

∑L
t=1 φi,tx

′
i,t, resulting in model output f (X).

The local % contribution of each input variable (indicated
by SHAP:..% in Figure 9) is defined as the absolute distance
pushed |

∑L
t=1 φi,tx

′
i,t| divided by the total distance traveled∑c

i=1 |
∑L
t=1 φi,tx

′
i,t|. For example, the local explanation in

Figure 9 shows that ė was the largest contributor to the model
output f(X) = 0.1. By ‘pushing’ the model output -0.91,
it decided the final prediction by 49%. By performing this
analysis for a large quantity of samples, an estimate of global
feature importance can be computed.

f(X) ≈ g (x′) = φ0 +

c∑
i=1

N∑
t=1

φi,tx
′
i,t (5)
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Fig. 9. Waterfall chart displaying the individual contribution of each input
channel in X to reach the model output f(X). This a local explanation.

C. Activation Maximization

This second XAI method works in the exact opposite direc-
tion as SHAP: instead of starting at the input and explaining
how it reaches the output, Activation Maximization (AM)
starts at the output and computes a corresponding input. This
method—as proposed by Erhan et al. [70] to visualize the
higher-layer features of computer vision deep networks—looks
for input patterns that maximize the activation of a specific
neuron. The fundamental AM algorithm is formalized as:

x∗ = argmax
x

ai,l(θ, x), (6)

where ai,l (θ, x) is the activation of a target neuron i on layer
l, for some input image x with a set trainable parameters
(weights and biases) θ. For a trained network with fixed θ,
the input x is the only parameter set that is updated during
the optimization problem, yielding a synthesized input image
x∗ that maximizes the activation of the target neuron. This
process starts with a random input image x0, after which all
pixels in x are updated—through iterations—in the direction
that maximizes ai,l, i.e., in the direction of the gradient δai,l

δx .
Simonyan et al. [26] utilized this method to maximize

the class scores in the last layer of CNNs. This provides a
visualization of the trained model’s interpretation of each class.
Additionally, Simonyan et al. [26] added L2 regularization
to the optimization function to prevent a small number of
extreme pixel values from dominating the class activation,
making the image patterns easier to interpret by humans [74].
Here, this implementation is used to visualize features that
represent unskilled/skilled control behavior, gaining insight
in the model’s decision making. A formal expression of the
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maximization of score S for class c with L2 regularization is
now given by:

X∗ = argmax
X

Sc(θ,X)− λ‖X‖22, (7)

where λ is the regularization parameter. Here X∗ is the final
synthetic control behavior sequence representing class c.

Lastly, it is important that the class scores Sc to be opti-
mized are unnormalized (i.e., before softmax activation). This
is because the class scores after softmax activation—providing
a probability distribution—can be maximized by minimizing
the scores of other classes. Optimizing non-normalized Sc
ensures that the optimization concentrates only on the desired
class c [26]. Effective utilization of this class visualization
method will further clarify the trained classifier’s internal
representation of each ‘skilled’ and ‘unskilled’ pilot behavior.

V. RESULTS

A. Optimization

The Data-NM set is used during optimization, so that the
effectiveness of this deep learning skill level identification
method can be tested in the simplified case where the human
controller is of simple, single unity-feedback form [75]. As
has been explained in Section III-A2, classification perfor-
mance with different hyperparameters are tested 30 times
to empirically determine the optimal setting. The average
performance of the classifier with adjusted hyperparameters is
compared against the nominal performance with the baseline
hyperparameter settings that were presented in Table I and Ta-
ble II. Under these nominal conditions, the average validation
accuracy of the classifier is 86.35% on the Data-NM set.

1) Data Settings: Four different data settings are optimized
in parallel: the labeling width Lw, the window size WS, the
sampling frequency Sf , and the input variable selection.
Labeling width: The labeling width determines the number of
tracking runs of each subject that are labeled as either skilled
or unskilled, see Figure 4. A very low labeling width means
that there are few training samples, but the samples are good
representations of their respective class (e.g., a pilot’s first
run is most likely to show the most unskilled behavior, and
vice-versa). A very high labeling width, on the other hand,
provides a larger amount of training samples that are, however,
less consistent representations of their respective class (pilot
control behavior could be either skilled or unskilled around
their 50th tracking run). An optimal labeling width will lie
somewhere in between these extreme cases.

Eight different labeling widths are tested with all other
hyperparameters kept constant. The result of this analysis
are shown in Figure 10. Note that Lw = 1 is shown on
a separate y axis to preserve detail for the other settings.
As hypothesized, the extremely low- and high labeling width
both have poor average classification accuracy. However, the
former has a very large spread in accuracy, whereas the latter
has the least spread. This is expected since the high labeling
width has a larger quantity of training (and test) samples,
and is thus less sensitive to poor class representations in

the data (an extended analysis of phenomenon is provided in
Appendix B-1). From this optimization analysis it was found
that the nominal classification performance can be enhanced
by increasing the labeling width from 15 to 20.
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Fig. 10. Classification performance for different labeling widths. N = 30
Data set = Data-NM

Window size and sampling frequency: These two settings
are tested concurrently since they conjointly determine the
classification performance, as the input length N (number of
time steps fed to the classifier) is the product of WS and
Sf . Fourteen different window sizes are tested in combination
with three sampling frequencies, adding up to a total of 42
different settings (with all other hyperparameters kept at their
initial value as presented in Table I and Table II). The resulting
validation accuracy of each setting is shown in Figure 11.
Two effects can be observed here: 1) for the same overlap, a
large window size reduces the amount of training/validation
samples that can be drawn from the data set, resulting in
more uncertain classification performance (this is especially
visible at window sizes 30 s and 40 s), and 2) a high sampling
frequency is preferred at small window sizes, whereas a low
sampling frequency is preferred at large window sizes. In terms
of performance variation across the different WS and Sf ,
it appears there is little room for improvement. Although a
window size of 20 s with sampling frequency of 25 Hz gives
the best performance, its usefulness can be argued because
this sample size comes into the range of classic cybernetic
pilot evaluation [14]. Additionally, to enable direct feedback,
a short window size is desired. In Figure 11, it can be
seen that performance in the 1-4 second range is somewhat
constant. Based on this observation—and with the goal of
direct feedback in mind—it was decided to select the shortest
window size before performance drops, i.e., 1.2 s. Figure 11
shows that this window size is most effective in combination
with a 50 Hz sampling frequency.
Input variable selection: There are a total of six input
variables to choose from (e, ė, u, u̇, x, ẋ), since there is no
fixed amount of inputs and the position of each input variable
does not matter—as is evident from the provided definition
of a 1D convolutional forward pass (Figure 8)—this yields a
total of 63 unique input variable combinations. Each of these
combinations is tested with all other hyperparameters kept at
their nominal values (Tables I and II).
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The results of the input variable selection optimization
are provided in Table III (the complete table is provided in
Appendix B-3). The indicated accuracy and loss values are
the median value of 30 repeated performance tests. Evidently,
the nominal input variable setting of e + ė + u + u̇ is the
best performing input combination. Interestingly, this is not
the same combination found during optimization by Versteeg
[15] and Verkerk [16], confirming that the ideal set of input
signals depends on the classification task. All of the input
combinations in the top five include the pilot control input
u and its time derivative u̇, indicating that these two input
variables are important to include to achieve good classifi-
cation performance. When comparing the models that were
trained to classify pilot skill level based on only one input
variable, it can be seen that u̇ is the most effective, indicating
that this signal contains the most information for the classifier
to distinguish skilled and unskilled behavior. Interestingly, the
tracking error e and its time derivative ė are poor discriminator
by themselves, but nevertheless present in the optimal input
combination, proving that they are essential when used in
combination with u and u̇.

TABLE III
RANKED PERFORMANCE OF INPUT COMBINATIONS.

Rank Input combination Validation accuracy Validation loss
1 u+ u̇+ e+ ė 86.35% 0.3270
2 u+ u̇+ e+ ė+ ẋ 84.96% 0.3417
3 u+ u̇+ e+ ė+ x 84.71% 0.3486
4 u+ u̇+ e+ ė+ x+ ẋ 83.68% 0.3662
5 u+ u̇+ x+ ẋ 82.82% 0.3876
...

...
...

...
31 u̇ 76.92% 0.4880
...

...
...

...
50 u 73.15% 0.5350
...

...
...

...
59 e 65.61% 0.6108
60 x 63.58% 0.6391
61 ẋ 63.01% 0.6382
62 ė 61.71% 0.6478
63 ė+ ẋ 58.96% 0.6729

2) Model Hyperparameters: Three essential parameters of
the ResNet architecture are optimized to find the best per-
forming ResNet adaptation for time series classification of
pilot skill level: the number of residual blocks—or depth of
network—d, the number of filters Ki in the convolutional
layers of each residual block, and the kernel sizes {L1, L2, L3}
of the three stacked convolutional layers in each block.

All possible combinations between the following settings
are tested in this hyperparameter grid search optimization:
four depth settings d = [1, 2, 3, 4], three filter settings
K1 = [16, 32, 64] (only K1 is set, because the number
of filters Ki is doubled at every evenly indexed resid-
ual block), and four kernel size settings {L1, L2, L3} =
[{5, 3, 2}, {8, 5, 3}, {16, 10, 6}, {32, 20, 12}] . All other hyper-
parameters are kept at their nominal values (Tables I and
II) during this analysis. The results of the hyperparameter
optimization are shown in Figure 12. Note that only the
first kernel size L1 is shown to save plotting space. The
size of each sphere in Figure 12 indicates the uncertainty in
performance outcome when training the classifier with that
respective setting. Therefore, the smallest sphere with the
brightest blue tone indicates the optimal setting. Evidently,
it appears that the baseline model hyperparameters settings
(d = 3, K = {64, 128, 128}, L = {8, 5, 3}) yield the best
classification performance. With these model settings, the net-
work consists of 505,986 trainable parameters. To put that into
perspective, the smallest tested network (d = 1, K = {16},
L = {5, 3, 2}) has 1,890 trainable parameters, and the largest
network (d = 4, K = {64, 128, 128, 256}, L = {32, 20, 12})
has 5,168,514 trainable parameters. Training computational
load increased with network size, but not linearly: the largest
network took 9 times longer to train than the smallest network.

3) Optimization review: The total training time spent dur-
ing the optimization process (both the data settings and hy-
perparameters) is 837 h, consisting of 43 h for the labeling
width optimization, 247 h for window size and sampling fre-
quency optimization, 339 h to optimize the selection of input
variables, and 208 h for the grid search model hyperparameter
optimization.
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Fig. 12. Hyperparameter grid search optimization results. The size of each
sphere indicates the spread in validation accuracy (e.g., like the interquartile
range of a boxplot). Data set = Data-NM

The final hyperparameters that were found through op-
timization are presented in Table IV. Evidently, only the
labeling width and window size have changed with respect
to their original values. Out of those two adjustments, only
the labeling width increased the classification performance.
The decreased window size resulted in virtually constant
classification performance, but the shorter window length was
favorable because it allows for faster feedback. When using
the optimized hyperparameter settings, an average validation
accuracy of 87.95% is found on the Data-NM (fixed base
simulator) set. To test how well these hyperparameter settings
transfer to another data set, the optimized settings were also
used for training and validating on the Data-M (moving
base simulator) set. Interestingly, a validation accuracy of
92.14% was acquired on the Data-M set, indicating that the
tracking data of pilots in a moving-base simulator are more
distinguishable—in terms of skill level—than the tracking data
of pilots in a fixed-base setting, to the classifier. This is
analyzed in more detail in the next subsection.

TABLE IV
OPTIMIZATION RESULTS.

Setting Symbol Baseline value Optimized value
Labeling width Lw 15 runs 20 runs
Window size WS 1.6 s 1.2s
Sampling frequency Sf 50 Hz 50 Hz
Input variables - e+ė+u+u̇ e+ė+u+u̇
Depth d 3 3
First number of filters K1 64 64
First kernel size L1 8 8
Data-NM val. accuracy 86.35% 87.95%
Data-M val. accuracy - 92.14%

B. Performance

The final performance of the classifier is expressed as the
average test accuracy across all subjects. As established in
Section III-C, the test accuracy of one subject is determined by
isolating the data of said subject as out-of-sample test set and
using the remaining subjects’ data as randomly assigned 80%
train and 20% validation set. From this analysis it was found

that the average test accuracy is 62.36% for the Data-NM set
and 75.13% for the Data-M set. Evidently, the test accuracy
is significantly lower than the previously reported validation
accuracy. This discrepancy is explained in the Discussion
section. Although the test accuracy may seem to indicate poor
classifier performance, the underlying problem may actually be
poor class representation of the test data, while the classifier
works as intended.

To illustrate this, consider Figure 13, showing the results
of the out-of-sample test set analysis for every subject of the
Data-NM set. The model output shown on the y-axis is of
the skilled neuron, i.e., P (‘skilled′), which can be seen to
generally increase as pilots complete more training runs. Since
there are only two output neurons with softmax activation,
P (‘unskilled′) = 1 − P (‘skilled′), making separate indica-
tion of P (‘unskilled′) redundant. The test accuracy indicated
outside of the dashed purple lines indicates the classification
accuracy in the respective labeled region. This is defined as the
amount of correctly predicted classes (where class prediction
is ‘skilled’ if P (‘skilled′) > 0.5 and vice-versa) divided by
the total amount of samples in that region. To offer context to
the model skill predictions, the root mean square tracking error
data (RMS(e)) of each subject is also indicated. Looking at the
evaluation of Subject 7 in Figure 13, the earlier remark about
poor class representation of test data immediately becomes
apparent: the model almost only predicts ‘unskilled’ behavior
for every tracking run Subject 7 performed, resulting in very
high test accuracy in the ‘unskilled’ label region (91.2%), but
very poor test accuracy in the ‘skilled’ label region (5.4%).
Though this may seem like poor classification, the RMS(e)
(red line) actually shows that Subject 7 did indeed always
have above average RMS(e) (dashed red line) throughout the
entire training cycle, indicating comparatively poor tracking
performance. The exact opposite effect can be observed for
Subject 1, who starts out with better than average tracking
performance (in terms of RMS(e)) and is therefore predom-
inantly classified as ‘skilled’, resulting in low test accuracy
in the starting tracking runs and high test accuracy in the
last tracking runs. This interaction between model output and
RMS(e) can also be observed for sudden changes in control
performance between different runs, for example whenever
Subject 2’s RMS(e) peaks, the model output lowers.

To further explore the exchange between model prediction
and subject tracking performance, examine Figure 14. This
figure can be seen as an aggregation of Figure 13 where all
subject tracking performances of the data-NM set are com-
bined in one figure. Now every marker indicates an individual
tracking run, and the respective color indicates the average
model output between all samples (1.2 s windows) in said run.
Additionally, the y-axis shows the RMS(e) of each individual
run as a measure of tracking performance. The bottom graph
shows the average model output over a range of run indices,
clearly displaying the poor classification accuracy, especially
for runs of experienced individuals with high tracking error.
From the top graph it can be observed that, even though an
experience-based labeling method was used, there is a strong
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Fig. 15. Every marker in the top figure represents an individual tracking run of one subject, the color of the marker indicates the average model output of
said run. Bottom bar chart displays average model output for bins of run indices. Data set = Data-M

correlation between tracking performance and model output.
Namely, the shift from ‘unskilled’ (red) to ‘skilled’ (blue) is
more visible from top to bottom than from left to right. This
makes it seem as though the deep learning model bases its skill
level predictions on just the tracking error, but a closer look
at model output of—for example—Subject 10 indicates that
there is more at play. Subject 10 is, despite having a relatively
low RMS(e), often classified as ‘unskilled’, contradicting the
previous observation. On a side note, extremely low classifica-
tion accuracy—like 4.2% and 5.4% of the ‘skilled’ behavior of
Subjects 4 and 7, respectively—does indicate that the classifier
is very certain in its predictions (e.g., 50% accuracy could
indicate the classifier is simply guessing). This observation
strengthens the hypothesis that the problem lies in the labeling
of the data (i.e., the task definition) and not in the predictions
of the classifier.

As an additional evaluation step, the aggregated results of
the test performance analysis on the Data-M set are displayed
in Figure 15. It is immediately apparent that classifier shows
more desired behavior; the bottom graph now nicely visualizes
the gradual increase in average skill level between the subjects
during training. This improved classification performance can
partially be explained by the more consistent learning curve
that is visible in the RMS(e) values of the Data-M set,
compared to the Data-NM set. However, there are some
subjects (e.g., Subject 11) who are classified as ‘skilled’ even

though they have a relatively high RMS(e). Evidently, the deep
learning model derives its predictions from more than the mere
tracking error, the following section will attempt to shed light
on how the model output is established.

C. Explainability
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Fig. 16. Global variable importance—expressed as average contribution to
model output—for samples predicted as either ‘skilled’ or ‘unskilled’.
Data set = Data-NM

1) SHAP: Here SHAP (SHapley Additive exPlanations)
[25] is used to add transparency to the trained classifier. As
was visualized in Figure 9, SHAP can provide the marginal
contributions of each input variable to a single class pre-
diction of the deep learning model, which is referred to as
a local explanation. Combining a very large set of local
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indicate probability density of output contribution. Data set = Data-NM

explanations may offer perspective on the overall working of
the deep learning model, i.e., providing a global explanation
[76]. The outcome of this analysis is shown in Figure 16.
Here 88,000 non-overlapping samples were taken from the
Data-NM set, and for each sample the local input variable
importance (expressed as an absolute percentage-wise con-
tribution to the model output) was calculated using SHAP.
Averaging the contribution of each input variable over the
88,000 predictions—and distinguishing between ‘skilled’ and
‘unskilled’ predictions—provides the global variable impor-
tance as presented in Figure 16. Noticeably, e is the most
important (highest average contribution) to determine model
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Fig. 18. Probability density function (PDF) of input signals with more than
50% contribution to the model output. N indicates the amount of samples
(after filtering minimum contribution) per PDF, out of 88,000 total samples.
Data set = Data-NM

output for both skilled and unskilled predictions, while u is
the least important (lowest average contribution). As is further
discussed in the Discussion, this appears inconsistent with the
variable importance found during hyperparameter optimization
(Table III). It can also be observed that—according to the
classifier—e and ė are stronger discriminators for skilled
behavior than for unskilled behavior, whereas u and u̇ on the
other hand appear to have a stronger contribution in unskilled
predictions.

To develop a better understanding of what characteristics
drive an input signal to have a high—or low—contribution to
the model output, a comparison is made between the variance
of each input signal and their resulting percentage-wise con-
tribution. The results of this analysis are shown in Figure 17,
where every dot represents a single sample X with its color re-
flecting the corresponding class prediction f(X). The vertical
position of each dot indicates the marginal contribution of the
respective input variable to the model output (see Figure 9 for
the detailed definition), and the horizontal position indicates
the variance σ2 of said input variable in sample X . Note that
the probability density functions shown on the right side of
each graph reinforce the findings of Figure 16, as the more
dense the probability is away from 0% contribution, the more
important that input variable is globally. What is interesting is
that e and ė appear to have either low- or high contribution,
whereas u and u̇ show a more balanced distribution around
0% contribution. Also observe that ė often contradicts the
final model output, as approximately 24,000 confident skilled
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predictions with f(X) > 0.8 (blue dots) occur even when
ė has a contribution towards unskilled behavior (out of the
88,000 total explained predictions).

Figure 17 also explores whether there is a correlation
between the variance of input variables and their contribution
to class predictions, i.e., whether a high or low signal variance
goes hand in hand with a high or low contribution. From
Figure 17 it can be concluded that such a correlation is
practically absent, there is only a weak correlation between
high σ2 (e) and skilled contribution and a slightly stronger
correlation between high σ2 (ė) and unskilled contribution. For
σ2 (u) and σ2 (u̇) no such correlation can be distinguished
at all. This is an indication that the deep learning model
extracts features from the raw time series data that are more
particular than, for example, the variance. In further analyses
(not included here), the same was found to be true for the
mean, minimum, and maximum of the signals.

To get a better sense of what features the classifier might
be picking up, a comparison is made between the probability
density functions (PDFs) of input signals with a high contri-
bution (> 50%) towards skilled predictions and the PDFs of
inputs with a high contribution (> 50%) towards unskilled
predictions. These PDFs are visualized in Figure 18. From
this figure it becomes apparent that only the PDFs of e, ė, and
u̇ show different distributions between skilled and unskilled
contributions. Specifically, it appears that control behavior
signals with a high probability density value around 0 deg (or
deg/s) contribute towards skilled predictions. This observation
is supported by the sample signals shown in Figure 19. Indeed
the signals with the highest contribution towards unskilled
predictions (red) are located further away from 0 deg (or deg/s)
than signals with contributions towards skilled predictions
(blue).

2) Activation Maximization: Although the sample signals
shown in Figure 19 offer some insight into how ‘unskilled’ and
‘skilled’ signals differ, it remains difficult to clearly recognize

any discriminative patterns. Perhaps distinctive features could
be identified if a larger set of samples pertaining to each
class was investigated, but it may be more effective to reveal
the trained deep learning classifier’s internal representation
of each class. Activation maximization [26, 70] is used to
retrieve the classifier’s perception of the classes it has learned
to distinguish. The results of this class visualization method
for the Data-NM set are shown in Figure 20. Classifiers
trained with either Data-NM or Data-M produced similar
outcomes. As a verification step, these generated samples
were fed back to the classification model and indeed gave
maximum probability output for their target prediction. Notice
how a ‘skilled’ sample appears to be more smooth, whereas an
‘unskilled’ sample seems more variable and noisy. A possible
explanation for this is the stronger remnant that is expected to
be present in unskilled pilot control behavior.
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Time, s
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Fig. 20. Class visualizations generated using activation maximization.
Data set = Data-NM

Remnant is defined as all control behavior that is not
linearly correlated with the target and disturbance signals of
the tracking task [77–79]. It predominantly consists of 1) pure
noise injected by the human operator, 2) nonlinear control
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operations such as perception thresholds and control rate
saturation, and 3) nonsteady and time-varying control behavior
[77]. All of which are effects that are more likely present in
inexperienced control behavior [23]. If it is the case that the
classifier recognizes remnant in control behavior, then that is a
very promising capability as it usually takes much longer time
traces to effectively identify remnant [80]. Appendix A further
explores the effect of remnant on the classifier performance.

VI. DISCUSSION

This paper set out to implement—and optimize—a deep
learning approach to identify skill level of pilots based on
short windows of time recordings of human control behavior.
Additionally, an effort was made to add transparency to the
deep learning model by making the results interpretable. The
result of this work is an optimized ResNet architecture adapted
for time series classification that can identify pilot skill level
based on 1.2 s windows of tracking data with 92% valida-
tion accuracy in moving-base simulations and 88% validation
accuracy in fixed-base simulations. When simulating the real
life application of the trained classifier on a separate test set,
the classification accuracy drops to 62% and 75% for the
data sets with- and without motion feedback, respectively.
The following paragraphs will reflect on the results presented
in this paper and discuss their relevance, shortcomings, and
potential improvements.

The first and foremost item to be discussed is the labeling
of the control data, as the effects of this key operation trickle
down into every other aspect of this research. Namely, the
definition by which the data are labeled determines: 1) what
it is that the trained deep learning classifier will be good
at classifying (e.g., labeling by low/high RMS(e) will train
to network to recognize low/high RMS(e), an example of
this analysis is provided in Appendix C), 2) which hyperpa-
rameters are found during optimization of the particular job
(e.g., different input variables may be more important for the
identification of different class definitions [15, 16]), and 3) the
local- and global explanations of the classifier predictions (e.g.,
a network trained to recognize low/high RMS(e) will probably
emphasize the importance of input e more). Evidently, the
labeling method is critical and completely shapes the outcome
of the trained classifier. In this research, the decision was
made to label the pilot skill level by the amount of experience
the pilots had in the appointed control task, labeling each
subject’s first 20 runs as ‘unskilled’, and their last 20 runs as
‘skilled’. This decision determined that the desired behavior
of the trained classifier is to effectively recognize whether a
pilot is inexperienced (at the beginning of their training) or
experienced (at the end of their training). What is difficult
about this definition is that every pilot learns at a different
rate and starts at a different initial skill level. For example,
one pilot may go from a 4/10 at the beginning of their training
to a 6/10 at the end of their training, whereas another may go
from a 6/10 to a 10/10, yet both will be classified the same
(an example of this can be seen when comparing Subject
7 and Subject 1 in Figure 13). This problem is amplified

when considering that the human operator is a time-varying
system [14], thus every observed time window is not an
equally good representation of its respective class as another.
This data mislabeling deteriorates the resulting classification
accuracy both during training, when the classifier is taught the
wrong label, and during testing, when the trained classifier is
penalized for “wrongly” classifying a sample with an incorrect
label. The latter of these two effects has a stronger effect on
the classification performance than the first, as deep learning
classifiers have been shown to be more resilient towards label
noise in the train set [81].

From the input data settings optimization, it was concluded
that 1.2 s windows sampled at 50 Hz are optimal. This
followed from a strategy to keep the window size short, so
that—when implementing the classifier as a real-time skill
level detector—direct feedback could be provided. This is
desirable if, for example, a skill deterioration warning must be
given. However, it could be seen that short window sizes came
at a cost in terms of validation accuracy, as window sizes in
the 10-20 second range provided a performance improvement
of up to 6%. By doing skill level predictions every second,
based on the control behavior of a larger window (e.g., ten
seconds), the benefit of improved classification performance
with longer window sizes could be adopted to provide direct
feedback. This would result in a sort of “moving average”
skill level prediction over the last ten seconds—of higher
accuracy, but lower sensitivity to brief changes in the control
behavior—that is still readily available at every second for
direct feedback implementations such as skill deterioration
warnings and scalable autonomy of the autopilot. It must also
be investigated whether the same effect can be accomplished
(perhaps with greater accuracy) by still using a short window
size, but using a majority vote [38] between samples within
a specified time frame, or by utilizing a Markov chain [82]
between consecutive samples.

Currently, the input variable selection optimization was
done on the fixed-base data set (Data-NM), and the resulting
‘optimal’ selection of input variables was used for both the
performance analyses of Data-NM and Data-M. It could
be that classification of the time traces of subjects in the
moving base setting (Data-M) may be more accurate with
a different set of input variables. Namely, the subjects in
Data-M received information of the current aircraft state x
by means of motion feedback, unlike the subjects in Data-
NM who were only provided with e through a compensatory
display. The training/testing of a classifier tasked to predict the
skill level of subjects in Data-M may benefit from additional
inputs x (and ẋ) more than a classifier tasked to predict
the skill level of subjects in Data-NM, as the deep learning
model could learn to recognize patterns such as reaction
time between the motion feedback and the control input of
the pilot. Verkerk [16] describes such a phenomenon, where
introduction of x as an additional input parameter—to a
classifier identifying display types based on manual control
behavior—resulted in an increased accuracy. He hypothesized
that the synergy between x and e allowed the classifier to
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recognize effective time delay in the pilot response, which is a
distinctive characteristic that distinguishes the control strategy
pertaining to different display types. It must be noted, however,
that potential input parameters should be selected carefully.
For example, Versteeg [15] showed that including both u
and x as inputs to a controlled-element-dynamics-classifier
produced perfectly accurate results. However, these predictions
were trivial, as the classifier could now directly identify the
controlled element dynamics as the link between u and x.

During the model-specific hyperparameter optimization, it
was found that the nominal settings resulted in the best clas-
sification performance. This optimization was done by testing
every combination of predetermined sets of hyperparameter
values from a list (i.e., grid search), resulting in network depth
d = 3, number of filters K = 64, 128, 128 across the residual
blocks, and kernel sizes L = 8, 5, 3 in the convolutional
layers of each residual block. However, this optimization could
be done more efficiently (and potentially reap better results,
because of the more effectively utilized training time) by using
randomly searching hyperparameter values over the domain
[83].

As reported in the Results section, the discrepancy between
validation accuracy and test accuracy is found to be roughly
20% for both the Data-NM and the Data-M set. The ex-
planation for the significantly higher validation accuracy is
twofold. First, the validation accuracy is inherently expected
to be higher than the test accuracy, as the deep learning model
was specifically instructed to only save its weights at minimum
validation loss. This means that, although the model is trained
on separate training data, it is still optimized to perform the
best on the validation data. Second, both the training and the
validation data contain examples of the same subjects that are
a nonconformity to the expected learning curve (i.e., wrongly
labeled), whereas the test data are of a completely isolated
separate subject. This second effect is especially detrimental to
the test performance. To illustrate this further, consider again
Subject7 in Figure 13. The reason the classifier has such a low
classification accuracy on the ‘skilled’ portion of Subject7’s
control behavior (5.4%) is that the classifier was never trained
to understand that this subject’s poor tracking performance—in
terms of RMS(e)—in the last twenty runs should be classified
as ‘skilled’. Contrarily, the train and validation data both do
contain the same subjects and thus the classifier can accurately
predict the class of a nonconformity like Subject7. Therefore,
the low test accuracy could be resolved by randomly splitting
the data of all subjects into a—for example—70% train,
20% validation, 10% test set. However, then the resulting
test accuracy would not be a realistic representation of the
expected classification accuracy in a real world application
where the classifier has to predict to skill level of a subject
it has never seen before. A true solution lies in expanding
the data sets to a contain a larger amount of subjects, so
that the classifier is familiar with a wider range of pilots
and has thus better generalization. Additionally, the subject’s
class labels (skill level) could be based on the assessment of a
professional flight instructor, so that different learning curves

are accounted for and more consistent class representations
will be present in the training data. The data set could also
be expanded—with more consistent class representations—by
simulating additional training data using existing human man-
ual control models. Such an approach to data augmentation
with a cybernetic pilot model is discussed in Appendix A.
Although the results of this technique are promising, it is not
yet beneficial to the accuracy of the classifier.

Using SHapley Additive exPlanations (SHAP) [25], an
eXplainable Artificial Intelligence (XAI) method, the input
feature importance was computed. This analysis showed that,
on average, the importance of the input variables are ranked
in the following order: e, ė, u̇, u. Interestingly, e and ė are
more important in ‘skilled’ predictions than in ‘unskilled’
predictions, whereas u and u̇ are more important in ‘unskilled’
predictions than in ‘skilled’ predictions. This could signify
that the classifier more heavily relies on the remnant in u and
u̇ for ’unskilled’ predictions—which is known to be higher
for untrained pilots than for trained pilots [23]—and switches
its focus to e and ė for ‘skilled’ predictions (where less
remnant is present). Activation Maximization offered some
more perspective on the classifier’s internal representation
of ‘skilled’ and ‘unskilled’ behavior, displaying a smooth
synthetic input as ‘skilled’ behavior and a more variable,
noisy, synthetic input for the ‘unskilled’ behavior. This further
substantiates the hypothesis that the classifier recognizes the
level of remnant in the pilot behavior. These results are very
promising, as remnant identification usually requires much
longer time series [80] (Appendix A further explores the
effect of remnant on the deep learning model behavior).
However, it is difficult to verify the exact nature of the
different class visualizations, as the images are quite abstract
and the representative features could have different sources.
Potentially, clearer class visualizations could be produced by
using DGN-AM [84]: an improved activation maximization
(AM) method that uses a deep generator network (DGN) to
produce the synthetic images. Also, further research could
be done to develop deep learning models that can perform
semantic segmentation [85, 86] to isolate the remnant portion
of the control behavior. For example, Jansson et al. [87]
successfully adopted U-Net [85] to decompose a music audio
signal into its vocal and backing track components. Such an
approach can potentially enable new insights into the nonlinear
phenomenon of human pilot remnant.

The advantage of using SHAP is that it is a model-agnostic
explainability technique [24], meaning that it can be utilized
on any model with the intent to extract information of the
inner workings of that model. The disadvantage, however, is
that it requires a simplified explanation model [25] to interpret
the main model, which may make it less and accurate and
more computationally expensive. Model-specific explainabil-
ity methods available to convolutional neural networks—like
CAM [63] or Grad-CAM [64]—may produce more reliable
explanations and require less computation time, as they di-
rectly tap into the trained network parameters to compute the
local feature importance. However, a shortcoming of using 1D
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convolutional layers (as used in this paper) is that the afore-
mentioned class activation mapping methods also produce 1D
explanations; only the temporal importance is highlighted,
indicating what segment of time led to the class prediction, but
the individual contribution of each input variable is missing
(this phenomenom is visualized in Appendix D-1). Using
2D convolutional layers would enable the identification of
individual input contributions, but it was empirically found
that using 2D layers throughout the ResNet network degraded
classification performance by 7% (results shown in Appendix
B-4) at the additional cost of five times longer training
times due to the larger amount of trainable parameters in 2D
layers vs 1D layers (accumulating to 2,859,074 total trainable
parameters instead of 505,986). A potential solution that could
be researched is the utilization of a network that uses both 2D
and 1D convolutional layers in parallel [88] or in sequence
[89], to preserve both the temporal and spatial dynamics of
multivariate time series input, so that the individual contribu-
tion of each input channel can be determined.

A last note to be made about the XAI results is that the
discrepancy in variable importance between the SHAP analysis
(Figure 16) and the input variable selection optimization
(Table III)—i.e., the global explaination by SHAP found e
as most important and u as least important, whereas the input
variable optimization identified u as more important than e—
does not necessarily mean that SHAP has produced inaccurate
results. For example, when only a single input variable is
provided to the classifier, u has proven to be a better indicator
of pilot skill level than e. However, when both u and e are
provided, the largest contributor to the model output could
be e, as—in combination with u—it potentially enables the
classifier to identify the effective average pilot response delay.

To conclude this discussion, some final remarks are made
about the applicability of the proposed method. Overall the
results of this research are promising. The achieved 92%
validation accuracy on the Data-M set with just 1.2 s windows
shows how potent this deep learning classification method is.
However, the significant drop in accuracy, when testing this
one-size-fits-all skill level identification method on isolated
subjects, shows that the classifier—in its current state—is not
good at predicting individual skill development. A larger set of
subjects’ tracking data, better (manual) labeling of the training
data, and further optimization of the deep learning architecture
may help to overcome this problem. Also, currently the
classifier has only been trained and tested on data of pilots
performing a single axis compensatory tracking task. More
research should be done about the applicability of the proposed
skill level classification method on different tracking tasks and
display types. To get closer to a real life implementation of the
proposed skill evaluation system, a similar training of manual
control skill experiment should be conducted in a high-fidelity,
multi-axis, moving-base flying simulation. Furthermore, the
trade-off between prediction accuracy and sensitivity to quick
control adaptations should be optimized for smooth interaction
between the human operator and the automated aircraft.

VII. CONCLUSION

This paper introduces a deep learning approach for quantify-
ing pilot skill level in the time-domain. Applied to data from
a recent simulator training experiment, in which fully task-
naive participants were trained to perform a pitch tracking task,
this method was found to be able to effectively classify the
participant’s skill level as either ‘unskilled’ (at the beginning
of training) or ‘skilled’ (at the end of training) based on only
1.2 seconds of control data. Using a ResNet CNN architec-
ture, an average validation accuracy of up to 92% could be
achieved, but this accuracy significantly dropped when testing
the trained classifier on isolated subjects with off-nominal
learning curves. This drop in accuracy signifies that this
one-size-fits-all method—in its current state—is not always
effective at identifying individual skill development. During
classifier optimization it was discovered that a combination of
the pilot control input u, the tracking error e, and their first
order time derivatives u̇ and ė serve as the best discriminators
for ‘skilled’ and ‘unskilled’ pilot behavior.

Deploying SHAP, it was discovered that e is the most
important feature, followed by ė for ‘skilled’ predictions and
u̇ for ‘unskilled’ predictions. Surprisingly, u was found to
be the least important feature. An activation maximization
visualization technique of the model’s internal representations
of each skill level revealed that the trained classifier may
recognize remnant in the unskilled pilot control behavior.

This explainable deep learning approach to skill level identi-
fication sets the first step towards online quantitative evaluation
of control behavior, opening a new realm of possibilities to
enhance safety in automated systems that rely on smooth
interaction with the human operator.
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artificial intelligence: A survey,” in 2018 41st Interna-
tional Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
2018, pp. 210–215.

[63] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba, “Learning deep features for discriminative local-
ization,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 2921–2929.

[64] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra, “Grad-CAM: Visual
explanations from deep networks via gradient-based
localization,” International Journal of Computer Vision,
vol. 128, no. 2, p. 336–359, Oct 2019. [Online]. Avail-
able: http://dx.doi.org/10.1007/s11263-019-01228-7

[65] S. Lipovetsky and M. Conklin, “Analysis of regression
in game theory approach,” Applied Stochastic Models in
Business and Industry, vol. 17, no. 4, pp. 319–330, 2001.
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A
Cybernetic Data Augmentation

This appendix will briefly explain how cybernetic pilot modeling is used in this MSc thesis project to
simulate additional pilot control behavior data for classifier training. The effectiveness of this method
is tested by training the deep learning classifier with this simulated data.

A.1. Method
Quasi Linear Pilot Model
The pilot simulations are done using the quasi-linear pilot model as proposed by Pool, Harder, and
van Paassen (2016). Since Pool et al. used this same model to evaluate the experiment data that is
used throughout this thesis, the model parameters—except the remnant parameters—of each subject
are readily available for simulation. To reduce complexity, only the fixed-base group is simulated. This
means that the pilot model is reduced to Figure A.1 with motion response turned off (i.e., Data-NM is
simulated). The visual response 𝐻𝑝𝑣 (𝑠) of the human operator model is given by Eq. (A.1). Because
human operators generate lag at frequencies below the short-period mode’s natural frequency of the
controlled element, but exert lead equalization at higher frequencies, a quadratic lead term had to be
added to Eq. (A.1) to model such equalization dynamics (Pool, Zaal, Damveld, van Paassen, Vaart, &
Mulder, 2011). In total the visual response model (Eq. (A.1)) contains six model parameters: the visual
gain 𝐾𝑣, the visual lead time constant 𝑇𝑙𝑒𝑎𝑑, the visual lag time constant 𝑇𝑙𝑎𝑔, the visual time delay 𝜏𝑣,
and the neuromuscular dynamics modeled as a second-order mass-spring-damper (McRuer, Graham,
Krendel, & W., 1965) with neuromuscular frequency 𝜔𝑛𝑚 and neuromuscular damping ratio 𝜁𝑛𝑚.

𝐻𝑝𝑣 (𝑠) = 𝐾𝑣
(𝑇𝑙𝑒𝑎𝑑𝑠 + 1)

2

𝑇𝑙𝑎𝑔𝑠 + 1⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
pilot

equalization

𝑒−𝑠𝜏𝑣
⏝⏟⏝
response
delay

𝐻𝑛𝑚 (𝑠)
⏝⎵⏟⎵⏝
actuation
dynamics

(A.1)

𝐻𝑛𝑚 (𝑠) =
𝜔2𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2𝑛𝑚
(A.2)
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Figure A.1: Simplified quasi linear pilot model with only visual response. The remnant behavior is modeled as colored noise 𝑛𝑒
injected at the error.
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Remnant Parameters Estimation
As previously mentioned, Pool et al. (2016) did not evaluate the remnant of the experiment participants.
Therefore, a method must be introduced to evaluate—and ultimately simulate—the remnant. The rem-
nant 𝑛 can be modeled as filtered white noise (colored noise) injected at the error, i.e. Eq. (A.3). As
proposed by Levison, Baron, and Kleinman (1969), a first-order low-pass filter (Eq. (A.4)) can be used
to generate the colored noise. Three steps are taken to obtain the filter parameters 𝐾𝑛 and 𝑇𝑛,𝑙𝑎𝑔:

𝑆𝑛𝑛𝑒 (𝑗𝜔) = |𝐻𝑛 (𝑗𝜔)|
2 𝑆𝑤𝑤 (𝑗𝜔) (A.3)

𝐻𝑛 (𝑗𝜔) = 𝐾𝑛
1

1 + 𝑇𝑛,𝑙𝑎𝑔𝑗𝜔
(A.4)

Step 1) Estimate 𝑆𝑢𝑢𝑛 : This step is based on the premise that the control output power-spectral den-
sity function 𝑆𝑢𝑢 is the sum of the output spectra due to target, disturbance, and remnant (i.e., Eq. (A.5)).
This is under the assumption that these signals are linearly independent (Levison et al., 1969). The
spectrum 𝑆𝑢𝑢(𝑗𝜔) can be estimated from discrete time measurements using Eq. (A.6) (van der El, Pool,
& Mulder, 2019). Here 𝐿 is the number of recorded time steps, 𝑓𝑠 the sampling frequency in Hz, and
𝑈(𝑗𝜔) is the Discrete Fourier Transform of the control output 𝑢(𝑡). To decrease noise in the power-
spectral density function, 𝑆𝑢𝑢 was calculated as the average 𝑆𝑢𝑢 of five consecutive runs. Once 𝑆𝑢𝑢 is
computed, 𝑆𝑢𝑢𝑑 and 𝑆𝑢𝑢𝑡 can be identified as the power-spectral density at the target and disturbance
frequencies, respectively. The power spectral density of the control input due to remnant 𝑆𝑢𝑢𝑛 can be
recognized as the power-spectral density outside of the forcing function frequencies. Interpolation is
used to estimate 𝑆𝑢𝑢𝑛 at 𝜔𝑑,𝑡. An example of the above is depicted in Figure A.2.

𝑆𝑢𝑢(𝑗𝜔) = 𝑆𝑢𝑢𝑡(𝑗𝜔) + 𝑆𝑢𝑢𝑑(𝑗𝜔) + 𝑆𝑢𝑢𝑛(𝑗𝜔) (A.5)

𝑆𝑢𝑢(𝑗𝜔) =
1
𝑓𝑠𝐿

|𝑈(𝑗𝜔)|2 (A.6)

Step 2) Calculate 𝑆𝑛𝑛𝑒 : In compensatory tasks, the power-spectral density of the remnant injected
at the error can be estimated at the target and disturbance frequencies using the following equations
(van der El et al., 2019):

𝑆𝑛𝑛𝑒 (𝑗𝜔𝑑) =
𝑆𝑢𝑢𝑛 (𝑗𝜔𝑑)
𝑆𝑢𝑢𝑑 (𝑗𝜔𝑑)

𝑆𝑓𝑑𝑓𝑑 (𝑗𝜔𝑑)

𝑆𝑛𝑛𝑒 (𝑗𝜔𝑡) =
𝑆𝑢𝑢𝑛 (𝑗𝜔𝑡)
𝑆𝑢𝑢𝑡 (𝑗𝜔𝑡)

𝑆𝑓𝑡𝑓𝑡 (𝑗𝜔𝑡)
(A.7)

Step 3) Approximate low-pass filter parameters: In the third and final step, the model parameters
of the low-pass filter to produce colored noise are determined. This is done by first rewriting |𝐻𝑛|2 in
Eq. (A.3) to Eq. (A.8), and then applying a least squares cost function to fit Eq. (A.8) to the estimated
remnant injected at the error spectral density 𝑆𝑛𝑛𝑒 . An example of this approach is shown in Figure A.3.
Since 𝑆𝑢𝑢 was averaged over five runs, each subject will have a constant remnant setting per five runs.

|𝐻𝑛| = 𝐾𝑛 |
1

1 + 𝑇𝑛,𝑙𝑎𝑔𝑗𝜔
| = 𝐾𝑛

1

√1 + 𝑇2𝑛,𝑙𝑎𝑔𝜔2

→ |𝐻𝑛|
2 = 𝐾2𝑛

1
1 + 𝑇2𝑛,𝑙𝑎𝑔𝜔2

(A.8)

Testing Augmentation Effectiveness
The effectiveness of the proposed data augmentation method is tested by training the deep learning
classifier with the simulated pilot data and then validating the trained classifier on real pilot data. The
optimized hyperparameters as were presented in the research paper are used for this analysis.
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Figure A.2: Example of control output spectrum of a single participant of Data-NM. Interpolation is used to estimate 𝑆𝑢𝑢𝑛 at
target- and disturbance frequencies.
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Figure A.3: Example of fitting low pass filter remnant model to estimated remnant (injected at the error) at target and disturbance
frequencies. Data of a single participant from Data-NM.

A.2. Results
The remnant parameters found using the described method are shown in Figure A.4, here it can be
seen that the low-pass filter gain 𝐾𝑛 decreases as the participants gain more experience, this means
that the amplitude of the remnant reduces with training. Similarly, the low-pass filter lag time-constant
𝑇𝑛,𝑙𝑎𝑔 declines too, this increases the break frequency (𝜔𝑏 = 1/𝑇𝑛,𝑙𝑎𝑔) of the remnant signal, meaning
that remnant becomes more white/less colored after training.
Simulating Pilot Control Behavior
A complete overview of the pilot model parameters that are used to simulate ’unskilled’ (at first 20 runs)
and ’skilled’ (at last 20 runs) pilot behavior are shown in Figure A.5. To validate if the simulated control
behavior accurately represents the true pilot control behavior, the variance of the tracking error 𝜎2(𝑒)
and the control input 𝜎2(𝑢) of real- and simulated tracking runs are compared. This comparison is
shown in Figure A.6, here each tracking run and its simulated counterpart are displayed by circles and
crosses, respectively. Notice how on average, the trend of the simulated data is similar to the trend
of the real pilot data. As an example, Figure A.7 shows time traces of actual pilot control behavior
next to its simulated counterpart. Although the simulated- and real tracking data are similar, there are
noticeable discrepancies between the two. This is likely due to two effects: 1) the linear response of
the human operator is time variant, whereas the simulation model assumes the linear part of the control
behavior to be a constant transfer function model over the entire tracking run. 2) the nonlinear response
of the human operator (remnant) is modeled as colored noise, i.e. the time domain realization of this
signal is stochastic and is thus not expected to precisely track the nonlinear portion of the time traces
of the human operator. To show the effect of adding remnant to the pilot simulation model, a simulated
time trace without remnant is also depicted. It can be seen that the simulated behavior with remnant
more accurately mimics the real control behavior, both showing high frequency noisy behavior on top
of the smooth linear response.
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Figure A.4: Results of remnant describing low pass filter parameters for all fixed base participants. Data set = Data-NM
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Testing Augmentation Effectiveness
The effectiveness of the described cybernetic data augmentation method is empirically tested. This is
done by training the optimized deep learning model with 30 randomly split distributions of 80% train
data and 20% validation data. Here the 80% train data is either ’simulated pilot data with remnant’,
’simulated pilot data without remnant’, or ’real pilot data’ (for comparison). The 20% validation data is
always real pilot data. To get a fair measure of effectiveness, it is ensured that the real counterparts of
simulated runs used for training are not present in the validation set (e.g., if the simulated version of
tracking run number 85 by subject 3 is used to train the classifier, then the real tracking run 85 by subject
3 can not be used as validation data). The results of this analysis are shown in Figure A.8, here each
dot represents one of the 30 random 80%/20% train/validation splits. The y-axis shows the validation
accuracy when training with the respective data sets and validating on real pilot data. Additionally, the
x-axis indicates the bias of the trained model (expressed as the percentage of samples classified as
’skilled’). Ideally, the bias is 50%; since the underlying validation data is evenly distributed between
each class, 50% ’skilled’ predictions means the model is unbiased.
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Evidently, the addition of remnant to the pilot model increases the validation accuracy, confirming
that the trained classifier incorporates the nonlinear portion of control behavior in its predictions. How-
ever, the model trained with simulation data including remnant has an overall bias towards ’skilled’
predictions. It can be hypothesized that this induced bias indicates an overestimation of remnant in the
pilot simulations. Namely, through the simulated data the model is taught that ’skilled’ behavior has less
remnant than ’unskilled’ behavior (i.e., 𝐾𝑛 is lower in ’skilled’ simulations than in ’unskilled’ simulations,
as was shown in Figure A.5). Having learned this pattern during training, the model is now validated on
real pilot behavior, if the overall remnant in the real pilot control behavior (validation data) is lower than
in the simulated behavior (training data), then the classifier is expected to be biased towards ’skilled’
predictions.

An equal but opposite hypothesis can not be made about the observed bias towards ’unskilled’
predictions for the classifiers trained with simulation data excluding remnant, because these classifiers
are never confronted with different levels of remnant during training (i.e., 𝐾𝑛 = 0 for both ’skilled’ and
’unskilled’ samples). This means that the source of this bias is completely accountable towards the
linear portion of the control simulations. However, the observed bias is not as strong as the bias seen
when training with simulated data including remnant (i.e., there are purple crosses left and right of the
50% line). Additionally, the spread in biases is a lot larger, indicating a bigger uncertainty in classification
performance of the classifiers trained without remnant. The relation between the level of remnant in
the training data and the resulting behavior of the trained classifier will have to be further analyzed in
future research.

Overall, the accuracy with which the classifier—trained on simulated data—can predict the skill level
of real pilot tracking behavior is still promising. However, in its current state, this cybernetic approach
to data augmentation is not yet optimal. Namely, the found validation accuracy falls approximately
15%-25% short compared to validation accuracy found when training with real pilot data. This gap
in accuracy—combined with the earlier discussed sensitivity towards the presence of remnant in the
simulations—signify that the nonlinear part of human control behavior plays a significant role in the skill
level predictions made by the classifier. The lacking validation accuracy found when training on simu-
lation data including remnant, implies that the remnant model—as implemented in this research—does
not fully cover the complex nonlinear behavior of real human subjects in the time domain. More re-
search will have to be performed to test the effectiveness of this cybernetic data augmentation method,
perhaps it is beneficial in circumstances where there is only very little training data available. Addition-
ally, this ’deep learning review’ of the remnant model should be extended, so that the shortcomings of
the current remnant model can be targeted and improved.
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Figure A.8: Testing the effectiveness of cybernetic data augmentation by training the model on simulated data—with- and without
remnant—and validating it on real pilot data. Each dot indicates a random 80%/20% distribution of train/validation data. Intro-
duction of remnant to the pilot simulations induces bias in the trained classifier’s predictions. Validation data = Data-NM



B
Additional Optimization Results

This appendix will present additional results that were found during optimization of the data settings
and model hyperparameters. The main findings of the classifier optimization have been discussed in
the scientific paper.

B.1. Random Seed vs Performance
The contents of this particular section are not necessarily additional optimization results, but more so
an important observation that was made during optimization. Namely, when testing the performance
of different artificial neural network architectures, it was discovered that specific (random) distributions
of (80%) train and (20%) validation data consistently led to better validation accuracy than others. This
behavior is captured in Figure B.1, where the random seeds that determine the train/validation split
are ranked by the resulting average performance across the four tested neural network architectures.
Evidently, a significant trend can be observed: there is more than 6% difference between the average
classification accuracy of the ’worst’ and the ’best’ random seed. Not only does this stress the influence
of the selection of training and validation data, but more so does it emphasize the importance of testing
a large set of (fixed) random seeds to obtain a fair comparison of performance.
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Figure B.1: Specific (random) distributions (80%/20%) of the training and validation data result in better validation accuracy
across the different deep learning classifiers. Sorted by average performance across architectures, worst random seed left, best
random seed right. Data set = Data-NM

To investigate the nature of the classifiers’ preference for certain random seeds, the composi-
tion of the best performing random seed (22) is compared to the composition of the worst random

33
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seed (1). Figure B.2 shows the three subjects that were most present (number of data points) in the
train/validation set of random seed 22 and 1. As hypothesized in the scientific article, the difference in
validation accuracy is more likely caused by the composition of the validation set than by the composi-
tion of the training set. This hypothesis is substantiated by evidence that deep learning classifiers are
resilient towards label noise in the train set (Rolnick, Veit, Belongie, & Shavit, 2018). Figure B.2 shows
that the worst distribution (random seed 1) has subject 7’s behavior as the largest contributor to the
validation data (11.7%), with 58.8% being ’skilled’ samples. As presented in the scientific article, the
test accuracy of the ’skilled’ portion of subject 7 is merely 5.4%. This could be an explanation for the
poor average validation accuracy of random seed 1. Contrarily, random seed 22 has more balanced
validation data with subjects that showed better test accuracy in the scientific paper.
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Figure B.2: The top 3 subjects with most data points in the train/validation set for the best random seed 22, and the worst random
seed 1. Data set = Data-NM

B.2. Learning Rate
As mentioned in the scientific paper, a learning rate of 5e-4 was used throughout the optimization
process. This section will briefly discuss how this learning rate was found and how it also affected the
number of epochs used during training.

The range where the optimal learning rate is located can be found by using a technique described
by Smith (2017). By training the network with a very low learning rate, for example 1e-6, and then
increasing the learning rate exponentially after every mini-batch (training step), the loss versus learning
rate can be graphed as shown in Figure B.3. The range where the decrease in loss is the steepest
indicates the range of optimal learning rate values. Smith (2017) uses this range to set bounds for a
cyclical learning rate (i.e., going up and down during training) as this was found to improve classification
accuracy (Smith, 2017). In this current research a constant learning rate was used and the range shown
in Figure B.3 was used as an indication of learning rate values to test during optimization.

The learning rate values that were tested are 1e-4, 5e-4, 1e-3, 5e-3, and 1e-2. The results of this
analysis are shown in Figure B.4. Based on these findings, the optimal learning rate was determined
to be 5e-4, as this resulted in the highest validation accuracy on average.

It was also tested how these different learning rates affected the best epoch (i.e., epoch with mini-
mum validation loss), this is shown in Figure B.5. Here it can be observed how both too large and too
small learning rate increase training time. As is explained in Figure 3.4, too small learning rates mean
the model takes very small update steps, whereas too large learning rates makes the model overshoot
optima, both increasing training time. Based on Figure B.5, it was decided that—at 5e-4—a total of 20
epochs would be sufficient to train the classifier.
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Figure B.3: Increments of the learning rate after each training step, reveal the optimal learning rate range. Data set = Data-NM
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Figure B.4: Box plots of found validation accuracy when training with different learning rates. Data set = Data-NM
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Figure B.5: Box plots of best epoch when training with different learning rates. Data set = Data-NM
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B.3. Variable Selection
Table B.1 shows all results of the variable selection optimization analysis (the scientific paper only
displayed a summarized table). Additionally, Table B.2 shows the results of the input optimization for
the 20 s window size sampled at 25 Hz. It can be observed how the top- and bottom 10 combinations
are similar between the two window settings. The order in which the single-variable-inputs are ranked
is nearly identical: 𝑢̇, 𝑢, 𝑒, 𝑥, 𝑥̇/𝑒̇.

To make comparison of the two tables easier, certain input combinations are color coded based on
their rank in the 𝑊𝑆 = 1.6 s, 𝑆𝑓 = 50 Hz setting (left table): rank 1-5 are colored blue, rank 6-10 are
colored violet, rank 54-58 are colored purple, and rank 59-63 are colored red.

B.4. Dimension of Convolutional Layers
As was mentioned in the scientific paper, a comparison was made between using 1D convolutional
layers and 2D convolutional layers in the ResNet architecture (with all other settings kept at their base
values). The results of this comparison are shown in Figure B.6. Evidently, 1D convolutional layers
result in better classification performance than 2D layers. Using 2D convolutional layers also resulted
in 2,859,074 trainable parameters instead of 505,986 trainable parameters of the 1D architecture under
nominal settings. The increased number of parameters resulted in 5 times longer training times.
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Figure B.6: Comparison of validation accuracy found when using 1D convolutional layers or 2D convolutional layers in the
proposed ResNet architecture. Data set = Data-NM
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Table B.1: Ranked performance of input combinations when
using window size of 1.6 s sampled at 50 Hz.
Data set = Data-NM

Rank Input combination Val. acc. Val. loss
1 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ 86.35 % 0.327
2 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥̇ 84.96 % 0.3417
3 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 84.71 % 0.3486
4 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 83.68 % 0.3662
5 𝑢 + 𝑢̇ + 𝑥 + 𝑥̇ 82.82 % 0.3876
6 𝑢 + 𝑢̇ 82.82 % 0.3846
7 𝑢̇ + 𝑒 + 𝑒̇ 82.68 % 0.3796
8 𝑢 + 𝑢̇ + 𝑒 82.42 % 0.3984
9 𝑢 + 𝑢̇ + 𝑒 + 𝑥 + 𝑥̇ 82.04 % 0.4123
10 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥 + 𝑥̇ 81.94 % 0.4025
11 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥̇ 81.85 % 0.3998
12 𝑢 + 𝑢̇ + 𝑥 81.83 % 0.4037
13 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 81.43 % 0.4006
14 𝑢 + 𝑢̇ + 𝑒 + 𝑥 81.29 % 0.4185
15 𝑢 + 𝑢̇ + 𝑥̇ 81.2 % 0.4157
16 𝑢 + 𝑢̇ + 𝑒̇ 81.08 % 0.4183
17 𝑢 + 𝑢̇ + 𝑒 + 𝑥̇ 80.51 % 0.4194
18 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥 80.4 % 0.4264
19 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥̇ 80.29 % 0.432
20 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 80.09 % 0.4156
21 𝑢̇ + 𝑒 + 𝑥 + 𝑥̇ 79.33 % 0.4467
22 𝑢 + 𝑒 + 𝑒̇ 79.26 % 0.4249
23 𝑢̇ + 𝑥 + 𝑥̇ 78.96 % 0.4412
24 𝑢 + 𝑒 + 𝑒̇ + 𝑥̇ 78.67 % 0.4343
25 𝑢 + 𝑒 + 𝑒̇ + 𝑥 78.42 % 0.4293
26 𝑢̇ + 𝑒 78.38 % 0.472
27 𝑢 + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 77.73 % 0.4453
28 𝑢̇ + 𝑒 + 𝑥̇ 77.3 % 0.48
29 𝑢̇ + 𝑒 + 𝑥 77.19 % 0.4872
30 𝑢̇ + 𝑒̇ + 𝑥 + 𝑥̇ 77.18 % 0.4644
31 𝑢̇ 76.92 % 0.488
32 𝑢 + 𝑒 + 𝑥 + 𝑥̇ 76.57 % 0.4776
33 𝑢 + 𝑥 + 𝑥̇ 76.4 % 0.4762
34 𝑢 + 𝑒̇ + 𝑥 + 𝑥̇ 76.2 % 0.4855
35 𝑢̇ + 𝑥 75.85 % 0.5045
36 𝑢̇ + 𝑒̇ 75.12 % 0.513
37 𝑢̇ + 𝑒̇ + 𝑥 75.08 % 0.5149
38 𝑢 + 𝑒 74.46 % 0.5203
39 𝑢 + 𝑒 + 𝑥̇ 74.43 % 0.5151
40 𝑒 + 𝑒̇ 74.31 % 0.4774
41 𝑢̇ + 𝑒̇ + 𝑥̇ 74.2 % 0.5305
42 𝑒 + 𝑒̇ + 𝑥 74.19 % 0.4794
43 𝑢̇ + 𝑥̇ 73.8 % 0.5234
44 𝑒 + 𝑒̇ + 𝑥̇ 73.71 % 0.4816
45 𝑢 + 𝑒 + 𝑥 73.63 % 0.5335
46 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 73.58 % 0.4859
47 𝑒̇ + 𝑥 + 𝑥̇ 73.38 % 0.5247
48 𝑥 + 𝑥̇ 73.34 % 0.5197
49 𝑒 + 𝑥 + 𝑥̇ 73.26 % 0.516
50 𝑢 73.15 % 0.535
51 𝑢 + 𝑒̇ + 𝑥 72.4 % 0.5455
52 𝑢 + 𝑥 72.29 % 0.5483
53 𝑢 + 𝑒̇ 70.98 % 0.5639
54 𝑢 + 𝑥̇ 70.65 % 0.5709
55 𝑒 + 𝑥̇ 70.36 % 0.5621
56 𝑢 + 𝑒̇ + 𝑥̇ 70.09 % 0.5805
57 𝑒 + 𝑥 68.78 % 0.5811
58 𝑒̇ + 𝑥 68.56 % 0.5929
59 𝑒 65.61 % 0.6108
60 𝑥 63.58 % 0.6391
61 𝑥̇ 63.01 % 0.6382
62 𝑒̇ 61.71 % 0.6478
63 𝑒̇ + 𝑥̇ 58.96 % 0.6729

Table B.2: Ranked performance of input combinations when
using window size of 20 s sampled at 25 Hz.
Data set = Data-NM

Rank Input combination Val. acc. Val. loss
1 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ 91.03 % 0.2639
2 𝑢 + 𝑢̇ + 𝑒 90.54 % 0.2489
3 𝑢 + 𝑢̇ + 𝑒 + 𝑥̇ 90.06 % 0.2791
4 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 89.9 % 0.2758
5 𝑢 + 𝑢̇ + 𝑒 + 𝑥 89.42 % 0.2658
6 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥̇ 89.42 % 0.2962
7 𝑢̇ + 𝑒 + 𝑒̇ 89.1 % 0.3166
8 𝑢 + 𝑢̇ + 𝑒 + 𝑥 + 𝑥̇ 88.78 % 0.3069
9 𝑢̇ + 𝑒 88.62 % 0.3147
10 𝑢 + 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 88.62 % 0.3039
11 𝑢 + 𝑢̇ + 𝑒̇ 88.46 % 0.3066
12 𝑢 + 𝑢̇ 88.3 % 0.3076
13 𝑢̇ + 𝑒 + 𝑥̇ 87.18 % 0.3732
14 𝑢 + 𝑢̇ + 𝑥̇ 86.7 % 0.3691
15 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥 86.7 % 0.3406
16 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥̇ 86.54 % 0.3581
17 𝑢 + 𝑢̇ + 𝑒̇ + 𝑥 + 𝑥̇ 86.54 % 0.3554
18 𝑢 + 𝑢̇ + 𝑥 86.38 % 0.3352
19 𝑢 + 𝑒 86.38 % 0.3774
20 𝑢 + 𝑢̇ + 𝑥 + 𝑥̇ 86.22 % 0.3643
21 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 86.06 % 0.3747
22 𝑢̇ + 𝑒 + 𝑥 85.9 % 0.3721
23 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥̇ 85.9 % 0.3963
24 𝑢̇ + 𝑒 + 𝑥 + 𝑥̇ 84.78 % 0.4194
25 𝑢̇ + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 84.78 % 0.4124
26 𝑢̇ 84.78 % 0.3825
27 𝑢 + 𝑒 + 𝑒̇ 84.78 % 0.3645
28 𝑢 + 𝑒 + 𝑒̇ + 𝑥̇ 84.62 % 0.4491
29 𝑢 + 𝑒 + 𝑥̇ 84.29 % 0.4562
30 𝑢̇ + 𝑥 83.97 % 0.4175
31 𝑢 + 𝑒 + 𝑥 + 𝑥̇ 83.97 % 0.4438
32 𝑢 + 𝑒 + 𝑥 83.97 % 0.4818
33 𝑢 + 𝑒 + 𝑒̇ + 𝑥 83.97 % 0.4385
34 𝑢 83.97 % 0.3859
35 𝑢 + 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 82.85 % 0.4634
36 𝑢̇ + 𝑒̇ + 𝑥 82.69 % 0.4433
37 𝑢̇ + 𝑥 + 𝑥̇ 82.53 % 0.466
38 𝑢̇ + 𝑒̇ 82.37 % 0.395
39 𝑢̇ + 𝑒̇ + 𝑥̇ 82.21 % 0.4639
40 𝑢̇ + 𝑒̇ + 𝑥 + 𝑥̇ 82.21 % 0.4557
41 𝑢̇ + 𝑥̇ 81.73 % 0.4397
42 𝑢 + 𝑥 81.57 % 0.4781
43 𝑢 + 𝑒̇ 81.57 % 0.4755
44 𝑢 + 𝑒̇ + 𝑥 81.09 % 0.5118
45 𝑢 + 𝑥 + 𝑥̇ 79.17 % 0.5092
46 𝑢 + 𝑥̇ 79.01 % 0.541
47 𝑢 + 𝑒̇ + 𝑥 + 𝑥̇ 78.53 % 0.5176
48 𝑢 + 𝑒̇ + 𝑥̇ 78.21 % 0.574
49 𝑒 + 𝑒̇ + 𝑥 75.64 % 0.5314
50 𝑒 + 𝑒̇ + 𝑥̇ 75.48 % 0.5752
51 𝑒 + 𝑥 74.52 % 0.5415
52 𝑒 + 𝑥 + 𝑥̇ 74.36 % 0.5674
53 𝑒 + 𝑒̇ + 𝑥 + 𝑥̇ 74.2 % 0.5652
54 𝑒 + 𝑒̇ 74.2 % 0.5217
55 𝑒 74.04 % 0.5508
56 𝑒 + 𝑥̇ 73.72 % 0.5539
57 𝑥 + 𝑥̇ 73.4 % 0.5661
58 𝑥 72.6 % 0.5797
59 𝑒̇ + 𝑥 71.96 % 0.6261
60 𝑒̇ + 𝑥 + 𝑥̇ 70.99 % 0.6278
61 𝑒̇ 66.51 % 0.6634
62 𝑥̇ 66.19 % 0.6488
63 𝑒̇ + 𝑥̇ 64.58 % 0.6552
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B.5. Labeling Method
The scientific paper described a experience-based labeling method, and a performance-based labeling
method. When keeping all other settings at their base values, the two methods result in the validation
accuracy shown in Figure B.7. From this analysis it can be observed that 1) the performance-based
labeling results in a higher average validation accuracy, and 2) the performance-based method has
a smaller spread in validation accuracy. The latter observation is likely due to the more consistent
labeling of the train/validation data (i.e., less label noise). Section 4.2.3 explains why the experience-
based method was used nevertheless.
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Figure B.7: Comparison of validation accuracy when using experience-based labeling (with 𝐿𝑤 = 15) versus performance-based
labeling to train the proposed ResNet architecture. Data set = Data-NM



C
Additional Performance Results

In this appendix the performance test results of the scientific paper will be extended to a different data
set, window size setting, and labeling method.

Testing Performance - Motion Group
Figure C.1 shows the results of the rotating test set analysis for the moving-base group. The scientific
paper already concluded that the Data-M set resulted in superior test accuracy, but this figure provides
extra context by showing the classification performance of each individual subject.
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Figure C.1: Results of subject as out-of-sample test set analysis. Data set = Data-M
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Testing Performance - No Motion Group with WS=20 s, SF=25 Hz
The window size and sampling frequency optimization indicated that a window size of 20 s sampled at
25 Hz resulted in the highest validation accuracy (but this disabled direct feedback). Figures C.2 and
C.3 display the test performance of the classifier trained with these settings. Indeed the test accuracy is
now higher than when using𝑊𝑆 = 1.2 s and 𝑆𝑓 = 50 Hz, however it can be observed that the classifier
still has poor classification accuracy on subjects with an off-nominal learning curve.
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Figure C.2: Results of subject as out-of-sample test set analysis on the fixed-base group with window size of 20 seconds sampled
at 25 Hz. Data set = Data-NM
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Figure C.3: Aggregated results of out-of-sample test set analysis on the fixed-base group with window size of 20 seconds
sampled at 25 Hz. Data set = Data-NM
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Testing Performance - No Motion Group with Performance-Based Labeling Method
Figures C.4 and C.5 show the test performance of the optimized classifier when using performance-
based labeling. Figure C.4 shows that this method is particularly imprecise when subjects have an
RMS(𝑒) that is close to the average. Surprisingly, for Data-NM, the gradual increase in average model
output (bottom graph Figure C.5) is more apparent for the performance-based labeling than for the
experience-based labeling (Results section scientific paper).
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Figure C.4: Results of out-of-sample test set analysis on the fixed-base group with performance-based labeling method.
Data set = Data-NM
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Figure C.5: Aggregated results of out-of-sample test set analysis on the fixed-base group with performance-based labeling
method. Data set = Data-NM





D
Additional XAI Results

D.1. SHAP versus Grad-CAM
As has been explained in the scientific paper, the downside of using 1D convolutional layers is that Class
Activation Mapping methods only provide 1D explanations (only temporal dynamics are preserved).
Therefore, the decision was made to use SHAP as the explanation method, as this method uses an ex-
planation model that preserves both temporal and spatial dynamics. To illustrate this trade-off, consider
the sample shown in Figure D.1. This sample, belonging to the ’unskilled’ class, is correctly predicted
by both the 1D ResNet and 2D ResNet architectures. The explanations of these predictions—by both
SHAP and Grad-CAM—are shown in Figure D.2.
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Figure D.1: Sample time traces of unskilled behavior that is explained in Figure D.2 Data set = Data-NM
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Figure D.2: Comparison of SHAP and Grad-CAM explanations of the sample shown in Figure D.1 for both the 1D and 2D ResNet
architecture. The bright yellow indicates discriminative areas that led to the model output.
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D.2. Qualitative SHAP Shape Comparison
In addition to the signals pertaining to skilled- or unskilled behavior shown in the scientific paper, Figures
D.3, D.4, D.5, and D.6 show a qualitative comparison of signals that had a high- or low contribution
towards skilled- or unskilled predictions versus the resulting model output 𝑓(𝑋). All the visualized
samples come from the Data-NM set. The dotted lines indicate 0 deg or deg/s. It is difficult to recognize
distinctive patterns in these visualizations, but it appears as though there are more smooth, sinusoidal,
shapes at the top (high contribution towards ’skilled’).
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Figure D.3: Qualitative grid visualization of samples with different model output versus relative contribution of 𝑒.
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Figure D.4: Qualitative grid visualization of samples with different model output versus relative contribution of 𝑒̇.



D.2. Qualitative SHAP Shape Comparison 45

>80%

u
Model: 0.0 Model: 0.25

f(X)
Unskilled Skilled    

Model: 0.5 Model: 0.75 Model: 1.0

80%

60%

40%

20%

0%

co
nt

rib
ut

io
n 

u,
 %

   
  

U
ns

ki
lle

d
Sk

ill
ed

 

20%

40%

60%

80%

>80%

Figure D.5: Qualitative grid visualization of samples with different model output versus relative contribution of 𝑢.
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Figure D.6: Qualitative grid visualization of samples with different model output versus relative contribution of 𝑢̇.
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1
Introduction

The idea of mathematically describing biological and social systems as circular feedback mechanisms
has been around since the since late 40s, early 50s (Umpleby, 2005). After Wiener published his book
in 1948 named Cybernetics: or Control and Communication in the Animal and the Machine a rise of
cybernetics was seen in many academic fields. E.g. computer science, electrical engineering, artificial
intelligence, robotics, family therapy, management, political science, sociology, biology, psychology,
epistemology, music, etc (Umpleby, 2005).

Cybernetics as a tool to describe the characteristics of human pilot controlling a dynamic system
have been developed since the late ’50s (McRuer & Krendel, 1959). Since then these human control
models have been extensively reviewed and enhanced to more complex and utilization-specific forms
(Xu, Tan, Efremov, Sun, & Qu, 2017). This cybernetic approach of analyzing manual human control
behavior has been successfully adopted to a broad variety of applications, such as human-in-the-loop
control design of complex aircraft (Hess & Peng, 2018) or for the assessment of training of manual
control skill (Pool & Zaal, 2016).

Figure 1.1: The relationship between artificial intelligence, machine learning, and deep learning. Figure based on NVIDIA
blogpost:
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
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Since the last decade there has been a huge growth in popularity of artificial intelligence. Just
like cybernetics in the 50s, artificial intelligence applications span nearly every academic field now.
Machine learning (a subset of artificial intelligence techniques, Figure 1.1) takes on many challenging
tasks such as natural language processing (Wang & Gang, 2018), (medical) image recognition (Litjens
et al., 2017), traffic prediction (Ramakrishnan & Soni, 2018), autonomous control (Al-Qizwini, Barjasteh,
Al-Qassab, & Radha, 2017), and many more.

As artificial intelligence flourishes, the question arises if some of the tasks facilitated by cybernetics
can also be performed by its self-learning counterpart.

This thesis will explore how machine learning can be used to evaluate pilot skill level. Although
cybernetics already allows such evaluations, it often uses frequency domain analyses to predict hu-
man control behavior parameters (e.g. Pool and Zaal (2016)). This has the disadvantage of producing
linear time invariant results that require lengthy time recordings to be accurate. Using artificial intelli-
gence may allow faster recognition of patterns in the time domain, enabling time varying pilot evaluation
feedback within seconds.

1.1. Introduction to Time Series Classification
Time series data are present in nearly every domain. Human activities, financial information, health
recordings, weather readings, these all produce time series. The ability to recognize chunks of these
time recordings as a certain class can allow us to monitor someone’s health (Kampouraki, Manis, &
Nikou, 2008), make financial market predictions (Fischer & Krauss, 2018), or recognize what activity
a human is undertaking (Ordóñez & Roggen, 2016). The applications are endless. In this specific
research report an effort will be made to apply Time Series Classification (TSC) to recognize human
pilot skill level.

Before explaining what methods can be applied to perform TSC, first some general definitions will be
introduced. The first three definitions are taken from Fawaz, Forestier, Weber, Idoumghar, and Muller
(2019). To visualize these definitions, an example of a data set 𝐷 containing two univariate time series
𝑋𝑖 with their respective class vector 𝑌𝑖 is shown in Figure 1.2.

Definition 1: A univariate time series UTS, 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑇] is an ordered set of real values. The
length of 𝑋 is equal to the number of real values 𝑇.
Definition 2: A multivariate time series MTS, 𝑋 = [𝑋1, 𝑋2, ..., 𝑋𝑀] consists of𝑀 different univariate time
series with 𝑋𝑖 ∈ ℝ𝑇.
Definition 3: A data set 𝐷 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), ..., (𝑋𝑁 , 𝑌𝑁)} is a collection of pairs (𝑋𝑖 , 𝑌𝑖) where 𝑋𝑖 could
either be a univariate or multivariate time series with 𝑌𝑖 as its corresponding one-hot label vector.
One-hot label vector: For a data set containing 𝐾 classes, the one-hot label vector 𝑌𝑖 is a vector of
length 𝐾 where each element 𝑗 ∈ [1, 𝐾] is equal to 1 if the class of 𝑋𝑖 is j and 0 otherwise.
Definition 4: Time Series Classification deals with creating a mapping between time series 𝑋𝑖 and
label vector 𝑌𝑖 by learning from labeled training data from 𝐷.

Figure 1.2: Example of an UTS data set 𝐷 containing two pairs (𝑋𝑖 , 𝑌𝑖)

There are many methods available to perform TSC. Susto, Cenedese, and Terzi (2018) describe
twomain branches of time series classification techniques: feature-basedmethods and distance-based
methods.
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Feature-based methods are based on the extraction of certain features from the time signal. A
moving window extracts time series data from a signal and calculates representative features of this
time series set. Commonly chosen features are for example: the mean, variance, minimum, maxi-
mum, or entropy (Susto et al., 2018). The idea is that these features characterize time series behavior
that belongs to a specific class. By feeding these extracted features (or ’time series representations’)
and their respective label a classifier model can be taught to recognize classes based on their fea-
tures. An example of such a classifier is a Support Vector Machine (SVM) (Evgeniou & Pontil, 2001).
Other examples of time series representations are Singular Value Decomposition (SVD) (Li, Khan, &
Prabhakaran, 2006) or symbolic representation (Lin, Keogh, Wei, & Lonardi, 2007) also refered to as
Bag-of-Words (BoW).

Distance-based methods do not require feature extraction and can directly be applied to time series
data. This approach is based around computing a measure of similarity between different time series.
Typically this distance measure is dynamic time warping (DTW) (Keogh, 2002), after which the clas-
sification part can very effectively be done using the k-nearest-neighbours classifier (Cunningham &
Delany, 2007).

A third method that could be distinguished are ensemble-based approaches. Here different clas-
sifiers are combined to achieve higher accuracy. A state-of-the-art example of such an ensemble
classifier is the Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) (Lines,
Taylor, & Bagnall, 2018). This is an ensemble of 37 classifiers based on features extracted from both
the time domain as well as the frequency domain. One disadvantage of HIVE-COTE is that it takes
a lot of time to train, since it requires 37 classifiers to be trained to reach its high classification accuracy.

All of the ’traditional’ machine learning TSC methods described above rely on substantial data pre-
processing and feature engineering. More recently an effort has been made to design deep neural
networks (a subset of machine learning techniques, Figure 1.1) for time series classification that have
equal performance to state-of-the-art traditional TSC methods. A great example of this is given by
Wang, Yan, and Oates (2017). In this paper three deep neural network architectures are compared
against other state-of-the-art TSC approaches on 44 time series data sets. The three neural networks
that are deployed are a classic feedforward network (also known as Multilayer Perceptrons (MLP)),
a Fully Convolutional Network (FCN) (Long, Shelhamer, & Darrell, 2015), and a Residual Network
(ResNet) (He, Zhang, Ren, & Sun, 2015). In the work by Wang et al. (2017) it is found that these
latter two networks (FCN and ResNet) are actually able to outperform other state-of-the-art methods
without requiring any data preprocessing or feature engineering. Moreover, these specific deep neural
network architectures were designed for image recognition and yet still showed such promising results
on a completely different (TSC) task. An explanation of how neural networks work will be provided in
Chapter 3.

Automatic feature extraction is a great advantage that deep learning algorithms have over traditional
machine learning algorithms. In the past, machine learning practitioners have spent months, years,
or even decades manually constructing feature sets for classification of data (Patterson & Gibson,
2017). Artificial neural networks have the ability to automatically extract these features and learn what
indicators to look for to accurately classify data themselves.

A major drawback of deep neural networks is that they are considered black box models. That
is, although they can show exceptional performance in many tasks, it can be difficult to identify why
they make certain decisions. However, the works of Wang et al. (2017) and Fawaz et al. (2019) show
that specific types of neural networks can actually overcome this problem and an ’explainability’ aspect
can be added to the network’s output. On top of that, Lundberg and Lee (2017) introduced a unified
approach to crack open the black box of all sorts of deep neural network architectures.

Given some of the tremendous advances made in the field of deep learning (Esteva et al. (2017),
Silver et al. (2017), Lim, Son, Kim, Nah, and Lee (2017), and more recently by Hannun et al. (2019),
Kim, Zhou, Philion, Torralba, and Fidler (2020), Saito, Simon, Saragih, and Joo (2020)), their proven
effectiveness in TSC (Wang et al. (2017), Fawaz et al. (2019), Wang, Chen, Hao, Peng, and Hu (2019),
Acharya et al. (2017)), and their added benefit of automatic feature extraction, the decision was made
to limit the scope of this thesis to deep learning TSC methods.
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1.2. Introduction to Human Pilot Modeling
Before introducing basic human pilot modeling concepts, it will first be explained why pilot modeling
is relevant for this TSC research. Plain and simply put: human pilot modeling will allow simulation of
pilot control behavior to generate more training data for the machine learning algorithm. There are two
reasons why generation of additional pilot data may be interesting. First, machine learning algorithms
often benefit from having a larger set of training data available. Second, by making use of human pilot
modeling to generate pilot data there will be more control over the training data that is supplied to the
machine learning algorithm.

Generating more training data based on available training data to improve the performance of clas-
sification systems is also referred to as data augmentation. This technique is very commonly applied
to computer vision tasks, a survey by Shorten and Khoshgoftaar (2019) describes many image data
augmentation techniques and their effectiveness. However, there have also been data augmentation
methods developed specifically for time series classification. In a survey by Wen et al. (2021) some of
these methods are explained and reviewed. There are practically two ways to perform data augmen-
tation: new data can be generated by slightly altering the existing data, or new data can be completely
synthetically generated (making sure that it resembles the original data). This latter approach is where
human pilot modeling comes into play.

Figure 1.3: Schematic illustration of human pilot modeling

Human pilot models describe human manual control behavior response to a specific task. By iden-
tifying pilot control dynamics a mathematical model can be composed that describes their control re-
sponse to certain stimuli. These models can help to understand human control behavior, but can also
quantify human behavior through system- evaluation and simulation.

Modeling human pilot control behavior has proven to be most successful for continuous and station-
ary control tasks (tracking) (Pool, Pais, Vroome, van Paassen, & Mulder, 2012). For such tasks human
control behavior can accurately be described by quasi-linear pilot models as proposed by McRuer et
al. (1965). These quasi-linear models consist of linear transfer functions that describe the human re-
sponse to perceived inputs, and a remnant that accounts for non-linear human control behavior. By
letting human pilots perform a control task in a controlled environment, their control actions can be
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analysed to compute the pilot model parameters that make up the linear transfer functions.
A non-technical schematic illustration of the pilot modeling process is shown in Figure 1.3. In the top

half of this figure it can be seen how a human pilot outputs control actions based on stimuli they receive
(in this case from a display). The control action then causes a new aircraft state through the aircraft
dynamics. This new state is not fully determined by the control action, but slightly unpredictable due to
external disturbances (e.g. turbulence). The new aircraft state is fed back to the start of the loop where
it is compared to the target state. The display will show the pilot the updated discrepancy between the
desired state and actual state to which the pilot will respond, and so the loop continues. In the bottom
half of the figure it can be seen how the human pilot is replaced by a quasi-linear model consisting of
a linear transfer function 𝐻𝑝(𝑗𝜔) and a remnant. The goal is to estimate the model parameters such
that the model behavior replicates the human behavior. A more detailed and technical explanation of
human pilot modeling will be provided in Chapter 2.

1.3. Problem Statement
This section will first provide a motivation for the research that is conducted throughout this report. This
motivation is based on current developments of state-of-the-art methods and the academic knowledge
gap to the research topic. Based on the motivation a research question (and sub-questions) will be
formulated. These questions will be posed such that their answers will bridge the academic knowledge
gap identified in the motivation. Lastly, an explicit research objective will be stated.

Motivation In recent years there have been many researches attempting to classify human control
behavior based on measurements of both task specific performance parameters as well as physio-
logical signals. The control task that appears to be researched most intensively is that of a human
controlling a car. A survey by Marina Martinez, Heucke, Wang, Gao, and Cao (2018) elaborates on
the applicability of driving style recognition for energy management, driving safety, and driving assis-
tance. This survey also puts a particular emphasis on machine learning as a tool for the task. Similarly,
Jain, Singh, Koppula, Soh, and Saxena (2016) investigates the use of machine learning to anticipate
driver activity, Saleh, Hossny, and Nahavandi (2017) uses machine learning to classify driving behav-
ior, and Tango and Botta (2013) applies machine learning to detect driver distraction. Although these
researches are predominantly about humans operating cars, there are also examples of machine learn-
ing algorithms classifying control behavior of human pilots in aircraft. Both Xi, Law, Goubran, and Shu
(2019) and Nittala et al. (2018) propose machine learning methods to predict pilot workload, the latter
also incorporated a skill level classification algorithm. Specifically this skill level classification using
machine learning is a research topic that remains relatively untouched.

Although there has been a substantial amount of research done regarding human control behavior
classification using machine learning, most of these methods require an extensive set of input pa-
rameters (collected by a large set of sensors). For example the mentioned papers concerning humans
driving cars use sensor such as: (infrared) face cameras, eye tracking devices, outside cameras, GPS,
and numerous inertial measurement sensors. The aircraft pilot examples both use electrocardiograms
(ECG) to measure the pilot’s heart rate. Evidently, applying these machine learning algorithms in a real
life application would require a lot of additional sensors to be added to the operated vehicle.

Therefore, this research will attempt to introduce a novel pilot skill level classification method using
deep learning with only readily available task related time signals (e.g. pilot control output, tracking
command, and tracking error). Such a method could be used in pilot training environments to quantify
a pilot’s skill level, removing the need for subjective qualitative assessment. It could also be used in
an online setting to enable a scalable level of autonomy; the autopilot only ’helps’ as much as it deems
necessary. Or, if there is no autopilot, a simple warning signal could be given if a deteriorating skill
level is measured. Due to the few (and rudimentary) input signals required, this method would not
need any additional sensors to be added to the cockpit of most modern aircraft. Another advantage
of this choice of input signals is that themethod should be easily transferable between different vehicles.

Research question Thus far some fundamental information has been shared to illustrate the goal of
this thesis. Moreover, a motivation has been provided to clarify how the findings of this research could
be useful in real life applications. To further constrain exactly what will be investigated in this research
(and what will be left out of scope), a set of research questions has been composed.
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The main research question that this thesis will ultimately aim to answer is the following:

Main research question

How can deep learning be used to identify pilot skill level?

As has already been discussed in the introduction there are more dimensions to this question than
immediately apparent. The foremost and most obvious portion of this question that has to be answered
is how can deep learning be used to classify time series data?. However, this research will also attempt
to overcome some of the drawbacks that come with artificial neural networks. Namely, the following
two disadvantages will be tackled: too little data availability deteriorates training performance and the
black box nature of deep learning gives little insight into the algorithm’s process.

The abovementioned dimensionalities of themain research question reap the following sub-questions:

Research sub-questions

1. How can artificial intelligence be used to classify time series data?

(a) What algorithms can be used to perform this task?
(b) How must the training data be structured?
(c) What influence do hyperparameters have on the classification performance?
(d) What is the optimal performance achieved with the proposed method?

2. How can pilot modeling be used to generate additional training data?

(a) What type of model can be used to simulate pilot behavior?
(b) What influence do pilot model parameters have on classification performance?
(c) What is the added benefit of the proposed data generation method?

3. How can an explainability component be added to the classification model?

(a) What explainability methods are available?
(b) What input parameters influence the classification model’s output and how?
(c) How can the proposed explainability method be used to interpret the classification

model’s decision making?

Research objective Now that the research questions have been defined, the objective of this re-
search can be formulated. The research objective will summarize the research questions into actions
that will compose the goal of this research project.

Research objective

To effectively classify the skill level of pilot control behavior, using state-of-the-art deep learning
time series classification algorithms in combination with a cybernetic data augmentationmethod,
whilst providing transparency to the results by making the trained algorithm interpretable.

1.4. Report Overview
This report effectively consists of two parts: a literature study and a preliminary experiment. The first
part, the purely literature based portion, of this report is found in Chapter 2 and Chapter 3. These
chapters introduce the three pillars, reflected in the research questions, on which this research thesis
is based. They are structured as follows.

First, in Chapter 2 human pilot behavior data and cybernetic pilot modeling as a means for data
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augmentation are explored. This chapter will introduce some basic human behavior principles and will
explore how pilot modeling techniquesmay be used for data augmentation to achieve increasemachine
learning performance. The intent of this chapter is to answer sub-question 2 (a) and the non-empirical
part of sub-question 1 (b).

Second, in Chapter 3 the fundamentals of artificial neural networks are explained, after which a
more detailed description will be given of state-of-the-art networks that are specifically designed for
time series classification. Additionally, Section 3.4 will elaborate on explainable artificial intelligence.
Its importance is emphasized and several implementation techniques are described. This chapter aims
to answer sub-question 1 (a) and sub-question 3 (a).

After the literature study is conveyed and an overview of available methods is collected, the second
part of this report will test the gathered information from literature in a preliminary experiment. The
results of this preliminary experiment are provided in Chapter 4. The goal of this preliminary experiment
is to get an understanding of what the answers to the remaining research questions may be, this will
help to compose a detailed research plan for the main phase of this thesis.





2
Human Pilot Data

The fundamental working principle of machine learning is to make an algorithm learn from examples.
This is based on the premise that there are examples (training data) available for the machine learning
algorithm to learn from. The content of these data is very important for the performance of the algorithm;
a perfect machine learning model that is provided poor training data will also produce poor results.
Concurrently, there is also the problem that sometimes there is an inefficient amount of representative
training examples available.

The objective of this chapter is twofold: in Section 2.1 a foundation will be laid for what type of training
data is required for this research and in Section 2.2 a method to overcome shortage of representative
training data will be proposed.

2.1. Data Specifications
As has been stated in the introduction, the goal of this research is to identify pilot skill level using
machine learning. Before describing how this identification can be performed, it must first be explained
what is meant by skill level. Once this definition has been clarified, an explanation must be given of
what this means for the requirements of the data set that the machine learning algorithm will be trained
with.

2.1.1. Different Types of Control Behavior
When a human carries out a control task, they execute control performance that fits in a pattern of
human control behavior. In a paper by Rasmussen (1983) three typical levels of performance are
distinguished: skill-based behavior, rule-based behavior, and knowledge-based behavior. Figure 2.1
shows a depiction of these three behavior levels and how they interact.

Skill-based behavior represents human control behavior that takes place without conscious control.
The sensory information that is perceived during skill-based behavior are continuous signals, e.g. vi-
sually perceived information from a display, or motion feedback from the vestibular system. Following
a certain intention the human will automatically perform continuous control actions as a response to
these signals.

Rule-based behavior relates to task execution that is controlled by stored rules or procedures.
These rules or procedures may have been derived from past experience or from someone else’s ex-
pertise as instructions. Actions taken from rule-based behavior follow from signs that are recognized
by the human, e.g. knowing to step on the brakes of a car when a traffic light jumps to red. The bor-
der between rule-based behavior and skill-based behavior is not always definite, but depends on the
level of training of the human in question. However, a big difference between the two is that in rule-
based behavior the person can understand and explain why they took a specific action. Contrarily, in
skill-based behavior actions are taken subconsciously and cannot be pinpointed to a specific source of
information.

Knowledge-based behavior is triggered during unfamiliar situations in which no know-how or rules
for control are available. In such situations the performance is moved to the highest conceptual level
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Figure 2.1: The three levels of human control behavior, as defined by Rasmussen (1983)

where behavior is goal-controlled. During knowledge-based behavior information is perceived as sym-
bols which are used to develop a plan to reach the specified goal. In the development of the plan
multiple options are considered and tested against the goal, physically by trial and error, or conceptu-
ally by understanding the functional properties of the controlled system.

Given the descriptions of the three different performance levels of human control behavior, it can now
be explained what is meant by pilot skill level. Namely, pilot skill level is a qualitative indication of the
proficiency of a pilot’s skill-based behavior. A high skill level means that a pilot has a lot of experience
in executing a certain task and has therefore trained their automated responses to accurately react to
the task related continuous signals. A low skill level means that a pilot has little or no experience in
executing a task and therefore executes poor skill-based behavior.

2.1.2. Pilot Skill Level Data
To be able to effectively deploy machine learning algorithms, there must be a source of data to learn
from. Or, following the third definition given in Section 1.1, there must be a (sufficiently large) data
set 𝐷 containing pairs (𝑋𝑖 , 𝑌𝑖). For this research specifically that means that there must be time series
recordings of human pilot behavior 𝑋𝑖 and their respective categorical skill level label 𝑌𝑖. If there are two
levels of skill that the classifier must be able to distinguish (e.g. ’novice’ and ’expert’), then there must
also be examples of both these skill levels provided to the machine learning algorithm. As explained
in the previous section, a pilot’s skill level for a task is determined by the amount of experience said
pilot has in that (skill based) task. Therefore, a data set 𝐷 is required that contains time series (and the
associated label) of both task-naive pilots, as well as trained pilots.

This data set could either by collected by conducting an experiment, or could alternatively be taken
from an existing experiment that has already taken place. The most obvious type of experiment to
find such a data set, that adheres to the specifications described in the previous paragraph, would
be an experiment that researched training of skill-based control behavior. Luckily, the section Control
and Simulation of Aerospace Engineering at TUDelft is precisely the place to look for such experiments.

In a research paper called ’Effects of Simulator Motion Feedback on Training of Skill-Based Control
Behavior’ Pool et al. (2016) conducted an experiment in SIMONAResearch Simulator at Delft University
of Technology to quantify the effects of simulator motion feedback on the training of skill-based human
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operator control behavior. In this experiment a group of 24 fully task-naive participants were trained
in a compensatory pitch attitude tracking task. Here ’compensatory’ means that the participants could
only read the error between the desired pitch angle and the actual pitch angle on a display; why this is
important will be explained in Section 2.2.2. Divided over two groups, one group with motion feedback
(”moving-base”) and one group without motion feedback (”fixed-base”) the participants performed 100
training runs of the pitch tracking task. After the 100 training runs the two groups switched motion
feedback setting and performed another 75 evaluation runs. This change of motion feedback setting
was done to investigate to what extend trained skill can be transferred to a different setting.

To visualize the learning curve of these participants, consider the graphs shown in Figure 2.2 (Pool
et al., 2016). In Figure 2.2a the tracking error variance 𝜎2𝑒 per tracking run is shown, and in Figure 2.2b
the pilot control output variance 𝜎2𝑢 . The grey asterisk and squaremarkers indicate the average variance
for the group withmotion feedback (M) and the group without motion feedback (NM), respectively. The
gray bars indicate the 95% confidence intervals of themean data. Lastly, the learning curve is quantified
by fitting an exponential learning curve model (Eq. (C.6)). The learning curve models are indicated by
the black (dashed/solid) lines. Pearson’s correlation coefficient are given in the legend for both the
training and evaluation phase as 𝜌 = [𝜌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝜌𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛], as an indication of the quality of the fitted
learning curve. From these graphs it immediately becomes apparent that, as the subjects (pilots) gain
more experience with the tracking task, the tracking error variance decreases and the control output
variance increases. These changes in control behavior indeed indicate that the pilot skill level increases
with practice.

(a) Tracking error variance per experiment run (b) Pilot control output variance per experiment run

Figure 2.2: Average tracking error variance and pilot control output variance with fitted learning curves. Image taken from (Pool,
Harder, & van Paassen, 2016)

The initial 100 training runs from (Pool et al., 2016) are exactly the type of data set that was de-
scribed at the start of this section as a requirement for this TSC research. Namely, it contains human
control behavior recordings of both fully task-naive participants (at the start of their 100 runs), as well
as experienced participants (at the end of their 100 runs). The only thing that still had to be added to
these data before it could be fed to a machine learning algorithm are the labels 𝑌𝑖 of each recording 𝑋𝑖.
Different methods of labeling the data and their pros and cons are discussed in Section 4.2.3.

2.2. Data Augmentation
In the introduction of this report it was already suggested that modeling human manual control behav-
ior may be useful to generate additional training data for the machine learning algorithm. Generating
additional training data to improve machine learning performance is also known as data augmenta-
tion. Although data augmentation is primarily used in computer vision tasks, it also has an proven
effectiveness in time series classification (e.g., Wen et al. (2021) shows an improvement of almost 2%
increased accuracy on an otherwise exhausted training set). This section will further elaborate on data
augmentation, why it is useful, and how it may be achieved through human pilot modeling.

As will be discussed more thoroughly in Chapter 4, deep learning algorithms often cycle through
the training data multiple times while learning. Every cycle through the complete set of training data is
called an epoch. By having multiple epochs the training data is more efficiently used and may produce
better accuracy of the trained algorithm. However, if the same data is presented too many times a phe-
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nomenon called overfittingmay occur. Overfitting means that the trained algorithm becomes extremely
good at recognizing the training data, but can no longer accurately classify data that are outside of its
training set (whilst, of course, accurately classifying unseen data is exactly the goal). There are many
ways to reduce overfitting, some of these will be discussed in Chapter 3.

One way of overcoming overfitting is increasing the amount of labeled training data. This way less
repetitions (epochs) of the same learning material are required to train the deep learning network.
However, it is often the case that there is not any more training data available. In this situation data
augmentation can be used to artificially inflate the training data set size by either data warping or over-
sampling (Shorten & Khoshgoftaar, 2019).

Here data warping means to transform existing data such that their label is preserved. In computer
vision tasks this can be achieved by augmentations such as geometric transformations, color changes,
or random distortions (some image data warping examples are shown in Figure 2.3). Similarly, in TSC
tasks data warping is accomplished by augmentations such as scaling, cropping, rotating, time warp-
ing, or jittering can be applied (examples of this are shown in Figure 2.4). A lot of these data warping
operations are more often used on image data than on time data. This is because for images a visual
comparison can confirm that the augmentation (e.g. rotation) did not alter the image’s class, whereas
for time series data this is not the case (Fawaz, Forestier, Weber, Idoumghar, & Muller, 2018). How-
ever, cropping (or ’window slicing’) is an example of data warping augmentation that can very effectively
be used in TSC (this will be applied, and discussed, in Chapter 4). Consecutively sliced windows can
also be overlapped to to even further increase the amount of labeled training samples.

Oversampling means to generate new synthetic instances of training data that adhere to a cer-
tain label. This can be done by mixing existing data, performing feature space augmentations, or by
using generative adversarial networks (GANs) (Shorten & Khoshgoftaar, 2019). Examples of works
researching time series data modeling with GANs are Esteban, Hyland, and Rätsch (2017) and Yoon,
Jarrett, and van der Schaar (2019). This thesis will research the effectiveness of oversampling data
augmentation by means of cybernetic pilot modeling to simulate additional time series data of human
control behavior.

2.2.1. Pilot Modeling Techniques
Being able to model pilot control behavior allows the analysis of closed loop pilot-vehicle systems.
Such integrated closed loop system with human control behavior have many applications in the field of
aerospace engineering. Pilot-vehicle systems can for example be utilized to assess aircraft handling
qualities (e.g. Hess (1995)), or to design flight instruments (e.g. McRuer, Weir, and Klein (1971)), or
to evaluate the fidelity of flight simulators (e.g. Steurs, Mulder, and van Paassen (2004)). These are
just some of the many examples of applications that drive the need for development of accurate pilot
behavior models.

The aim of this research is not to explore novel methods for state-of-the-art pilot simulations, but
rather to employ an existing proven pilot model and test its effectiveness in a new application: data
augmentation. Therefore, it is worth mentioning that this section will not dive into great detail about all
different types of pilot modeling techniques. Such a review of available methods of control model for
human pilot behavior are provided by Lone and Cooke (2014) and Xu et al. (2017).

As mentioned in Section 2.1.2 the data for this preliminary research thesis will be taken from the
experiment by Pool et al. (2016). In this experiment a multimodal quasi-linear human operator model
was used to model participants’ control dynamics. For every run of each participant a set of model
parameters is composed that best describe their control behavior. These model parameters are then
used as a measure to identify training of skill. The same compensatory tracking task used in this
experiment had already been successfully used to identify multimodel human control behavior in earlier
experiments (e.g. Zaal, Pool, de Bruin, Mulder, and van Paassen (2009), Pool, Zaal, van Paassen, and
Mulder (2010), and Nieuwenhuizen, Mulder, van Paassen, and Bülthoff (2013)).

Precisely because (multimodal) quasi-linear pilot models are excellent at simulating human control
behavior during a compensatory tracking task, and because the research by Pool et al. (2016) has
found fitting model parameters for each of its participants’ tracking runs, the decision was made to use
a quasi-linear pilot model as a tool for data augmentation.
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Figure 2.3: Examples of data augmentation techniques for computer vision. Image taken Wu, Yan, Shan, Dang, and Sun (2015)

Figure 2.4: Examples of data augmentation techniques for time series. The blue, red, green represent X,Y,Z signals from an
accelerometer, respectively. Image taken Um et al. (2017)
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2.2.2. Quasi-Linear Pilot Model
In the experiment by Pool et al. (2016) the participants were given a compensatory pitch tracking task
as shown in Figure 2.6. The controlled element dynamics𝐻𝜃,𝛿𝑒 in this experiment were a reduced-order
linearized model of elevator-to-pitch dynamics of a Cessna Citation I. This model was taken from Zaal
et al. (2009) and is given by Eq. (2.1). The stick inputs given by the participant were scaled with a stick
gain 𝐾𝑠 such that 1 deg of stick deflection gave an elevator deflection 𝛿𝑒 of -0.2865 deg.

𝐻𝜃,𝛿𝑒 (𝑠) = 10.62
𝑠 + 0.99

𝑠 (𝑠2 + 2.58𝑠 + 7.61) (2.1)

In a compensatory pitch tracking task the participant must continuously attempt to minimize a pitch
tracking error 𝑒 which can be read from a visual display like the one shown in Figure 2.5. The desired
pitch angle 𝜃 that the pilot must follow is given by the target forcing function signal 𝑓𝑡. Meanwhile, an
additional disturbance forcing function signal 𝑓𝑑 is inserted before the controlled dynamics. By only
displaying 𝑒 and having an unpredictable (quasi-random) 𝑓𝑡 (and 𝑓𝑑) the pilot is forced to adopt to a
purely compensatory control strategy (McRuer & Jex, 1967). Precisely this behavior can successfully
be modeled by the quasi-linear model introduced by McRuer et al. (1965).

Figure 2.5: A compensatory display of a pitch tracking task, as was provided to the participants

Figure 2.6: Schematic representation of the compensatory pitch attitude tracking task

The block marked as ’Human operator ’ in Figure 2.6 depicts the multimodal quasi-linear pilot model
used in the experiment. This model consists of parallel visual and vestibular motion channels and
a remnant (𝑛). The motion channel was only incorporated if motion feedback was provided to the
participant. The pilots’ responses to the visual tracking error 𝑒 and the physical pitch angle 𝜃 are
calculated by the response functions 𝐻𝑝𝑣 (𝑠) and 𝐻𝑝𝑚 (𝑠), respectively. Since the task includes both
target-following (𝑓𝑡) and disturbance-rejection (𝑓𝑑) the separate contributions of the visual response and
motion response could be investigated (Stapleford, Peters, & Alex, 1969).

The visual response of the human operator model 𝐻𝑝𝑣 (𝑠) was given by Eq. (2.2). This equation
consists of a lead2-lag equalization characteristic, a human operator response delay, and a model
for neuromuscular dynamics 𝐻𝑛𝑚 (𝑠) given by Eq. (2.3). Because human operators generate lag at
frequencies below the short-period mode’s natural frequency of Eq. (2.1), but exert lead equalization
at higher frequencies, a quadratic lead term had to be added to Eq. (2.2) to model such equalization
dynamics (Pool et al., 2011).
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In total the visual response model (Eq. (2.2)) contains six model parameters: the visual gain 𝐾𝑣,
the visual lead time constant 𝑇𝑙𝑒𝑎𝑑, the visual lag time constant 𝑇𝑙𝑎𝑔, the visual time delay 𝜏𝑣, and the
neuromuscular dynamics modeled as a second-order mass-spring-damper (McRuer et al., 1965) with
neuromuscular frequency 𝜔𝑛𝑚 and neuromuscular damping ratio 𝜁𝑛𝑚.

𝐻𝑝𝑣 (𝑠) = 𝐾𝑣
(𝑇𝑙𝑒𝑎𝑑𝑠 + 1)

2

𝑇𝑙𝑎𝑔𝑠 + 1⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
pilot

equalization

𝑒−𝑠𝜏𝑣
⏝⏟⏝
response
delay

𝐻𝑛𝑚 (𝑠)
⏝⎵⏟⎵⏝
actuation
dynamics

(2.2)

𝐻𝑛𝑚 (𝑠) =
𝜔2𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2𝑛𝑚
(2.3)

The motion response of the human operator model 𝐻𝑝𝑚 (𝑠) was modeled as pilot’s response to
his vestibular motion sensitivity as proposed by van der Vaart (1992) in his multi channel model and
Hosman and Stassen (1999) in their descriptive model. The pilot motion response is then given by
Eq. (2.4). Here the dynamics of the semicircular canals (SCC), the vestibular sensors that allow humans
to sense angular acceleration, are modeled as 𝐻𝑠𝑐𝑐 (𝑠) shown in Eq. (2.5).

Two additional model parameters are introduced by the motion response model (Eq. (2.4)): the
motion gain 𝐾𝑚 and the motion time delay 𝜏𝑚. The SCC model (Eq. (2.5)) is assumed to be fixed and
equal for every participant, here 𝑇𝑠𝑠𝑐1 = 0.11 s, 𝑇𝑠𝑠𝑐2 = 5.9 s, and 𝑇𝑠𝑠𝑐3 = 0.005 s, these values are
found using experimental measurements of human motion perception thresholds (Hosman & van der
Vaart, 1978).

𝐻𝑝𝑚 (𝑠) = 𝑠2𝐻𝑠𝑐𝑐 (𝑠)𝐾𝑚𝑒−𝑠𝜏𝑚𝐻𝑛𝑚 (𝑠) (2.4)

𝐻𝑠𝑐𝑐 (𝑠) = 𝐾𝑠𝑐𝑐
1 + 𝑇𝑠𝑐𝑐1𝑠

(1 + 𝑇𝑠𝑐𝑐2𝑠) (1 + 𝑇𝑠𝑐𝑐3𝑠)
≈ 𝐾𝑠𝑐𝑐

1 + 𝑇𝑠𝑐𝑐1𝑠
1 + 𝑇𝑠𝑐𝑐2𝑠

(2.5)

The remnant of the human operator model 𝑛 represents the cumulative sum of all nonlinear con-
tributions to the human manual control behavior (Pool et al., 2012), i.e. the portion of control behavior
that is not captured by the linear transfer functions 𝐻𝑝𝑣 (𝑠) and𝐻𝑝𝑚 (𝑠). In the paper by McRuer and Jex
(1967) it is said that, in ascending order of importance, the sources of remnant are due to the following:
1) pure noise injection by the human pilot, 2) nonlinear operations such as indifference thresholds,
control output and rate saturation, 3) nonsteady pilot behavior i.e. the parameters of the quasi-linear
pilot model can only be defined meaningfully as averages over certain time lengths, but in reality pilot
behavior has significant time variation during tracking.

The experiment by Pool et al. (2016) did not need a remnant model since the quasi-linear pilot model
was used to evaluate the individual tracking runs of participants (by fitting the human operator model
parameters to the data from the individual tracking runs), rather than used to simulate the participants’
pilot behavior. Therefore an implementation of remnant modeling was taken from a different research
by van der El et al. (2019). In this research the remnant is modeled as filtered white noise (i.e. colored
noise).

As proposed by Levison et al. (1969) the first-order low-pass filter shown in Eq. (2.6) (with gain 𝐾
and lag time-constant 𝑇𝑙) is used to capture the equivalent remnant spectrum injected at the error. A
relationship between the power-spectral density function of the remnant injected at the error 𝑆𝑛𝑛𝑒 (𝑗𝜔)
and the power-spectral density of a white noise source 𝑆𝑤𝑤 (𝑗𝜔) is defined as shown in Eq. (2.7). In
a compensatory control task the power-spectral density function of the remnant injected at the error
𝑆𝑛𝑛𝑒 (𝑗𝜔) can be approximated at the target frequencies 𝜔𝑡 and at the disturbance frequencies 𝜔𝑑
using Eq. (2.8) (derivation provided by van der El et al. (2019)). Here 𝑆𝑢𝑢𝑛 is the pilot control output
power-spectral density due to remnant 𝑛, 𝑆𝑢𝑢𝑑 due to disturbance 𝑓𝑑, and 𝑆𝑢𝑢𝑡 due to target 𝑓𝑡. 𝑆𝑓𝑑𝑓𝑑
and 𝑆𝑓𝑡𝑓𝑡 are the power-spectral density functions of the disturbance and target signal, respectively.

Now the filter gain 𝐾 and lag time-constant 𝑇𝑙 can be determined by using a least squares cost
function to fit the estimated remnant Eq. (2.8) to the remnant model Eq. (2.7). As a last step the
remnant can now be included in the pilot simulation by injecting filtered white noise (filter from Eq. (2.6)
with found 𝐾 and 𝑇𝑙) at the error.
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𝐻𝑛 (𝑗𝜔) = 𝐾
1

1 + 𝑇𝑙𝑗𝜔
(2.6)

𝑆𝑛𝑛𝑒 (𝑗𝜔) = |𝐻𝑛 (𝑗𝜔)|
2 𝑆𝑤𝑤 (𝑗𝜔) (2.7)

𝑆𝑛𝑛𝑒 (𝑗𝜔𝑑) =
𝑆𝑢𝑢𝑛 (𝑗𝜔𝑑)
𝑆𝑢𝑢𝑑 (𝑗𝜔𝑑)

𝑆𝑓𝑑𝑓𝑑 (𝑗𝜔𝑑)

𝑆𝑛𝑛𝑒 (𝑗𝜔𝑡) =
𝑆𝑢𝑢𝑛 (𝑗𝜔𝑡)
𝑆𝑢𝑢𝑡 (𝑗𝜔𝑡)

𝑆𝑓𝑡𝑓𝑡 (𝑗𝜔𝑡)
(2.8)

The implementation, accompanied with figures and quantitative results, of above explained human
operator model will be provided in Section 4.3.

2.3. Chapter Takeaways
This chapter explained two things: 1) what data will be used for this machine learning thesis and 2)
how a pilot model may be used to generate additional data.

The selected data that will be used to train the machine learning algorithm are data from an exper-
iment by Pool et al. (2016). In this experiment, a group of fully task-naive participants performed 100
training runs in a compensatory tracking task. This data set is ideal for this thesis, because it contains
pilot control behavior time traces of both inexperienced (at the start of training) and experienced (at the
end of training) participants.

Additional training data can be generated for the machine learning algorithm, this is known as data
augmentation. Having more training data reduces overfitting and increases classification accuracy.
Data augmentation can be achieved by transforming existing data (data warping), or by generating
synthetic data (oversampling).

Oversampling may be achieved by utilizing a quasi-linear pilot model to simulate additional pilot
behavior time traces. The proposed pilot model contains linear pilot-describing transfer functions and
a remnant that represents the nonlinear contribution to human manual control behavior.
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Artificial Neural Networks

As computing power increases, previously virtually impracticable tasks become executable by artificial
neural networks. With their rise in popularity more and more of the potential of artificial neural networks
is exploited. Applications span nearly every field of industry and academia; from translating text to
recognizing images or even generating completely new images from scratch.

This chapter will first explain the working principle behind this popular type of machine learning
algorithm. Next, different types of artificial neural networks are presented and their applicability for
time series classification is discussed.

3.1. Traditional Artificial Neural Networks
To begin to explain the working principle of artificial neural networks (ANN), it is easiest to start with
the simplest form: feedforward neural networks, also known as multilayer perceptrons (MLPs). This
type of network is often referred to as the ’traditional ANN’. The concept’s earliest description stems
from the 1800s, but the first realisation is described by Mcculloch and Pitts (1943). Due to the lack of
computational resources ANNs found no practical application until the late 1980s.

The goal of a feedforward neural network is to approximate some function 𝑓∗. For example if there
is a classifier that matches some input x to a class 𝑦 (i.e. 𝑦 = 𝑓∗(x)), then a feedforward network
tries to replicate this mapping with a function 𝑓 with parameters 𝜃𝜃𝜃 (i.e. 𝑦̂ = 𝑓(x;𝜃𝜃𝜃)). The values for 𝜃𝜃𝜃
are attained by learning from example mappings between input x and class 𝑦 (Goodfellow, Bengio, &
Courville, 2016).

3.1.1. Example of Simple Feedforward Neural Network
To better understand the description above, a schematic depiction of a fully connected feedforward
neural network is provided in Figure 3.1. The circles in Figure 3.1 indicate neurons, the colored rectan-
gles indicate layers. Each arrow between neurons is a connection, a ’fully connected network’ means
that each neuron is connected with every neuron on the next layer. The example feedforward neural
network provided in Figure 3.1 has an input layer with two neurons, one hidden layer with three neurons,
and an output layer with two neurons. Therefore, this specific network is able to take two input values,
and produce two output values. For a classification task the amount of output neurons is equal to the
amount of classes the network must be able to distinguish. Similarly, the amount of input neurons is
equal to the amount of input variables with which the classification must be performed. So for example,
the network depicted in Figure 3.1 could be ’trained’ to distinguish cats and dogs (two outputs) based
on weight and size (two inputs).

To explain how the neural network from Figure 3.1 could learn to distinguish two classes based
on two inputs, it must first be described how data flows through the neurons of a feedforward neural
network. Each neuron can hold a value, for input neurons this value is simply the provided input value,
but for all other neurons this value is a function of previous neuron values. The value a neuron takes
on is called the activation value (Nielsen, 2015).

65
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Figure 3.1: Schematic depiction of simple fully connected feedforward neural network with an input layer with two neurons, one
hidden layer with three neurons, and an output layer with two neurons

An explanation of how these activation values are calculated will be provided using Figure 3.2.
The activation values of the neurons in the hidden layer are denoted by 𝑎𝑖, each connection between
neurons has an associated weight denoted by 𝑤𝑖, and each arriving neuron has an associated bias
denoted by 𝑏𝑖. In Figure 3.2 focus is put on the first neuron of the hidden layer. The activation value of
this neuron, 𝑎1, can be calculated with equation Eq. (3.1).

𝑎1 = 𝜙 (𝑤1 ⋅ 𝑥1 +𝑤2 ⋅ 𝑥2 + 𝑏1) (3.1)

Figure 3.2: Example of values flowing from an input layer to a hidden layer. Each connection between neurons has an associated
weight, and each arriving neuron has an associated bias

Here 𝜙 is the activation function. Activation functions are used to have more control over the
activation value, by selection of activation functions certain properties can be introduced to the network
to optimise its performance. For example, if a network is trained to replicate some non-linear behaviour
then a non-linear activation function can be applied to introduce non-linearities into the network’s out-
put. An example of a popular non-linear activation function is the sigmoid function 𝜎 (Eq. (3.2)), this
function squishes the activation value between zero and one. A similar popular activation function is
the hyperbolic trigonometric tanh function (Eq. (3.3)). Unlike the sigmoid function the normalized range
of tanh is minus one to one, giving it the advantages of being better at dealing with negative numbers
(Patterson & Gibson, 2017).

In classification tasks themost commonly used activation function is the Rectified Linear Unit (ReLU)
(Eq. (3.4)). The use of this function as an activation function for classification tasks was introduced
by Nair and Hinton (2010). Networks with ReLU activation functions are more easily optimised than
networks with more complex activation functions (e.g. the sigmoid function) (Ramachandran, Zoph, &
Le, 2017). (Graphs of functions Eq. (3.2), Eq. (3.3), and Eq. (3.4) are provided in Appendix A)

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 (3.2)

tanh (𝑥) = sinh (𝑥) / cosh (𝑥) (3.3)
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𝑓(𝑥) =max(0, 𝑥) = { 𝑥𝑖 , if 𝑥𝑖 ≥ 0
0, if 𝑥𝑖 < 0 (3.4)

The activation values of all neurons in the hidden layer are calculated in the same way that 𝑎1 was
determined, i.e. by taking the sum of the connected input neurons multiplied by their respective weight
and adding a bias before applying an activation function, this is shown in Eq. (3.5). Here 𝑎𝑎𝑎 is vector
with the activation values of hidden layer,𝑊𝑊𝑊 is a matrix containing all weights between the input layer
and the hidden layer, 𝑥𝑥𝑥 is a vector with the input values, and 𝑏𝑏𝑏 is a vector with the biases of each neuron
in the hidden layer.

𝑎𝑎𝑎 = 𝜙 (𝑊𝑊𝑊 ⋅ 𝑥𝑥𝑥 + 𝑏𝑏𝑏) (3.5)

Once the activation values of the hidden neurons are determined they can pass on their values to
the output layer. The values of the output neurons are determined almost completely the same the
values of the hidden neurons. For example Eq. (3.6) and Figure 3.3 show how the value of the first
output neuron, 𝑦1, is calculated. (Mind that the weights and bias shown in Figure 3.3 are not the same
weights and bias as shown in Figure 3.2, they only have the same subscript to simplify the notation
of this example). This can be extended to calculate the vector with all output values 𝑦𝑦𝑦 as shown in
Eq. (3.7), now𝑊𝑊𝑊 is a matrix containing all weights between the hidden layer and the output layer, and
𝑏𝑏𝑏 is vector with the biases of the output neurons.

𝑦1 = 𝜙 (𝑤1 ⋅ 𝑎1 +𝑤2 ⋅ 𝑎2 +𝑤3 ⋅ 𝑎3 + 𝑏1) (3.6)

𝑦𝑦𝑦 = 𝜙 (𝑊𝑊𝑊 ⋅ 𝑎𝑎𝑎 +𝑏𝑏𝑏) (3.7)

A difference between the calculation of the output neurons activation values and the calculation of
the hidden neurons activation values, is that the output neurons will often have a different activation
function. In network designed for a classification task, such as the example network in this section, the
output neurons will most commonly apply a softmax activation function. The softmax function returns
the probability distribution over mutually exclusive output classes (Patterson & Gibson, 2017). This can
be explained more easily by coming back to the cats and dogs classification example: if output neuron
one (𝑦1) indicates cats and output neuron two (𝑦2) indicates dogs, then a network that is fully confident
it is classifying a dog would have output 𝑦𝑦𝑦 = [0, 1]𝑇. Now if the network was not as sure (perhaps it is
classifying a Chihuahua) it could have an output like 𝑦𝑦𝑦 = [0.4, 0.6]𝑇, indicating that it is 60% certain it
is a dog. If the output layer has 𝑛 neurons, then a softmax function can be applied to the output vector
𝑦𝑦𝑦 using Eq. (3.8). After applying the softmax activation function the sum of the output neurons should
be equal to one (total probability of 100%).

𝑠 (𝑦𝑦𝑦)𝑖 =
𝑒𝑦𝑖

∑𝑛𝑗=1 𝑒𝑦𝑗
(3.8)

Figure 3.3: Example of values flowing from a hidden layer to an output layer. Each connection between neurons has an associ-
ated weight, and each arriving neuron has an associated bias
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3.1.2. Training Artificial Neural Networks
Above description has shown how a feedforward neural network produces output values based on
its input. It has been explained that the weights and biases (and activation functions) in the network
combine and modify the input values into output values. But how does the network ’know’ what weights
and biases to use to produce the desired output values? This is found through training: the network
’learns’ the best set of trainable parameters (weights and biases) to produce the desired output. But to
find the ’best’ set of parameters, there must first be a measure of how well the network is performing.
This measure of performance is captured the loss function. Loss functions quantify the correctness
between the predicted (network) output and the ground truth output (Patterson & Gibson, 2017). In
other words: the loss function provides a number that quantifies how wrong the network output is, this
number is also known as the loss.

The form of loss calculation described above (comparing model output to ground truth output) is
only possible if there is correctly labeled data available. The form of machine learning where labeled
data is used to train learning algorithms is known as supervised learning.

There are different loss functions that can be used to calculate the loss. The choice of loss function
is completely dependent on the task that the network is trying to accomplish. A popular loss function
for networks performing regression tasks that require a real valued output is the Mean Squared Error
(MSE) loss (Patterson & Gibson, 2017). This loss function simply calculates the squared error between
the network output and the ground truth output and averages this between all points in the dataset. The
MSE loss function for a model with one output neuron is shown in Eq. (3.9), the same loss function for
a model with multiple output neurons is given in Eq. (3.10). In these equations𝑊𝑊𝑊 is a matrix containing
all the weights of the network, 𝑏𝑏𝑏 is a matrix containing all the biases of the network, 𝑁 is the scalar
amount of points in the dataset, 𝑦̂ is the network output, 𝑦 is the ground truth output, and 𝑀 is the
amount of output neurons. The MSE loss function as given by Eq. (3.9) very clearly demonstrates the
definition of loss: the difference between network output and actual output.

𝐿 (𝑊𝑊𝑊,𝑏𝑏𝑏) = 1
𝑁

𝑁

∑
𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)

2 (3.9)

𝐿 (𝑊𝑊𝑊,𝑏𝑏𝑏) = 1
𝑁

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1
(𝑦̂𝑖𝑗 − 𝑦𝑖𝑗)

2
(3.10)

As previously mentioned the choice of loss function is dependent on the task. The example feed-
forward neural network that has been discussed throughout this section is designed to perform a clas-
sification task. This means that for a certain input the network outputs the probabilities of each class’
chance of belonging to the input. The network can then simply select the class with the highest prob-
ability of being correct to classify the input. When the actual probabilities output by the network are
of greater interest than the hard classification logistic loss functions are used (Patterson & Gibson,
2017). These loss functions optimize for the maximum likelihood estimation (i.e. predicting the most
probable probability of each class). A loss function that accomplishes this for a mutually exclusive
classification task with 𝑀 classes is the categorical cross-entropy loss function, given by Eq. (3.11).

𝐿 (𝑊𝑊𝑊,𝑏𝑏𝑏) = −
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1
𝑦𝑖𝑗 ⋅ log 𝑦̂𝑖𝑗 (3.11)

Now that a measure of performance of the network (loss) has been established, it can be described
how the network ’learns’ from data. This learning, or training, of the network is done by an algorithm
called backpropagation. The goal of backpropagation is to compute the partial derivatives 𝜕𝐿/𝜕𝑤
and 𝜕𝐿/𝜕𝑏 of the loss function with respect to any weight 𝑤 and bias 𝑏 in the network (Nielsen, 2015).
The mathematical description of how exactly this algorithm operates is extensive (such a description
is provided by Nielsen (2015)) and out of scope of the explanation provided in this section. Therefore,
a brief approximate description will be provided here instead.

As the name suggests backpropagation moves backwards through the network, starting at the out-
put layer. At the output layer the loss is calculated and it is determined how the output neurons values
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𝑦̂̂𝑦̂𝑦 should change to reduce this loss (each individual output neuron value must either go up or down and
some by a greater magnitude than others). Next, it is determined how the weights 𝑊𝑊𝑊, biases 𝑏𝑏𝑏, and
activation values 𝑎𝑎𝑎 of the previous layer should change to obtain the desired changes to 𝑦̂̂𝑦̂𝑦 (remember
that the network output is calculated as shown in Eq. (3.7)). The desired change in activation values 𝑎𝑎𝑎
are again a function of different weights, biases, and activation values of the layer before that. Again it
is calculated how these weights, biases, and activation values must change. By repeating this process
and propagating back through the network there will eventually be mapping of how each weight and
bias in the network should proportionally change to reduce the loss, i.e. all 𝜕𝐿/𝜕𝑤 and 𝜕𝐿/𝜕𝑏 are found.
Once all the partial derivatives are known the weights and biases are updated in a proportion that most
effectively reduces the loss. The magnitude of the change in weights and biases (along the found pro-
portions) per learning step is determined by a user input scalar parameter known as the learning rate
𝛼. The magnitude of 𝛼 has a big influence on the learning performance: if 𝛼 is too small it can take
many training steps for the network to approach minimum loss (and it will be more likely to get stuck in
a poor local minimum), and if 𝛼 is too large it can easily overshoot the local minima. A schematic de-
piction of how 𝛼 influences the training performance is shown in Figure 3.4, here 𝜃 indicate the network
trainable parameters and 𝐿 is the loss.

The learning algorithm (optimizer) explained above is known as Gradient Descent. This optimiza-
tion method can be very computationally expensive, especially for large networks, because it requires
calculation of every single partial derivative before taking a step. Therefore other optimizers have been
introduced that speed up the learning process. For example by only determining the partial derivatives
of a stochastically selected subset of model parameters, or by using an adaptive learning rate 𝛼. Ex-
amples of optimizers that combine these types of techniques (and more) are AdaGrad (Duchi, Hazan,
& Singer, 2011), RMSProp (Tieleman & Hinton, 2012), AdaDelta (Zeiler, 2012), and most popularly
Adam (Kingma & Ba, 2014).

Figure 3.4: Influence of learning rate 𝛼 on loss 𝐿 minimization. Image taken from https://www.jeremyjordan.me/nn-learning-rate/

3.1.3. Improving Artificial Neural Networks’ Performance
Now that the working principle of artificial neural networks has been explained and a foundation has
been laid on how these algorithms are able to learn from examples, it must be explained how the
learning performance can be measured and improved. This section will briefly touch upon some basic
principles that are essential to understand how network effectiveness can be enhanced.

As has previously been explained, ANNs require training data to learn. However, in order to evaluate
the performance of ANNS, an additional data set is required: testing data. This additional data set is
required to simulate the effectiveness of the trained neural network in a real application, i.e. it must be
able to classify data that it has not seen yet. Therefore, the achieved performance on testing data is
what indicates the potency of the ANN, not the performance on the training data. In order to obtain this
additional data set, the complete data set is simply split into two parts: train data and test data.

To get accurate network performance measures, it should be ensured that there is an even distri-
bution of classes in the train- and test data. Using the cat and dog example: if all the dog data points

https://www.jeremyjordan.me/nn-learning-rate/
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end up in the training data and all the cat data points in the testing data, then the network only learns
to recognize dogs, but is evaluated in its ability to recognize cats.

During the training of the network, the entirety of the training data can be passed to the network
multiple times. Each cycle the backpropagation algorithms makes through the training data is called
an epoch. The first few epochs are beneficial to increase the classification performance of the network,
since the backpropagation algorithm keeps updating the weights to better fit the training data. However,
after too many epochs, the neural network becomes specifically good at recognizing the training data,
but its performance starts deteriorating on the test data. This is known as overfitting (Nielsen, 2015).
A schematic depiction of what this looks like is shown in Figure 3.5.

Overfitting can be recognized by increasing evaluation loss, or decreasing evaluation accuracy.
During training the trainable network parameters should be saved in checkpoints, so that the best pa-
rameters (right before overfitting) can be retrieved after the training is done.

Besides the trainable model parameters, there are also fixed parameters that can be tuned to make
networks train better and faster. These tuning parameters are known as hyperparameters. ”Hyperpa-
rameter selection focuses on ensuring that the model neither underfits nor overfits the training dataset,
while learning the structure of the data as quickly as possible” (Patterson & Gibson, 2017). Examples
of hyperparameters are the amount of hidden layers, amount of hidden neurons, or the learning rate.

Figure 3.5: Schematic depiction of what overfitting looks like.

The previous sections provided an explanatory example of a simple feedforward neural network,
also referred to as ’traditional ANNs’. In practice, these networks will have more hidden layers and
more neurons per layer than was depicted in Figure 3.1, but the working principle remains the same.
If a network has a large number of neurons (and layers) it is called a deep network. The next section
will discuss different and more complex types of deep networks that have been developed to tailor to
specific functionalities.
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3.2. The Four Major Architectures of Deep Networks
There is a very wide range of existing forms of artificial neural networks (ANN), but each form excels
at a different type of task. These different ’forms’ of ANNs are distinguished by their ’architecture’. The
architecture of a neural network describes the way the neurons operate and how they are connected.
In this section an overview will be provided of different types of neural networks and their respective
advantages.

To provide a list of all existing artificial neural network architectures is unworkable, as new archi-
tectures are constantly being developed, the list would never be complete. However, these endless
examples of artificial neural network architectures being developed do generally rely on the same prin-
ciples. Often these principles are combined in sequence or parallel to produce new architectures, which
fundamentally exist out of the same building blocks. A division of ’the four major architectures of deep
networks’ is described by Patterson and Gibson (2017) (here ’deep networks’ are defined as neural
networks with a large number of parameters and layers). The four major network architectures are as
follows:

• Unsupervised Pretrained Networks (UPNs)

• Convolutional Neural Networks (CNNs)

• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks (Recursive NNs)

Extensive descriptions of each of these architectures are provided by Patterson and Gibson (2017).
In this report, however, each of these fundamental architectures will only be briefly explained. This
is because not all four of these architectures are designed to be directly applicable for time series
classification (TSC). Still, many state of the art TSC ANNs combine components of aforementioned
architectures to create newer and better performing neural networks. Therefore this elementary un-
derstanding of the major types of neural network structures will be crucial to comprehend the neural
network architectures that will be proposed for this research. More detailed and specific descriptions
of those proposed ANNs will be provided in Section 3.3.

3.2.1. Unsupervised Pretrained Networks
As the name suggests, Unsupervised Pretrained Networks (UPNs) undergo unsupervised learning
before they start (supervised) training with labeled data. More specifically, there is a greedy layer-
wise unsupervised pre-training phase followed by supervised fine-tuning (Erhan, Courville, Bengio, &
Vincent, 2010). Simply put, the neural network is first accustomed to the training data before it starts
the training phase.

The first examples of this method are Hinton, Osindero, and Teh (2006) who trained a Deep Belief
Network (DBN), and Bengio, Lamblin, Popovici, and Larochelle (2006) and Ranzato, Poultney, Chopra,
and LeCun (2007) who used stacked auto-encoders (both these networks are examples of generative
models, they are described in more detail in Patterson and Gibson (2017)). These generative models
are tasked to generate output data that resembles the input data. The idea is that, by replicating the
input data, the generativemodels can already learn low-level features from data without requiring labels.
Using the cat and dog image classification analogy: it is as though the neural network already learns
some of the features of cats and dogs, before learning which feature belongs to which animal. This way
the network already knows what to look for when it starts its supervised learning process. By doing so,
the weights of the network are initialized such that they are closer to a global optima when entering the
supervised training phase (this avoids the network from getting stuck in a poor local minimum (Bengio
et al., 2006)).

A visual representation of above described method is shown in Figure 3.6 (Wang & Gupta, 2015).
Here a Convolutional Neural Network (explained in the next subsection) is tasked to detect objects in
video images. By first performing unsupervised pretraining the Convolutional network already shapes
its weights (called filters) and later fine-tunes them during the supervised learning phase. Observe how
the filters already start to form the general shapes during unsupervised pre-training which are later more
prominently defined during fine-tuning. If there was no pre-training then all the filters in Figure 3.6 (a)
would be randomly initialised and look like noise. Research has shown that unsupervised pre-training
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often leads to lower classification errors than random initialization, especially when the learning data is
sparse (Erhan et al., 2010).

Figure 3.6: Convolutional filters visualisation. (a) The filters of a convolutional layer after unsupervised pretraining. (b) The same
convolutional layer after supervised training (fine-tuning). Image taken from Wang and Gupta (2015).

The research of Wang and Gupta (2015) is an example of the previously made remark that the four
major architectures of deep networks are often combined (in this case an Unsupervised Pretrained
Network is combined with a Convolutional Neural Network). The next subsection will elaborate on
working principle of Convolutional Neural Networks, and explain how the ’filters’ shown in Figure 3.6
work.

3.2.2. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) emerged due to the need of effective feature extraction from
images. Traditional forms of ANNs tend to struggle with the computational complexity required to handle
image data (O’Shea & Nash, 2015). Simple images of a small size, such as the MNIST database
(LeCun & Cortes, 2010) (a large labeled database of 28x28 pixels images of handwritten digits), can
be effectively classified by traditional ANNs. However, once the size of the image increases and the
objects in the images become more complex these traditional ANNs fall short. The idea behind CNNs
(as first introduced by LeCun, Bottou, Bengio, and Haffner (1998)) is that not every pixel is used as
a separate input to a deep network (and fed through many layers with the hope of generalizing), but
instead higher order features are extracted from the data which will be more likely to generalize between
different data sets.

The biological inspiration for CNNs is the visual cortex in animals (Eickenberg, Gramfort, Varo-
quaux, & Thirion, 2017). The cells in the visual cortex each cover a subset of the visual input (visual
field) of the eye. This way the brain is able to recognize shapes and edge-like patterns.

Conceptually, if a computer was tasked to recognize a beach, a traditional ANN would look at every
grain of sand individually, whereas a CNN would instead look at the shape of the coast line and the
color of the sand.

There are two reasons why the traditional ANN does not perform well at image classification: one,
this granular approach does not generalize well with other instances, and two, it takes way too much
memory and computational power (imagine inspecting a 600x600 pixels gray scale image pixel by
pixel, this would already require 360,000 input neurons, i.e. 360,000 weights for each neuron in the
first hidden layer and this would be three times more for a RGB (Red Green Blue) color image).

CNNs handle image data more efficiently by applying multi-dimensional sliding filters to extract fea-
tures from the image (this will be explained in more detail in the next paragraph). In Figure 3.7 a
schematic depiction of a CNN trained to distinguish a city from a beach is given. Notice how the input
data is reduced to smaller arrays until it is ultimately fed to two neurons that decide the class of the
image. There are five layers visible in Figure 3.7: the input layer, the convolutional layer, the pooling
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layer, and two fully-connected layers (from left to right). Each of these types of layers will be briefly
explained separately.

Figure 3.7: Schematic depiction of a CNN performing an image classification task. Image taken from Patterson and Gibson
(2017)

The input layer is where the raw image data enters the network. If a gray scale image is used as
input, then this layer has a two-dimensional shape: the width and height of the image (in pixels). Each
value in this array represents the brightness of the pixel. If the input image has colors then the input
layer has a three-dimensional shape: the width, height, and number of channels. Typically the number
of channels will be three, for RGB images. For the sake of simplicity, the following explanation will
assume a two-dimensional input.

The convolutional layer is what truly distinguishes the CNN from traditional ANN. In this layer there are
multiple kernels (or filters). The user defines the amount of kernels and the size of each kernel. These
kernels then slide across the input data to produce the convoluted feature (output data) (Patterson &
Gibson, 2017). The kernel is multiplied with the input data creating a single entry in the output data for
each step it takes sliding across the input data. An example of this process is shown in Figure 3.8. The
size of the output data depends on the size of the kernel and the magnitude of the steps (also known
as stride) it takes as it glides over the input data. The kernel in the example given in Figure 3.8 has
values of one across the diagonals and zeros elsewhere, this forms a cross (a feature). By performing
the convolution operation over the input data this kernel acts as a feature detector: the higher the value
in the output data, the more present the feature (in this case a cross) is in that area. If, for example,
the kernel only had ones on the diagonal then it would detect slanted lines. The values in the kernel
are randomly initialized and then updated by learning (just like a regular ANN learns by updating its
weights), this means that the CNN automatically learns what features to look for when training.

The output of the convolutional layer is also referred to as an activation map: it shows to what extend
activated neurons decided to let information flow through (Patterson & Gibson, 2017). The activation
map is commonly combined with an activation function (typically ReLu) to produce the final output of
the convolutional layer.

There often are multiple convolutional layers present in a CNN, the first ConvLayer will recognize
low-level features such as edges and colors, the following ConvLayer will combine these low-level fea-
tures into higher level features, and so on. An example of these different filters at different convolutional
layers is shown in Figure 3.9.
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The pooling layer takes the output of the convolutional layer and decreases the spatial dimensionality,
this is done to further reduce the amount of parameters and the computational complexity of the model
(O’Shea & Nash, 2015). Pooling is a fairly simple mathematical operation where a sliding window glides
over the input and produces a smaller output. The most commonly used pooling type is max-pooling
(O’Shea & Nash, 2015), here each element in the output is the maximum value of the input in the sliding
window. Much like in a convolutional layer, the user will have to define the window size (kernel size)
and the sliding step magnitude (stride) of the pooling layer. An example of a max-pooling operation
with a 2x2 kernel size and a stride of 2 is shown in Figure 3.10. Other types of pooling operations
include normalizing or averaging the input of the sliding window.

The fully-connected layers at the end of the network enable the computation of class scores (Patter-
son &Gibson, 2017). The amount of output neurons of the fully-connected layers is equal to the amount
of classes the network must be able to identify. Each pixel value that comes out of the pooling layer is a
separate input to the fully-connected layers. This part of the network operates like a traditional ANN, the
only difference is that the input has been simplified in such a way that generalisation becomes possible.

Figure 3.8: Example of kernel sliding across input data to produce convoluted feature (output data). Image taken from Patterson
and Gibson (2017)

Figure 3.9: Examples of kernels at different convolutional layers. The first layer (on the left) has kernels that recognize low-level
features, the next convolutional layer combines these low-level features into higher order features, and so on. Image taken from
https://twopointseven.github.io/2017-10-29/cnn/

Figure 3.10: Example of max-pooling operation with a 2x2 kernel and stride of 2. The input is shown on the left, the output on
the right. Image taken from https://twopointseven.github.io/2017-10-29/cnn/

https://twopointseven.github.io/2017-10-29/cnn/
https://twopointseven.github.io/2017-10-29/cnn/
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Above explanation described the simplified working principle of each type of layer in a CNN. In practice
CNNs will often stack multiple convolutional layers and pooling layers to gradually extract higher level
features from the input image and ultimately classify them. In Figure 3.11 a schematic of a general
CNN architecture is shown (in this image the ReLU activation function is indicated as a separate layer,
but it can also be included within the convolutional layer). The weights of the convolution layers, as
well as the fully connected layers, are calculated by training with a backpropagation algorithm.

Although CNNs were originally designed for computer vision applications, they are now also being
applied to different types of tasks such as natural language processing (Wang & Gang, 2018) and also
time series classification (Zheng, Liu, Chen, Ge, & Zhao, 2014).

Figure 3.11: General CNN architecture schematic. Image taken from Patterson and Gibson (2017)

3.2.3. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are similar to feedforward neural networks (like the example that
was provided in Section 3.1). The big difference is, however, that RNNs have the ability to send in-
formation between different time steps (Patterson & Gibson, 2017). This makes RNNs suitable for
modeling functions that have an input and/or output that is time dependent.

To explain this consider the simple feedforward network that was presented in Figure 3.1. This
network had an input vector 𝑥𝑥𝑥 and produced an output vector 𝑦𝑦𝑦. Now imagine that the input and output
of this network had time dependencies between values, i.e. the input and output vector would look like
𝑥𝑥𝑥 (𝑡) and 𝑦𝑦𝑦 (𝑡). Then it would be ineffective to consider each sample 𝑥𝑥𝑥𝑖 and 𝑦𝑦𝑦𝑖 individually per time
step (𝑥𝑥𝑥𝑖 = 𝑥𝑥𝑥 (𝑡 = 𝑖), 𝑦𝑦𝑦𝑖 = 𝑦𝑦𝑦 (𝑡 = 𝑖)), since this would completely ignore the time dependencies between
these samples. To solve this, a recurrent property must be added to the hidden neurons in the network;
the hidden neurons in the network must have a memory of sorts so that they can pass on information
between different time steps. This idea of recurrence has already been around since Minsky and Pa-
pert (1969), but was first dubbed a recurrent network by Rumelhart, Hinton, and Williams (1986). A
schematic representation of what above explanation looks like is shown in Figure 3.12. In this example
a sequence of inputs 𝑥𝑥𝑥 (𝑡) and outputs 𝑦𝑦𝑦 (𝑡) of length 𝑇 and time step size 𝑑𝑡 is passed through an
RNN. Precisely this ability of an RNN to be able to handle sequences is what makes it unique.

There are several ways an RNN can handle a sequence. In Figure 3.12 the handling is many-to-
many, this means that for the sequence of input vectors there is an (equally large) sequence of output
vectors. This type of handling is desirable if there must be an output at every time step. If the goal is to
produce one output vector for a sequence of input vectors (as is the case for time series classification)
then it is desirable to have a many-to-one mapping. This latter type of handling is shown in Figure 3.13,
here an input time sequence of length 𝑇 with two variables (𝑥1 (𝑡) and 𝑥2 (𝑡)) produces a single output
vector. This can, for example, be used to classify an entire sequence as one class. Common exam-
ples of RNN applications are text generation, natural language processing, and time-series analysis
(Patterson & Gibson, 2017).
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Figure 3.12: Schematic representation of an RNN passing information between different time steps (many-to-many mapping)

Figure 3.13: Schematic representation of an RNN passing information between different time steps (many-to-one mapping)
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To enable the passage of information between different time steps, the hidden neurons in an RNN
operate differently than hidden neurons in a regular feedforward network. Namely, hidden neurons in
an RNN (also known as ’hidden units’) have what is called a hidden state ℎ. The hidden state of each
hidden unit at 𝑡 (ℎ𝑡) is a function of both the input of that hidden unit at 𝑡 (𝑥𝑡) as well as the hidden state
at the previous time step ℎ𝑡−1. At each time step the hidden state that is transferred to the next time
step is calculated with Eq. (3.12), the initial condition ℎ0 is equal to zero. Here 𝜙 an element-wise non-
linear activation function, typically a sigmoid or hyperbolic tangent. The output of the hidden neuron
at each time step 𝑧𝑡 is calculated using Eq. (3.13) (Eq. (3.12) and Eq. (3.13) are taken from Donahue
et al. (2014)). In these two equations𝑊, 𝑈, and 𝑉 are trainable weights and 𝑏 indicate trainable biases.
This inner working of an RNN hidden unit (or ’RNN cell’) is schematically explained by Figure 3.14.

ℎ𝑡 = 𝜙 (𝑊 ⋅ 𝑥𝑡 + 𝑈 ⋅ ℎ𝑡−1 + 𝑏ℎ) (3.12)

𝑧𝑡 = 𝜙 (𝑉 ⋅ ℎ𝑡 + 𝑏𝑧) (3.13)

Figure 3.14: An RNN cell calculates a hidden state ℎ𝑡 and a cell output 𝑧𝑡 based on the current cell input 𝑥𝑡 and the cell’s
previous hidden state ℎ𝑡−1

A major drawback of RNNs is that it is difficult to train them to learn long-term dynamics. A solution
to this problem (also known as the ’vanishing gradient’ problem) was found by Hochreiter and Schmid-
huber (1997). Here a new type of recurrent neural networks, known as the Long Short-Term Memory
(LSTM), was introduced. The solution lies in the LSTM’s hidden units’ capability to learn when to forget
previous hidden states and when to update hidden states given new information. This capability is
achieved by the more complex design of hidden units in an LSTM, shown in Figure 3.15. These hidden
units, also known as ’memory blocks’ or ’LSTM cells’, consist of four sub-units: the forget gate, input
gate, internal memory cell, and output gate. A summarized description, as given by Versteeg (2019),
of each of these sub-units is provided in the following paragraphs.

Forget gate: The forget gate determines how much of the previous internal cell state 𝐶𝑡−1 will be kept.
A ’remember’ vector 𝑓∗𝑡 is calculated based on the previous hidden state ℎ𝑡−1, the current input vector
𝑥𝑡, their associated weights 𝑈𝑓 and𝑊𝑓, and a bias 𝑏𝑓, as is shown in Eq. (3.14) (at each gate the weight
matrix belonging to ℎ𝑡−1 and 𝑥𝑡 will be denoted as 𝑈 and𝑊, respectively. The bias of each gate is 𝑏).

A sigmoid function 𝜎 (⋅) squishes the values of 𝑓∗𝑡 between 0 (=forget) and 1 (=keep). By taking the
dot product (denoted by⊙) of 𝐶𝑡−1 and 𝑓∗𝑡 only a selective part of the previous cell state is remembered
and carried over to the internal memory cell.

𝑓∗𝑡 = 𝜎 (𝑈𝑓ℎ𝑡−1 +𝑊𝑓𝑥𝑡 + 𝑏𝑓) (3.14)

Input gate: The input gate produces a vector 𝐶̃𝑡 containing the potential values to update the previous
internal cell state is calculated with Eq. (3.16).

Additionally a ’save’ vector 𝑖𝑡 (Eq. (3.15)) is computed based on the previous hidden state and
current input. Through a dot product this save vector will determine which part of the potential cell state
𝐶̃𝑡 is transferred to the new cell state 𝐶𝑡

Notice the different activation functions used. The sigmoid function 𝜎 (⋅) used in Eq. (3.15) pushes
the values of 𝑖𝑡 between 0 and 1, allowing scaled selective conduction of 𝐶̃𝑡. On the other hand, the
hyperbolic tangent function tanh (⋅) used in Eq. (3.16) transforms the values of 𝐶̃𝑡 between -1 and 1,
allowing both decrease and increase of the cell state.

𝑖𝑡 = 𝜎 (𝑈𝑖ℎ𝑡−1 +𝑊𝑖𝑥𝑡 + 𝑏𝑖) (3.15)



78 3. Artificial Neural Networks

𝐶̃𝑡 = tanh (𝑈𝑐ℎ𝑡−1 +𝑊𝑐𝑥𝑡 + 𝑏𝑐) (3.16)

Internal memory cell: As is shown in Eq. (3.17) the internal memory cell calculates the (new) internal
cell state 𝐶𝑡 by simple addition of the previously described components. Effectively, it is a combination
of a selective part of the previous internal cell state 𝐶𝑡−1 and a selective part of the potential cell state
𝐶̃𝑡.

𝐶𝑡 = 𝑓∗𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡⊙ 𝐶̃𝑡 (3.17)

Output gate: The output gate determines what to output based on the (new) cell state 𝐶𝑡, the previous
hidden state ℎ𝑡−1, and the current input 𝑥𝑡 (Eq. (3.18) and Eq. (3.19)). Notice that unlike in the RNN
cell there is no separate cell output and hidden state. Instead the (new) hidden state ℎ𝑡 serves as both
cell output to the next layer, as well as hidden state output to the next time step.

𝑜𝑡 = 𝜎 (𝑈𝑜ℎ𝑡−1 +𝑊𝑜𝑥𝑡 + 𝑏𝑜) (3.18)

ℎ𝑡 = 𝑜𝑡⊙ tanh (𝐶𝑡) (3.19)

Figure 3.15: Schematic depiction of an individual LSTM cell’s structure. Image taken from Versteeg (2019)

3.2.4. Recursive Neural Networks
The fourth and final major architecture that will be discussed is the Recursive Neural Network (Recur-
sive NNs). These networks were first proposed by Sperduti and Starita (1997) with the goal of enabling
neural networks to represent and classify structured patterns. By the introduction of a generalized
recursive neuron networks gain the ability to model hierarchial structures in the training data set. In
Figure 3.16 it is shown how different neuron models are suited for different types of input patterns.
Technically, recurrent neurons are a specific form of recursive neurons that only considers the output
of the unit in the previous time step, whereas generalized recursive neurons consider all the outputs of
the unit that can be formed depending on the input.

More recent work by Socher, Lin, Ng, and Manning (2011) displays the effectiveness of recursive
networks in parsing images and sentences. The idea of Recursive NNs, as they are applied in this
work, is to recursively merge pairs of representations of smaller segments to get representations that
cover bigger segments. This recursive pattern is followed until a representation of the entire input is
made.

A practical example of how this hierarchical structure of representation of segments can be used is
in image classification. It can be difficult to parse an entire image, especially if that image contains a
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lot of different elements. Recursive networks allow a granular approach that merges semantic repre-
sentations of segments to produce a classification for the entire scene. An example of what this looks
like is shown in Figure 3.17, from each segment features are extracted and fed to a deep learning net-
work that produces a semantic representation. These representations are then recursively combined,
as previously described. At each recursive step that combines two semantic representations, the Re-
cursive NN produces three outputs (Socher et al., 2011): 1) a score that is higher when neighboring
regions should be merged into one region, 2) a new semantic representation of this merged region,
and 3) the class label of the merged region. Following this recursive pattern will eventually provide a
class label of the entire scene.

The same algorithm can also be used to parse natural language sentences (Socher et al., 2011). In
precisely the same granular way that the image was classified, a sentence can be parsed. Fist words
are mapped to semantic representations, which are then merged into phrases, which are also mapped
to a semantic representation and merged. The recursive neural network produces the same three
outputs that were previously described, the only difference is that the class labels are now phrase types
such as ’noun phrase’ or ’verb phrase’. Again, following the recursive pattern a semantic representation
of the entire sentence can be composed.

Figure 3.16: Different neuron models are suited for different inputs. The standard neuron is good for handling unstructured
patterns, the recurrent neuron for sequences of patterns, and the recursive neuron for (hierarchy) structured patterns. Image
taken from Sperduti and Starita (1997)

Figure 3.17: Illustration of recursive neural network architecture which parses images. Segment features (orange) are first
mapped into semantic representations (blue) and then recursively merged by the same neural network until they represent the
entire image. Image taken from Socher, Lin, Ng, and Manning (2011)
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3.2.5. Deep Network Architectures Summary
Table 3.1 summarizes the information that has been provided about the four major architectures of
neural networks: Unsupervised Pretrained Networks, Convolutional Neural Networks, Recurrent Neu-
ral Networks, and Recursive Neural Networks (Patterson & Gibson, 2017). A short explanation of each
of the four major architectures is provided under the ’description’ column of Table 3.1.

The ’purpose’ column gives examples of types of tasks that each class of networks is typically used
for. Note that the architectures are not limited to the listed purposes and that they are also applied
outside of the domain that they were designed for (e.g. Zhu, Chen, and Peng (2019) deploy a CNN
architecture to estimate the remaining useful life of bearings based on time frequency representations
of degradation signals, or Mohan and Gaitonde (2018) uses an RNN to model reduced order temporal
dynamics of turbulent flow).

Table 3.1: Summary of the information that has been provided about the four major architectures of neural networks (Patterson
& Gibson, 2017).

Architecture Description Purpose
Unsupervised
Pretrained
Networks
(UPNs)

These networks undergo an unsuper-
vised pretraining phase in which they
are tasked to reconstruct input data.
This generation of data can be the goal
itself, but it can also be utilized to ini-
tialize the trainable parameters of the
network closer to a global optimum.

Reconstruction of the input data can be
used to

• Initialize weights (to improve
learning performance, especially
if training data is sparse)

• Generate images, sounds, or
video

Convolutional
Neural Networks
(CNNs)

This architecture of neural networks
was built to effectively handle multi-
dimensional data. It has an unmatched
performance in analyzing visual im-
agery. A sliding kernel, or filter, is ap-
plied to the input data to create a fea-
ture map. By extracting and combining
features of different levels of abstrac-
tion, CNNs can recognize larger con-
structions of objects.

Designed for computer vision tasks
such as

• Image classification
• Image processing (e.g. compute
a steering command for an au-
tonomous vehicle based on cam-
era input)

• Three-dimensional data process-
ing (e.g. MRI data or 3D shape
data)

Recurrent Neural
Networks
(RNNs)

The recurrent property of the neurons
in this class of networks allows the
modeling of time dependent behavior.
By giving the neurons a hidden state
(a memory of sorts), the network can
incorporate data from previous time
steps to produce output. This allows
RNNs to ’understand’ context in se-
quences with interdependencies.

Able to handle sequential data and thus
applicable for e.g.

• Natural Language Processing
• Text generation
• Sequence generation or classifi-
cation

Recursive Neural
Networks
(Recursive NNs)

This class of networks recursively com-
bines segments of input data to obtain
a semantic representation of the entire
input. This process produces a tree of
patterns that enables the handling of
complex structures.

Modeling the hierarchical structure of
data can be used in

• Natural Language Processing
• Text semantic analysis
• Image decomposition and classi-
fication
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3.3. Artificial Neural Networks for Time Series Classification
This section will address which of the previously introduced types of Neural Networks may be applied
for the TSC task of this thesis. As previously mentioned, the properties of the discussed major types of
architectures are not mutually exclusive. This means that their strengths can be combined to optimize
the TSC performance.

In order to identify what type of neural network would be applicable for this thesis, a review of existing
ANN TSC literature is presented in Section 3.3.1. It was found that, from the four major architectures,
mainly Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are used for
TSC. Recursive Neural Networks (Recursive NNs) are rarely mentioned in TSC literature. Unsuper-
vised Pretrained Networks, however, remain a viable option to use in combination with other network
architecture to enhance their performance.

After qualitatively comparing RNNs and CNNs, Section 3.3.2 will provide a more specific description
of the selected ANN architectures for each stage of this thesis. Additionally, some potential hybrid
architectures are presented.

3.3.1. Recurrent Neural Networks versus Convolutional Neural Networks
As has been stated in the introduction, the goal of this thesis is to effectively distinguish trained- and
untrained pilots based on time traces of their control behavior. A similar thesis by Versteeg (2019) also
used artificial neural networks to classify pilot behavior based on pilot time traces. However, the goal
of Versteeg (2019) was not to recognize pilot skill level, but to identify the dynamics of the element
the pilot was controlling. Although the goals of these theses are different, the definition of the task is
identical: both theses attempt the utilize artificial intelligence to classify time traces of pilots. Therefore,
the conclusions drawn by Versteeg (2019) are useful for the purpose of this thesis.

From the work of Versteeg (2019) it followed that LSTM networks (Hochreiter & Schmidhuber, 1997)
can effectively be utilized to classify time recordings of pilot control behavior. In a preliminary experi-
ment a comparison was made between the performance of an LSTM networks versus that of an SVM
model(Evgeniou & Pontil, 2001). From this preliminary experiment it followed that the LSTM network
was the favored option to perform the TSC task. Choosing LSTM (a form of Recurrent Neural Net-
works) is a logical option since these networks were specifically designed to handle sequential data
(as has been discussed in Section 3.2.3). There are more examples of RNNs effectively analyzing
human control behavior: for example Saleh et al. (2017) used an LSTM network to classify driving
behavior, and Jain et al. (2016) used an LSTM architecture to anticipate driver activity.

Although RNNs appear to be the straightforward option for TSC, a literature review by Fawaz et al.
(2019) found that Convolutional Neural Networks are the most widely applied architecture for the TSC
problem. This is likely due to their robustness and their relatively short training time compared to RNNs
(Fawaz et al., 2019). CNNs are quicker to train because they allow parallel computing of the trainable
parameters, unlike RNNs which require sequential updates (due to the nature of the architecture).
Another benefit of using CNNs is that it enables Class Activation Mapping (CAM), as first introduced
by Zhou, Khosla, Lapedriza, Oliva, and Torralba (2016). CAM enables the visualisation of what part of
the input data contributed the most for given a specific classification. This method was first applied for
TSC by Wang et al. (2017) who highlighted what part of a univariate time series belonged to each class
to make the model output interpretable. Model interpretability will be further discussed in Section 3.4.

It is difficult to predict which network architecture, RNN or CNN, will outperform the other. The
performance of each network is largely dependent on the task, thus either architecture can excel in
performance depending on the exercise. There is little literature available that makes a fair compar-
ison between RNNs and CNNs. However, there are examples that show that CNNs can outperform
RNNs in time series classification (Gao, Hendricks, Kuchenbecker, & Darrell, 2016) and time series
modeling (Mittelman, 2015). Since no quantitative comparison can bemade between the two networks,
a qualitative trade-off was made by listing the advantages and disadvantages of each architecture. The
result of this qualitative comparison is captured in Table 3.2.
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Table 3.2: Advantages and disadvantages of using RNNs and CNNs for TSC.

Architecture Advantages Disadvantages
Recurrent Neural
Networks

• Easy to implement since the net-
work is specifically designed for
sequential data

• Proven effectiveness in classify-
ing pilot control behavior (Ver-
steeg, 2019)

• Good at modeling time depen-
dent data (Patterson & Gibson,
2017)

• May suffer from vanishing gradi-
ent problem (Bengio, Simard, &
Frasconi, 1994)

• Can not easily interpret network
parameters

• Takes more computation time to
train network (Fawaz, Forestier,
Weber, Idoumghar, & Muller,
2019)

Convolutional
Neural Networks

• Interpretable network parame-
ters allow CAM (Zhou, Khosla,
Lapedriza, Oliva, & Torralba,
2016)

• Faster training of network due to
increased parallelism (Bradbury,
Merity, Xiong, & Socher, 2016)

• Most commonly used for TSC
(Fawaz, Forestier, Weber,
Idoumghar, & Muller, 2019)

• No proven effectiveness in the
specific topic of this thesis

• Not specifically tailored for se-
quential data handling, and thus
potentially more difficult to imple-
ment

3.3.2. Motivation of selected methods
In this section, the collected information from literature will be utilized to choose which neural network
architecture(s) will be used for this thesis. The previously provided explanations of the four major archi-
tectures described the overarching working principles of each class of neural networks. There are many
options of different neural networks structures within each of these classes of architectures. Therefore,
after selecting the overarching architecture, this section will also give a more detailed description of the
exact neural network structure within its class that seems most promising for the purpose of this thesis.

There are two phases in this thesis: a preliminary phase (this report) and a main phase. The two
phases both have different goals. Namely, the preliminary phase is to explore available methods from
literature and to get a good understanding of the subject. In the preliminary phase there is also a
preliminary experiment. This experiment is conducted to briefly test if, and how well, the collected
theoretical method works in practice. This practical knowledge will also allow to compose a detailed
plan of how time and effort should be spent in the main phase.

In the main phase of this thesis an experiment will be conducted with the aim to acquire new findings
and potentially close an academic gap. The final conclusion of this thesis will be based on the results
of the main phase. Therefore, in the main phase, an optimal neural network model must be extensively
tested under different conditions to be able to gather legitimate conclusions.

In short, the two phases have different goals: the first phase is to explore and to test feasibility,
whereas the second phase is to extensively experiment and optimize so that conclusive results can be
found that add to the existing academic body of knowledge. Given the different nature of each phase,
the decision was made to use different neural network architectures for the two phases. An explana-
tion of what neural network structure will be tested in each phase (and why) is provided in the following
paragraphs.

Preliminary phase: As has just been explained, the goal of this phase is to explore and to test feasi-
bility. Therefore, it is important that the neural network architecture used for the preliminary experiment
helps to fulfill this goal. Based on the information gathered in Table 3.2 it is was decided that Recurrent
Neural Networks are the best suited for the preliminary experiment.

This decision was made based on the first two advantages listed in Table 3.2. 1) Since RNNs are
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easy to implement for TSC, they require less time to employ. This is ideal for brief prototyping. 2) Given
the proven effectiveness of RRNs to classify pilot control behavior (Versteeg, 2019), a lot of settings
can be directly taken from the existing work. This allows to quickly test the feasibility of using deep
neural networks to identify pilot skill level. If poor results are found, they are likely not because of bad
settings, but because the concept is infeasible.

Since the decision to use RNNs for the preliminary experiment was largely based on the findings
of Versteeg (2019), it was also decided to use the same neural network structure as was used by Ver-
steeg. The neural network model structure used is a stacked LSTM structure inspired by Saleh et al.
(2017), combined with the rule of thumb hyperparameter settings from Reimers and Gurevych (2017).
An exact detailed description of this network is provided in Section 4.2.1.

Main phase: The main phase of this thesis aims to provide conclusive remarks about the usability
and performance of deep learning for pilot skill level prediction. Based on the information shown in
Table 3.2 it was decided that Convolutional Neural Networks are the class of neural networks that are
most suitable to accomplish the goal of the main phase.

The three advantages of CNNs shown in Table 3.2 sum up the motivation to employ this architecture
in the main phase. 1) The trained parameters of CNNs can be used to generate Class Activation Maps.
This method visualizes the ’reasoning’ of the network to predict a certain class as output. There are
methods that produce these types of visualizations for RNNs too (as will be discussed in Section 3.4).
However, it is favorable to be able to directly gain insight from the trained network parameters, since this
mitigates the chances of misinterpreting model output and it removes the need of additional explain-
ability algorithms. 2) Because of increased parallelism, CNNs require less training time than RNNs.
This is specifically beneficial for the main phase of this research, since it will facilitate the large amount
of training runs required for extensive testing and optimisation of the network. 3) Since CNNs are cur-
rently the most commonly used structure for TSC, it is an option that must be considered. Seeing that
RNNs are already used for the preliminary phase of this thesis, investigating CNNs in the main phase
will allow for a fair comparison between the performance of the two networks.

Although CNNs were designed to analyze images in computer vision tasks, there are numerous
ways to employ them for time series classification. For example, in a research by Jiang and Yin (2015)
the time signals were first converted to an image format, after which a CNN was utilized to classify
those images. However, by selecting appropriate kernel sizes, CNNs can also be directly applied to
time series data. In the case of a Univariate Time Series (UTS), for example, the data has only one
dimension (time), unlike an image that has two dimensions (width and height). If the sliding filter of the
convolution layer also only has one dimension, then it can still be used to produce convoluted features
of the time trace. As a concrete example: if there is a filter of length three, with filter values [13 ,

1
3 ,
1
3 ],

that is applied to an UTS, then convolution (multiplication) will produce a moving average of length
three across the time series (Fawaz et al., 2019). When considering a Multivariate Time Series (MTS)
as input to the convolutional layer, then the filter no longer has one dimension (time), but also has
dimensions that are equal to the number of dimensions of the input MTS (Fawaz et al., 2019).

Wang et al. (2017) compared the classification performance of three deep neural network architec-
tures to traditional TSC methods on 44 UTS. From this experiment it was found that Fully Convolutional
Networks (FCN) and Residual Networks (ResNet) (both CNNs) can achieve comparable or better per-
formance than state-of-the-art traditional TSC methods. The advantage of using deep neural networks
is that, unlike the traditional TSC methods, they do not require any feature engineering or data prepro-
cessing (Wang et al., 2017).

Fawaz et al. (2019) analyzed the TSC performance of nine different neural network architectures
(out of which six were CNNs and one an RNN) on 85 UTS datasets and 12 MTS datasets. From this
benchmarking research it was also concluded that FCN and ResNet achieve the best classification ac-
curacy overall. Based on these findings, it was decided that precisely these two neural network models
should be investigated during the main phase of this thesis.

Fully Convolutional Networks (FCN) have shown a proven effectiveness for semantic segmentation
of images (Long et al., 2015). Wang et al. (2017) adopted the FCN as a feature extractor with its final
output coming from a softmax layer. This FCN structure is shown in Figure 3.18, here BN stands for
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Batch Normalization, this is applied to increase the convergence speed and improve generalisation
(Wang et al., 2017). The numbers 128, 256, and 128 indicate the amount of filters in each convo-
lutional layer. Notice that, unlike the general CNN architecture that was shown in Figure 3.11, there
are no pooling operations between the layers. Instead, there is only a Global Average Pooling (GAP)
operation over the feature maps in the classification layer, this makes the results easier to interpret and
reduces the chances of overfitting (Lin, Chen, & Yan, 2014).

Figure 3.18: Network structure of the Fully Connected Convolutional Network. Image taken from (Wang, Yan, & Oates, 2017)

Residual Networks (ResNet) were introduced by He et al. (2015) as a framework to train deep neural
networks for image recognition. Simonyan and Zisserman (2015) showed that adding more convolu-
tional layers (thus making the network deeper) is beneficial for the accuracy in image classification.
However, adding more layer also makes training of the network more difficult. He et al. (2015) devel-
oped a method that uses ’shortcut’ residual connections to overcome these training difficulties, whilst
still profiting the enhanced accuracy from greatly increased depth. Wang et al. (2017) adopted ResNet
for TSC, the resulting structure is displayed in Figure 3.19. Again, BN is done after every convolutional
layer and pooling operations are excluded until the GAP layer.

A newer (and potentially better) similar network architecture called InceptionTime was introduced
by Fawaz et al. (2020). This network is similar in the sense that it also uses residual blocks and a
GAP layer followed by a fully connected layer with softmax activation. However, there are two residual
blocks, instead of three, and each of the residual blocks is now composed of three Inception modules
(Szegedy et al., 2015), instead of the traditional fully convolutional layers. A major component of the
Inception module is that it uses multiple sliding filters of different lengths that simultaneously extract
features from the same time series.

Figure 3.19: Network structure of the Residual Network. Image taken from (Wang, Yan, & Oates, 2017)

Lastly, it should also be mentioned that there are ’hybrid’ architectures that could be interesting
for the main phase of this thesis. For example, Ordóñez and Roggen (2016) designed a sequential
combination of convolutional layers (for feature extraction) and recurrent layers (to model temporal
dynamics). This structure outperformed baseline deep CNN in activity recognition. Yao, Zhang, Zhou,
and Liu (2019) used a parallel structure to have both RNN and CNN simultaneously extract features
from data, after which an attention mechanism selected the relevant features to ultimately classify
breast cancer biopsy images. This research achieved state of the art classification results. Bradbury,
Merity, Xiong, and Socher (2016) introduced Quasi-Recurrent Neural Networks, an architecture that
uses convolutional layers in combination with a recurrent pooling function. These networks are up
to sixteen times faster in train and test times than regular RNNs due to increased parallelism, whilst
maintaining similar or better predictive accuracy.

Although these hybrid architectures appear promising, they are considered to be out of the scope
of this thesis. Namely, the goal of this thesis is not to develop new complex neural networks to improve
performance in an existing use case, but rather to test existing neural networks on a new use case.
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Simpler proven networks will be more useful to test whether pilot skill level classification can be accu-
rately done by ANN. That being said, if performance falls short, the aforementioned hybrid architectures
may still be viable options.

3.4. Explainable Artificial Intelligence
This chapter has indicated the usefulness of artificial neural networks for many different purposes.
However, it has not yet addressed one of the biggest challenges in artificial intelligence: the black-
box problem (Castelvecchi, 2016). ANNs are considered black-box models because although they are
excellent at mapping some input to some output, there is little visibility on the internal workings of the
network models.

This section will highlight some of the recent developments in tackling the black-box problem to
make artificial intelligence more transparent. Furthermore, specific explainability solutions for this the-
sis will be recommended.

Figure 3.20: Number of documents found on Scopus per year with ’Artificial Intelligence’ (pink), ’Interpretable Artificial Intelligence’
(blue), and ’Explainable Artificial Intelligence’ (red) in the Title, Abstract, or Keywords. The percentages express the total XAI
documents (purple) compared to total AI documents (pink). Data retreived in April 2021.

Very early adaptation of artificial neural networks, consisting of only a few neurons, could still be
relatively easily interpreted. However, over the last few decades deep learning models have been
developed consisting of millions of parameters. Though these deep models have demonstrated em-
pirical success in learning difficult complex (real-world) phenomena (as has been shown throughout
this chapter), their increasing depth has only made them more opaque. This lack of transparency and
interpretability is major drawback of these state of the art models (Došilović, Brčić, & Hlupić, 2018).
Considering these shortcomings, eXplainable Artificial Intelligence (XAI) has become a surging topic
of interest in the research community. In Figure 3.20 a quantitative indication of this rising popularity is
expressed by the amount of work published regarding XAI per year in the last nine years. As a frame of
reference, Figure 3.20 also indicates the total amount of work published regarding Artificial Intelligence
in general, and what percentage of this was related to XAI. Evidently, the popularity of XAI rises faster
than the popularity of AI in general, indicating a vast desire for more transparency in deep learning.

Arrieta et al. (2019) sums up three reasons why interpretability should be considered as an additional
design driver to improve the implementation of Machine Learning (ML) algorithms:

• Interpretability helps to ensure impartial decision-making, i.e. it allows to detect (and correct) bias
in the training dataset.

• Interpretability accommodates robustness by highlighting potential perturbations that could change
the model output.

• Interpretability can act as an insurance that only relevant variables gather the found output, i.e.
ensuring that there is a truthful relationship between input and output in the model reasoning.
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This means that, in order to consider the explanation of a system useful, it should either 1) provide
an understanding of the model mechanism and predictions, 2) visualize the model’s discriminative rules
for decision making, or 3) hint on what could perturb the model (Arrieta et al., 2019).

Different types of MLmodels require different explainability methods. Arrieta et al. (2019) conducted
a literature analysis to construct a taxonomy capturing all the different categories of explainability meth-
ods that are being developed. In Figure 3.21 a summarized version of this taxonomy is presented.
There are practically two classes of XAI in ML: Transparent Models and Post-Hoc Explainability. The
former class encompasses models that are by themselves understandable, they require no post-hoc
analysis to be interpretable (Arrieta et al., 2019). Deep learning models, however, fall into the secondly
mentioned class of XAI. This means that these algorithms require post-hoc analysis to be made ex-
plainable. Two different types of post-hoc explainability will be discussed in the following paragraphs:
Model-Specific Explainability and Model-Agnostic Explainability.

Figure 3.21: Taxonomy of explainability for different machine learning models. Based on findings from (Arrieta et al., 2019)

Model-Specific Post-Hoc Explainability: Model-specific explainability approaches exploit the unique
characteristics of an ML model to make it interpretable. This means that these methods can only be
applied to the ML model that they were designed for.

An example of a post-hoc model specific explainability method is the previously mentioned CAM,
introduced by Zhou et al. (2016). This method requires a GAP operation to output the spatial average
of each feature map of the last convolutional layer. The discriminative regions of the input that led to
the model output can now be visualized by mapping back the predicted class score to the output of the
GAP layer (Zhou et al., 2016). This procedure is depicted in Figure 3.22.

To illustrate the usefulness of this method, consider Figure 3.23. This figure shows a CAM of a
trained FCN on the GunPoint dataset (Ratanamahatana & Keogh, 2005). This dataset contains record-
ings of hand motions of actors performing either of two actions: 1) the actor draws a gun from a holster
and aims it at a target for approximately one second (class 1 = ’Gun’), or 2) the actor just sticks out their
index finger and points at the target for one second (class 2 = ’Point’). Both the vertical and horizontal
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displacement of the actors their hands were tracked, however, these appeared to be highly correlated
(Ratanamahatana & Keogh, 2005). Therefore, the data in the archive only contains the horizontal dis-
placement (making it an UTS). Fawaz et al. (2019) trained an FCN that had nearly 100% accuracy in
disinguishing the two classes. Figure 3.23 shows how CAM can help to visualize how the trained FCN
recognizes the two classes, based on discriminative regions in the data.

Far less contributions have been made for explaining RNNs. For comparison, the taxonomy of
reviewed literature by Arrieta et al. (2019) only contains ten papers concerning explainability for RNNs,
whereas there are 32 for CNNs. There are some visual explanation methods for RNNs (e.g. Arras,
Montavon, Müller, and Samek (2017) and Karpathy, Johnson, and Fei-Fei (2015)). However they are
not directly applicable for TSC, as these RNN visualization methods are developed for NLP.

Given the few contributions for explaining RNN (Arrieta et al., 2019) and the customization required
to apply those existing methods to TSC, model-agnostic explainability appears to be the more promis-
ing candidate for the preliminary phase of this thesis.

Figure 3.22: Class Activation Mapping explained: the predicted class score is traced back to the last convolutional layer to
generate class-specific discriminative regions. Image taken from (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016)

Figure 3.23: Example of Class Activation Mapping with FCN to highlight regions of the time series that contributed to class 1
(Gun) and class 2 (Point). Blue indicates regions with no contribution, red regions are area with maximum contribution. Image
taken from (Fawaz et al. 2019).
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Model-Agnostic Post Hoc Explainability: Model-agnostic techniques for post-hoc explainability are
designed to be utilized on any model with the intent to extract some information of the inner workings
of that model (Arrieta et al., 2019).

An example of such an explanation technique is Local Interpretable Model-agnostic Explanations
(LIME), as introduced by Ribeiro, Singh, and Guestrin (2016). LIME explains predictions of any opaque
classifier by simplification; it learns a linear model locally around the prediction that serves as an in-
terpretable representation (Ribeiro et al., 2016). This method is only locally faithful, meaning that the
provided explanation is only true for the instance of a prediction that is examined.

Another model-agnostic explainability technique is that of Lundberg and Lee (2017) called SHapley
Additive exPlanations (SHAP). This method is a feature relevance explanation technique. SHAP uses a
game theory inspired method to assign each feature (input variable) an importance value for a particular
prediction (Lundberg & Lee, 2017). This method can be used for local explanation of single instances,
but can also enable global explainability by aggregating local Shapley values (Hall, 2020).

To demonstrate the usefulness of SHAP, and to further explain the difference between local and
global explainability, consider the following example. An artificial neural network is trained on a ’red
wine quality’ dataset (Cortez, Teixeira, Cerdeira, Almeida, Matos, & Reis, 2009) to predict the quality of
wine (score between 0 and 10), based on eleven input variables. Using the SHAP package for Python
a local explanation of a single prediction can be made as shown in Figure 3.24. This waterfall plot in-
dicates the marginal contribution of each input variable to reach the final model output 𝑓 (𝑥), starting
from the expected output 𝐸 [𝑓 (𝑥)]. A global explanation of the trained model can be made by display-
ing the importance of each feature over all data, this is depicted in Figure 3.25. In this figure, each dot
indicates one instance of a feature, the horizontal position of that dot depicts the impact that feature
had on the model output. The color of the dots specify whether the feature had a high or low value.
From this figure observations can be made about the trained model, e.g. there is a strong correlation
between high alcohol values and high model output.

This section has expressed the importance of XAI in ML. Different types of explainability techniques
were highlighted alongside some examples of implementations. In Section 4.4 a description is given
of how XAI was put to practice during the preliminary experiment of this thesis.

Figure 3.24: Waterfall plot generated with SHAP package for Python. This plot indicates a single instance of input variables
values and how those input values contributed to the model output (i.e. local explanation). Image taken from https://medium.
com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c

https://medium.com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c
https://medium.com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c
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Figure 3.25: Summary plot generated with SHAP package for Python. Every dot in this plot indicates an observation of the
entire training data (i.e. global explanation). The color of the dot specifies whether the feature had a high (red) or low (blue)
value. The horizontal axis indicates if that feature value resulted in a higher or lower model output. Image taken from https:
//towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d

3.5. Chapter Takeaways
Artificial Neural Networks (ANNs) are a form of machine learning that can be used to model nonlinear
and complex input-output relationships. This chapter introduced some of the key concepts of ANNs.
After a brief explanation of how traditional ANNs work, some more complex popular deep network ar-
chitectures were presented. Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) appear to be the most promising option for Time Series Classification (TSC).

RNNs are specifically designed to handle sequential data. An improved version of traditional RNNs,
called Long Short-Term Memory (LSTM), will be used for the preliminary experiment of this thesis.
This decision was made because LSTMs have a proven success in classifying pilot control behavior
(Versteeg, 2019), therefore rendering them an excellent choice to get an indication of the feasibility of
using ANNs to classify pilot skill level.

CNNs were designed for computer vision tasks, but have expanded to many more areas of opera-
tion, including TSC. The CNN architecture will be investigated in the main phase of this thesis, this will
allow for a comparison in performance between RNNs and CNNs.

Lastly, different methods of eXplainable Artificial Intelligence (XAI) were introduced. As deep neural
networks have grown in popularity, so has XAI. This is because XAI allows to get a better understanding
of the internal workings of deep networks. Deep learning models are non-transparent and therefore
require post-hoc explainability. Two interesting post-hoc explainability methods are: class activation
maps that indicate discriminative regions in time traces, and SHAP values that quantify relative feature
importance.

https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d




4
Preliminary Testing of Classifier

4.1. Preliminary Tests Objective
This preliminary experiment was not designed to find and implement an optimal deep learning model,
but rather to test the viability of using a deep neural network to identify pilot skill level. Therefore the
results of this preliminary experiment should be considered as a proof of concept that automatic feature
extraction and classification can successfully be applied to identify pilot skill level.

The preliminary implementation of the artificial intelligence is documented in Section 4.2. Next, the
preliminary data augmentation and explainable artificial intelligence results are provided in Section 4.3
and Section 4.4, respectively.

4.2. Artificial Intelligence Implementation
The following section will concern the implementation of an artificial intelligence model. Specifically, a
recurrent Long Short-Term Memory (LSTM) network (as described in Section 3.2.3) will be utilized to
tests its effectiveness in distinguishing pilot skill level.

The reason why LSTM were selected for this preliminary experiment is that these networks are
specifically designed to handle sequential data, as has been explained in Section 3.2.3. This means
that these networks are relatively easy to implement and should not require a lot of tailoring to achieve
good, or at least mediocre, performance. Moreover, the work of Versteeg (2019) shows a proven ef-
fectiveness of LSTM networks to classify pilot data (of a compensatory tracking task). Although the
goal of Versteeg (2019) was to classify the controlled element dynamics, and not the pilot skill level, it
is a great starting point since the input data is very similar.

The neural network model was programmed in Python v3.8 using the library Keras v2.4.3
which runs on top of Tensorflow v2.3.0. A complete overview of used packages, versions, and
dependencies of the different Python and MATLAB scripts written for this preliminary experiment is
shown in Figure B.1.

The laptop used during the preliminary experiment is equipped with an NVIDIA Quadro P1000
Graphics Processing Unit (GPU). This GPU is compatible with CUDA, a parallel computing platform
interface by NVIDIA. CUDA allows the use of GPU for general purpose processing. Using NVIDIA
CUDA Deep Neural Network (cuDNN) library, parallel computation can be exhausted to train neural
network models. CUDA v11.1.105 and cuDNN v8.0.5 were used throughout this experiment.

4.2.1. LSTM Model Settings
As previously mentioned, the artificial neural network architecture that will be used for this preliminary
experiment is an LSTM model where the settings are taken from Versteeg (2019). These ’settings’ in
machine learning are also known as hyperparameters. Hyperparameters are all parameters that can
be tuned to make networks train better and faster (Patterson & Gibson, 2017). In machine learning it
is generally the case that these important model parameters cannot be analytically determined (Kuhn
& Johnson, 2013), instead they are often found by extensive (automated) trial and error.
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There are essentially two categories of hyperparameters present in this deep learning experiment:
those that form the neural network model architecture (e.g. number/type of layers) and those that shape
the input data (e.g. selection of input variables). The former will be discussed in this subsection, and
the latter in the next.

The LSTM model structure used in the work of Versteeg (2019) was inspired by the stacked LSTM
structure used in the paper by Saleh et al. (2017), combined with the rule of thumb hyperparameter
settings from Reimers and Gurevych (2017). By stacking LSTM layers the network becomes deeper.
This way the learned representation from the first layer can be passed on to the next layer, which cre-
ates representations at a higher level of abstraction. Each layer will take on a part of the task and pass
it to the next, until finally the last layer provides the output (Hermans & Schrauwen, 2013). In precisely
this fashion the LSTM model was structured as follows: an LSTM input layer; a dropout layer; another
LSTM layer; another dropout layer; a dense (fully-connected) layer; and a softmax activation layer. A
visual representation of this stacked network structure is shown in Figure 4.1. Each of the individual
components that make up this network will be explained in the following paragraphs.

Figure 4.1: All layers and their output shape in the used stacked
LSTM architecture

Figure 4.2: Three-dimensional LSTM input shape, image taken
from (Versteeg, 2019)

Batch Size: The batch size dictates the amount of samples that are drawn from the training dataset
during each iteration (network model parameter update). By drawing multiple samples from the training
dataset at once, it takes less iterations to feed all training data to the neural network, thus speeding up
the training process. One cycle of feeding all training data is called an epoch. For example, if there are
200 samples of training data (i.e. the training data has shape (200, timesteps, features)), then a batch
size of 10 means that the network will perform 20 iterations to complete one epoch.

In the research of Versteeg (2019) a batch size of 100 was used to decrease training time at the
(slight) cost of training stability and generalisation performance (Masters & Luschi, 2018).

Input LSTM Layer: The input LSTM layer has a three-dimensional input shape: (batch size, timesteps,
features). A schematic depiction of this three-dimensional input is shown in Figure 4.2. The last two
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of these three dimensions, the timesteps and features, are those that were already explained in Sec-
tion 3.2.3: the sequence length and the number of input variables, respectively.

The input LSTM layer has a many-to-many mapping (as was shown in Figure 3.12), so that its
output is also sequential and can thus be fed to the second LSTM layer. This means that the output
shape of this layer is (batch size, timesteps, number of hidden neurons).

The amount of hidden neurons in this LSTM layer was set to 100. This value was based on (Saleh
et al., 2017) and (Reimers & Gurevych, 2017).

Dropout Layer: Dropout is a regularization method introduced by Srivastava, Hinton, Krizhevsky,
Sutskever, and Salakhutdinov (2014). This technique randomly deactivates neurons (or units) of the
previous layer with a user defined probability. Deactivating (or ’dropping’) these neurons, along with
their connections, prevents the neurons from co-adapting too much and significantly reduces overfitting
(Srivastava et al., 2014). This mechanism is only active during the training phase. A visual represen-
tation of a dropout layer is shown in Figure 4.3. The input and output shape of this layer are the same
as that of the previous layer.

The dropout value in the research of Versteeg (2019) was heuristically chosen to be 0.2.

Figure 4.3: Example of dropout layer with probability of 0.5 to deactivate neurons

Second LSTM Layer: The second LSTM layer has a three-dimensional input shape that matches the
output shape of the previous layer: (batch size, timesteps, number of hidden neurons). In contrast to
the first LSTM layer, the second LSTM layer has amany-to-onemapping (as was shown in Figure 3.13).
This was done so that the neurons in this layer only produce one output for the given input sequence,
i.e. the output shape is (batch size, number of hidden neurons). The singular output of the neurons in
this layer is desired because each sequence of timesteps must receive only one classification.

Like the first LSTM layer, the amount of hidden neurons was set to 100. Again, this value was based
on (Saleh et al., 2017) and (Reimers & Gurevych, 2017).

Dropout Layer: The second dropout layer operates precisely the same way as the first dropout layer,
i.e. random connections from the previous layer are blocked.

Again,the dropout value in the research of Versteeg (2019) was heuristically chosen to be 0.2.

Dense Layer: The dense layer fully connects the outputs of the previous layer to a specified number
of outputs (just like the traditional ANN that was described in Section 3.1.1). The number of output
neurons is equal to the number of classes that the network must be able to distinguish. Thus, the
output shape of this layer is (batch size, number of classes).

The LSTM model in this preliminary experiment must be able to distinguish pilot behavior and cat-
egorize it into two classes: skilled (or ’trained’/’expert’) vs. unskilled (or ’untrained’/’novice’). Therefore
two output neurons are required in the dense layer.

Softmax Activation Layer: The last layer in the network is a softmax activation layer. As has already
been described in Section 3.1.1, the softmax activation function (Eq. (3.8)) produces the probability dis-
tribution over mutually exclusive output classes. This means that for each output neuron of the dense
layer, the output value 𝑠𝑖 is transferred into an estimated probability 𝑦̂𝑖 that represent the chance of the
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input data belonging to that class. An example of what a dense layer in combination with a softmax
activation layer looks like is shown in Figure 4.4.

Figure 4.4: Example of dense layer and softmax activation

There are two more components present in the neural network model settings. Namely, the loss func-
tion and the optimizer. An explanation of these two components has already been provided in Sec-
tion 3.1.2, but the next two paragraphs will briefly explain their implementation in this specific network.

Loss Function: As has been explained in Section 3.1.2, logistic loss functions can be used if the out-
put of the neural network model are probabilities. The suiting logistic loss function for a network that
outputs probability distribution over mutually exclusive output classes is the categorical cross-entropy
loss function (given by Eq. (3.11)).

Optimizer: The last component to complete the neural network model is the optimizer. As has been
explained in Section 3.1.2, the optimizer dictates the method that is used to update the model internal
parameters (weights and biases) during training to minimize the loss. A survey by Sun, Cao, Zhu,
and Zhao (2019) explains the working principle and the advantages/disadvantages of many of the
popular optimizers available. It is out of the scope of this research to investigate every option, thus this
paragraph will simply stick to the optimizer that was used by Versteeg (2019): Adam.

The Adam optimizer, introduced by Kingma and Ba (2014), has become somewhat of a standard
in machine learning. This popular optimizer is an advanced Stochastic Gradient Descent method that
combines the advantages of AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman & Hinton, 2012). It
is an efficient method that only requires first-order gradients with little memory constraints. By compu-
tation of estimates of first and second moments of the gradients, individual adaptive learning rates are
computed for different trainable parameters (Kingma & Ba, 2014).

There will be no optimization of the hyperparameters present in the Adam optimizer. This is because
the default hyperparameters, as empirically found by Kingma and Ba (2014), generally show the best
performance. Therefore, no mathematical description of this optimization method will be provided (this
can be found in (Kingma & Ba, 2014)). However a more intuitive description, as provided by Heusel,
Ramsauer, Unterthiner, Nessler, and Hochreiter (2018), is the following: ”Adam can be described as
Heavy Ball with Friction (HBF), since it averages over past gradients. This averaging corresponds to
a velocity that makes the generator resistant to getting pushed into small regions. Adam as an HBF
method typically overshoots small local minima that correspond to mode collapse and can find flat
minima which generalize well”. This description is schematically depicted in Figure 4.5.

This concludes the settings that form the neural networkmodel architecture as was used by Versteeg
(2019). All of the model settings that have been discussed are summarized in Table 4.1. In the following
subsection a description will be given of what settings are applied to the input data (i.e. training/testing
data).

4.2.2. Input Data Settings
This section will elaborate on the configurations that Versteeg (2019) applied to the input data. In theory
the pilot data could just be fed to the neural network model without any alterations, but in practice it
is favorable to adjust certain settings to obtain better performance. In the work by Versteeg (2019)
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Figure 4.5: Adam optimizer can be seen as heavy ball with friction, due to its momentum it overshoots the local minimum at 𝜃+
and settles at the flat minimum 𝜃∗. Image taken from (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2018)

different configurations of these settings were tested on a compensatory tracking-task dataset from
an experiment by Zollner, Pool, Damveld, van Paassen, and Mulder (2010). From this dataset the
variables 𝑢 (pilot input) and 𝑒 (tracking error) were used to test the input data settings. The experiment
data were split into a training set and a testing set (for reasons explained in Section 3.1.3).

The data configurations that were extensively tested and empirically optimised by Versteeg (2019)
are the following: length of window size, magnitude of sampling frequency, selection of input variables,
choice of scaling method, and percentage of overlap. These hyperparameters were empirically opti-
mized in the order that they are listed above. The meaning of each of the hyperparameters and the
results of their optimization will be presented in the following paragraphs. Additionally, some important
information about shuffling data will be shared.

Window Size (WS): The window size dictates the length in seconds of each sample that is fed to, and
classified by, the neural network model. This setting determines the amount of samples that can be
drawn from a tracking run of the dataset. For example, if the dataset contains pilot tracking runs that
are 90 seconds long, then a window size of ten seconds means that nine samples can be collected from
one tracking run. There are two reasons why it is desirable to have a small window size. One, long time
sequences can degrade the classification performance of some neural networks models (Sutskever,
2013). And two, a small window size (in the order of a few seconds) allows for an online application.
Therefore a minimal, yet sufficient window size is desired.

The window sizes that were tested by Versteeg (2019) ranged from 0.2 seconds to 50 seconds.
They were tested concurrently with the sampling frequency, as will be explained in the next paragraph.

Sampling Frequency (SF): The sampling frequency in Hertz determines the amount of timesteps per
second of each sample that is provided to the neural network model. The combination of window size
and sampling frequency shapes the input length that goes into the first LSTM layer of the neural network.
As was shown in Figure 4.2, one of the dimensions of the input layer is the number of timesteps. This
number of timesteps is simply found by multiplication of the window size and the sampling frequency.

One might expect that a high sampling frequency is better than a low sampling frequency (since
lowering the sampling frequency means that some of the recorded data is lost). However, as was
previously explained, long input sequences can degrade the performance of recurrent neural networks.
Therefore, if the window size grows in magnitude, it may be desirable to lower the sampling frequency
so that the length of the input sequence does not become too large (and vice versa).

As previously mentioned the sampling frequency and window size settings were concurrently tested.
This test was performed by trying different combinations of window sizes and sampling frequencies on
the data from Zollner et al. (2010) and recording the classification accuracy (the percentage of correctly
classified samples). In these experiments both input variables 𝑢 and 𝑒 were fed to the neural network,
where 80% of the data were used as training data and 20% of the data as validation data. The result-
ing validation accuracy for the different settings are shown in Figure 4.6. From these results Versteeg
(2019) concluded that the best settings (smallest window size with highest accuracy) are SF = 50 Hz
and WS = 1.6 s. These settings for the sampling frequency and window size were carried over to the
next optimization experiment.
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Table 4.1: Summary of LSTM model settings taken from (Versteeg, 2019), as have been presented in Section 4.2.1

Setting Description Value
Batch size Specifies the amount of samples that are

fed to the neural network model per train-
ing step.

100

Input LSTM layer
(number of neurons)

Takes multivariate time sequences as
input and produces equally long se-
quences per hidden neuron.

100

First dropout layer
(dropout probabiltiy)

Probabilistically deactivates neurons of
previous layer to decrease overfitting.

0.2

Second LSTM layer
(number of neurons)

Takes sequences of previous LSTM layer
as input and produces single scalar out-
put per hidden neuron.

100

Second dropout layer
(dropout probability)

Probabilistically deactivates neurons of
previous layer to decrease overfitting.

0.2

Dense layer
(number of neurons)

Fully connects outputs of previous layer
to generate one output score per class.

2

Softmax activation
function

Changes the output scores of the previ-
ous layer into probability distribution.

-

Categorical cross-
entropy loss function

Loss function that optimizes for maxi-
mum likelihood estimation of probabili-
ties.

-

Adam optimizer Efficiently updates the network model
trainable parameters to minimize the
loss. The default hyperparameter set-
tings of Adam optimizer (Kingma & Ba,
2014) were used in this implementation.

-

Input Variables: In principle there were three input variables available in the dataset from the compen-
satory tracking experiment by Zollner et al. (2010), i.e. the controlled element output 𝑥, the pilot control
output 𝑢, and the tracking error 𝑒. However, only the latter two were viable options for the classifica-
tion task of Versteeg (2019). This was because the goal of the neural network model was to correctly
classify the pilot adaptation to different controlled element dynamics. Therefore, feeding the model the
controlled element output 𝑥 in combination with 𝑢 would lead to a trivial solution, as the network could
now discover the relationship between the two (i.e., the controlled element dynamics itself). Thus, to
capture solely human control behavior, only the time traces of 𝑒 and 𝑢 were used (Versteeg, 2019). In
the case of the current research, with the goal to classify skill behavior, addition of 𝑥 would not lead to
trivial solutions. Therefore, 𝑥 is still a viable candidate as input variables.

Although only 𝑒 and 𝑢 could be used (Versteeg, 2019), their useful information for the LSTM model
could be increased by also supplying their first-order time derivatives 𝑒̇ and 𝑢̇. The calculation of
these time derivatives was done using second order central differences approximation in the interior
points and first order accurate one-sided forward/backward differences approximations at the first and
last recorded data point of each tracking run. These numerical differentiation methods are given by
Eq. (C.1), Eq. (C.2), and Eq. (C.3), respectively.

With the addition of these time derivatives, there nowwere four input variables’ time traces to choose
from. Every combination of these inputs was tested simultaneously with different scaling methods by
Versteeg (2019), as will be explained in the next paragraph.

ScalingMethod: Applying scaling to the datasets usually helps improve convergence of back-propagation
learning (LeCun, Bottou, Orr, & Müller, 2012). Additionally, it also helps to unify different sources of
data, so that the trained neural network model can generalize more easily between different datasets.
Three different scaling methods were tested by Versteeg (2019): normalizing, standardizing, and ro-
bust scaling (a visual example of each of these scaling methods applied to two different datasets is
shown in Figure B.2).
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Figure 4.6: Validation accuracy for varying WS and SF. Input variables are 𝑒 an 𝑢 from the dataset from Zollner et al. (2010)
with an 80%/20% training/validation split. Image taken from (Versteeg, 2019)

The normalization method used ensured positive and negative sign convention by scaling the entire
sequence between -1 and 1 with Eq. (C.4).

Standardizing removes the mean and scales to unit variance. This is done at every timestep by
subtracting the mean (of the entire sequence) and dividing the result by the standard deviation (of the
entire sequence), as shown in Eq. (C.5).

Robust scaling removes the median and scales the time sequence to its inter-quantile ranges (first
quantile and third quantile) (Pedregosa et al., 2011).

The scaling method can either be applied over the entire tracking run, or per sample that is fed to
the neural network model. In the work of Versteeg (2019) all three scaling methods were tested over
entire tracking runs, additionally normalized scaling was tested sample-wise (i.e. four different scaling
options were tested).

An additional data source was needed for the validation of the different scaling methods. Consid-
ering that part of the reason to introduce scaling was to enable the neural network model to classify
data from different sources. Therefore, during the simultaneous input selection and scaling method
optimization, there were separate sources of data for the training phase and the testing (validation)
phase. The training of the network was done on the same data from the experiment by Zollner et al.
(2010). However, the testing of the network was performed on data from another tracking experiment
by Lu, Pool, van Paassen, and Mulder (2015).

The results of testing different sets of input variables in combination with the explained scaling
methods are shown in Figure 4.7. Again, the presented accuracy here is the validation accuracy (per-
centage of correctly classified samples) on the test data from (Lu et al., 2015). From these results it
was concluded by Versteeg (2019) that the best classification accuracy is obtained for standardized
scaling over the entire tracking run with the multivariate input combination of 𝑒 + 𝑒̇ + 𝑢. Through brief
initial testing, the current research found that using all four parameters 𝑒 + 𝑒̇ + 𝑢 + 𝑢̇ (in combination with
standardized scaling over the entire tracking run) appeared to provide better training results. Therefore,
the input variables used in this preliminary research will deviate from those used by Versteeg (2019).

The extremely poor results obtained for the classification accuracy with no scaling (Figure 4.7) can
be explained by a difference in units between the two data sources. Namely, the training dataset (Zoll-
ner et al., 2010) was in degrees, whereas the testing dataset (Lu et al., 2015) was in radians. This does
show the importance of providing data to the network model in a consistent context. It also shows that
scaling data, and thus removing the unit, helps generalization between different sources.

Overlap: The last input data setting that was optimized by Versteeg (2019) was overlap. This is
a method that can be applied when partitioning the time traces into smaller samples using a sliding
window (with the selected window size, as previously explained). Whilst the sliding window is collecting
samples from the tracking run, each observed windowwill overlap part of the previous observed window
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Figure 4.7: Validation accuracy for varying input variables and scaling methods. SF = 50 Hz, WS = 1.6 s. Network is trained on
data from Zollner et al. (2010) and tested on data from Lu et al. (2015). Image taken from (Versteeg, 2019)

Figure 4.8: Validation accuracy with varying amounts of overlap for a reducing number of subjects. SF = 50 Hz, WS = 1.6 s.
Input variables = 𝑒 + 𝑒̇ + 𝑢. Network is trained on data from Zollner et al. (2010) and tested on data from Lu et al. (2015). Image
taken from (Versteeg, 2019)

(Figure B.3 shows an example of what this looks like). By doing so, more samples can be drawn from
the data. Therefore this can be considered a data augmentation method, as it essentially increases
the amount of labeled training data available to the neural network model.

Versteeg (2019) tested the effectiveness of data augmentation using overlapping. This was done
by increasing the amount of training samples with overlap, whilst decreasing the amount of available
training data. The reduction of available training data was done by randomly eliminating subjects from
the dataset. The results of this experiment are shown in Figure 4.8. From this figure it can be con-
cluded that high overlap has a positive effect on classification accuracy. Especially if there is little data
available, overlap appears to be able to make the biggest difference (the least amount of subjects in the
dataset shows the largest accuracy difference between the different overlap settings). These results
led to the decision to use 90% overlap between observed samples.

Shuffling data: Shuffling data is a crucial option that should be enabled. While training, the network
learns the fastest from the most unexpected sample (LeCun et al., 2012). Ideally, each training sample
would be drawn from the stack of training data randomly. Though in practice, it is usually faster to se-
quentially draw samples from the training stack. Sequentially drawing samples can, however, introduce
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problems if the samples are grouped by class or come in a particular order. Presenting the training data
to the neural network model in a fixed order induces overfitting. Therefore it is good practice to shuffle
the stack of training data before supplying it to the neural network model (Bottou, 2012). Reshuffling
the data between every epoch also prevents overfitting.

An important note must be made about the combination of shuffling data and applying overlap
between samples. Namely, when these two methods are used concurrently, it is extremely important
that the splitting of training/testing data is done before applying overlap and shuffling. To describe why
this is important, consider the case where splitting the training/testing data is done after computing
samples with overlap and shuffling these samples. In this scenario, there will be samples with overlap
(thus sharing information with other samples) randomly shuffled into the stack of data. If this stack is
now split into training and testing data, there will now be overlapping data between the training stack
and the testing stack. This renders the testing stack useless, as the network has already seen part
of this testing data in overlapping samples from the training data, i.e. unrealistically high validation
performance will be found.

The steps taken to compute training/testing samples from the tracking data are shown in Figure 4.9.

This concludes the explanation of all the data related settings that were taken from the work of
Versteeg (2019). A summary of all these settings, or hyperparameters, is provided in Table 4.2.

It is important to note that there are no generic optimal settings when it comes to hyperparame-
ter tuning. The best hyperparameters will vary for every machine learning exercise. Therefore, the
empirically optimized settings found by Versteeg (2019) are not necessarily optimal for the skill level
classification task of this thesis. It is expected that the differences in control behavior between different
skill levels (this thesis) are more subtle and less consistent than the differences in control behavior be-
tween different controlled element dynamics (Versteeg’s thesis). However, since both research theses
concern the classification of compensatory tracking run data, the optimized model settings of Versteeg
(2019) are definitely a fitting starting point for this preliminary experiment.

Table 4.2: Summary of input data settings taken from (Versteeg, 2019), as have been presented in Section 4.2.2

Setting Description Value
Window size Partitions tracking data into samples of

specified length in seconds.
1.6 s

Sampling frequency Determines the amount of timesteps per
second of each sample. Length of each
sequence (sample) is determined bymul-
tiplication of window size and sampling
frequency.

50 Hz

Input variables Set the variables that are included in the
multivariate time sample provided to the
LSTM model.

𝑒 + 𝑒̇ +
𝑢 + 𝑢̇

Standardized scaling Removes the mean and scales to unit
variance.

-

Overlap Percentage of overlap between consec-
utive samples.

90 %

Shuffling data Shuffling the data before training, and be-
tween every epoch, increases learning
performance.

-

Train/test split Percentage of data that are used as train-
ing data, and percentage used as valida-
tion data.

80/20%
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Figure 4.9: A schematic flow diagram displaying all the data handling steps taken to compute samples from the tracking data,
and to train/test the neural network model. Scaling is excluded from image, this could either be done per tracking run, or per
sample
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4.2.3. Data Labeling
The machine learning task of this thesis can be categorized as supervised learning. In supervised
learning a ground truth output (in this case a class) is available for the artificial neural network to learn
from. By comparing the network model output to the ground truth output, a loss can be calculated.
The loss can then be minimized by updating the network model parameters. This comparison with
ground truth data requires labeled data to be provided to the network. Since all the hyperparameters
are already set, this labeling of data is the last step that has to be completed before training can start.

This subsection will explain how (and why) the data can be labeled. A comparison is made between
two different labeling options, and ultimately it is argued why a specific label setting is the most appro-
priate.

As has been discussed in Section 2.1.2 the dataset that will be used for this preliminary experiment
will be taken from the research by Pool et al. (2016). It has already been argued that specifically the
first 100 (training) runs of this dataset are suiting for this pilot skill level classification task. This is
because this part of the tracking data contains both fully task-naive (or ’unskilled/’untrained’/’novice’)
participants, as well as experienced (or ’skilled’/’untrained’/’novice’) participants.

Although it is known that the data contain different levels of skill, there are various ways to label what
part of the data should be labeled as ’skilled’ and what part should be labeled as ’unskilled’. Or, using
the terminology of Section 1.1, which (multivariate) time series 𝑋𝑖 should receive what one-hot label
vector 𝑌𝑖. Given that there are two classes to be distinguished, there are two options for the label 𝑌.
Namely, for a sample of unskilled behavior 𝑌 = [1 0]𝑇, and for a sample of skilled behavior 𝑌 = [0 1]𝑇.
Several methods to label the data were investigated. However, only the two most promising labeling
methods will be discussed in this subsection: labeling based on experience, and labeling based on
performance.

On a practical note: to limit the scope of this preliminary research, only the data of the participants that
did not receive motion feedback during the experiment by Pool et al. (2016) will be used.

Label based on experience: With this option the class label that is added to the training data is
determined by the amount of experience that the participant has. No assumption is made about the
performance level of the participant, the amount of experience is simply expressed as the number of
tracking runs that participant has completed. Thus, with this labeling method, the label of each time
sample is solely based on the index of the tracking run that sample was taken from.

As has beenmentioned in Section 3.1.3, for good training results, there should be an even amount of
data samples for each class. So for the case of this research, where there are two labels (skilled/unskilled),
each label should represent 50% of the data. This meant that the labeling based on experience should
be done symmetrically, i.e. if the first ten tracking runs of each participant are labeled as ’unskilled’,
then the last ten tracking runs must be labeled as ’skilled’.

There was a trade-off when it came to selecting the appropriate number of runs belonging to each
label. The purest example of an inexperienced subject is probably their first tracking run, so it would
make sense to label this as ’unskilled’. Likewise, the most experienced behavior of each subject is
probably found in their last tracking run, thus this could be labeled as ’skilled’. However, if only the first
and last run of each subject are labeled, then there are very little data left to train the network. Now, if
the first 50 runs of each subject are labeled as ’unskilled’ and the last 50 runs are labeled as ’skilled’,
there is suddenly a whole lot more data available for training. However, now the quality of the training
data is polluted, since any tracking run near the 50𝑡ℎ probably is not a good representation of either
label (’unskilled’/’skilled’).

This trade-off could not be solved analytically. Therefore, it was empirically tested how the number
of runs belonging to each label affected the classification performance (whilst keeping all the other
settings as they were listed in Table 4.1 and Table 4.2). In Figure 4.10a the learning progression per
epoch can be seen if the first five runs of each participant are labeled as ’unskilled’ and their last ten
runs are labeled as ’skilled’. Figure 4.10b shows the learning progression if the first/last ten runs of
each participant are labeled as ’unskilled’/’skilled’.

A comparison between these options can be made by inspecting the performance at minimal loss
(before overfitting) and comparing the best (highest) validation accuracy and the best (lowest) validation
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(a) First/last five runs are labeled as unskilled/skilled. (b) First/last ten runs are labeled as unskilled/skilled.

Figure 4.10: Training loss, training accuracy, validation loss, and validation accuracy after each training epoch. Highest validation
accuracy, and lowest validation loss are recorded as LSTM model performance measure.

loss between the differently trained networks. Note that sometimes higher validation accuracies can be
seen after overfitting (i.e., with higher loss). These should be ignored, because although the network
had a better performance in terms of accuracy, it was less confident about its decision (i.e., it made
’lucky’ predictions).

Based on just Figure 4.10a and Figure 4.10b, one could argue that only labeling the first/last ten
runs is the better option out of the two (81% > 76% and 0.38 < 0.48) . However, due to the stochastic
nature of the learning process, one learning cycle is not a good indication of performance. Therefore,
every setting was ran multiple times so that they could be statistically compared.

The results of running different settingsmultiple times are presented in Figure 4.11. Here the number
on the x-axis indicates the limit of run indices that were included in each label, e.g. 10 means that the
first 10 runs were labeled as unskilled, and the last 10 runs were labeled as skilled. The blue box plots
indicate the best validation accuracy achieved with the respective labeling setting. The red box plots
indicate the best validation loss achieved. 𝑁 indicates the amount of data points in each box plot, i.e.
the amount of times the network was trained with each setting.

There is quite a significant spread in performance within each labeling setting. This is partly due to
the stochastic nature of parameter updating during training, but also largely due to randomly splitting
the tracking runs into train/test data. This indicates a substantial sensitivity to the selection of tracking
runs that are provided to the network for training. The impact of this complication is especially notable
for the settings were less tracking runs are used. This makes sense, since with less runs used for train-
ing, every poorly selected run will be a bigger chunk of the training data. It is out of the scope of this
preliminary experiment to further investigate why certain selections of runs work better than others, but
this should be addressed in the main phase of this thesis. A potential method to examine this problem
is by cross-validation (Berrar, 2019).

As was speculated, Figure 4.11 shows that the classification performance deteriorates as the limit
of included run indices increases. It is difficult to select an ’optimal’ setting from this preliminary ex-
periment, but it can be seen that a more strict definition of unskilled/skilled (i.e. less runs included
per label) leads to better classification performance (higher validation accuracy). More research will
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be required to draw any definite conclusions about what the best labeling setting is. However, given
the earlier discussed uncertain performance at lower run limits, and the poor performance at higher
run limits, it appears the best option is to use somewhere between ten and twenty runs to produce the
labels. Therefore, for the remained of the preliminary experiment, only the first/last fifteen runs of each
participant will be used as labeled training data.

Figure 4.11: Dual axis box plot showing how the validation loss and the validation accuracy are affected by the limit of run indices
included in each label. 𝑁 denotes the number of data points in each box plot

Label based on performance: In contrast to the previous labeling method, this method will assume
the subject’s skill level based on their performance. As has already been observed in Section 2.1.2,
there are two obvious learning patterns visible in the training data as the subjects gain more experi-
ence: the variance of the tracking error 𝜎2𝑒 reduces, and the variance of the subject control output 𝜎2𝑢
increases. These patterns can be utilized to quantify the acquisition of participants’ skill, and thereon
base the associated class label.

A research by Wijlens, Zaal, and Pool (2020) evaluated tracking run performance (and control activ-
ity) in terms of the Root Mean Square (RMS) of the error and the control signals, RMS(𝑒) and RMS(𝑢),
respectively. The current research will test the use of RMS(𝑒) of each tracking run as a measure to
label said tracking run as ’unskilled’ or ’skilled’. It was also tested to base labels on RMS(𝑢), but this
resulted in poor training results.

The RMS(𝑒) of every tracking run in the dataset is shown (blue dots) in Figure 4.12. The average
RMS(𝑒) at every run index is also shown (red dots), to visualize acquisition of skill by the participants.
By comparing every individual tracking run’s RMS(𝑒) to the median value, a label can be generated
for each run. This way any tracking run that is below the median, will be labeled as ’skilled’, and vice-
versa. It was found that using this performance based labeling method resulted in a higher classification
accuracy of the trained network. A comparison of performance of the two different labeling methods
is shown in Figure 4.13. From this graph it can be seen that the performance based labeling method
increases the classification accuracy of the network by about 8%.

Though these results may seem promising on the surface, there is a catch. The labeling method
dictates what the network is able to recognize, i.e. using RMS(𝑒) to label the training data means that
the network will become good at predicting whether a sample belongs to a tracking run with a low or
high RMS(𝑒). This does not necessarily mean that the network has become good at predicting whether
a sample belongs to a tracking run of a trained or untrained pilot.
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Figure 4.12: RMS(𝑒) of all tracking runs indicated by blue dots. The average RMS(𝑒) of all participants at a certain run index is
shown in red. The median RMS(𝑒) value is indicated by the purple dotted line.

Figure 4.13: A comparison of validation accuracy and validation loss, between the two different labeling methods that have been
discussed.

To visualize the impact the labeling method has on the model output, consider Figure 4.14 and
Figure 4.15. In these two figures every dot indicates a separate tracking run, the color of the dot
specifies the average classification of the numerous samples in that run (remember that the network
classifies samples of a specified window size, not entire tracking runs). The vertical position of the
dots shows the variance of the tracking error 𝜎2𝑒 , whereas the horizontal position depicts the run index.
Lastly, the bar chart in the lower half of these figures shows the percentage of samples that were
classified as skilled, in bins of five tracking runs.
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Figure 4.14: Average model output for every tracking run. This model has been trained with the experienced based labels (i.e.
label based on run index).

Figure 4.15: Average model output for every tracking run. This model has been trained with the performance based labels (i.e.
label based on RMS(𝑒)).
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The output of the network that was trained using labels based on experience is shown in Figure 4.14,
the result of using labels based on performance is shown in Figure 4.15. Inspection of these figures
clarifies the notion that the labeling method dictates what the network is able to recognize. This can
be observed by the horizontal distribution of colors in Figure 4.14 (left is predominantly red, right is
predominantly blue), and the vertical distribution in Figure 4.15 (top is predominantly red, bottom is
predominantly blue). Namely, the horizontal distribution indicates that the network is good at distin-
guishing the amount of experience a pilot has, whereas the vertical distribution means the network is
good at distinguishing low and high tracking error. When comparing the bar charts, it can also very
clearly be seen that Figure 4.14 shows a strong correlation between run index and percentage of sam-
ples classified as skilled. It is especially impressive that this correlation is also visible between run
index 15 and 85, since this network was only trained with the first and last fifteen tracking runs of each
participant. Inspection of the bar chart in Figure 4.15 shows that this correlation is far less present, as
the second half of the bars are almost equal in height.

There is no right or wrong option between choosing either one of the labeling options, it is a matter
of preference. In light of the goal of this thesis, however, the option of labeling based on experience
seems most suitable. This is because this method has an unbiased definition of skill level, i.e. there
is no arguing that a pilot performing a tracking task for the first time is inexperienced. Contrarily, the
labeling based on performance option makes the assumption that pilot skill level is only determined by
tracking error. This is a disputable approach for two reasons. 1) It ignores all the other variables that
were recorded during the tracking runs and solely bases the class on the error signal. 2) There can
be cases where a ’good’ pilot has a high tracking error, even though they are carrying out skilled safe
control behavior (and vice-versa). These cases can be identified in Figure 4.15 as the completely red
dots in the last tracking runs, or the blue dots at the very first tracking runs. In comparison, Figure 4.14
shows far fewer of these cases.

4.2.4. Sensitivity Analysis
As a last step of the LSTM model implementation, a brief sensitivity analysis was conducted. The
LSTM model settings (Table 4.1) were left intact, whilst the influence of the data settings (Table 4.2)
was tested. Only the scalable data settings were tested, i.e. the window size, sampling frequency, and
overlap.

The sensitivity analysis was conducted by recording the new validation accuracy of the model if one
of the three investigated settings was changed, while leaving the other settings unaltered. To account
for different training results due to the stochastic nature of the training algorithm, every combination
of settings was tested five times under five fixed random seeds. Fixed random seeds were used to
ensure that every tested setting was dealt the same five random selections of training/testing samples.

The results of the described sensitivity analysis are shown in Figure 4.16. The LSTM model ap-
pears to be relatively insensitive to doubling (3.2 s) or halving (0.8 s) the window size, more extreme
values will have to be tested to deduce a correlation. Interestingly, using a higher sampling frequency
actually appears to increase classification performance, contradicting the findings by Versteeg (2019)
(as were shown in Figure 4.6). This underlines the unpredictability of training artificial networks and
highlights that ’one-size-fits-all’ is often not the case for these algorithms. Lastly, a very strong correla-
tion between overlap and validation accuracy can be observed. A high overlap, which is essentially a
data augmentation method, significantly increases classification performance. This increased perfor-
mance can be explained by the larger amount of training samples available to the network when using
a high overlap between consecutively collected samples with the sliding window technique that has
been explained in Section 4.2.2.

These results only serve as an indication of model sensitivity. In the main phase of this thesis, a
more thorough analysis should be conducted. For example, each setting should be tested more often
to further reduce the noise in the results and get statistically more meaningful results. Furthermore, a
wider range of values for each setting should be investigated. Lastly, the effect of changing multiple
settings concurrently should be studied.
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Figure 4.16: Average validation accuracy after training the LSTM model with different data settings.

4.2.5. Lowering Data Resolution
During the tests performed to gather preliminary results, the neural network training software repeatedly
crashed. Most of the time these crashes appeared be the consequence of computer memory issues.
Specifically, the VRAM became overfull, causing the GPU to delay, which in turn disconnected the
GPU from the Kernel that was running the training algorithm. Additionally, loading in multiple data sets
occasionally resulted in a full workspace due to shortage of RAM, also causing memory errors. These
problems could potentially be overcome by lowering the amount of bits per stored data point.

The default size of the data points is 8 bytes (64 bits) per stored decimal number. The amount of
bits per number dictates the resolution of the stored number. By lowering the resolution, part of the
information of each data point is lost. This could affect the training results.

An experiment was conducted to empirically determine the influence of lowering the amount of
bits per data point. Three Python data types were tested: 64 bit float, 32 bit float, and 16 bit float.
Again, every different (data type) setting was tested five times with five fixed random seeds. All other
settings were kept the same as they were presented in Section 4.2.1 and Section 4.2.2. The results
of this experiment are shown in Table 4.3. Note that the validation accuracy and validation loss seem
unaffected by the reduced amount of bits per data point. The small performance differences that are
found are likely due to the random parameter updating algorithm during training.

For the remainder of the report 32 bit floats were used in the experiments, this greatly reduced
software crashes and also slightly decreased computation time (due to faster reading/writing of the
smaller data type). Although the 16 bits was also a viable option, the 32 bits option was selected. This
is because 32 bits were sufficiently low to overcome the problems, and therefore further lowering the
bits per number would only increase the chances of running into any unforeseen unwanted side effects
of resolution reduction.

Table 4.3: Influence of using less bits per stored data point (lower resolution of decimal number).
* Reported total data size is under the data settings presented in Table 4.2.

Data type used Total train and test data size* Validation accuracy Validation loss
64 bit float 814 Megabytes 80.36% 0.430
32 bit float 407 Megabytes 80.50% 0.427
16 bit float 203 Megabytes 80.43% 0.430



108 4. Preliminary Testing of Classifier

4.2.6. Takeaways
This section discussed the implementation of a stacked LSTM model to classify pilot skill level. The
model architecture, along with hyperparameter values, are summarized in Table 4.1 and Table 4.2. The
performance, in terms of validation accuracy, is highly dependent on the definition of the class labels
(i.e. what data are labeled as ’skilled’ or ’unskilled’).

When basing the label on Root Mean Square of the participant’s tracking error, a validation accuracy
around 88% can be achieved. However, this method only considers the tracking error to produce the
class label, ignoring the other input variables. Subsequently, this results in some trained participants
being classified as ’unskilled’ and vice-versa.

Labeling the tracking samples based on experience (i.e. the run index) results in a validation accu-
racy slightly higher than 80%. Although this is a lower accuracy, it seems to be better at capturing the
learning curve of the participants.

Lastly, a brief sensitivity analysis was conducted. From this analysis it was found that the perfor-
mance is specifically sensitive to the overlap setting. The window size seemed to have little influence.
Increasing the sampling frequency to 100 Hz resulted in about 2% higher validation accuracy.

Storing the data in a smaller memory bit format appeared to have no influence on the training per-
formance. However, this significantly reduces required computer memory and decreases the chance
of the code crashing.

4.3. Cybernetic Data Augmentation Implementation
This section will discuss the preliminary results of using a pilot model to generate additional training
data. First the MATLAB implementation of a quasi-linear pilot model is described. Next, a preliminary
experiment is conducted to test the feasibility of utilizing this model as a data augmentation method.

4.3.1. Cybernetic Pilot Model
The theoretical background of the pilot model used in this preliminary experiment has already been
provided in Section 2.2.2. Therefore, this section will concern a pragmatical description of putting the
provided theory to practice. The implementation of the pilot model in MATLAB will be discussed in two
parts: 1) the steps taken to create the pilot model and 2) the steps taken to create the remnant signal.

Figure 4.17: Screenshot of the quasi-linear pilot model as it has been implemented in Simulink.

Pilot model: The implementation of the pilot model described in Section 2.2.2 was done in MATLAB
using Simulink. A screenshot of the final Simulink model is shown in Figure 4.17. This model
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closely resembles the schematic depiction that was provided in Figure 2.6, the only difference is the
position in the loop where the remnant is injected (this will be further discussed in the next paragraph).

The transfer functions 𝐻𝜃,𝛿𝑒 , 𝐻𝑝𝑣 , and 𝐻𝑝𝑚 are given by Eq. (2.1), Eq. (2.2), and Eq. (2.4), respec-
tively. As will be discussed in Section 4.3.2, the model parameters in these transfer functions matched
the estimated parameters of individual tracking runs as found by Pool et al. (2016). Throughout the
preliminary experiment the motion response was disabled, as only the training runs without motion
feedback were simulated.

The forcing functions 𝑓𝑡 and 𝑓𝑑 were identical to those used in the experiment by Pool et al. (2016).
This means that 𝑓𝑡 and 𝑓𝑑 were generated as sum-of-sine signals using Eq. (4.1). Here the amplitudes
𝐴𝑑,𝑡, frequencies𝜔𝑑,𝑡, and phases 𝜙𝑑,𝑡 of the individual sinosoids are given by Table 4.4. The sinusoids’
frequencies 𝜔𝑑,𝑡 are integer multiples of the measurement time base frequency 𝜔𝑚 = 2𝜋/81.92 =
0.0767 rad/s (Pool et al., 2016).

𝑓𝑑,𝑡(𝑡) =
𝑁𝑑,𝑡
∑
𝑘=1

𝐴𝑑,𝑡[𝑘] sin (𝜔𝑑,𝑡[𝑘]𝑡 + 𝜙𝑑,𝑡[𝑘])

with 𝜔𝑑,𝑡[𝑘] = 𝑛𝑑,𝑡[𝑘]𝜔𝑚

(4.1)

Table 4.4: Amplitudes, frequencies, and phases used to generate forcing functions. Data taken from (Pool, Harder, & van
Paassen, 2016).

Remnant: As has been discussed in Section 2.2.2, the remnant 𝑛 can be modeled as filtered white
noise (colored noise) injected at the error. As proposed by Levison et al. (1969), a first-order low-pass
filter (Eq. (2.6)) can be used to generate the colored noise. Three steps were taken to obtain the filter
parameters 𝐾 and 𝑇𝑙: 1) estimate the control output power-spectral density due to remnant 𝑆𝑢𝑢𝑛(𝑗𝜔),
2) calculate the power-spectral density of the remnant injected at the error 𝑆𝑛𝑛𝑒(𝑗𝜔) , and 3) use a
least-squares cost function to estimate 𝐾 and 𝑇𝑙 (van der El et al., 2019). The following paragraphs will
demonstrate these three steps.

Step 1) Estimate 𝑆𝑢𝑢𝑛 : This step is based on the premise that the control output power-spectral
density function 𝑆𝑢𝑢 is the sum of the output spectra due to target, disturbance, and remnant (i.e.
Eq. (4.2)). This is under the assumption that these signals are linearly independent (Levison et al.,
1969). The spectrum 𝑆𝑢𝑢(𝑗𝜔) can be estimated from discrete time measurements using Eq. (4.3) (van
der El et al., 2019). Here 𝐿 is the number of recorded time steps, 𝑓𝑠 the sampling frequency in Hz, and
𝑈(𝑗𝜔) is the Discrete Fourier Transform of the control output 𝑢(𝑡). To decrease noise in the power-
spectral density function, 𝑆𝑢𝑢 was calculated as the average 𝑆𝑢𝑢 of five different runs.

Once 𝑆𝑢𝑢 is computed, 𝑆𝑢𝑢𝑑 and 𝑆𝑢𝑢𝑡 can be identified as the power-spectral density at the tar-
get and disturbance frequencies, respectively. 𝑆𝑢𝑢𝑛 can be recognized as the power-spectral density
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outside of the forcing function frequencies. Interpolation was used to also estimate 𝑆𝑢𝑢𝑛 at 𝜔𝑑,𝑡. An
example of the above is depicted in Figure 4.18.

𝑆𝑢𝑢(𝑗𝜔) = 𝑆𝑢𝑢𝑡(𝑗𝜔) + 𝑆𝑢𝑢𝑑(𝑗𝜔) + 𝑆𝑢𝑢𝑛(𝑗𝜔) (4.2)

𝑆𝑢𝑢(𝑗𝜔) =
1
𝑓𝑠𝐿

|𝑈(𝑗𝜔)|2 (4.3)

Step 2) Calculate 𝑆𝑛𝑛𝑒 : The power-spectral density of the remnant injected at the error can be
estimated at the target and disturbance frequencies, using Eq. (2.8). The 𝑆𝑛𝑛𝑒 estimates at the distur-
bance frequencies appeared inaccurate and resulted in unstable results at step 3. Therefore only the
𝑆𝑛𝑛𝑒(𝑗𝜔𝑡) will be used in the next step.

Step 3) Approximate low-pass filter parameters: In the third and final step, the model parameters
of the low-pass filter are determined. This is done by first rewriting Eq. (2.7) to Eq. (4.4), and then
applying a least squares cost function to fit Eq. (4.4) to the estimated remnant 𝑆𝑛𝑛𝑒 . An example of this
approach is shown in Figure 4.19.

|𝐻𝑛| = 𝐾 |
1

1 + 𝑇𝑙𝑗𝜔
| = 𝐾 1

√1 + 𝑇2𝑙 𝜔2

→ |𝐻𝑛|
2 = 𝐾2 1

1 + 𝑇2𝑙 𝜔2

(4.4)

Two remnant settings were calculated for each participant: an inexperienced setting to simulate
unskilled behavior, and an experienced setting to simulate skilled behavior. The inexperienced settings
are based on the first five runs of each participants, and the experienced settings on the last five runs.
The found remnant settings are summarized in Figure 4.20.

From Figure 4.20a it can be seen that the low-pass filter gain 𝐾 decreases as the participants
gain more experience, this means that the amplitude of the remnant signals after training. Similarly,
the low-pass filter lag time-constant 𝑇𝑙 declines too, as is shown in Figure 4.20b. This increases the
break frequency (𝜔𝑏 = 1/𝑇𝑙) of the remnant signal, meaning that trained participants perform nonlinear
behavior at a higher frequency than untrained participants.

4.3.2. Data Augmentation
This section will address the utilization of the designed pilot model as a tool for data augmentation.
Throughout this section, the experience based labeling will be used with the first and last fifteen tracking
runs of each (simulated) participant.

The goal of this part of the preliminary experiment is not to determine the added value of the pro-
posed data augmentation method (e.g. in terms of performance increase). Therefore, this preliminary
stage will not yet conduct an experiment to address the usefulness of this data augmentation in certain
scenarios. Instead, only a feasibility check of the proposed method is conducted. This feasibility check
is done by investigating whether an artificial neural network, that is trained solely on data generated
with the pilot model, can correctly classify time traces of human pilots. In short: training data = gener-
ated by pilot model, and validation data = actual participants’ tracking runs.

To execute above mentioned feasibility test, pilot data had to be simulated with the built pilot model.
For every recorded tracking run of the real participants, a modeled counterpart was generated. This
was done by employing the pilot model with derived model parameters of each participant for every
tracking run (as found by Pool et al. (2016)), and providing the resulting pilot model with the same
forcing functions that the real participants received. It was also tested to generate pilot data with ’generic
model’ parameters (i.e. one set of model parameters that represented unskilled behavior and one set
model that represented skilled behavior). However, it was found that using the actual model parameter
estimates of each participant for every individual tracking run, to train the neural network, resulted in
better validation accuracy.
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Figure 4.18: Control output power-spectral density of a single participant in the described compensatory tracking experiment.

Figure 4.19: Remnant model fit for a single participant in the described compensatory tracking experiment.

As previously mentioned, for each participant only two remnant settings were computed (inexperi-
enced setting and experienced setting). This meant that the inexperienced setting was used to simulate
the first 50 runs, and the experienced setting to simulate the last 50 runs.

A comparison, in terms of variance, between the real pilot behavior and the simulated behavior is
shown in Figure 4.21. This figure confirms that, on average, the simulated signals are similar to the
real recorded signals. At run index 50, a gap can be observed between the average of simulated runs.
This gap is likely caused by the fact that there are only two remnant settings for each participant. For
the main phase of this thesis, it may be beneficial to have a more gradually changing remnant model.
However, it is not expected that this will have a major impact on the network training results. This is
because only the first and last fifteen runs are used to train the network (as has been explained in
Section 4.2.3), and it appears that the simulated behavior is relatively accurate for those runs.

An example of time traces of simulated behavior versus real pilot behavior is displayed in Fig-
ure 4.22. The influence of including/excluding remnant in the pilot model is also depicted. This exam-
ple shows that, although there is a noticeable similarity between simulation and reality, the simulated
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(a) Empirically determined 𝐾 values of remnant model. (b) Empirically determined 𝑇𝑙 values of remnant model.

Figure 4.20: Remnant model filter parameters for all 13 participants. Each participant has filter parameters for their first five runs
and their last five runs.

behavior does not perfectly replicate the real behavior. This is likely because, unlike humans, the pi-
lot model performs (quasi) linear time invariant behavior. Although the remnant adds some nonlinear
control output, it does not predict the time varying behavior of the human participant. However, the
difference between the real and the simulated signal is not necessarily a problem, as the simulated
behavior may still be representative of unskilled/skilled behavior.

Figure 4.21: Tracking error variance 𝜎2𝑒 and control output variance 𝜎2𝑢, comparison between real runs and simulated runs.

As previously mentioned, to test the feasibility of training the neural network on simulated data, an
experiment was conducted. In this experiment the training data was simulated using the pilot model,
whilst the validation data was set to be actual pilot tracking behavior. All other training settings were kept
as they have been presented in Table 4.1 and Table 4.2. Simultaneously, the influence of the remnant
was tested by scaling the remnant signal with a gain ranging from zero to two. Fixed random seeds
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Figure 4.22: An example of simulated pilot behavior versus real pilot behavior in the same tracking task.
(Time traces from participant 1, run 100)

were used to generate the remnant signal, so that a fair comparison between the different remnant
gains could be made. Each setting was tested five times to account for the random in training the
network.

The outcome of the data augmentation experiment is shown in Figure 4.23. An unexpected result
was found from this experiment. Namely, it appears that increasing the magnitude of the remnant (of
the simulated pilot behavior that is used as training data), increases the validation accuracy on real
pilot time traces. This may indicate that the estimated filter gains 𝐾 from Section 4.3.1 are too low,
but further research will have to be performed to make any conclusive remarks on these findings. The
fact that a validation accuracy of up to 76% was reached is a promising prospect for the proposed data
augmentation method.

It was also tested whether the inclusion of remnant in the pilot model induced any bias into the
predictions of the neural network model. This was investigated by recording the percentage of pilot time
trace samples that networks, trained with different remnant magnitudes, classified as either unskilled
or skilled. The results of this exercise are summarized in Figure 4.24, here the total height of each bar
indicates the percentage of samples that the trained network put in each class (i.e. the bias). Within
each bar the percentage of correctly classified samples is shown (i.e. accuracy). There is a small
discrepancy between the validation accuracy shown in Figure 4.23 and in Figure 4.24. This is because
the accuracy in Figure 4.23 is the maximum encountered validation accuracy during training, whereas
the accuracy in Figure 4.24 is the validation accuracy per class when employing trained networkmodels.

From these results, no clear relation between remnant gain and network prediction bias could be de-
rived. Overall, the network trained with generated data appears to be more biased towards classifying
samples as ’skilled’. Only when the remnant gain is zero (i.e. there is no remnant), does the network
have a bias towards ’unskilled’. Strangely, the largest bias is observed when the remnant gain is set
to one, even though this setting was designed to be the most accurate representation of the real pilot
data. It can also be observed that the classification accuracy is lowest for the class that the network is
biased towards. This makes sense, since bias naturally triggers more false positive predictions.

Further research will have to be conducted to be able to explain the observed training behavior.
Each setting should be tested more often to get results that are more meaningful statistically. The
explainability methods, that will be introduced in Section 4.4, may be helpful tools to understand how
different training settings affect the network’s decision making.

4.3.3. Takeaways
This section discussed how a quasi-linear pilot model was utilized to generate additional training data.
The pilot model consists of linear transfer functions and a remnant that is modeled as low-pass filtered
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Figure 4.23: Validation accuracy and validation loss when train-
ing data = simulated, and validation data = real pilot behavior.
Different remnant gains were used to simulate the training data.

Figure 4.24: Neural networks trained with different levels of
remnant gain show different bias in their class predictions.

white noise. For every recorded tracking run of the actual participants, a simulated counterpart was
generated.

To test the feasibility of this data augmentation method, the LSTM model was trained using solely
generated data, after which it was validated on the actual pilot data. From this analysis it was found
that the LSTM model trained with simulated data achieves about 70% validation accuracy on real pilot
data, on average (compared to approximately 80% when training on real pilot data). Removing the
remnant from the pilot simulations lowers this validation accuracy to about 65%, whereas doubling
the magnitude of the remnant increases the validation accuracy to approximately 73%. There is a
significant uncertainty in the trained model performance (i.e. between 66% and 76% with the standard
remnant setting), the cause of this variability will have to be further investigated.

It was also found that training the LSTM model on simulated data will generally lead to a classifi-
cation model that is biased towards classifying real pilot samples as ’skilled’. There appears to be no
clear correlation between remnant gain and model bias. More research will have to be done to make
conclusive remarks about the above observations.

4.4. Explainable Artificial Intelligence Implementation
In this section a preliminary implementation of eXplainable Artificial Intelligence (XAI) will be discussed.
Theoretical background about explainability in machine learning has been provided in Section 3.4.
From the observed literature, it was concluded that a model-agnostic explainability method is most
suitable for this preliminary experiment.

In Section 4.4.1 a method is described that calculates the relative importance of each input variable,
Section 4.4.2 extends this method to generate class activation maps.

4.4.1. Feature Importance
As has been explained in Section 3.4, there are methods that quantify feature importance. This form of
XAI calculates the contribution of each input that led to a certain output. In this preliminary experiment,
a model-agnostic method called SHAP (Lundberg & Lee, 2017) was used to estimate the relative contri-
bution of the input variables. This method was implemented by using the SHAP library for Python.

Specifically, the GradientExplainer function was used to find local estimates of marginal fea-
ture contributions to model output. This function uses expected gradients, which is an extension of the
integrated gradients method by Sundararajan, Taly, and Yan (2017). The integrated gradients method
compares some baseline input 𝑥′ to an actual input 𝑥. A path is drawn between 𝑥′ and 𝑥, after which
gradients are computed at each point along the path. Integrated gradients are found by summing up
the individual gradients (Sundararajan et al., 2017). The integrated gradients indicate the relative con-
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tribution of every dimension in 𝑥 (i.e. every input variable).

The marginal contribution of the input features can be calculated for a single model prediction (local
explanation), an example of this was shown in Figure 3.24. By calculating the feature contribution for
every instance in the data set, the contributions can be summed to find the overall feature importance
of the trained model (global explanation). Note that the relative contribution of the input variables are
different for every (locally explained) model prediction, i.e. for every classified sample a different input
can be more important than another. Therefore, by calculating the importance of the input variables for
every data point, an average feature importance can be estimated.

Precisely the method described above was used to estimate the global feature importance of the
trained LSTM model. The results of this exercise are shown in Figure 4.25, here the blue bars indicate
the relative feature importance for the LSTM model trained with real human pilot data, whereas the
red bars show feature importance for the same model trained with simulated pilot data (remnant gain
equal to one). For both these differently trained models, the feature importance was computed on class
predictions of real pilot data. The settings were kept as they have been presented in Table 4.1 and
Section 4.2.2, with experience based labeling (first and last fifteen runs).

What is interesting to see in Figure 4.25, is that for both models (either trained with real or simulated
data) the tracking error 𝑒 and the time derivative of control output 𝑢̇ are the two most important features
to classify samples. This indicates that, according to the trained models, experienced pilots predom-
inantly distinguish themselves from inexperienced pilots by time traces of the magnitude of tracking
error and the speed with which they operate the control column. Also note that, for both models, the
time derivative of the tracking error 𝑒̇ appears to be the least influential feature.

Figure 4.25: Global feature importance, computed with SHAP, for two differently trained LSTM models.

To provide more context to the earlier presented feature importance, consider Figure 4.26. This
graph displays the correlation between input variable variance and class prediction of the model trained
with real pilot data. Every dot is an entire run, the color of the dot is the average predicted class of
all samples from that run, the horizontal position of the dot indicates the variance of the respective
feature over that tracking run, the vertical position is only to separate dots in densely populated regions.
Lastly, the overlaying bars indicate the average classification over the respective bin width (i.e. it can
be interpreted as the average color in that area).

From Figure 4.26 it can be seen that tracking runs with low tracking error variance will, on average,
be classified as skilled (this correlation is also observable in Figure 4.14). For the other input variables
the opposite is true: low variance is related to ’unskilled’ pilot predictions. Figure 4.26 also reinforces
the findings from Figure 4.25, as it can be seen that 𝜎2𝑒 and 𝜎2𝑢̇ show the strongest correlation with
model output. This can be recognized by the decisive magnitude of the bar charts that is either close to
zero or close to 100. This is unlike the other inputs where the color is more diluted and the bar charts
hover around 50%, especially 𝜎2𝑒̇ appears to be weakly correlated to model output (as was already
confirmed by Figure 4.25).
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Figure 4.26: Visible correlation between variance of input variables and average model classification output.

4.4.2. Class Activation Map
Another potential use case for local feature importance explanation of model output is to generate Class
Activation Maps (CAMs). These maps, as has been discussed in Section 3.4, indicate discriminative
regions in the time traces that lead to certain model outputs. In Section 3.4 CAM was described as a
method that can only be utilized for specific CNN models. This is true, however, an estimated CAM
can be computed for RNNs using feature importance values. The following paragraphs will describe
how this is done and explain why it is inferior to actual CAMs generated with CNNs.

CAM from feature importance: The marginal contribution of each input variable that lead to a specific
model output can directly be utilized to create a graph like the one shown in Figure 4.27a. Here it can
be seen that for every sample (1.6 seconds) the trained LSTM model outputs a predicted class (seen
in the bottom sub-graph labeled ’class’). Consecutively, the highlighted areas of the four other sub-
graphs indicate the relative contribution of each input variable to reach the class prediction. If a section
of a time trace is red, then it means that that region pushed the model prediction towards ’unskilled’,
contrarily blue areas indicate pilot behavior that leads to ’skilled’ classification. The intensity of the
color indicates that magnitude of contribution. Note that individual contributions of separate features
can contradict each other.

The y-axes of the feature time traces in Figure 4.27 have no units, this is because these input
features are standardized (as they are presented to the model). Specifically a run halfway in the pilot
training process was chosen to generate Figure 4.27, i.e. run number 50 out of 100. This is because
the trained LSTMmodel is most uncertain for runs around this index, bringing out discriminative regions
in the time traces more predominantly. Runs around index 1 or 100, for example, will simply be entirely
red or blue, respectively.

The downside of Figure 4.27a is that the highlighted areas stretch over an entire sample, making
it difficult to identify the precise discriminative region that led to the model output. To overcome this
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problem, a moving average method is proposed. By using a sliding window with a specified percentage
of overlap between consecutive classified samples, the model output (and associated feature impor-
tance) can be averaged. To illustrate this, consider Figure 4.27b, in this figure a 50% overlap between
consecutive samples is used. Notice that this doubles the resolution with which discriminative regions
can be indicated. This resolution can be further increased by, for example, using 90% overlap as is
shown in Figure 4.27c.

Although the presented method is able to effectively capture specific regions of time traces that lead
to class predictions, there are two major downsides to the proposed method. 1) The indicated relative
contributions are estimates, meaning that these numbers do not fully accurately describe the model’s
behavior. This is not the case for CAM with CNNs, here an actual look into the model’s decision making
is provided. 2) The proposed method takes longer to compute than CNN CAMs. Estimating the local
feature importance for a single prediction is already computationally expensive, using 90% overlap
makes it even more time consuming to produce these figures.

Observations from CAM: From Figure 4.27c some preliminary observation can be made. For ex-
ample, it appears that if 𝑒 moves away from zero (e.g. at 20.5s) this leads to ’unskilled’ predictions.
On the contrary, if 𝑒 moves back towards zero (e.g. at 22.5s and at 25.5s) the output is pushed to-
wards ’skilled’. This pattern is reinforced by 𝑒̇, which essentially indicates the direction 𝑒 is moving to
(i.e. moving down when 𝑒 is negative is red, whereas moving down when 𝑒 is positive is blue). For
𝑢̇ it seems that homogeneous ’sine-like’ behavior portrays unskilled behavior, and vice-versa. There
seems to be little to no influence at all by 𝑢.

It must be noted that the presented observations are based on only a very small portion of the data.
The presented XAI method will have to be utilized more extensively to observe more AI interpretations
of pilot behavior. Additionally, the found results will have to be investigated more systematically and
thoroughly. For example, certain reoccurring patterns that lead to class activation could be collected
and compared. This may give insight into what ’shapes’ in time traces of pilot behavior belong to trained
or untrained behavior. Additionally, side by side comparisons of CAMs could be done between differ-
ently trained neural network models, or between differently classified participants performing the same
task.

4.4.3. Takeaways
This section detailed the implementation of eXplainable Artificial Intelligence to the preliminary LSTM
model. A model-agnostic post hoc explainability method called SHAP was used to calculate the relative
contribution of each input variable to a certain model prediction.

By calculating the relative contribution of the input variables for every sample in the data, a total
feature importance can be determined. From this analysis it was found that, globally, the tracking error
𝑒 and the time derivative of the control output 𝑢̇ are the most important features for the LSTM model to
classify time traces.

Local feature importance calculations can be used to create class activation maps. This allows
the identification of discriminative regions in the time traces that lead to certain model output. This
visualization tool gives some more insight into the model’s decision making, but it will have to be tested
more extensively before any meaningful conclusions can be drawn.
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(a) Class activation map with 0% overlap between classified samples.

(b) Class activation map with 50% overlap between classified samples.

(c) Class activation map with 90% overlap between classified samples.

Figure 4.27: Class activation map for trained LSTM model, made using SHAP library for Python.
(Time traces from participant 1, run 50)
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4.5. Results and Discussion of Preliminary Experiment
The preliminary experiment investigated three topics: 1) classifying pilot skill level with artificial neural
networks, 2) generating additional data with a cybernetic pilot model, and 3) interpreting the output of
the trained neural network model. The following sections will briefly discuss the preliminary results for
all three of these topics.

4.5.1. Classifying Pilot Skill Level with LSTM Model
From the preliminary experiment it was found that, without any hyperparameter optimization, the trained
LSTM model can correctly classify trained and untrained pilots with about 81% accuracy. Ideally, of
course, this classification would be done with 100% accuracy. The following four reasons may be the
cause of the LSTM model falling short in performance.

• The hyperparameters need to be optimized.

• A different neural network architecture must be employed.

• Not every training sample is representative of its respective class label.

• There is too little training data.

A brief sensitivity analysis indicated that there may be room for improvement through hyperparam-
eter optimization. Testing the network extensively, under different (combinations of) settings, could
identify more optimal hyperparameter values. This could significantly increase the classification per-
formance.

It may be the case that the selected neural network architecture (LSTM) is a suboptimal option
for this thesis. A completely different architecture (i.e. CNN) will have to be tested, this will allow com-
parison of performance between the different models.

It could be that, with the selected labeling method, not every sample is a good representation of
the class it is labeled as. Two observations support this claim: 1) using a performance based label
increased validation accuracy, and 2) there is a significant difference in achieved validation accuracy
when using different selections of train/test data.

Some samples may be poorly labeled due to time-variant behavior of the participants, i.e. some
samples of a ’skilled’ subject may actually be unskilled behavior (and vice-versa). It could also be due
the difference between participants, i.e. different subjects may utilize different control strategies or
some may have ’talent’ and be quicker to learn how to exert skilled behavior. This all leads to a ’noise’
of sorts in the training (and validation) data, making it more difficult for the network the generalize. A
potential method to further investigate the nature of this problem is ’cross-validation’.

Lastly, it may be the case that there is too little training data to effectively train the neural network.
From the sensitivity analysis it was found that lowering the overlap between samples (and thus low-
ering that amount of training samples) severely decreased the validation accuracy. This could be an
indication that the presented results are suboptimal due to scarce training data. This will have to be
further investigated by recording the impact of purposely leaving out a portion of the training data. A
potential solution to this problem may lie in the proposed data augmentation method.

4.5.2. Data Augmentation with Quasi-Linear Pilot Model:
The preliminary data augmentation experiment found that training the LSTM model with simulated pilot
data, results in a classification accuracy of real pilot data between 66% and 76%.

Although these are quite promising results (considering that the network is trained with only simu-
lated data), this is not an entirely fair representation of the effectiveness of the proposed data augmen-
tation method. Namely, the simulated training data are based on real tracking runs that are also used
as validation data. This means that, in a way, there is overlap between the training and testing data,
resulting in inflated test results.
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What also stands out is the wide spread of validation accuracy (i.e. 10%) found during this experi-
ment. Performing more training runs could produce results that are statistically more meaningful than
the results presented in this preliminary phase.

From the conducted analysis, it was found that the amount of remnant in the simulated data strongly
influences the training performance. The preliminary results indicate that doubling the amount of rem-
nant, averagely increases the validation accuracy by three percent. This could be an indication that
the remnant model has to be improved. A potential improvement would be to calculate more specific
remnant parameters for each simulated individual run of every participant.

Lastly, it must also be noted that there were some instabilities when simulating the pilot behavior.
For certain runs of some participants, the pilot model parameters (taken from Pool et al. (2016)) had
extremely high values. This resulted in the Simulink model crashing due to infinite derivatives. A
temporary solution was to overwrite these extremely high parameter values with averages. As this
was only the case for seven out of all tracking runs, it is expected to have had very little effect on the
presented results.

4.5.3. Explaining the Trained LSTM Model:
The last topic, that was investigated during this preliminary phase, is explainable artificial intelligence.
Using expected gradients an estimated feature importance could be produced to interpret the trained
LSTM model. From this analysis it was found that the tracking error 𝑒 and the control output speed 𝑢̇
are the most important input variables. Interestingly, this was also the case for the LSTM model trained
with simulated pilot data.

It should be noted, however, that the calculated feature contributions are estimates. This is more
problematic for local explanations than it is for global explanations, since the global estimates average
over a large set of predictions.

The gradient explanation method was also utilized to generate class activation maps. This is a
visual tool that highlights the discriminative area in the time traces that lead to a certain class prediction.
Although effective, the presented method is computationally expensive and based on estimates. CNNs
could potentially solve both these problems, lowering computation time and providing direct insight into
the model’s decision making.

The class activation maps may also be extended to provide global explanation. For example, spe-
cific shapes or patterns that consistently lead to a certain class prediction could be identified.



5
Research Plan

The goal of this preliminary phase was to shed some light on topics relevant to this thesis. Simulta-
neously, (partial) answers to some of the posed research questions have been established from both
literature and preliminary experimenting. To ensure that all the remaining research questions will be
answered by the end of the main phase of this thesis, a research plan has to be composed.

First the research questions will be repeated, after which the remaining unanswered questions are
identified. A project planning is proposed to find the answers to the remaining questions.

5.1. Research Questions
The introduction of this report introduced the followingmain research question: how can deep learning
be used to identify pilot skill level? In order to answer this question in completeness, a list of sub-
questions was introduced. The remaining questions are the following (the crossed out text indicate the
posed sub-questions that have been answered by the findings presented in this preliminary report):

Research sub-questions

1. How can artificial intelligence be used to classify time series data?

(a) What algorithms can be used to perform this task?
(b) How must the training data be structured?
(c) What influence do hyperparameters have on the classification performance?
(d) What is the optimal performance achieved with the proposed method?

2. How can pilot modeling be used to generate additional training data?

(a) What type of model can be used to simulate pilot behavior?
(b) What influence do pilot model parameters have on classification performance?
(c) What is the added benefit of the proposed data generation method?

3. How can an explainability component be added to the classification model?

(a) What explainability methods are available?
(b) What input parameters influence the classification model’s output and how?
(c) How can the proposed explainability method be used to interpret the classification

model’s decision making?
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5.2. Project Planning
In order to effectively plan the main stage of this thesis, the remainder of the research is split into three
phases. Each phase will aim to answer one of the three sub-questions. The following sections will
describe precisely what actions will be undertaken in each phase to come to the final answers of the
research questions.

5.2.1. Phase I: Optimize Deep Network Classifier
The conducted literature review provided a list of potential algorithms that may be used to classify time
series, answering question 1(a). However, only by actually putting the suggested networks to practice,
can a comparison in performance be accomplished. Therefore, the main phase of this thesis shall
implement a state-of-the-art CNN network, so that its performance can be compared to the stacked
LSTM model used in preliminary experiment.

As has been mentioned in the discussion of the preliminary results, the classification performance
of the network is highly dependent on the class labeling method. The preliminary experiment helped
to identify some potential labeling methods, but more thorough research has to be done to select an
optimal method. A potential tool that can be used to more efficiently recognize poorly labeled samples
is cross-validation. The above will help to answer question 1(b).

Once an optimal network architecture has been selected, and a final labeling and structuring is ap-
plied to the training data, the hyperparameters may be optimized. Optimizing the hyperparameters will
provide optimal classification performance and will simultaneously identify where the sensitivity of the
network lies. This will answer questions 1(c) and 1(d).

To summarize, the following steps will be taken during phase I. This phase is expected to take a
total of six weeks.

• Implement state-of-the-art TSC CNN network (e.g. FCN, ResNet (Wang et al., 2017), or Incep-
tionTime (Fawaz et al., 2020)) and compare classification performance.

• Optimize labeling method.

• Perform cross-validation to identify potential underfitting/overfitting.

• Optimize model performance with hyperparameter optimization.

5.2.2. Phase II: Implement Final Data Augmentation Model
The preliminary phase of this thesis proposed a quasi-linear pilot model that may be used to generate
additional training data for the machine learning algorithm. The preliminary experiment indicated that
the simulated data is accurate enough to teach a neural network to classify real pilot data. However,
an effort should be made to increase the accuracy of the simulated data.

A potential improvement lies in the remnant model. The preliminary research has proven that the
remnant strongly influences the classification performance. The exact nature of this correlation should
be further discovered to optimize the remnant settings. Testing and improving the pilot model shall
answer question 2(b) and result in optimized simulation data.

Once the pilot model is optimized, it should be investigated exactly how useful the proposed data
augmentation method is. This will be tested in a case study. The case study will quantify the benefit of
data augmentation with cybernetic pilot modeling when there is little training data, answering question
2(c). This may also help identify whether there is too little training data under the current settings, and
if this can be overcome.

Phase II of the main stage is expected to take four weeks. The following lists summarizes the steps
that will be taken during this phase.

• Improve pilot model to remove bias and increase accuracy (when training on simulated data and
testing on real pilot data).
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• Quantify added benefit when used as data augmentation method in case study.

5.2.3. Phase III: Utilize Explainable Artificial Intelligence
Out of the three pillars of this thesis, the XAI part is the most developed. This is because, in principle,
it is already fully functional and can be deployed in its current state.

Two potential problems with the current XAI method is that it estimatesmodel decision making, and
that it is computationally expensive. These two problems may be overcome with a CNN architecture,
however, this is completely dependent on whether the CNN outperforms the LSTM in terms of accuracy.

Regardless of what neural network architecture is selected, XAI will be used to interpret the results
of phase I and phase II. This interpretation through XAI will answer questions 3(b) and 3(c).

This phase is expected to take no more than three weeks. The following two items summarize the
activities of phase III.

• Compare and explain optimized deep learning models (e.g. in terms of variable importance).

• Extract insightful information from tool, e.g. specific patterns that belong to unskilled/skilled be-
havior.





6
Conclusion

In conclusion, this preliminary report documented the findings of a combined literature study and pre-
liminary experiment. The goal of this preliminary phase was to get accustomed with deep learning,
pilot modeling, and explainable artificial intelligence, so that these topics could effectively be combined
in the main phase of this thesis.

Ultimately, the goal of this thesis is to utilize deep learning as a tool to effectively classify pilot skill
level. This goal will be achieved by answering all of the posed research questions. The following para-
graphs will conclude how each phase of this thesis has contributed to reaching the research objective.

Literature study: The literature study highlighted the current state-of-the-art and identified where this
thesis could contribute to the existing body of knowledge. Namely, this thesis is the first to utilize deep
learning to classify pilot skill level based on control output time traces, without the use of additional
sensors (e.g. eye trackers or heart rate monitors). Additionally, it is also the first to attempt to perform
data augmentation using cybernetic pilot modeling.

The first step taken was to identify a potential source of training data that could be used to teach a
neural network to identify pilot skill level. It was concluded that the used data must have examples of
both untrained/trained individuals performing the same task. Simultaneously, it was reviewed how the
training data could be augmented using a quasi-linear pilot model. This partially answered question
1(b) and identified a solution to question 2(a).

An extensive review of artificial neural network literature helped to understand the working principle
of this class of machine learning algorithms. The foundation of knowledge was then applied to review
the application of neural networks in the domain of time series classification. From this investigation
it was found that recurrent neural networks and convolutional neural networks are the most promising
type of network for the goal of this thesis, answering question 1(a).

Lastly, the current trends in the field of explainable artificial intelligence were reviewed. This anal-
ysis led to a selection of methods that were deemed applicable for this thesis. It was found that only
post-hoc explainability could be used to interpret the selected deep learning networks, resolving ques-
tion 3(a).

Preliminary experiment: During the preliminary experiment some of the found literature was put to the
test. A stacked LSTM model was employed to perform time series classification on the collected pilot
data, this provided a preliminary perspective on questions 1(b), 1(c), and 1(d). Namely, it was found
that labeling the training data based on the experience of the participants led to a fairer comparison than
when the data was labeled based on an assumed performance measure. Currently, the trained LSTM
model achieves roughly 81% accuracy in classifying pilots as skilled or unskilled. A brief sensitivity
analysis concluded that there is room for improvement through hyperparameter optimization.

Training the same LSTM model (under the same settings) with only simulated pilot data, resulted
classification accuracy up to 76%. However, the performance was very inconsistent and must thus be
further reviewed to answer 2(b) and 2(c).

The preliminary implementation of the explainable artificial intelligence method helped to interpret
the results of the preliminary experiment. An expected gradients method was used to estimate the rel-
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ative importance of the input variables. The feature contribution estimates were also used to generate
class activation maps. This gave an indication of how question 3(b) and 3(c) may be answered.

Main phase planning: During the main phase of this research, complete answers to all the posed
research questions will be provided. In order to achieve this, the work is split into three phases: I)
optimization of deep network classifier, II) implementation of final data augmentation model, and III)
utilization of explainable artificial intelligence.

Phase I is estimated to be the most time consuming phase. In this phase, different neural network
architectures will be compared so that an optimal network type can be selected. Once the structure of
the neural network is established, optimization will take place to achieve the highest possible classifi-
cation performance. This will answer questions 1(b), 1(c), and 1(d).

With the optimized neural network model ready for deployment, phase II will conduct a study to
test the effectiveness of using a cybernetic pilot model to simulate additional training data. Before
quantifying the added benefit, the pilot model must first be reviewed and improved. This implementation
will provide answers to questions 2(b) and 2(c).

Lastly, phase III will answer questions 3(b) and 3(c) by utilizing the proposed explainable artificial
intelligence method to extract insightful information from differently trained classification models.
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Graphs of Activation Functions
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Figure A.1: Sigmoid function squishes values between zero and one

Figure A.2: Tanh function squishes values between minus one and one

Figure A.3: ReLU function is given by taking the maximum value between zero and x
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Figure B.1: Software flowchart indicating the interaction between all software modules (and libraries) used for the preliminary
experiment.
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Figure B.2: Example of scaling methods applied to two different datasets. Image taken from (Versteeg, 2019)

Figure B.3: Example of sliding window with 50% overlap. Image taken from (Versteeg, 2019)





C
Additional Functions

Time derivative estimates
The following numerical differentiation methods were used to compute the time derivatives of the pilot
data.

̂𝑓(1)𝑡=𝑖 =
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2Δ𝑡 + 𝒪 (Δ𝑡2) central difference (C.1)

̂𝑓(1)𝑡=0 =
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖)

Δ𝑡 + 𝒪(Δ𝑡) one-sided forward difference (C.2)

̂𝑓(1)𝑡=𝑡 =
𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)

Δ𝑡 + 𝒪(Δ𝑡) one-sided backward difference (C.3)

Normalizing
A time trace sequence 𝑧 (𝑡) can be scaled between -1 and 1 to ensure positive and negative sign
convention using Eq. (C.4).

𝑧̂ (𝑡) = 𝑧 (𝑡)
max (|min (𝑧) |, |max (𝑧) |) (C.4)

Standardizing
In Eq. (C.5) a time trace sequence 𝑧 (𝑡) is standardized by removing the mean 𝜇𝑧 and dividing over the
standard deviation 𝜎𝑧.

𝑧̂ (𝑡) = 𝑧 (𝑡) − 𝜇𝑧
𝜎𝑧

(C.5)

Learning curve model
This learning curve model was used in the research of Pool et al. (2016). The learning curve model
(Eq. (C.6)) has three parameters: the initial value 𝑝0, the asymptotic value 𝑝𝑎, and the learning rate 𝐹
(Levison, Lancraft, & Junker, 1979).

𝑦lc(𝑥) = 𝑝𝑎 + (1 − 𝐹)𝑥 (𝑝0 − 𝑝𝑎) (C.6)
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