[nteractive visual
manipulation of

large-scale line data

by

Abel de Bruin

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday January 16, 2025 at 9:00 AM.

Faculty: Electrical Engineering, Mathematics and Computer Science

Programme: Master Computer Science

Research Group: Computer Graphics and Visualization

Thesis committee: T. Hollt, PhD TUDelft, Supervisor
J. Urbano Merino, PhD TUDelft

Project Duration: April, 2025 - January, 2026

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft



Interactive visual manipulation of large-scale line data

A. de Bruijn'

ITU Delft, The Netherlands

(1) Dataset (2) Brushing (3) Context (4) Refinement

Figure 1: A complex visualisation of numerous overlapping grey lines is presented, representing raw data (1). A three-stage workflow for
analysing large-scale line datasets is used to understand this data: Interactive brushing (2) is shown, where a red rectangular brush is
utilised to highlight certain lines that intersect with yellow. A context-aware brush with the same shape is introduced (3). It enables missing
lines to be added or non-conforming lines to be removed to correct contextual inconsistencies. A separate refinement technique (4) is able to
correct further by removing all outliers.

Abstract

As line datasets grow larger, the demand for effective visual data analysis becomes increasingly important. Understand-
ing large-scale datasets remains a fundamental challenge. A critical trade-off is presented by existing line selection meth-
ods: they either produce efficiency, accuracy, or human interpretability, rarely achieving all three simultaneously. This gap
is addressed by the development of human-guided and context-aware brushing techniques, which are supported by manual,
semi-automatic and automatic refinement methods. Through empirical evaluation via two user studies, it was found that,
whilst context-aware brushes offer theoretical promise, statistical superiority over conventional brushing approaches is not
demonstrated. However, selection accuracy is consistently improved by refinement techniques, with manual refinement yielding
the highest accuracy gains (12.6%) followed by semi-automatic refinement (9.8%). Notably, efficiency gains from refinement
remain dataset-dependent, with no single technique universally dominating across varied data characteristics. Manual and
semi-automatic refinements are preferred by users seeking high-accuracy improvements. Although similar efficiency scores
are exhibited by manual and semi-automatic refinements, the lowest variance is observed for the semi-automatic method;
consequently, it is recommended for users prioritising efficiency. The findings emphasise a fundamental design principle: Inter-
pretability and user agency should be prioritised over full automation.

CCS Concepts
* Computing methodologies — Optimization algorithms; * Human-centered computing — User studies; Web-based interac-
tion; User centered design;

(1/2026)
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1. Introduction

Brushing stands as a fundamental and widely adopted interaction
technique for visual data analysis. Over three decades ago, Becker
and Cleveland [BC87] defined brushing as an interactive method
enabling users to select subsets of data points through simple ge-
ometric shapes, such as squares, circles, or polygons, directly ap-
plied to data visualisations. Since then, numerous efforts are made
to extend brushing techniques to more complex data representa-
tions, particularly line-based visualisations.

In recent years, datasets have grown substantially in size, often
containing thousands or even millions of chart lines. This growth
is particularly evident in agriculture [MS25] and art restoration
[PGK*22]. Without proper data structure, large datasets quickly be-
come uninterpretable to humans Figure 1(1). Line brushing offers
a solution to this problem. Line brushing Figure 1(2) is a common
method for selecting data subsets. When users select a subset of
data points, the entire line is highlighted, enabling them to interact
with data directly. This helps users to recognise patterns, trends and
structures.

However, existing line brushing methods present a persistent is-
sue. They typically optimise for either time efficiency, selection ac-
curacy or human interpretability, rarely achieving all. This trade-off
significantly limits their usefulness in real-world data analysis. For
users to work effectively with large datasets, they need all three
qualities simultaneously.

An approach based on context-aware brushing techniques de-
liberately balances accuracy and efficiency, while it is still un-
derstandable to users Figure 1(3). Context is added through line
length and the amount of parallel information. It is acknowl-
edged that user errors are inevitable during interactive exploration.
Consequently, the brushes are supported by a three-level refine-
ment framework ranging from high user autonomy (manual ad-
justment) to high automation (machine-guided suggestions) Fig-
ure 1(4). Established brushing interactions from Parallel Coordi-
nate Plots (PCPs) [RLS*19,REB*16] are generalised to function-
based line data, making them more widely adaptable to line data
such as time-series and spectroscopic data.

To empirically validate the approach, a dual user-study is con-
ducted to examine where each context brush and refinement strat-
egy performs optimally across different data characteristics. The
findings reveal that whilst context-aware brushes introduce some
interaction complexity they could become useful when developed
further. The refinement strategies show dataset-dependent perfor-
mance patterns, suggesting that no single approach universally
dominates. Based on these results, a decision framework is defined
to identify the most appropriate brushing and refinement combi-
nations for specific dataset characteristics. This offers a concrete
guidance for method selection in real-world scenarios.

This paper makes three primary contributions aimed at bridging
the divide between automated efficiency, human interpretability,
and selection accuracy. First, the characteristics of four established
brushes are compared against two novel context-aware brushes.
Second, a comprehensive empirical evaluation of multiple refine-
ment strategies across time-series, and parallel coordinate plot data,
providing critical insights into the accuracy, efficiency, and user sat-
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isfaction of each approach across diverse datasets. Lastly, a novel
dataset is introduced comprising over 150 human-generated selec-
tions. These selections are made while using the established and
context-aware brushes on different line data, serving as a bench-
mark for training and validating. These can be used to compare fu-
ture brushing techniques and refinement algorithms. These brushes
were evaluated on a interactive platform for rapid prototyping, eval-
uating, and iterate upon novel brushing and refinement mechanisms
for direct line selection. Both the user-selections and platform are
publicly accessible at https://osf.io/tbfmp.

The remainder of this paper is structured as follows: the neces-
sary background is provided in Section 2 to establish the foundation
for the remainder of the paper. Alternatives for making line-data un-
derstandable and established brushes are highlighted in Section 3.
This is followed by Section 4, where the context-aware brushes are
introduced, including the refinement methods. The results and dis-
cussion of the preliminary study are detailed in Section 5, which fo-
cuses on identifying the best brushes for each scenario. A more in-
depth study is presented in Section 6, where the primary objective is
to determine which refinement method is preferred by participants
across various scenarios. The limitations and future directions of
both studies are discussed in Section 7. Finally, the conclusion is
presented in Section 8.

2. Background

To limit the scope of the research, a dataset D is introduced where
each line L; € D is defined by a function f(x) = y. Here, x is an
independent variable within the interval [1,N] and y is a real-valued
dependent variable. To enable effective visual comparison among a
diverse range of datasets, all y-values are normalised to a consistent
range. Therefore, the entire span of y-values across the dataset D,
defined by its global minimum Y;,;, and maximum Ymax, is linearly
transformed.

For the method to effectively support visual analysis, a subtle but
crucial limiting criterion is considered. The total variation [DJ98]
of y along each line should not be excessively large. Specifically,
for each line L; composed of N discrete data points (x;,y;;) where
j=1,...,N, its total variation TV (L;) is defined as the sum of the
absolute differences between consecutive y-values:

N

TV(L) =Y yij—yij—1l
=

For most lines L; in the dataset D, the total variation TV (L;) is
expected to remain below a certain threshold. This limitation is im-
portant because as total variation increases, individual lines become
jagged, making it harder for humans to detect underlying patterns.
When this assumption no longer holds, humans struggle to make
accurate manual selections or guide a semi-automatic system in the
right direction.

This accommodates various data types, including time-series
where x represents time, spectral data where x represents wave-
length, or multi-dimensional data where each line represents the
trajectory of values across different dimensions, often visualised in
Parallel Coordinate Plots (PCPs) introduced by Inselberg [Ins85].
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3. Related work

Based on the foundational concepts discussed in the Background
section, this section aims to illustrate diverse methodologies and
provide an overview of existing strategies. It offers techniques for
effective data representation, followed by a showcase of established
accurate selection methods.

3.1. Understanding the visualisations

A line plot with many groups (more than six) is commonly referred
to as a "spaghetti plot" [Dig13]. With large datasets, the assignment
of distinct colours, sizes, or transparencies to individual lines can
increase visual clutter, particularly when numerous lines intersect.
Extensive enhancements have been developed to facilitate the anal-
ysis of patterns in line data. A comprehensive overview is beyond
the scope of this paper but may be found in surveys by Ellis and
Dix [ED07], Heinrich et al. [HW13], and Behrisch et al. [BBK*18].
The remainder of this section addresses the key papers that moti-
vated the present work.

Using automatic time-series classification (TSC) [RAMOS5]
[JJO11] to group line data into clusters provides less attention to
each individual line and provides a way to notice trends within
line clusters. While these methods can provide efficiency, they
often compromise accuracy [MS25] or human understandability
[LPC*24]. This is largely due to limitations in transparency and
parameter sensitivity, which makes it challenging to adjust their
underlying parameters.

A more direct approach to line grouping is achieved through
density estimation. Curve Density Estimates (CDE) [LH11] is de-
scribed as a smooth, continuous approach grounded in kernel den-
sity estimation and effective for high-frequency curves and multi-
modal data. DenseLines [MF18] is presented as a discrete, binned
approach that normalises by arc length for multiple related lines.
Density is encoded by both methods through colour intensity, en-
abling instant pattern recognition, outlier identification and cluster
discovery. Fundamentally, differences exist between them. Smooth
probability fields suited to single curves are created by CDE,
whereas discrete visualisations optimised for comparative analy-
sis across multiple series are produced by DenseLines. For human
understanding, both facilitate aggregate trend identification and dis-
tribution highlighting. The trade-off is that CDE’s smoothness can
obscure multiple clusters while DenseLines’ binning may compli-
cate within-cluster comparisons.

When line data is pre-clustered, multiple ways are available
to showcase each group of lines effectively. Enveloping [Her89]
[JSK11, p. 417] is defined as a curve that encloses groups of lines.
Instead of showing every individual line, upper and lower bound-
aries are created around clusters of similar paths by enveloping,
thereby revealing the overall structure and flow patterns and re-
ducing visual clutter. Lastly, a tool named Line Weaver [TB21]
manages to prioritise clusters of lines that have low spread of stan-
dard deviation. These groups are sorted (locally and globally) on
the z-axis in ascending order of least standard deviation spread.
Both techniques preserve overall structure and flow patterns, but
they differ fundamentally in their approach to displaying multiple
objects. Enveloping renders only a thickened line trace for each

a) Area brush

b) Angle brush

c) Percentile brush

d) Draw brush

Figure 2: Four manual brushes. a) rectangle brush selects all lines
that intersects one of its borders. b) angle brush selects all lines
that are close to perpendicular to the brush. ¢) Percentile brush is
initialized with a single click and grows a vertical line until k%
of lines intersect it. d) Draw brush selects lines that are close to
parallel to the users selection.

cluster, whereas Line Weaver maintains the visibility of individual
lines. Moreover, Line Weaver addresses a critical rendering issue:
the order dependency of alpha blending. Rather than being compet-
ing approaches, these methods can be complementary. Enveloping
could serve as preprocessing for extremely dense datasets, reduc-
ing the initial line count before applying Line Weaver’s sophisti-
cated rendering. Conversely, Line Weaver help by preserving the
visibility of outliers.

3.2. Brushing

In 1994, Ward introduced a brush for PCPs in the XmdvTool
[War94, MWOS5]. This tool allows users to "paint" or drag the mouse
to select lines of interest between two adjacent axes. Roberts et
al. [RLS™19] and Raidou et al. [REB*16] defined an extensive list
of brushes for PCPs. To use these brushes in a general f(x) =y
setting, some brushes required slight adaptation. This process is
described in detail in this section. A summary of these brushes is
shown in Figure 2.

A rectangular selection brush for time series is presented by
Hochheiser and Shneiderman [HSO02]. Lines that intersect the
bounding box formed between two points can be selected using this
tool. As shown in Figure 2 (a), an identical brush implementation
is adopted. A similar rectangular selection for parallel coordinates
plots is presented by Raidou et al. [REB*16]. This rectangular se-
lection is restricted to allow only a selection boundary to be placed
between two consecutive dimensions. Such restrictions prove lim-
iting for line plots in general when plots contain excessively large
x-value range, or when lines shifted along the x-direction cannot be
captured within a single selection.

© 2026 The Author(s).
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The angular brush was originally defined by two lines originating
from one of the PCP axes [HLD02,SGMS21]. One line marking the
maximum angle and one a minimum angle. All lines that fall in the
same range as the two lines are selected. As can be seen in Figure 2
(b), the implementation is modified slightly, making it more akin
to the rectangle brush. Again a start and end point are first created
by the user. All lines whose orientation are perpendicular to the
reference line (defined by two points) by no more than an externally
defined ’openness’ parameter are selected. These changes aim to
keep atomic interactions similar, which helps participants establish
a common interaction language. Lastly, the brush functionality is
extended to work across multiple dimensions.

The percentile brush defined by Rados et al. [RSM*16] uses one
click to specify where the brush should initialise. It operates by se-
lecting a precisely predefined percentage (k%) of data items closest
to the users click. When the brush is moved freely across the visu-
alisation, its extent is continuously adapted to maintain the exact
k% selection.

A specific trajectory across n-dimensions is selected by the draw
brush presented by Roberts et al. [RLS*19]. A poly-line — a line
composed of multiple points — is established by drawing from left
to right. Once defined, the system compares each data point to the
user-drawn poly-line using the squared Euclidean distance at each
point. An adjustable openness parameter then determines the ac-
ceptable tolerance around this line. Lower openness values produce
selections that more closely match the user’s original drawing.

4. Methodology

Brushing tools are prone to user error, thereby reducing their ac-
curacy. Lines may be positioned on the wrong side of the selec-
tion border, leading to both unwanted inclusions and exclusions.
Additionally, lines are often difficult to follow along their entire
path. These problems may be addressed by designing brushes with
specific line characteristics that guide users toward more accurate
selections. Outliers can be filtered, further reducing over-selection
issues.

4.1. Context aware brushes

As described in Section 3.2, all brushes except the rectangle brush
(Figure 2-a) use an external parameter to determine specificity. Two
experimental brushes are introduced that exploit context from the
line plot to parametrise a rectangular brush. Each brush is subse-
quently described.

Length. Lines exhibiting similar length or TV, as defined in Sec-
tion 2, are considered proximate. A rectangle is drawn within the
line chart to define a region of interest, and the minimum and max-
imum lengths of all lines intersecting this region are calculated.
These length measurements establish a reference range derived
from the total variation characteristics of lines within the selection.
Lines whose lengths fall within the average length of this range,
adjusted by a user-controlled tolerance parameter, are subsequently
selected. By default, the parameter is set to the difference between
the minimum length and the average length. Hereby, selecting at
least all lines that fall within the users selection.

©2026 The Author(s).

Parallel. An alternative approach involves the selection of lines
that flow in a similar manner to an initial selection. In spectroscopy
[UZS* 18], for example, two spectral lines may originate from an
identical samples yet exhibit differential intensities because a dust
particle partially obstructs the sensor. Additional examples exist for
different dataset types and measurement approaches.

For each line selected with the rectangle brush, all intersecting
lines are averaged into a single mean line LM. The distance be-
tween each line in the dataset and LM is then calculated:

N
Distance(L,LM) = | Y (LMj— LM ;) — (Lj —Lj.1)|
j=1

This metric quantifies the cumulative difference in slope vec-
tors between a line L and the mean line LM, thereby measuring
structural patterns rather than absolute spatial proximity. The rela-
tive delta line distance does not account for the absolute position
between the line and LM, enabling the selection of parallel lines
even when a cluster contains a large spatial gap. This approach is
particularly valuable in applications where physical separation is
unrelated to structural similarity.

An openness parameter A is selected, applying the following
function to each line:

AL) = {

0, if Distance(L, LM)> A

1, otherwise

This binary function determines whether a line L is retained or dis-
carded based on the proximity of L to the mean line LM in terms
of the overall slope pattern. Lines that deviate from the pattern are
considered outliers and should consequently be eliminated. When
unselected lines with similar patterns are detected, the inconsis-
tency can be rectified.

These contexts could also apply to the angle, percentile, and
draw brushes. However, these brushes already possess an external
parameter. With too many variables to adjust, users may struggle to
identify which parameter to modify. This makes it more difficult to
compare how well each brush performs based on each parameter.

4.2. Outlier filtering

Participants are assumed to be well equipped to approach a selec-
tion goal, although small mistakes may be made. In selection pro-
cedures involving multiple lines, precise manual selection can be
challenging. Therefore, a method for identifying outliers within the
system is proposed, employing the following approach.

Upon initial user selection, a median line Ly is created to rep-
resent the central tendency of the selected trajectories. Let Dg C D
denote the set of lines initially selected by the user. This median line
is defined for each x-value within the interval [1,N]. For a given x,
the set of corresponding y-values from the selected lines is con-
sidered: {f;(x) | L; € Ds}. To determine Lys(x), these y-values are
first sorted in ascending order. The y-coordinate of the median line,
Ly (x), is then computed as the statistical median of this sorted list.
If the number of selected lines, |Ds|, is odd, Lys(x) is the middle
value of the sorted list. If |Dg| is even, Lys(x) is the average of the
two central values in the sorted list.
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Next, all lines in Dy are are evaluated against this derived median
line. The comparison is performed by calculating the squared Eu-
clidean distance between each individual line’s trajectory and the
median line across their common x-value.

4.3. Levels of refinement

Three outlier filtering techniques are evaluated to determine the
most effective implementation, ranging from high user autonomy
to extensive automation. The following will present each in detail.

Manual refinement The outlier-filter technique presented in
Section 4.2 is not the only method of refinement. The brushes de-
scribed in Section 3.2 and Section 4.1 can be employed to remove
unintentionally added lines through precise movements. Whilst this
would increase the accuracy of over-selection, the tool is unable to
add new lines. The manual refinement process is expected to re-
quire more time than the other methods and is consequently ex-
pected to be less efficient.

Semi-automatic refinement Lines are sorted in ascending or-
der based on the distance from the median using the approach from
Section 4.2. The lines are binned and presented to the user in the
form of a histogram. The range of lines to be selected can be spec-
ified by participants using a min-max slider, as can be seen in Fig-
ure 3. This creates three clusters: one cluster of interest that should
remain, and two on either end that contain the outliers.

Automatic refinement Empirical evidence has suggested that
simple nearest neighbour classification is exceptionally difficult
to surpass in automated clustering [BWK11]. Consequently, the
main thread of lines is identified using the k-means algorithm.
N-dimensional lines are reduced to a one-dimensional value by ap-
plying the distance function from the outlier-filtering methods. The
number of clusters can be adjusted with a slider, the default being
set to three. A min-max range, similar to a semi-automatic tech-
nique, is thereby generated. Because k-means is non-deterministic,
different cluster assignments may be obtained on repeated runs,
leading to variability in results. When only the cluster of lines cor-
responding to the goal is selected, reduced processing time is ex-
pected. However, correct boundaries may be misidentified by the
automatic k-means algorithm. Consequently, lower accuracy is ex-
pected compared with the manual and semi-automatic tool.

4.4. Study metrics

To validate the performance of the brush, a comprehensive evalu-
ation was conducted across three complementary dimensions: se-
lection quality, efficiency and user satisfaction. A holistic view of
how well each brush technique performs in practice is provided by
these three axes.

The evaluation of selection quality was guided by the approach
of Fan and Hauser [FH21], wherein four fundamental metrics were
employed: True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). These metrics are classified accord-
ing to whether a line is present in the selection or not and whether
the line is present in the goal or not. This classification is illustrated
in Table 1.

Positive Negative

True Selection + Goal Not selection + Not goal

False | Selection + Not goal Not selection + Goal

Table 1: Classification of lines according to their presence in the
selection and goal, illustrated through the statistical terms True
Positive, True Negative, False Positive, and False Negative

Accuracy, representing the proportion of correctly selected or ex-
cluded items relative to the total, constitutes the primary objective.
When such accuracy cannot be achieved, two secondary metrics
are employed to diagnose whether the selection is over or under-
inclusive. Precision, defined as TP/(TP + FP), measures the pro-
portion of selected items that are also present in the goal, and is
diminished when the selection exceeds requirements. Recall, de-
fined as TP/(TP + FN), measures the proportion of goal items that
have been selected, and increases when few false positives are in-
troduced into the selection.

During correct refinement, a FP is converted to a TN, thereby
increasing precision whilst recall is unchanged. During incorrect
refinement, a TP is converted to a FN, thereby decreasing both pre-
cision and recall. Because refinement methods are constrained to
permit only the filtering of selections, no other transformations are
possible through refinement. Context-aware brushes extend refine-
ment capabilities by permitting the inclusion of missing lines in
the adjusted selection through parametric control. Through the use
of such brushes, recall can theoretically be enhanced, providing
a mechanism to address under-selection and recover true positive
classifications that may have been initially omitted.

Beyond selection quality, efficiency was assessed through two
complementary metrics. The time required to complete each selec-
tion was recorded as the primary measure of speed. Additionally,
the number of changes to a selections was tracked, which served
as a proxy for selection attempts that did or did not achieve the
intended result. Separately, the number of deleted selections are
classified. A high number of deletions was interpreted as indicating
that the brush technique was challenging and inefficient.

To compare time results for each refinement technique per
dataset, selection attempts are captured according to defined cri-
teria. For manual refinement, an attempt is captured each time a se-
lection is added or removed. Conversely, multiple selections are not
generated for the semi-automatic and automatic refinement tools.
For semi-automatic refinement, attempts are captured each time the
slider is adjusted. When a slider is dragged, adjustments are ag-
gregated into a single attempt to ensure comparability with other
semi-automatic attempts. For automatic refinement, attempts are
captured when a button is toggled. Changes to the number of clus-
ters are similarly classified as attempts, with slider dragging aggre-
gated into a single attempt. Since attempts are fundamentally differ-
ent across refinement techniques, comparisons between refinement
techniques should not be made using this metric.

In addition to these objective measures, user satisfaction was
also evaluated. User satisfaction was assessed based on the un-
derstanding that satisfaction is directly influenced by user com-

© 2026 The Author(s).
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Distance from Median —

Figure 3: Histogram of allowed outlier distances from the median, showing the distribution of distance values in the range 0.8 to 3.5. The
colour gradient from purple to yellow encodes increasing distance from the median. A min-max slider indicated the range of lines that will

be selected.

prehension. When users understand how to use a technique effec-
tively, a positive experience and high satisfaction are more likely to
be achieved. Conversely, when understanding is lacking, users are
frustrated, which substantially reduces satisfaction levels. Partici-
pants were asked to provide a subjective difficulty score in response
to the question: "How difficult or time-consuming was it to make
a selection?". In addition, the participants were asked to rate how
confident they were during their selection or refinement procedure.

4.5. Dataset difficulty

To evaluate the selection process, participants are tasked to select
lines out of a cluster. An image of a cluster is provided, and the se-
lection is required to be recreated using brushing. This is tested on
a multitude of datasets to determine whether the selection’s proper-
ties hold in a more general setting. Datasets are classified as ranging
from easy to difficult with respect to the selection process based on
the following two criteria: cluster sizes and cluster overlap.

Cluster size indicates how large a selection needs to be in or-
der to correctly select all lines in a cluster. Datasets with extremely
small and large cluster sizes present distinct challenges to the se-
lection process. Selection of clusters with small envelopes is inher-
ently difficult because minor brush movements can inadvertently
exclude desired lines or include unwanted ones, thereby reducing
tolerance for error. Conversely, visual clutter is created by clusters
with exceptionally large numbers of lines, making individual line
tracking cognitively demanding. Both small and large cluster sizes
can be measured by calculating the envelope areas, as discussed in
Section 3.1. When the total area of envelopes exceeds the plot size,
large overlaps in the clusters can be expected.

Cluster overlap (CO) is quantified in a different way by Maitra
and Melnykov [MM10]. Under the Bayes-optimal decision rule,
wj|j +wj|; is the pairwise probability that an observation drawn
from cluster i would be misclassified as cluster j and vice versa. In

© 2026 The Author(s).

Figure 4: Syntactic Andrews plot [And72] showcasing five clus-
ters. With two dense cluster of 100 lines (blue), 100 lines (green).
Followed by three sparse clusters of lines with 250 lines (Red),
296 (Orange) 250 (Purple). The plot was created by Trautner and
Bruckner [TB21].

the context of line-based selection, cluster overlap becomes particu-
larly critical as it directly impacts the ability to distinguish between
clusters visually. When lines from different clusters intertwine or
cross extensively, more cognitive load is required during the brush-
ing process. This metric is adapted for line data by computing the
overlap at each x-coordinate, measuring the extent to which the
range of y-values from one cluster intersects with the range of an-
other cluster. Higher overlap values indicate greater difficulty in
achieving precise selections, as careful positioning of brushes is re-
quired to avoid unintended lines from adjacent clusters.
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5. User Study one: Explorative phase

Two studies have been designed to validate whether the developed
tools address the problems outlined in the research objectives of
creating an accurate, efficient and human-understandable selection
method. An experimental study is conducted with the primary pur-
pose of investigating trends in which methods serve best to increase
the level of brush quality. The investigation is refined by a subse-
quent study in Section 6 which focuses solely on outlier filtering in
order to maximise the accuracy gained with as few interactions as
possible.

This preliminary study addresses two core research questions:
(1) How do the different brushes compare in terms of performance
and suitability for the target task? (2) Does the application of outlier
filtering enhance selection accuracy and reduce human error with-
out sacrificing efficiency? The following hypothesis is proposed: a
tool incorporating selection tolerance with context-aware brushes
and outlier-removal refinement reduces human errors caused by
imprecise manual selections, thereby improving both the quality
and efficiency of desired selections. The remainder of this section
presents the study setup, reports the results, and discusses the key
implications derived from these initial findings.

5.1. Study setup

The research experiment was conducted using a web tool called Re-
VISit [CWS*26]. This tool can be used to design, collect data, and
reproduce results for many types of online visualisation studies. By
using a browser-based user study, participation was made simple,
as only a modern web browser was needed. The user study was or-
ganised in a group setting where four students and three teachers
from the Delft University of Technology were gathered to perform
the user test.

A questionnaire was administered, and participants were in-
formed that their responses would be recorded. Identifiable ques-
tions were included to examine biases in the study. The question-
naire is provided in Appendix A. The remainder of the study was
structured into two separate stages.

In the first stage, an instructional video tutorial was provided to
train participants in the user interface. The tutorial demonstrated
selection mechanisms, enabling confident use of the brushes. Fol-
lowing the tutorial, participants were assigned a random goal of
selecting one of the clusters depicted in Figure 4 using brushing.
To minimise bias, each brush was presented in a randomised or-
der. An unlimited number of attempts to add or remove selections
was permitted, although a maximum of three final selections was
imposed. This cap ensures comparability of results by preventing
significant variability in the number of selections.

During the second stage, outlier filtering could be applied to
each selection. A tutorial screen explained proper usage of the
semi-automatic refinement technique defined in Section 4.3. To
limit variability, only the semi-automatic refinement technique was
tested in the first exploratory study to assess the effectiveness of
the applied refinements. In the second study, all refinement meth-
ods were subsequently tested. The re-use of identical brushes with
the same dataset introduces a potential memory bias. This risk is

acceptable during the exploratory phase but must be eliminated in
the final study.

Following each selection, participants were requested to provide
self-reported satisfaction scores. Both selection confidence and dif-
ficulty were assessed on seven-point scales: difficulty was mea-
sured from "Trivial" (0) to "Feels impossible" (6), and confidence
was measured from "Not confident at all" (0) to "Extremely confi-
dent" (6).

5.2. Essential findings

Several noteworthy findings regarding user interaction with diverse
brushing techniques and outlier refinement strategies are revealed
by this exploratory study. Given the study’s exploratory nature,
only essential metrics are reported. Detailed results concerning se-
lection quality (measured via accuracy, precision, and recall), ef-
ficiency (expressed in terms of selection time and number of dele-
tions per brush), and self-reported satisfaction (based on confidence
and difficulty scores) are presented in Appendix B. The key insights
derived from the analysis are discussed below.

A strong implicit preference for the rectangle brush was demon-
strated across both quality and temporal metrics. This preference
may be attributed to the brush’s fundamental status as a geometric
selection primitive, a concept likely reinforced through its preva-
lence in contemporary digital tools. The brush is rated as least dif-
ficult (2.14 £ 1.71) and is found to achieve high accuracy (0.96 +
0.04), without the requirement for outlier removal. Noteworthy is
the comparable high accuracy of the angle and percentile brushes
relative to the rectangle brush (x0.95). This is probably attributable
to each brush type providing an immediate and unambiguous visual
representation of its selection boundary, comparable to the rectan-
gle brush. The resulting selection approximates the expected selec-
tion, with only a few trial-and-error iterations required to achieve
the target.

A comparison between the parallel brush and the draw-line brush
may be considered valuable, as trajectory line representations and
distance-based comparisons are relied upon by both approaches.
The draw-line brush is designed to compare absolute distances be-
tween line points, whilst the parallel brush compares relative dis-
tances in slope. When outlier filtering is disabled, higher accuracy
is achieved by the draw-line brush (0.80 + 0.24) compared to the
parallel brush (0.70 £+ 0.16). This difference is primarily explained
by the substantial difference in precision (0.72 + 0.24 versus 0.37
+ 0.25). The poor precision score for the parallel line brush is at-
tributable to lines from different clusters being inadvertently se-
lected together with the parallel brush, which results in significant
variation of the mean line. Consequently, similar lines cannot be
identified relative to the initial selection. Since the trajectory line
is determined by the user for the draw-line brush, susceptibility to
outlier influence is reduced by definition. However, limitations are
associated with this control method. Accuracy may be diminished
for the draw-line brush when more complex lines are required to be
traced, as the trajectories cannot be clearly understood during the
drawing process.

Improvement of the parallel brush quality could be achieved

© 2026 The Author(s).
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Figure 5: Accuracy is plotted against the average bounding box area of the selections for each brush type. The selections without an outlier
filter are shown in blue, while those with an outlier filter are in yellow. A trajectory line, along with its uncertainty range, is included to

highlight a trend.

by employing a median line, as used in the outlier-removal ap-
proach. The median is less susceptible to the influence of a few
lines from other clusters. The idea is reinforced by the signifi-
cant improvements observed when outlier filtering is enabled in the
context-aware brushes.

The length brush faced significant limitations owing to the simi-
larity of line lengths in the dataset. Extremely small selections were
required to be created, which presented considerable challenges.
Precise selection of the desired lines was often difficult to achieve,
as minor mouse movements frequently resulted in unintended se-
lections that differed from those intended.

Higher accuracy scores were achieved with the length and par-
allel brushes for certain participants. A negative correlation be-
tween these brush types and accuracy per average bounding box
size of selection is demonstrated in Figure 5. For these context-
aware brushes, smaller selections with minor line differences were
found to outperform larger ones. Accuracy was found to be irrele-
vant to the areas of the rectangle and angle brushes. Therefore, on
average, these context-aware brush sizes are smaller than the reg-
ular rectangle brush from which they are derived. This shows that

© 2026 The Author(s).

users realised that smaller selections work better for the context-
aware brushes. However, even greater accuracy would have been
achieved with even smaller brushes. Future performance may be
enhanced by the adoption of point-based brush approaches, such as
the percentile brush, which uses a smaller area by definition.

A strong desire to combine multiple brushes when making selec-
tions was expressed by several participants. Such a feature would
render selections more flexible, permitting the choice of the most
appropriate tool for each context. The ability to add lines with one
brush whilst refining the selection by removing lines with another
was requested by other participants. This dual functionality would
afford greater control by sketching with an imprecise brush and
subsequently refining the selection iteratively with another brush.
High confidence was expressed that the addition of this functional-
ity would improve accuracy.

These findings partially validate the hypothesis: a tool incorpo-
rating selection tolerance with context-aware brushes and outlier-
removal refinement will reduce human errors caused by imprecise
manual selection, thereby improving the quality and efficiency of
desired selections. It does not hold for context-aware brushing im-
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Figure 6: The 4c.6-300N dataset is an artificial PCP dataset con-
sisting of 4 data clusters, each containing approximately 50 lines.
The gray lines represent 300 lines of noise. It was originally cre-
ated by Blumenschein et al. [BZP*20].

proving user’s selections. However, the outlier-removal refinement
was able to reduce user errors efficiently improving the users’ accu-
racy and satisfaction for the draw-line, length and parallel brushes.

In conclusion, context-aware brushes may outperform other
brushes for specific tasks or datasets. However, reliable perfor-
mance across general cases is not achieved. Consequently, further
development of context-aware brushes is required to enable effec-
tive employment in visual data analysis. In the second study, the
refinement techniques are further investigated to determine an op-
timum that maximises accuracy gain whilst minimising efficiency
loss.

6. User study two: Determining the optimal refinement

Based on earlier findings, the refinement methods were prioritised,
with reduced emphasis on brush type considerations. The outlier-
filter method was demonstrated to significantly improve perfor-
mance on challenging brushes. A preference for a delete mode was
identified. To satisfy this requirement, the semi-automatic refine-
ment technique was compared against a manual refinement method.
A drop-down menu was presented for manual refinement, enabling
selection of one of the brushes evaluated in Study One. The brushes
were ordered from most to least accurate in accordance with the
previous study. To evaluate whether the manual or semi-automatic
refinement method are optimal in terms of accuracy, efficiency, and
user satisfaction, a comparison with a more automated method was
conducted in Study Two.

Further investigation of the outlier-filter’s properties using real-
world, complex datasets was conducted to establish whether per-
formance improvements generalised across a broader range of
datasets. To validate this generalisation, two additional datasets
were selected to supplement the initial study, each varying substan-
tially in dimensionality, structure, and clustering difficulty.

The first dataset added is the 4C.6-300N dataset, as shown in
Figure 6. This PCP plot represents a simulated dataset with a high

Figure 7: Time-series with temporal sequence of spectral values
that describe how the land surface changes over time created by
Tan et al. [TWP]. The red, blue and green lines are each 300 lines,
while the yellow lines are 295 lines.

noise-to-data ratio, in which each cluster contains approximately
six times more noise than data. The assumption that outlier fil-
tering remains effective when large amounts of noise are inadver-
tently selected is examined. The second dataset, the crops dataset,
comprises time-series data derived from satellite imagery. A tem-
poral sequence of spectral values describing land-surface change
over time is measured by each geographic coordinate. In Figure 7,
a preview is shown.

Properties were extracted from each dataset to highlight similar-
ities and differences, as indicated in Table 2. The datasets vary sig-
nificantly in dimensionality and sample size, ranging from 492 x 8
to 996 x 100, thus permitting comprehensive evaluation of method
robustness across different data scales.

A critical evaluation dimension is defined through the assess-
ment of envelope sizes and cluster overlap characteristics, which
reflect the intrinsic difficulty of each clustering task; both defini-
tions are presented in Section 4.5. Envelope sizes were quantified
using an arbitrary function:

f(D)=Y ES(c)
ceD

where ES(c) denotes the envelope size of cluster ¢. By summing
these sizes, the percentage of space that could be occupied if the
lines are not stacked is indicated. The range extended from values
below 0.5 in the artificial datasets (Andrews and 4C.6) to 0.85 in the
Crops dataset, indicating considerably larger cluster volumes. Clus-
ter overlap is characterised by substantial variation across datasets,
with measurements of 7.75 for Crops, 5.98 for Andrews and 3.09
for 4C.6. A high CO denotes a well-mixed state of lines. Overall,
substantially greater difficulty for manual interpretation is expected
for the Crops dataset among the three examined.

6.1. Study setup

The second study was conducted with minimal modifications com-
pared to the first study. Initially, consent was obtained and supple-
mentary questions were posed regarding prior participation in the

© 2026 The Author(s).
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Name Type Shape Envelope sizes  Cluster Overlap
4C.6 PCP 492 x 8 0.38 3.09
Andrews PCP 996 x 100 0.49 5.98
Crops Time-Series 996 x 46 0.85 7.75

Table 2: A comparative overview of three line datasets: Andrews, 4C.6 and Crops. For each dataset, it specifies its Type (PCP or Time-
Series), along with its Shape as y X x dimensions. Additionally, it quantifies Envelope sizes as the total size of clusters. Total Cluster Overlap
signifies how much Gaussian overlap there exist between clusters. Details of this table are presented in Appendix C.

initial study and other potential biases. Subsequently, the key con-
cepts of the system were detailed in an extensive written tutorial,
which outlined each refinement technique and its associated con-
trols. Again, two experimental phases were conducted.

Phase one was designed to assess the extent to which participants
could effectively apply the refinement techniques without concern
for initial selection creation. Participants were presented with three
randomised expert-selections. An expert-led selection represents an
initial selection created to exemplify a plausible selection that par-
ticipants might reasonably make. The expert-selections were es-
tablished for three primary reasons. First, study duration was min-
imised, as participants cannot reasonably be expected to invest sub-
stantial time in the entire study. Second, uniformity was established
among the initial selections to facilitate subsequent comparison. Fi-
nally, participant burden was reduced, allowing focus on the refine-
ment stage rather than the initial selection stage. Each participant
receives three distinct refinement methods from Section 4.3 in a
randomised order.

In the second phase, initial selections were created by partici-
pants themselves (self-led) and refined using the same methodol-
ogy employed in the first phase. The primary objective of the sec-
ond phase was to examine the extent to which participants could
effectively correct selections not initially anticipated.

The study concludes with a questionnaire addressing participant
satisfaction regarding the preferred method based on overall confi-
dence and difficulty.

6.2. Risks mitigation

The user study was successfully completed by twenty-eight par-
ticipants. To ensure the validity and reliability of this user study,
several potential biases and confounding factors warrant careful
examination. This section addresses three primary sources of risk:
memory bias from participant overlap between the first and second
studies, the demographic and professional heterogeneity of the par-
ticipant pool, and variance in the distribution of participants across
datasets and refinement methods. By transparently presenting these
factors, the extent to which study outcomes may be influenced by
such variations can be appropriately assessed.

Memory bias and participant overlap. Participants who had
previously participated in the first user study may have possessed
an advantage over those experiencing the tool for the first time, as
memory bias can increase the performance of the selection proce-
dure. However, only six participants overlapped between the two
studies, thereby limiting the magnitude of this potential bias. Al-
though the primary task of both studies is to apply selections, it
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is considered that the tasks are sufficiently different, particularly
with the never-before tested manual and automatic refinement tech-
niques. When comparisons are made between studies, participants
from the first user study are to be excluded from the analysis of
study two or, at a minimum, marked as special participants.

Participant demographics and professional composition. The
study comprised seventeen students and four teachers, whilst the
remaining seven participants possessed diverse qualifications. Each
participant was either working at, currently studying or had studied
at the Delft University of Technology, with the exception of one
student affiliated with the University of Amsterdam.

Regarding the fields of study and professional expertise repre-
sented within this cohort, thirteen participants specialised in com-
puter science. Seven individuals specialised in mathematics. Four
participants were classified as engineers across various specialisa-
tions. These three categories of participants were expected to be
well equipped with selection tools and may have approached the
task with domain-specific advantages. The remaining participants
were from diverse fields, comprising three from arts and one from
medicine. The heterogeneity of professional backgrounds reflects
potential variability in participants’ familiarity with data visuali-
sation and selection interfaces, which may influence performance
metrics. However, this diversity also enhances the generalisability
of findings across different user populations, as results reflect per-
formance across individuals with varying technical expertise.

Distribution of participants across datasets and refinement
methods. As written in Section 6.1, datasets and clusters were ran-
domly assigned to each participant. Consequently, variance existed
in the distribution of participants across refinement methods. In or-
der to present this variation transparently, the frequency with which
each refinement method was selected for each dataset is displayed
in Table 3. The self-selection type encompassed manual, semi-
automatic, and automatic refinement applied to the same datasets.
It should be noted that not all rows sum to twenty-eight. This dis-
crepancy arises from instances in which the ReVISit tool failed
to record selections, and instances in which refinement techniques
were misclassified by the tool as alternative techniques.

6.3. Brush usage

Different brush usage was de-prioritised to focus solely on refine-
ment techniques. To provide flexibility, multiple brushes could be
selected for the self-selection and manual refinement procedures.
The number of brushes used provides detailed insight into which
brushes demonstrated the highest user satisfaction. Selections can
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Type Andrews Crops 4C6
Manual 10 8 10
Semi-automatic 9 11 8
Automatic 12 10 4
Self-selection 5 12 10

Table 3: Number of entries classified by automation level (manual,
semi-automatic, automatic, and self) across Archives, Crops, and
4C6 datasets.

be made during three sections of the study. During phase one, man-
ual refinement can be applied to an expert-led selection. During
phase two, the user is instructed to create selections themselves,
later on these selections are again refined in the manual refinement
stage.

Refinement Type | Rectangle Angle Draw | Mean £ Std
Expert Manual 84 4 0 3.38 £ 1.88
Self Selection 26 4 3 1.38 £0.48
Self Manual 63 2 0 271+ 1.81

Table 4: Counts for three specific interaction types (Rectan-
gle, Angle and Draw) were recorded. These metrics were evalu-
ated across three refinement types: Pre-Manual, Self-Manual and
Self-Selection. In addition, the total selections amount per user for
each method are presented as mean and standard deviations. A
detailed figure of brush-type usage frequency per selection is pre-
sented in Appendix D.

Table 4 presents the brushes included in the final selections. The
combination of multiple brushes and sequential selections is per-
mitted by the tool. Manual refinements were not limited by the
number of selections, whereas self-selection was limited to two
selections. This constraint was imposed to enhance comparabil-
ity between self-led and expert-led initial selections. Furthermore,
the constraint was designed to limit users’ initial accuracy scores,
thereby ensuring that at least some material for refinement was
available to most users after their initial selections. Consequently,
manual refinement techniques yielded a greater average number of
selections than self-selection.

The default brush type was the rectangle. As few participants
modified this setting, the overwhelming majority of refinements
were created using the rectangle brush. The angle brush was se-
lected by a smaller number of participants, all of whom were part
of the first study. The draw brush in self-selection was utilised by
three individual participants, none of whom were part of the first
study. Notably, no other brushes were chosen in the final selections
of the participants, although some may have been experimented
with; they were subsequently removed by these participants.

As the rectangle selection tool was employed by almost all
participants. Consequently, statistically meaningful comparisons
across brush types cannot be made in this second study. These find-
ings indicate a strong user preference for the rectangle brush across
all refinement methods and datasets. Consequently, this consistent
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application of a single selection method across datasets and partic-
ipants reduces potential methodological bias that might arise from
heterogeneous brush usage, thereby strengthening the validity of
comparative analyses regarding refinement method effectiveness.
The limited adoption of alternative brushes, despite their availabil-
ity, indicates that the rectangle brush warrants continued emphasis
as the primary interaction mechanism.

6.4. Quality

In Table 5, selection quality is compared across three datasets
(Andrews, Crops and 4C.6) and four approaches: manual,
semi-automatic, automatic and initial selection as control. Lower
envelope sizes and cluster overlaps are closely correlated with
higher accuracy scores. The most separated and densely clustered
4C.6 dataset has the highest accuracies, followed closely by the An-
drews plot. The Crops dataset exhibits the poorest selection quali-
ties. This discernible trend is already noticeable in the initial selec-
tions made, whether by experts or through self-selection methods.
Such observations suggest that as the complexity of the datasets in-
creases, users tend to encounter greater difficulties with their initial
selections, which may impede their overall accuracy performance.

Examination of refinement techniques indicates that the highest
accuracy is consistently attained by manual refinement, followed
by semi-automatic refinement. The poorest performance in accu-
racy is consistently achieved by the automatic refinement approach.

This is supported by Table 6, which shows that the manual refine-
ment has the highest Mean Absolute Change (MAC). This MAC
value is the absolute percentage which a participant is able to im-
prove an initial selection using each refinement method. Manual
refinement has a MAC of 12,6.% and semi-automatic refinement
follows with a MAC improvement of 9,8.%. Notably, a selection
can be improved more readily, by at least some amount, using the
semi-automatic tool (90,7.%) rather than the manual refinement
tool (87,6.%). Although the changes are subtle, it is suggested that
the most positive results are yielded by the semi-automatic tool for
a greater number of participants.

Validation was undertaken to ascertain whether the effect persists
after overlapping participants from study-one are removed from
study-two, as a memory bias favouring the semi-automatic tech-
nique could be present. After removal, the Success / Total scores
of the manual tool decreases to approximately 84,0% whereas the
semi-automatic technique remains essentially unchanged at 89,3%.
This indicates that the same pattern persists even after the poten-
tially biased participants are removed.

Both MAC and Success/Failed ratio improvements are signifi-
cantly lower for the automatic refinement tool, with only slightly
more than half of the final selections exceeding the initial selection
quality. Overall, a notable difference is observed for most partici-
pants, with a total average accuracy improvement of 8.4%.

Looking more closely at the results of Table 5. Specifically
for automatic refinement, it is demonstrated that self-led selec-
tions consistently outperform expert-led selections across the tested
datasets. However, the underlying causes of this performance dif-
ference remain unclear. Two plausible explanations are proposed to
account for this pattern.

© 2026 The Author(s).
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Dataset name Phase one (expert initial selection) Phase two (self initial selection)

& type Accuracy Precision Recall | Accuracy Precision Recall
4C.6 (manual) 0.99+0.04 090+£0.30 0.89+0.30 | 0.97+£0.05 0.88+£0.30 0.80+0.29
4C.6 (semi) 0.98+0.03 091+£0.17 098+0.02 | 0.93+0.13 0.78+0.27 0.79+0.24
4C.6 (auto) 0.87+£0.06 0.21+£0.36 020+£0.35 | 090+£0.06 048+042 0.34+0.31
4C.6 (initial) 0.89+£0.03 048+0.07 1.00+£0.00 | 0.82+0.16 0.41+0.14 091+0.11
Andrews (manual) | 0.97£0.03 0.99+0.01 0.88+£0.13 | 0.97+0.03 099+0.01 0.87%0.11
Andrews (semi) 093+£0.06 0.82+0.37 0.67+£0.32 | 096+0.02 0.99+£0.02 0.85+0.07
Andrews (auto) 0.87+0.09 065+046 040036 | 0.89+0.09 094+0.06 0.59+0.32
Andrews (initial) 0.89+£0.02 0.67+0.18 0.88+0.14 | 0.93£0.04 0.84+0.13 0.95+£0.03
Crops (manual) 0.94+£0.04 094+0.08 0.85+£0.08 | 091+£0.16 0.89+£0.27 0.79+£0.27
Crops (semi) 093+£0.06 094+0.03 0.81+0.19 | 092+£0.07 093+0.08 0.77+0.21
Crops (auto) 0.78+0.16 042+042 038+042 | 0.84+0.12 0.87+0.27 0.49+0.27
Crops (initial) 0.76£0.09 0.51+£0.18 093+£0.03 | 0.80+£0.16 0.68+0.19 0.90+£0.13
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Table S: Statistical means and standard deviations for both phase one and two were calculated for three performance metrics: accuracy,
precision, and recall. These metrics were evaluated across three datasets (Andrews, 4C.6, and Crops) and four annotation methodologies

(manual, semi-automatic, automatic, and initial selection as control). In all cases, higher is better.

Accuracy Improvement Manual ~ Semi Auto | Total
Mean Absolute Change  12.6% 9.8% 2.8% 8.4%
Success / Total 87.6% 90.7% 57.4% | 78.7%

Table 6: Accuracy improvements from initial to final selection are
presented for manual, semi-automatic, and automatic refinement.
Success / Total improvement is defined as the fraction of final selec-
tions exhibiting at least 0% improvement compared to initial selec-
tions. Details regarding a full distribution of relative improvement
for accuracy, precision and recall for each dataset type and expert
versus self selections are presented in Appendix E.

First possible reason: Differences in Expert-Led and User-
Led Initial Selections

Expert-led and self-led initial selections could differ fundamen-
tally in their characteristics, thereby influencing the performance of
the automatic refinement technique for each. Supporting evidence
is provided by the Andrews dataset. Within this dataset, lower accu-
racy is attained by the expert-led initial selection compared with the
self-led initial selection. Notably, lower accuracy is also yielded by
the automatic refinement applied to the expert-led selection. This
pattern indicates that weaker initial selections produce weaker re-
fined results, irrespective of the refinement method. However, this
explanation is not upheld consistently across all datasets. In the
4C.6 dataset, higher accuracy is achieved by the expert-led initial
selection than by the self-led initial selection. Nevertheless, follow-
ing application of automatic refinement, the accuracy of the self-led
selection exceeds that of the expert-led selection. This reversal sug-
gests that the automatic refinement technique may be better suited
to improving self-led selections than expert-led ones, contradicting
the notion that initial selection quality simply propagates through
refinement. The Crops dataset presents a more nuanced picture. In
this dataset, higher recall is demonstrated by the expert-led ini-
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tial selection than by the self-led initial selection, yet lower pre-
cision is achieved. As recall is generally regarded as more critical
than precision during initial selection—because recall establishes
the pool of candidates from which precision can be improved dur-
ing refinement—greater benefit from automatic refinement might
be expected for the expert-led approach. Nevertheless, the final au-
tomatic selection performs better for self-led selections. This in-
consistency indicates that initial selection characteristics alone do
not fully explain the observed performance differences.

Method  Expert-led  Self-led
Manual 4.0% 8.3%
Semi 4.0% 0.0%
Auto 39.1% 12.5%

Table 7: Occurrence of situation that a final selections with 0%
precision is reached, indicating that no selected lines matched the
goal

Second possible reason: Memory Bias in Phase Two A sec-
ond possible explanation is offered by memory bias, whereby par-
ticipants in phase two may have benefited from experience gained
during phase one. The data indicate that accuracies are consistently
elevated for automatic refinements in phase two compared to phase
one, which may suggest that familiarity with the task enhanced se-
lection quality. Further support for this hypothesis is provided by
the observation that precision scores of zero were achieved by a
considerable number of users in the automatic refinement condi-
tion, indicating that no selected lines matched the goal. This out-
come was observed considerably more frequently in automatic re-
finement than in manual or semi-automatic refinement as indicated
by Table 7. For expert-led selections, precision scores of zero were
recorded 39.1% of the time, whilst for automatic self-led selections
this frequency was only 12.5%. This selective increase in extreme
outcomes for automatic refinement in phase one suggests that task-
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specific strategies or heightened confidence may have been devel-
oped, potentially altering behavioural patterns. This explanation,
however, is subject to significant challenges when examined more
broadly. If memory bias were the primary driver of improved phase
two performance, equivalent improvements would be anticipated
across all refinement techniques. Instead, manual refinement tech-
niques demonstrate equal or even higher accuracies in phase one
compared to phase two. This pattern contradicts the memory bias
hypothesis, as consistent improvements across all methods would
be anticipated if experience were the dominant factor.

In summary, while both explanations contribute partially to our
understanding of why self-led selections benefit more from auto-
matic refinement, no single explanation fully accounts for the ob-
served patterns across all datasets and refinement methods. The in-
teraction between selection type, refinement technique, and dataset
characteristics appears more complex than any individual hypothe-
sis alone can explain.

6.5. Efficiency

As shown in Figure 8, no definitive correlative trend is observed
between efficiency and quality results. No consistent increase or
decrease is apparent when the three refinement types are examined
comparatively. Consequently, the efficiency values must be anal-
ysed for each dataset to determine how dataset characteristics influ-
ence efficiency outcomes. The usage of an appropriate refinement
method for individual use cases is thus informed by this analysis.
Because temporal values exhibit considerable variation, all tempo-
ral analysis is conducted using the median instead of the mean. The
reasons for the large spread are explained in the remainder of this
section.

For the 4C.6 dataset, semi-automatic refinement methods were
found to be the least time-consuming task (median 35.3 seconds)
compared with manual (median 71.4 seconds) and automatic (me-
dian 60.7 seconds) refinement methods. Poor average precision
(0.48) was exhibited by the initial selections. This indicates that,
on average, selected noise exceeded selected lines in the goal.
This deficiency was substantially mitigated by the design of the
semi-automatic interface. For most users, the large amount of noise
situated relatively far from the median of the main cluster was im-
mediately apparent in the slider panel, allowing rapid adjustment
of the selection boundaries with minimal deliberation. Manual re-
finement, by contrast, was found to produce substantially longer
completion times, which were largely driven by the observed time
variance. It was observed that a participant required over 270 sec-
onds to complete the task. As presented in Figure 9, a total of 17
selection attempts were required before a satisfactory result was
achieved by this participant. For this dataset, the average selec-
tion count for the manual refinement method was 6.60, signifi-
cantly higher than that for the Andrews dataset (2.70) and the Crops
dataset (3.60). Notably, the accuracy achieved for the manual 4C.6
dataset was the highest among the three methods. This outcome
was likely attributable to the relative ease with which clear out-
liers could be identified. However, the subsequent removal of such
outliers proved more difficult, as evidenced by the longer comple-
tion times and higher manual selection counts. Automatic refine-
ment demonstrated timings similar to manual refinement, with con-
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siderable variance. This variability was most likely caused by the
non-deterministic nature of the k-means clustering algorithm. As
clustering quality varied between participants, with some receiv-
ing well-separated clusters whilst others received poorly separated
clusters. Fundamentally, different problem complexities were faced
by users despite identical initial selections. Rapid validation and ac-
ceptance of the automatic suggestion were possible for users who
encountered clean clustering, whereas additional time was invested
by users facing ambiguous clusters to toggle cluster numbers and
evaluate alternative solutions. This finding underscores a critical
insight: automation does not guarantee efficiency when the under-
lying algorithm produces high-variable quality outputs. This prob-
lem will be discussed further in the Limitations section which is in
Section 7.

Compared to the 4C.6 dataset, the Andrews plot demonstrates
a markedly different efficiency profile. In this instance, median
completion times are more closely aligned; however, differences
remain observable. The median completion time for the automatic
refinement technique (35.2 seconds) was this time the shortest com-
pared to 51.4 seconds for manual selection and 60.5 seconds for
the semi-automatic refinement approach. This time performance
of the automatic tool is comparable to that observed in the semi-
automatic 4C.6 selection. However, quality metrics differed sub-
stantially across selection methods. For semi-automatic 4C.6 se-
lection, on average, participants achieved a recall of 0.98. For au-
tomatically refined Andrews selection, the recall was considerably
lower at 0.40. For the remaining manual and semi-automatic selec-
tions, recall values were 0.88 and 0.67 respectively. These results
suggest that although quality improvements varied across datasets,
participants demonstrated quicker satisfaction with automatic re-
finements. The similarity in cluster appearances may hinder the
identification of remaining lines requiring selection. It is suggested
by the temporal data that automatic refinement satisfaction assess-
ments were performed rapidly, being predicated on subjective con-
fidence rather than on objective quality metrics.

The Crops dataset, characterising the most complex challenge
(cluster overlap of 7.75, envelope size of 0.85), demonstrates
the most instructive efficiency patterns. All three methods re-
quired deep engagement with the selection problem and deliber-
ate judgements regarding line inclusion or exclusion. Nearly iden-
tical median time metrics were measured by the manual and semi-
automatic refinement methods: 51.5 seconds and 51.4 seconds re-
spectively. These time values remain comparable with the more
time-consuming selections observed in the other datasets. In con-
trast, automatic refinement was identified as a substantial outlier
(median 122.16 seconds), representing more than double the du-
ration required by the other two approaches. These time metrics
prove the opposite of the hypothesis: more automated refinement
methods require fewer time to improve an initial selection.

This substantial performance differential warrants closer exami-
nation, particularly given that both semi-automatic and automatic
refinement methods employ the same median selection line as
guiding principle. The superior performance of the semi-automatic
method may be attributable to two primary factors. First, the au-
tomatic refinement method suffers from a non-deterministic na-
ture, which is already discussed. Second, and more substantially,

© 2026 The Author(s).
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Figure 8: The time in seconds required to complete the selection goal is presented in a box plot for phase one. The metrics were evaluated
across three datasets (Andrews, Crops and 4C.6) and three refinement methodologies (manual, semi-automatic, automatic). In all cases,
lower values indicate better performance. Further details concerning medians and interquartile ranges are provided in Appendix F.
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Figure 9: Time taken for the selection process in seconds versus attempts, grouped by refinement technique. Individual values are depicted
by dots, whilst a general trend in the data values is indicated by the line with certainty range. Further details concerning correlation values
are provided in Appendix F

the semi-automatic approach affords enhanced fine-grained control
over filtering of the main branch of cluster lines, allowing users to
make incremental adjustments without triggering cascading algo-
rithmic re-computation.

The operational complexity of automatic refinement is evident in
cluster-size adjustment scenarios. As data become more complex,
the likelihood that a desired number of lines can be obtained by

©2026 The Author(s).

selecting from three clusters diminishes. Consequently, an optimal
number k of clusters must be identified, a task that proves consid-
erably difficult. Substantial time is expended in experimenting with
the cluster-number parameter and in enabling or disabling specific
clusters, with at least half of the users requiring more than fifteen
attempts in numerous instances for the automatic crops dataset.
The complex iterative penalty is avoided by the semi-automatic
refinement. When configured with too few bins, some overshoot-
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ing or undershooting may be caused, but the effect is considerably
less than that observed with automatic refinement. More efficient
user-directed refinement is enabled, demonstrating the practicality
of interactive control for managing large-scale line-data selections.

The lowest variance in completion times for the semi-automatic
method is likely attributable to the limited number of available
choices. In manual refinement, selections may be created through
multiple brush applications that can be placed on an infinite amount
of possible location on the plot. As previously discussed, the auto-
matic method presents more choices relative to the semi-automatic
tool. Consequently, when more complex datasets are introduced,
completion times for the semi-automatic refinement method are ex-
pected to be the closest observed in this study.

Due to limitations in the ReVISit programme, recording the time
values for the second phase was made impossible for the second
phase. Although some memory bias may have occurred, other effi-
ciency data do not deviate substantially from the results obtained in
the two phases. Consequently, it can be assured that trends in time
values in phase two are comparable to those obtained in the first
phase. The limitations section (Section 7) discusses why recording
these metrics proved difficult and how the ReVISit programme can
be improved to mitigate this issue.

6.6. Satisfaction

Dataset Difficulty Confidence
4C.6 (manual) 200+ 1.26 4704+ 1.27
4C.6 (semi) 1.134+0.78 4.38 +1.32
4C.6 (auto) 1.00 £ 0.71 4.50 £ 0.50
4C.6 (total) 1.50 + 1.12  4.55+1.20
Andrews (manual) 1.70 £1.27 4.80 £ 1.54
Andrews (semi) 1.17 £ 1.07 5.00 £0.82
Andrews (auto) 0924095 4.17+1.34
Andrews (total) 125+ 1.15 4.57 £1.37
Crops (manual) 2.00+0.89 2.60+£1.20
Crops (semi) 227+181 391+1.62
Crops (auto) 3294+ 1.67 3.29+1.28
Crops (total) 252 +1.69 3.434+1.53

Table 8: Difficulty measured from "Trivial” (0) to "Feels impossi-
ble" (6), and confidence measured from "Not confident at all" (0) to
"Extremely confident". These metrics were evaluated for phase one
across three datasets (4C.6, Andrews, Crops) and three refinement
methodologies (manual, semi-automatic, automatic).

Beyond objective time measurements, self-reported difficulty
and confident scores provide insight into the user satisfaction.
Phase one scores are presented in Table 8. The artificial datasets
demonstrate remarkable similarity in overall difficulty perception.
Comparable total difficulty scores were obtained for the 4C.6
dataset (1.50£1.12) and the Andrews dataset (1.25+1.15), indicat-
ing that the datasets were perceived as similarly manageable. In
contrast, the real-world Crops dataset (2.52+1.69) was found to be
substantially more difficult, although the average rating remains
better than a neutral score of 3, indicating that the task remained
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manageable. This elevated difficulty aligns with the dataset charac-
teristics presented in Table 2: the Crops dataset exhibited the high-
est cluster overlap (7.75) and largest envelope sizes (0.85), creating
a more visually complex selection environment that naturally de-
mands greater cognitive effort.

Participants rated automatic refinement as substantially more
difficult for the Crops dataset (3.29 £ 1.67) compared to manual
(2.00 + 0.89) and semi-automatic (2.27 + 1.81) methods. This sub-
jective experience correlates with the temporal and quality findings:
when algorithmic performance degrades, users experience cogni-
tive strain. Conversely, for the 4C.6 dataset, automatic methods
received the lowest difficulty ratings (1.00 + 0.71), reflecting the
alignment between algorithmic output and user expectations when
the task itself is relatively straightforward. This pattern indicates
that user’s experience with the refinement methods is highly de-
pendent on the dataset itself.

Confidence ratings reveal a more subtle landscape without clear
directional trends. High and stable confidence was maintained
across the artificial datasets for refinement methods: average con-
fidence of 4.55 + 1.20 for 4C.6 and 4.57 + 1.37 for Andrews.
Confidence remained stable as refinement approaches were tran-
sitioned between, suggesting that the consistency of algorithmic
output produce trust regardless of automation level. The Crops
dataset demonstrated lower absolute confidence (3.43 + 1.53), ex-
hibiting a slight positive trend from manual (2.60 + 1.20) through
semi-automatic (3.91 £ 1.62) to automatic (3.29 + 1.28). This non-
monotonic pattern is particularly illuminating: confidence peaks
with semi-automatic refinement before declining with automation.
This suggests that whilst the semi-automatic approach their inter-
pretable visualisation marginally improved confidence, the unrelia-
bility of automatic refinement was recognised, leading to appropri-
ately diminished confidence in those recommendations.

When asked verbally, users are greatly satisfied with the tool.
This satisfaction is attributed to substantial improvements in selec-
tion quality achieved through the refinement techniques employed.
Because no single refinement technique demonstrated clear supe-
riority in time-efficiency, participant preferences were not defini-
tively concentrated on any single technique.

This is also illustrated in phase two, when users are asked to
rate which refinement method is least difficult and most confident
in Table 9. Semi-automatic refinement was selected as the most
confident by 12 participants, followed by manual (10 participants),
with automatic receiving only 2 votes, a preference distribution
that mirrors the actual quality performance (manual: 12.6%, semi-
automatic: 9.8%, automatic: 2.8%). Conversely, automatic refine-
ment was overwhelmingly selected as "least difficult” by 13 par-
ticipants, substantially outpacing manual (6 participants) and semi-
automatic (5 participants) approaches. This apparent paradox indi-
cates that the unreliability of automatic refinement was correctly
recognised by participants, despite its perception as mechanically
simpler. The superficial simplicity of interface interactions and
parameter adjustment obscures the underlying algorithmic limita-
tions; when algorithmic outcomes fail to meet expectations, such
surface-level simplicity does not engender user confidence.

© 2026 The Author(s).
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Metric Manual Semi-automatic  Automatic
Least difficult 6 5 13
Most confident 10 12 2

Table 9: Preferred refinement method based on highest confidence
during each selection method and least perceived difficulty for
phase two.

7. Limitations and future work

This paper explores multiple brushing techniques and refinement
methods to address the challenges of interactive visual manipula-
tion of large-scale line data. Although findings provide valuable
insights into the effectiveness of these approaches, several limita-
tions should be acknowledged, and numerous promising directions
for future investigation remain.

The primary limitation in the first explorative study stems
from the controlled nature of the study design. The context-aware
brushes, specifically the parallel brush, which theoretically outper-
forms the outlier-removal method when clusters contain internal
gaps, were never evaluated under conditions representative of their
intended use cases. Participants were not explicitly tasked with se-
lecting clusters exhibiting this property, meaning the theoretical
advantages of these brushes could not be fully validated. Future
research should deliberately design evaluation scenarios that test
context-aware brushes under their optimal operating conditions.

For the second study, a notable technical limitation concerns the
incomplete timing data. The ReVISit platform (version 2.0) permits
researchers to track responses for embedded views. However, each
embedded view can only propagate a single string to the parent
programme. Consequently, the initial selection data and all three
refinement techniques for the second study were combined into a
single JSON response field. This architectural constraint permit-
ted only the determination of when the initial selection phase be-
gan and when the final refinement ended. Critical intermediate time
points, such as when each individual refinement technique started
or concluded, were not recorded. Therefore, the temporal data for
the second study phase were excluded from the analysis, preventing
a comprehensive comparison of efficiency across both experimen-
tal phases.

The selection tools employed in this research were originally de-
veloped using the Svelte framework. Because ReVISit officially
supports only HTML and React for embedded views, an HTML
wrapper was constructed to intermediate message passing between
the survey platform, the HTML wrapper, and the Svelte appli-
cation. This non-standard integration approach likely resulted in
some events not being properly recorded by ReVISit, potentially
introducing unmeasured data loss. Direct implementation of se-
lection tools in an officially supported language would have mit-
igated these integration issues and ensured more reliable event
tracking. Beyond these project-specific concerns, multiple imple-
mentation challenges were encountered related to ReVISit’s form
caching mechanisms and data storage limitations when handling
large provenance graphs. These issues are comprehensively docu-

©2026 The Author(s).
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mented in Appendix G and merit attention from the ReVISit devel-
opment community.

The automatic refinement technique presented a distinct limita-
tion rooted in the inherent non-determinism of the k-means clus-
tering algorithm. Although all participants began with identical ini-
tial selections, most received unique refinement problems when ap-
plying the automatic refinement method. This variability in algo-
rithmic output introduced confounding factors that complicated the
interpretation of results. Alternative automated approaches should
be explored, such as Convolutional Neural Network (CNN)-based
brushes developed for scatter plots [FH21], which could offer im-
proved performance through learned feature representations. A de-
terministic approach grounded directly in learned data represen-
tations could eliminate this source of variance. In addition, re-
liance on the median line guidance should be reduced. Thereby,
better addressing over-selection problems and moving beyond
heuristic-based median line adjustments. The current implementa-
tion of refinement techniques is fundamentally limited to filtering,
that is, removing lines from an initial selection. It does not support
adding previously unselected lines, constraining its applicability for
correcting under-selection errors. Early exploratory work demon-
strated that augmenting the semi-automatic refinement method with
a histogram of all lines in the dataset could theoretically enable
line addition. However, this approach introduced substantial visual
clutter and revealed many lines lying far from the primary cluster.
Resolution would require either an algorithmic preprocessing step
to remove distant outliers based on an objective cut-off criterion,
or provision of direct user control over this parameter. Neither ap-
proach was evaluated in the final study to maintain experimental
consistency, but both warrant investigation in future work.

Beyond addressing the aforementioned limitations, several
promising avenues merit investigation:

1. Study cluster-specific characteristics. With twenty-eight par-
ticipants and twelve unique cluster goals (three data sets, each
containing four clusters), each cluster was tested an average of
2.33 times. This limited sample size results in trend analyses
for most clusters being based on only two to three data points,
thereby restricting the statistical power of the conclusions. Fu-
ture work should replicate the study with substantially larger
participant cohorts to establish more robust findings regarding
cluster-specific performance characteristics.

2. Iterative Refinement Workflows. When applying these refine-
ment techniques to complex real-world tasks, users would bene-
fit from an iterative workflow enabling them to add lines through
selection, subsequently refine those selections, and repeat this
cycle. Future research should systematically investigate the opti-
mal balance between accuracy gains and efficiency losses across
successive refinement iterations.

3. Study objective Doing the study in as little time was not the pri-
mary objective of the study. Participants were encouraged to at-
tain the highest possible accuracy rather than to complete the
process rapidly. A subsequent study could be conducted to as-
sess how rapidly participants can achieve a predetermined score
within minimal time.

4. Extended Application Domains. The current evaluation was
focused exclusively on cluster selection tasks. However, diverse
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analytical purposes are served by brushing and refinement tech-
niques—identifying outliers, locating features within specific
x-value ranges, and linking selections across linked views. Rich
opportunities for future investigation are presented by these al-
ternative use cases, which would substantially broaden the ap-
plicability of the findings.

5. Complex Dataset Evaluation. It is demonstrated that, even on
the most challenging dataset evaluated (the Crops time-series
data), mean accuracy levels of approximately 80% were
achieved by participants—a surprisingly high performance
level. This suggests that the methods may generalise well to
complex data. Future work is required to validate these ap-
proaches on substantially more challenging datasets, such as
painting reflectance data [PGK*22] or other specialised domain
datasets. Crucially, these evaluations must involve domain ex-
perts who are capable of assessing whether the context-aware
brushes and refinement techniques genuinely improve analyti-
cal workflows and selection quality, moving beyond controlled
experimental metrics to real-world utility.

8. Conclusion

This thesis has addressed the challenge of developing selection
techniques for large-scale line data that simultaneously achieve
efficiency, accuracy, and human interpretability. Context-aware
brushes require substantial improvement before practical deploy-
ment, potentially through machine learning approaches that learn
contextual features from data rather than hand-crafted definitions.

For the three refinement techniques presented by this pa-
per, the highest absolute accuracy improvements (12,6 percent)
were achieved by manual refinement, followed by semi-automatic
(9,8 percent) and automatic (2,8 percent). Consequently, manual
and semi-automatic refinements are preferred by users seeking
high-accuracy improvements. Although similar efficiency scores
are exhibited by manual and semi-automatic refinements, the low-
est variance is observed for the semi-automatic method; conse-
quently, it is recommended for users prioritising efficiency. The
semi-automatic method is also recommended as the most confi-
dent method, scoring especially higher than the others the more
complex a dataset becomes. The automatic refinement method is
rated favourably only in terms of ease of use, whereas its accuracy
and overall efficiency remain considerably inferior. Further devel-
opment of the automatic refinement tool is required before deploy-
ment in real-world applications.

The findings support a fundamental design principle: inter-
pretability and user agency should be prioritised over the max-
imisation of automation. Rather than pursuing fully automatic ap-
proaches. Effective systems should combine moderate algorithmic
guidance with transparent feedback mechanisms that enable users
to understand and control outcomes. Such mechanisms provide a
foundation for systems achieving the simultaneous goals of accu-
racy, efficiency, and human interpretability. As datasets continue to
grow in scale and complexity, principled approaches to interaction
design become increasingly essential.
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Appendix A: Questions to examine biases
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02-09-2025, 11:59 ReVISit | Study
£ .
VST Abel master thesis

What is your email? *

We will use this email to contact you in case of any issues with the study. Or click on 'Don't know' if you do
not want to provide your email.

Please enter your email

| don't know

Would you like to receive updates (up to 5 emails) about the final results, potential
publications, further studies, and presentations related to this study? *

Yes
No
Other

What is your profession? *

This information helps us understand the background and mitigate potential biases among the
participants.

Teacher

Student

Professor
Other

Which field of work best describes your profession? *

This information helps us understand the background and mitigate potential biases among the
participants.

Coputer Sciences
Mathematics
Engineering
Ecomics

Social Sciences
Medicine

Other

Do you give consent for audio recordings? *

https://yustarandomname.github.io/study/abel-master-thesis-one/T1hJdnBYMWx2NWxMNEJLc2pkSmV1dz09 172



02-09-2025, 11:59 ReVISit | Study
£ .
VST Abel master thesis
Yes

No

Do you give consent for screen recordings? *

Screen recordings will be used to enhance the study and identify areas where participants faced
difficulties. If the study is conducted on a computer other than the researcher's, there is a risk that the
screen recording may inadvertently capture sensitive information. The recordings will be deleted after the
study concludes. The recordings will not be shared with any third parties.

Yes

No

Do you give consent for local data collection? *

Data will be collected locally and not sent to any third parties. The data will contain mouse clicks,
movements and timings. This data will be aggregated and anonimised in the final report. Local data will be
removed after the study concludes (aproximately in 3-6 months)

Yes

Do you give consent for anonimised data publishment? *

Anonimised data may be published in the future to help other researchers. The data will not contain any
personal information only selection information will be published.

Yes

No

Next
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Appendix B: Results study one

No outlier filtering With outlier filtering

Brush Accuracy Precision Recall Accuracy Precision Recall

Rectangle | 0.96+0.04 098+0.04 0.86+0.16 | 0.93+0.10 092+0.18 0.84+0.15
Angle 095+0.02 091+£0.10 090+0.06 | 0.95+0.04 093+0.09 0.87+0.11
Percentile | 0.96+0.02 094+0.05 0.87+0.10 | 0.94+0.04 099+£0.02 0.81+0.12
Draw line | 0.80+0.24 0.72+024 0.73+0.31 | 0.93+0.04 098+0.02 0.77+0.16
Length 0.74+0.11 042+0.11 057+0.21 | 0.82+0.13 0.81+0.22 046+0.26
Parallel 0.70+0.16 037+£025 0.66+040 | 0.91+0.10 087+0.15 0.81+0.27

Table 10: Selection Quality — Statistical mean and standard deviation measurements for each brush were compared between two conditions:
selections without outlier filtering and with outlier filtering. Performance was evaluated across three metrics: accuracy, recall and precision.
Thickened numbers in the results indicate statistically significant improvements when outlier filtering was applied. This analysis employed a
one-sided Wilcoxon signed-rank test with a significance level of p < 0,05. The null hypothesis (Hy) assumed that performance without outlier
filtering would be less than or equal to performance with outlier filtering.

No outlier filtering With outlier filtering

Brush Time (min) Deletions Time (min) Deletions

Rectangle | 1.78 £1.02 229+£2.66 | 1.28+£0.82 1.14+1.12
Angle 1.64+£1.17 1.57+£244 | 1.49+£0.74 0.71+£1.03
Percentile | 2.32+1.97 371552 | 1.49+0.71 0.57+0.73
Draw line | 2.65+1.03 4.86+4.61 | 1.50+1.07 0.71+0.70
Length 246+121 7.71+8.03 | 1.42+0.65 1.00+0.76
Parallel 288+1.73 6.00+3.89 | 1.24+0.62 0.57+0.73

Table 11: Selection efficiency — Statistical means and standard deviations were calculated for the time taken to make a selection in minutes
and the average number of deletions for each brush. In all cases, lower values indicate better performance, measured across both outlier
filtering being disabled versus enabled. Thickened numbers in the results indicate statistically significant improvements when outlier filtering
was applied. This analysis employed a one-sided Wilcoxon signed-rank test with a significance level of p < 0,05. The null hypothesis (H)
assumed that performance without outlier filtering would be greater than or equal to performance with outlier filtering.

© 2026 The Author(s).
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No outlier filtering With outlier filtering

Brush Confidence Difficulty Confidence Difficulty

Rectangle | 4.43 £ 1.18 2.14+146 | 457+140 1.71+1.16
Angle 400£093 2294146 | 471+£0.70 1.86 £ 0.99
Percentile | 3.57 +£140 2.86+146 | 429+0.88 2.29+0.88
Draw-line | 2.86 +1.46 357+£1.50 | 443 +£1.29 2.14+1.46
Horizontal | 1.57 +1.76 429+ 1.03 | 3.14 £ 1.88 3.14 £+ 1.36
Length 0.57£073 5294+0.70 | 3.14 =188 429+£045
Parallel 0.57+0.73 486+064 | 414£173 229+£1.16

Table 12: Selection satisfaction — Statistical means and standard deviations were calculated for difficulty measured from "Trivial" (0) to
"Feels impossible" (6), and confidence measured from "Not confident at all” (0) to "Extremely confident" (6). Measured across both outlier
filtering being disabled versus enabled.

Appendix C: Cluster Envelope and Overlap detailed results

Name Cluster A Cluster B Cluster C Cluster D

4C.6 0.19+£0.02 | 0.194+0.03 | 0.19£0.03 | 0.19 +0.03
Andrews | 0.08 £ 0.01 | 0.42 +0.05 | 0.16 £0.03 | 0.32 4+ 0.04

Crops 0.54 £ 0.06 | 0.51 ==0.07 | 0.37 £0.09 | 0.29 + 0.07

Table 13: The Envelope sizes for four datasets (Andrews, Crops and 4C.6) each having four clusters, denoted as Cq4, Cp, Ce, and C;. The
values are presented as the mean and standard deviation of the envelope size. The colour coding highlights different magnitudes: red indicates
large sizes, orange indicates medium sizes, and blue indicates small sizes.

I T O O I

1 - 1.24 | 1.46 | 0.43
2| 1.24 - 1.18 | 1.08
3| 146 | 1.18 - 0.59
5| 043 ] 1.08 | 0.59 -

Table 14: Pair-wise Bayes Cluster Overlap percentages for the Andrews dataset among clusters C1, C2, C3, and C5 are presented

Lol v f2]3|

0 - 0.21 | 0.41 | 0.40
1| 021 - 043 | 0.19
2| 041 ] 043 - 1.45
31040 | 0.19 | 1.45 -

Table 15: Pair-wise Bayes Cluster Overlap percentages for the 4C.6 dataset among clusters CO, C1, C2, and C3 are presented

© 2026 The Author(s).
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[ ] 10| 12 ] 21 | 22 |

10 - 1.30 | 1.82 | 2.17
12 | 1.30 - 2.04 | 0.26
21 | 1.82 | 2.04 - 0.16

22 | 2.17 | 0.26 | 0.16 -

Table 16: Pair-wise Bayes Cluster Overlap percentages for the Crops dataset among clusters C12, C10, C22, and C21 are presented

© 2026 The Author(s).
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Appendix D: Detailed results brush usage in study two

Pre-selection Manual Refinement Brush Usage by Selection Index
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Figure 10: Counts for three specific interaction types (Rectangle, Angle and Draw) were recorded. These metrics were evaluated across
three refinement types: Expert-select Manual, Self-select Manual and Self-select Selection. Additionally, a selection index is provided (top),
indicating indices the brush types originates from. For example, a selection index value of 1 represents the first selection made, etc.
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Appendix E: Detailed quality study two

Dataset Manual Semi Auto Total
expert 4C.6 87.50% 100.00% 16.67% | 79.41%
self 4C.6 100.00% 100.00% 70.00% | 90.00%

expert Andrews  100.00%  70.00%  33.33% | 66.00%
self Andrews 75.00% 75.00%  75.00% | 75.00%

expert Crops 100.00%  94.12%  54.55% | 83.78%
self Crops 91.67% 91.67%  41.67% | 75.00%

Total 87.63% 90.72%  57.39% | 78.69%

Table 17: Amount of users who were able to score a better accuracy from the initial selection to the final selection. These metrics were
evaluated across three datasets (4C.6, Andrews, Crops) and three refinement methodologies (manual, semi-automatic, automatic). Higher

percentage is better.

Dataset Manual Semi Auto Total
expert 4C.6 9.21% 847%  -2.07% | 6.96%
self 4C.6 1536% 11.00% 8.93% | 11.84%

expert Andrews  7.57% 221%  -4.55% | 141%
self Andrews 3.42% 291%  -4.12% | 0.74%

expert Crops 19.54% 15.83% 1.66% | 12.52%
self Crops 1051% 11.76%  3.80% 8.89%

Total 12.62%  9.76%  2.81% | 8.39%

Table 18: Mean absolute change from initial selection to final selection. These metrics were evaluated across three datasets (4C.6, Andrews,
Crops) and three refinement methodologies (manual, semi-automatic, automatic). Higher percentage is better.

© 2026 The Author(s).
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Figure 11: Bar chart of accuracy, precision and recall improvements for manual, semi-automatic and automatic refinement methods. Absolute
differences are measured between the initial and final selections. Bars are stacked.

Appendix F: Detailed efficiency study two
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Dataset Time (seconds)

4C.6 (manual) 71.39 4 [56.44, 97.98]
4C.6 (semi) 35.26 £ [25.14, 54.07]
4C.6 (auto) 607.0 = [414.7, 877.0]

Andrews (manual)
Andrews (semi)
Andrews (auto)

51.43 + [15.28, 62.95]
60.52 + [28.90, 75.36]
35.20 + [20.78, 57.81]

Crops (manual)
Crops (semi)
Crops (auto)

51.53 £ [38.26, 79.48]
51.40 + [36.38, 77.30]
122.16 £ [65.66, 146.40]

Table 19: The statistical median, together with the first and third quartiles for phase-one, time taken to reach the selection goal in seconds.
These metrics were evaluated across three datasets (4C.6, Andrews, Crops) and three refinement methodologies (manual, semi-automatic,

automatic). Lower values indicate better performance.

Method Manual Semi-automatic  Automatic

4C.6 0.78 0.74 0.76
Andrews 0.31 0.80 0.57
Crops 0.64 0.79 0.80

Table 20: Correlation values between time taken to reach the selection goal and amount of attempts. The correlation value is quantified by
the following mathematical formula:

L (=90 —y)

COrry = — —
VI (= 5)2/E (v —5)?

Dataset Manual Semi Auto Total

4C.6 6.60 +=3.93 4.00 £ 1.66 7.75 £ 5.89 5.86 + 4.06

Andrews 270 £ 142 3.17+£134 6.83+1044 4.57+7.19
Crops 360+2.06 564+£296 21.14+1946 991+ 1327
Total 444 +£332 4524250 11.35+14.84 6.64+£9.25

Table 21: Statistical mean and standard deviations for phase one amount of attempts to reach the final selection final selections manual,
semi-automatic and automatic refinements. These metrics were evaluated across three datasets (4C.6, Andrews and Crops)

© 2026 The Author(s).
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Appendix G: Detailed ReVISit limitations

Beyond the ReVISit programme’s inability to directly support the Svelte framework and its limitation to a single web response field, three
additional issues merit detailed consideration. Comprehensive knowledge of the ReVISit programme is presumed, and technical feedback on
the software is provided through this discussion. Where terminology is unclear, further details may be obtained from the ReVISit documen-
tation (https://revisit.dev/docs/introduction/). The primary issues examined herein concern form caching mechanisms,
data storage limitations when handling large provenance graphs, and study creation workflows.

Form Caching

A significant advantage of the ReVISit programme is its capacity to store user responses during study participation, which proves benefi-
cial when network connectivity is disrupted. However, this functionality results in the browser retaining submitted data even after study
completion, thereby permitting users to modify their answers retroactively. Furthermore, shared computer environments present com-
plications, as subsequent users may inadvertently override the responses of their predecessors. Although the study navigator (https:
//revisit.dev/docs/analysis/revisit-modes/#study—-navigator) provides a "Next participant" button to facilitate
participant transitions, this navigator was disabled. This navigator presented a cluttered user experience, whilst simultaneously permitting
users to navigate freely between study pages, thus compromising study integrity. It would have been useful for a form to be automatically
advanced to the next participant upon completion.

Data Storage

In the first study, seven participants generated 162 megabytes of text data, primarily attributable to provenance tracking (https:
//revisit.dev/docs/designing-studies/provenance-tracking/) and the logging of mouse and keyboard events.
To mitigate this issue, the Window Event Debounce Time setting (https://revisit.dev/docs/typedoc/interfaces/
BaseIndividualComponent/#windoweventdebouncetime) was adjusted to a longer time window in the second study, per-
mitting fewer data points to be transmitted to the form. However, the increased debounce time may have resulted in the omission of certain
events from the database. In addition, comparisons of time values between studies were no longer possible because the values were inaccurate.
Twenty-eight participants yielded 22 megabytes of data in the second study, representing a substantial reduction.

Study Creation

The least limiting factor was that the study creation had to be designed in a JSON file. The methodology employed during local server testing
required modification upon deployment to a production environment. As the study configuration had to reference the hosted server rather
than the local development server. During local development a separate embedded url had to be used compared to the hosted version of the
study. Changing these values proved to be time consuming. Implementation of a dynamic JavaScript or Typescript file would have permitted
the insertion of dynamic environment variables to determine the server URL of the software version under evaluation.

© 2026 The Author(s).
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