
Researching a transition to

an organized chaos in

enterprise system

architectures

Master‟s Thesis, June 2011

Ronald van Etten

<<Page left blank intentionally>>

Researching a transition to an

organized chaos in enterprise system

architectures

THESIS

Submitted in the partial fulfillment of

The requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

TRACK INFORMATION ARCHITECTURE

by

Ronald Hendrik Maria van Etten

Born in Purmerend, the Netherlands

Web Information Systems

Department of Software Technology

Faculty, EEMCS, Delft University of Technology

Delft, the Netherlands

Eecms.tudelft.nl

TAM TAM B.V.

Patrijsweg 80

Rijswijk, the Netherlands

www.tamtam.nl

© 2011 Ronald van Etten.

Researching a transition to an

organized chaos in enterprise system

architectures

Author: Ronald Hendrik Maria van Etten

Student ID: 1262947

Email: R.H.M.vanEtten@student.TUDelft.NL

Abstract

After its founding 15 years ago, Tam Tam has encountered the limits of legacy systems

used for the internal processes in recent years. To overcome these limits, multiple efforts

have been made to enforce a transition to specific Enterprise Application Integration

styles. Although the efforts resulted in working application interactions, the desire for

an organized whole sustained. The motivation for this thesis project was to make one

final effort towards a new architecture by providing a carte blanche for all steps to be

taken as well as their outcomes. The main goal of this thesis project was to research the

most logical „next step‟ for Tam Tam to take with the internal systems architecture and

to derive which improvements this step brings into the picture. To reach this goal, a

crossroad of three key elements is identified.

Context, the first element is to figure out what the current architectural landscape looks

like and what can be learned from the previous attempts at integrating the systems.

Theory, the second element is to figure out how architectures can be compared, what the

possible solutions are and which of those fits Tam Tam best.

Practice, the third element is to link the theoretical design to the practice to assess its

feasibility, to evaluate which improvements for Tam Tam are introduced and, finally, to

evaluate the chosen methodology.

The choice for sub-steps in the chosen methodology is based on best practices and

guidelines from available (relevant) literature and is adapted to be used in this specific

context. The focus of this adaption is that the chosen steps must be adaptable to other

contexts too. After the complete methodology has been carried out, the key deliverables

can be divided into two different categories: science and Tam Tam. For science the main

deliverables are:

1) An aggregated list of re-usable insights

ii | A b s t r a c t

2) A case study for an Enterprise Service Bus transition

3) A re-usable step-by-step approach from legacy systems architecture towards the

„most logical‟ next architecture.

The key deliverables for Tam Tam entail:

a) A conclusion of the continuous effort towards Enterprise Application Integration

b) Sellable BizTalk know-how

c) An improved internal architecture with regard to flexibility, maintainability and

adaptability

Concluding, the given carte blanche allowed for a successful path towards the best

fitting Enterprise Application Integration style for Tam Tam. Furthermore, the

methodology used is assembled in such a way it can withstand usage in other contexts

and can be seen as a first step towards a formal definition of said methodology. This re-

usability is introduced by the context-free focus during the definition of said

methodology.

Keywords: business processes, Enterprise Application Integration, EAI, Service

Oriented Architecture, SOA, Enterprise Service Bus, ESB, BizTalk, Legacy Systems,

architecture transition plan, next generation architecture

Graduation Committee:

Prof. dr. ir. G.J. Houben, Faculty EEMCS1, TU Delft

Dr. ir. A.J.H. Hidders, Faculty EEMCS, TU Delft

Dr. ir. J. van den Berg, Faculty TPM2, TU Delft

Ir. B.A. Manuel, Partner, Tam Tam B.V.

1 Electrical Engineering, Mathematics and Computer Science
2 Technology, Policy and Management

| iii

Preface

Inherent to working a prolonged time on a project is the urge to share the most precisely

selected in-depth knowledge with the world. This urge is not lacking in my case either,

but a step backwards is taken to present the fields within which this project is executed.

Before starting this project, I was looking for a real-world problem to tackle in which a

lot of improvements could be achieved. Once the back office of Tam Tam came into the

picture I took that opportunity with both hands and have never let my grip loosen.

Because of my great interest in the usage of IT in business scenarios it presented a

perfect fit. Although it was difficult to formulate the scientific aspects of the project at

first sight, I am very grateful that I was given a „go-ahead‟ for this particular project.

At the start of my project, when I „moved into‟ Tam Tam, I was immediately seen, and

treated, as „one of them‟ by other Tammo's. This was evident from the amount of

indignation if I were not planning to join Tam Tam parties and leisure activities.

Furthermore, I was given freedom in every aspect thinkable, from deciding the direction

of the results to the ability to extend my vision by joining external (unrelated) events.

When looking at the course of my project, some people played key roles for which I

would like to explicitly mention my gratefulness. First of all, professor Geert-Jan

Houben for allowing me to join the Web Information Systems group and for asking the

right questions at key points during my project. Secondly, Bart Manuel for expressing

his confidence in the achievements I wanted to reach by including me as a Tammo and

his seemingly inexhaustible technical interests and wishes. Thirdly I would like to

thank my daily supervisors Jan Hidders and Jasper van der Sterren for pointing me in

the right directions and having to listen to my every story regarding both project and

non-project related matters. Fourthly I would like to thank Jan van den Berg for being

my external committee member and for his valuable insights in how to bridge the gap

between technology and business.

Due to my reasoning that Delft was not only a place to study but a place to live, I have

been surrounded with supporting people. Thanks to my companions in my year of 'free

time', as a board member of both CH and DDB, I have learned the most invaluable soft

skills. Furthermore, fellow members of several committees persuaded me to take a step

backwards from working on my thesis and studying in general. The last groups of

people, who have pulled me through both ups and downs during my study, are my

friends and family; please continue to allow me to take my own drift through life.

I hope you, as a reader, will enjoy reading the results of my research the way I enjoyed

carrying out the research myself.

Ronald HM van Etten

iv | C o n t e n t s

Contents

Preface .. iii

Contents ..iv

List of Figures ...vi

List of Tables ... vii

Part I: Preliminaries, introducing the playground .. 1

Chapter 1: Introduction ... 2

1.1 Background ... 2

1.2 Situation ... 2

1.3 Research objectives ... 3

1.4 Project organization .. 4

1.5 Activities and Thesis Structure .. 5

Part II: Context, gaining an understanding.. 7

Chapter 2: Current Situation .. 8

2.1 Architectural description methodology .. 8

2.2 Current architecture description... 13

2.3 Lessons learned from current architecture ... 13

2.4 Requirements for the new architecture .. 15

Chapter 3: Approach .. 17

3.1 Lessons learned from previous attempts .. 17

3.2 Key principles .. 18

Part III: Theory, designing a high-level architecture .. 21

Chapter 4: Evaluation of architectures ... 22

4.1 Architectural Evaluation Methodology ... 22

4.2 Architectural Evaluation Means and Metrics... 23

Chapter 5: Choice for architectural style .. 27

5.1 Architectural style comparison framework ... 27

5.2 Decision trade-offs ... 28

5.3 Architectural style decision ... 30

Chapter 6: Future architecture design specifics ... 34

6.1 Design guidelines and principles .. 34

6.2 General idea of design ... 35

6.3 Technical design .. 39

6.4 Organizational design ... 41

6.5 Transition path .. 45

Part IV: Practice, linking theory to the real world .. 53

Chapter 7: Implementation ... 54

7.1 Implementation strategy ... 54

7.2 Decision for a COTS ESB product ... 55

7.3 Further evaluation and assessment of the choice 59

| v

7.4 Reporting experiences with implementation ... 59

Chapter 8: Evaluation of results ... 62

8.1 Aggregated evaluation iterations results .. 62

8.2 Benefits and drawbacks of created architecture ... 63

8.3 Expert review ... 66

Chapter 9: Evaluation of process .. 71

9.1 Choice for Architectural description .. 72

9.2 Choice for Architectural evaluation ... 72

9.3 Choice for Architectural style .. 73

9.4 Choice for Design methodology .. 73

9.5 Choice for IT Governance ... 74

9.6 Transition plan ... 74

9.7 Choice for Commercial off-the-shelf product ... 75

9.8 Verfication of COTS choice .. 75

9.9 Implementation strategy ... 75

Part V: Conclusion, wrapping up and contributions .. 77

Chapter 10: Contributions ... 78

10.1 Science .. 78

10.2 Tam Tam .. 79

Chapter 11: Conclusion.. 81

11.1 Summarizing research parts ... 81

11.2 Further research leads ... 83

References .. 85

Abbreviations ... 91

Appendix A: Description of the current situation ... 92

Appendix B: EAI styles .. 105

Appendix C: Key design elements ... 109

Appendix D: BizTalk risk mitigation plans ... 115

Appendix E: Evaluation iterations .. 122

Appendix F: Key deliverables .. 140

Appendix G: Progress of implementation .. 142

vi | L i s t o f F i g u r e s

List of Figures

Figure 1: Empty, to be filled, playground ... 1

Figure 2: Involved actors ... 4

Figure 3: Thesis structure ... 6

Figure 4: Understanding the current architecture .. 7

Figure 5: Architecture description viewpoint 1 .. 12

Figure 6: What does the theory say about the architecture ... 21

Figure 7: Current situation areas of focus .. 37

Figure 8: Designed situation areas of focus .. 37

Figure 9: Designed architecture abstraction layers ... 38

Figure 10: Transition to an ESB: starting point .. 46

Figure 11: Transition to an ESB: step 1 ... 47

Figure 12: Transition to an ESB: step 2 ... 48

Figure 13: Transition to an ESB: step 3 ... 49

Figure 14: Transition to an ESB: step 4 ... 50

Figure 15: Transition to an ESB: step 5 ... 51

Figure 16: Transforming theoretical design into a real-world architecture 53

Figure 17: Implementation phases ... 55

Figure 18: Thesis process flow .. 71

Figure 19: What can be learned from the process and results ... 77

Figure 20: Employee life cycle .. 92

Figure 21: Customer life cycle ... 93

Figure 22: Service life cycle ... 93

Figure 23: Administrative life cycle .. 93

Figure 24: Promote applicant to employee ... 102

Figure 25: Active Directory: accounts web service - new Active Directory user 103

Figure 26: Aggregated overview of current Architecture ... 104

Figure 27: Pass-through orchestration ... 110

Figure 28: Message mapping .. 111

Figure 29: Asynchronous orchestration .. 112

Figure 30: Hybrid orchestration ... 113

Figure 31: Binding an orchestration ... 114

Figure 32: Stress test organization ... 119

Figure 33: Wireless Client to BizTalk to Wireless Client Web Service 120

Figure 34: Ordered Wireless Client to BizTalk to Wireless Client Web Service 120

Figure 35: BizTalk to Wireless Client Web Service ... 121

Figure 36: Progress of implementation... 142

| vii

List of Tables

Table 1: Evaluation objectives ... 24

Table 2: Evaluation metrics .. 26

Table 3: Trade-off/EAI style valuation .. 31

Table 4: Trade-off/EAI style difference vectors ... 32

Table 5: Difference between ESB and desired situation .. 33

Table 6: Atomic processes .. 40

Table 7: Atomic parts of non-atomic processes ... 40

Table 8: Decision domains and roles ... 43

Table 9: Basic building blocks ... 55

Table 10: Comparison of COTS products .. 58

Table 11: Aggregated evaluation iteration results ... 62

Table 12: Identified advantages and disadvantages ... 63

Table 13: Identified processes ... 94

Table 14: Identified database details .. 97

Table 15: Identified application details ... 99

Table 16: Identified services and supporting peripherals details 101

Table 17: Designed services ... 109

Table 18: BizTalk Risk mitigation plans ... 115

Table 19: First evaluation iteration metrics ... 126

Table 20: Second evaluation iteration metrics .. 128

Table 21: Third evaluation iteration metrics .. 131

Table 22: Fourth evaluation iteration metrics .. 135

Part I:

Preliminaries,

introducing the playground

Server

ServerServer

Users

Service Bus

Architecture

User

User

User

Server

ServerServer

Users

Service Bus

Design Documentation

MethodologyContribution
to Science

Contribution
to Tam Tam

Figure 1: Empty, to be filled, playground

2 | C h a p t e r 1 : I n t r o d u c t i o n

Chapter 1: Introduction

ight before diving into the research, this first introductory chapter strives to

provide a crash course into the environment in which this project is carried out.

The content of this chapter provides all information about the playground of the

project necessary to gain an insight into the rationale behind this project and the

environment surrounding the project. The five W‟s and one H –Where, When, Why,

What, Who and How– are used as a starting point for creating said insights.

1.1 Background

Since the establishment of Tam Tam in February 1996, the company kept growing in

several fields at a rapid pace. The amount and size of customers kept increasing over

time. With this increase in customer base, the number of necessary employees increased

as well. At the moment around 85 Full-time equivalent (FTE) are employed at a

company competing among the top-rated full service Internet bureaus.

These increases put an enormous burden on the Information Technology systems and

applications that are used in processes which keep Tam Tam up and running. The

founders of Tam Tam started working with a central database to fulfill their storage

needs. This central database contained every piece of data imaginable, from customer

details through employee information to specific project implementations. Over time, the

flexibility of the „one-database-holds-all‟ architecture was questioned more and more and

a decision was made to split the database into separate components. These components

were identified in such a way that the functions they provide are very cohesive.

Examples of such transitions are dedicated Human Resource Management and

Customer Relationship Management systems.

Although the separation of concerns in more and more components does increase the

ability to overview the whole architecture, each separated component carries out their

own pieces of the processes. The next step from the separation of components was to

integrate the components in such a way a synergy could be created by introducing a

queuing mechanism for certain actions. Furthermore, several web services were

introduced which created an abstraction layer.

1.2 Situation

The earlier mentioned effort to create synergy by integrating the different components

was carried out by implementing different key elements from several different

architectural styles. Although the chosen solution functions perfectly at the moment, it

disappoints at other fields such as maintainability, flexibility and understandability.

This implemented solution was subject to several attempts to convert operations to an

Enterprise Service Bus in the past, of which no attempt pushed through.

The idea to design a complete revision of the architecture for the complete internal

processes infrastructure continued to be relevant. Especially the introduction of services

R

| 3

was very appealing due to the increased flexibility by creating an abstraction layer. Due

to these events, a new approach was longed for that is driven mainly by theory to

provide a well-supported new future-ready architecture.

1.3 Research objectives

To overcome the need for a theoretically backed-up design, one question is identified to

pose as the central research objective. Not only are the results of answering said

question important but, when the question is looked at from a helicopter view, the

chosen way to answer the question is of equal importance.

 “How can Tam Tam benefit from the theoretically „logical‟

next step for the internal systems architecture?”

To be able to formulate an answer to this question several research parts have been

identified which, when the results are aggregated, form a precise reflection of both

theory and practice. Each of the identified research elements is elaborated on in a more

detailed fashion.

A. What does the current situation look like?

The current situation needs to be analyzed to be used as a foundation for further work to

be based upon. The goal of this question is to get a complete picture of the systems

architecture currently in place at Tam Tam from the available documentation,

interviews, documentation and other available sources.

B. What lessons can be learned from previous attempts at creating an integrated

architecture?

Before diving into the design process, a step backwards is taken to find out what

previous attempts were carried out and what were the limitations encountered in those

attempts. This question enforces the identification of key stumbling points that should

be evaded and key lessons to be kept in mind during the design process.

C. How can different architectures be compared?

Once the current situation is completely clarified, a follow-up step is to design an

improved architecture. The only thing missing between both steps is the definition of a

way to evaluate and compare the different architectures. In answering this question,

means should be identified that allow a thorough evaluation to identify the effects a new

architecture has on Tam Tam.

D. What is the theoretically „logical‟ next step for Tam Tam?

The subsequent step is to find out what theoretical next step is „logical‟ to be taken in

the Tam Tam context. This entails researching alternatives for the currently in place

architecture and choosing a variant which offers the best fit for Tam Tam. The identified

best fit architectural variant is tailored to be implemented directly for Tam Tam.

4 | C h a p t e r 1 : I n t r o d u c t i o n

Figure 2: Involved actors

E. Is the designed next step feasible in practice?

The fact that the designed future architecture should be the best fit for Tam Tam is one

of the key points kept in mind during the development. To make the designed

architecture a success however, the practical feasibility should be assessed. During this

feasibility study, all aspects of the design should be made tangible by implementing a

proof of concept version of the envisioned future architecture.

F. What advantages and disadvantages does the new architecture offer?

After the key elements of the theoretical design have been linked to practice, by

implementing a proof of concept version, the newly designed and implemented

architecture is put to the ultimate test. In a full-blown evaluation session, the resulting

architecture is assessed by using the means selected in the third research part.

G. How can pieces of the chosen process be used in other contexts?

This question comes from a helicopter view on the main research question. The answer

to this question consists of a reflection on the chosen process in terms of key

assumptions, reusability and limitations. Furthermore, this question forces some

thought about the key elements present during the project that can be seen as driving

causes of the achieved results.

1.4 Project organization

Due to the nature of this thesis project, two endpoints can be identified: science,

represented by the Delft University of Technology; and practice, represented by Tam

Tam. This means every action performed should be screened as to which goal it serves.

By doing so, a balance was sought between theory and practice.

In performing this balancing act,

several actors were present to support

all activities as shown in Figure 2.

These actors are categorized into four

different categories that are created

based on the phase or main activities

they were particularly involved with.

The first category of actors represent

the university, their involvement is to

supervise the addition of knowledge to

science and the process throughout the

entire project. The second category is

the supervision body from the Tam

Tam perspective, the only

characteristic that differentiates them

from the university actors is their

attention to practice instead of science.

The third category of actors involved

| 5

are the architects and users whose knowledge and expertise is used in discovering what

the current situation looks like. The last category of actors consists of the developers and

system administrators whose help is used during the implementation and evaluation

phases.

1.5 Activities and Thesis Structure

The main content of this thesis is divided into five

different parts. The basic idea of the identified

parts is to walk through the complete performed

process by elaborating on activities in key

categories. This section elaborates on the contents

of the different parts by identifying the chapters,

key activities and goals. At the end of this section,

Figure 3 gives a summary of the different parts, their chapters and the research element

treated in those chapters is indicated between brackets. Furthermore, throughout the

thesis, key learning points are identified about the work performed that can be re-used

when similar work has to be carried out (#1).

Part I: Preliminaries, introducing the playground

The first part is all about getting to know the environment in which this project is

situated. This chapter, Chapter 1: „Introduction‟, is started by elaborating on the history

of Tam Tam and its internal systems architecture. After that, the motivation for starting

this project is laid out together with the main research goals. The last step is to indicate

what actors are involved in the project.

Part II: Context, gaining an understanding

The second part serves the goal of presenting the foundation on which further work in

this thesis continues. The first chapter of this part, Chapter 2: „Current Situation‟,

elaborates on the current situation of the architecture under focus. After that, Chapter

3: „Approach‟ presents the unique approach taken in this thesis project by investigating

what can be learned from previous attempts to reach a similar goal.

Part III: Theory, designing a high-level architecture

After the foundation for this thesis has been laid out, the next step is to dive into the

literature to investigate the theoretically possible next steps. Chapter 4: „Evaluation of

architectures‟ starts by defining a methodology to be used to compare different

architectures. After that, in Chapter 5: „Choice for architectural style‟, a decision is made

for an architectural style which suits Tam Tam best. Chapter 6: ‟Future architecture

design specifics‟ concludes the theoretical part of this thesis by using common practices

and guidelines from the literature for defining the design specifics.

Part IV: Practice, linking theory to the real world

Once the next step for Tam Tam is defined, it should be tested for feasibility by linking

it to practice. Furthermore, the process of implementing this next step is to be assessed.

#1 Key learning points
throughout this thesis are
indicated in these blue sticky
notes

6 | C h a p t e r 1 : I n t r o d u c t i o n

Chapter 7: „Implementation‟ starts by indicating how the theoretical design was linked

to practice. In Chapter 8: „Evaluation of results‟ the defined architectural comparison

means are used for assessing which achievements have been reached with the new

architecture. The last chapter of this part, Chapter 9: „Evaluation of process‟, discusses

the process used in this thesis by taking a helicopter view and checking what can and

cannot be re-used in other contexts.

Part V: Conclusion, wrapping up and contributions

The final part of this thesis is all about wrapping up and conclusions. Chapter 10:

„Contributions‟ starts with elaborating on the contributions this thesis makes to both

science as well as Tam Tam. After that, Chapter 11: „Conclusion‟ is the final chapter of

this thesis and revisits the posed research elements and matches the derived answers to

them.

Figure 3: Thesis structure

Part V: Conclusion, wrapping up and contributions

10: Contributions 11: Conclusion

Part IV: Practice, linking theory to the real world

7: Implementation (Research
element: E)

8: Evaluation of results (Research
element: F)

9: Evaluation of process (Research
element: G)

Part III: Theory, designing a high-level architecture

4: Evaluation of architectures
(Research element: C)

5: Choice for architectural style
(Research element: D)

6: Future architecture design
specifics (Research element: D)

Part II: Context, gaining an understanding

2: Current situation (Research element: A) 3: Approach (Research element: B)

Part I: Preliminaries, introducing the playground

1: Introduction

Part II:

Context,

gaining an understanding

Server

ServerServer

Users

Service Bus

Architecture

User

User

User

Server

ServerServer

Users

Service Bus

Design Documentation

MethodologyContribution
to Science

Contribution
to Tam Tam

Figure 4: Understanding the current architecture

8 | C h a p t e r 2 : C u r r e n t S i t u a t i o n

Chapter 2: Current Situation

elping Tam Tam continue to be profitable, two different categories of processes

can be identified; the first category consists of processes executed directly in the

benefit of customers and the second category consists of internal processes to

keep Tam Tam running. To generate the most profit for Tam Tam, the employees should

be spending as little time as possible executing processes from the second category. The

systems architecture within Tam Tam serves this goal but, as can be seen with almost

any software architecture, the documentation of the architecture is not always

compatible with the real world. The reason for this incompatibility can be attributed to

either of two options: there is no documentation or the documentation became outdated

due to architectural erosion and architectural drift as described in (Perry & Wolf, 1992).

Before being able to study the performance of the systems architecture currently in

place, it has to be documented. The first section of this chapter describes a chosen

methodology to be used for documenting the architecture by visualizing it. As stated in

(Petre, Blackwell, & Green, 1998), (Perry & Wolf, 1992) & (Clements & Northrop, 1996),

this visualization:

1) Presents a means for communication between stakeholders. It should bridge the

gap between technical and non-technical stakeholders

2) Presents a means for identifying requirements of stakeholders. Both functional

and non-functional requirements can be included

3) Serves the goal to make technical decisions early on in the design process.

4) Creates possibilities for reuse, the abstraction presented in the visualization can

be transferred to other situations

5) Creates the possibility to perform an analysis of the dependency and consistency

with regard to architecture, requirements and design

After the methodology has been defined, the second section elaborates on carrying out

the chosen steps to describe the architecture currently in place within Tam Tam. The

third section elaborates on some lessons that can be learned when the current

architecture is analyzed and, finally, the fourth section describes the requirements that

are posed to future architectures.

2.1 Architectural description methodology

To reconstruct the architecture from the currently in place systems, practices from two

methodologies have been selected. Both the methodologies Dali (Kazman & Carrière,

1999) and Symphony (Deursen, Hofmeister, Koschke, Moonen, & Riva, 2004) assume

very little is documented or known to stakeholders and thus focus on retrieving most of

the data from the source code. The situation at Tam Tam however, is that some of the

architects are still available to help documenting the current architecture. So instead of

using only the source code, these architects are used to help visualize a course-grained

architectural description. The source code is used after that to figure out more detailed

information about the architecture in place. The process executed to describe the current

H

| 9

architecture is derived from (Deursen, Hofmeister, Koschke, Moonen, & Riva, 2004) and

consists of iteratively executing three steps. The first is extracting information; the

second is to take a step backwards from this information to get an abstract overview;

and the third step is presenting the information. In the coming three paragraphs the

aggregated result of the three steps is elaborated on.

2.1.1 Extract

The information extraction step is based on an iterative series of interviews with the

architects and stakeholders. A mock-up of the architectural layout served as a starting

point for discussion. This mock-up was created in collaboration with two of the technical

architects who created the architecture. A white-board was used to create an overview of

all systems, databases, applications and processes running within Tam Tam. This mock-

up on the white-board provided a means to communicate about the architecture with

other architects and evolved into a classical form of spaghetti architecture, vouching for

the need to organize the components in a different way.

The result of performing the first iteration of this extract->abstract->present cycle

meant the end of the mock-up on the white-board‟s lifetime. This first iteration resulted

in an initial documented version used as a means for communication, verification and

validation. With this initial version available, several interviews were held with

stakeholders and users of components within the architecture. From these interviews

the requirements and high-level process details are gained. This information provides a

good starting point for further analysis on a lower level, the internal workings of the

applications, by looking at the source code.

The last step of the extraction is the verification of the created visualization; this is

performed by communicating with the stakeholders about the created visuals in several

iterations. This ensures that the final visualization is reached in a step-by-step manner.

2.1.2 Abstract

The next step in this three-part iteration-cycle is the abstraction from the acquired

information. This paragraph first of all presents the key characteristics of the

architecture that is currently in place and after that presents insights into what to

present.

Key characteristics:

1) No need for flexibility; due to the focus on the internal processes, no possibility

for rapidly changing the architecture is necessary. This stems from the fact that

the internal processes are not core business processes that should be able to

change rapidly as the market changes

2) Coupling; a lot of applications are linked together with a lot of different

interfaces. For understandability purposes the focus should be put at creating

independent systems and technical harmonization in the communication between

processes

10 | C h a p t e r 2 : C u r r e n t S i t u a t i o n

3) Structure and orchestration of application interactions; another key focal point

should be the business process orchestration to bridge the gap between business

knowledge and technical knowledge

What to present:

1) High-level & Low-level; both high-level business process orchestration and low-

level technical implementation details should be presented to give a complete

overview of the architecture. The high-level business processes are used to

communicate the use of certain components to the business people and the low-

level technical details are used to communicate with the technical people

2) Descriptive & Prescriptive; when selecting ways to visualize the architecture,

possibilities should be present for the description of architectures as well as

prescribing what future architectures should look like

3) Coupling; both application and system coupling should be represented by the

interfaces used, information transferred and process dependency

4) Location of components; it should become clear which applications run on which

servers and where the source code of the applications is located

2.1.3 Present

The third step is to present the acquired information. To do so a way of visualization is

selected in this paragraph. This is done by performing literature research and matching

the retrieved possibilities to the requirements posed and the listings presented in the

last section.

Ways of visualization

A lot of research has been performed to describe the architecture of software from

certain perspectives called viewpoints; most of this research focuses on stand-alone

software applications and can be divided in two forms. First of all there exist

frameworks prescribing what set of viewpoints to use. Secondly, architecture description

languages exist giving the user the choice regarding which viewpoints to be included in

the description.

Frameworks

A lot of frameworks for visualizing architectures have been crafted, examples of these

for the particular sub domain „software architecture‟ are the „4+1‟ model (Kruchten,

1995), the Zachman framework (Zachman, 1999) and the SoftArch environment

(Grundy, 2001), (Grundy & Hosking, 2003) & (Grundy & Hosking, 2000).

Each of these frameworks presents a means to describe architectures from the vision of

the authors of that framework with their own ideology and requirements to the

visualization of the architecture. All frameworks consist of a given set of viewpoints that

–according to the authors– ought to be enough to describe most software architectures.

The „4+1‟ model consists of four different viewpoints supplemented with scenarios

illustrating the architecture forming the „+1‟ part. The Zachman framework defines the

need for different viewpoints depending on the stakeholders involved and was created

| 11

with the mindset that there is no single „software architecture‟ but a „set of

architectures‟ describing architectures. The SoftArch environment is a complete package

for constructing and analyzing software architecture models. Next to that, SoftArch

allows for visualizing dynamics to understand higher-level system behavior to be used

as a debugging tool.

Architecture description languages

To gain more freedom in visualizing the architecture, several architecture description

languages exist. The most prominent languages are Archimate (Lankhorst, 2004),

Unified Modeling Language (Kruchten, Selic, & Kozaczynski, 2001) and the Business

Process Modeling Notation (White, 2004).

The Archimate language divides software into several layers where each layer contains

a specific category of elements (processes, information, applications, etc.). Next to using

the advised hierarchical layered approach, one can use the notational elements fairly

easily in other places. UML also defines a set of possible diagrams that can be created

next to elements that can be used in other contexts. The last is the BPMN; this notation

is specifically focused to communicate business processes with business people, while

preserving the possibility to actually execute derivatives of the processes that are

visualized.

Defining a way of visualization

As (Leist & Zellner, 2006) and (Gallagher, Hatch, & Munro, 2008) indicate, no single

framework or architecture description language meets all posed requirements.

Furthermore, it is very hard to find a framework that does everything necessary so

there most probably is no one-size-fits-all toolkit for the purposes defined in this project.

Because of this hardness, the most applicable step to be taken next is to combine the

advantageous elements of all the listed possibilities.

The first step in selecting the best of all worlds is to select a set of viewpoints that are to

be used. After that, the blanks have to be filled in with regard to the manner of creating

the views from the perspective of the selected viewpoints.

Selecting viewpoints

According to (Smolander, Hoikka, Isokallio, Kataikko, Mäkelä, & Kälviäinen, 2001), the

architect is dependent on both the organization in which one is operating and the set of

requirements when selecting viewpoints. The requirements posed to this visualization

can be categorized into two groups: static and dynamic. The static requirements state

that the architectural visualization should provide a clear insight into what components

are in place within Tam Tam and how these components interact with each other. The

dynamic requirements state that it should be clear what business process uses what

components and how this interaction is choreographed. When this identification is

extended, three different viewpoints are exposed: 1) the static overview of all

components and their connections; 2) the dynamic business process orchestrations; and

12 | C h a p t e r 2 : C u r r e n t S i t u a t i o n

3) the link between the firsts two, describing the choreography of interfaces between

components.

Defining means to create views

After the three viewpoints have been defined, this section describes how the views are

constructed.

Viewpoint 1: Overview of components and connections

The creation of views from this viewpoint is based upon the logical viewpoint of both the

„4+1‟ model and the Zachman framework. The specific way to represent components is

done through the combination of the components present in the Archimate model. The

way of connecting the components is derived from the component model of UML. Each

connection is given a unique identifier that poses as a reference point from the other

views. This identifier is composed of the following triple: <from component, to

component, process>. On top of that, several colorings will be used to enable quick

grasping of specific information. Typical categories like „Information Sources‟,

„Applications‟ and „Service Providers‟ are each given a unique color. The result of one

such coloring can be seen in Figure 5.

Name
Runs On Server

Content
Content
Content

Name
Runs On Server

Outgoing action

Information
Source

Application Service provider

Name
Runs On Server

Source Code Location

Action
Action
Action

Figure 5: Architecture description viewpoint 1

Viewpoint 2: Business process orchestration

Of the options listed earlier for representing software architecture, several have the

capability to present business processes. The BPMN however, is especially designed for

this purpose so this approach is chosen. In modeling the business processes, the unique

connection identifiers can be derived from these BPMN models by tracing what

connections are used in which process. These identifiers are used as reference points for

the models in the third viewpoint.

| 13

Viewpoint 3: Choreography of interfaces between components

To precisely describe the choreography of the interfaces, the UML sequence diagram

approach is taken in which each interface is described as a sequence of performed

actions. One of the advantages of this is that the sequential approach forms a basis for

re-engineering the connections in the architecture by presenting an elaborate

description of the inner workings of the connections.

2.2 Current architecture description

This section presents a summary of visualizing the current systems architecture in

place, the complete description of the process is presented in Appendix A: „Description of

the current situation‟.

Starting point of the architectural description are life cycles, identified high-level

workflows representing a concatenation of different processes. These life cycles help

identify the processes which are carried out within Tam Tam and are from the following

categories:

1) Employee life cycle: representing the whole contact period an employee has with

Tam Tam, from the first contact to becoming a Tam Tam alumnus

2) Customer life cycle: representing every contact with customers, from acquiring of

new customers to offering and carrying out projects for them

3) Service life cycle: after projects are carried out for customers, the resulting

products need to be supported. This life cycle entails the steps from handing over

the project to fixing issues

4) Administrative life cycle: this life cycle has to do with all processes involved in

managing the employees and customers, it includes sending invoices, booking

hours and paying salaries

With these life cycles in hand, different processes were identified and used to identify

individual components. All components are listed with their main roles and their

relation with processes. After all data is extracted, the next three steps are visualizing

the data in the form of the three defined viewpoints by creating models:

1) Viewpoint 1 „Global overview‟: a map with locations and connections between

components

2) Viewpoint 2 „Visualization of component usage‟: 14 different models representing

the actions taken to complete processes.

3) Viewpoint 3 „Component interactions‟: 45 different models representing the

interactions between two different components

2.3 Lessons learned from current architecture

Now the systems architecture currently in place is described, a step backwards can be

taken to figure out which characteristics stand out. A critical view is necessary to derive

what can be learned from the current architecture. The approach taken here is to

14 | C h a p t e r 2 : C u r r e n t S i t u a t i o n

aggregate feedback from architects supplemented with an analysis with respect to prior

knowledge. Each of the identified lessons learned is elaborated on in this section.

2.3.1 Databases

The amount of databases present in the current situation is limited but they serve a

wide variety of purposes. A positive tendency can be identified because a clear transition

is visible from a situation with one central database to a more by divide and conquer

ruled division of databases. Although this helps diminishing the risk of a single point of

failure, an overall design is missing.

2.3.2 Management

Another characteristic that becomes apparent is

the lack of a responsible entity that has the

decision rights and knowledge necessary for

initiating and declining changes. Furthermore, the

lack of knowledge management causes an unclear

vision of what has to be changed where when some

functionality needs to be adapted or added (#2).

2.3.3 Coupling

A high amount of coupling is present in the current architecture, meaning that a lot of

dependencies can be identified. These dependencies cause a ripple effect when changing

some functionality in one location. This can happen directly or only become noticeable

after some time has gone by since the initial change was performed.

2.3.4 Development and production environment differences

From the source code and live code of different applications it appears that the

configuration files are very different and the live configuration files are only available at

the live locations. This means it is very hard to trace what happens exactly with what

components because the correct information cannot be retrieved from source control

systems.

2.3.5 Complexity

The complexity of the current situation is still reasonably manageable but when, in the

course of time, more components are introduced and knowledge is lost, this

manageability will diminish. This causes the current architecture to be reluctant to

change on a technological field instead of the normal human resistance for change.

2.3.6 Hardcoded connection strings

A lot of hardcoded connection configurations are present. The problem with these is that

they are not used in a uniform way so it is very hard to list all of them. Furthermore,

when a referenced component changes it is hard to find out where to change the

references to it.

#2 Knowledge Management is
very important, but not limited
to sharing knowledge. Sharing
what knowledge lies where can
save maintenance time as well

| 15

2.4 Requirements for the new architecture

The requirements to be reached can mostly be derived from the motivation for

performing this thesis project. Most motivation elements stem from several issues,

ranging from the way the systems architecture is currently documented to the eagerness

for certain characteristics which are not present in the current architecture. This section

firstly describes the different motives posed before starting the project and secondly

indicates the requirements that are to be reached by the new architecture.

2.4.1 A priori justification

Documentation deficiencies

Almost every software engineer who just starts crafting computer programs comes

across the urge to document his design decisions and program details. Within Tam Tam

the amount of documentation is limited, and the documentation that is present deals

with details of specific applications only. There is a clear lack of a documented global

overview of software components in place within the company. This lack should be

turned around in such a way that every Tam Tam employee has the possibility to find

out what components are in place where and for what reason.

Knowledge about process orchestration

Although stored documentation is missing, knowledge about the systems architecture is

present in the minds of the developers and architects. The problem with this way of

organizing the knowledge is that very few people know what is happening behind the

curtains. Of those who do have knowledge about the architecture, the architects know

the most but do not have a complete picture either because several aspects have been

changed over the course of time by application developers. These application developers

however, have a complete picture of how certain applications work and with what other

applications they communicate.

This statement makes clear that there exists a knowledge gap between how business

processes work and how the technical components work together. The low level

interaction can be retrieved easily, but what their place is in the bigger picture should

be made clear.

Legacy systems

Since the establishment of Tam Tam in 1996 more and more applications were

introduced to create more efficient workflows. Once in a while new requirements for

applications became apparent and were implemented in the existing systems

architecture. It becomes clear that a lot of applications work together in reaching a

common goal. The way in which they are coupled is not optimal and is not very well

documented either. To move away from the practice „do not touch applications when

they are not broken‟ to a better maintainable situation, means should be available to

replace or expand legacy applications.

16 | C h a p t e r 2 : C u r r e n t S i t u a t i o n

2.4.2 A posteriori requirements

Less coupling

At the moment a lot of applications are connected in a higgledy-piggledy way. This can

mainly be attributed to direct hardcoded service requests and hidden function calls.

What is desired is an architecture design with far less connections and, on top of that,

far less coupled applications.

Create more insight

As was described in previous parts, there is little complete insight into the systems

architecture. More insight should be created into what systems and applications

compose the current architecture and the inner working of the interactions between

these components.

Create an independent situation

Some processes that are performed within Tam Tam span over a variety of components.

The case is that once one component stops responding for a while, it is very hard to trace

where the problem originates. This creates situations in which problems arise at

„random‟ places due to a defect in another „seemingly unrelated‟ application. The new

situation should provide a burden to create components that are directly dependent on

each other.

Increase maintainability

Due to the lack of documented knowledge about the systems, it is hard for application

developers to maintain applications they have not created. The process of maintaining

starts with searching for information like the location of the source code or where the

application is running. When this information is retrieved, the maintainer can start

figuring out how the application works and how functionalities are invoked of other

applications. To increase the efficiency of this process, clarity should be crafted by

creating one starting point and clearly defining external interfaces for applications from

which maintainers can start performing their job.

Harmonization of technology

Although a lot of applications already work in comparable ways, the situation improves

when clearly documented common practices regarding used technology are used. This

increases the maintainability and extensibility through the use of standards by

encouraging everyone to use the same practices.

| 17

Chapter 3: Approach

ultiple goals that are to be reached with this thesis project are far from new

for Tam Tam. A key element in the IT strategy of Tam Tam is to regain

control over the internal systems architecture. In the past, several attempts

have been executed with the goal of reaching a Service Oriented Architecture or an

Enterprise Service Bus. The main motivation for Tam Tam to renew said tendency to

carry out such a transition is the fact they sell similar solutions to clients and want to

adopt the motto „practice what you preach‟. This chapter elaborates on the previous

attempts and sets the mentality for the approach used in this thesis based on findings

about previous attempts. The first section provides details on several of the previous

attempts and what can be learned from those. The second section lists the key principles

used throughout the remainder of this thesis.

3.1 Lessons learned from previous attempts

In the past, several attempts were made to formalize the internal systems architecture

of Tam Tam. For each attempt the key characteristics and objectives are listed, the

reached goals are elaborated on and the reason for the (partial) failure is identified.

New internal portal (2006/2007)

In 2006, the realization that not everything could be stored in one central database

caused the division of concerns into separate applications and databases. Furthermore,

new functionality was added to the intranet by creating a new internal portal, adding a

customer project environment and starting to use

SharePoint for the diverse portals. The ultimate

goal of this project was to create a single point of

access for employees. The failed aspect in this

project is that the focus was mainly on adding new

functionality in a quick and effective way, which

succeeded gracefully (#3).

Project for integrating the CRM system with the central database and customer access

point (2008)

With this new portal, more and more components were introduced. The next step after

this introduction is to couple the components in such a way they can cooperate. This was

performed in an outsourced project with the main goals being: 1) creating a flow from

the Customer Relationship Management system to

the central database to synchronize the

information and 2) enabling customers to log into

and use the projects SharePoint environment.

During this project, an implicit choice was made to

use known technologies to implement the

interconnections between components. Although an

M

#3 Focus on addition of
components limits the
possibility to carry out a
thorough architectural revision

#4 Limited knowledge and time
prevents a complete
architectural overhaul

18 | C h a p t e r 3 : A p p r o a c h

Enterprise Service Bus such as BizTalk was an option, limited knowledge and time

decreased the feasibility of such an attempt (#4). This attempt resulted in the current

architecture that, as is explained in section 2.2, contains a minimal Enterprise Service

Bus version and a first step of data abstraction in the form of several web services.

Redesign portal architecture (2009)

The next step was to rethink the locations where

applications are hosted. The goal of this project was

to clarify which application was running where and

to straighten these locations. This could be reached

by carrying out the created design, which indicates

what (category of) applications should be running

on what server. As can be seen from the current

architecture, this design was not carried out; applications are still freely distributed over

available servers. The reason for this was plausibly the complexity of the architecture or

the limited resources available for internal projects to correctly relocate applications

with all their runtime environment requirements (#5).

BizTalk attempts (BizTalk 2000, 2002, 2004 & 2006)

Several projects were focused on introducing

Microsoft BizTalk for the internal systems

architecture. A lot of different versions were

attempted to get up and running. Each of these

versions provided new and improved functionality,

but the main reason that BizTalk kept coming back

was the partnership of Tam Tam with Microsoft.

Several of these attempts failed at the implementation stage, others while configuring

and still others did get simple file-handling processes working but that was their final

stage. The attempt that was most successful was carried out in 2007 and got as far as to

have implemented several processes in BizTalk 2004. These processes never found their

way into the production environment however, because the developers kept running into

problems (#6).

3.2 Key principles

After having listed what the previous attempts were and what posed as the key factors

causing the limited success rate, the next step is to learn from those to make the

common goals more easily reachable. The idea of this section is to derive principles from

the listed insights of previous attempts and to supplement those with other defined key

values that should force the approach to be successful.

Focus on understanding the environment

Before being able to improve a situation, the complexity of the design process should be

reduced by a fair amount by making every aspect of the current situation clear. Due to

this, the amount of effort put into gaining an understanding of the current situation was

#5 Complexity and limited
resources cause the focus on
projects that do not directly
influence income to fade away

#6 Technology push limits the
possibility to use a different
product, which might form a
better fit, to be used

| 19

a major part in the beginning of the project, with the details discussed in Chapter

2:‟Current Situation‟ as a result.

Focus on organizing the current architecture, not adding functionality per se

The key idea behind starting this project was to take the systems architecture to the

next level. Part of this idea entails that the creation of insight into what is in place is far

more important than the addition of extra functionality at the operations level. At a

higher level, extra functionality should be added in the form of flexibility,

maintainability and manageability as stated in section 2.4.

Carte blanche

Before the project started, a carte blanche was given which reduces the consequences of

a limited choice for a specific vendor of technology or a specific way of working in

pursuing the objectives. This freedom of choice adds the possibility to find the „best-fit‟

architecture for Tam Tam without being forced to focus on one specific area.

Exit strategy

To create the biggest possible support from all

stakeholders involved with the architecture, much

attention is given to exit strategies (#7). Resulting

from this attention is that the transition from the

current to the future architecture should be

possible to perform at the last possible moment

while implementing. While performing the

transition in such fashion, the chances of the end

users noticing any change should slim to none.

Hands-on driven design

The nature of creating a theoretically backed up

design may cause incompatibilities between theory

and practice. To overcome this risk, an approach is

adopted to design the future architecture in a

hands-on driven fashion. By continuously creating

proof of concepts for key decision points, the

feasibility to link theory to practice should never

decrease (#8).

Evaluation in iterations

The nature of this project is to reach an end state in which several improvements have

been reached. Due to the fact that the Tam Tam way of working is based on Agile

Scrum3, such an approach is used here too. It can be envisioned as rowing a boat

3 http://en.wikipedia.org/wiki/Scrum_(development)

#7 Fallback policies should be
available at all time, hereby
limiting the amount of points of
no return and conversely
introducing exit strategies

#8 Proof of concept driven
design helps making feasible
designs by continuously
implementing and testing the
designed elements

20 | C h a p t e r 3 : A p p r o a c h

towards a lighthouse, the goal is clear but the way of reaching there should continuously

be adapted to the wind and water flow. By iterating with evaluation sessions, the project

keeps focused on the set goals.

Design for change

Key objective for this project is to move to an architectural situation that is much less

rigid. This entails that the architecture maintainers should be capable of achieving

changes to the architecture in very limited time. To enforce this, the first step is to focus

the design on the ability to change easily.

Part III:

Theory,

designing a high-level architecture

Server

ServerServer

Users

Service Bus

Architecture

User

User

User

Server

ServerServer

Users

Service Bus

Design Documentation

MethodologyContribution
to Science

Contribution
to Tam Tam

Figure 6: What does the theory say about the architecture

22 | C h a p t e r 4 : E v a l u a t i o n o f a r c h i t e c t u r e s

Chapter 4: Evaluation of architectures

erbalization of the current architecture presents the foundation for further work

in this thesis; the next step is to take said architecture to the „next level‟. Before

being able to do so, a crisp definition of how the „next level‟ can be assessed

should be defined. That definition is performed in this chapter by firstly defining a

methodology for architectural evaluation. Secondly, the methodology is adapted to fit in

the Tam Tam context. Finally, the first evaluation iteration is executed on the current

architecture to provide a reference point for

comparing the advantages and disadvantages of

possible future architectures. This first evaluation

iteration is followed by several other iterations at

key decision points in the subsequent chapters, the

results of which can be found in Appendix E:

„Evaluation iterations‟.

4.1 Architectural Evaluation Methodology

This section elaborates on the methodology of selecting means and metrics to be used for

comparing the current architecture to possible future architectures. The goal is to define

several means and metrics to evaluate at several instants throughout the project. The

first occurrence of an evaluation instance is before designing the new architecture. The

underlying argumentation for this is that the way of evaluating architectures can also

pose as „design goals‟ that need to be kept in mind. As (Assmann & Engels, 2008) put it,

a model should be crafted that allows the architect to evaluate whether the evolution of

the architecture still conforms to the desired style or not. The second occurrence of an

evaluation instance is between the selection of an architectural style and the design of

the new architecture. The third occurrence of an evaluation instance is between

designing and implementing the architecture. This is because early in the process,

changes are still relatively cheap to make in contrast to changes to be made after the

implementation of the architecture is started (#9). The fourth occurrence is after the

first few implementation iterations by checking if the implementation is still on track to

achieving the desired improvements. Furthermore, this last iteration is to thoroughly

evaluate whether or not the implementation should proceed.

4.1.1 Methodology

The main goal of this paragraph is to derive a methodology for selecting means and

metrics for evaluating architectures based on the available literature. As stated in

(Lindvall, Tvedt, & Costa, 2003), the first thing that becomes apparent is that means

and metrics are only effective when they are selected based on the context in which they

have to be used. This means that the means and metrics will have to be defined for the

Tam Tam context specifically. With this perspective as a starting point the next step is

to define practices to be performed in the evaluation steps.

V

#9 After decisions have been
made it is still necessary to re-
assess whether or not the made
decisions were correct

| 23

In the literature two main classes of software architecture evaluation techniques can be

found: 1) questioning, based on qualitative questions and 2) measuring, based on

quantitative measurements (Dobrica & Niemel, 2002) (Abowd, Bass, Clements, Kazman,

& Northrop, 1997). The questioning part is present a lot in the literature which can be

deduced from the amount of research into scenario-based evaluation methodologies

(Dobrica & Niemel, 2002) and (Babar, Zhu, & Jeffery, 2004). The reason behind this, as

stated in (Kazman, Abowd, Bass, & Clements, 1996), can be found in the same

reasoning as the need to define a specific perspective: it is very hard to find a „universal‟

approach for evaluation, the only approaches that give a good image of architectural

quality are derived from the specific context in which they have to be used.

Following this reasoning, the approach presented in (Lung & Kalaichelvan, 2000) is

adopted. This approach stems from the „goal->question->metric paradigm‟ presented in

(Basili, Caldiera, & Rombach, 1994) and allows one to identify evaluation means in

three steps by moving from objectives through scenarios to individual metrics. The first

step to be taken is to derive the objectives that are in place from the defined

requirements. These posed requirements can be attributed to two main sources because

the transition to a Service Oriented Architecture bridges the gap between the technology

layer and business layer (Assmann & Engels, 2008). This means that opinions and

requirements from those two fields are represented in the list of objectives.

From the described objectives several scenarios are to be defined, these scenarios

represent plausible future situations and are explicitly not desirable future situations.

Defined scenarios can fall into three categories: use-case, growth and exploratory

(Kazman, Klein, & Clements, 2000). These are typical instances based on: standard use

of the system, anticipated maintenance and extreme changes to the system. The

approach used here is that scenarios should be chosen without looking at the possibility

of occurring, thus presenting a more complete overview and including the black-swan

events (Lassing, Rijsenbrij, & van Vliet, 1999).

The last step of the leading triple is to identify metrics from the separate scenarios. This

is done by deriving what the success or failure factors are for the specific scenarios. Key

idea to keep in mind while performing this is that values for the metrics should be easily

retrievable. This retrieval can be performed by either using quantitative metrics, or by

using more qualitative metrics that can be valued by expert-based assessment. This

expert-based assessment serves another goal by gaining expert opinions of the different

architectures. Although the experts will most likely use the same perspective, the fact

that they are not deeply informed in the matter allows them to look at the architectures

from a larger distance.

4.2 Architectural Evaluation Means and Metrics

This section carries out the architecture evaluation methodology to define the scenarios

and metrics to be used in the evaluation iterations more precisely. The following

paragraphs describe the output of all four steps, 1) defining a perspective, 2) defining

objectives, 3) deriving scenarios, and 4) selecting metrics.

24 | C h a p t e r 4 : E v a l u a t i o n o f a r c h i t e c t u r e s

Table 1: Evaluation objectives

Name Identifier

Decrease documentation deficiencies A

Increase knowledge about process

orchestration

B

Increase manageability of legacy systems C

Decrease amount of coupling D

Create more insight E

Create an independent situation F

Increase maintainability G

Harmonize the use of technology H

4.2.1 Defining a perspective

While defining the perspective to be used in the evaluation, the starting point is Tam

Tam and their use of the architecture being evaluated. The first thing that comes

forward is that the architectures in the scope of this project are composed of the back-

end parts of a lot of components. From this focus is derived that use-case scenarios of

users using the components are of very little use here. The focal point should be the

application developers and system administrators perspective because these are the

users whose interest is at stake here. Typical interests are thus the addition and

removal of components, updating functionality of components, managing the server

locations these applications run on and maintaining the interactions in place between

diverse components.

4.2.2 Defining objectives

The second step that needs to be carried out is to identify the relevant objectives from

the defined viewpoint. The main source of these objectives is found in the requirements

and statements of project

necessity listed in section

2.4. Table 1 states all

objectives to be used in the

evaluation.

4.2.3 Deriving scenarios

From the defined objectives,

scenarios are derived by

investigating what actions

are influenced by a change in

each of the objectives. An

example of this is the „Decrease documentation deficiencies‟ objective. When a new

application needs to be added to the architecture in place, the developer should

investigate how the new application should interact with the components currently in

place. This can be a very cumbersome task when little documentation is available, but in

the case the documentation deficiency is diminished it will become a task that can be

executed more easily. The derived scenarios are elaborated on one-by-one, indicating the

objectives they stem from and providing a short description about what happens in the

specific scenarios.

Scenario 1: Addition of an extra component (objective: A)

Every once in a while a new functionality needs to be added to the architecture in place.

This can be the result of either completely new functionalities or the branching of

component functionalities to more dedicated solutions. This scenario deals specifically

with the part of adding new functionality, the part of removing functionality from other

components is represented in another scenario. Key stumbling point is that the

developer should know how the new component should interact with existing

components and what processes it is involved with.

| 25

Scenario 2: Moving a component to another location (objectives: A & D)

The location of components is fairly static in the current architecture, but it might occur

that a component should be moved to another location. When this occurs, all coupled

components should be changed to reconnect to the component on the new location.

Scenario 3: Extension / withdrawing functionality of a component (objective: A)

A very common activity in the history of the architecture is splitting components into

separate dedicated components. When this happens, several elements need to be

adapted. First, the incoming interactions should be retrieved. Secondly, it should be

made clear what component fulfills what functionality. These tasks can be completed

more easily when the documentation is up-to-date.

Scenario 4: Carrying out maintenance on a component (objectives: E & G)

As with every man-crafted element, the running components need to be maintained. The

main problem with this is that if another developer than the creator performs the

maintenance work, a lot of effort is put into understanding the component. Questions

that need to be asked here are for example „where is the source code?‟, „on what place

does the live component run?‟ and „how does the component work (together with other

components)?‟

Scenario 5: Change the functionality of a component (objectives: D, F & H)

When the functionality of a certain component needs to be changed, other components

might have to be changed as well due to the ripple effect the first change initiates. The

focal point of this scenario is this ripple effect, where scenarios 3 and 4 focus on

adaptions to single component in focus.

Scenario 6: A process cannot be executed anymore (objectives: B & F)

Although servers usually have a very long uptime, it might occur that a server goes

offline for a while. This can have the effect that a certain process cannot be carried out

anymore. A way to fix this is by finding out which step of the process stopped

functioning correctly and fix that part. To be able to do this, there should be knowledge

about which components are used by what processes. Another key element that should

be in place is that no process transactions get lost due to the server crash.

Scenario 7: Replace a component (objectives: C, E & H)

When a component is replaced by another implementation, it should be clear what other

components are dependent on the old component that should be changed as well.

Furthermore, the exposed functionality the new component provides should match that

of the old version.

Scenario 8: A certain process needs to be extended (objectives: A & E)

When the functionality of a certain process needs to be extended, one (or more)

components should inherit the new functionality. To do so, the developer should have a

26 | C h a p t e r 4 : E v a l u a t i o n o f a r c h i t e c t u r e s

clear insight into what components perform which functions. Next to the amount of

cohesion within components, the available documentation presents a key source of

information.

Scenario 9: A server is going offline (objective: E)

Servers do not have an eternal lifetime so they have to be replaced at some point in

time. Another event that can occur is a cut in the costs of the server park. Both actions

can only be executed when some level of certainty is achieved that no critical

components are running on those servers. In other words, a server can only be shut

down when all components that ran on it are restarted at other locations.

4.2.4 Selecting metrics

The fourth and last step is to identify the metrics to be used from the identified

scenarios. Table 2 presents all metrics to be used, combined with the scenarios that lie

at the foundation for specifying them. The last column in the table represents the

manner these metrics are measured while evaluating. The first four metrics are mainly

calculated by counting and the last six are retrieved by measuring the time needed to

perform the separate actions (#10). Values for most

of the metrics for the current architecture can be

measured directly, values for possible future

architectures are a bit harder to attain. The values

for the future architectures are attained by carrying

out careful desk research.

Table 2: Evaluation metrics

Metric Used for Scenarios Manner of measuring

Number of interaction

schemes

Sc1;Sc7; Source-code inspection &

design guideline

Number of hardcoded

connection strings

Sc2; Source-code inspection &

design guideline

Number of incoming method

calls per component

Sc3;Sc5;Sc7; Source-code inspection &

interaction contracts

Number of components with

related functionality

(duplication)

Sc3;Sc8; Architectural inspection

Speed of source code retrieval Sc4; Usage of documentation

Speed of live location

retrieval

Sc4;Sc9; Usage of documentation

Speed of understanding

application interactions

Sc4; Usage of component

choreography

Speed of understanding

process orchestrations

Sc6;Sc8; Usage of process orchestration

Speed of checking component

status

Sc6;Sc7; Manual process & design

guideline

Speed of understanding

component purposes

Sc8; Usage of documentation &

usage of process orchestration

#10 Increased values for
metrics might also be
advantageous although this
change might feel unnatural

| 27

Chapter 5: Choice for architectural

style

fter the current architecture and way of comparing architectures have been laid

out, the first step towards the design is to figure out the surroundings within

which the design can be formed. This is done by deciding on the architectural

style that fits Tam Tam best. The first step in this process is to define a framework for

comparing the different possible styles. The second section uses the listing of all

available options in Appendix B: „EAI styles‟ as an input for defining means for

comparing the different styles by selecting key differentiation continua. The third step,

after the continua are selected, is to retrieve values for all different possible

architectural styles from the literature. These values are used to make a well-founded

decision. The last step is to evaluate and verify the chosen theoretical style in the second

evaluation iteration presented in Appendix E: „Evaluation iterations‟.

5.1 Architectural style comparison framework

The decision for an architectural style lays the foundation for the design by providing a

domain within which some more specific decisions are to be made. Despite the fact that

all architectural styles can be used to simulate every other style, a decision for one has

to be made to provide a starting point that bridges the largest possible gap between the

current and a possible future situation. To make a well-founded decision, a comparison

framework was used on which this section elaborates.

Although this project started from a wish to go „service oriented‟ in the form of creating a

Service Oriented Architecture, the given carte blanche facilitated a helicopter view with

regard to finding out which architectural style suits Tam Tam best. To make this

decision, the first step is to investigate all possible architectural styles and after that

diminish the possibilities by creating trade-offs. This trade-offs represent continua onto

which all architectural styles can be mapped. A value is attached to each architectural

style so that style can be mapped on the continuum. When a specific architectural style

is mapped on all identified continua, the result is a representing vector for that specific

architectural style.

After a representing vector is identified for all architectural styles and the current

situation, a complete picture is sketched of what possible changes can be reached by

choosing a specific style. With this complete picture, a

decision can be made for a certain style that fits Tam

Tam best. This is done by interviewing the

stakeholders to ask their opinions regarding the place

the future architecture should have on the different

trade-off continua (#11). The opinions of the different

stakeholders are averaged into one vector defining the

desired situation.

A

#11 Obscurity of relations
between trade-offs and possible
future architectural styles
prevents bias

28 | C h a p t e r 5 : C h o i c e f o r a r c h i t e c t u r a l s t y l e

With the sets of vectors available, the distance between the desired vector and all

possible architectural styles can be calculated. The result of these calculations identifies

the architectural style that presents the best fit for Tam Tam. The best architectural

style is verified by checking whether the differences between that style and the desired

situation are manageable.

5.2 Decision trade-offs

To make a choice for one of the specific forms of future architectures listed in Appendix

B: „EAI styles‟, several decision trade-offs have been crafted that aid in comparing the

possible architectural styles. Each identified trade-off is discussed briefly and an

indication is given how this trade-off was defined.

5.2.1 Centralized versus decentralized process knowledge

There are basically two types of organizing knowledge about process orchestrations. The

first is storing all knowledge in one place by making the entity in which this information

is stored responsible for carrying out the processes. In this type, the application logic is

separated from the integration logic (de Leusse, Periorellis, & Watson, 2007). The

Message Oriented Middleware and Enterprise Service Bus approaches both incorporate

a similar mechanism. The other type is by storing the knowledge in a decentralized

fashion by letting components coordinate the process orchestrations themselves. The

Service Oriented Architecture and point-to-point topology are examples of this second

type.

Rationale: This trade-off is included because the requirements state that insight should

be created into the process orchestration and the consequence of a decision on this trade-

off facilitates this insight for a large part.

Current situation: Currently the process knowledge is decentralized; components in

which processes originate mostly have the orchestration knowledge hidden within them.

5.2.2 Direct connections versus Hub and spoke technique

This twofold is centered on the way of connecting components together. The first is to

make ad-hoc connections like those done in the point-to-point and Service Oriented

Architecture styles. The second is to create a central entity that handles all connections

in a „man in the middle‟ fashion.

Rationale: Two of the main requirements state that the amount of coupling should be

decreased and the use of technology should be harmonized. The decision in this trade-off

presents a starting point to think about how the interactions should work exactly.

Current situation: In the current architecture a hybrid form is adopted. Most

connections are direct connections, but the ones through the CustomerPortal Web

Service are based on the hub and spoke technique.

| 29

5.2.3 Active versus passive component integration

To inform other components that some functions are requested two different forms are

supported. The first is the passive approach where the components just wait until they

are needed and some function is called on them. The second is the active approach, in

which the component monitors a certain location to see if something has to be performed

or not. The first approach can be used in any topology, but the second approach has the

need for a service bus on which the component can hook in to.

Rationale: From the requirement of creating an independent situation this trade-off

comes forward. To reduce the knowledge about other components an active component

integration form could be used.

Current situation: In the current architecture, the passive approach is used almost

everywhere. The only exception is the queuing of the SharePoint operations in which the

Queue Runner polls the database whether new operations need to be executed.

5.2.4 Synchronous versus Asynchronous communication

The trade-off that is presented here are synchronous communication where the results

are directly returned to the calling component versus asynchronous communication in

which the calling component does not know when the desired functionality is performed.

Event-based architectures and Enterprise Service Busses are per definition

asynchronous because with both a message is send to a central entity, after which the

calling component should just wait for results. Architectures without a message queue

use a synchronous form of communication because otherwise method calls will be lost.

Rationale: Asynchronous communication can always be implemented by adding a

message queue to a certain component, but when there is a need for synchronous

communication the choice of architectures is limited.

Current situation: A lot of components are interacting in a synchronous way, the only

exception is with the CustomerPortal SharePoint operations in which the action is

added to the queue in a synchronous way, but the execution thereof is performed

asynchronously.

5.2.5 Centralized versus decentralized component location knowledge

This trade-off deals with the awareness of component locations. The first form is that all

knowledge is centralized. Calling components can query this centralized knowledge base

to find out about other components‟ locations similar to the Service Oriented

Architecture registry. The second form is to decentralize the location knowledge by

allowing all components to have the knowledge about the locations of components to

which call-outs are performed.

Rationale: From the viewpoint of the requirements to create an independent situation

and decrease coupling this trade-off was created. By centralizing the location knowledge,

the location coupling is decreased by a large amount.

30 | C h a p t e r 5 : C h o i c e f o r a r c h i t e c t u r a l s t y l e

Current situation: Currently, each component contains a hardcoded connection string

for all called components.

5.2.6 Open formats versus Limited to standards

The last trade-off is based on the restriction to what programming languages are used in

the architecture. The first option is to restrict the components to use the same

implementation language, as is done in the middleware approach. The second option is

to leave the choice for future components open. This is done in the Service Oriented

Architecture and Enterprise Service Bus approaches, due to the use of a standard

interface description language the implementation form does not matter.

Rationale: Although Tam Tam is a Microsoft licensed company, the given carte blanche

allows other formats if that creates better possibilities.

Current situation: Currently, components are created using different programming

languages

5.3 Architectural style decision

To make a decision between the several different forms of Enterprise Application

Integration, a score is given to each form and trade-off combination. These scores range

from 1 to 5 where a 1 represents the left side of the trade-off continuum and a 5

represents the right side. Values 2 and 4 denote that in principle one side is desired but

exceptions may occur and value 3 means that it does not matter, both are equally likely.

The values for the different types are filled in through literature research and the values

for the current situation are retrieved by analyzing the current architecture description.

Table 3 shows the completely filled in table to be used to form a decision. Once all these

values are known, several architects were interviewed to derive the desired

functionalities in the future architecture with respect to the individual trade-offs. The

values of all architects are merged by averaging the values into a single vector of desired

values. This merging was possible because the values for the last five trade-offs did not

conflict at a single point. The value for the first trade-off was harder to average because

there were two groups of opinions; the first was in favor of keeping the process logic

decentralized and the second was strongly in favor of creating a centralized option. This

issue was settled by illustrating the advantages and disadvantages of each choice more

sharply resulting in a consensus that „it depends on the requirements‟. After consulting

the requirements again the most fitting solution for Tam Tam is to centralize the

process logic.

| 31

Table 3: Trade-off/EAI style valuation

trade-off P
o

in
t-

to
-P

o
in

t

M
id

d
le

w
ar

e
-

Tr
an

sa
ct

io
n

al

M
id

d
le

w
ar

e
-

M
es

sa
ge

 o
ri

en
te

d

M
id

d
le

w
ar

e
-

P
ro

ce
d

u
ra

l

M
id

d
le

w
ar

e
-

O
b

je
ct

 a
n

d
 c

o
m

p
o

n
en

t

M
id

d
le

w
ar

e
-

D
at

a-
ac

ce
ss

Ev
en

t-
d

ri
ve

n

Se
rv

ic
e

O
ri

en
te

d
 A

rc
h

it
e

ct
u

re

En
te

rp
ri

se
 S

er
vi

ce
 B

u
s

C
u

rr
en

t

Desired

centralized versus
decentralized process
knowledge

5 1 5 5 5 3 5 5 1 5 1.67

direct connections versus
hub and spoke technique

1 5 5 1 1 4 5 1 5 2 4.00

active versus passive
component integration

5 5 4 5 5 5 1 5 3 4 4.33

synchronous versus
Asynchronous
communication

3 1 5 1 1 3 5 3 5 2 3.67

centralized versus
decentralized component
location knowledge

5 1 3 5 1 3 3 1 1 5 1.33

open formats versus limited
to standards

5 5 1 5 1 4 5 1 1 3 1.67

The next step is to match an architectural type to the identified desired values. Table 4

shows a similar table as the one in Table 3 but this table indicates for each type and

trade-off pair the absolute distance from the desired values. From the table can be

deducted that the Enterprise Service Bus is most similar to the desired situation –with

respect to the selected trade-offs- due to the smallest sum of differences. Although it is

possible to choose for one certain architectural type, another possibility is to combine

ideas of several types (Microsoft Patterns & Practices Team, 2009). Due to the nature of

an ESB solution, a combination of ideas is inherent, but careful thought should be given

to the possibility of allowing support for transactions.

32 | C h a p t e r 5 : C h o i c e f o r a r c h i t e c t u r a l s t y l e

Table 4: Trade-off/EAI style difference vectors

trade-off P
o

in
t-

to
-P

o
in

t

M
id

d
le

w
ar

e
-

Tr
an

sa
ct

io
n

al

M
id

d
le

w
ar

e
-

M
es

sa
ge

 o
ri

en
te

d

M
id

d
le

w
ar

e
-

P
ro

ce
d

u
ra

l

M
id

d
le

w
ar

e
-

O
b

je
ct

 a
n

d
 c

o
m

p
o

n
en

t

M
id

d
le

w
ar

e
-

D
at

a-
ac

ce
ss

Ev
en

t-
d

ri
ve

n

Se
rv

ic
e

O
ri

en
te

d
 A

rc
h

it
e

ct
u

re

En
te

rp
ri

se
 S

er
vi

ce
 B

u
s

C
u

rr
en

t

centralized versus
decentralized process
knowledge

3.33 0.67 3.33 3.33 3.33 1.33 3.33 3.33 0.67 3.33

direct connections
versus hub and spoke
technique

3.00 1.00 1.00 3.00 3.00 0.00 1.00 3.00 1.00 2.00

active versus passive
component
integration

0.67 0.67 0.33 0.67 0.67 0.67 3.33 0.67 1.33 0.33

synchronous versus
Asynchronous
communication

0.67 2.67 1.33 2.67 2.67 0.67 1.33 0.67 1.33 1.67

centralized versus
decentralized
component location
knowledge

3.67 0.33 1.67 3.67 0.33 1.67 1.67 0.33 0.33 3.67

open formats versus
limited to standards

3.33 3.33 0.67 3.33 0.67 2.33 3.33 0.67 0.67 1.33

difference desired
and EAI type

14.67 8.67 8.33 16.67 10.67 6.67 14.00 8.67 5.33 12.33

Although an Enterprise Service Bus fits Tam Tam

best, there are quite some differences between the

desired situation and a theoretical ESB causing the

difference to be unequal to zero (#12). The

differences between the desired situation and an

ESB are indicated in Table 5, which is reflected upon

to derive if an ESB is the true best fit.

1. Centralized versus decentralized process knowledge does not differ significantly

#12 One centralized entity
brings advantages, but is not
free of disadvantages because
the desires might differ (a little)
from the possibilities

| 33

Table 5: Difference between ESB and desired

situation

Trade-off En
te

rp
ri

se
 S

er
vi

ce
 B

u
s

D
e

si
re

d

centralized versus decentralized
process knowledge

1 1.67

direct connections versus hub and
spoke technique

5 4.00

active versus passive component
integration

3 4.33

synchronous versus asynchronous
communication

5 3.67

centralized versus decentralized
component location knowledge

1 1.33

open formats versus limited to
standards

1 1.67

2. Direct connections versus hub

and spoke technique is very important

because an ESB only offers hub and

spoke mechanisms. For this reason the

difference should be analyzed with

respect to the Tam Tam situation. After

indicating this difference to the

architects the desire for a central point

outweighed this difference.

3. Active versus passive component

integration is not significant either

because the ESB can fit all desires on

that trade-off

4. Synchronous versus

asynchronous communication presents

a highly significant difference. Although

an ESB can offer synchronous

communication, it does not offer that

functionality in real time because time-

outs are introduced when elements fail.

This means that very close attention

should be given to implementing

processes.

5. Centralized versus decentralized component location knowledge does not present

a significant difference.

6. Open formats versus limited to standards also does not present a significant

difference.

34 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Chapter 6: Future architecture design

specifics

ow the surroundings within which the design should be created is in place, in

the form of an Enterprise Service Bus, the next step is to decide on specific

design decisions. This is performed by first of all retrieving design guidelines

and principles from the literature in addition to the general approach defined earlier in

Chapter 3:‟Approach‟. With these rules in mind, the next step is to elaborate on the

general idea of the design, which provides a reference for further decisions on the

technical part of the design. Not only the technique in place should change, but the

organization should also adapt to be able to use the new architecture optimally. This is

performed by scrutinizing the necessary IT governance rules. The penultimate step

elaborates on the transition towards the designed architecture because it is infeasible to

just replace the existing architecture with a newly implemented version. The step

following these activities is the third evaluation iteration presented in Appendix E:

„Evaluation iterations‟ which indicates to what extent the designed architecture

improves the current situation.

6.1 Design guidelines and principles

Before rushing into the design, some principles and lessons learned are retrieved from

the literature about designing new architectures. These guidelines and principles are

used to guide the design process in addition to the elements from the approach

elaborated on in section 3.2.

Much literature is devoted to a Meta level of architectural design, (Janssen, Gortmaker,

& Wagenaar, 2006), (Ross, 2003), (Hazra, 2002) & (Janssen & van Veenstra, 2005) all

state that it is not an option to just design a new architecture and replace the old one

with it. The insight these authors share is that an architecture designer should design a

roadmap for the transition towards the new architecture too. This transition can take

the architecture through several stages, where each author defines another set. A

decision is made here to follow the four staged approach presented in (Ross, 2003): 1)

application silos, 2) standardized technology, 3) rationalized data and 4) modular. This

designed roadmap should satisfy several requirements. (Deepview case study, 2010)

states the roadmap should be possible to implement incrementally, should clearly state

milestones for developing attributes and should facilitate the co-existence plus non-

interference of new attributes with legacy attributes.

Next to guidelines for designing the way of implementing the new architecture, some

principles and lessons learned are retrieved from the literature. (Microsoft Patterns &

Practices Team, 2009) states that the new architecture should be designed for change

instead of designed to last, models and visualizations should be used as communication

and collaboration tools and key engineering decisions should be identified to share with

stakeholders. (Ross, 2003) adds several more guidelines to this list by stating that the

N

| 35

focus should be on key business processes, no developing stage should be skipped, the

architecture should be kept in the improvement loop and the architecture capability

should be kept in-house to decrease the costs of maintenance. Throughout the design of

services, focus should be on decreased coupling, increased cohesion and a fitting

granularity with regard to how much functionality is exposed (Papazoglou & van den

Heuvel, 2006b).

6.2 General idea of design

With the stated different approach and the identified guidelines and principles from the

literature in mind, the next step is to come up with a suitable design for the internal

systems architecture for future use within Tam Tam. The first step in this process is to

scaffold the future architecture by sketching the general idea of the design. To perform

this, first of all several questions are answered and after that the answers to those are

aggregated into design decisions.

6.2.1 Questions to be answered

To initiate the design process of the future Enterprise Service Bus architecture at a

rapid pace, several key questions were posed that help make decisions. These questions

were derived from the differences between the current architecture and the Enterprise

Service Bus architectural style. By answering the stated questions a scaffold for the

design is created, causing the remainder of the work to be „filling in the gaps‟ and trying

to create prototypes to link the theoretical design to feasible implementations. The

origins of the answers lie partly in the architectural style and partly in existing

implementations of Enterprise Service Busses.

How are functionalities requested?

The first question is focused around the way of requesting functionalities from other

components. The chosen architectural style gives a direction for the answer because of

the service orientation. Resulting from this is that functionalities should lie in

functionally cohesive entities. The requests of these functionalities are to be executed by

the service bus. Several existing implementations offer an orchestration engine

(Wikipedia Community, Orchestration (Computing), 2010) where the main technology

used is BPEL (Alves, et al., 2007)

Which entity knows what components exist where?

In the current architecture, the information regarding the location of a specific

component is stored in all locations in which some functionality of said component is

requested. In the new situation the locations are to be stored in the service bus. Because

the orchestrations are the only place in which direct connections should be used, a

logical place to store the locations would be either in the orchestration engine or in a

separate registry (i.e. an UDDI server (Wikipedia Community, Universal Description

Discovery and Integration, 2010)) attached to the service bus.

36 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

How do components know their functionality is needed?

The third question is about how components know their functionality is longed for. From

the architects‟ requests is learned that passive services are the way to go within Tam

Tam. To allow both synchronous and asynchronous messaging, instances of the process

orchestrations are to be created when they are called. This creates an implicit queuing

mechanism when combined with quality of service rules.

Where lays the process logic knowledge?

The answer to this question is already implicitly given in the answer for the first

question, with the choice for an orchestration engine. The process orchestrations should

contain the logic currently present in the separate components. This logic is to be

invoked by publishing the created orchestrations as individual services.

Which entity manages the component statuses?

To be sure the orchestrations work correctly, all called components must be functioning.

For the calling applications, the handling of broken components or services should not

be an issue. The first mechanism that is designed into the service bus is a „ping‟

orchestration which tests all known services for their status. This does not remove all

risks of failing services, but does start sounding alarm bells when something is wrong.

To overcome all the risks of failing services, quality of service settings are to be defined

that –for example– retry calling some functionality when things fail. In the event the set

number of retries has passed, a Tam Tam employee needs to check the log files to carry

out the requested operation manually.

How are processes monitored?

Monitoring the processes means indicating which processes can be carried out and

which cannot. This can be performed by using the management console of a chosen

service bus implementation. This console should indicate what instances of

orchestrations are currently pending or have failed, giving the administrator the insight

into which services or components failed and the ability to restart the orchestrations.

6.2.2 Division of areas of focus

From the answers to the posed questions, several areas of focus have been defined.

Figure 7 shows the interactions in the current situation at a conceptual level. In this

situation, the process logic and presentation are merged into the applications and the

data on which they act is reachable via the network.

| 37

Logic &
Presentation

Data network

Figure 7: Current situation areas of focus

The idea for the new situation is depicted in Figure 8, the main elements that are

changed are: 1) the relocation of the process logic to the service bus, 2) the manner in

which functionality is invoked and 3) the way data is exposed to the presentation layer.

This new division of areas of focus allows a „two level programming‟ approach in which

programmers create the offered functionality and non-programmers connect the offered

functionality together by creating the process logic. The numbers in the figure represent

the sequence of activities that usually take place in processes. The first step (1) is for the

presentation layer to request data to be presented to the user. This data is adapted by

the user and pushed to the logic in the service bus (2). This logic takes care of updating

the data in the right places with or without a delay (3).

Enterprise Service Bus

Data

Logic

Presentation
1

2

3

Figure 8: Designed situation areas of focus

6.2.3 Abstraction layers

The designed architecture can be explained by elaborating on several levels of

abstraction. The key design decisions of all layers shown in Figure 9 are elaborated on in

this paragraph from the bottom to the top.

38 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Service Service Service Service

Process Process

ApplicationApplicationApplication

Services layer

Binding layer

Process layer

Service
connection layer

Application layer

Figure 9: Designed architecture abstraction layers

Services layer

The bottom layer is composed of services that offer

cohesively aggregated functionalities. The design

for this layer is made by creating a logical division

of functionalities into categories (#13). These

categories are translated into separate services and

offer highly cohesive functions. During

implementation, the specific code that should be

brought together can be gathered from the

functionality requesting applications and web services already in place.

Service connection layer

To be able to create an abstraction from the

provided services, the interfaces of the methods

that the services offer are expressed in the form of

WSDL documents (Chinnici, Moreau, Ryman, &

Weerawarana, 2007). The use of this standard for

defining interfaces creates a standardized way for

component interaction while, at the same time, not

jeopardizing the choice for a specific form of implementation. Furthermore, access

management is centralized too by the introduction of the abstraction layer (#14).

Process layer

The process logic is moved from the specific components into re-usable process

orchestrations in this layer. Two main functionalities are found in this layer: the

#13 Cohesive services allow
splitting up big databases in
smaller dedicated versions in
an easier fashion

#14 Security for databases is
improved when dedicated
services are introduced as the
only place where a connection
to databases is possible

| 39

sequential (or parallel in some cases) execution of steps that form the processes and the

knowledge about what services provide which functionality at what locations. Another

functionality of this layer is the quality of service aspect on two fronts. The first front is

towards the bottom of Figure 9 by setting values for what to do in the case services fail

(to respond). The second front is towards the top of the figure to indicate what should

happen when multiple applications are invoking the same orchestration at the same

time. Decisions for both fronts are usually linked to each other. For example, if a

synchronous process needs to be performed, the incoming quality of service values can

regulate the instantiation where in other cases the outgoing quality of values are to

regulate the sequence of executing.

Binding layer

This is the second layer that acts as an

implementation abstraction layer. The

orchestrations in the process layer are published to

applications as WSDL documents again. This

allows the details of the implementation to be

changed and enables the use of versioning of

processes by keeping the old orchestrations in place

(#15).

Application layer

The top layer of the figure represents the (stripped down versions of) applications in

place within Tam Tam for users to interact with. The interactions these applications

have with the service bus are twofold. First of all, the data is retrieved from databases

through the service bus and secondly the updated or new data is stored by calling the

orchestrations in place within the service bus.

6.3 Technical design

After the coarse grained idea of the future architecture has been defined, the next step is

to fill in the specifics. The approach followed here is threefold, firstly all processes are

categorized to identify which (parts of) processes should be designed how. Secondly the

manner of binding processes is laid out and the third step was to decide on key design

elements for the future architecture listed in Appendix C: „Key design elements‟.

6.3.1 Categorizing processes

This paragraph categorizes all (parts of) processes in three different categories. First of

all are the atomic processes, processes that can execute without user intervention.

Secondly, the remaining processes are split into two parts, the data flow part towards

the applications and an atomic part. Thirdly all one-way data access parts are identified.

#15 Binding layers allow
components to be easily
replaced, as long as the new
implementation adheres to the
published contract

40 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Atomic processes

This category of processes is filled by internal Tam Tam processes that do not require

any user intervention to be executed. An example of this is the process of adding a new

employee to Tam Tam. After it is initiated, no action from the user is necessary because

all data of the new employee is already entered in

the HRM application. Table 6 lists all processes in

this category. All these processes are modeled as

BPEL processes to enable additional steps to be

added easily and fault handling functionality to be

regulated. Due to the characteristic of BPEL models

to be executable, modeling the processes is the first

step taken towards an implementation (#16).

Table 6: Atomic processes

Process name Rationale

1 Generate invoices

2 New employee

4 Employee quits

5 New customer

6 Rename customer The data necessary in this process is

stored locally in the CRM application

7 New customer contact

8 Update customer contact The data necessary in this process is

stored locally in the CRM application

11 New opportunity

12 Update opportunity The data necessary in this process is

stored locally in the CRM application

13 New Project Can be called in multiple instances;

processes 13{a&b} deal with atomic

project toolkit instances parts

13a Save order regel mutatie

13b+16 Save new budget

Non-Atomic processes

The second step was to add all atomic parts of two-way processes. The processes in this

category and their atomic parts are shown in Table 7. These atomic parts are also

modeled as BPEL processes just like the previous category.

Table 7: Atomic parts of non-atomic processes

Process name Atomic part

3 Change employee Update the employee data in several

systems

14 Update project Update the project details

15 Close project None, its internals are the same as

updating a project

17 Book hours : hours application Store hours

#16 Designing with BPEL is
concurrently designing and
implementing, which prevents
infeasibilities during the actual
implementation

| 41

18 Book hours : Issue Tracker Store hours

19 book lunch and declarations Store lunch participation; store

declaration

20 Update budget Store updated budget

One-way data access parts

The non-atomic parts of the non-atomic processes

together with all other data request operations fall

in the second category that needs to be modeled.

The key idea here is that data is just passed

through the Enterprise Service Bus. This might

seem cumbersome, but it has several advantages.

Firstly, using the service bus as a proxy for

retrieving data creates a data abstraction. Secondly, triggers can be added to

information requests to monitor and audit data access (#17). And thirdly, by using

process orchestrations a standardized manner of implementation is forced.

6.3.2 Binding the processes

The next step of the design is binding and publishing the created BPEL orchestrations

in such a way they can be used by the different applications. This step is carried out by

loading the BPEL documents into the BPEL-engine of a service bus that takes care of

instantiating the orchestrations and the quality of service attributes.

One part of the binding process is specifying the locations of the invoked web services;

the other part is defining on what URL the created orchestrations can be reached.

Usually this address is specified in the WSDL documents for the orchestrations, but the

BPEL-engine should allow connections to the specified URL to be made.

Another part of the binding process is specifying the

quality of service values since some steps of

processes may only be executed one at a time (#18).

This causes the necessity to limit the number of

instances in some cases and limit the number of

parallel outgoing calls in other cases. Examples of

these are the division of synchronous and

asynchronous process orchestrations. In the first case, a limit needs to be put on the

incoming orchestration calls where in the second case limits need to be put on the

outgoing service requests to guarantee the prevention of concurrency.

6.4 Organizational design

Next to a change in the technology field, for the new architecture to be successful, the

organization needs to adapt as well to protect the investment by aligning the IT to the

business or the other way around (Leenslag, 2006) (#19). In many companies this

change is achieved by implementing some sort of IT governance mechanisms. A

#18 Quality of Service for
orchestrations is important for
regulating concurrency and
performance penalties

#17 Use of orchestrations for
passing function invokes allows
triggers to be attached for
monitoring purposes

42 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

correlation was identified between the amount of IT governance awareness and the

successfulness of companies (Educause Centre for Applied Research, 2004).

IT governance is a term for activities about which a

lot of discussion is going on (Simonsson & Johnson,

2006) & (Brisebois, Boyd, & Shadid, 2007) but an

ISO standard has emerged stating what actions

company management should perform expressed as

6 key principles (ISO/IEC 28500, 2008).

Some research is devoted to the use of IT governance in large companies (Hardy, 2003)

& (Weill, 2004), but the main mechanisms discussed are committees which are given

decision rights, input rights and some accountability. To port these approaches to a

smaller company like Tam Tam, it might seem overkill to create separate committees

like big companies do. But since a good approach is to implement IT governance step-by-

step (Rau, 2004), the transition towards a full-blown IT governance structure is started

with assigning and charting responsibilities and accountabilities. These initial

responsibilities and accountabilities are firstly assigned to individuals, but these

individuals may be replaced by committees in the case Tam Tam increases in size.

In essence, IT governance can help make the new architecture a success by enforcing a

mentality for the support of the transition and use of the designed future situation. Next

to that, when clear accountability is laid out, it can be used to mitigate risks. The key

question that will be answered which defines the effectiveness (de Haes & van

Grembergen, 2005), and is often missing (PricewaterhouseCoopers, 2006), is „which

entity is allowed to perform what action to collaborate in compliance with the designed

future architecture?‟ This question is posed more delicately by (Weill & Ross, 2004b)

through the use of three separate questions: 1) „What decisions must be made to ensure

effective management and use of IT?‟ 2) „Who should make these decisions?‟ and 3) „How

will these decisions be made and monitored?‟

6.4.1 Decision domains and roles specification

To find answers to the stated questions, an approach used fairly often in the literature is

adopted. This approach entails creating a „one-page-IT-governance‟-matrix (Weill &

Woodham, 2002), (Weill & Ross, 2004a), (Weill, 2004) & (Weill & Ross, 2005). Said

matrix is constructed by indicating what division of accountability and responsibility are

in place in what decision domain.

Because an excess amount of IT governance rules will make IT rigid and might

jeopardize creativity and innovation (PricewaterhouseCoopers, 2006) an attempt is

made to only centralize a few specific decisions and not go along completely with the

sinusoid trend between centralized and decentralized IT governance (Sambamurthy &

Zmud, 1999). Most of the elements in the decision domains do not get altered by this

project so the data depicted in Table 8 shows how the roles are currently in place or are

currently tried to get in place.

#19 Technical change on itself
is not enough to reach the next
level. Changes on various other
fields have to be pursued as
well

| 43

Table 8: Decision domains and roles

Domain IT

Principles

IT

Architecture

IT

infrastructure

Strategies

Business

Application

Needs

IT

Investment Archetype

Business

Monarchy

IT

Monarchy CIO

System

Admins

check

CIO

Federal

IT

Duopoly

Developers

implement

Business

needs

Feudal

Anarchy
 Developers

Developers

propose

Don‟t

Know

Table format: © 2003 Massachusetts Institute of Technology, Sloan Center for Information Systems

Research

The rows indicate different forms of organizing the location of decisions. The first two

are centralized in either business leaders or IT leaders. The federal archetype is reached

by letting business representatives and operating groups decide together, and the IT

duopoly is reached by a two-party decision making process with IT executives and

business leaders combined. Feudal means that unit or process leaders make their own

decision based on their needs. The last two are self-explanatory. The columns indicate

the domains of the different decisions:

- IT Principles take care of deciding the role IT has in the company and are

managed by the CIO, that role either allows or disallows certain actions

- Decisions in the IT Architecture domain are related to new business processes or

extension to certain processes and are identified by its users and implemented by

the developers

- Decisions based on what functionalities are offered and maintained are

performed by developers. They are in charge of keeping the running components,

applications and services up-to-date

- Business Application Needs is the domain related to identifying and deciding on

what functionality to add to the orchestrations or services. These decisions are

made –and changes are implemented– by developers. These actions are audited

by the system administrators whether they conform to the current architecture

and the rules and guidelines

- Decisions on IT Investments, like what projects to start, are made by the CIO

The degree of success of this division of accountabilities and responsibilities is almost

fully dependent on the stakeholder participation and organizational readiness (Rau,

44 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

2004). Success factors identified by (PricewaterhouseCoopers, 2006) and (Weill, 2004)

include transparency, clear communication and simplicity with clear incentives to live

up to the governance rules. This indicates the next step to be taken is identifying clear

IT governance rules and guidelines.

6.4.2 Concrete rules and guidelines

Several rules and guidelines have been designed in addition to the technical design to

help enforcing the use of the new architecture. Most of these rules are already in place,

but stating them makes them transparent and communicable.

CIO decides on projects to be started

There should be one place in which the decision is made for the (kind of) new projects to

be started. The underlying reasoning for this is that started new projects all adhere to

one perspective on the designed architecture as much as possible.

CIO decides on exceptions to the standard

Another category of decisions that is centralized is

the ability to make decisions on exceptions to the

current architecture. With these decisions

centralized at the CIO in the role of architecture

owner, the line of thought behind the newly

designed architecture can be enforced (#20).

System administrators keep live components up and running and audit changes

requested by developers

To enforce the decisions the CIO makes, the system administrators should only comply

with a request in the case the CIO has approved said request. This is the way of working

at Tam Tam at the moment, but it is listed here for awareness and to improve chance of

success of the defined rules.

Developers maintain components

For maintaining the components it is preferable that the original developers are kept

involved because they know the ins and outs of those components. This means they are

responsible for updating the components and fixing bugs. Key rule here is that the

developers are allowed to create extensions to (or new) services, but these are only

published by the system administrators after the CIO has given the go-ahead. When the

original developers are not available anymore, the Operational Services department can

take over the responsibilities because such maintenance lies in their line of work.

First test, and then publish

Because every hour of the system administrators is reimbursed on freelance basis, these

hours are very expensive. This means that the amount of work performed by the system

administrators should be kept as smal as possible. This results in the fact that to be

#20 A man in the Middle is
necessary to bridge business
and IT efforts

| 45

published components or services need to be verified and checked thoroughly. This

guideline should be kept in mind while performing the maintenance.

Discourage legacy interaction possibilities

To enforce the use of the newly designed manner of component interaction, the legacy

interaction possibilities should be deprecated. This should be done both in a technical

and non-technical way. The technical way is fairly straightforward by disallowing

connections, but the non-technical way should discourage „workarounds‟. This is done by

creating awareness among developers that the CIO decides on exceptions to the new

architecture. Furthermore, the developers should be kept up-to-date about the current

architecture in place and exceptions to it.

Change the way of working

The current way of working within Tam Tam is mostly focused on creating value for

customers. Internal projects are sparsely carried out and, when carried out, the focus is

to get something working instead of going through a whole waterfall model for example.

Change in this mentality is started by defining these rules and guidelines but should

gain some momentum by sharing the advantages of the new situation with the

developers.

6.5 Transition path

Because it is almost impossible to just implement the new architecture and replace the

old version with it (Armour & Kaisler, 2001), a transition plan is necessary that

delineates the implementation of the new

architecture in different steps (#21). Several steps

have been defined that should offer Tam Tam as

little downtime as possible. Due to this constraint

on minimal downtime, the goal is to put as much

overlapping functionality in place as possible. This

should allow a flick of a switch to be enough to

complete the transition. The following five steps

provide the steps to be taken to convert the whole architecture at once. Because the

nature of projects within Tam Tam is mainly based on the Agile Scrum methodology

these five steps can also be performed in iterations for small groups of processes. The

starting point for this transition path is shown in Figure 10, which indicates that there

are several components calling some functionality (circles) in other components.

#21 Entirely replacing
architectures is far from
feasible, it is important to move
with little steps towards the
newly designed architecture

46 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Figure 10: Transition to an ESB: starting point

6.5.1 Step 1: Implement wrapper services

In this step all worker units should be implemented with respect to the designed

interfaces. These designed interfaces present contracts to which both sides of the

interaction should adhere. As can be seen in Figure 11, this step can be executed

without any downtime because the services are additional components in the

architectural landscape and do not change existing components or interactions. The

specific implementation of service methods can mainly be taken from existing

components as these examples indicate:

- Existing process flow information can be split up into different service

functionalities

- Database connections can be added to service functionalities by using hardcoded

SQL configurations and existing stored procedures as method bodies

- Specific functionality which interacts with components can be replaced from

components to the new services

| 47

Figure 11: Transition to an ESB: step 1

6.5.2 Step 2: Get an Enterprise Service Bus up and running

The second step is to add an instance of an Enterprise Service Bbus to the architectural

landscape. This service bus should contain an orchestration engine with the designed

process orchestration documents loaded. Next to that, the service bus instance should

have knowledge about the created services in step 1 and thus act as a broker between

applications and needed services. The orchestrations in the service bus should already

call the correct service functions, as shown in Figure 12. Another required functionality

for this service bus is managing the statuses of process orchestrations. This step can be

executed without any downtime at all. Key characteristics of this service bus should be:

- Locations of services are managed

- An orchestration engine is in place that takes care of executing the processes

- Component statuses are discoverable

- Process status is retrievable

- Executing orchestrations are made transparent

48 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Figure 12: Transition to an ESB: step 2

6.5.3 Step 3: Perform the switch from old to new architecture

In this step the switch is made from the old situation to the new situation by changing

the way functionality is called in the separate applications. Some downtime is inherent

because some deprecated source code will be removed and the new way of invoking

processes will be added. Figure 13 shows this process of fading out old interactions and

creating new interactions with the Service bus to replace them. Characteristics of this

step are:

- Process requesting applications are taken down one at a time for a short amount

of time, implying some processes will stop functioning for a while

- The switch should be made preferably with the original application developer to

increase the chance of success

- Legacy direct interaction methods are still possible after this step has been

executed so no application stops working when a hidden request is overlooked

| 49

Figure 13: Transition to an ESB: step 3

6.5.4 Step 4: Enforce IT governance mechanisms

To enforce the human-side of the architecture to change as well, some IT governance

mechanisms are selected (Section 6.4) to discourage the use of the legacy interaction

methods as shown in Figure 14. Next to that, these mechanisms should make the use of

the new architecture much easier by plotting which powers lie with what people and in

what way the new architecture is allowed to be extended. This step does not bring any

downtime into the equation but is one of the more important actions to execute (Webber,

2005). This step is important because the application developers should be aware of the

new architecture and should especially know why and how they benefit from the new

situation in order to keep using the designed mentality. Key questions are:

- Which entity can make what decisions?

- What procedures are in place to update the architecture?

- What to do with exceptions?

50 | C h a p t e r 6 : F u t u r e a r c h i t e c t u r e d e s i g n s p e c i f i c s

Figure 14: Transition to an ESB: step 4

6.5.5 Step 5: Deprecate legacy interaction methods

To complete the transition to the new architecture, the legacy methods of interactions

should be disallowed by disabling them. Figure 15 shows disabling the interaction

methods in a conceptual way. Due to the nature of this action, some overlooked hidden

method calls might pop up by stopping certain (parts of) processes to work. The timeline

of this, however, is very hard to get a grasp of so some activities have been laid out in

this step:

- Monitor direct call-ins of components for which a „service-wrapper‟ has been

created. When some call-ins are still present it becomes apparent that some

things have been missed

- This step is executed in a little by little approach so it should be known which

action caused a failure. Side note however, is that it might take a very long time

for effects to present themselves

| 51

Figure 15: Transition to an ESB: step 5

Part IV:

Practice,

linking theory to the real world

Server

ServerServer

Users

Service Bus

Architecture

User

User

User

Server

ServerServer

Users

Service Bus

Design Documentation

MethodologyContribution
to Science

Contribution
to Tam Tam

Figure 16: Transforming theoretical design into a real-world architecture

54 | C h a p t e r 7 : I m p l e m e n t a t i o n

Chapter 7: Implementation

mbodied in linking theory to practice is implementing the designed architecture.

This chapter elaborates on the strides taken towards the implementation of the

replacement architecture. The first step is to define an implementation strategy

by retrieving key insights from the literature. The second step is to make a decision for

an available Commercial off-the-shelf product that diminishes the time necessary for

implementation by a large sum. When a decision has been made for a specific product, a

step backwards is taken to gain an overview of possible issues and to elaborate on

everything that makes the decision unjustified. The last step of this chapter is to

elaborate on experiences throughout the implementation process.

7.1 Implementation strategy

After the design and the transition path towards the design are created, the next step is

to decide on the implementation details. Several options are available for this purpose

(Richardson, Jackson, & Dickson, 1990) and are in order of preference: 1) use existing

systems, 2) purchase a system, 3) develop internally, or 4) insource from other parties.

Guidelines for this process are, as stated by (Hagel

& Brown, 2001) and (Hazra, 2002), the focus on re-

using existing systems and creating a shared

terminology by using industry standards. The last

insight comes from (Hagel & Brown, 2001) and

states that the implementation should start at the

edge where the quick wins can be reached in

connecting the architecture with the „outside-world‟

(#22).

From these insights a key idea for the implementation strategy to be used here is

derived. The idea is to gather the necessary building blocks for a minimalistic version of

the design as soon as possible. The result of this is to have several proofs of concept

using different available products to allow a decision for a specific product. The proof of

concept for the chosen product can be seen as a small path towards the designed

architecture. Due to the nature of this narrow path, a lot of events can be triggered in

the form of additional requirements to hinder the traversal of said narrow path. To

overcome the possibilities for such hinder, a risk analysis is performed to identify as

many additional requirements as possible and create mitigation plans for those.

Figure 17 shows a graphical overview of the key activities and sequence of activities in

the used implementation strategy. The first two steps of creating proofs of concepts and

choosing a specific product are elaborated on in the next two sections. The steps after

those are performed on individual product basis. The first three individual steps of

carrying out a risk analysis, creating mitigation plans and documenting those plans are

discussed in the third section. The remaining steps are elaborated on in the fourth

section by discussing implementation experiences.

E

#22 Implementation starting
point should be at non user-
interacting processes because
quick wins can be reached, for
these are in the back-end and
no user testing is necessary

| 55

BizTalk

OpenESB

Apache ODE

Oracle BPEL process

manager

C
re

a
te

P
ro

o
fs

 o
f

C
o
n
c
e
p
t

C
h
o
o
s
e

P
ro

d
u
c
t

C
h
e
c
k
 i
f

m
it

ig
a
ti

o
n

s
tr

a
te

g
ie

s

e
x
is

t

None available

C
o
m

p
o
s
e

s
p
ri

n
t

a
c
ti

vi
ty

li
s
t

Im
p
le

m
e
n
t

s
p
ri

n
t

a
c
ti

vi
ti

e
s

Complete

Id
e
n
ti

fy

m
il
e
s
to

n
e
s

B
iz

T
a
lk

R
is

k

A
n
a
ly

s
is

D
o
c
u
m

e
n
t

B
iz

T
a
lk

M
it

ig
a
ti

o
n

P
la

n
s

Figure 17: Implementation phases

7.2 Decision for a COTS ESB product

From the literature, the insight is taken to re-use existing systems and purchase the

parts that are missing. This is the main reason why a Commercial off-the-shelf (COTS)

Enterprise Service Bus product is chosen. Another reason is that using a COTS product

a lot of implementation time can be saved. To research which COTS product matches

the Tam Tam needs, several steps are taken. The first is to identify the necessary basic

building blocks allowing the implementation of a simplistic version of the theoretical

design. The second step is to experiment with all the different products to retrieve key

values to be used in the actual comparison of the available products in the third step.

7.2.1 Necessary basic building blocks

The goal of experimenting with the variety of products is to check if a set of building

blocks is available. Table 9 lists the identified building blocks with a short description

and the reasoning behind including them in the basic building blocks list.

Table 9: Basic building blocks

Building block Description Reasoning

Create a sample proxy

orchestration

A proxy orchestration

receives a request, which is

passed to a web service.

The results are relayed

back to the requester again

Once this building block is

available, all designed

orchestrations can be

implemented because they

are sequences of web

service invoking operations

Conditional branching Several different paths

through orchestrations

should be possible

The processing of some

designed orchestrations

proceed in different paths

depending on some value

Publish orchestration as

web service

Implemented

orchestrations need to be

published to client

applications, this is

preferably done by using

web services

Because one of the

foundations of the designed

architecture is web

services, the ability to

publish orchestrations as

web services standardizes

the use of technology

56 | C h a p t e r 7 : I m p l e m e n t a t i o n

Create an asynchronous

orchestration

After an orchestration has

send its response, it should

not stop performing

operations

These orchestration

instances can be used to

emulate a queuing

mechanism for slow web

service functionalities

Set binding properties The binding properties

define how the system

reacts if multiple requests

come in at the same time

In the designed

architecture some

operations should not be

allowed to be executed

concurrently

7.2.2 Experiment with products

This paragraph describes the process of getting the basic building blocks to work on

several products in a chronological way. A start was made with one product and from

that product the disadvantages were covered by moving to other products. The choice for

different products was very limited due to the nature of the design. The main criteria

the product should comply with are: 1) a visual workflow-like process orchestration

development environment should be present, and 2) the system should maintain on-

premise for security motivations.

BizTalk attempt

Despite the given carte blanche, the choice for the first product under focus was made

because of Tam Tam is a Microsoft affiliated company and there exists a lot of Microsoft

product knowledge within Tam Tam. The first product under focus was Microsoft

BizTalk 20104. After the request was made, the system administrators of Tam Tam were

able to get an instance running in about one working day. Due to the fluent integration

with Visual Studio 2010, IIS 7 and Windows Server 2008 R2, the time it took to get a

simple file-handling process orchestration working was very limited. Another advantage

of BizTalk is that a lot of tutorials are available for creating such a file-handling

orchestration.

When the complication is added to invoke a web service from the created orchestrations,

the steep learning curve obstructed further progress. This resulted in a failed attempt

after struggling from error to error for several days. Because there was no hindsight into

how many more errors needed to be overcome, the decision was made to broaden the

scope.

Open source

This broadened scope resulted in the quest for open source alternatives. One product

came forward as an excellent and complete package: OpenESB5. The installation went

prosperously and getting a first sample proxy orchestration running was very easily

4 http://www.microsoft.com/biztalk/en/us/2010launch.aspx
5 http://open-esb.java.net/ but was taken offline by Oracle, community continued the project at

http://openesb-dev.org/

| 57

performed with the included tutorial. More advanced creations could also easily be

created by using the visual designer. After a few days of work almost all identified

processes were implemented in a proof-of -concept manner by using web services stubs.

Furthermore, the created proof of concept orchestrations could be published as WSDL

binding documents.

The only, quite major, disadvantage of OpenESB is that it is not supported anymore at

the moment of the decision. The reason for this is that OpenESB is built using the Java

language of Sun Microsystems. Since the acquisition of Sun by Oracle, the future of

OpenESB was cancelled because Oracle sells its own ESB solution.

Proprietary

Due to the ease of which the orchestrations in OpenESB were created, the logical next

step was to experiment with the product offered by Oracle: Oracle BPEL process

manager6. The first step was the installation of the manager; this succeeded fairly

quickly and was up and running in about an hour. The downside of this product is that

if orchestrations have to be developed visually, another package has to be downloaded

and installed: Oracle JDeveloper7. The installation of this second product was also

performed in about an hour. The process of getting the two products to work together

was not finished at all after several days of attempting to link both.

Open source revisited

When the proprietary approach ended in an unsatisfying way, the fourth approach was

to search for an open source alternative that is still supported. The amount of options

was diminishing fast but one open source option that was still supported and recently

updated was Apache ODE8. ODE is a web application running in an Apache Tomcat

installation. The installation of ODE was performed by simply placing a compressed

archive in the correct Tomcat directory. After ODE was up and running, the next step

was to install a visual design application, Eclipse. The installation and linking of Eclipse

to the running ODE instance was performed quite easily due to the tutorials included

with ODE.

The creation of orchestrations can mostly be performed using a visual editor but some

elements have to be coded manually in the BPEL and WSDL documents. Another major

disadvantage of ODE is that it only offers extensions to client functionalities, not a fully

functional service bus. This means that clients are solely responsible for recovering

orchestrations in case things fail and no quality of service or queuing options are

available.

6 http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
7 http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
8 http://ode.apache.org/

58 | C h a p t e r 7 : I m p l e m e n t a t i o n

BizTalk attempt revisited

Because the alternative products included in this study do not match the expectations of

the theoretical design, a final attempt was made to get a sample proxy orchestration

working in BizTalk 2010. After another day of trying to include a service reference in

orchestrations, a first little step of success was achieved. After a sample proxy could be

created, the other basic building blocks followed rapidly because those other

requirements can be linked to one of the strengths of BizTalk: „Connecting different

systems‟.

7.2.3 Decision for a product

After the necessary building blocks have been gathered successfully for three different

products, a decision should be made regarding which product to use. Table 10 lists the

key characteristics of the four different products. The choice is made using the cut-off

method described in (Bots, 2002) by formulating a set of hard demands on the packages.

These hard demands used for the elimination process are based on the requirements

posed by Tam Tam:

1) The product should still be supported; meaning that in the case a bug comes

forward there is a realistic chance it gets fixed

2) It should cost no money; Tam Tam does not have the financial resources to pay

for an expensive Enterprise Service Bus product

When these requirements are put forward one at a time, the first requirement

eliminates the almost perfectly suited OpenESB. The second requirement, and the fact

that it could not be gotten to work, eliminates the Oracle proprietary alternative to

OpenESB. To make a decision between ODE and BizTalk, elements from the

architectural design were brought forward again and they pointed in favor of BizTalk

because the lack of fault tolerance capabilities in ODE.

Table 10: Comparison of COTS products

 OpenESB apache ODE +

Eclipse

designer

Microsoft

BizTalk

2010

oracle BPEL

process

manager +

JDeveloper

designer

configuration time 1 hour 1 hour 8 hours 8 hours

learning curve flat medium steep very steep

time to get simple proxy

orchestration running

1 hour 1 hour 1 week unknown

effort from simple proxy

to full blown processes

little medium little unknown

support available none medium perfect perfect

last update date Q4 2008 Q2 2010 Q4 2010 Q2 2010

price open source open source 0, Microsoft
partner

50k / CPU

| 59

monitoring capabilities none only number of
instances

full blown full blown

concurrency possibilities perfect none Very good unknown

binding options many very few medium unknown

Delivery guarantee until
something
fails

until something
fails

always always

7.3 Further evaluation and assessment of the choice

With the basic building blocks available for BizTalk, the designed architecture can be

implemented. The problem however, is that the implementation resulting from this way

of working is very simplistic and every additional requirement brings a lot of

uncertainty forward. Such situations are indicated by (Meredith & Mantel, 2009) as “the

natural inclination of the customer to change the deliverables as they obtain better

information about their needs over time” or simply as “scope creep”. Scope creep is one of

the risks that comes forward in a lot of software risk assessments, mostly it comes

directly after a lack of commitment and involvement of stakeholders in the project (Keil,

Cule, Lyytinen, & Schmidt, 1998), (Boehm & Port, 2001), (Schmidt, Lyytinen, Keil, &

Cule, 2001), (Mazumder, 2006) & (Boehm B. , 1991).

Although there is a „do not ask do not tell‟ mentality with software engineers to limit the

legal accountability when something goes wrong (Boehm & DeMarco, 1997), the

approach taken here is by using the heuristic stated by (Boehm & Port, 2001) to “resolve

risks early to avoid extensive late rework”. By holding several brainstorm sessions with

stakeholders and especially non-stakeholders, a list of elements was identified that

might jeopardize the correctness of the choice for BizTalk. The identified elements

grouped per category together with a short description and the corresponding mitigation

plans are listed in Appendix D: „BizTalk risk mitigation plans‟. The mitigation plans

have been defined by implementing proof of concepts for all features longed for.

Because risk mitigation plans have been created for all identified risks, the decision for

using BizTalk does not have to be revisited. Furthermore with respect to overhead,

every service bus product does introduce some overhead. The overhead introduced with

BizTalk, however, is not significant enough to revisit the decision as shown in the

second section of Appendix D: „BizTalk risk mitigation plans‟.

7.4 Reporting experiences with implementation

Part of the design process is creating a proof of concept for all requirements, linking

them together is performed in the implementation process discussed in this section. The

first paragraph discusses the first few implementation steps taken towards the designed

architecture. The next step is to use the aggregated working proof of concepts as an

input for a go / no-go decision for taking the design into production. The third step is to

prepare the production environment to be used as defined in the design. In the last step

of this section an encountered opportunity to quickly proceed with the implementation is

discussed. The progress of the implementation is depicted in Appendix G: 'Progress of

60 | C h a p t e r 7 : I m p l e m e n t a t i o n

implementation‟, wherein „partly implemented‟ means either half the designed

functionalities are in place or only a proxy for functionalities is in place.

7.4.1 Separate Processes

During the work towards the go / no-go decision two different processes have been

ported to BizTalk. The first was the process of creating new projects for customers, for

which the first three steps of the transition path were carried out. The design had

already cut the process into different atomic steps, which were easily translated into

WCF service functionalities. The orchestration had to be recreated similar to the BPEL

design because Microsoft uses its own definition of BPEL in BizTalk. Once the

functionality was in place, the switch was made to test the BizTalk version in the

production environment. After some successful tests, the original functionalities were

restored again because of the development nature of the used servers.

The second ported process is used for creating new

Tam Tam user accounts. The implementation of this

orchestration was fairly straightforward from the

design again. The underlying functionalities

however, requested very specific knowledge of the

Active Directory and Exchange servers. Due to a

lack of such knowledge, progression was very hard

to achieve. Luckily the functionalities already lie

under web services so could easily be invoked. Although this workaround performs the

job, the help of an expert should be included during the actual implementation to split

the functionalities (#23).

Several other problems were encountered which could more easily be solved. The first is

that in the case a service is extended, the WSDL does not necessarily need to be

reloaded in calling applications when the interfaces of the used functions do not change.

Secondly, namespaces are hard to work with: once two orchestrations use the same

namespace, very strange undesired functionality is the result. The last problem is the

fact that due to the message based nature of BizTalk, no void parameters can be used to

trick BizTalk into carrying out pre-defined steps

7.4.2 Go / no-go decision

With the transition of several processes, the next step is to make a go / no-go decision

with several stakeholders and external experts. The next chapter presents all

aggregated information used for the go / no-go decision in the form of scenario analysis,

means valuation and expert reviews. The result of this aggregation was that Tam Tam

wants to proceed with the implementation of the design created in this thesis.

7.4.3 Preparing production environment

After a go-ahead for implementing the design in the production environment, several

steps were executed. The first was to clearly document a list of implementation

milestones and necessary atomic tasks in the form of a product backlog. The main focus

#23 Expert knowledge is wise to
be called in during the
implementation to reduce effort
necessary to master the specific
knowledge necessary

| 61

of listing these tasks is clarity, because in such a way the transition path towards the

new architecture can be carried out autonomously. Furthermore, this focus on clarity

causes transparency in the implementation process.

Secondly the production BizTalk environment was set up in which the design could be

implemented. This entailed porting all customizations made in the development

environment to the production BizTalk server. These customizations range from

importing the known low-level services in the UDDI server to establishing new Single

sign-on user mappings.

Thirdly, several documents and example files have been created for sharing knowledge,

all of which are listed in Appendix F: 'Key deliverables‟. The documents that have been

created are mainly the implementation plan and several different tutorials explaining

how to perform certain actions. These tutorials present the „missing links‟ of knowledge

encountered during the design and implementation and strive to flatten the BizTalk

learning curve. The example files are partly created by following tutorials but are

provided to serve as a reference point or as a starting point for further implementation.

7.4.4 Subsidiary company

During the implementation, a new spin-off company was founded by Tam Tam. This

new company should benefit from the same automated back office of Tam Tam by being

integrated into the existing environment. The integration should be performed in such a

way it can easily be split up again when the two companies are to be separated. Due to

the insight into the currently in place architecture and the ongoing transition towards a

new architecture, this task was prioritized in the implementation backlog. This request

for additional functionality presented an ideal means to assess the created design.

Due to the focus on the capability to split, the components under focus should be

assessed. The Active Directory and customer portal SharePoint can easily be re-used,

and a database layer is already put over the administration database duplicating all

entries and adding a corporation ID to the unique keys indicating one of both companies.

The CRM in place however, has to be duplicated to create two separate CRM entities for

the separate companies. This request for an additional CRM instance causes a need for

some functionality to be disabled and some functionality to be added.

Because of the very strict planning for the addition of functionalities and components,

the step of creating complete orchestrations in the transition path is skipped. The

implemented parts act as a starting point for creating the fine-grained orchestrations.

Because the interface of the orchestrations is already in place, only the underlying

functionality has to be replaced.

Putting the adapted elements in production succeeded without many hurdles along the

way, only some minor inconsistencies between the production environment and the

coded functionalities were encountered. None of these issues persisted, so the first (parts

of) processes are successfully using BizTalk as a communication means.

62 | C h a p t e r 8 : E v a l u a t i o n o f r e s u l t s

Chapter 8: Evaluation of results

he next step, after the design is completed and key elements of it are

implemented, is to evaluate the newly designed architecture with the defined

means and metrics. The contents of this chapter were used to decide on a go/no-

go live implementation decision. In this chapter, the same evaluation steps are executed

as in earlier evaluation iterations, with two additional steps. The first added step is

rounding up all advantages and disadvantages of the new architecture by aggregating

the results of the four evaluation iteration steps. The second added step is holding

expert review sessions with several stakeholders who were not previously involved in

the project to sustain their objectivity. With this aggregated evaluation in hand, a go/no-

go decision could be made by creating a balance sheet and making a deliberate choice.

8.1 Aggregated evaluation iterations results

During the course of this thesis project, several evaluation iterations have been

conducted at four key points throughout the project. The results of these for iterations is

listed in Appendix E: „Evaluation iterations‟. The fourth of the following instances is the

most elaborate and is conducted in preparation for the aggregation of advantages and

disadvantages and the expert reviews of the next sections:

- Iteration 1: After insight has been gained into the current situation

- Iteration 2: After choosing the architectural style

- Iteration 3: After the design specifics have been laid out

- Iteration 4: After prototype implementation

The content of these iterations is primarily focused on conducting scenario analyses and

metrics valuation. The results of all instances of these metric valuation sessions is

depicted in Table 11 and represents quantitative measures for evaluating the

progression achieved with the new architecture.

Table 11: Aggregated evaluation iteration results

Metric Current

situation

Enterprise

Service Bus

ESB Design BizTalk 2010

Number of

interaction

schemes

6 1 (+ interaction

schemes in

dedicated

wrappers)

1 (+ interaction

schemes in

dedicated

wrappers)

2 (+ interaction

schemes in

dedicated

wrappers)

Number of

hardcoded

connection

strings

21 Number of

services (+

connection

strings in

dedicated

services)

9 (+ connection

strings in

dedicated

services)

34 + 1 for UDDI

Number of

incoming

method calls per

2.2 2.4 2.4 2.8 (+ direct

data

requests/number

T

| 63

component of services)

Number of

components

with related

functionality

(duplication)

8 0 0 0

Speed of source

code retrieval

2 hours 15 minutes 15 minutes 15 minutes

Speed of live

location

retrieval

45 minutes 15 minutes 15 minutes 5 minutes

Speed of

understanding

application

interactions

Several

hours

15 minutes

finding + 30

minutes

understanding

15 minutes

finding + 30

minutes

understanding

5 minutes

finding + 30

minutes

understanding

Speed of

understanding

process

orchestrations

Multiple

hours

2 hours 30 minutes 30 minutes

Speed of

checking

component

status

Multiple

hours

30 minutes 5 minutes 15 minutes

Speed of

understanding

component

purposes

Several

hours

1 hour 1 hour 1 hour

8.2 Benefits and drawbacks of created architecture

The values identified for the key metrics and the scenario analysis of the evaluation

iterations show that the designed situation can have quite a few advantages. While

leaping forward on one field, it is imminent that some disadvantages are present at

other fields. These identified changes, summarized in Table 12, come from a variety of

categories: from purely technical through business to changes for individuals. This

section contains an elaboration on all identified advantages in the first paragraph and

an elaboration on the disadvantages in the second paragraph.

Table 12: Identified advantages and disadvantages

Advantages Disadvantages

Time consumption Overhead of data requests

Removal of duplicate functionality by

creating abstractions

Difficult to hide certain functionalities

Auditing and monitoring of processes Changed way of working

Division of needed personnel

Versioning

Increased manageability

Expose functionality for external use

Security can be managed in one place

64 | C h a p t e r 8 : E v a l u a t i o n o f r e s u l t s

8.2.1 Advantages

Time consumption

From the scenario analysis and key metrics it

becomes clear that a lot of time can be saved with

the new situation due to improved clarity (#24).

Although some time is needed for some transition

struggles towards the designed situation, in the

long run, the amount of time saved will most likely

be positive as indicated by most scenarios and the

evaluation metrics.

Removal of duplicate functionality by creating abstractions

The introduction of several layers of abstraction removes some duplicate functionality.

This can be attributed to the clear definition of contracts for interactions. By specifying

exactly what function should perform what functionality, general re-usable functions

can be created limiting the sensitivity for code (and functionality) duplication.

Auditing and monitoring of processes

The introduction of specific process orchestrations for all identified processes introduces

the opportunity to audit and monitor all processes. This entails creating the opportunity

to check how often a certain process is executed and by whom, allowing for more

elaborate business intelligence activities. Next to that, the opportunity arises to identify

points of failure in case the process does not execute properly.

Division of needed personnel

By creating strict interfaces for component interactions, no programmers are needed to

create orchestrations. Non-programmers are able to craft and adapt business processes

by using process orchestrations. The use of process orchestrations reduces the burden of

understanding processes because they can be interpreted and created in a similar way to

creating „flow‟-diagrams. The only task remaining for programmers is implementing the

low level services with respect to the identified contracts and adapting applications to

invoke the created process orchestrations.

Versioning

Another advantage, which is introduced by using centralized process orchestrations and

specified interactions contracts, is allowing the use of versioning. Before new versions of

process orchestrations and functions replace the currently in place versions, the old

versions can still be kept active. This causes no processes to be taken offline when a new

version should replace the existing one. Other layers that have the advantage of

versioning are the identified contracts interface layers. In the case new functions are

added to the interface, elements using the old functions do not have to reload the new

contract specification document to keep on functioning.

#24 Business requests are more
easily achieved because of the
flexible nature of the design. In
the case new requirements are
posed, these can be quickly
implemented

| 65

Increased manageability

By creating several abstraction layers it becomes clear what functionality can be found

in each layer. This decreases the effort necessary for understanding which component

serves what purpose and provides guidelines for making several decisions while

developing new components.

Expose functionality for external use

Next to advantages that play inside Tam Tam, the newly designed service bus can more

easily expose functionalities to be used by third parties. In the current situation it is

very hard to specify what functionality should be accessible by external entities. In the

designed situation however, all aggregated functionality is accessed through the service

bus allowing specific functionalities to be exposed to external entities.

Security can be managed in one place

In the current situation, access to components can be limited by configuring each

component separately. This is used currently, but there are some credentials „floating

around‟ Tam Tam which have super-user rights to a lot of systems. Recently, a move can

be identified towards a managed security organization. The design in this project helps

reaching this goal by including a Single sign-on environment. This SSO environment

causes access rights to be configured in one place (BizTalk server) and managed in

another (Active Directory). The centralization also increases the ease with which

security considerations can be implemented.

8.2.2 Disadvantages

Overhead of data requests

The idea of the designed solution was to relay all data requests through the service bus.

Although this brings some advantages like monitoring and auditing, it also creates quite

some overhead as can be seen in Appendix D: „BizTalk risk mitigation plans‟. Due to

this, the choice is made for the implemented solution to only create an abstraction layer

in the form of web service functions. The requests to these are made directly to the web

services instead of being relayed through the service bus. A disadvantage of performing

requests in this way is that it becomes harder to monitor and audit data requests.

Difficult to hide certain functionalities

The new situation makes it more difficult to hide functionalities because most

functionality is performed through the service bus. In the current situation some

functionality may be hidden by using obscurity, achieving the result that when no one

knows about some functionality they will most certainly not use it. It might be necessary

to limit the usage of certain functionalities, so this should be enforced by explicitly

limiting access to certain applications or entities for example by using the Single sign-on

functionality introduced.

66 | C h a p t e r 8 : E v a l u a t i o n o f r e s u l t s

Changed way of working

In the current situation, very little attention is given to the architectural landscape and

a lot of requested functionalities are added in such a way they just perform the job. The

new situation however, requests more careful thought about where to place the extended

functionality and how its interactions take place. This forces a change in the way of

working of developers and thus may cause some resistance.

8.3 Expert review

The last step of the thorough evaluation is to evaluate the design with external experts.

The term „external‟ in this context indicates Tam Tam employees who have not been

involved in any part of the process of getting to the architectural design. This external

status of experts causes their opinion to be unbiased and objective. The nature of the

held interviews consisted mainly of verifying the results of the latest scenario analysis

iteration. To reach a thorough evaluation of scenarios, the first step in the interview was

to introduce the experts to the frame of reference used throughout the project. With that

knowledge in place, the next step was to elaborate more on the current architecture and

provide a clear image of the decisions and details of the designed architecture. The

results of all interviews are elaborated on and after that some invaluable insights are

aggregated in the last paragraph of this section.

8.3.1 Head of Operational Services

The first interviewed expert is the head of the operational services division of Tam Tam,

the division responsible for maintaining customer applications that are in production.

Due to this maintenance role, the expert has a clear view on maintainability of others‟

code and design; providing an excellent input for reflection.

On the technical perspective of the design, it is foreseen that the centralization of

knowledge presents the biggest gain in saved time because everything can be performed

at a single place. An additional advantage is that the system administration department

can quickly assess what is going wrong, whereas in the current situation they have no

handles like this. Although this is favorable, just like all other advantages and

disadvantages, this has a turn side because the single point of contact also introduces a

single point of failure. The last insight from the technical perspective is that a golden

mean is longed for between a higgledy-piggledy architecture and an extremely solid and

robust architecture. The main reasons for this are that the architecture is for internal

use and should be easily maintainable.

From the organizational perspective some change is

needed as well. The major change that needs to be

implemented is to discourage „working around‟ the

new architecture. This could be reached by using

technical efforts like correctly applying the UDDI

registry or documenting specific know-how. Efforts

from other categories consist of taking care of

#25 Budgets should be
available to enable knowledge
retrieving and knowledge
sharing

| 67

sufficient budgets for implementation and knowledge retrieving and sharing (#25).

Although these additional budgets might seem odd, BizTalk knowledge forms a valuable

addition to Tam Tam because it has occurred several times customer BizTalk requests

had to be declined by Tam Tam.

Additional key focal points are 1) the amount of BizTalk customization for that has a

direct influence on the ability to upgrade or replace the service bus in the future, 2) how

error notification is arranged because some processes need direct feedback when steps

fail, and 3) the ability for rollback mechanisms.

8.3.2 Application developer

The second interviewed expert is an application developer who has developed quite a lot

of applications that are in place in the current architecture. This developer already has

some insights into the inner workings of the current architecture and thus has a clear

standpoint for evaluating the new architecture.

A certain amount of skepticism surrounded the advantage of less needed time because of

the seemingly cumbersome extra steps that need to be performed while carrying out

otherwise simple actions. This can be overcome by creating clear step-by-step illustrated

tutorials for all possible scenarios. The most time winning part will not be the

implementation part, but the process of knowing what to implement. This advantage

comes from the created clarity; it is known exactly what has to be changed when and

where.

On a technical frontier, the division of data and logic

of processes is very wise, given the fact that a lot of

Tam Tam projects use a Model-View-Controller

mechanism (#26). Careful attention should be given

to data request functionalities. The implemented

request functionalities should be as generic as

possible, so instead of „retrieve all projects on which

developer x has worked half a day‟, methods like

„retrieve all projects‟, „retrieve all customers‟ or „retrieve all employees‟ should be used.

Next to that, the use of workflow-based processes is a giant leap forward because it

brings the advantage of centralization. Windows Workflow Foundation came up as an

alternative, but was eliminated because it is a framework instead of architecture. This

framework also allows decentralized solutions, limiting the advantages of centralization.

The advantage of division of personnel is thought to be unnoticeable because, in the end,

developers are the employees responsible for maintaining the architecture and

processes.

#26 Enterprise Service Busses
introduce a data layer and a
process-layer similar to that of
the Model-View-Controller
programming paradigm

68 | C h a p t e r 8 : E v a l u a t i o n o f r e s u l t s

On the organizational frontier, several key

characteristics have been identified. These are

mainly focused on knowledge, architectural

ownership and standards. With respect to

knowledge, the know-how with BizTalk should be

kept available within Tam Tam even when

employees stop working for Tam Tam. A lot of effort

should be put in reducing the bus-factor of the new

architecture. Furthermore, an architecture owner

should be commissioned because BizTalk

development should be 1) in line with developer capabilities, 2) understood completely,

and 3) performed often to maintain agility. The last organizational aspect is that before

the implementation starts, a clear naming convention should be devised. The rationale

behind this is that the service bus forms the center of the architecture around which

everything is build and should thus include clear conventions (#27).

8.3.3 Developer

The third expert is a Tam Tam developer with no affiliation with the current

architecture in place or the designed architecture whatsoever. This expert provides

major insights into a future where responsibilities should possibly be transferred to

other (new) employees.

To transfer the architecture into a workflow-based system is a very good idea. Although

Windows Workflow Foundation (WF) is an alternative for reaching this goal, it is more

prone to development efforts so it takes more time to implement with that technology.

Furthermore, due to the fact that WF allows decentralization, the benefits of the

centralized workflows are diminished when that approach is taken.

From an organizational perspective, a lot of people should become aware that the UDDI

and BizTalk servers are in place so that no workarounds will be created. This mentality

change is the most important organizational aspect because of the culture surrounding

internal projects; these should be finished quickly and effectively. Next to a mentality

change, time is a very important aspect. Due to the nature of the changed way of

working, quite some time needs to be invested by developers to master the new

situation. As long as Tam Tam offers such an opportunity, employees can start

experimenting with BizTalk. The most advantageous situation is when new components

need to be created; when components need to be adapted the threshold to use BizTalk is

fairly high. Concluding, coping with legacy components is very important and because

the design crafted in this project is only the first iteration of a successful effort, it is hard

to justify the effort that needs to be put into it by developers.

8.3.4 Aggregated insights

The take-away from the different expert review sessions is elaborated on in this

paragraph, first of all the major insights from the different expert sessions are

#27 Naming conventions are
very important with web
services because this prevents
creation of duplicate
functionalities and offers users
insight into the offered
functionalities

| 69

aggregated. Secondly, the results of investigating some leads that came forward from

the interviews are presented.

Exit strategy

To keep the architecture flexible, the chosen Enterprise Service Bus implementation

should be replaceable by another ESB or by a completely different architectural style.

Due to this, the amount of customization of BizTalk is very important. The designed

abstraction layers are causing components to only have knowledge about binding

information to a service bus. This binding is in the form of a web service, thus providing

the possibility to replace the BizTalk implementation by just replacing BizTalk and

mapping the web services to the newly in place architectural style.

Organizational change

Next to technically changing the architecture in place, it is very important to also

change some organizational aspects next to the identified responsibilities and decision

rights. The major change should be a mentality change because developers should start

using the Enterprise Service Bus and not work around that. Next to that, budgets need

to be made available for knowledge management around BizTalk. Because BizTalk is a

fairly complicated product, a lot of effort needs to be put in maintaining a „product

owner‟ and keeping knowledge available within Tam Tam.

Advantages and disadvantages

The first insight that comes forward from the experts

in the category advantages and disadvantages is that

every identified advantage can be translated into a

disadvantage and vice versa (#28). From the

interviews, the workflow-based approach came

forward as an additional advantage. A new

disadvantage is the single point of failure introduced

by using an Enterprise Service Bus.

Leads from interviews

Some leads are identified that needed some further research. First of all, rollback

mechanisms should be possible because otherwise when processes fail it is hard to retry

because some steps can already be carried out successfully. BizTalk does provide this

functionality by offering a „Compensation‟ building block for process orchestrations,

which allows undo functionality to be invoked. Secondly, the Windows Workflow

Foundation framework9 was mentioned but due to the decentralization possibilities it

was no competitor for BizTalk in the context of this project. Thirdly, it might be

advantageous to host several versions of the same web service on the same location. This

can be performed by adding new bindings to the configuration of web services. Lastly,

some error notification mechanisms need to be in place for alerting system

9 http://msdn.microsoft.com/en-us/netframework/aa663328

#28 Advantages always come
with counter parting
disadvantages and vise versa

70 | C h a p t e r 8 : E v a l u a t i o n o f r e s u l t s

administrators. This is available in BizTalk in the form of monitoring capabilities, which

allow a complete overview of all stopped and currently running elements in BizTalk by

the use of a database with all events in it.

Preliminary steps before implementation

Before the new architecture is to be implemented, a few elements have to be formalized.

This entails creating a naming scheme, creating transferable know-how and specifying

exactly what instances of what component have to run where.

| 71

Chapter 9: Evaluation of process

hus far, most of this thesis was focused on the way of achieving results. The next

step is to take a step backwards and see what can be learned from the process

itself. This chapter elaborates on several of the key activities by providing a short

recap on how the activities were performed and what the advantages and disadvantages

are in both this and in other contexts.

Before diving into the specific activities, the first step is to overlook the complete

process. The Agile Scrum way of working presented a clear insight in what should be

performed in how much time and provided an easy way to compose task packages for

pre-defined periods. The usefulness of this approach is limited to the ability to represent

tasks in the form of needed time, which proved to be an issue for some show stopping

research activities.

Although the Scrum approach is very helpful in

identifying the amount of effort necessary for

completing the identified tasks, the identification

of tasks on all levels was performed by scaffolding

the required work in a multi-level fashion. By

scaffolding all tasks, a communication means

presented itself because a framework within which

certain tasks needed to be performed became clear

(#29).

The specific key activities that are present in this thesis are shown in Figure 18, the

combination of those identified activities in a process flow resulted in the steps

necessary for a transition towards a new systems architecture for the specific Tam Tam

context. All identified activities are elaborated on in the following sections by

referencing back to elements from Chapter 3:‟Approach‟, the specific approach taken in

this thesis.

9.1 Choice for
Architectural
description

9.2 Choice for
Architectural

evaluation

9.3 Choice for
Architectural style

9.4 Choice for Design
methodology

9.5 Choice for IT
Governance

9.6 Transition plan

9.7 Choice for
Commercial Of The

Shelf product

9.8 Verification of
COTS choice

9.9 Implementation
strategy

Figure 18: Thesis process flow

T

#29 Scaffolding planned work
allows steps to be carried out
quickly. By using a framework
for the planned work, a
communication means is
created for planning and
assessing the work performed

72 | C h a p t e r 9 : E v a l u a t i o n o f p r o c e s s

9.1 Choice for Architectural description

A lot is dependent on the specific context of, and the specific perspective on, the

architecture that is studied. In the context of Tam Tam the goal was to reach the „next

step‟ of the internal systems architecture, where the specifics of the next step were far

from clear. In situations where more clarity is readily available the approach taken will

be a little different due to the identification of key characteristics and the substance to

be presented while defining the description methodology.

The nature of the Tam Tam context was that some knowledge was available at some

architects. This made the choice for an adaptable model in the form of a white board in

combination with iteration ideal. These iterations lead to a well-supported aggregated

collection of documentation from a wide variety of sources. In contexts in which less

architecture communication possibilities are present, it might be wise to skip the analog

white board model and directly create a digital visualization. By removing the analog

steps the amount of overhead is reduced while, in those contexts, still achieving a

complete picture.

The previously mentioned available knowledge presented a clear amount of clues that

could be used, such as to where to look for in the source code and keeping a focus on

component interactions. In situations with a lack of this knowledge, a breadth first

search solution would have been a better approach. This search would then result in a

web of components that presents the clues to investigate the relevant interactions

between components.

The perspective on the architecture used in this

context, the back-end behind components, was

explicitly defined in the approach. Other

perspectives can focus more specifically on other

aspects of the architecture. Although a wide variety

of architectural viewpoints from the literature were included in the comparison, a

change of perspective could cause more exclusive ways of visualization to be used in

other contexts. An example of this is the chosen process visualization due to the focus on

processes, with another focus the chance this viewpoint gets replaced is fairly big (#30).

9.2 Choice for Architectural evaluation

Although the calculation of the metrics can be seen as subjective, the reached result still

stands out. On the field of selecting the specific means and metrics, the perspective is

very important. Although these evaluation means can be of use in similar contexts, a

better fit will arise when the four presented steps are carried out to derive a context-

and perspective-specific version of the means and metrics.

In the evaluation iterations performed in this project, the majority of activities were

based on measuring instead of questioning. This was performed in such a way because

numerical values can more easily be compared than fuzzy statements like „a moderate

amount‟ or „within reasonable time‟.

#30 Definition of viewpoints
already presents a gentle
direction towards a solution

| 73

The iteration aspect of evaluation is an important step included from the Agile Scrum

methodology because a continuous reflection with the envisioned goal is performed. This

allows the identification of needed adjustments to the new architecture to be made

throughout the course of this project. By letting the evaluation come back at a regular

interval, the results of it can prove a worthy source of intelligence for decision making.

The inclusion of expert review sessions helped test the amount of support that will be

present when the designed architecture goes into production. Furthermore, these

sessions presented unbiased opinions on the future situation, which could be used as

reflection means. Key characteristic to look for in experts in other contexts is that they

have not been involved in the design in any way so they are not biased with regard to

the design.

9.3 Choice for Architectural style

A wide variety of different possible architectural styles have been listed. Although each

option can be used to emulate every other option, the step taken was to choose for that

alternative that presents the most saved time by its offered features.

The definition of trade-offs helped making a choice for the specific Tam Tam context in

such a way they could also be seen as the first few decisions for the design. While

performing the decision process, knowledge retrieved from the computer science domain

was mostly used for the identification of key differences.

In order to use the decision making process in other contexts, the identified trade-offs

can still be used for they present a means for classifying the different enterprise

application integration options. If the context in which a decision needs to be made is

very different than the Tam Tam context it is wise to supplement these trade-offs with

several additional ones to arrive at a decision more tailored to that specific context.

When a best fit style is chosen, there will still be discrepancies between the desired and

chosen style on some trade-offs. A way of taking this into account is to use another

„distance function‟ between two styles by, for example, giving higher weights to specific

trade-offs.

9.4 Choice for Design methodology

The focus on re-engineering has both advantages and disadvantages, first of all it helps

making the design assessable because all capabilities are stated explicitly by the

visualized architecture. Secondly, the negative side of the re-engineering focus is that it

limits future vision by limiting the capabilities by only allowing already existing

functionalities and processes.

On a methodological view, the process of straightening out the reference frame by posing

several key questions introduced much clarity for the design. The only steps remaining

are to fill in the leftover details in three different fields: technology, organization and

transition. This threefold proved a worthy choice but during the implementation several

decisions were still remaining to be made or undocumented. In this project, these

74 | C h a p t e r 9 : E v a l u a t i o n o f p r o c e s s

shortcomings were not that much of an issue

because the design and the major part of the

implementation were in the hands of the same

person. In situations where other people should

take over the implementation, a complete

specification can be advantageous but also limits

the freedom of the developers (#31).

The posed questions were not supposed to cover the complete design but to strive for the

idea that answers the posed questions would provide leads for the further design. With

these answers providing a foundation for the design, the multi-level scaffolding

approach is introduced again. First of all it is questioned what is desired to be reached

and secondly the way of reaching that goal is defined.

9.5 Choice for IT Governance

The design for organizational change was mostly created by using the MIT matrix

because said matrix specifies which areas of decision making rights and responsibilities

are to be divided. The matrix is designed to be reusable in other IT situations and

because it is at a reasonably abstract level, it can be used as communication means

between both business and technology people.

Within Tam Tam, a momentum of organizational change was already started by

outsourcing the system administration. On top of that, most of the responsibilities from

the matrix were already at the entities specified in the design so the role of the design

was to formalize them. The implementation of the desired rules and guidelines should

be continued with the explicit formalization as a central goal. How this transition should

be carried out is left outside of the scope of this project because of the very minor

differences between the ongoing momentum and the designed rules and guidelines.

9.6 Transition plan

The goal of crafting a transition path was to limit the necessary downtime by keeping

the exit strategies available. This focus on exit strategies was to enforce very small

actions to be executed to make the switch when the new architecture receives a full go-

ahead. The advantage of the crafted transition path in this situation is that it can both

be used for the complete architecture at once and for little chunks of the designed

architecture. Furthermore, it is created in such a way that it can be re-used in other

contexts by keeping the amount of specifics very low. The crafted transition path can

easily be used in situations with an Enterprise Service Bus and a Service Oriented

Architecture but perhaps also in other Enterprise Application Integration situations.

On a more specific level, a worthy addition to the transition path can be to add

„eavesdropping steps‟ to the currently executing processes. These listeners can be used to

log exactly what requests and responses are sent around to be used for testing the

service wrappers.

#31 More technological aspects
are possible to be designed
within the design instead of
only the core technology to be
used.

| 75

The main disadvantage of this transition path is that it is unknown how much time the

last step will take in situations with a lot of legacy code. In situations where less legacy

code is present, it becomes clear very rapidly what operations are blocked from

executing.

9.7 Choice for Commercial off-the-shelf product

The focus on the use of standards (BPEL, WSDL, etc…) limited the amount of

possibilities by a large number. Next to that, when a decision should be made in a

different context or by different people with other levels of experience, the resulting

product will differ.

The part that can be re-used is the proof of concept driven product choice. This makes

sure the chosen implementation form will work. By defining basic building blocks, the

different options can be compared to make a choice. Furthermore, the creation of proofs

of concept presented an insight into the characteristic differences between the different

products forming a basis for a well-supported decision.

The decision for BizTalk in this context came as a surprise because of the given carte

blanche and the fact that several attempts at BizTalk in the past have all failed. Due to

the proof of concept approach however, the success of this implementation decision can

be guaranteed with a great amount of certainty. The only thing that could have

prevented the success of BizTalk was the list of identified risks in the verification of the

choice, elaborated on in the next section.

9.8 Verfication of COTS choice

A choice for a specific product can be made fairly easily but a well-funded choice is the

next step on the ladder of correctness. The step that follows the choice for a COTS

product was to verify the decision to identify plausible future issues with the chosen

product.

To identify the possible issues, several brainstorm

sessions were carried out to identify a list of risks

that had to be mitigated before carrying on with the

implementation using BizTalk. Although very few

issues were still present during the implementation,

some more time should be invested to identify a

complete list of issues with their corresponding

mitigation plans (#32).

Within the context of this project it was an ideal option to use a risk analysis to verify

the choice, but taking a step backwards is fairly common practice for every choice that

should be made. Possible future failures should always be included in every decision.

9.9 Implementation strategy

#32 Deployment should be
under focus in the design too,
especially splitting it from
development

76 | C h a p t e r 9 : E v a l u a t i o n o f p r o c e s s

Due to the nature of the design process, several parts of the implementation were

already performed before the „actual‟ implementation actually started. By merging the

design and implementation in this way, it became clear that all designed requirements

were feasible. What was left in the implementation phase was merging the different

proof of concepts (#33).

When viewed from a project managerial

perspective, this approach is ideal because it

reduces the risk of insurmountable issues. For

other situations this hands-on driven „implement

while designing‟ approach is very interesting to

keep in mind, but the specific focus on re-

engineering here allowed such an approach to

succeed. For situations in which new architectures are to be made and the requirements

are not clear, this approach might not work because there will be a possibility that the

process will be stuck at the design stage.

What was missing in this approach is a step backwards to look at how the architecture

should be maintained instead of only looking at how it should be like.

#33 Inverse proportionality can
be identified between the time
spent while designing and the
time spent while implementing

Part V:

Conclusion,

wrapping up and contributions

Server

ServerServer

Users

Service Bus

Architecture

User

User

User

Server

ServerServer

Users

Service Bus

Design Documentation

MethodologyContribution
to Science

Contribution
to Tam Tam

Figure 19: What can be learned from the process and results

78 | C h a p t e r 1 0 : C o n t r i b u t i o n s

Chapter 10: Contributions

very new insight obtained in this thesis can be ascribed to one of two categories

of areas, either science or Tam Tam. This chapter reflects on the specific

contributions to both areas by elaborating on transferable and re-usable

knowledge and insights. The goal is to present those leads this thesis provides that both

science and Tam Tam are able to adopt. The first category of contributions, which is

elaborated on in the first section, is the possible elements that can be derived from this

thesis and adopted by science. After that, the second section presents the advantages

Tam Tam received by hosting this thesis project.

10.1 Science

10.1.1 Aggregated insights

During the core chapters of this thesis several insights have been listed which present

key learning points during the different stages of this thesis. Several sources of insights

that were present are knowledge management, available resources, hands-on driven

design, layered design, possibilities for adaptability and the use of scaffolding in all

stages. These learning points can be used both as preventing means as well as

explanatory means for common situations in other contexts.

10.1.2 ESB transition case study

In the relevant literature, documents describing carried out transitions to other forms of

Enterprise Application Integrations are very sparse. A possible explanation for this is

that most literature research only prescribes what should and should not be done while

carrying out such a transition. This lack of case studies is decreased by the provided

case study in this thesis.

10.1.3 Re-usable step-by-step approach

One of the key areas of focus of this thesis project was the process by which the results

were to be reached. Due to this focus, a re-usable step-by-step approach was crafted on a

theoretical foundation. One of the main aspects of this approach is that it is not static,

but it presents a dynamical way to transition a currently in use systems architecture

towards the best fitting Enterprise Application Integration style. The dynamical nature

comes forward from the main idea that in a different context other specifics are to be

adopted in every step taken.

10.1.4 Abstract ideas made tangible

The source of all taken steps lies in the available literature. This literature mainly

discusses abstract ideas. The feasibility of this literature is tested in this thesis by

carrying out the chosen steps. By carrying out said steps in a tangible real-life situation,

it becomes evident whether or not the theoretically designed actions are applicable in

practice. Furthermore, the gap between business and IT is bridged by linking the

E

| 79

abstract communication means to tangible solutions and presenting a way in which

business requirements can be translated into real-life IT solutions.

10.1.5 Compilation of EAI research

Because one of the main focuses of this thesis is to provide a theoretically backed

approach, several aspects of theory surrounding the Enterprise Application Integration

topic are explored. The decision for each methodology to be followed uses a wide variety

of possible alternatives in the comparison.

10.1.6 Scientific approach can tackle „recurring‟ problems

The approach taken in this occurrence of the transition towards an Enterprise Service

Bus by Tam Tam achieves the result that has been tried to achieve several times in the

past. The taken approach consists of balancing alternatives on every single step taken in

this thesis. This ensured the best possible fit was created for Tam Tam and it also

reached a certain amount of support for the design to be successful. Key lesson learned

here is that when a step backwards is taken, and extra time is invested, a successful

transition can be imminent.

10.2 Tam Tam

10.2.1 Continued effort towards an EAI

In the past, several attempts were made to reach an Enterprise Application Integration

solution. Most of the attempts failed and a new approach was searched for. The

approach taken in this thesis resulted in both a feasible design and a working

implementation. By carrying out the specified implementation plan further, future

efforts towards an EAI can be ceased.

10.2.2 Adaptability and flexibility

The introduction of a layered approach and the Enterprise Service Bus itself increases

both adaptability and flexibility of the architecture. Where in the current situation IT

was always one step behind the business requests, the newly designed situation allows

both to be leveled. Furthermore, the introduction of layers causes a very limited amount

of end-users noticing changes because back-end components can now more easily be

replaced with greatly reduced downtime.

10.2.3 Transferable BizTalk server 2010 knowledge

With the creation of tutorials for every task that has to be performed with BizTalk,

know-how concerning BizTalk can easily be shared. This shared knowledge presents

incentives for two actions. The first is that understanding can be created about what has

been implemented in what way and the second is that BizTalk requests of customers can

be fulfilled instead of being rejected.

80 | C h a p t e r 1 0 : C o n t r i b u t i o n s

10.2.4 Communication means for current architecture

Before a design could be made for the new architecture, the current architecture had to

be thoroughly understood. Due to the created documentation of the current architecture,

a communication means was created. This means for communication can be, and has

been, used for identifying what functionality is offered how. Furthermore, the created

communication means presented a starting point for designing what the future situation

should look like.

10.2.5 Single point of contact

The introduction of an Enterprise Service Bus introduces a common knowledge of all

available functionality. All offered functionalities are listed in a single location

independent to the inner workings of these functionalities. This presents means for

exposing functionalities both within Tam Tam as well as outside of Tam Tam. The other

way around is valid too, by listing all functionalities in a single place only one place has

to be allowed to connect to entities outside of Tam Tam.

10.2.6 Implementation plan to the „next level‟

One result of the step-by-step approach towards the next level is a clearly specified

implementation plan. This plan, with specified atomic tasks, can be followed to achieve

the designed improvements.

| 81

Chapter 11: Conclusion

ew attempts to move from an ad-hoc based systems architecture towards a

fitting Enterprise Application Integration style came and went within Tam

Tam. After most of these attempts failed, a rigorous alternative approach was

longed for. This thesis project fulfilled this need by starting with a carte blanche to

investigate the question:

“How can Tam Tam benefit from the theoretically „logical‟

next step for the internal systems architecture?”

To be able to answer the stated question, seven different research parts have been

identified with their results elaborated on in chapters 2 through 9. A summary of each of

these research parts is presented in the next section. In the section following the

summaries, several leads for further work are identified.

11.1 Summarizing research parts

11.1.1 What does the current situation look like?

To gain an understanding of the current situation, Chapter 2: „Current Situation‟

describes the extract, abstract & present threefold used as iteration elements. By

including additional sources of information in each iteration of the threefold, a complete

mental image could be created. The next step was to make this mental image

communicable by defining means of visualization understandable to both business

people as well as IT people. This definition was created by thoroughly comparing the

different possibilities and selecting a hybrid form consisting of elements of different

frameworks and architectural description languages. After three selected viewpoints

were completely visualized, the last step was to gain an understanding about the

rationale for the desire for change. This rationale was formed from the acquired insight

into the architecture as well as the a priori posed requirements.

11.1.2 What lessons can be learned from previous attempts at creating an

integrated architecture?

During the process of understanding the current situation, several previous attempts for

reaching a new systems architecture were identified. These identified previous attempts

are elaborated on in Chapter 3: „Approach‟ by providing the goals and possible reasons of

failure for all of them. These reasons of failure presented invaluable lessons learned that

were used as main drivers for the approach taken in this thesis.

11.1.3 How can different architectures be compared?

The last step of the surrounding environment in which the new design is to be created,

is the definition of means and metrics for comparing architectures elaborated on in

Chapter 4: „Evaluation of architectures‟. The way in which architectures are compared

in this thesis consists of comparing a diverse variety of architecture and software

N

82 | C h a p t e r 1 1 : C o n c l u s i o n

evaluation related literature. The approach used here is a defined four-step plan. The

first step was to define the perspective from which the architectures should be viewed.

The second step was the definition of objectives that should be reached with the new

architecture. These objectives were translated into plausible scenarios in the third step

and the last step was to derive quantitative metrics from the scenarios.

11.1.4 What is the theoretically „logical‟ next step for Tam Tam?

The process of identifying the theoretically „logical‟ next step is divided into two parts.

First of all Chapter 5: „Choice for architectural style‟ decides on the architectural style,

after which Chapter 6: „Future architecture design specifics‟ lists the design specifics. To

decide on the architectural style, a framework is used for comparing architectural styles

based on the definition of trade-offs. These trade-offs represent continua of

characteristics on which available alternatives can be mapped. All identified Enterprise

Application Integration alternatives are mapped on the combined trade-off vectors. The

vector for an Enterprise Service Bus has the least distance from the desired vector

defined by the Tam Tam architects so this style is chosen. Some slight differences

between both vectors were mitigated to create the best fitting solution.

The design specifics were decided on by answering a selected set of questions to give the

scaffolding for the implementation more form. The next step was to define which

functionalities should be offered in what place and how. To give the purely technical

design more momentum, organizational rules and a transition path have been defined to

enforce the successful adoption of the designed architecture within Tam Tam.

11.1.5 Is the designed next step feasible in practice?

To test the design for feasibility, the theoretical designed systems architecture is linked

to the practice in Chapter 7: „Implementation‟. The implementation plan used has a

focus on exit strategies by providing several opportunities for reflecting on the chosen

path. The first step in this path was to choose a Commercial off-the-shelf product that

should reduce the time necessary for implementation. After having experimented with

several products to implement the basic building blocks necessary for the design to be

implemented, BizTalk seemed to be the best option. This choice is reflected upon by

carrying out a risk analysis, which should prevent the decision for BizTalk to be

regretted due to future requirements. After mitigation plans have been created for the

plausible future requirements, the choice for BizTalk was made final and several parts

of the design have been implemented according to a defined list of atomic

implementation steps.

11.1.6 What advantages and disadvantages does the new architecture offer?

After having implemented several processes which cover all different aspects of the

design, the partial new situation is reflected upon to derive the benefits and drawbacks

in Chapter 8: „Evaluation of results‟. In said chapter a summary is given of several of the

evaluation iterations carried out throughout the project. These iterations were

introduced to allow adjustment of the direction at several points. The summarized

results are extended with the addition of the most thorough instance of the evaluation

| 83

iterations by carrying out the scenario analysis and valuating the defined metrics. After

this last iteration, advantages and disadvantages have been identified and some

unbiased experts were invited to participate in evaluation sessions. From these sessions

several insights were derived which are used in the implementation process that took

place after the go/no-go decision was made. Several advantages were identified, ranging

from an introduced single point of contact through transferable BizTalk server 2010

knowledge to future evolution possibilities.

11.1.7 How can pieces of the chosen process be used in other contexts?

The process followed, resulting in the results of the previous questions, is evaluated in

Chapter 9: „Evaluation of process‟. The nature of every step, which the taken process is

composed of, is very abstract. These abstract steps can only be used in other contexts

after the key characteristics have been tailored to the specific context within which the

steps are to be used. From this need for adaption to a specific context, it is derived that

the major part of the followed process can be easily re-used in other scenarios. The only

exception is the taken transition path, this can most probably only be used in contexts

with service oriented designs.

11.2 Further research leads

When a step backwards is taken from the work performed in this thesis to look at a

broader scope, several elements can be identified that need further research. Each of

these elements is elaborated on shortly.

- The sketched methodology should be tested with other cases and in other

contexts. Because the methodology is only used in a single context it still needs

verification on the usage in other contexts

- How can big IT governance changes be introduced? In the current context the

amount of IT governance changes that had to be introduced was very limited.

Research has to be performed to figure out how major governance changes can be

put into practice

- The influence of selected visualization means on the design and vice versa. As

was noted as a learning point, the selection of the processes viewpoint had an

influence on the use of orchestrations. It might be that more general causalities

for this relation exist or that choices for viewpoints are influenced by the wishes

of clients.

- Re-usage of the four-step evaluation methodology. The four-step evaluation

methodology presents a step-by-step approach for defining the evaluation means

and metrics. Research could be performed into the re-usage of this four-step

methodology for other fields where designs are made for elements subject to

change.

- Are the defined architectural style trade-offs representative for Enterprise

Application Integration? Research effort could be investigated in verifying

whether the defined trade-offs offer enough support for every context or if this set

of trade-offs is only usable in a similar context as this project.

84 | C h a p t e r 1 1 : C o n c l u s i o n

- Can a taxonomy be created that classifies available designs? The approach of

asking strategic questions used in this context might be generalized by

formulating a taxonomy that classifies all available options.

- Formalizing the complete step-by-step approach. By formalizing the step-by-step

approach, the same objective can be reached in other scenarios and contexts.

Before being able to formalize the approach, several of the previous future work

elements need to be carried out to achieve a well-supported formalization.

| 85

References

Abowd, G., Bass, L., Clements, P., Kazman, R., & Northrop, L. (1997). Recommended

Best Industrial Practice for Software Architecture Evaluation. CMU/SEI-96-TR-

025.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., et al. (2007). Web

Services Business Process Execution Language Version 2.0. OASIS.

Armour, F., & Kaisler, S. (2001). Enterprise Architecture: Agile Transition and

Implementation. IEEE IT Professional, volume 3 issue:6, 30-37.

Assmann, M., & Engels, G. (2008). Transition to Service-Oriented Enterprise

Architecture. In R. Morrison, D. Balusubramaniam, & K. Falkner, Software

Architecture - Lecture Notes in Computer Science (pp. 346 - 349). Springer Berlin

/ Heidelberg.

Babar, M., Zhu, L., & Jeffery, R. (2004). A framework for classifying and comparing

software architecture evaluation methods. Software Engineering Conference,

2004. Proceedings. 2004 Australian (pp. 309 - 318). IEEE Computer Society

Washington, DC, USA ©2004.

Basili, V., Caldiera, G., & Rombach, H. (1994). The Goal Question Metric Approach. In

J. Marciniak, Encyclopedia of Software Engineering (pp. 528 - 532). John Wiley &

Sons.

Boehm, B. (1991). Software Risk Management: Principles and Practices. IEEE Software,

volume 8 issue:1, 32 - 41.

Boehm, B., & DeMarco, T. (1997). Guest Editors' Introduction: Software Risk

Management. IEEE Software, volume 14 issue:3, 17 - 19.

Boehm, B., & Port, D. (2001). Educating software engineering students to manage risk.

Proceedings of the 23rd International Converence on Software Engineering (pp.

591 - 600). Washington, DC: IEEE Computer Society.

Bots, P. (2002). Introduction to Systems Engineering and Policy Analysis: A practical

guide to systematic problem solving. Delft: Delft University of Technology,

Faculty of Technology Policy and Management.

Brisebois, R., Boyd, G., & Shadid, Z. (2007). What is IT Governance and Why is it

Important? 5th Performance Seminar of the INTOSAI IT Standing Committee,

(pp. 30-35).

Channabasavaiah, K., Holley, K., & Tuggle, Jr., E. (2003, 12 16). Migrating to a service-

oriented architecture, Part 2. Retrieved 11 11, 2010, from IBM developerWorks:

http://www.ibm.com/developerworks/library/ws-migratesoa2/

86 | R e f e r e n c e s

Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007, June 26). Web

Services Description Language (WSDL) Version 2.0 Part1: Core Language.

Retrieved January 2011, 2011, from W3c: http://www.w3.org/TR/wsdl20/

Clements, P., & Northrop, L. (1996). Software Architecture: An Executive Overview.

Hanscom AFB.

de Haes, S., & van Grembergen, W. (2005). IT Governance Structures, Processes and

Relational Mechanisms: Achieving IT/Business Alignment in a Major Belgian

Financial Group. Proceedings of the 38th Annual Hawaii International

Conference on System Sciences. IEEE Computer Society.

de Leusse, P., Periorellis, P., & Watson, P. (2007). Enterprise Service Bus: An overview.

Newcastle upon Tyne: University of Newcastle upon Tyne.

Deepview case study. (2010, 1 4). SOA in practice: IBM uses an integrated approach.

Retrieved 11 5, 2010, from IBM: http://www-

01.ibm.com/software/success/cssdb.nsf/CS/CHUY-

7YTKXL?OpenDocument&Site=default&cty=en_us

Deursen, A. v., Hofmeister, C., Koschke, R., Moonen, L., & Riva, C. (2004). Symphony:

View-Driven Software Architecture Reconstruction. Proceedings Fourth Working

IEEE/IFTP Conference on Software Architecture (WICSA 2004) (pp. 122-132).

Oslo: Centrum voor Wiskunde en Informatica.

Dobrica, L., & Niemel, E. (2002). A Survey on Software Architecture Analysis Methods.

IEEE Transactions on Software Engineering, volume 28 issue:7, 638 - 653.

Durchslag, S., Donato, C., & Hagel, J. (2001). Web Services: Enabling the Collaborative

Enterprise. San Fransisco: Grand Central Networks Inc.

Educause Centre for Applied Research. (2004). IT Governance. IT Alignment in Higher

Education, volume 3, 57-66.

Emmerich, W. (2000). Software engineering and middleware: a roadmap. Proceedings of

the Conference on The Future of Software Engineering (pp. 117-129). Limerick:

ACM.

Erasala, N., Yen, D., & Rajkumar, T. (2003). Enterprise Application Integration in the

electronic commerce world. Computer Standards & Interfaces, volume 25 issue:2,

69-82.

Gallagher, K., Hatch, A., & Munro, M. (2008). Software Architecture visualization: An

Evaluation Framework and Its Application. IEEE Transactions on Software

Engineering, volume 34 issue:2, 260-270.

Goel, A. (2006). Enterprise Integration --- EAI vs. SOA vs. ESB. Infosys Technologies

White Paper.

| 87

Grundy, J. (2001). Software Architecture Modelling, Analysis and Implementation with

SoftArch. 34th Annual Hawaii International Conference on System Sciences

(HICSS-34) (p. 9051). Maui: IEEE Computer Society.

Grundy, J., & Hosking, J. (2000). High-level static and dynamic visualisation of software

architectures. Proceedings of 2000 IEEE Symposium on Visual Languages (pp. 5-

12). Seattle: IEEE Computer Society.

Grundy, J., & Hosking, J. (2003). SoftArch: tool support for integrated software

architecture development. International Journal of Software Engineering and

Knowledge Engineering, volume 13 issue:2, 125-151.

Hagel, J., & Brown, J. S. (2001). Your Next IT Strategy. Harvard Business Review,

volume 79 issue:9, 105-113.

Hardy, G. (2003). Coordinating IT Governance - A New Role for IT Strategy Committees.

Information Systems Control Journal, volume 4.

Hazra, T. (2002). Building enterprise portals: principles to practice. Proceedings of the

24th International Conference on Software Engineering (pp. 623 - 633). Orlando:

ACM New York.

ISO/IEC 28500. (2008). Corporate governance information technology. ISO/IEC.

Janssen, M., & van Veenstra, A. (2005). Stages of Growth in e-Government: An

Architectural Approach. The Electronic Journal of e-Government, volume 3

issue:4, 192 - 200.

Janssen, M., Gortmaker, J., & Wagenaar, R. (2006). Web Service Orchestration in Public

Administration: Challenges, Roles, and Growth Stages. Information Systems

Management, volume 23, 44 - 55.

Johannesson, P., & Perjons, E. (2001). Design Principles for Process Modeling in

Enterprise Application Integration. Information Systems, volume 26 issue:3, 165

- 184.

Kazman, R., & Carrière, J. (1999). Playing Detective: Reconstructing Software

Architecture from Available Evidence. Automated Software Engineering, volume

6 issue:2, 107-138.

Kazman, R., Abowd, G., Bass, L., & Clements, P. (1996). Scenario-based analysis of

software architecture. Software, IEEE, volume 13 issue:6, 47 - 55.

Kazman, R., Klein, M., & Clements, P. (2000). ATAM: Method for Architecture

Evaluation. Pittsburgh: Carnegie Mellon University.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., et al. (2004).

Patterns: Implementing an SOA Using an Enterprise Service Bus. IBM

Redbooks.

88 | R e f e r e n c e s

Keil, M., Cule, P., Lyytinen, K., & Schmidt, R. (1998). A framework for identifying

software project risks. Communications of the ACM, volume 41 issue:11, 76 - 83.

Kruchten, P. (1995). Architecture blueprints- the '4+1' view model of software

architecture. IEEE Software, volume 12 issue:6, 42-50.

Kruchten, P., Selic, B., & Kozaczynski, W. (2001). Describing Software Architecture with

UML. Proceedings of the 23rd International Conference on Software Engineering

(pp. 715-716). Toronto: IEEE Computer Society.

Lam, W. (2005). Investigating success factors in enterprise application integration: a

case-driven analysis. European Journal of Information Systems, volume 14

issue:2, 175-187.

Lankhorst, M. (2004). ArchiMate Language Primer. Enschede: Telematica Instituut.

Lassing, N., Rijsenbrij, D., & van Vliet, H. (1999). The goal of software architecture

analysis: confidence building or risk assessment. Proceedings of the 1st Benelux

Conference on State-of-the-art of ICT architecture (p. 6p). Amsterdam: Vrije

Universiteit, Amsterdam.

Leenslag, W. (2006). Werkwijze ter beoordeling van IT governance. Enschede:

Universiteit Twente.

Leist, S., & Zellner, G. (2006). Evaluation of current architecture frameworks.

Proceedings of the 2006 ACM symposium on Applied computing (pp. 1546-1553).

Dijon: ACM.

Lindvall, M., Tvedt, R., & Costa, P. (2003). An Empirically-Based Process for Software

Architecture Evaluation. Empirical Software Engineering, volume 8 issue:1, 83 -

108.

Lung, C.-H., & Kalaichelvan, K. (2000). An Approach to Quantitative Software

Architecture Sensitivity Analysis. International Journal of Software Engineering

and Knowledge Engineering, volume 10 issue:1, 97 - 114.

Mazumder, S. (2006). SOA: A Perspective on Implementation Risks. SETLabs Briefings.

McKeen, J., & Smith, H. (2002). New Developments in Practice II: Enterprise

Application Integration. Communications of the Association for Information

Systems, volume 8 issue:1, 451-466.

Menge, F. (2007). Enterprise Service Bus. Free and open source software conference,

(pp. 1 - 6).

Meredith, J., & Mantel, S. (2009). Project Management: A Managerial Approach; 7th

International student edition. John Wiley & Sons Ltd.

Microsoft Patterns & Practices Team. (2009). Microsoft Application Architecture Guide

(Patterns & Practices), 2nd Edition. Microsoft Press.

| 89

Natis, Y. (2003). Service-Oriented Architecture Scenario. Gartner, Inc.

Papazoglou, M., & Ribbers, P. (2006a). e-Business: Organizational and Technical

Foundations. Chichester: Wiley.

Papazoglou, M., & van den Heuvel, W.-J. (2006b). Service-Oriented Design and

Development Methodology. International Journal of Web Engineering and

Technology, volume 2 issue:4, 412 - 442.

Papazoglou, M., & van den Heuvel, W.-J. (2007). Service oriented architectures:

approaches, technologies and research issues. International Journal on Very

Large Data Bases, volume 16 issue:3, 389 - 415.

Perry, D., & Wolf, A. (1992). Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, volume 17 issue:4, 40-52.

Petre, M., Blackwell, A., & Green, T. (1998). Cognitive questions in software

visualization. In J. Stasko, J. Domingue, M. Brown, & B. Price, Software

visualization: Programming as a multimedia experience (pp. 453-480).

Cambridge: The MIT Press.

PricewaterhouseCoopers. (2006). IT Governance in Practice: Insight from leading CIOs.

PricewaterhouseCoopers.

Rau, K. (2004). Effective Governance of IT: Design Objectives, Roles and Relationships.

Information Systems Management, volume 21 issue:4, 35-42.

Richardson, G., Jackson, B., & Dickson, G. (1990). A Principles-Based Enterprise

Architecture: Lessons from Texaco and Start Enterprise. MIS Quarterly, volume

14 issue:4, 385-403.

Ross, J. (2003). Creating a Strategic IT Architecture competency: Learning in Stages.

Massachusetts Institute of Technology (MIT), Sloan School of Management.

Sambamurthy, V., & Zmud, R. (1999). Arrangements for Information Technology

Gorvernance: A Theory of Multiple Contingencies. MIS Quarterly, volume 23

issue:2, 261-288.

Schmidt, M.-T., Hutchinson, B., Lambros, P., & Phippen, R. (2005). The Enterprise

Service Bus: Making service-oriented architecture real. IBM Systems Journal,

volume 44 issue:4, 781-797.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying Software Project

Risks: An International Delphi Study. Journal of Management Information

Systems, volume 17 issue:4, 5 - 36.

Simonsson, M., & Johnson, P. (2006). Defining IT Governance -- A Consolidation of

Literature. Stokholm: Royal Institute of Technology (KTH).

90 | R e f e r e n c e s

Smolander, K., Hoikka, K., Isokallio, J., Kataikko, M., Mäkelä, T., & Kälviäinen, H.

(2001). Required and Optional Viewpoints - What Is Included in Software

Architecture?

Trowbridge, D., Roxburgh, U., Hohpe, G., Manolescu, D., & Nadhan, E. (2004).

Integration Patterns. Microsoft.

Webber, J. (2005). Guerilla SOA: How to fight back when a vendor tries to take control

of your enterprise.

Weill, P. (2004). Don't Just Lead, Govern: How Top-Performing Firms Govern IT. MIS

Quarterly Executive, volume 8 issue:1.

Weill, P., & Ross, J. (2004a). IT Governance on One Page. MIT Sloan Management

Review.

Weill, P., & Ross, J. (2004b). IT governance: how top performers manage IT decision

rights for superior results. Harvard Business Press.

Weill, P., & Ross, J. (2005). A Matrixed Approach to Designing IT Governance. MIT

Sloan Management Review, volume 46 issue:2, 25-34.

Weill, P., & Woodham, R. (2002). Don't Just Lead, Govern: Implementing Effective IT

Governance. MIT, Sloan School of Management.

White, S. (2004). Introduction to BPMN. IBM Cooperation.

Wikipedia Community. (2010). Orchestration (Computing). Retrieved January 31, 2011,

from Wikipedia: http://en.wikipedia.org/wiki/Orchestration_(computing)

Wikipedia Community. (2010). Universal Description Discovery and Integration.

Retrieved January 31, 2011, from Wikipedia:

http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

Wikipedia Community. (2011). ACID. Retrieved March 11, 2011, from Wikipedia:

http://en.wikipedia.org/wiki/ACID

Zachman, J. (1999). A framework for information systems architecture. IBM Systems

Journal, volume 26 issue:3, 454-470.

| 91

Abbreviations

ACID ~ Atomicity, Consistency, Isolation and Durability

BPEL ~ Business Process Execution Language

CIO ~ Chief Information Officer

COTS ~ Commercial off-the-shelf

CRM ~ Customer Relationship Management

DB ~ Database

DNS ~ Domain Name System

EAI ~ Enterprise Application Integration

ESB ~ Enterprise Service Bus

GAC ~ Global Assembly Cache

HRM ~ Human Resource Management

IIS ~ Internet Information Services

ODE ~ Orchestration Director Engine

QoS ~ Quality of Service

SOA ~ Service Oriented Architecture

SQL ~ Structured Query Language

SSO ~ Single sign-on

UDDI ~ Universal Description Discovery Integration

UML ~ Unified Modeling Language

URL ~ Uniform Resource Locator

WCF ~ Windows Communication Foundation

WF ~ Windows Workflow Foundation

WSDL ~ Web Service Definition Language

XML ~ Extensible Markup Language

92 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

Appendix A: Description of the current

situation

The focus of this appendix is to create insight in the context used in this thesis; this

appendix presents the description of the current architecture with the means defined in

Chapter 2:‟Current Situation‟. The way this appendix is divided is by first looking at

several identified life cycles within Tam Tam and describing all processes surrounding

those. After that, the identified components are elaborated on and their relation with

the individual processes is explained. The last two sections discuss the low-level

interactions between components and a global overview of the architecture currently in

place.

A. Starting point: life cycles

Within Tam Tam several life cycles are in place, these are identified high-level

workflows represented by a concatenation of different processes. First of all these life

cycles are presented after which the specific processes that form the cycles are described

shortly.

Employee life cycle

The employee life cycle presents the whole contact period of an employee with Tam Tam.

Starting from their first contact in the form of job interviews via becoming and being an

employee to the moment the employee quits their job to search for a challenge

elsewhere.

New Applicant
Promote applicant

to employee
Personal

development plan
Employee quits

Figure 20: Employee life cycle

Customer life cycle

The second life cycle presents the process starting with acquiring new customers

through offering opportunities to them and carrying out projects for those customers.

The last step, found in the next cycle, is handing over the created products and services

to the service and support department.

| 93

New customer
New customer

contact
New opportunity

Close opportunity New project Close project

Figure 21: Customer life cycle

Service life cycle

After projects are carried out for customers and new products are delivered, usually the

„operational services‟ department of Tam Tam takes over the project and provides

postproduction maintenance and services. Inherent part of this is keeping track of issues

that popped up while using the product.

Handover project to
supporting service

Keep track of new
issues

Fix issues

Figure 22: Service life cycle

Administrative life cycle

Another category is supporting the employees to keep performing work for Tam Tam‟s

customers by carrying out the administrative tasks surrounding the other processes.

This life cycle includes processes that keep the cash flow within Tam Tam going.

Create monthly
invoices batch

Verify invoices with
team leaders

Send invoices
Add invoices to

accounting

Verify booked hoursBook worked hoursBook worked hours

Figure 23: Administrative life cycle

B. Search for individual processes

Table 13 presents all processes that are present in the life cycles as well as additional

processes that exist around the life cycles but are not part of the „main flow‟ in the

specified life cycles. In this table the goal of each of the processes is given. Some

processes are indicated with a sign: a percent (%) indicates that the process is carried

out on external systems; a star (*) indicates that the process is not carried out; and an

94 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

ampersand (&) indicates that the process is carried out by hand. The next section lists

for each component what processes are using that specific component; this information

is used as a starting point to describe the component orchestration.

Table 13: Identified processes

Life Cycle Process Id Goal

Employee New applicant% #1 Store applicant details and progress

of job interviews

 Promote applicant to

employee

#2 Hire the employee, store details and

create user accounts

 Personal development

plan&

#3 Six-monthly iteration of knowledge

and plans of employees, supported

by a SharePoint workflow

 Employee quits #4 Employee stops working at Tam

Tam, all information except

administrative details should be

removed

Customer New customer #5 Customers are added to the CRM to

assign contacts, opportunities and

projects

 New customer contact #6 Contact details of customer

employees are saved to enable

contact

 New opportunity #7 Create place to store internal

documents about offerings to

customers

 Close opportunity* #8 When an offering is

accepted/rejected an opportunity

can be closed down

 New project #9 In the case an offering is accepted, a

place for communicating documents

and progress with customers is

created

 Close project #10 After development is finished the

project site can be closed down

Service Hand over project to

supporting service&

#11 To be able to provide services for

projects, the service department

should be taught what the product

does and how it works

 Keep track of new issues #12 Whenever a customer encounters a

bug or deficit in the product an

issue should be created

 Fix issues #13 The progress of fixing issues is kept

track of

Administrative Book worked hours #14 Tracking worked hours is necessary

for sending correct invoices to

customers

 Verify booked hours& #15 Team leaders have to confirm the

correctness of the declared bookings

 Create monthly invoices

batch

#16 At the end of each month invoices

are created to be send to customers

| 95

 Verify invoices with team

leaders&

#17 After the invoices are crafted they

have to be checked

 Send invoices& #18 The invoices are printed and send

to customers

 Add invoices to accounting #19 The last step is to keep track of

which invoices are paid and send

reminders

Additional Customer contact logs in

for the first time

#20 A customer contact needs to verify

its email address and set a

password to be able to log in to the

Customer Portal SharePoint and

Issue Tracker

 Customer contact logs in #21 Customer contact credentials need

to be verified

 Change customer details #22 If a customer is changed, the details

should be changed in several places

 Change customer contact

details

#23 If a customer contact is changed,

the details should be changed in

several places

 Change opportunity

details

#24 When an opportunity is changed,

the URL to be used to communicate

with the customer should be

changed as well

 Change project details #25 When a project is changed, the URL

to be used to communicate with the

customer should be changed as well

 Create budgets for service

department

#26 Before being able to book hours to

issues a budget needs to be initiated

 Book lunch and travel #27 To keep track of declarations,

employees must fill in lunch

participation and travel

declarations

 Pay salary #28 Employees need to be paid every

month in proportion to work

performed

 Change Employee details #29 When information about an

employee change it has to be

changed in several locations

C. Identification of components

The components section is divided into three different parts representing the three

different specimens of components in place in the current architecture. The first part

discusses the databases in place, the second are applications and the third are the

services and supporting peripherals. Each component lists by which processes it is used,

this usage is used in the fourth section of this appendix by visualizing component usage

in executing specific processes.

96 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

Databases

All databases that are in place are elaborated on and Table 14 presents the specific

database details.

Administration DB

The Administration DB used to be the core database of Tam Tam, all data was stored in

this one place. Recently several things have changed with this set-up by moving

employee, customer and customer support data to separate databases. At the moment

the Administration DB still acts as a portal to some data from those separate databases

by „linking‟ the databases.

HRM DB

The HRM DB was crafted in conjunction with the HRM application and serves the goal

to store all employee data which does not change much. This category of employee data

includes personal details, terms of employment, salary scale and vacation days. Data

which changes regularly is represented by the booked hours which the employee has

worked for a specific purpose. This dynamic data is stored in the administration

database.

CRM DB

The CRM DB is the place in which all customer contact is stored. Per customer,

customer contacts can be added representing the employees of a specific customer with

whom Tam Tam has ties.

IssueTracker DB

The IssueTracker DB is used to store all bugs and feature requests from customer

contacts. The service department within Tam Tam carries out the created requests and

hereby uses this database for keeping track of their progress and communicates with

customer contacts about specific requests.

CustomerPortal DB

The CustomerPortal DB acts as a message oriented service bus, the actions that are

stored on this message bus are SharePoint operations. This is done because SharePoint

operations usually take too much time in executing to let users wait for the completion.

This database is also used for storing one time keys for customer contact account

activation.

Data Ware House

The data ware house presents opportunities for checking Tam Tam‟s operations. This is

done through specific business intelligence functions which report about data in the

several databases (linked through the administration database).

| 97

Customer Portal SharePoint DB & Portal SharePoint DB

The SharePoint databases are used to store all SharePoint data, including pages and

workflows. For example the personal development process workflow is carried out in the

SharePoint portal database.

Table 14: Identified database details

Database Runs on Contains Used in

Administration DFT-SQL-001 Projects, booked

hours, declarations,

budgets and invoice

data

#5, #9, #10, #14,

#16, #22, #25, #26,

#27, #28

HRM DFT-SQL-003/hrm Employee info,

terms of

employment, bonus

information and

personal

development plan

#2, #3, #4, #28, #29

CRM DFT-SQL-003 Customers,

customer contacts

and opportunities

for customers

#6

IssueTracker DFT-ISSUE-

(010/011)

Issues reported by

customer contacts

for projects

Only outgoing calls

CustomerPortal DFT-SQL-003/prod Queue for customer

SharePoint

operations and one

time keys for

customer contact

account activation

#7, #9, #20, #22,

#24, #25

Data Ware House DFT-SQL-004 Business

intelligence data

#27

Customer Portal SP DFT-SQL-003 SharePoint data Dedicated DB

Portal SP DFT-SQL-010 SharePoint data Dedicated DB

Applications

All applications that are in place are elaborated on and Table 15 presents the specific

details.

CRM

The CRM application is used to manage customer and customer contact details. Next to

that it is used to create opportunity sites. Several CRM plugins are in place which take

care of callouts to the CustomerPortal web Service when certain operations are

executed.

98 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

CustomerPortal Auth App

The CustomerPortal Auth App is an extension to a Microsoft ISA server and can be seen

as the castle gate that serves the function to only let through legit employees and

customer contacts to internal applications. The ISA server takes care of the

authentication and the CustomerPortal Auth App of the authorization.

IssueTracker

This application is the issue tracker that employees and customer contacts use to post

(comments to) issues to be fixed by the service department. Next to that this application

is used to book hours to certain budgets so those hours can be declared through invoices

send to customers.

Project Toolkit

The project toolkit is used to create new projects, when these projects are created a site

creation action is passed to the CustomerPortal web Service. Additional tasks of the

project toolkit are the creation of budgets and changing key information about projects,

i.e. lead developer/responsible people.

Queue Runner

The queue runner pops the „slow‟ operations from the queue in the CustomerPortal DB

and carries them out. These operations range from the creation of project sites to

updating customer details in the Customer Active Directory.

Hours Application

The Hours application is the main place where employees indicate the number of hours

they have worked and under what category those hours belong. The second part of this

application allows employees to indicate on which days they have joined the company

lunch and declare their work-home and home-work kilometers.

Facturering

The Facturering application creates the opportunity for the finance department to

automatically create the batch of invoices for specific months. Next to that it can be used

to see and edit specific invoices. When an invoice batch is created, the output is a set of

PDF files on a pre-defined network share and an XML file to be imported into the

accounting software.

HRM Application

This specifically crafted application for the HRM department allows HR employees to fill

in new employees and keep track of their progress as employees. Important elements of

this application are a lot of data showing features, i.e. what are upcoming birth days or

employee contract ends.

| 99

ADP

ADP is an externally licensed application in which the payroll information is stored by

the finance department.

Exact

Exact is the externally licensed application for the finance department to manage Tam

Tam financial goods. Invoices are imported in here through the use of XML exports

generated by the Facturering application.

Portal SP

This application presents the spine of the intranet used within Tam Tam. One of the

workflows present in this application is the Personal Development Plan workflow that

indicates what steps should be taken in what order to complete the six-monthly

employee evaluation process.

Customer Portal SP

This application presents the spine of the project pages used by Tam Tam to store

documents about carried out projects. Customer contacts use this application too for

commenting on the stored documents and collaborating with Tam Tam employees.

Table 15: Identified application details

Application Runs on Performs Used in

CRM DFT-CRM-003 Manage customer

and customer

contact details

#5, #7, #22, #23,

#24

CustomerPortal

Auth App

DFT-INT-004 The gate through

which all external

users need to pass to

gain access to Tam

Tam internals

#20, #21

IssueTracker DFT-ISSUE-001 Keeping track of the

progress of fixing

issues

#14

Project Toolkit DFT-INT-002 Creation and closing

of project sites and

creating budgets for

projects / services

#9, #10, #25, #26

Queue Runner DFT-INT-003 Carries out „slow‟

operations with the

CustomerPortal

SharePoint server

#7, #9, #22, #24,

#25

Hours Application DFT-ISSUE-001 Allows employees to

book hours and

indicate lunch

participation and

travel details

#14, #27

100 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

Facturering DFT-FIN-001 Allows users to look

up invoices and

details about those

invoices

#16

HRM DFT-INT-002 Enables all HRM

processes

#2, #3, #4, #29

ADP EXTERNAL Managing the salary

paying process and

progress

#2, #29

Exact EXTERNAL Accounting

application

#19

Portal SP DFT-INT-002 Program that forms

the backbone of the

intranet in place

within Tam Tam

#3

Customer Portal SP DFT-INT-

(003/004/005)

Main part of the

project pages used to

communicate with

customers about

projects

#7, #9, #22, #24,

#25

Services and supporting peripherals

All services and supporting peripherals that are in place are elaborated on and Table 16

presents the specific details.

IssueTracker web Service

This web service provides the opportunity to contact the issue tracker functionality from

other components. It provides means to add and edit customer details. The customer

details are stored in the CRM database, but since the issue tracker is a stand-alone

application it should be kept in sync to allow CRM customer contacts to log in to the

IssueTracker as well. This knowledge is used to allow contacts to interact about certain

service agreements.

CustomerPortal web Service

This web service can be seen as the center point in the web of customer related

operations; it takes care of queuing SharePoint operations, updates active directory

details, keeps the issue tracker synchronized and maintains project information in the

administration database.

Accounts web Service

The accounts web service takes care of the actions that need to be performed after a new

employee is created in the HRM application. It creates an active directory account, a

mailbox and enables the office communicator account for the new employee.

| 101

Exchange Server

Contains the mailboxes for all employees and contains some account details, i.e. if a user

is allowed to use office communicator.

(Customer) Active Directory

These contain user information for customer contacts as well as employees. This is the

one place in which the passwords of user accounts are stored, thus these components

help in authenticating users for the use of several (web) applications. Next to that it

contains groups and security policies to enforce the prohibition of certain actions or

access to applications.

Table 16: Identified services and supporting peripherals details

Service or

supporting

Peripheral

Runs on Performs Used in

IssueTracker web

Service

DFT-ISSUE-001 Interface for other

applications to

interact with the

Issue Tracker

#6, #20, #23

CustomerPortal web

Service

DFT-INT-004 Handles customer

contact and

SharePoint

operations

#5, #6, #7, #9, #20,

#22, #23, #24, #25

Accounts web

Service

DFT-XCH-005 Creation of new

employee accounts

#2

Exchange Server DFT-XCH-005 Keeping track of

employee mailboxes

and settings

#2

(Customer) Active

Directory

DFT-DC-

(001/002/003/

010/011/012)

Authentication of

employees and

customer contacts

#2, #5, #6, #20, #21,

#22, #23, #29

D. Specification of viewpoint 2: Visualization of component usage

In this section one example of component usage is given, all other component usage

visualizations are available within Tam Tam internal documents. The visualization

consists of several key elements as defined in the BPMN language (White, 2004). A

circle denotes the start of a process and a circle with a bold ring denotes an endpoint of a

process. Dashed lines denote the passing of messages and straight lines denote process

flow. Tasks are defined by rectangles and decision points are depicted by diamonds.

Furthermore, the visualization is divided into pools with possible some swim lanes in it.

Pools define categories of actors and swim lanes define specific parts of actors.

Promote applicant to employee

Figure 24 presents the component interactions carried out while adding an employee to

Tam Tam. The process is initiated by the HRM department by filling in employee details

102 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

in the HRM application. This application stores the details in the HRM database and

calls the accounts web service to start creating the necessary user accounts. The

creation of user accounts is done by first of all creating an active directory account,

followed by the creation of a mailbox and lastly enabling the user to use Office

Communicator. The last step of the accounts web service is to give an error if something

went wrong or an „ok‟ if all is carried out as planned. This reflection is sent back to the

HRM department through the HRM application to be dealt with. Finance is directly

notified that a new employee has to be added to their accounting service and the HRM

department can decide to contact system administration depending on the reflection

given by the accounts web service.

Fi
n

an
ce

D

ep
ar

tm
en

t
H

R
M

 D
ep

ar
tm

en
t

Fill in employee
details into

HRM system

A
p

p
lic

at
io

n
 a

n
d

D

at
ab

as
es

H
R

M
 a

p
p

lic
at

io
n

Create new
employee

H
R

M
 D

B

Store
employee

details

Send mail to
finance

Add new
employee to

ADP

Send feedback

Error?

no

Contact PCSyes

Se
rv

er
s

an
d

 S
er

vi
ce

s

A
ct

iv
e

D
ir

ec
to

ry
Ex

ch
an

ge
A

cc
o

u
n

ts

Create
accounts

Create account

Create AD
account

Create mailbox
Activate

account for
communicator

Create mailbox

Activate
account

Ok?

Figure 24: Promote applicant to employee

E. Specification of viewpoint 3: Component interactions

The main topic in this paragraph is the lowest level of abstraction of the current

architecture. The component choreography is presented in this section by giving one

example; all other choreographies are available within Tam Tam internal documents.

Active Directory: Accounts web service – new Active Directory user

When a new employee is added to the HRM system, said HRM system calls the Accounts

web service to create accounts for the new employee. The creation of these accounts is

done by inferring several functions on the Active Directory server. The entity

| 103

„TamTam.HRM.Management.Powershell‟ is the executing class of the accounts web

service and carries out the following commands as can be seen in Figure 25:

1) Connect to the Active Directory server

2) Create a new Active Directory user

3) Verify that the user is created correctly by invoking the „Get-QADUser‟ function,

if this method call returns a valid user it means the creation was successful

4) After that the newly created user account should be enabled

5) The last step is to add the employee to a certain group to grant pre-defined

permissions and apply a pre-defined security policy. A group can be defined as a

department within Tam Tam

6) Lastly the connection to the Active Directory server is closed down again

TamTam.HRM.Management.
PowerShell Active Directory

Connect-QADService(service,username,password)

New-QADUser(user details)

new Active Directory user

(verify user) Get-QADUser(user)

ICollection<PSObject> users

Enable-QADUser(user)

Disconnect-QADService

Add-QADGroupMember(template user)

Figure 25: Active Directory: accounts web service - new Active Directory user

F. Specification of viewpoint 1: Global overview

The last step is putting all gathered information together into one global overview of the

current architecture. Figure 26 presents the data from the last sections aggregated in

one big overview. All three different categories of components have their own color;

databases are green; applications are red; and services and supporting peripherals are

blue. A non-dashed arrow from A to B means that component „A‟ initiates an interaction

with component „B‟ indicating a coupling between the two components. Dashed arrows

indicate a stream of information, either through linking two databases or exporting files

to certain locations.

104 | A p p e n d i x A : D e s c r i p t i o n o f t h e c u r r e n t s i t u a t i o n

Figure 26: Aggregated overview of current Architecture

| 105

Appendix B: EAI styles

Enterprise Application Integration can be seen as the evolution from ad-hoc

architectural decisions to a situation in which certain guidelines are followed by crafting

a general idea behind the enterprise architecture. The main purpose of crafting, and

adhering to, such a general idea is to “create a seamless whole” (Johannesson & Perjons,

2001) of the architecture in place supporting enterprise operations.

According to (Lam, 2005), reasons for companies to create a transition towards an EAI

are because with ad-hoc architectures the adaptability to new business requirements is

fairly low, the maintenance costs of interfaces kept increasing and the ripple effects of

application changes were increasing. (Erasala, Yen, & Rajkumar, 2003) lists other

advantages for EAI in the form of better adaptability to electronic commerce

opportunities, easier mergers and consolidations and a free choice for departments for

software solutions they want to integrate.

As can be derived from the requirements in section 2.4, the main goals for Tam Tam to

initiate a transition towards an EAI are first of all to increase maintainability by

defining a standardized way to implement component interfaces and interactions. A

second reason for Tam Tam is to gain insight into what components are used for what

processes to decrease the effort needed to investigate when some component is offline. A

third reason is that a carefully crafted EAI can reduce coupling between the available

components by disabling the possibility for direct calls to component functionality.

Several different EAI implementation types are available in the relevant literature; this

appendix provides an overview of the commonly used types by presenting their key

characteristics and the general idea behind the different types.

A. Point-to-Point

The first EAI implementation type elaborated on here is the Point-to-Point architectural

style. Key characteristic of this topology is that there is no general idea behind the

architecture composed of the components in place. The reasoning behind this kind of

topology, as (Trowbridge, Roxburgh, Hohpe, Manolescu, & Nadhan, 2004) and (McKeen

& Smith, 2002) put it, is the need for components to be coupled. This coupling is

performed by coding the connections on a one-by-one basis by including the location and

specifications of the called components in the calling components. The advantage of this

is that it is very easy to implement interaction between several components. With a

small number of components this stays an advantage, but with an increasing number of

components the effort needed for maintenance is getting bigger and bigger. Reasons for

this maintenance penalty are a lot of duplicate code (Trowbridge, Roxburgh, Hohpe,

Manolescu, & Nadhan, 2004) and the fact that the number of interactions becomes

overwhelming (Johannesson & Perjons, 2001) causing a lot of components need to be

changed in the case the details of one component are changed.

106 | A p p e n d i x B : E A I s t y l e s

B. Middleware

To tackle the drawback of a large amount of interactions, a step in research was taken

towards middleware. The basic idea of middleware is to create an abstraction layer on

top of the raw connections layer; this can be done by either creating a central entity that

handles all connections between components, or standardizing the mechanism for

communicating with called components. Advantages of such middleware according to

(McKeen & Smith, 2002) are that the middleware specifies a standard way of

interacting between components and allows the integration of otherwise disparate

components. The main downside of this architectural form is that the software that

represents the middleware can become a legacy system itself in a couple of years, thus

diminishing its effectiveness. Several forms of middleware are available and are

discussed one by one.

Transactional (Emmerich, 2000) (Papazoglou & Ribbers, 2006a)

Transaction-oriented middleware present a means for components to carry out

transactional operations over a number of distributed components. Key idea behind

transactions is that those operations are either fully executed or not executed at all, as

defined in the ACID properties (Atomicity, Consistency, Isolation and Durability)

(Wikipedia Community, ACID, 2011).

Message oriented (Emmerich, 2000) (Papazoglou & Ribbers, 2006a)

Message oriented middleware is based on the „hub and spoke‟ idea (Papazoglou &

Ribbers, 2006a) which consists of a central entity that keeps track of all messages being

sent and ensures the messages are delivered to the correct components. The key use of

such a system is when asynchronous communication is needed. Main reasons for this

are that the central entity needs to convert messages to a format suitable for the called

component and the central entity is responsible for the messages to arrive at their

destination, even if that destination has some downtime. As (Johannesson & Perjons,

2001) put it, the use of a central entity reduces the number of connections necessary by

creating a message broker to which all components have a connection.

Procedural (Emmerich, 2000) (Papazoglou & Ribbers, 2006a)

Procedural middleware is often represented by Remote Procedure Calling. The key idea

behind this is to allow access to certain methods and functions from other components.

This is done by creating an interface for components with pre-defined functionality that

can be used in other components. These interfaces are represented in the source code of

calling components by stubs that act as proxies for the connection between two

components. The server side has stubs too for returning the results of the called

functionality.

Object and component (Emmerich, 2000) (Papazoglou & Ribbers, 2006a)

Object oriented middleware is an evolution of Remote Procedure Calls by providing the

extra functionality of inheriting object-oriented principles. With such middleware in

| 107

place, components have the option to send objects back and forth to other components.

The objects can be seen as an advanced version of the stubs in place with Remote

Procedure Calls, but additionally these can be sent across the network. An additional

advantage is that methods executed at remote components can have objects that refer to

a third component as a return value.

Data-access (Papazoglou & Ribbers, 2006a)

The last type of middleware is the data-access type. The main idea behind this type is to

create an abstraction layer on top of the data in place. This means that access to data in

databases and other components is performed with a single defined syntax through one

single manner of interaction. The advantage of such an abstraction is that calling

components do not need specific knowledge for specific data storage decisions.

C. Event-driven

The event-driven approach is based on events that trigger some functionality. This can

be done in two different ways, firstly by centralizing the process knowledge and secondly

by decentralizing the process knowledge. The first approach is an extension to the

message oriented middleware approach by increasing the functionality of the central

entity to also contain the process knowledge (Johannesson & Perjons, 2001). When a

process needs to be executed, an event is sent to the process broker which in turn calls

all components that should cooperate in successfully executing the desired process.

The second approach is to have the process knowledge in the individual components.

The way a process is executed using this approach has two different options. The first is

by using a message bus to which the event is posted and all other components listen to.

The individual components know how to react to certain posted events. The second

approach is by using the publish/subscribe methodology (Papazoglou & Ribbers, 2006a)

and (Trowbridge, Roxburgh, Hohpe, Manolescu, & Nadhan, 2004) by letting components

subscribe to certain events. In the case an event is given to the central entity, this

central entity knows which components to notify.

D. Service Oriented Architecture

Service Oriented Architectures are based on the idea that computational logic should be

divided into autonomic entities which have a predefined objective (Goel, 2006). These

entities are called services and are distributable and loosely coupled with defined

standards-based interfaces (Microsoft Patterns & Practices Team, 2009). These services

should also have the characteristic to be most general (Papazoglou & van den Heuvel,

2007) because their interface can be inferred from all places, both within a company as

outside. This means no knowledge should be needed within services about calling

components.

Several roles play an important part in Service Oriented Architectures; the first is the

service provider which provides a service. The second role is the service requestor, an

entity that wishes to use a certain service. Lastly, the third role is the service registry

that acts in a similar way as the „yellow pages‟ by allowing service providers to publish

108 | A p p e n d i x B : E A I s t y l e s

services and service requesters to query for certain services. These three roles are

performing three different operations that indicate the lifecycle of service usage:

publishing services, requesting services and binding services. (Papazoglou & Ribbers,

2006a)

Plenty of advantages of Service Oriented Architectures can be found in the literature.

The main category of advantages is found in the field of development of components for

a SOA environment. (Goel, 2006) states that “SOA brings cost effective, reusable and

low lead time solutions to an organization” meaning it enables developers to create

components and implement interactions more easily. (Microsoft Patterns & Practices

Team, 2009) endorses this idea by stating that developers with no prior knowledge

should be able to use interfaces of components faster and that, in principle, service

implementations can be purchased from external parties. Next to that, SOA allows an

incremental development and deployment process (Natis, 2003), because all referenced

services can be added one at a time. (Natis, 2003) also states that maintenance and

extension of business applications can be done more easily because the services are

loosely coupled. The other field of SOA advantages is that SOA sets the first step in

allowing companies to move towards other technologies, for example (Channabasavaiah,

Holley, & Tuggle, Jr., 2003) identify that SOA can be seen as the first step towards grid

computing and on-demand business. (Microsoft Patterns & Practices Team, 2009)

extends said possibilities by stating that the step from a SOA to a cloud-based solution

is very small. Furthermore, a SOA has an effect on every aspect of a company for it

facilitates a great amount of agility to business processes (Durchslag, Donato, & Hagel,

2001).

E. Enterprise Service Bus

The origin of Enterprise Service Busses (ESBs) can be found in the combination of

middleware, web services and orchestration technologies (Papazoglou & Ribbers, 2006a)

& (Menge, 2007). An ESB is comparable to a middleware message bus by providing a

connectivity layer between services and has two main tasks: 1) managing meta-data

about endpoints and 2) matching endpoints (Schmidt, Hutchinson, Lambros, & Phippen,

2005). More technically speaking, the ESB is a messaging infrastructure that performs

protocol conversion, message transformation, message routing and accepting and

delivering messages (Goel, 2006). Due to this one single place in which all interactions

are coordinated a single point of contact is created for external entities to use internal

services (Keen, et al., 2004).

The advantages of an ESB are that the ESB coordinates all interaction between

components by forming the one place in which process orchestration is stored (Menge,

2007). This coordination is based on the incoming message content, origin, destination

and some predefined rules (de Leusse, Periorellis, & Watson, 2007). Another advantage

stems from the nature of the message transformation capabilities; due to this, many

different protocols can be used to interact with the ESB allowing components with

otherwise incompatible message formats to interact (Microsoft Patterns & Practices

Team, 2009). The only downside is that due to the message handling functionality the

interactions should be performed asynchronously (Papazoglou & van den Heuvel, 2007).

| 109

Appendix C: Key design elements

This appendix gives examples of the specific details of the designed architecture. The

first is a list of identified services, the second are a few example BPEL documents and

the third is an example of how the process of binding the web services is performed.

A. Identified services

The fundaments on which all orchestrations build to provide aggregated functionalities

are the methods offered by several services. The services that are designed are listed in

Table 17 with their functionalities, outgoing connections and main sources where their

functionality lies in the current architecture. The specific implementation details can be

decided on at implementation time or when a service is replaced in the future, as long as

the implementation supports publishing its interface as a WSDL document.

Table 17: Designed services

Service Functionalities Outgoing

connections

Main existing sources

Active Directory User account

control

Customer and

Tam Tam AD

domain

CustomerPortalWebService,

HRM application,

AccountsWebService

Admin DB Project

operations

Administratie

DB

CustomerPortalWebService,

Project toolkit

CRM Account name

access

CRM DB Already existing service,

included with application

Customer Data Customer

information for

use mainly in

finance

processes

Administratie

DB

CustomerPortalWebService

CustomerPortal

SharePoint

Opportunity

and project

management

Customer

Portal

SharePoint

CustomerPortal Queue

executor

Data Warehouse Retrieve

collected

declarations

Data Ware

House

Hours application

Exchange Handles

employee

mailboxes

Exchange

server

AccountsWebService

Finance Handle

budgets,

invoice data,

booked hours

and export

invoices

Administratie

DB

Project toolkit

IssueTracker Manages

issuetracker

user accounts

IssueTracker

DB

Partly existing,

CustomerPortalWebService

110 | A p p e n d i x C : K e y d e s i g n e l e m e n t s

B. BPEL Examples

In essence there is a continuum of different processes to be identified between purely

synchronous and purely asynchronous. In this part the design of three different process

orchestration types will be covered. The first is saving a budget, a synchronous

orchestration that passes messages back and forth between the requested service

method and the calling application. The second is the creation of a new opportunity, a

purely asynchronously executed orchestration. The third is creating a new project which

is a hybrid orchestration, in other words between the two ends of the continuum.

Synchronous: Saving a budget

To save a budget, the project toolkit needs to have an interaction with the Finance Web

Service method „saveProjectBudget‟. Figure 27 shows the created pass-through

orchestration for storing a budget. When the orchestration is called, four steps are

executed. First the input message is mapped to a service request message (see Figure

28). The next step is to invoke the saveProjectBudget web method resulting in a

response message. The third step is to map this response message to the orchestration

output message. The fourth step is to return this output message to the calling service.

The quality of service binding details of this specific orchestration are that only one

instance of the orchestration can be created and calls that come in while the instance is

still running should be queued. Otherwise concurrency issues might arise.

Figure 27: Pass-through orchestration

| 111

Figure 28: Message mapping

Asynchronous: Creation of a new opportunity

The next orchestration is a purely asynchronous process, as shown in Figure 29. When

the orchestration is called, a new instance is created and the control flow is given back

directly to the calling application. The application can continue its operations while the

orchestration instance in the BPEL-engine lives on to complete the necessary

operations.

When binding this type of orchestrations it is possible to use instances of the

orchestration as queue entries by removing the instance limit from the quality of service

values for the incoming request. To overcome the hurdle of concurrency issues, the

outgoing requests can be constrained with quality of service demands. In this example

the first call to retrieve some information need not be limited, but calling the SharePoint

service method should theoretically be limited to one request at a time because the

functionality changes things, but in practice this is not necessary because the

underlying technology only allows one operation to be executed at the same time.

112 | A p p e n d i x C : K e y d e s i g n e l e m e n t s

Figure 29: Asynchronous orchestration

Hybrid: Creation of a new project

The last of the discussed orchestrations is a hybrid form of the last two. The presented

example deals with the creation of a new project. When a new project is created the

project ID of the newly created project should be returned to the called application

directly. The creation of this project ID is performed in the first invoke action in the

depicted orchestration in Figure 30. After the project ID is created by the

CustomerDataWebService, this id is returned to the calling application and a method of

the CustomerPortalSharepointWebService is invoked to create a site for the new project.

With regard to binding this orchestration, the quality of service values for the

SharePoint connection should be limited. Furthermore, the incoming request should be

limited by allowing only one request-response path to be executed at the same time

| 113

(when a response is returned, new instances can be created because concurrency is

evaded by the quality of service values of the second invoke action).

Figure 30: Hybrid orchestration

C. Binding web service example

As an example of binding an orchestration, Figure 31 shows how a binding can be

performed in „OpenESB‟ by creating a CompositeApplication which can be loaded in the

„GlassFish ESB‟ server. The actions that need to be performed are:

1) Import BPEL and WSDL documents

2) Connect outgoing method requests to imported WSDL specifications

3) Assign QoS values for connections, examples of which are: max number of retries,

waiting time and max concurrency limit

114 | A p p e n d i x C : K e y d e s i g n e l e m e n t s

4) Publish the CompositeApplication to the GlassFish ESB server

Figure 31: Binding an orchestration

| 115

Appendix D: BizTalk risk mitigation

plans

This appendix describes the results of reflecting on the decision for BizTalk, the first

section provides a table with all risks and their possible mitigation plans. The second

section provides some details about the amount of overhead introduced with BizTalk.

A. BizTalk risk mitigation table

Table 18: BizTalk Risk mitigation plans

Name Description Possible Mitigation plan

Developing Functionalities that

might be longed for

while developing

orchestrations

Developing on own

Machine

Is it possible to

develop for BizTalk

on another machine

and deploy to the

BizTalk server

Yes 1) Develop and build on own

machine

2) Deploy orchestration to

BizTalk server

3) Deploy assemblies to the

GAC

4) Run WCF publishing

wizard

Documentation Documentation of

functionalities

offered is very

important

Yes Next to a specific design

document, an UDDI server

contains necessary information

to consume orchestrations and

services

Implementation

details

What are the

details of the

implementation

Yes An UDDI server is deployed in

which all details are stored

regarding owner, creator,

description, etc.

Separate test

environment

Next to the live

environment

another

environment can be

necessary for

testing

No The nature of an ESB allows

multiple versions of

orchestrations to be run at the

same time; still it can be useful

to create a separate testing

environment when the

implementation is in use.

Failure handling What happens

when things fail

during execution

Exceptions How should

exceptions be

handled

Yes 1) BizTalk->services: retries

after a specified time

2) Client->BizTalk:

manually, watch out for

timeouts due to BizTalk

retry delay

116 | A p p e n d i x D : B i z T a l k r i s k m i t i g a t i o n p l a n s

Logging To what level do

logs specify what

went wrong

Yes When tracking is enabled,

everything executed action is

logged (both pre and post actions)

Resume on error How does BizTalk

recover from SQL

failures

Yes BizTalk is message oriented and

everything is stored in the

database. ESBs serve a contract

to guarantee a delivery. The only

issue is the duration it takes is

not specified.

Rollback How can started

orchestrations be

rolled back on the

initiative of both

administrators and

failure to comply

Partial Can be performed by calling

created counterparts of service

functions

Statistics Is there a way to

show statistics

about carried out

orchestrations

Yes The BizTalk Administrator

console provides elaborate

statistics

Orchestrations Additional

functionality to be

used in future

orchestrations

Date encoding How dates are

encoded; do things

succeed when

different formats

are used

Yes Dates are mostly formatted using

UTC10

Delay & Pre

conditions

Can an

orchestration wait

for an event before

continuing

Yes Listen shapes wait for specific

events; Delay shapes delays the

execution for a specific amount of

time

Complex data types How can complex

data types be send

over „the wire‟

Yes Define Data Contracts in WCF

services; Only use serializable

elements

Loops with

condition

Can loops be used

in orchestrations to

handle multiple

elements one at a

time

Yes Cannot be done visually, but by

programming some

functionality11

Recursion Can Recursion be

used

Yes Loop functionality is available,

plus orchestrations can be

invoked from other

orchestrations

Send mail How can mails be

sent from

orchestrations

Yes 1) Dynamic ports allow

binding to specific

recipients

10 http://geekswithblogs.net/michaelstephenson/archive/2010/08/29/141542.aspx

11 http://blog.eliasen.dk/PermaLink,guid,6c7ac8ec-3f3e-49e4-a15a-76c736d30654.aspx

| 117

2) Promote fields in schemas

to be used in mail

(Message parts of called

web services is harder to

achieve)

3) Programmatically

compose mail

Stop & go When does an

orchestration

instance know

when to continue

Yes Listen shape waits for events, in

the case of resume by failure it

just waits until the retry period

is over

Daylight saving

time

What happens with

the „spring forward,

falls back‟ events

Yes Since BizTalk 2006 there were

some issues fixed with the delay

shape and daylight saving time

Workflow Can the human

parts of processes

be included in

orchestrations too

No Not in a neat way, BizTalk offers

system-to-system integration, for

human parts Windows Workflow

Foundation and SharePoint

should be used

Security Security

considerations at

all levels of

abstraction

Access restriction Some actions may

only be performed

at night

Yes Service windows can be set to

ports in which no operations are

executed with those ports;

Furthermore, receive ports can

be disabled during a specified

range of dates

Encryption How can the send

data be encrypted

Partial Use HTTPS, because HTTP is

always vulnerable to man-in-the-

middle attacks

General

Authentication

How to limit access

to using elements in

the architecture

Yes Host WCF services behind

HTTPS

Method level

Authentication

How to limit access

to specific

functionalities

Partial Create a Single sign-on

application for each WCF service

with a corresponding „users‟

group in the Active Directory.

Problem is that ACID12 cannot be

guaranteed anymore when

different services are called

Usage Functionalities

surrounding the

usage of

orchestrations

Concurrency What happens with

multiple

orchestration

Yes Send ports have the option

„ordered delivery‟ which takes

care of the correct sequence of

12 http://en.wikipedia.org/wiki/ACID

118 | A p p e n d i x D : B i z T a l k r i s k m i t i g a t i o n p l a n s

requests on the

same service

function invokes

Orchestration

priority

Is it possible to

have some

orchestrations that

are handled earlier

than others

Partial Only send ports can be given a

priority over others, allowing a

separation of functionality that

needs to be executed quickly on a

web service level

Restriction on

license

What are the

restrictions to use

BizTalk for Tam

Tam internal

systems

Yes “Just use it, we are allowed to

use it for testing and

development”

Scheduling Specify times at

which

orchestrations are

invoked

automatically

Yes Let Windows Scheduling put an

XML in a folder monitored by

BizTalk

Stress and Load What overhead is

introduced by

starting to use

BizTalk

Partial Some stress and load tests are

performed, see section B BizTalk

stress and load tests for the

results

Web Services Can the scope of

web services be

broadened

ASP.NET support Does BizTalk 2010

support legacy web

services

Yes Can be done by a somewhat

cumbersome solution; mappings

between messages have to be

programmed manually instead of

using the visual interface

Binding options Are other binding

options available

next to ASP.NET

and wsHTTP

Yes The created metadata when

consuming a web service is not

linked to specific bindings; Ports

can be bound to any adapter

External web

services

How to comply with

changes in web

services not under

Tam Tam

maintenance

Yes 1) Interface change: same

actions as internal

services

2) Location change: firstly

change in the UDDI

server and secondly in the

specific send port

Service description

pages

How to declare

what an endpoint

offers and who is

responsible for it

Yes An UDDI server is used in which

descriptions, owners and

maintainers can be attached to

web services

B. BizTalk stress and load tests

For testing the overhead that BizTalk introduces, three different tests have been run.

The general idea behind the tests is that a dummy web service method is invoked, in

two cases via a proxy orchestration and in the third case directly from the server

running the orchestrations. Figure 32 illustrates the setting for the tests.

| 119

BizTalk Server

WirelessWireless

ClientA: Program ClientA: WCF Service

Test 1:

Test 2:

BizTalk Server

Wireless: orderedWireless

ClientA: Program ClientA: WCF Service

Test 2:

BizTalk Server

Wireless

ClientA: WCF Service

Figure 32: Stress test organization

For each test setting a program is executed that has a number of threads

simultaneously calling the orchestration (or web service directly in the third test) 52

times in a sequence. All data about how long each call takes is accumulated in Excel

documents and used to create graphs by performing the following steps:

1) Delete the first five and last five values of each thread, because a random wait is

introduced before the first request is made and some threads can finish early and

thus provide a wrong image.

2) Some key values are calculated over the listed data: median, first and third

quartile & minimum van maximum value

3) The calculated values are used to create the graphs shown in Figure 33, Figure

34 and Figure 35. The values on the left indicate the range for the medians, the

values on the right indicate the range for other values and each column identifies

the number of threads at the same time. Furthermore, all used values are in

milliseconds.

120 | A p p e n d i x D : B i z T a l k r i s k m i t i g a t i o n p l a n s

Figure 33: Wireless Client to BizTalk to Wireless Client Web Service

Figure 34: Ordered Wireless Client to BizTalk to Wireless Client Web Service

0

2000

4000

6000

8000

10000

12000

14000

0

1000

2000

3000

4000

5000

6000

one thread two threads four threads five threads ten threads

Wireless ClientA BzT wireless ClientA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

1000

2000

3000

4000

5000

6000

one thread two threads four threads five threads ten threads

Wireless ClientA BzT wireless ordered
ClientA

| 121

Figure 35: BizTalk to Wireless Client Web Service

Conclusions

When comparing the results for all three tests, the following conclusions can be drawn:

1) The introduction of BizTalk to act as a proxy causes a big increase in access

times. This is mainly due to the fact that everything in BizTalk is stored in a

database, so a lot of database access is performed for each request causing extra

time necessary to execute.

2) When ordered delivery is used in BizTalk, the time needed to execute decreased.

The reason for this is that only one worker thread contacted the web service from

BizTalk, resulting in diminishing waiting times for no other threads are using

the web service (#-1).

3) When more threads are invoking requests at the same time, the average waiting

time with the proxy in place increases because of the queuing mechanism. In the

case there is no proxy, the increase in waiting time is caused by hardware

limitations for there is no regulation on how many requests are executed at the

same time at the service location.

4) Even in the highly unlikely event when ten requests are executed at the same

time, the average increased time for processing to finish is about five seconds.

As a wrap-up the overhead increased by using

BizTalk is not a show stopper since most processes

that are to be executed by BizTalk are

asynchronous. This prevents the end user to notice

the overhead by increasing the waiting time.

0

50

100

150

200

250

0

5

10

15

20

25

30

35

40

45

one thread two threads four threads five threads ten threads

BzT wireless ClientA

#-1 Queuing mechanisms slow
down individual requests, but
the global optimum will be of
improved quality

122 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Appendix E: Evaluation iterations

This appendix lists all four different carried out evaluation iterations at key points

during the thesis project.

A. Evaluation iteration 1 – Current Architecture

After having defined the means and metrics to evaluate architectures, this is the first of

several evaluation iterations. The focus of this iteration is to evaluate the performance

and the possibility to manage the architecture currently in place. Measuring values for

the identified metrics and interpreting the scenarios can be performed because the

current architecture has been documented completely. This means an explanation how a

certain scenario is carried out can be estimated by the current knowledge about the

architecture. The second step of this section is estimating the values for the individual

metrics by looking at how much time it has cost to gain an understanding from scratch.

Scenario analysis

Scenario 1: Addition of an extra component

The example used in this scenario is the addition of a component with new functionality,

for example a dynamic „handover‟ documentation system that contains all

implementation details about projects. Such a system should contain data for all projects

which is mainly kept up to date by hand, but when new projects are created the new

system should be updated as well.

In the current situation the developer of the new system should search for the specific

components that add or update projects and insert some function calls to the new

system. Components that might be affected in this case are the project toolkit and the

CustomerPortal Web Service. The time it takes to perform this action is the time

necessary to understand both components and the process orchestration. After gaining

an understanding the function calls should be inserted at the correct location.

Scenario 2: Moving a component to another location

Sometimes the live location of components might need to change when, for example, a

new physical server should be used to run a specific component. In the case this

happens, the hardcoded references to the old location should be updated to reference the

new server.

In the current situation a lot of hardcoded connection configurations are present,

causing the developer to search for those and alter them where necessary. This is a very

time consuming operation because there is no documented knowledge about which

component is used where.

| 123

Scenario 3: Extension / withdrawing functionality of a component

In the history of the current architecture the operation of splitting a component into two

separate components has occurred several times. When such an event takes place,

incoming function calls to the old component should be updated to call a specific new

component.

In the current situation when the functionality of a specific component needs to be split

into two different components all referring components need to be adapted. The most

time consuming operations are figuring out which calling components to change and

after that updating those components.

Scenario 4: Carrying out maintenance on a component

When a bug is found in one of the components and needs to be fixed, a lot of work is put

into reproducing said bug.

In the current situation the developer should first of all search for the live location to

reproduce the bug. After that, the source code should be retrieved and an inspection

should take place if the bug stems from this particular component or from the

interaction with another component. Due to the nature of the interactions that are

currently in place, it might be cumbersome to find all interactions that can cause the

bug.

Scenario 5: Change the functionality of a component

The previous scenarios all focused on local change of functionality. In the case some

functionality changes which has an effect on the calling components, for example an

additional necessary parameter to all requests, more elements need to be adapted.

In the current situation when such a change is necessary, the component itself should be

adapted and all calling components need to be adapted as well. The main time

consuming activity is searching for the source code of all components and searching for

places in which an interaction with the changed component is present.

Scenario 6: A process cannot be executed anymore

When a process stops working, some investigation needs to be performed to find out the

root cause of this failure.

In the current situation there is no documented knowledge about what components

contribute to executing specific processes. Therefore to fix the failing process, all

components which are suspected to have an influence on the broken process are to be

inspected.

Scenario 7: Replace a component

It might occur that a component needs to be replaced by another version or a whole

different component that offers similar functionality. For example Tam Tam could stop

124 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

using Microsoft CRM as a relationship management application and start using another

package.

When this happens in the current situation, the developer should retrieve all locations

where direct calls to the CRM application are present and update those to refer to the

new package. Furthermore, all calls from the CRM application should be recreated in

the new product.

Scenario 8: A certain process needs to be extended

It is not unforeseeable that some processes might need to be extended. An example of

this, which came forward in a discussion with an account manager, is the creation of a

special folder for each new customer project in Tam Tam Dropbox account.

In the current situation the developer needs to find out where the needed process is

initiated and where it is carried out. When those locations are found, the developer can

decide where to put the new operation calls. With each new addition, the

decentralization of process logic can be increased due to this freedom for the developer.

Scenario 9: A server is going offline

When a specific server needs to be taken offline, the actor performing this action should

be sure no critical components are running on it anymore.

In the current situation, documented knowledge of live locations is not complete. This

means that it is very hard to determine which components are running where in the

landscape of internal processes.

Metrics valuation

This paragraph consists of an elaboration on the values identified for the metrics with

respect to the current situation. A key assumption taken here is that the values are

listed for a developer with no prior knowledge about the architecture or components at

all. At the end of this paragraph Table 19 gives a summary of the identified values

Number of interaction schemes

In the current architecture several different forms of interactions are present: Web

service calls, Active Directory PowerShell calls, SharePoint interactions, Exchange

method calls, database stored procedures and direct SQL invokes.

Number of hardcoded connection strings

In the described current architecture documentation a total of 21 different application

interactions can be counted. Each of these application interactions is enabled by storing

a connection string in the location which uses them; this means that there are 21 places

in which a hardcoded connection string is placed.

| 125

Number of incoming method calls per component

An average of 2.2 different calls from source components is present. This means that

when a component is changed, invokes from about 2.2 different other components need

to be changed. The effect of this is that when a random component changes, about three

different invoking components need to adapt their functionality.

Number of components with related functionality (duplication)

This metric is about the total number of components that share some functionality. This

is measured by looking at the source code and identifying chunks of code that resemble

the same functionality. In the current architecture at least 8 duplicate chunks of code

can be identified. This means that when a bug is solved around a component invocation,

it does not necessarily mean said bug is completely gone.

Speed of source code retrieval

Before a developer can start to perform any maintenance on a component, the source

code location should be retrieved. Tam Tam uses three different systems for their source

control (vault, Subversion and team foundation server), each of which contains both

internal projects as well as projects for customers. The estimated time to find the source

code location will be influenced by an internal Tam Tam project that shows dynamic

„handover‟ documentation of projects. Currently however, no information is available

apart from consulting original developers. The average time it took in this project to find

the source code of several components was about 2 hours.

Speed of live location retrieval

To be able to change the version of a component that is currently running, the

application developer should have some knowledge about the location of said component.

The estimated time to retrieve the live location is three quarters of an hour. This fairly

quick time is accomplished by looking at the hardcoded connection configurations in

other components which interact with the component in question. These hardcoded

configurations are represented by DNS entries which can be „pinged‟, thereby retrieving

the physical address of the server that is running the component.

Speed of understanding application interactions

In the current architecture, developers should look through the source code and search

for places in which call-outs are present. Retrieving all interactions with a specific

component is a very cumbersome task and may lead to several hours of work.

Speed of understanding process orchestrations

For some processes the orchestration is stored in single components. For most processes

however, multiple components need to be examined to gain an understanding. To derive

how a certain process works, the developer needs to understand several application

interactions meaning the understanding of a single process can take multiple hours.

126 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Speed of checking component status

An essential request for the new architecture is the ability to check on the status of a

component in place. At the moment the only way of figuring out a certain component is

not working properly is by directly testing that component. When a process depending

on the component does not work anymore one can only guess what component causes

the problem. The process of understanding the inner process working can lead to

multiple hours of work.

Speed of understanding component purposes

To understand what functionality a certain component has, it is necessary to find out

the specific call-ins from other components. This information is currently retrieved by

searching for call-outs of components to the said component. The amount of time needed

for this is somewhat reduced by the hardcoded connection strings because when there is

no connection string, that component does not need further investigation. This figure is

related to the speed of understanding application interactions, so the amount of time

should resemble the several hours of that figure.

Table 19: First evaluation iteration metrics

Metric Current situation

of interaction schemes 6

of hardcoded connection

strings

21

of incoming method calls per

component

2.2

of components with related

functionality (duplication)

8

Speed of source code retrieval 2 hours

Speed of live location retrieval 45 minutes

Speed of understanding

application interactions

Several hours

Speed of understanding

process orchestration

Multiple hours

Speed of checking component

status

Multiple hours

Speed of understanding

component purposes

Several hours

B. Evaluation iteration 2 – Architectural style

The second evaluation iteration serves the goal to verify whether the chosen

architectural style does indeed bring advantages for Tam Tam. This evaluation iteration

is a stripped down version of the evaluation because only the key metrics are possible to

be evaluated for a theoretical Enterprise Service Bus. The scenarios are excluded

because the added value of performing a scenario analysis with almost the same output

as the scenario analysis that will be performed after the design is complete is very

limited. After an elaboration on the values for the metrics, a summary of this evaluation

| 127

iteration is presented in Table 20, which uses Table 19 presented in Evaluation iteration

1 – Current Architecture as a basis with an additional column. The identified values are

retrieved by performing a desk research into the relevant literature.

Number of interaction schemes

The basic idea behind an Enterprise Service Bus is that functionality should be wrapped

in services, which renders that only web service calls need to be made from other

components to perform some functionality. An additional advantage here is that those

calls are only made at one single place.

Number of hardcoded connection strings

With an Enterprise Service Bus, the direct connection configurations are placed in the

wrapper services. The location of the created wrappers is only stored in one place,

namely the service bus. By creating a single point for the connection strings to be stored,

the amount of hardcoded connection strings equals the number of services plus the

number of connection strings in the dedicated services.

Number of incoming method calls per component

In the situation with the Enterprise Service Bus, all components (and orchestrations)

use pre-defined interfaces in the form of wrapper services. This leads to two categories of

impact, when the implementation of an original component changes only the wrapper

needs to adapt its implementation. In the case a wrapper changes it needs to be changed

in the orchestrations. Next to that, the process logic is stored in the centralized

orchestrations so each component just calls the number of processes that have their

origin in that component. There are a total of 19 process orchestrations that might be

changed with a total of 45 interactions which is around 2.4 incoming calls. The

advantage here is that the changes only need to be performed at a single place hereby

not jeopardizing the functioning of other orchestrations at the same time.

Number of components with related functionality (duplication)

An Enterprise Service Bus is designed to provide a separation of functionality, which is

enforced by the introduction of services. With these additional services the duplicate

code entries from different components should be aggregated into one single place,

rendering the total number (close to) zero.

Speed of source code retrieval

In the Enterprise Service Bus situation, assuming the documentation is kept up to date,

or the internal Tam Tam dynamic handover project is completed, the time necessary to

retrieve source code will be around 15 minutes because everything can be found on one

centralized location.

Speed of live location retrieval

In the Enterprise Service Bus situation, the service registry can be used to locate the

called components. To retrieve the location of calling components, either the –

128 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

assumingly up-to-date– documentation can be used or a log of orchestration calls. Both

can be performed in a maximum of fifteen minutes.

Speed of understanding application interactions

In the Enterprise Service Bus situation, the specification of contracts in the form of

services shows exactly how interactions are to be performed. The only necessary steps

are to find the location of the service and examine the interface, which are about 15

minutes for the retrieval part and 30 minutes for examining the interface.

Speed of understanding process orchestrations

One of the key ideas behind an Enterprise Services

Bus is the use of a business process executing

engine (most commonly in the form of a BPEL-

engine). This engine allows the process

orchestrations to be stored centrally, thereby

reducing the amount of time necessary to be able to

understand these orchestrations (#-2). For there

are some fairly complicated processes, the amount of time needed is about two hours.

Speed of checking component status

In an Enterprise Service Bus situation, the orchestrations and component (service)

locations are stored locally. This centralization means that an automated test can be

used to test the called components, resulting in much less time needed for investigation.

Speed of understanding component purposes

In the Enterprise Service Bus situation, the process orchestration is centralized giving

the developer several interactions to look at. From the orchestration knowledge, the

developer can derive the invoked functionalities resulting in about an hour of work.

Next to that the wrapper services are a good starting point to get to know the offered

low level functionalities.

Table 20: Second evaluation iteration metrics

Metric Current situation Enterprise Service Bus

Number of interaction

schemes

6 1 (+ interaction schemes

in dedicated wrappers)

Number of hardcoded

connection strings

21 Number of services (+

connection strings in

dedicated services)

Number of incoming method

calls per component

2.2 2.4

Number of components with

related functionality

(duplication)

8 0

Speed of source code retrieval 2 hours 15 minutes

Speed of live location

retrieval

45 minutes 15 minutes

#-2 Easily extendable business
processes allow initiatives to be
carried out quicker by allowing
a just do it mentality

| 129

Speed of understanding

application interactions

Several hours 15 minutes finding + 30

minutes understanding

Speed of understanding

process orchestrations

Multiple hours 2 hours

Speed of checking component

status

Multiple hours 30 minutes

Speed of understanding

component purposes

Several hours 1 hour

C. Evaluation iteration 3 – Post design

In „Evaluation iteration 1 – Current Architecture‟ the current architecture is evaluated

and in „Evaluation iteration 2 – Architectural style‟ a preliminary evaluation of the

designed architecture is presented. This section complements the evaluation of the

designed architecture by carrying out a scenario analysis and revisiting the theoretical

ESB values for the identified metrics. The main focus of this evaluation iteration is to

thoroughly test the designed architecture, mainly by theoretically supporting the

identified characteristics.

Metrics re-valuation

In the second iteration Table 20 was filled with measured values. The result of re-

assessing the identified values is shown in Table 21, underneath the elaboration on the

updates.

Number of interaction schemes

In the designed future architecture, all interaction with and by the service bus is done

through the use of WSDL documents so the base value of 1 remains the same. The

addition of interaction schemes between the created services and components also

remains the same as no defined guidelines are posed for those interactions to limit the

constraints on developers.

Number of hardcoded connection strings

Where the number of services was unknown in the second evaluation iteration, in the

future architectural design 9 different services are identified that need to be

implemented. The connection strings in these dedicated services are still present

because the wrapper services need some reference to whichever component they provide

a wrapper for. Components that are added in the future should have such a wrapper

included in the implementation, diminishing their effect on this metric.

Number of incoming method calls per component

Due to the wrapping function of the identified services, the metric used here indicates

from how many locations a service is called. The nature of the designed Enterprise

Service Bbus situation is that all interactions are handled and relayed towards the

services by the service bus. The effect of this is that services are called from a single

130 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

location, the service bus. The moment the implementation of the component behind the

wrapper changes, only the service functionality needs to be altered. When, however, the

interface of the service changes, some orchestrations might need to be changed as well

but they can all be found in one location and can be changed by non-programmers due to

the orchestrations‟ high-abstraction nature.

Number of Components with related functionality (duplication)

The value of (close to) 0 remains the same here because the nature of the centralized

orchestrations enables the reuse of functionality. In effect this means that all duplicate

code will be merged into the centrally published orchestrations.

Speed of source code retrieval

The amount of time to retrieve the source code is not altered with the definition of

design specifics, because the focus is on the live situation.

Speed of live location retrieval

Due to the nature of the designed Enterprise Service Bus situation, the live location of

all components can be found in three steps: 1) locate the service bus, 2) retrieve service

location, and 3) retrieve component location from service. This step-by-step approach

should not take longer than the stated 15 minutes.

Speed of understanding application interactions

This measure also remains the same because the design was created in such a way it is

consistent with the theoretical foundation of Enterprise Service Busses. By creating

interaction contracts in the form of services, programmers (and non-programmers) know

exactly how to interact with components.

Speed of understanding process orchestrations

The process orchestrations are created by using BPEL documents which are in essence

specifically purposed XML documents. To gain an understanding of those XML

documents some time is needed, but when a BPEL designing application is used, the

orchestration is split up in, and visualized as, atomic operations. Even with no prior

knowledge at all, a thorough understanding can be achieved by reading through the

orchestration as a „flow-chart‟. This simplicity of orchestrations diminishes the speed of

understanding processes drastically.

Speed of checking component status

The designed service interfaces all contain a „ping‟ operation which can be used to check

the status of a component. In the case the service is not reachable anymore the ping

orchestration becomes aware of that. When implemented in a neat manner, the ping

operation should test the component status lying behind the service and return that

situation report. Just by invoking the ping orchestration the status of the components

can be retrieved.

| 131

Speed of understanding component purposes

Due to the highly cohesive nature of services, the speed of understanding component

purpose is very fast. The speed of understanding the purpose of underlying components

can be retrieved by looking at which services use the specific component for which

functionality. Because of this need for aggregating purposes, the value of this metric

remains about the same.

Table 21: Third evaluation iteration metrics

Metric Current situation Enterprise Service

Bus

ESB Design

Number of

interaction schemes

6 1 (+ interaction

schemes in

dedicated wrappers)

1 (+ interaction

schemes in

dedicated wrappers)

Number of

hardcoded

connection strings

21 Number of services

(+ connection

strings in dedicated

services)

9 (+ connection

strings in dedicated

services)

Number of incoming

method calls per

component

2.2 2.4 2.4

Number of

components with

related functionality

(duplication)

8 0 0

Speed of source code

retrieval

2 hours 15 minutes 15 minutes

Speed of live

location retrieval

45 minutes 15 minutes 15 minutes

Speed of

understanding

application

interactions

Several hours 15 minutes finding

+ 30 minutes

understanding

15 minutes finding

+ 30 minutes

understanding

Speed of

understanding

process

orchestrations

Multiple hours 2 hours 30 minutes

Speed of checking

component status

Multiple hours 30 minutes 5 minutes

Speed of

understanding

component purposes

Several hours 1 hour 1 hour

Scenario analysis

In addition to the elaboration of the scenarios for the current situation, this paragraph

elaborates on how the identified scenarios are handled in the designed situation with a

focus on the changed aspects from the current situation. The examples used in the

different scenarios resemble those used in section Evaluation iteration 1 – Current

Architecture.

132 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Scenario 1: Addition of an extra component

When adding a new dynamic „handover‟ documentation system, several orchestrations

need to be extended by including an invoke operation to the web service of the new

component. This can be done far quicker for no programming is required, the only time

consuming aspect is retrieving, adapting and redeploying the orchestrations.

Scenario 2: Moving a component to another location

To relocate a component the WSDL binding document of the old location should be

replaced by a new WSDL document containing the new location. This is an operation

that can be performed at a single location: the service bus; the only steps that need to be

taken are replacing the WSDL definition and redeploying the orchestrations.

Scenario 3: Extension / withdrawing functionality of a component

In the designed situation several steps need to be taken to split functionality. The first is

to divide the service into two cohesive entities with all functions that „belong‟ together.

These new functions should replace the old service reference in the service bus and the

last steps are to update the orchestrations to call the same functions on other services

and redeploy the orchestrations.

Scenario 4: Carrying out maintenance on a component

In the designed situation, the retrieval time of the live location and source code location

does not change much, but finding the live location of services is diminished a little by

listing all live service location in one place. The advantage of the designed situation lies

in the extraction of the component interactions into orchestrations from the presentation

logic. This makes it easier to find out if interactions with other components are to blame.

Scenario 5: Change the functionality of a component

In the designed situation a change of an interface is expressed by a change in the service

for that specific component. A ripple effect can be traced through the service bus. When

all orchestrations that use the specific changed functionality have been adapted, the

published orchestration WSDL can be adapted too. The last step is to search through

source code where the changed orchestrations are invoked and adapt those parts. The

advantages of this situation is that the developer knows exactly what search phrases to

use to retrieve the correct locations in the applications and the fact that old

orchestration versions can be kept up and running at the same time.

Scenario 6: A process cannot be executed anymore

In the designed situation, the service bus management possibilities can be used to

indicate which step of an orchestration causes the failure of an orchestration.

Furthermore, the „ping‟ operation can be used to test the statuses of all available

services reducing the time needed to search by a fast amount.

| 133

Scenario 7: Replace a component

When replacing the CRM system, all that has to be performed is to adapt the

implementation of the „CRM web service‟. Everything else stays exactly the same. This

can be performed by replacing the implementation of the new CRM system according to

the defined WSDL contract. The service bus just carries on calling the same

functionality on the same interface, but the entity that performs the work is replaced

behind the scenes.

Scenario 8: A certain process needs to be extended

When adding a Dropbox component for automatically creating customer project folders,

a new service needs to be created that acts as a proxy to the Dropbox servers. This

service is added to the service bus and a new invoke operation is added to the correct

orchestration. The most time consuming part is creating the wrapper service that

communicates with Dropbox because adding a method call to an existing orchestration is

a matter of minutes.

Scenario 9: A server is going offline

In the designed situation, the location of components which are used is stored centrally

in the service bus. This information prevents the need to investigate in the field of

internal processes and thus limits the chance of unwanted downtime and time necessary

to investigate.

D. Evaluation iteration 4 – Post implementation

The fourth evaluation iteration, presented in this section, concludes the iteration

quartet. The nature of this fourth iteration is unlike the second and third iteration not

based on theory but based on real world measurements. This evaluation presents the

means to evaluate the actual progression made for Tam Tam by implementing the

designed new architecture.

Final metric values

This is the last iteration over the identified metrics; Table 22 presents a complete

comparison chart used for comparing the different architectural stages and situations.

For each metric an elaboration is given with the rationale behind the values.

Number of interaction schemes

The number of different interaction schemes has increased by one due to the addition of

dynamically retrieving the end point location from the UDDI server. This interaction

scheme in addition with the WCF services used for web services and process

orchestrations makes a total of two plus the interaction schemes in the low level

functionalities behind the web services.

134 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Number of hardcoded connection strings

Due to the incompatibility of BizTalk to query endpoint addresses from the UDDI server

at the moment, the number of hardcoded connection strings is doubled. In addition to

that, each process orchestration gets an own hardcoded connection string in the UDDI

server. This makes a total of 34 individual hardcoded connection strings: 16 (processes)

+ 9 (services in BizTalk) + 9 (services in UDDI). Such an increase from 21 might seem as

unnecessary, but it is the absolute maximum number of strings because those 34 are

only used in the specified places. In the old situation several duplicate connection

strings existed throughout several different components where in the new architecture

only the UDDI connection string is duplicated.

Number of incoming method calls per component

The average number of incoming method calls per component turned out to be bigger as

well. This can also be ascribed to the fact that data access requests are performed

directly on the web services instead of through BizTalk. The total number is the original

direct data access occurrences divided by the number of components plus 45 interactions

from the process orchestrations divided by 16 processes.

Number of components with related functionality (duplication)

The value of (close to) 0 remains the same here because the abstraction layers take care

of removing duplicate functionalities.

Speed of source code retrieval

The amount of time necessary to retrieve the source code is not altered with the

implementation of the design, because the focus is on the live situation.

Speed of live location retrieval

Locating the live location of components can be achieved in a two simple steps: 1) locate

the UDDI server (hosted on a standardized DNS entry), and 2) retrieve service

endpoints. These steps can be performed in about 5 minutes.

Speed of understanding application interactions

The speed in which application interactions can be understood is decreased by the same

amount of the measure for the time required for the live location retrieval. The amount

of time required to understand all interactions stays about the same, the published web

service interface helps greatly.

Speed of understanding process orchestrations

In essence process orchestrations are basic flow diagrams that represent actions that are

carried out. With the assumption that the naming of building blocks is chosen carefully,

about half an hour is needed for understanding a complete process.

| 135

Speed of checking component status

The status of components for which new web services are created can be checked by

using the implemented „ping‟ operation. By retrieving all web services from the UDDI

server and invoking said ping method, most of the web services can be checked.

Externally crafted web services cannot be forced to implement a ping method of some

sort so in those cases it would take some more time to investigate.

Speed of understanding component purposes

With the introduction of wrapper web services, knowledge about what functionality a

component performs can be retrieved from one single location, the interface description

file. While this interface description file specifies what functions a web service offers and

provides detailed descriptions in the form of comments, the number of functions might

be large so the amount of time will be about an hour on average.

Table 22: Fourth evaluation iteration metrics

Metric Current

situation

Enterprise

Service Bus

ESB Design BizTalk 2010

Number of

interaction

schemes

6 1 (+ interaction

schemes in

dedicated

wrappers)

1 (+ interaction

schemes in

dedicated

wrappers)

2 (+ interaction

schemes in

dedicated

wrappers)

Number of

hardcoded

connection

strings

21 Number of

services (+

connection

strings in

dedicated

services)

9 (+ connection

strings in

dedicated

services)

34 + 1 for UDDI

Number of

incoming

method calls per

component

2.2 2.4 2.4 2.8 (+ direct

data

requests/number

of services)

Number of

components

with related

functionality

(duplication)

8 0 0 0

Speed of source

code retrieval

2 hours 15 minutes 15 minutes 15 minutes

Speed of live

location

retrieval

45 minutes 15 minutes 15 minutes 5 minutes

Speed of

understanding

application

interactions

Several

hours

15 minutes

finding + 30

minutes

understanding

15 minutes

finding + 30

minutes

understanding

5 minutes

finding + 30

minutes

understanding

Speed of

understanding

process

orchestrations

Multiple

hours

2 hours 30 minutes 30 minutes

136 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Speed of

checking

component

status

Multiple

hours

30 minutes 5 minutes 15 minutes

Speed of

understanding

component

purposes

Several

hours

1 hour 1 hour 1 hour

Implemented scenario evaluation

After the last revision of the identified metrics, this paragraph presents the last version

of the scenarios analysis used for comparison. Each scenario is elaborated on with the

BizTalk 2010 implementation as reference point with precise durations of key actions

that need to be taken to complete every scenario.

Scenario 1: Addition of an extra component

To add a new component to the architecture, all process orchestrations that should

interact with the new component need to be adapted. Steps to be taken are as follows:

1) Add new web service to the UDDI server (15 minutes)

2) Importing the new web service into the process designer (5 minutes)

3) Extending and adding maps to map values for the new invoke (30 minutes)

4) Create a new orchestration for all new processes (1 hour apiece)

5) Re-deploy the orchestrations (5 minutes)

6) Publish receive location with the web service publishing wizard (5 minutes)

7) Include send port in BizTalk by importing an automatically created XML

document (5 minutes)

8) Enlist new receive location to be used in the process orchestrations (5 minutes)

9) Add new process orchestration to the UDDI server (15 minutes)

In total it would take two and a half hours to add a new component with one additional

process.

Scenario 2: Moving a component to another location

With BizTalk and an UDDI server in place, the activity to relocate a component entails

changing a configuration string in two different places. First of all in the UDDI server to

inform components that directly invoke the component. Secondly in the BizTalk server

Administration Console to let orchestrations know.

The total amount of time necessary to perform those two operations is as follows:

1) Retrieve the UDDI server location (hosted on a standardized DNS entry) and

adapt the configuration string (5 minutes)

2) Retrieve the BizTalk server location (hosted on a standardized DNS entry) and

adapt the send port configuration in the BizTalk Administration console (10

minutes)

| 137

In total it would take about a quarter of an hour where the main time consuming factor

is the user log in process on the BizTalk server.

Scenario 3: Extension / withdrawing functionality of a component

When a web service is split into two (or more) different parts, the references to the old

web service should all be updated to refer to the correct new web service. An assumption

is made here that the operation is only to split the service, no change or addition of

functionality takes place.

The actions that need to be performed are as follows:

1) Delete the reference to the old web service in the workflows project (5 minutes)

2) Import the new web services into the process designer (10 minutes)

3) Change maps to map values from the new service definitions (15 minutes)

4) Change Send port types in the workflows to match the newly added web services

(10 minutes)

5) Re-deploy the orchestrations (5 minutes)

6) Delete old send port and include new send ports in BizTalk by importing the

automatically created XML documents (10 minutes)

In total this operation, next to splitting the web service in two separate services, takes

about an hour. In this hour, all processes that relied on the old web service are updated

to use the newly created web services

Scenario 4: Carrying out maintenance on a component

When maintenance needs to be carried out on the service representing a component, a

service window can be configured that refrains BizTalk from sending messages to the

specific component and postpones the delivery of those messages until after the service

window. The nature of the design created in this thesis specifies that the newly created

services are only invoked from BizTalk. This is the main reason that all sent messages

are logged and a considerable easy assessment can be made for the origin of the

investigated bug.

The activities that need to be performed are as follows:

1) Set up service window in the BizTalk Administration console (5 minutes)

2) Retrieve message logs from the BizTalk Administration console to define whether

the bug is in the process orchestration or in the web service (5 minutes)

3) Evaluate the messages with the specified interface (15 minutes)

4) Time to fix the bug in the functionality underlying the web service (no change in

time) or change the process orchestration (about two hours, see scenario 5)

When the bug lies in the underlying service implementation, the new situation takes the

same amount of time to fix as the old situation. The only difference is that the

identification of the bug origin can be carried out in about half an hour. When the

introduction of process orchestrations causes the bug, the bug fixing time is about two

and a half hour.

138 | A p p e n d i x E : E v a l u a t i o n i t e r a t i o n s

Scenario 5: Change the functionality of a component

When the functionality of a component including its interface should be changed, a

ripple effect will be visible from the bottom functionality layer to the top level process

invoking layer. The change of functionality itself is left out of the equation here because

that time is equal to the time necessary to change functionality in the current situation.

The actions that need to be performed are as follows:

1) Find source and live location of the web service (30 minutes)

2) Adapt the service interface and re-publish the service (5 minutes)

3) Delete the reference to the old web service in the workflows project (5 minutes)

4) Import the new web services into the process designer (10 minutes)

5) Change schemas to include the adapted parameters (15 minutes)

6) Change maps to map values from the new service definitions (15 minutes)

7) Re-deploy the orchestration (5 minutes)

8) Republish receive location with the web service publishing wizard (5 minutes)

9) Delete old send port and include new send ports in BizTalk by importing the

automatically created XML documents (10 minutes)

10) Enlist new receive location to be used in the process orchestrations (5 minutes)

11) Change calling locations by searching for applications that use a specific UDDI

entry (less than current situation)

The two key assumptions are made here are as follows: 1) time necessary to change

underlying functionality is not changed and 2) searching for specific UDDI entries takes

far less time than „searching for referring components‟. The additional combined time is

about two hours, excluding the amount of effort it takes to carry out changing the

underlying functionality.

Scenario 6: A process cannot be executed anymore

When assessing why a process fails to be executed, the BizTalk Administration console

proves to be of assistance here because it tracks all instances that are completed, are

running or have failed. Furthermore, BizTalk ensures the processes can be resumed

after the necessary interventions have been performed.

The following steps are used to identify what component causes the issues:

1) Retrieve message and instance logs from the BizTalk Administration console to

define where the malfunction stems from (15 minutes)

2) Investigate the logs to find out what the origin of the failures is (15 minutes)

In total a maximum of half an hour is needed to identify the sour spot in the

architecture.

Scenario 7: Replace a component

The only steps necessary to replace a component is implementing the communication

from the existing web service interface to the new component and changing the location

| 139

of the old web service to the newly created service. This moving is in essence the same

as that of scenario 2 so next to the implementation of the new connection it takes about

a quarter of an hour to replace a component.

Scenario 8: A certain process needs to be extended

After having implemented all processes in BizTalk, the effort it takes to add a specific

functionality invoke to a workflow is very minimal. As said in the design evaluation, the

only time consuming aspects are retrieving, adapting and redeploying the

orchestrations. The key assumption made here is that the to-be-added functionality is

already represented by a web service, which otherwise would by far take the most effort

to be created.

The specification of time necessary to perform such an addition is as follows:

1) Retrieving location of process orchestrations (15 minutes)

2) Importing the new web service into the process designer (5 minutes)

3) Creating a map to map values for the new invoke (15 minutes)

4) Re-deploy the orchestration (5 minutes)

5) Include send port in BizTalk by importing an automatically created XML

document (5 minutes)

In total it would take less than an hour to perform the addition of extra functionality to

a process.

Scenario 9: A server is going offline

In the case a server needs to be shut down for maintenance or deletion, it becomes clear

by the UDDI server whether some components are dependent on it. In the case of

maintenance, a maintenance window can be specified so nothing is disrupted. In the

case of deletion, it is known exactly which components are still running on the machine

that needs to be deleted. In summary the new situation increases the certainty with

which servers can be turned off.

140 | A p p e n d i x F : K e y d e l i v e r a b l e s

Appendix F: Key deliverables

Through the course of the thesis project several deliverables have been created. This

appendix lists all deliverables and gives a short explanation on what is the use of the

specific documents or implementations.

Systems Architecture, Visualization of the current internal architecture.

Description of the internal systems architecture in place within Tam Tam in the time

span September until October 2010. Firstly is decided how to visualize the architecture

and after that the process of describing it is elaborated on.

Design document, What does the to be architecture look like

This document presents an elaboration on the rationale behind the design, including the

design specifics. This information is supplemented with the designed organizational

change, a transition plan and the advantages and disadvantages of the new

architecture.

BizTalk 101 ~ Creating your First BizTalk 2010 building block, Create an orchestration

acting as a WCF Proxy

This document walks users through the creation of a proxy BizTalk orchestration to

decrease the learning curve to start using BizTalk. Goals of this document are to create

comprehension of the steps necessary to create a sample WCF service, use this service in

a BizTalk orchestration and how to deploy the created orchestration.

BizTalk 102 ~ Relocating a service, Informing BizTalk and UDDI of the new location

This document walks users through the steps that need to be performed when a new

web service is to be used within Tam Tam. This document covers publishing the web

service, consuming the web service and updating the binding location of the web service.

BizTalk 103 ~ Enterprise Single sign-on, How to limit Service access to specific users or

groups

This third tutorial describes the way Single sign-on can be used to limit the access to

specific WCF functionalities. BizTalk orchestrations are run with a dedicated account,

limiting the possibilities to verify if the calling user has the right privileges. By

including SSO in the picture, the called functionality can decide whether or not the

original caller has the right privileges. This document describes the step-by-step way to

set up the environment for SSO and the use of it in orchestrations and WCF services.

BizTalk 104 ~ Remote deployment, How to develop and deploy BizTalk applications

from workstations

This document walks users through the process of deploying a BizTalk application to a

different machine running BizTalk Server 2010. Motivation for this tutorial is the desire

| 141

to split the BizTalk environment in three different parts: 1) machine for development, 2)

machine for production, and 3) monitoring capabilities.

BizTalk 105 ~ Remote monitoring, How to monitor a BizTalk 2010 server from a

different machine

This document indicates the different possibilities available for monitoring the BizTalk

environment. It stretches from direct SQL access through checking-up on completed or

terminated instances to real-time monitoring capabilities. The steps indicated in this

tutorial help both system administrators and developers to figure out what causes which

problems.

Configured BizTalk environment, An environment in which applications can run

This deliverable consists of a fully functional environment which is to be used to host

the designed implementation. Every part necessary for the design is present here,

including but not limited to UDDI/BizTalk/SSO/IIS – servers and the correct privileges

are set.

Implementation plan, Steps necessary to finish the transition towards BizTalk 2010

This document lists all atomic tasks which have to be carried out to reach the designed

architecture from the current situation. Key elements here are a backlog of activities

with their estimated amount of time and the already performed tasks.

WCF Sample service, To be used for developing services

This sample service includes all standard elements to be used in web services. Elements

offered are a configured configuration file, logging capabilities and a formalized way of

creating functionalities.

WCF Sample proxy orchestration, Result of BizTalk 101

This presents a working example of the first BizTalk 2010 tutorial to be used as a

building block or reference point for verifying the progression of following the tutorial.

142 | A p p e n d i x G : P r o g r e s s o f i m p l e m e n t a t i o n

Appendix G: Progress of implementation

BizTalk Orchestrations
ESB2011-BZT

SVN\TamTam.ESB2011.BizTalk for
TamTam Project Files\OrchestrationsC

re
at

e
P

ro
je

ct

C
R

M
A

ct
io

n
s

CRM – Tam Tam
DFT-CRM-003

Vault.TamTam.CustomerPortal.CRMPlugins

Manage Customers
Manage Contacts
Manage Opportunities

P

P

P

IIII

CRM – Mixit
DFT-CRM-003

Vault.TamTam.CustomerPortal.CRMPlugins

Manage Customers
Manage Contacts
Manage Opportunities

P

P

P

CustomerPortal WebService

DFT-INT-004 Vault.TamTam.CustomerPortal.Webservices

CP WebService Wrapper

ESB2011-BZT:34568\TTServiceWCFWrapper SVN\
TamTam.ESB2011\BizTalk for TamTam Project Files\CRM Clone\
CRMActionsWCF

Pass through operations

Service needs to be
replaced by full fledged
orchestrations

C
re

at
e

Ta
m

 T
am

ac

co
u

n
t

R
em

o
ve

 T
am

 T
am

ac

co
u

n
t

I I

U
p

d
at

e
Ta

m
 T

am

ac
co

u
n

t

U
p

d
at

e
P

ro
je

ct

I I

UDDI Endpoint resolver

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

Query UDDI server to
retrieve endpoint from
GUID

Active Directory

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

Administration DB

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

Exchange

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

Dropbox

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

CRM

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

Finance

ESB2011-BZT:34568\UDDIWCFEndpoint SVN\TamTam.ESB2011\
BizTalk for TamTam Project Files\UDDIWCFEndpoint

S S

S

S

S S

S

S

S

Project Toolkit
DFT-INT-002

Vault.TamTam.ProjectToolkit

Create Project
Update Project

P

P

HRM Application
DFT-INT-002

Vault.iws.TamTam.HRM

Add Employee
Remove Employee
Change Employee

P

P

P

S

Production

Tested live

Partly
implemented

Not
implemented

I Interface

Service

P
Process

initiation

Figure 36: Progress of implementation

