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Chapter 1

Introduction

This document contains the work performed for an MSc thesis graduation project on indoor
leader-follower flight with Micro Aerial Vehicles (MAVs). This introduction serves to provide
the context within this thesis resides, and the motivation for the research topic. It also
presents the overall structure of this thesis for clarity.

1-1 Research Context and Motivation

Leader-follower flight is a frequently studied topic within swarm robotics. In turn, swarm
robotics is a domain within robotics that focuses on groups of robots and their cooperation.
The interest in swarm robotics is often sparked by observations of swarming behavior exhibited
by social animals in nature, such as ants, bees, birds, and fish [15] due to their ability to
accomplish rather impressive tasks when cooperating in a swarm.

What is particularly interesting about these natural examples of swarming is their inherent
ability to be robust, flexible, and scalable [15]. In this context, the property of robustness
pertains to a swarms ability to be relatively unaffected by loss of individual members.
Flexibility means that the swarm is able to operate in a variety of different environments.
Finally, scalability applies to its ability to adapt to different group sizes. [15, 98]. Naturally
these properties are desirable to have also in artificially created systems, and thus the domain
of swarm robotics was born.

Swarm robotics, and in particular swarm robotics with MAVs, has many potential appli-
cations. Examples that offer value specifically to MAVs are cooperative surveillance and/or
mapping [1, 100, 102], localization of areas of sensory interest (e.g. chemical plumes) [44, 103],
the detection of forest fires [73], or search missions in hazardous environments [12].

In order to safely and efficiently operate a group of MAVs, there are certain tasks that the
swarm must autonomously be capable of executing. An example of a frequently studied task
is collision avoidance between agents in the swarm [21, 95]. Another example, which is the
topic of this thesis, is the task of collectively moving a group of MAVs around. As swarms
increase in numbers, individually controlling agents becomes less viable, and methods are
required to easily move the group around as a collective. Leader-follower flight is a so-
lution to this problem, which is why this thesis has considered leader-follower flight as a topic.



2 Introduction

Leader-follower flight requires MAVs to have knowledge of the relative location of the leader.
This is a non-trivial problem, and was therefore also studied in this thesis. The desire was
to propose a solution that would work independent of the environment that the MAVs are
in, including indoor environments. This means that obtaining the relative locations between
MAVs must be done with only on-board sensors. External positioning systems like the the
Global Navigation Satellite System (GNSS) or Motion Capture Systems (MCSs) can not be
used since they are not available everywhere.

Earlier research on on-board relative localization methods has demonstrated the feasibility
of wireless range-based methods to perform this task of localization [21, 39]. Wireless radio
has certain favorable properties, such as the fact that it works omni-directionally and therefore
does not require active tracking of neighboring agents. The implementation in [21] however
showed insufficient accuracy in the relative localization results for a task like leader-follower
flight. The method in [39] is susceptible to drift over longer periods of time. Furthermore,
both previous implementations required each MAV to have knowledge of their heading with
respect to magnetic North [21, 39]. This heading is typically obtained through magnetometer
readings, which are notoriously unreliable in an indoor environment due to local magnetic
disturbances [2]. These observations lead us to the research objective and research questions
of this thesis.

1-2 Research Objectives and Research Questions

This thesis continues to investigate the potential of wireless range-based methods for relative
localization purposes, specifically for the task of indoor leader-follower flight. The research
objective throughout this thesis has been to

improve the accuracy of on-board wireless range-based relative localization
methods for an indoor environment

and to consequently use this to
demonstrate leader-follower flight.

As already mentioned, one of the primary drawbacks of earlier implementations of range-
based relative localization methods on M AVs was their reliance on knowledge of their heading
with respect to magnetic North. It has been theoretically shown however that a common
heading reference is not actually necessary when performing range based relative localization
[70, 113]. The first research question during this thesis was therefore:

1) What are the practical consequences of removing the heading dependency in range-based
relative localization methods?

The second guiding research question has been:
2) How can range-based relative localization be used to perform leader-follower flight?

The answers to these research questions combined provide sufficient knowledge to be able to
accomplish the research objective.
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1-3 Thesis Structure

The thesis starts off with a scientific paper in part I. This paper answers the two research
questions listed above and contains the main scientific contribution of the work performed
during this thesis. The paper can be read as a stand-alone document, and the remainder of
the thesis serves as additional (background) knowledge for some of the topics discussed in
the paper.

In part IT of the thesis, part of the literature review that was conducted during the preliminary
phase of this thesis is presented.

In chapter 2, an overview is given of different methods that can be used for relative local-
ization purposes. This chapter serves as motivation as to why wireless range-based sensors
are such a promising solution compared to other solutions. It also presents why in this the-
sis it has been chosen to use Ultra Wideband (UWB) radio in particular to obtain range
measurements, as opposed to any other existing wireless radio technology.

Because UWB is a relatively unknown radio technology, chapters 3 and 4 further go into
depth on the topic of UWB. These chapters further illustrate the favorable properties of
UWB, and what the technology can be used for.

Chapters 5 and 6 give an introduction into wireless radio based localization and ranging.
Chapter 6 in particular discusses the concept of two-way ranging, which is the method of
choice in this thesis to measure range between MAVs.

Part III contains some additional experimental results that have not been covered in the
scientific paper in part I. In particular, the ranging performance of the UWB modules used
in this thesis is tested and analyzed in chapter 7. Finally, the thesis concludes by evaluating
some characteristic of the Parrot Bebop 2 drone! that was used for the experiments within
this thesis in chapter 8. Both the step response of the Bebop 2 to a velocity command, and
the accuracy of on-board sensors that are important to the scientific paper are discussed here.

"https://www.parrot.com/us/drones/parrot-bebop-2
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Abstract—In this paper a range-based relative localization so-
lution is proposed and demonstrated in practice. The approach is
based on wireless range measurements between robots, along with
the communication of their velocities, accelerations, yaw rates,
and height. It can be implemented on many robotic platforms
without the need for dedicated sensors. With respect to previous
work, we remove the dependency on a common heading reference
between robots. The main advantage of this is that it makes
the relative localization approach independent of magnetometer
readings, which are notoriously unreliable in an indoor environ-
ment. A theoretical observability analysis shows that it may also
have two disadvantages: the motion of the robots must meet more
stringent conditions and the relative localization method becomes
more susceptible to noise on the range measurements. However,
simulation results have shown that in the presence of significant
magnetic disturbances that are common to indoor environments,
removing the heading dependency is beneficial. We conclude the
paper by implementing the heading-independent method on real
Micro Aerial Vehicles (MAVs) and performing leader-follower
flight in an indoor environment. Despite the observability analysis
showing leader-follower flight to be an especially difficult task,
we still manage to successfully fly for over 3 minutes with two
fully autonomous followers using only on-board sensing.

I. INTRODUCTION

Multi-agent and swarm robotics are heavily studied topics
within the domain of Micro Aerial Vehicle (MAV) applica-
tions. They offer to make MAV applications more robust,
flexible, and scalable [1,2]. These properties pertain to a
group’s ability to remain operable under loss of individual
members and their ability to operate under different conditions.
Furthermore, one can imagine that through cooperation a
swarm of MAVs could execute tasks faster than any single
MAV could.

The envisioned applications of such multi-agent robotic
systems are therefore plentiful. Examples that are of inter-
est specifically to MAVs are cooperative surveillance and/or
mapping [3-5], localization of areas of sensory interest (e.g.
chemical plumes) [6,7], the detection of forest fires [8], or
search missions in hazardous environments [9].

In order to deploy groups of MAVs for such applications,
there are certain tasks that the group must typically be capable
of performing. Frequently studied tasks are collision avoidance
[10, 11] and leader-follower or formation flight [12—14]. These
tasks are accomplished by the MAVs through knowledge of
the locations of at least the neighboring MAVs in a group.

Obtaining the (relative) locations of neighboring agents in a
group is however a non-trivial problem and many different
solutions have been proposed and used in the literature.

Often used are the external systems that can provide a
global reference frame within which agents can localize them-
selves and others. An example is the group of so called
Motion Capture Systems (MCSs) [7,15-20]. These systems
can provide highly accurate location data, but only within
the limited coverage provided by the system. Alternatively,
the information provided by the Global Navigation Satellite
System (GNSS) can be used to provide similar location data
[3,12,14,21,22]. Whilst this signal is much more widely
available, it is also much less accurate, inevitably leading to
large required inter agent separations [23]. Furthermore, the
signal cannot reliably be used indoors due to signal attenuation
[24] and even in some urban environments or forests due to
multipath effects [25].

To increase the versatility of the solution, the MAVs should
thus use onboard sensors to determine the locations of neigh-
boring MAVs. Often vision based methods are employed such
as onboard camera based systems [11,23,26,27] or infrared
sensor systems [28-30]. These systems are however charac-
terised by a limited field of view. Dealing with this issue
can be done for example by creating constructs with an array
of sensors [30] or by actively tracking neighbouring agents
[23]. Neither solutions are ideal for groups of MAVs due to
respectively the weight penalty that comes with an array of
sensors, or the more limited freedom of motion and scalability
as a consequence of the need for active tracking of neighbors.

An omni directional sensor would thus be more advan-
tageous, and those sensors do exist. In fact, wireless radio
transceivers can actually be used to fulfill this role and are
already present on most MAV platforms by default.

Guo et al. have recently implemented an Ultra Wideband
(UWB) radio based system for this task in [31]. They fuse
range measurements with displacement information from each
MAV to estimate the relative location between MAVs. How-
ever, their proposed method suggests that each MAV must keep
track of their own displacement with respect to their initial
launching point. If this measurement is obtained through on-
board sensors (for example by integrating velocities) then this
measurement will be subject to drift over time.

Alternatively, Coppola et al [10] have demonstrated a Blue-
tooth based relative localization method. Rather than using
displacement information, they use, among other information,



the velocities of different MAV's to establish a relative location
estimate. If the drones are capable of measuring their own
velocity directly, then this measurement does not suffer from
the same drift issues, making it suitable for longer flights as
well.

Despite the promising results of range-based solutions, a
major downside of both the implementation in [10] and in [31]
is that they rely on a common frame of reference. This frame is
established by having each drone measure their heading with
respect to North. The magnetometers used to establish this
North direction are notoriously unreliable in especially indoor
environments, due to the local disturbances in the Earth’s
magnetic field [32]. Heading errors upwards of 80° can locally
occur when magnetometers are used to infer a heading in
indoor environments [32].

The difficulty of establishing a reliable direction towards
North in an indoor environment is a well known problem.
Consequently, researchers have proposed solutions in the form
of complementary or Kalman filters [33-36], or the usage
of redundant magnetic sensors to compensate the local dis-
turbances [32,37]. These solutions however may be overly
complex for the purpose of relative localization, since it has
been theoretically shown that a shared reference frame is
not actually necessary when performing range based relative
localization [38, 39].

The first main contribution of this paper is therefore an
analysis into the consequences of removing the heading de-
pendency in range based relative localization. This will be
provided through an observability analysis and by performing
simulations. Different to [38,39], the analysis additionally
considers the inclusion of acceleration information, since this
is commonly known by MAVs from their Inertial Measurement
Unit (IMU). Furthermore, the analysis specifically focuses on
the implications that removing a heading dependency has,
especially from a practical implementation point of view.

The observability analysis will show us that the task of
leader-follower flight is especially difficult with range-based
relative localization methods. To really show the capabilities
of our method, we therefore implement it on real MAVs for
precisely this difficult task of leader-follower flight. This will
thus be the second main contribution of this paper.

The structure of the paper is as follows. First of all a
theoretical observability analysis for range based observation
with and without a reliance on a common heading is given
in section II. The most important theoretical findings in this
study are verified through simulation in section III. Afterwards
the heading independent localization filter is implemented on
real MAVs and used to demonstrate leader-follower flight in
section IV. The results are reflected upon in the discussion
section in section V. Finally, the overall conclusions of this
paper are drawn in section VI.

II. OBSERVABILITY OF THE RELATIVE LOCALIZATION
FILTER

The purpose of the eventual relative localization filter is
for a drone (say drone 1) to be able to track the position of
another drone (say drone 2). Despite the reference to drones

in particular, most of the conclusions that follow hold for any
general system that can provide the same sensory information
as used in this analysis. Furthermore, the results may be
extrapolated to more than two drones, as will be demonstrated
in section IV. For clarity, however, only drones 1 and 2 are
referred to in the coming analysis.

In this section, an observability analysis is performed that
specifically focuses on the practical implications of performing
range based relative localization with or without reliance on a
common heading reference.

A. Preliminaries

The primary analytical concept that will be used to study
range based relative localization is that of local weak observ-
ability, as introduced by Hermann and Krener in [40]. This
concept, as the name implies, can be used to make claims
regarding whether a specific state can be distinguished from
other states in its neighborhood. Local weak observability can
be demonstrated through an analytical test [40], which will
now be briefly introduced for reference, using the notation
style used in this paper.

Consider a generic non-linear state-space system Y , defined
by:

x = f(x,u) ()
y = h(x) )

The system » | has state vector x = [z, T2, ...%,|T € R",
an input vector u € R!, and an output vector y € R™. The
vector function f(x,u) contains the definitions for the time
derivatives of all the states in x and the vector function h(x)
contains the observation equations for the system. Define for
this system the following Lie derivatives:

Lh=h 3)
Lth=V®/LPh-f “
Lih=V®L:h-f ®)
Where V is the differential operator defined as V =

P
[%1, %2, A %] and ® is the Kronecker product. Note that

accordingly, V ®'h is equivalent to the Jacobian matrix of h.
Using these definitions, an observability matrix can be
constructed as follows:

V®Lih
V® Lih

,1eN 6)
V® Lih

A system is locally weakly observable if the observability

matrix is full rank [40]. This theory will be applied to the

relative localization filter such that the conditions can be
derived for which the filter is locally weakly observable.



Fig. 1. Important reference frames used in this paper. Frame Z in purple is
the earth-fixed North East Down frame (assumed to be inertial). Frames H 1
(orange) and Hz (blue) are body fixed reference frames for drones 1 and 2
respectively.

B. Reference Frames

For the analyses that follow, consider the reference frames
schematically depicted in figure 1.

Denoted by Z is the earth-fixed, North-East-Down (NED)
reference frame, which is assumed to be an inertial frame of
reference.

Denoted by H;, « = 1,2 is a body-fixed reference frame
belonging to drone 4. Its origin is coincident with drone %’s
centre of gravity and its location with respect to the Z frame
is represented by the vector p;. The H; frame is defined to
be a horizontal frame of reference, such that the z-axis of the
‘H; frame remains parallel to that of the Z frame. The H;
frame however is rotated with respect to the Z frame about
the positive z-axis by an angle 1);, where 1; is the heading
that drone ¢ has with respect to North, also referred to as its
yaw angle. The rate of change of v); is represented by r;.

Note that the H; frame is different from the more typical
body-fixed frame B; that uses the three Euler angles for roll,
pitch, and yaw to represent its orientation with respect to the
T frame. The reason for using the #; rather than the B; frame,
is that it simplifies some kinematic relations later on in this
paper, without having to impose additional assumptions such
as the assumption that the roll and pitch angle of the drone
are small. Of course the kinematics are even simpler in the
T frame, but establishing this common frame for every drone
introduces the undesirable requirement for each drone to have
knowledge of a common North direction. The H,; frame thus
forms a sort of compromise between the Z frame and the B5;
frame.

C. Nonlinear System Description

As mentioned earlier, assume for this analysis that it is drone
1 that attempts to estimate the relative position of drone 2.
Define for that purpose the vector p to be this relative position,
such that p = p2 — p1 (see figure 1). Furthermore, denote by
v; and a; the linear velocities and accelerations of frame H;
with respect to frame Z, expressed in frame H;, i = 1,2.

Finally, let A represent the difference in heading between
drone 1 and 2, such that Ay = 1y — 7.

It is assumed from this point on that the drones are capable
of measuring their own height. Since the #,; frame is a
horizontal frame of reference, the height can easily be treated
as a separate dimension that does not influence the overall
observability analysis if it is directly measured. For the sake
of brevity, the height is therefore not included in the system
description. The vectors for the relative position p, the velocity
vj, and the acceleration a; can thus be expanded as 2D vectors:
pT = [pompy]-r’ Vi = [Um,ivvy,i]T’ aj = [aw,ivay,i]Ta t=1,2.

In accordance with the earlier definition of the rate of change
of v;, the rate of change of At is Av) = ro—rq. An important
point to note is that the value for r; is not equal to the yaw rate
as would commonly be measured by an onboard rate gyroscope
in the body frame 5;. Instead, r; can be expressed as:

_sin(y) . cos(i) -
"= cos(6;) a cos(6;) "

with ¢; and 7; representing the true pitch and yaw rate as
would be measured by a rate gyroscope, and ¢; and 6; being
the roll and pitch angles of the drone. However, for the sake
of simplicity the value for r; will be referred to as the drone’s
yaw rate.

Similarly, the value for the linear acceleration of the H;
frame expressed in coordinates of the H; frame, so aj, is not
exactly equal to what is measured by the accelerometer on
board. Instead, it is equal to:

| cl0:) s(9i)s(0:)  c(di)s(6:)) |
a= 0 c(¢:) —5(¢:) ' ®)

where s; is the specific force measured in the body frame
B; by the accelerometer of drone i. Furthermore, ¢(«) and
s(«) represent short hand notation for cos(a) and sin(«)
respectively. The matrix in this equation consists of the first
two rows of the rotation matrix from the 3; frame to the H;
frame.

Define the complete state of the system to be x =
[PT, A, v1T,v2T|T and the known inputs to the system as
uT = [a17,a27, 71, 72|T. The continuous time state differential
equations can be written as:

@)

—vi+Rvz —Sip

. Tro —T
% =f(x,u) = ay - Syvy )
az — Sng

Here, R is the 2D rotation matrix from frame Ho to H1,
such that:

cos(Ay)  —sin(Ay)
sin(AvY)  cos(Ay)

The matrices S; and Sy are the skew-symmetric matrix
equivalent of the cross product, adapted to the 2D case. The
matrix S; is equal to:

R =R(Ay) = [ } (10)

T

S; = Si(ry) = [ 0 _0” } =12 (11)



The variables a; and r;, ¢« = 1,2 are inputs into the
system and drone 1 must thus have knowledge of these values.
These are however typically available from accelerometer and
gyroscope data in combination with the appropriate relations
given in equations 7 and 8.

Of course equation 9 needs to be complemented with an
observation model. Apart from the height, which must be
measured but is not included in this analysis, the drones should
be able to measure the relative range between each other, along
with their own and each other’s velocities.

The analysis that follows aims to study the difference
between a scenario where the above measurements are the
only measurements and the scenario where the drones are
additionally capable of observing their own heading, so 11
and 1)9. The situation where the drones can observe a heading
is referred to as ) , and the situation where a heading is not
observed is referred to as ) 5 for convenience.

Sticking to the state as previously defined, the scenario
where 1)1 and 1)y are observed is equivalent to A (the differ-
ence in headings) being observed. So for ) ,, the following
observation model can be defined:

hai(x) ip’p
ya=bat) = | w00 | = W | 2
hA4(X) Vo

Note that the observation equation h 41 (x) is slightly modi-
fied with regards to the earlier mentioned measurements for
the convenience of the observability analysis. Rather than
observing the range itself between the two drones (i.e. ||p||2),
half the squared range is observed (i.e. %pr). This change
is made to make the observability analysis more convenient
without changing its result. Both [[p||> and ipTp contain
the same information as far as observability of the system is
concerned [38].

The second case that is studied is that where the headings
of the drones are not observed at all. In this situation it is not
possible to observe the difference in heading At directly. For
> - the observation model therefore becomes:

hp1(x) ip’p
yB =hp(x)= | hp2(x) | =| w1 (13)
hB3(X) Vo

The effect of this difference in the observation equation is
studied in the following sections.

D. Observability analysis with common heading reference

First consider system ) ,, such that the observation model
is given by equation 12. The first entry in the observability
matrix is equal to:

OI)T (1) glxz 81x2
0 1x2 1x2 1x2
V@ Lehy =Veh, O2:2 O2x1 Ioxo Q2o
O2x2 O2x1 Oy Ioxo
_ | PT O
N [ O5x2  Isxs } 14

With I,,,,, representing the identity matrix of size nxn and
0,,.xn, Tepresenting a matrix filled with zeros of size mxn.

One can already deduce some important information from
this first term that will simplify the subsequent analysis. First
of all, note that for the higher order terms in the observability
matrix, the last 5 columns will not contribute to increasing
its rank, because these columns are already populated by the
identity matrix. Furthermore, one can verify that the higher
order terms in the observation matrix corresponding to the
observations of Ay, vy, and vo only have terms in those last
5 columns because none of the higher order Lie derivatives
corresponding to those observations depend on the state p.
For this reason, these need not be computed and are therefore
omitted for brevity. The remainder of this analysis considers
only the terms corresponding to observation h 41 (x) = %pr.

The first order Lie derivative corresponding to the observa-
tion ha1(x) = LpTp is equal to:

Lthar =PpT(—v1+ Rva — Sip) (15)

Next, remembering that S; is a skew symmetric matrix,
such that S; +S17 = 04,2, the following identity is obtained:

op'Sip
op

Using this identity it is easy to verify that the second term
in the observation matrix corresponding to h41(x) is:

PT(Si+SiT) =pT(02x2) = 0152 (16)

—vqi + RVQ T
P'5ag V2 (17)
—Pp
R™p

Now, it is possible to continue calculating higher order
terms for the observability matrix, but in practice this is not
necessary. The first term of the observability matrix, as shown
in equation 14 already presents a matrix of rank 6. Since
the state is of size 7, this means that only 1 more linearly
independent row needs to be added to the observability matrix
to demonstrate local weak observability of the system. It is of
practical interest to study the scenarios in which the system
is locally weakly observable with a minimum amount of Lie
derivatives involved in the analysis. This is due to the fact that
in practice all signals are noisy, and continuous differentiation
of a noisy signal will inevitably lead to increasingly noisy
signals. It will be demonstrated that the terms presented in
equation 17 are sufficient under certain conditions to make the
observability matrix full rank.

As mentioned, equation 14 already shows that the last five
columns of the observability matrix are no longer of interest

VL ha =



to increase its rank. Furthermore, only the observation of
hai1(x) = %pr provides non-zero terms in the first two
columns of the observability matrix. Therefore, the following
matrix can be constructed by collecting the terms of the
first two columns in the observation matrix belonging to
observation h 1 (X):

pT

Ma = —v1T + voTRT

(18)
where the first term is from the zeroth order Lie derivative
(see equation 14) and the second term from the first order Lie
derivative (see equation 17).

The system is thus observable with a minimum amount of
Lie derivatives if the matrix given by 18 has two linearly
independent rows. By the definition of linear independence,
this means that the following condition must hold to guarantee
local weak observability of the system:

—v1+ Rva # cp (19)

where c is an arbitrary constant.

This condition essentially tells us that the relative velocity of
the two drones should not be a multiple of the relative position
vector between the two drones.

It can be difficult to intuitively envision what this condition
means in practice. By inspecting equation 19, however, we
can find more intuitive conditions that must also be met for
equation 19 to hold. These conditions can be described as
follows:

o p#O0y (20)
o vy # 0341 or va # Oy 21
® Vi 7é RVg (22)

The first condition tells us that the x and y coordinates of
the relative position of drone 2 with respect to drone 1 should
not be equal to 0. In practice this would only be possible if the
drones were separated by height, for otherwise their physical
dimension would prevent this condition from occurring.

The second condition tells us that one of the two drones
needs to be moving to render the filter observable, and that the
observability is indifferent to which of the drones is moving
(hence the or condition).

The third condition tells us that the drones should not be
moving in parallel at the same speed (note the rotation matrix
R to transform vg to the H; frame).

Whilst these three conditions are indeed easier to consider,
it should be noted that these three conditions combined are
only a subset of the conditions imposed by equation 19. For
example, the scenario where drone 2 is stationary, and drone
1 flies straight towards drone 2, does not violate these three
conditions. It does however violate equation 19. To guarantee
the observability of a state and input combination, it should
therefore be checked against the full condition in equation 19.

E. Observability analysis without a common heading refer-
ence

After getting a sense of what conditions should be met
to make system ), locally weakly observable, it would be

interesting to see how this compares to the system where the
heading dependency is no longer present. Therefore, consider
now system )., whose observation equation is given by
equation 13, which does not include an observation of the
state At). For this system, the first term in the observability
matrix becomes:

PT 0 Oix2 O1po
V@ Lithg =V@hp = | 02 Oz Ioxo Oz | (23)
O2x2  0O2x1 0opo  Iopo

The term is very similar to the one shown previously
in equation 14. The important difference is that the row
corresponding to the observation of A has disappeared.
This means that the third column in 23 is now all 0O’s.
Consequently, the matrix is only rank 5, compared to the
rank 6 that was found previously. Since the state size is
still 7, a minimum of two more independent rows must be
added to the observability matrix to render the system locally
weakly observable. Again only the terms corresponding to the
observation hpi(x) = %pr have terms that could increase
the rank of the observability matrix. This means that this time
a minimum of two more Lie derivatives must be calculated.

It can be verified that the first derivative £%h31 and thus
its state-derivative VL% hp1 are exactly the same as calculated
for ) ,. These therefore need not be calculated anymore and
are given by equations 15 and 17 respectively.

The second order Lie derivative is equal to:

,C%hBl = (—VlT + V2TRT)(—V1 + Rvgy — Slp) 24)

L OR
LYY

+p"RT(az — S2v2)

va(rg —r1) —pT(ag —S1vy)

Some of these terms drop out if equation 24 is expanded.
For example the yaw rate of drone 1, 71, cancels out com-
pletely. Without any additional assumptions, equation 24 can
be reduced to:

OR
E%hBl =v1'vy +vaTvy —2viTRv, + pT——vars

FINT
(25)
—pTa; +p"Raz —p"RTS,v,

The state-derivative of L’% hp1 can then be shown to be equal
to equation 26. Note that again some terms cancel out, this step
has been omitted for brevity.

a; + Ray T
—2V1T738AP; vy +pT 76852, az
2V1 — 2RV2
—ZRTV1 -+ 2V2

VLihp: = (26)

Just like before, a part of the observation matrix can be
extracted for analysis. This time, the first three columns in the
observation matrix (as opposed to two) are collected for the
observation hp;(x) = pTp. Also, this time the terms up to



and including the second order Lie derivative are minimally
needed to obtain a full rank observability matrix. The following
matrix is obtained:

pT 0
oR
_VlT + V2TRT meV2
oR R
—aT +axTRT  —2viT555ve + PT 5552

Mg =

Obtaining the conditions for which this is a full rank matrix
is in this case somewhat less obvious due to the plethora of
terms. Rather than directly demonstrating linear independence
of the three rows in equation 27, the determinant |Mg| may
be computed and demonstrated to be non-zero. This is done
as follows.

Recall that pT = [p,,p,|. Furthermore, suppose —v1T +
v2TRT = [a,b] and —a;T 4+ a2TRT = [¢,d]. Then matrix
Mg can be written as:

Pe Dy 0
Mp=| a b P AAG Vo (28)
d —2V1T88A—va2 + pTaaT%ag
The determinant of Mg can be computed using a cofactor
expansion along the last column of Mp. This results in:

OR
[Mg| = —pT avaz(dpz — cpy)+ 29)
R OR
oy, T YTV T Y _
(—2vy 6vaz +p aAwaz)(me apy)

Now, the following identity can be used:

bps —apy = [ a b][_piy]_[a b]Awﬂ,(:«m)

0 -1
where A = [ 1 0
Substituting back the original expressions for [a,b], [c,d],

and [pg, py]. the determinant of Mg becomes:
OR
Mg| = —pT %
[Ma| = —pT v

oR OR
(*2V1TWV2 + PTmaz)(*VlT +v2TRT)Ap
31

—a;T +a,"RT)Ap+

This can be simplified and written as:

R
Mg| = |pT

m (—agviT +veasT) +

R

——— (vaviT —vavaTRT) [ A 32

A (vavy 2V2 )| Ap (32)
This system is thus locally weakly observable with a min-

imum amount of Lie derivatives if |Mg| is non-zero. Due to

the specific properties of the A matrix in this determinant (see

2 V1T

equation 30), the following equation must hold to render the

determinant [Mp| non-zero:
R
me (—azviT +vaa1T) +
R
2V1T78A¢ (vaviT — vavaTRT) # kpT (33)

where k£ is an arbitrary constant.

This equation is even more difficult to intuitively find a
meaning for than the one found before in equation 19. Just
like before, however, we can find a more intuitive subset of
conditions that also definitely must be met for a system to be
observable. These conditions are given by:

o p#0yy (34)
o (V1 # 041 or a3 # 02y ) and

(v # 0941 or ag # 02y1) (35)
o vi# sRvy or (a1 # 02 or az # 02y) (36)

with s an arbitrary constant.

The first of these conditions again tells us that the determi-
nant |[Mp| is zero if the x and y coordinates of the origins of
frames 1 and > coincide. This condition is the same as for

%he second condition tells us that both drones need to be
moving. This movement may be either through having a non-
zero velocity, or through having a non-zero acceleration.

The third condition tells us that the drones may not move
in parallel unless at least one of the drones is also accelerating
at the same time. Note that this time the drones are now not
allowed to move in parallel regardless of whether they are
moving at the same speed or not (notice the scalar multiple
s). The equivalent condition for ), only specified that the
drones may not move in parallel at the same speed.

Just like before, the three intuitive conditions described here
are only a subset of the conditions imposed by equation 33.
This again means that there are state and input combinations
that satisfy the three intuitive conditions, but that do not
satisfy equation 33.

In order to still give some clarification as to what the impli-
cations are of the full unobservability condition in equation
33, we can use numerical optimization methods to further
investigate this condition.

Using the Nelder-Mead simplex method for example, it is
possible to find points in the state and input space that violate
the full observability condition, but that do not violate the
intuitive conditions.

Two examples of numerically obtained situations that are
unobservable are given in figures 2 and 3. The relative position
vector p, and the velocities and accelerations of both drones
v; and aj, ¢ = 1,2 are geometrically depicted as arrows in the
figures. The vectors vo and ag are already rotated to the H;
frame for easier evaluation.

Indeed the scenarios in both figures do not violate any of the
intuitive conditions given by equations 34 to 36. The relative
position is non-zero, both drones have non-zero velocities and
accelerations, and the velocity vectors are not parallel.
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Fig. 3. Geometric display of an unobservable state and input combination

In order to gain more insight into these conditions, it is
possible to evaluate how the observability of the system would
change if the relative position p between the drones would
change. By varying the p, and p, values of the vector p
around the originally obtained values for p as given in the
figures, it is possible to generate a color map that indicates
the observability of the system for different relative positions,
given the corresponding velocities and accelerations depicted
in figures 2 and 3.

To construct such a color map, a measure for the observabil-
ity of the system is needed. This measure can be obtained by
interpreting the meaning of equation 33. It essentially tells us
that the left hand side of the equation should not be parallel to
the relative position vector p. A good measure of observability
is thus how far away the left hand side of equation 33 is from
being parallel to p. Whether or not two vectors are parallel
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Fig. 4. Colour map of observability for different relative positions. The
velocities and accelerations of the drones are kept as depicted by figure 2 and
the values for pT = [p, py]T are varied over a 5 m? range.
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Fig. 5. Colour map of observability for different relative positions. The
velocities and accelerations of the drones are kept as depicted by figure 3 and
the values for pT = [pg, py]T are varied over a 5 m? range.
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can be tested with the cross product of two vectors. The cross
product is zero if they are parallel and non-zero otherwise. The
absolute value of the cross product is used as a measure of the
observability of the system and will be used to construct the
following color maps.

The color maps for the unobservable conditions in figures 2
and 3 are given in figures 4 and 5 respectively. When the cross
product is less than a value of 1, it is considered unobservable.
In reality only if the cross product is truly O it represents an
unobservable condition, but this point will hardly be visible
on the maps, if at all.

Both colour maps clearly show a non-linear relationship
between the relative position vector p and the observability
of the system. Moreover, both maps show a different non-
linear relationship. Figure 4 shows more of a hyperbolic
relationship, whereas the unobservable region in figure 5 looks
more elliptical.

It can be shown that different conditions show yet other rela-
tionships between the observability of the system for different
relative positions p. Moreover, these relationships only show
what happens in two dimensions (for the two entries in the
vector p). In reality, the observability condition in equation
33 presents an 11 dimensional problem. It is therefore still
difficult to deduce general rules from these results.



What all of the color maps do have in common is that
the unobservable relative positions are in all cases vastly
outnumbered by the observable relative positions. Changing
in the position vector in the order of centimeters can already
move the system away from the unobservable region. This is
a property that will be used later on in the design of a leader-
follower control method in section IV.

Note that especially this last conclusion is different than
what would be observed for situations that would violate any
of the more intuitive conditions in equations 35 and 36. For
example, if the condition of parallel flight in equation 36 is
violated, then any value for p would result in an unobservable
system, rather than just a few sparse values. It is therefore not
without merit to consider these conditions separately.

FE. Comparison of the two systems

Finally, the results from the observability analysis of both
systems will be compared. This will answer the question of
what practical implications there are when moving from a
system that relies on a common heading reference, to a system
that does not.

One of the primary results of the analysis is the fact
that removing the relative heading measurement results in
a system that requires at least one extra Lie derivative in
the range observation to make the system locally weakly
observable. This is an important result because it tells us that
the heading-independent system ), relies more heavily on
the range equation than ) ,. Without a heading observation,
the information in the range signal is now used to estimate a
total of three states as opposed to two in ) ,. Some of this
information is contained in the second derivative of the range
observation. It is a well known fact that derivatives of a noisy
signal become more and more noisy. In practice this means
that any system that wishes to perform range-only relative
localization without a heading dependency needs an accurate
and low-noise range observation.

Another important result is that the criteria posed for 3
specify that both drones must be moving. Contrarily, the criteria
for > , specify that only one of the drones must be moving.
Whilst this result might not be as relevant when two drones
are considered (as they are typically moving), this result is
very important for other applications of range-based relative
localization. Think for example of the case where a single
static beacon is used to estimate the position of a flying drone
using range only sensing and communication. The results of
this analysis show that p 1s not observable in this case,
and thus a common heading reference must be observed for
such a system to work (or the drone must track the beacon
and communicate its estimate to the beacon). Note that in the
case where one of the participants is not moving it can be
shown that even the higher order Lie derivatives in 5 will
not succeed in making the observability matrix full rank, so
that this statement generally holds.

A third difference is the condition regarding parallel move-
ment of the two drones. > , specifies that the drones should
not move in parallel at the same speed (which can thus be
translated to mean that there should be a non-zero relative

velocity between the two drones). ) specifies that the drones
should not be moving in parallel regardless of speed. So even
if the second drone were to be moving twice as fast as the first,
the filter would not be observable if the direction of movement
is the same. ), is however able to bypass this condition
in some cases if either of the drones is also simultaneously
accelerating. It can be shown that ), is similarly able to
bypass the parallel motion condition with acceleration, but a
second order Lie derivative would be necessary in this case.

III. VERIFICATION THROUGH SIMULATIONS

This section verifies the conclusions drawn from the analyt-
ical observability analysis. First of all the filter that is used to
represent the studied problem will be introduced. Afterwards,
the conclusions drawn earlier are verified. At first, a kinematic,
noise-free study is performed to confirm the differences in
the observability conditions for ) , and ) 5. Afterwards, the
influence of noise and disturbances on the filter are studied for
situations that are known to be observable.

A. Filter Design

The choice of filter throughout the rest of this paper is
an Extended Kalman Filter (EKF). This choice was made
because this type of filter fits intuitively with how the state-
space system was described in section II. The EKF also uses
a state differential model and an observation model. The state
differential model can thus be kept exactly like the one given
earlier in equation 9. The observation models for > , and
> is also kept almost entirely the same as given before in
equations 12 and 13, with the only adjustment that the range
||p||2 is observed, rather than half the squared range pTp.
Furthermore, using the EKF is in line with earlier research
on range-based relative localization, where it was successfully
implemented in practice [10].

An EKF has parameters that need to be tuned, namely
the system and measurement noise matrices, the initial state,
and the initial state covariance matrix. The initial state is an
important setting that will be described where appropriate in
the next sections. The other matrices are always tuned to
correspond to the actual expected values. The measurement
noise matrix is thus tuned based on the expected noises on
the measurements and similarly for the system noise matrix.
However, since some of the simulations also make use of
perfect measurements (with zero noise) and since a zero noise
entry in the measurement noise matrix is not possible, the
corresponding entries are then given a small value of 0.1.

B. Kinematic, noise-free study of unobservable situations

In the first simulated study, the two ‘drones’ that are
studied have kinematic trajectories that can be analytically
described. The drones also have perfect noise-free knowledge
of the inputs and measurements. The kinematic and noise-
free situation is used to confirm conclusions drawn in the
observability analysis performed in section II.

The two drones involved in the EKF are designated drone
1 and drone 2. In this context, drone 1 is the host of the EKF



and thus attempts to track the relative position of drone 2. For
clarity, this drone is sometimes referred to as the host of the
filter. Drone 2 is the drone whose position is tracked by drone
1. It does not run an EKF. For clarity, this drone is sometimes
referred to as the tracked drone. The following three scenarios
are studied:

1) Drone 1 (host) is moving and drone 2 (tracked) is

stationary.

2) Drone 1 (host) is stationary and drone 2 (tracked) is

moving.

3) Drone 1 (host) and 2 (tracked) are both moving in

parallel to each other at different speeds.

These scenarios have been specifically chosen due to the
fact that they represent the intuitive conditions where ) , was
still demonstrated to be observable, but > p 1s not. These are
limit cases and therefore provide valuable verification of the
analytically found differences between both systems.

The simulation will show whether these different scenarios
have convergent EKFs or not. The focus of this analysis is
on the estimation of the relative position p and the relative
heading As. Since the velocities are observed directly in
both observation models, these are observable regardless of
the situation. For this reason, these states will not be shown.

As mentioned, the EKF needs to have initial values for
the state estimate. The initial velocities of drone 1 and 2 are
initialized to their true value, since these are not the variables
of interest in this analysis. The initial position and relative
heading are initialized with an error, the specifics of which
will be given in the respective scenarios. The yaw rates and
headings of both drones are kept at 0 rad/s and rad respectively.
The EKF runs at a frequency of 50 Hz.

The error measure throughout this paper is the Mean
Absolute Error (MAE). The separate  and y errors in the
relative location estimate p are combined according to the
norm ||p||2. This choice was made because the separate errors
in x and y directions offer little additional insight and are
mostly very similar. The cases will now be studied.

1) Drone 1 (host) moving, drone 2 (tracked) stationary
It is known from the previous analysis that in this scenario,
>~ 4 is locally weakly observable, whilst ), is not observ-
able. This result is therefore expected to be reflected in the
simulation as well.

In this scenario the position of drone 2 is equal to p;(] =
[1,1]T and drone 2 has no velocity or acceleration. The initial
position of drone 1 is pj, = [0,0]T. However, drone 1 has
a constant velocity v4T = [1,0]T. The initial guess for the
relative position and heading of drone 2 is [P, A,]T =
[0.1,0.1,1]7. Notice that the initial estimation error in pg, py,
and At is thus 0.9, 0.9, and 1 respectively.

According to the analytical observability result, this situation
should be locally weakly observable for ) ,. Indeed, as can
be seen in figure 6, both the relative position p error and the
relative heading A1) error quickly converge to 0.

Contrarily, the observability analysis has shown that ) ; is
not locally weakly observable in this case, because the second
condition is violated. One of the drones is not moving. Inter-
estingly enough, figure 7 shows that the ||p||2 error converges
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Fig. 6. >, EKF convergence for case 1: drone 1 (host) moving, drone 2

(tracked) stationary

15 15
o =
% 1 £
=05 = 05
>
L] 4
0 0
0 0.5 1 15 2 0 05 1 15 2
Time [s] Time [s]
Fig. 7. > EKF convergence for case 1: drone 1 (host) moving, drone 2

(tracked) stationary

to O just as rapidly as for ) ,. Indeed, the unobservable part
of the system in this case is in fact in the At state, which
does not converge. This is a favorable result, since the relative
position is typically the variable of interest, rather than the
difference in heading.

The reason that this behavior occurs lies in the information
provided by the first state differential equation. This equation
tells us that p = —vy + Rvy — S1p. The only dependency
that this equation has on the relative heading At is in the
rotation matrix R. Therefore, as long as vg is equal to O,
the differential equation for p has no dependency on the
relative heading between the two drones. The convergence
of p therefore remains unaffected. This situation changes, of
course, when it is in fact vy that is non-zero and v, that is
zero. This case is studied next.

2) Drone 1 (host) stationary, drone 2 (tracked) moving
For this case, all of the parameters are the same as for case 1,
with the only difference being that now vq = 0 and vT =
[1,0]T.

Just like before, the analytical observability analysis has
shown that this case is locally weakly observable for > ,.
Indeed, it can be seen in figure 8 that both the errors for p
and At converge rapidly to 0.

The observability analysis has shown that ) is not locally
weakly observable in this case. As expected, this time figure 9
shows that both ||p||2 and A do not converge and that ||p||2
even appears to diverge.

This time, because vz is not equal to 0, the state differential
equation for the relative position of drone 2 has a dependency
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on the relative heading state Aw. Because Ay does not
converge to its true value, and eventually settles at an error
of approximately 1.5 rad, there is a large inaccuracy in the
state differential equation for p. This consequently results in
an ever increasing error in p, since drone 1 essentially ‘thinks’
that drone 2 is flying in a different direction than it really is.

This is precisely the reason why it is generally not
possible for a stationary vehicle (or beacon) to be tracking a
moving vehicle using range-only measurements and velocity
information without a common heading reference. Contrarily,
it is possible for a moving vehicle to be tracking a stationary
vehicle or beacon’s position. This is entirely caused by the
fact that a vehicle will always be ‘aware’, in its own body
frame, of the direction it is moving in and hence does not
need a convergent estimate of the relative heading with respect
to the vehicle it is tracking. However, when the vehicle it is
tracking does move, it needs this convergent estimate of the
relative heading to know what direction the other is moving.

3) Drone 1 (host) and drone 2 (tracked) moving in parallel
at different speeds
Finally, the case where both drones are moving in parallel, but
at different speeds is studied. Again, most of the parameters
are kept the same as those presented under case 1. This time,
however, the velocity of drone 2 is set to voT = [1,0]T and
the velocity of drone 1 is set in a parallel direction, but with
twice the magnitude (v1T = 2v,T = [2,0]7).

According to the observability analysis, this is again one
of the limit cases where > , is still just observable, but >
is not. Indeed, figure 10 shows convergent behavior for A
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whereas figure 11 shows divergence for > .

Note that the filter for > 5 has a decreasing error in A.
However, the convergence for At is very slow (notice how
this situation has been simulated for a much longer time than
the previous cases). Furthermore, the error for p continues to
rise indefinitely.

This result concludes the noise-free simulations that com-
pare the performance of the filters for Y, and ) 5. These
simulations verify that indeed the conclusions regarding the
differences between the two filters in section II also hold true
when translated to a simulation environment.

C. Kinematic, noisy range measurements study of observable
situation

Whilst a noise-free study provides a means to demonstrate
the feasibility of the proposed filter and can verify the differ-
ences between Y , and ), it is also important to study the
filter’s performance when presented to noisy data. Not only is
this more closely resemblant of the performance of the filter
in practice, but it can also be used to verify one of the main
conclusions that were drawn in the observability study, namely
that > 5 needs information present in the second derivative
of the range data to be observable, compared to only a first
derivative for ) ,. It is consequently expected that with all
other parameters fixed, > 5 will perform increasingly worse
as the range data becomes more noisy. For these reasons, a
second simulation study is performed for the scenario of noisy
data.

For this study, the desire is to steer away from any of
the scenarios that were shown to be unobservable in the
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previous sections. The purpose now is to study both filter’s
performances for the case where the filters are known to be
observable, in order to see how both filters compare when
both are observable. For this reason, the trajectories for drone
1 (host) and drone 2 (tracked) are designed so as to stay clear
of the unobservable situations and to excite the filter effectively
through relative motion. The trajectories that are studied are
perfectly circular and the drones fly at the same height. The
trajectories of the drones are depicted in figure 12.

Consider the trajectory described in polar coordinates [p, 6].
Drone 1 flies a circular motion at an angular velocity 6; = w;
with radius p;, and drone 2 flies at angular velocity 6y =
wo with radius ps. To ensure that both drones have sufficient
relative motion, one drone flies clockwise and the other counter
clockwise, such that w; = —ws. Moreover, drone 1’s trajectory
is offset with respect to drone 2’s trajectory by 1 meter in range
and by 90° in angle, such that p; = po —1 and 6, = 0> + 3.

The range offset in the trajectories ensures that the situation
p = 0 is avoided, and the angle offset ensures that the relative
velocities are distributed more or less equally in = and y
directions. Note that for simplicity, both drones keep a steady
heading such that ¢; = 12 and vy = ry = 0.

The trajectories can thus analytically be described as fol-
lows, switching back to cartesian coordinates. Drone 2’s posi-
tion vector in time is given by:

patt) = | F2ion(e) | &

Drone 1’s position vector in time can be described by:

pa® { (p2 — )cos(—wnt + %) }

(p2 — 1)sin(—wat + 5)

| =(p2 — 1)sin(—wat)
{ (p2 — 1)cos(—wat) } (38)

The equations for vi(t) and a;(t) are easily obtained by
taking the time derivatives with respect to p;(t), ¢ = 1, 2. Note

TABLE I.  AVERAGE MEAN ABSOLUTE ERROR FOR }_ 4, AND > 5
OVER 1000 RUNS WITH DIFFERENT NOISE STANDARD DEVIATION ON THE
RANGE MEASUREMENT

Range noise o [m]
0 0.1 025 0.5 1 2 4 8
> 4 AMAE [cm] 2.3 34 6.2 108 193 377 729 1182
>~ 5 AMAE [cm] 2.7 45 8.5 151 27.1 525 101.8 1728

that this is not generally true, since H; is a rotating frame of
reference, but in this case this is possible because the drones
keep a constant heading equal to O rad.

By picking for p2 and wo the values 4 and %—’OT, the trajectory
of drone 2 becomes a circle with a radius of 4 m that is tra-
versed in 20 s. To comply with the earlier defined constraints,
p1 and w; become 3 m and fg—g rad/s respectively. These
values are chosen to be representative of what a real drone
should easily be capable of and result in relative velocities of
around 1 m/s in = and y directions between the two drones.

The study will test the performance of the relative local-
ization filter as seen from the perspective of drone 1, who is
thus tracking drone 2. The filter is fed perfect information
on all state and input values, except for the value of the
range ||p||2 between the two drones. The range measurement
are artificially distorted with increasingly heavy Gaussian
white noise. The measured range fed to the filter is thus
[Ipll2,m = lIpll2 + n(or), where n(or) is a Gaussian white
noise signal with zero mean and standard deviation or. The
standard deviations that are tested are O (noise free), 0.1, 0.25,
0.5, 1, 2, 4, and 8 m. Of course a standard deviation of 8 m
is quite high, but this is intentionally chosen with the intent to
observe a significant difference in the error. Since this study
keeps all the other measurements and inputs noise free, the
noise on the range measurement needs to be quite high to get
a significant increase in the localization error.

This time the EKF runs at 20 Hz, which is more represen-
tative of what the filter will be run at during later experiments
discussed in section IV. The described flight trajectory is
simulated for 20 seconds each run (which is thus one complete
revolution of the circular trajectory). The EKF is initialized to
the true state to omit the effects of initialization.

For one particular noise standard deviation, both the filter
for >, and for ) are simulated for 1000 different noise
realizations. For each realization the MAE of the estimated p
with respect to its true value is computed, again by considering
the combined error in the estimate of ||p||2. After 1000 real-
izations, the Average MAE (AMAE) is computed to mitigate
the possibility of the results being corrupted by randomness in
the noise realizations.

The resulting AMAE values for systems >, and ) are
given in table I and are plotted in figure 13. As expected,
at very low noise values on the range measurement, both the
filters for ) , and > ; have very similar error performance.
With no noise on the range measurements, the difference
between the two filters is only 4 mm. However, since the filter
for > 5 1s more sensitive to noise on the range measurements,
it quickly starts to perform worse than ), as the noise on
the range measurement is increased.

This result is in line with the analytical results presented
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Fig. 13.  AMAE in estimate of ||p||2 for 3~ 5 and > 4

in section II. However, it also raises the question of whether
removing the dependency on a common heading reference
poses any advantage, since ) , performs consistently better
than > - The reason for this result, however, lies in the fact
that the studied scenario uses perfect measurements for all the
sensors except for the measured range. As mentioned in the
introduction, the heading observation is notoriously trouble-
some and unreliable, especially in an indoor environment [32].
Therefore, it would be valuable to study what would happen
to this analysis in the case where the heading estimate is not
perfect, as will be studied next.

D. Kinematic, noisy range measurements, and heading distur-
bance study for observable situation

In order to compare the results obtained with an imperfect
heading measurement to those obtained in the previous section,
the same drone trajectories are simulated. The trajectories of
drone 1 and 2 can thus be represented by equations 38 and 37
respectively. All the other simulation parameters are kept the
same as well.

This time, however, a disturbance is introduced on the
heading measurement. The simulated disturbance is modeled to
look similar to how an actual local perturbation in the magnetic
field would perturb a heading estimate. The actual magnetic
perturbation and the corresponding heading error are taken
from a study on indoor magnetic perturbations [32]. In that
study, the obtained disturbance on the heading estimate looks
similar to a Gaussian curve, and in this analysis it is thus
modelled as such.

The actual disturbance on the heading estimate in time d(t)
is given by:

d(t) = Ad . e_(e(t_t()))Q (39)

Here the amplitude of the disturbance in radians is given by
Ay, the parameter € controls the width of the Gaussian curve
and t( controls the location of the curve in time. For this study,
€ is set to 1, resulting in a disturbance of approximately 4
seconds long, and % is set to 5, such that the disturbance occurs

2 3 4 5 6 7 8
Time [s]

Fig. 14. Disturbance on the relative heading measurement in time, for an
amplitude Ay of 1 rad

at around 5 seconds into the flight. How such a disturbance
looks is presented in figure 14 for an amplitude A4 of 1 rad.

Several amplitudes of the disturbance are tested, namely 0,
0.25,0.5, 1, and 1.5 rad. The final amplitude of 1.5 thus results
in a maximum heading estimate error of almost 85°, which is
approximately equal to the amplitude of the disturbance shown
in [32]. Note that the disturbance is introduced directly on the
measurement of A (the difference in headings between two
drones). This is the situation that would occur if one of the
two drones would fly in a locally perturbed area.

Since in the end the parameter of interest is how the filter
for >, compares to the filter for > ,, the data is this
time represented as a percentage comparison of the relative
localization errors between the two filters. This data is visually
presented in figure 15. A positive % in this figure means that
the filter for ) ; performs worse than the filter for ) ,. The
dotted line at a 0% represents the point where both filters
perform equally well.

In this comparison we now see that as the applied dis-
turbance amplitude on the heading measurement provided to
system ) , is increased, the region for which ) 5 performs
better than ) , expands. In the case of the largest disturbance,
with A4 equal to 1.5 radians, filter ) 5 even performs better
at a range noise or equal to 8.

This result reinforces the presumption that it is not always
better to include a heading measurement in the filter. In the
experimental results in section IV we will use Ultra Wideband
(UWB) radio modules to obtain range measurements between
drones. To give an idea of what type of range noise standard
deviations can actually be achieved in practice, in the executed
experiments with real drones, the UWB modules resulted in
ranging errors with standard deviations between 0.1 and 0.3. If
we assume normality of the ranging error, this would mean for
the situation depicted in figure 15 that the heading-independent
system >, would be the preferred choice for all heading
disturbance amplitudes except for the situation where there
is no heading disturbance at all.

IV. LEADER-FOLLOWER FLIGHT EXPERIMENT

In this section we demonstrate the workings of the heading-
independent filter in practice in an indoor environment for a
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scenario of leader follower flight.

A. Leader-follower flight considerations

Before designing an actual control method to accomplish
leader-follower flight, let’s first reflect on the previous observ-
ability analysis results from section II and their implications
with respect to leader-follower flight.

We know that in order to have an observable heading
independent system, the combined motion of the leader and
follower has to meet the observability condition presented in
equation 33. We further know that in order to to meet this
condition, the three intuitive conditions presented by equation
34 to 36 certainly have to be met. Let’s first consider these
conditions.

The first condition in equation 34 specifies that the relative
position between leader and follower must be non-zero. This
condition has little implication to leader-follower flight, other
than the fact that the follower must follow the leader at a non-
zero horizontal distance, which typically is the objective.

The second conditions in equation 35 tells us that both
drones must be moving. As far as leader-follower flight is
concerned, this is automatically accomplished as long as the
leader is not stationary.

The third condition in equation 36 is especially impactful for
leader-follower flight. It specifies that the drones should not be
moving in parallel (regardless of speed), unless they are also
accelerating. A lot of research on leader-follower flight aims
to design control laws that would result in fixed geometrical
formations between different agents in the formation. This is
typically achieved by specifying desired formation shapes, or
desired inter-agent distances for members in the swarm [14,
18,19,41]. By the very nature of fixed geometries, that would
result in parallel velocity vectors.

For this reason, a different approach to leader-follower flight
is certainly necessary. Rather than flying in a fixed formation,
it is also possible for the follower to fly a delayed version of
the leader’s trajectory. As long as the leader’s trajectory is not

Fig. 16.
trajectory in time p1(¢). In orange is drone 2’s trajectory in time pz2(t). The
desire is for drone 1 to drive e(t) to O for t — oo.

Control problem for leader-follower flight. In blue is drone 1’s

a pure straight line for long periods of time, this will result
in relative motion between the leader and follower. This is
therefore the approach taken in this paper.

This solution should also help to prevent the MAVs from
getting stuck in an unobservable situation that is not covered by
equations 34 to 36, but that is covered by the full observability
condition in equation 33. We concluded that for the scenarios
that are numerically found to be unobservable according to
equation 33, changing the relative position p only slightly
can already result in an observable situation. In the proposed
method of having the follower fly a time-delayed version of the
leader’s trajectory, the relative position vector p will naturally
change if the leader’s trajectory is not a straight line.

Whether this is sufficient measure to retain observability of
the system, will be evaluated after the leader-follower flight
results are presented. This will be done in section V.

B. Leader-follower formation control design

We thus want to construct a leader-follower control method
that results in the follower flying a delayed version of the
leader’s trajectory. This naturally avoids parallel velocity vec-
tors and keeps the relative positions dynamic. As it turns out,
this type of control can be quite intuitively accomplished with
the information provided by the relative localization filter.

Consider the schematically depicted problem in figure 16.
It shows two arbitrary trajectories in dotted lines. At the top,
in blue, is the trajectory for drone 1, which is represented by
its position vector in time p1 (). On the bottom, in orange, is
the trajectory for drone 2, pa(t).

Suppose the desire is for the follower (say drone 1) to follow
the leader’s trajectory (say drone 2) with a time delay equal
to 7. The control problem for drone 1 can be simply put as
the desire to accomplish p1(t) = p2(t — 7).



Let ¢,, indicate the current time at which a control input
must be calculated. At the current time, drone 1 has a body
fixed reference frame H; (¢, ), whose origin is p1 (¢,). At time
t, — 7, drone 1 knows the relative position of the leader in its
own body fixed frame H1(t, — 7), since this information is
provided by the relative localization filter. However, for this
control method to work, drone 1 must have knowledge of
where the leader’s old position is at the current time ¢,. This
value of interest is depicted by the vector e(t,,) in figure 16;
it is the positional error with respect to the desired follower’s
position at time %,,.

Denote by Ry, (1,)24, (1) the rotation matrix from frame H;
at time to, to frame H; at time ¢;. This rotation matrix is
defined as:

R _ [ cos(Adnliz) —sin(Ad)iz)
PR T sin(Ail2)  cos(Ail2) ]

A, \i'f is the change in heading angle for drone ¢ from time
t1 to time ¢, which can be calculated as:

(40)

to
A2 = /

t1

r;(t)dt 41)

The current positional error for the follower drone 1, de-
picted in figure 16, can be defined as:

e(tn) = R, (1) (tn—m) (P(tn — T) — APy"_,)  (42)

The vector Apisz represents how much the follower has
moved from time ¢, —7 until ¢,, as defined in frame H; (¢, —7).
This vector can be calculated using information available to the
follower:

tn

/ R, (t—myma (Ve (t)dt (43)

tn—T

Aptn —

tn—T

Finally, one more piece of information is needed in order to
be able to design a control law for the follower drone, which is
the model of the follower drone and how it responds to control
inputs. In this paper, it is assumed that the drone already has
stable inner loop control running on board, such that the drone
becomes an outer loop control system that directly can take
velocity commands. It is further assumed that with the inner
loops in place, the drone responds like a very simple first order
delay filter to velocity commands, such that the differential
equation for the drone’s velocity becomes:

Vi =T '(Vie — V1) (44)

Where 77! is a diagonal matrix with on the diagonal the
inverse values of the time constants that characterise the delay
of the system with respect to a control input vq.. This is only
an approximation of how the actual drone behaves, but it will
be shown to be sufficient to accomplish the desired behavior.

With all this information in place, a control law can be de-
signed. The control law is designed using Nonlinear Dynamic

Inversion (NDI) principles. In order to use NDI, a state space
model is required for the situation at hand. A very similar state
space model to the one used for the relative localization filter
can be used. Define the state vector as:

x = [T, Ay, viT, v T]" (45)

The state vector is similar to the one defined before for the
relative localization filter, with a few small changes. First of all,
e = e(t) represents the current positional error for the follower
drone 1 with respect to the leader’s old position. Secondly, A
and V2T represent again the difference in heading between two
drones and the velocity of drone 2, except now A is the
difference in heading between frame H;(¢) and Ha(t — 7),
and voT is the delayed leader’s velocity at time ¢ — 7, such
that voT = Vz(t — 7').

Similarly, define a new input vector as:

u= [VlcT7a_2TaT17r72]T (46)

Where vi. is the actual control input fed to drone 1, and az
and 75 represent the same values as ap and 72, except delayed
versions thereof. Therefore az = az(t—7) and 72 = ra(t—7).

Finally, a new set of state differential equations can be
defined as:

—Vvi + RV_Z - Sle
T2 — 11
T (Vie — V1)
az — Sava
Where R = R(Av) and Sy = Sa(73).
The state that we wish to control is the current positional

error that drone 1 has with respect to the delayed leader’s
position, so the state e. This state can be represented as:

e =Hx (48)

(47)

With H given by:
H=[Ine 0 | (49

The derivative of the control variable with respect to time
is equal to:

é=Lie=Hf = —v; + Rvz — Sqe (50)
The second derivative of the control variable:
ézﬁ%e:(V®é)~f
= [ —S1 BV —Le R ] T
OR

=—S; (—v1 +Rv; — Sye) + aA&V_z (ry — 1)
— Lo (771 (vie — v1)) + R (a2 — S2v2)
= Dvic + b(x,u) (51)
With D equal to:
D= —Ipor ! (52)



and b(x,u) equal to:
b(X, 11) = 781 (7V1 =+ RV_Q — Slp)
+ LR Va (12 —71)
BINY 2 (72 1
—+ IQXQT_1V1 + R (a_z — Ssz) (53)

This can further be reduced to:

b(X, ll) = —Sl (—Vl -+ Rv_g — Slp)

R _
— 7\7_27“1 + IQXQT_1V1 + Ra_z (54)

0AY
At this point the following control law can be chosen:
vie =D7'(i—b(x,u)) (55)

with i now a virtual control input.

This control law results in a fully linearized differential
equation for the positional error of the follower, since sub-
stitution of the control law from equation 55 in equation 51
results in the following differential equation:

e=i (56)

Which can be shown to be exponentially stable if the
following virtual control is implemented:

i=—Kye— K4 (57)
K, K4>0 (58)

C. Experimental Set-Up

One of the main findings in the observability study and the
simulation results is that the localization error scales more
steeply with range noise for system ) 5 than for > ,. It is
therefore important to use sensors that can provide accurate
ranging for these experiments.

Whilst a variety of wireless transceivers are capable of
providing the communication and ranging required for the
relative localization filter, specifically Ultra Wideband (UWB)
based radio transceivers have been used in this paper. UWB
has recently gained attention within the domain of ranging
and localization, and is deemed to also provide a good
solution within this context due to its favorable properties
in this scenario. UWB signals are characterized by their
fine temporal and spatial resolution [42], which leads UWB
based systems to be able to resolve for example multipaths
more easily [43]. Ultimately, this leads to accurate ranging
performance for these systems. Another advantage of the
technology is its relative robustness to interference from other
radio technologies [24,44,45] due to the fact that it operates
on an (ultra) wide range of frequencies.

The UWB ranging hardware that has been used in these
experiments is the ScenSor DWM 1000 module that is sold by
Decawave.! The algorithms used to control the module must
be run on a separate micro controller that communicates with

Ihttps://www.decawave.com/products/dwm1000-module

Device B

Device A

Fig. 17. Double Sided Two Way Ranging message exchange. Adapted from
[46]

the UWB module. The performance of the modules therefore
also depends on the performance of the algorithms that are run
on the micro controller.

The specific ranging algorithm that is employed in this paper
is a particular implementation of the Two-Way Ranging (TWR)
method introduced in [46]. The messages exchanged in this
protocol are presented schematically in figure 17.

The variable of interest is t,, which represents the propa-
gation time of the UWB signal. This can be converted in an
actual range by multiplying it with the speed of light. It is
shown in [46] that this ¢, can be extracted through:

_ RuRp —DaDg
- 2T

where T'= Ry + Ds = Rg + Dp, and R4, Rp, D4, and
Dp are the round trip times (R) and message delay times (D)
of the TWR exchange as perceived by the clocks in device A
and B.

In the message exchange in figure 17 only device B would
have all the necessary information to compute its range with
respect to device A. If the desire is for both devices to be able
to localize each other, an additional message must be added
at the end of the protocol (from device B to device A) which
contains the computed range.

Since the end goal is to fuse ranging data with velocity,
acceleration, height, and yaw rate data in the localization
filter, these variables must also be communicated between
the two devices. The same UWB messages used in the TWR
protocol are also used to communicate these variables.

t, (59)

The UWB module transceiver has been installed on the
Parrot Bebop 2 platform.? The Bebop 2 runs custom autopilot
software designed using the open-source autopilot framework
Paparazzi UAV.? Paparazzi UAV provides the stable inner loop

Zhttps://www.parrot.com/us/drones/parrot-bebop- 2#parrot-bebop-2
3http://wiki.paparazziuav.org/wiki/Main_Page



control loops for the Bebop 2 using Incremental NDI (INDI).
This allows us to control the outer loop by giving the computed
velocity commands to the INDI inner loops.

The velocity and height information that are also necessary
for the relative localization filter, is at first provided by an
overhead Motion Capture System (MCS) by OptiTrack.* In a
second iteration of the experiment this information is provided
through only on-board sensing. The velocity data is then
obtained from the drones’ on-board bottom-facing camera.
Using Lucas-Kanade based optical flow methods, the camera
can be used to obtain estimates of the drones’ velocities. The
height is measured using an on-board ultrasonic sensor that
the Bebop 2 is equipped with by default. The acceleration and
yaw rate information is at all times obtained from the drones’
on-board accelerometers and gyroscope respectively.

The experiment is first conducted with one leader and
one follower drone in section IV-D. The experiment is then
performed again for the case where there are two followers in
section IV-E.

D. Leader-follower flight with one follower

The experiment with one follower drone consists of one
Bebop 2 following another Bebop 2 using the control law
presented in section IV-B. Both Bebop 2’s first, after take-off,
fly concentric circles just like the one used in the simulation
section, as shown in figure 12. This procedure is followed to
make sure the EKF that runs on-board the drones has time
to converge to the correct result, such that by the time the
follower drone is instructed to start following the leader, the
follower has a correct estimate of the relative location of the
leader.

The trajectory of the leader has been designed to sufficiently
excite the the relative localization filter during the leader-
follower flight and to decrease the likelihood of being stuck
in unobservable states. This has been done by introducing
frequent turns in the trajectory to have changing relative ve-
locities and accelerations. The follower is instructed to follow
the leader’s trajectory with a time delay of 7 = 5 seconds.

It is important to note that the norm of the follower’s
commanded velocity [|vic|l2 during both experiments is
saturated at 1.5 m/s. This measure is taken for reasons of
safety, since the drones are flying in a confined area. This
does however have consequences for the performance of the
follower’s tracking, as will be discussed in the next sections.

1) Leader-follower flight with velocity and height informa-
tion from a MCS

First the case where velocity and height information is
provided by the MCS is studied. In figure 18 the trajectory
flown by the follower is compared to the trajectory of the
leader. The = and y coordinates are compared separately for
part of the flight in figures 19a and 19b. Finally, in figure 20,
a time composition of overhead camera images is given for 5
seconds of flight as an illustration. The follower’s position is
shown at seven time instances during these 5 seconds and is
compared to the leader’s trajectory.

“http://optitrack.com/

-4-3-2-10123456
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Fig. 18. The trajectories of leader and follower during experiment with MCS
height and velocity
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Fig. 19. The trajectory of the follower compared to the delayed trajectory

of the leader for the experiment with MCS height and velocity.

fl

Fig. 20. Time composition of overhead camera images of leader and follower
drone in time, for the experiment with MCS height and velocity. Indicated in
orange and marked by p2(t), is part of the leader’s trajectory. The leader’s
final position is indicated by p2 (¢t = 0). Seven points in time of the follower’s
trajectory are indicated in the image. According to the control objective,
p1(t = 5) should equal p2(t = 0).

A total of 200 seconds of leader follower flight took place
successfully and will be analyzed here. During this time,
many laps of the designed trajectory were executed. The
trajectories in figures 18 to 20 indeed show that the follower
is tracking a delayed version of the leader’s trajectory. There
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Fig. 22. Histogram of the ranging error during experiment with MCS height
and velocity

are however clearly noticeable errors as well. Before looking
into the specifics of the tracking error, let’s first examine the
performance of the relative localization filter throughout this
experiment.

The actual error distribution for the norm of the relative
location estimate ||p||2 is shown in figure 21. The errors have
a mean value of 18.4 cm and a maximum value of 77.5 cm,
at maximum inter-drone distances up to 5 m.

Since in this experiment the velocity and height information
was provided with high accuracy by the MCS, one would
expect the primary source for the localization error to be the
ranging error from the UWB modules. However, inspection
of the ranging error actually shows a pretty favourable error
distribution.

A histogram of the ranging error throughout the flight is
given in figure 22. The mean of the ranging error is close
to zero (about -6.4 cm) and the errors are nicely distributed
around this mean. This is therefore not the main cause of the
occasionally higher relative localization errors.

In fact, the most clearly identifiable cause for the relative
localization error is the occasional dropping of frames by
the UWB modules. The average update rate of the relative
localization filter is about 25 Hz, corresponding to a time step
of approximately 40 ms. The update rate is established by the
rate at which the UWB modules produce a new ranging result.
However, the modules occasionally drop frames, causing the
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Fig. 23.  Histogram of the tracking error ||e||2 for the follower during
experiment with MCS height and velocity

time step to spike up. The largest time step recorded during
the flight is 470 ms, an order of magnitude larger than the
average. It is not hard to imagine the unfavorable effect this
can have for the relative localization estimate. It is therefore
not coincidental that the largest localization error recorded
during the flight, also corresponds to one of those times where
the UWB modules dropped frames.

Knowing what the relative localization performance was
during the flight, we can better inspect the tracking error of the
follower drone. The tracking error distribution ||e||2 is given
in figure 23. The mean of the distribution is equal to 46.1 cm
and the maximum error is 1.32 m.

Of course part of this error is caused by a relative localiza-
tion error from the follower’s perspective, which will inevitably
affect the tracking performance. However, since the relative
localization error is quite a bit lower than the tracking error,
there must be other sources of error as well.

One source of the error is the fact that the follower’s
response to a velocity command v, is modeled as a first
order delay. In reality the drone inevitably has some overshoot
with respect to commands, which is not captured by a first
order delay. This model mismatch by itself might not be that
harmful to the performance, since the control law would re-
spond to the modeling mismatch with more aggressive velocity
commands as a reaction to the drone not behaving as modeled.
However, the control law’s freedom is severely restricted by
the command saturation at 1.5 m/s.

Another effect of the command saturation is that the
follower cannot move as fast as the command law would
want it to move. This is supported by a qualitative analysis of
the follower’s trajectory with respect to the leader’s trajectory
in figure 18. Most of the trajectories of the follower seem to
take a ‘shortcut’ with respect to the leader’s trajectory. This
falls in line with the expected behavior due to the command
saturation. The control law is designed not only to track
the trajectory of the leader in space, but also in time. As
the follower starts lagging behind the leader more than the
desired 7 = 5 seconds, the follower starts to take shortcuts
in the trajectory to catch up with the leader. This observation
would likely be less prevalent if the command saturation
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would be increased to higher values.
2) Leader-follower flight with only on-board measurements

As a second step, we demonstrate the workings of the
proposed methods in this paper when only on-board sensing is
used. The follower drone now does not use any MCS informa-
tion during its flight. The velocity information now comes from
Lucas-Kanade based optical flow measurements and the height
is now derived from the on-board ultrasonic sensor. Similarly,
the leader drone directly communicates optical flow velocities
and ultrasonic height measurements (along with accelerations
and yaw rate from the IMU) to the follower drone for use
in the relative localization filter. The MCS is only used for
the purpose of logging ground truth data and for the leader to
safely fly its original trajectory. No MCS data is used directly
in flight by the follower. Again, 200 s of leader-follower flight
with full on-board sensing took place successfully and will be
analyzed here.

The trajectory of the follower with respect to the delayed
leader’s trajectory is compared in figures 24 and 25. Further-
more, another time composition for 5 seconds of flight where
the follower is tracking the leader is given in figure 26.

The main qualitative difference with respect to the situa-
tion where the MCS was still used for velocity and height
information, is the fact that the follower’s trajectory is a
bit less smooth. Otherwise, the performance seems relatively
similar. Overall, the follower taking a ‘shortcut’ with respect
to the leader’s trajectory still appears to happen, although
the increased disorder in the follower’s trajectory makes it
somewhat less apparent.

The tracking error distribution for the on-board sensing case
is given in figure 28. The mean tracking error is 50.8 cm and
the maximum error is 1.47 m. The relative localization error
is given in figure 27. Here, the mean error is 22.6 cm and the
maximum error is 75.8 c¢m, at maximum drone distances up
to 5.2 meters.

It’s interesting to to see how similar the performance is
when using only on-board sensing, compared to using the MCS
for height and velocity data. This can mainly be attributed
to the fact that the measurements that have been replaced

—follower —follower

— -delayed leader

6
4 — -delayed leader
2
0

x [m]
y [m]

4
90 100 50 60 70 80
Time [s]

4
50 60 70 80
Time s

90 100

(a) « coordinate (b) y coordinate

Fig. 25. The trajectory of the follower compared to the delayed trajectory
of the leader for the experiment with only on-board sensing.

4

Fig. 26. Time composition of overhead camera images of leader and follower
drone in time, for the experiment with only on-board sensing. Indicated in
orange and marked by p2(t), is part of the leader’s trajectory. The leader’s
final position is indicated by p2(¢ = 0). Six points in time of the follower’s
trajectory are indicated in the image. According to the control objective,
p1(t = 5) should equal p2(t = 0).

(the height and velocity of both drones) are actually quite
accurately measured on-board as well.

The primary reason for why the trajectory of the follower
with on-board sensors still seems slightly more disordered, is
actually caused by the fact that the follower has difficulty to
accurately control its altitude when using only on-board sens-
ing. The follower now purely relies on height measurements
from its ultrasonic sensor. The update rate of this sensor is
low, and in between measurements the follower uses (noisy)
accelerometer data to update its height. This sometimes causes
the follower to believe its altitude is different than it really is,
causing it to rapidly ascent or descent. This can take up a
lot of thrust, restricting the follower’s ability to manoeuvre
accurately in the horizontal plane, due to thrust saturation.

E. Leader-follower flight with two followers

To demonstrate that the methods in this paper can also scale
to more than one follower drones, the leader-follower flight is
also performed with two followers instead of one, both with
MCS height and velocity data, and again with only on-board
sensing as well.

The UWB messaging protocol is adapted to allow every
drone to perform ranging with every other drone. The drones
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Fig. 27. Histogram of the localization error for the follower during experiment
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Fig. 28.  Histogram of the tracking error ||e||2 for the follower during
experiment with only on-board sensing and processing

also communicate a unique (pre-assigned) identification num-
ber within the UWB messages. The followers can use this
identification number to determine which messages originate
from the leader and can therefore individually keep track of the
leader just like before. The main consequence of the increased
messages is a drop in the UWB range update rate, which is
reduced from about 25 Hz with 2 drones, to about 16 Hz with
3 drones.

This time, due to the lack of space available, there is
no initialization procedure to give the kalman filters on the
followers time to converge. Instead, the drones are placed in
starting positions and orientations that match roughly with
what the kalman filters on-board the drones are initialized to.
Whilst this placement is done purely by eye, it proved to be
sufficient measure to be able to safely start the leader-follower
flight even without an initialization phase.

The leader flies the same trajectory as before. The first
follower follows this trajectory with a 7 = 4 second delay,
and the second follower follows it with an 7 = 8 second delay.
Again 200 seconds of successful flight data is extracted and
analysed.

An overhead camera image for the flight with MCS height
and velocity data is presented in figure 29 to give an idea
of how the experiment really looked like. The trajectories for
this flight are displayed in figure 30 for the leader and two

Fig. 29. Overhead camera image of leader and two followers using MCS
height and velocity. In orange is the leader’s trajectory marked at 0.5 second
intervals.
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Fig. 30. Trajectory of leader and two followers using MCS height and velocity

followers. For the flights with only on-board information, the
trajectories are given in figure 31.

Much of the same behaviour as for the case with just one
follower is observed again. We again see that the followers
tend to take a shortcut with respect to the leader’s trajectory.
Furthermore, it can be seen that the flights using only on-board
information are less smooth than those with MCS height and
velocity information.

For the flight with MCS data, follower 1 has a MAE for the
relative localization error of only 15.8 cm. By comparison,
follower 2 has a MAE of 43.9 cm. Furthermore, followers 1
and 2 have MAE for the tracking of 42.9 cm and 70.3 cm
respectively.

The flight with only on-board sensing resulted in a relative
localization MAE of 51.8 and 53.6 cm. The tracking MAE
this time was 58.6 and 98.4 cm. The reasons for why these
values are worse than for the flights with one follower will be
evaluated in the next subsection, in comparison with all the
other flights.

FE. Comparison of flights

In this section we present in a clear format the relative
localization and tracking MAE of the various flights that were
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TABLE II. COMPARISON OF MEAN LOCALIZATION (LOC.) ERRORS

AND MEAN TRACKING (TRACK.) ERRORS FOR ALL PERFORMED
EXPERIMENTAL FLIGHTS, BOTH FOR MCS AND FULLY ON-BOARD (ON-B.)

FLIGHTS.
1 follower 2 followers
MCS  on-b. MCS 1 MCS 2  on-b. 1 on-b. 2
Loc. error [cm] 18.4 22.6 15.8 439 51.8 53.6
Track. error [cm] 46.1 50.8 429 70.3 58.6 98.4

executed. We also discuss in more detail the most noteworthy
differences between experiments. All the errors are presented
in table II.

The first noteworthy observation is the fact that for the
experiment with two followers, especially the tracking perfor-
mance for the second follower is clearly worse than that for the
first follower in both the MCS and fully on-board case. This
is a byproduct of the fact that the proposed leader-follower
control method inherently relies on integration of velocity
information in time. As the delay with which the follower
must follow the leader increases, so does the period of time
over which the follower must integrate its velocity. This is
subject to drift, which shows in the tracking performance. This
effect is more noticeable in the fully on-board case, since the
velocity estimates from optical flow methods are less accurate
than the ones computed by the MCS.

Another perhaps unexpected result is that in the experiment
with two followers, the localization error for follower 2 in the
MCS case is quite a bit higher than that for the first follower.
In part this can be explained by the fact that follower 2 has a
larger mean range with respect to the leader than follower 1
does (4.2 m compared to 2.9 m). The main reason, however, is
the fact that follower 2 has substantially larger ranging errors
with the leader than follower 1 does. In figure 32, the ranging
error distributions are compared for both drones. Whilst the
mean in both cases is close to zero, it is clear to see that
the performance is better for follower 1. The distribution for
follower 2 is much wider, showing much more frequent high
errors. Furthermore, a fragment of the range error in time
shown in figure 33 shows that the errors are clearly not random
noise. They show a certain trend in time, which will also reflect
in the localization errors. Due to the large difference between
the ranging performance for followers 1 and 2, there might
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have been a hardware issue with the specific UWB module on
follower 2.

A final result that stands out is the fact that both followers
1 and 2 have substantially higher localization errors in the on-
board case than was found for the on-board experiment with
a single follower. There is not one reason alone that we can
blame for this result, but rather it appears to be a combination
of factors that play a role. The increased communication traffic
caused a decrease in the filter update rate and also resulted
in an increase in ranging frames dropped. Follower 2, as
mentioned above, again showed in this flight a worse ranging
performance than follower 1. Follower 1, in turn, had slightly
less accurate optical flow velocity estimates than were obtained
with the single follower flight (21 cm/s MAE compared to 15
cm/s before) and also slightly higher ranging errors than for the
single follower flight (15 cm MAE compared to 8 cm before).
All factors combined, both followers suffered a comparable
degradation in localization performance.

V. DISCUSSION

In this section we will revisit the observability analysis from
section II with the obtained experimental data. We will also
present some remarks on the scalability of this methodology
to larger groups of MAVs.

A. Remarks on observability

We mentioned earlier in section I'V that the full observability
condition in equation 33 was difficult to directly integrate in
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Fig. 34. Histogram of observability values for experiments with one follower

the design of a leader-follower control law, due to the high
dimensionality of the condition. However, we demonstrated
through numerical evaluations of the equation 33 that, given a
particular set of velocities and accelerations for both drones,
the set of unobservable relative positions p was typically very
small compared to the set of observable relative positions.

Having the follower fly a delayed version of the leader’s tra-
jectory naturally results in varying relative positions between
leader and follower, as long as the leader’s velocity changes
in time. Given the sparsity of unobservable relative positions,
we therefore assumed that this control behavior would be
sufficient to largely avoid unobservable situations. Even if
an unobservable situation would occur, it should only be for
a short period in time, as the relative position continuously
changes and moves to an observable region again.

Having performed the experiments and collected all the
ground truth data, it is possible now to test whether this initial
assumption was valid in this case. All the parameters needed to
evaluate equation 33 have been logged during the experiments
and can simply be inserted into equation 33 to check the
observability of the relative localization filter in time. The
measure of observability of the system is again represented
by the cross product between the left hand side of equation 33
and the relative position vector p.

The flights that are analyzed are the flights with one fol-
lower, for both the MCS and full on-board case. For the flight
with MCS height and velocity information, the measure of
observability is given in a histogram in figure 34a. For the
fully on-board flight, it is shown in figure 34b. A sample of
how the observability changes in time is given in figure 35 for
the MCS flight and in figure 36 for the on-board flight.

If we again take a threshold of 1, then an observability
value between -1 and 1 can be considered unobservable. Again,
theoretically only a value of 0 would cause an unobservable
system, but because there is noise on the obtained data,
the observability measure is not known exactly. Therefore, a
somewhat higher threshold is adopted to compensate for the
noise on the data.

With this threshold, the unobservable datapoints for the
MCS and the on-board flight are 4.76% and 4.75% of all
the datapoints respectively. Interestingly enough, this value is
virtually the same for both flights.

This percentage will inevitably change depending on what
threshold is chosen. However, also a qualitative analysis of
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figures 34 to 36 supports that at the very least it is only a small
percentage of the data that is unobservable. Most of the data
points are well clear of this threshold. It is furthermore visible
that unobservable data points are isolated in time, giving the
system ample observable data points in between to recover
from short periods of unobservability.

We know from the simulations performed in section III that
even clearly unobservable scenarios do not immediately lead
to big localization errors. Instead, they gradually cause an
increase in the localization error in time. Isolated events of
unobservability therefore are not expected to cause significant
trouble in practice either.

Qualitative inspection of the data indeed shows little cor-
relation between the unobservable regions of the flight and
the relative localization error. To demonstrate, the localization
error is compared to the observability of the filter in figure
37 for a small segment of the flight with MCS information.
For easier comparison, the observability has been reduced to a
binary value, where a value of ’1’ indicates that the system is
within the threshold of unobservability at that time. It is clear
that there is hardly any correlation, if at all, between these two
parameters.

Contrarily, the earlier mentioned occasional dropping of
UWB ranging messages shows a very clear correlation with
the relative localization error. The two clear spikes in the
localization error shown in figure 37 correspond exactly to
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the times where the UWB communication dropped frames,
causing the update timestep dt to rise. This is shown in figure
38.

B. Remarks on scalability

The experimental results in section IV show that the methods
in this paper can successfully scale to two followers that
follow a leader in a confined area. Even when full on-board
sensing is used by the followers, more than three minutes
of successful flight were demonstrated without the need for
manual intervention.

Whilst this is an impressive result in its own right, analysis
of the data does show a substantial rise in localization and
tracking errors when scaling up to two drones. This raises the
question of what would happen if even more drones are added
to the experiment, would this be viable?

One of the results we found is that there is a correlation
between especially the tracking performance of the follower
and the time delay with which it follows the leader’s trajectory.
The follower that tracked with a time-delay of eight seconds
showed consistently larger tracking errors than the followers
with four or five second delays. An alternative solution to
the two follower problem is having one follower follow the
leader and the other following the first follower. With such an
arrangement, both followers could follow another MAV with
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the same time delay. This setup has not yet been studied in
this work, but could prove to be a better alternative. It is worth
looking into this approach in future research.

Another result we found is the reduced update rate when
flying with two followers instead of one. Of course adding
more drones will always require additional data communica-
tion, but a drop from 25 Hz to 16 Hz is quite significant for
adding just one more drone.

The main remark to make here is that this reduction in
update rate is very much dependent on the software and
hardware used for these experiments. It should be possible to
significantly increase the update rate to allow for many more
drones without having to sacrifice too much on the update rate.

Just to give some examples, in these experiments we op-
erated the UWB modules on the lowest data rate settings
(110 kbps). This should theoretically help to improve the
ranging accuracy, but in practice will most likely not make
a big difference at the small inter-drone ranges occurring in
these experiments [47]. The maximum data rate that the UWB
modules support is actually 6.8 mbps [47], a factor 680 faster
than the data rate used in the experiments. This would clearly
allow for much higher update rates, even with three or more
drones. One would need to examine however what such a
change would have on ranging accuracy and stability.

Furthermore, the UWB modules used in the experiments
only operated on a single band of frequencies, namely the
frequency band from 4243.2 MHz to 4742.4 MHz. UWB as a
standard supports a much wider band of frequencies to transmit
on. The DWM1000 itself in fact also supports multiple bands
divided in the frequency domain within which the modules can
operate [47]. Theoretically, pairs of drones should be able to
operate simultaneously on different frequency bands without
interfering with each other, which would again result in better
scalability to multiple drones. Alternatively, one could look at
different UWB radio methods for the communication between
drones. Carrier-free variants of UWB, such as direct sequence
spread spectrum UWB, can allow for high data throughput on
a single, much wider frequency band than the one used by the
DWM1000 [48].

VI. CONCLUSION

We have shown in this paper the feasibility of heading-
independent range-based relative localization on MAVs. We
now know that removing the dependency on a common head-
ing between MAVs has two main disadvantages: the motion of
agents must meet more stringent conditions to be observable
and the relative localization becomes more susceptible to
noise on the range measurements. The clear advantage, on
the other hand, is that the filter is no longer affected by
local disturbances in Earth’s magnetic field. We have shown in
simulation that already for small magnetic perturbations, this
results in the heading-independent method to perform better
than the heading-dependent method.

The results from our observability analysis show that leader-
follower flight is especially difficult with the proposed relative
localization method. Fixed geometry formation flight will in
fact not even be possible. Instead we developed a method



that allows one drone to follow another drone’s trajectory
with a certain time delay. This approach has been shown to
stay sufficiently clear from unobservable conditions, which has
allowed us to successfully demonstrate leader-follower flight
in practice.

Using only on-board sensory information, one drone can
localize another drone with a mean error of just 22.6 cm over
200 seconds of leader-follower flight. This consequently allows
the drone to track another drone’s trajectory with a mean error
of 50.8 cm. The method has been demonstrated to work also
with two followers tracking the same leader. In this case the
localization and tracking errors do go up, but this is believed
to be largely solvable by increasing the communication data
rate and consistency.

VII. FUTURE WORK

Despite this promising result, there are still plenty of oppor-
tunities to research within the domain of range based relative
localization. For certain one of the opportunities is the initial
convergence behavior of the filter. The initial conditions that
the EKF starts in are important to get a quickly convergent
estimate of the relative location of another drone. If the initial
condition is too far off from the real situation, the filter can
prove very difficult to converge. A primary problem is the fact
that there exist ambiguous states where the EKF can converge
to, from which it is difficult for the EKF to get out of. It would
be interesting in the future to research methods to address
these problems. For example the effect of alternative filters
like a particle filter could be studied, or running multiple filters
in known ambiguous states to identify the correct state more
easily.

Furthermore, the current implementation of leader-follower
flight uses a lot of past data values and directly uses state
values like the velocities of the two drones to implement its
control method. It would be interesting to research other meth-
ods of accomplishing this type of leader-follower flight. For
example it might be possible to perform real time polynomial
data fitting on the relative positions of the leader. The resulting
polynomial trajectories could instead be used to obtain the
velocities and accelerations through analytical derivations of
the polynomials. This might result in less data that needs to
be stored and smoother trajectories.

Finally, considering the hardware aspect of the experiments
in this paper, we have shown the importance of consistent,
high frequency communication and ranging. The occasional
increase in the time step of the relative localization filter proved
more detrimental to the relative localization performance than
the occasional unobservability of the filter. It would therefore
be valuable to further optimize the frequency and consistency
with which ranging messages can be exchanged.
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Chapter 2

Overview of Localization Hardware

In this chapter a more thorough analysis of different types of available (relative) localization
hardware is given. This analysis was formed by gathering from the literature the hardware
that have previously been used in different swarm robotics papers for the task of (relative)
localization. The different hardware solutions will be coherently mapped in section 2-1. Af-
terwards these systems are evaluated with respect to their use within this thesis in section
2-2.

2-1 Overview of Hardware Used in Swarm Robotics

An overview of what type of localization hardware has been used in successful demonstrations
of swarm robotics will be identified in this section. The overview is presented in table 2-1.
The table shows the different articles on swarm robotics that have been studied, and marks
the corresponding system(s) that were used in the respective articles to accomplish swarm
robotics.

Whilst most of the categories are quite self explanatory, the final two categories “Radio
for communication” and “Radio for localization” might need some clarification. Many of the
articles on swarm robotics actually use some form of radio. However, most of the articles
only use this radio for communication, for example by communicating positional data from
an overhead Motion Capture System. Since the topic of this thesis is about using radio for
more than just communication, but also directly for relative localization, this has been given
a separate category.

2-2 Trade-off Between Different Hardware Systems used in Swarm-
ing
The overview in table 2-1 provides a good indication of what type of systems are used in

swarm robotics to date. The different systems will now further be examined to determine
the most suitable system within the context of this thesis.
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Table 2-1: Overview of systems that have been used to demonstrate swarm robotic behaviors in
the literature

Systems Found in Swarming Literature

. Motion Infrared Vision Sound Radio Radio
Article Capture GPS for for
based  based based - s
System communication localization
Schwager et al. [103] X X X
Melhuish et al. [72] X
Kriegleder et al. [59] X
Kernbach and Kernbach [53] X
GroB et al. [16] b'e
Alers et al. [6] X X
Mataric [49] x X
Négeli et al. [80] X X
Basiri et al. [10] X
Iyer et al. [48] X
Mulgaonkar et al. [78] X X
Kushleyev et al. [61] X X
Michael et al. [74] X X
Turpin et al. [107] X X
Das et al. [24] X
Gu et al. [37] X X
Saska et al. [100] X X
Schwager et al. [102] X X
Achtelik et al. [1] X X
Stirling et al. [104] X X
Correll et al. [23] x
Rothermich et al. [96] X
Hayes et al. [44] X X
Hayes et al. [43] X X X
Vasarhelyi [108] X X
Quintero et al. [88] X
Hauert et al. [42] x X
Celikkanat et al. [18] X X
Kelly and Keating [52] X X
Chiew et al. [20] b'e X
McLurkin and Smith [71] X X
Pestana et al. [84] X X
Coppola et al.[21] X X
Guo et al. [39] X b'e
Total uses 8 6 13 8 2 21 2

2-2-1 External Systems

The first few systems that will be discussed are grouped together under the term external
systems. These are systems that are not (fully) carried on-board the robot, but still
facilitate the robots in the swarming task. It typically accomplishes this by providing the
robots with global localization data.

The first set of systems belong to the category of Motion Capture Systems (MCSs),
such as the popular Vicon MCS used in [20, 61, 74, 78, 102, 107], or other overhead camera
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systems such as used in [43, 103]. The advantage of using MCSs in swarming experiments
is the very high accuracy (down to millimeter and sub-degree accuracy for the Vicon MCS
[109]) with which these systems can give pose information to the robots in the swarm, and
the relatively high update rate with which it can provide this pose information (often about
50-150 Hz is mentioned in the literature [61, 102, 107]). In order for the robots to actually
receive the position information provided by the MCS they must also always be equipped
with some communication system (usually wireless) that sends the computed position by
the MCS to the robot, since the MCS is the system that computes the position, and not the
robots themselves. The main advantage of such a MCS is that the high accuracy of pose
information allows the robots to operate with nearly perfect state knowledge of themselves,
and potentially of other robots as well. A lot of the theoretical work performed on swarming
assumes for example that robots in the swarm have perfect knowledge of (part of) the state
of other robots and their own. The close resemblance of a MCS to perfect state knowledge
makes the jump from theoretical considerations to practical experiments as small as possible.
This allows for quick “proofs-of-concept” with robots, to show that a theoretical work can
also work in practice. The major downside is that such a system has to be installed at the
location of the experiment. This restricts these applications to function only within a small
area covered by the MCS.

The second external system that is often utilized in the literature on swarming is the Global
Navigation Satellite System (GNSS) / Global Position System (GPS) receiver.
Much like for the MCS the GPS receiver allows an external system to help the robots localize.
Differently than for the MCS however is that GPS is available in most places around the
world. The only restriction it imposes is that there must be a clear reception of the GPS
signal. In practice this means that the GPS signal cannot reliably be used indoors due to
signal attenuation [67], but also cannot be used in some urban environments and for example
forests due to multipath effects [82]. However, even with a clear GPS signal reception the
accuracy of GPS leaves much to be desired, which in the domain of robotic swarming would
result in large minimum inter-agent separation distances [80]. GPS therefore provides a more
wide-spread support than MCS, but is not even close to providing equally high accuracy.
Furthermore, a single GPS receiver also only provides positional information (and possibly
heading), rather than the position and full orientation that an MCS is typically capable of
providing.

Other forms of external localization systems exist with a similar functionality of a MCS. Ex-
amples are (ultra-)sound based indoor localization system, wireless Radio Frequency
(RF) based indoor localization systems, and magnetism based indoor localization
systems [38]. Each provide an alternative system for indoor localization and each have their
own advantages and disadvantages. These systems have not been seen to a great extent in
swarming related literature by the present author. In any case for all these systems the same
major disadvantage holds as for the MCS, which is that it provides localization information
only within the relatively small coverage area.

2-2-2 On-board Systems

The external systems mentioned so far provide location information to robots. As mentioned,
these systems have clear disadvantages as to where they can be used exactly. In order to
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not be reliant on such external systems, on-board sensors would have to be used for robots
to obtain the relative locations of neighboring agents in a swarm.

One of the most frequently occurring on-board hardware in the robotic swarming literature is
the Infrared (IR) sensor, and this is for good reason. IR is Electromagnetic (EM) radiation
with a frequency just below the frequencies of visible light. With wireless communication
becoming increasingly popular in all sorts of applications, using IR instead of RF commu-
nication allows an IR based system to bypass the issues associated with EM interference
to and from other systems operating in the common RF bands occupied by for example
WiFi or Bluetooth [31]. Furthermore the IR based sensors are very versatile, since they can
be used not only for relative localization of other swarm members, but also for proximity
sensing/obstacle detection (in a "radar” like fashion) and for communication. This allows
researchers to use a single IR based sensor for a variety of purposes. This is also reflected in
the uses of IR in swarming in the literature. For example in articles [52, 72, 96] IR sensors
are used for relative localization and communication, in articles [23, 53] IR sensors are used
for proximity sensing and communication, and McLurkin and Smith even used IR sensors
for all three of these applications in [71], making the IR sensor a very efficient sensor indeed.
Naturally there are also weaknesses associated with using IR sensors in swarming. Because
IR is just a form of light, it will not be able to penetrate any sort of opaque material. This
means in practice that IR systems can only work together when they are within the same
room [38]. Furthermore, whilst IR is naturally immune to interference from wireless RF
signals, it is in fact influenced by the presence of other disturbing sources, including ambient
light (both sunlight and artificial light). [31]. Finally, a major downside especially also in
robotic swarming is that IR systems have limited Field Of View (FOV). To get the wider
coverage required for good relative localization, this will ultimately lead to relatively heavy
constructions of multiple sensors in different orientations, such as the ring of IR sensors
developed in [94].

Rather than using the IR portion of the light spectrum, others propose to directly use the
visible light spectrum in swarming applications in the vision based methods for relative
localization. A large variety of methods are employed for vision based localization. Some
authors suggest to directly estimate the positions of other agents in a swarm, requiring the
robots to identify others directly in the video captured by their camera(s). This is often
facilitated by equipping the robots with easily identifiable markers of for example distinct
colors or patterns, as is demonstrated in [48, 80, 95]. Other approaches attempt to use the
camera images to create a map of the environment within which the agents can localize
themselves. Via communication the agents can then determine what their locations within
this map should be to efficiently execute a desired behavior [1]. This group of methods is
referred to as Simultaneous Localization and Mapping (SLAM). In reality SLAM is a broader
concept that can also be used in combination with other sensors like laser scanners, but
those have not been seen in swarm robotics literature. The downside of especially SLAM
is that it is computationally expensive, and requires a lot of communication bandwidth
when multiple drones are trying to match their individual maps. This is unfavorable
for aerial swarm robotics, since these are both scarce resources. Furthermore, all vision
based methods suffer from high dependency on illumination and visual contrast of the
scenery, can be erroneous when there are insufficient features present in the environment,
and might not be able to provide the required high framerates for highly dynamic tasks
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Figure 2-1: Microphone array on a pocket drone [10]

[9, 10]. Vision based methods are also restricted to Line Of Sight (LOS) operation and
typically have limited FOV. The demonstrations of swarming behavior using vision based
methods so far are with a very limited number of agents (2-3) and do not adequately show
scalability of the systems to larger number of agents due to the need to either actively track
specific neighbors as in [80], or due to the lack of real-time interaction between agents as in [1].

Alternative to the aforementioned systems are the onboard sound based systems which
are also capable of providing relative localization information between robots. These systems
are far more uncommon in the literature on practical swarming implementations, and have
primarily been shown by Basiri et al. in [10] for the case of formation flying. The authors
mention some distinct advantages of the sound based system over the aforementioned
systems such as the independence of the system on illumination conditions, allowing the
system to operate during day and night. The sound waves used for detection can travel
through certain obstacles allowing reception of the signal even in the case of some occlusions.
Finally the microphones are omnidirectional allowing 3D reception of sound signals [10].
There are some significant disadvantages with respect to swarming applications based on
the sound based system, however. Basiri et al. already showed in the experimental results
in [10] that the localization performance of the system significantly drops when the number
of agents to be localized is increased. In the experiments it was demonstrated that up to
three agents were localized with relatively good accuracy, but introducing a fourth agent
proved already to be too much. This was in a controlled environment with relatively little
disturbing sounds present. Clearly for a swarming purpose this is not desirable since the
system should ideally support many more members than three. Furthermore, whilst the
microphones can be relatively light, the authors in [10] use the difference in arrival times of
sound at different microphones to get a bearing estimate of other agents. This requires the
microphones to be spatially separated, resulting in somewhat inconvenient constructions to
get such a microphone array installed on a pocket-sized drone (see figure 2-1 for the solution
by Basiri et al.).

There is a final group of on-board systems that have been used in the literature and that shows
potential for swarm robotics, the Radio Frequency (RF) based systems. Much like IR
systems, the RF based systems are very versatile in their use, being capable of communication,
proximity sensing, and localization. Furthermore the RF based systems are just like the sound
based systems omnidirectional and independent of ambient light conditions.
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As mentioned in section 2-1, the RF based systems have been divided into two separate
categories for the purpose of this hardware evaluation. This is done to make the distinction
between different uses of RF based systems more pronounced. Most of the literature on swarm
robotics uses some type of RF based system in their execution of swarm robotics. For the most
part, however, this RF based system only functions as an auxiliary communication system.
For example, any solution that uses a MCS to determine the robots’ positions requires the
robots to be equipped with a wireless communication system. This is necessary to be able to
communicate the externally determined positions to the robots themselves. For GPS, if the
robots must have knowledge of the relative locations of each other, a wireless communication
system is necessary to exchange positions amongst members of the swarm. Even if there is
no need to exchange position data, other authors use the RF based methods to communicate
important variables to accomplish a certain swarming behavior. For these reasons, RF based
systems are very popular in swarm robotics implementations.

However, as mentioned, RF systems are capable of more than just communication. The
wireless radio signals themselves can be used as a source of information to extract for example
the range between two RF modules. Since so few authors exploit this possibility of RF
systems, it has been given a separate category.

Recent research has shown that RF based systems can be used for relative localization with-
out using external beacons, thus using only onboard radio transceivers. This has been shown
with Bluetooth signals by Coppola et al. in [21] where they accomplished relative localization
between drones by combining ranging information from signal strength measurements with
communicated velocity, heading, and height information between drones. In their final ex-
periment, all the required information is collected through on-board sensors and subsequently
fused in an Extended Kalman Filter (EKF). They used this information for collision avoid-
ance behavior, which can be considered a prerequisite for swarming. They managed to avoid
collisions between two drones using only onboard sensing for an average time of 192.4 seconds
in a 4 x 4 meter arena.

Very recently a similar methodology has also been investigated by Guo et al. in [39] where
they used Ultra-Wideband (UWB) radio instead of Bluetooth. Here they first have one drone
hovering in a static position, thus acting as a sort of beacon, which allows another drone to
get an estimate of its position relative to the static drone. This is done by having the moving
drone fly a certain path, and having it collect ranging information at several locations. The
flying drone keeps track of the displacements that occurred between the different range
measurements, allowing it to get an estimate of its position through classical lateration.
Afterwards, all drones are allowed to move and continue to obtain relative location estimates
through a combination of range measurements and communication of self-displacements.

2-2-3 Best Hardware System in Robotic Swarming

Clearly the best (set of) systems to used in robotic swarming depends on a great deal of
things, such as the robots used, the behavior they must achieve, and the location they must
achieve it in. By focusing on specifically swarming with M AVs, and in an indoor location, one
can make some sensible conclusions regarding applicable sensor systems. The requirements
that stem from the fact that the robot to be used will be a an MAV are:

e The on-board system must be small.
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e The on-board system must be light weight.

The system must work with limited available computational power.

The system must be scalable.

The system must be operable in unprepared indoor environments.

Since the system must be operable in unprepared indoor environments, the external systems
(such as MCSs and GPS based systems) are not suitable for the application in mind. This
therefore leaves only the on-board systems as suitable contesters.

From the on-board systems the sound based systems drop as a candidate system due to
the fact that the results from these systems show insufficient scalability to larger numbers of
robots.

Alternatively the vision based systems may be used. However, the vision based methods
also do not provide promising scalability, mainly due to the fact that vision based systems
have limited FOV and therefore must have either multiple cameras, which will be heavy,
or must actively track neighboring robots, which is impractical for large numbers of robots.
Furthermore out of the considered methods the vision based methods require the highest
computational power which is also a limiting factor on MAVs.

Despite the versatility of the IR based systems, these are also not a suitable solution within
the current context due to their limited FOV. The bulky constructions that are required to
get a decent FOV with IR based systems do not meet the criteria of being small and light
weight.

This leaves the most suitable candidate system, the RF based systems. It is a versatile
system, given that it is capable of serving as a communication device, a proximity sensors,
and has been used for the purpose of relative localization. A big advantage is also the fact
that it is omnidirectional. A drawback of the RF based system is that it is not a completely
standalone system. It requires additional information (such as velocity, height, or other state
variables) to be exchanged between agents in a swarm to get a full three dimensional relative
localization fix. This means that the accuracy of the system will inevitably be affected by
the quality with which the additional state variables are obtained. Nevertheless, since the
individual members in a swarm need this state information to be able to fly anyways, it is
assumed that this information is available to them with sufficient accuracy.

2-2-4 Selection of Radio Technology

The question that remains, however, is what specific type of radio to use. Within the context
of this thesis it has been decided to pursue the UWB technology for indoor leader-follower
flight, and there are a number of good reasons for this choice.

Whilst technologies like Bluetooth, WiFi, ZigBee, and UWB are all protocol standards that
enable short-range wireless communications with low power consumption [64], UWB separates
itself from other standards in a number of ways. Bluetooth, WiFi, and ZigBee operate on a
narrow range of frequencies, and mostly around the 2.4 GHz region. UWB instead transmits
on a very wide range of frequencies, typically ranging from about 3.1 to 10.6 GHz [64]. This
brings with a number of advantages.

The main advantage that can be attributed to the bandwidth used by UWB signals is that
they result in very fine temporal (and thus spatial) resolution [22]. This in turn allows it to
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resolve multipaths more easily [110]. Ultimately these properties help to make the ranging
performance of an UWB system very accurate, which is obviously important when the desire
is to use it in a localization system.

Another advantage associated with this bandwidth allocation is that it provides natural
resistance to interference from the many wireless signals that are transmitted at any moment.
UWB can be used in close proximity to other RF signals [33, 67, 76] due to the fact that
it operates on a very wide frequency band and does not solely rely on any narrow band of
frequency like many other radio standards do.

UWRB also has a very high theoretical spatial capacity. This means that per unit of area,
UWB can theoretically send a very large amount of data [33]. Especially in the case of
swarming, where many different agents might wish to transmit data in close proximity, it is
a very useful property for the signal to be capable of providing such high theoretical data
rates in the space available. This can partially be explained by looking at Shannen’s equation
which relates channel capacity to bandwidth:

N

Where C is the channel capacity in bits/second, W is the channel bandwidth in Hz, S is
the signal power and NV is the noise power. This equation clearly tells us that the maximum
channel capacity C increases linearly with the signal bandwidth W. This fact immediately
tells us that the high bandwidth used by UWB systems is favorable for the channel capacity
that the technology supports.

An additional advantage of UWB that is useful for swarming applications where robots
might not always have the same inter agent distance, is the fact that UWB can theoretically
quite easily trade off communication speed (bit rates) with communication range [13, 33, 83].
This can be achieved by just sending the same UWB pulse several times in a row to effectively
increase the Signal-to-Noise-Ratio (SNR) that is achieved at the receiver [33].

Finally, UWB has relatively favorable material penetrating properties [76]. Clearly in
an indoor environment where many walls may be present at close proximity it is favorable
if communication between agents remains feasible even if agents are on opposite side of a wall.

C' = Wlogs <1 + S) (2-1)



Chapter 3

Introduction to Ultra-Wideband
technology

UWRB is a relatively unknown technology compared to some other wireless technologies. This
chapter therefore contains an introduction into UWB technology to familiarize the reader with
the technology. The history of the technology will first be briefly discussed in section 3-1. The
theoretical foundations behind the technology are discussed in section 3-2. Afterwards some
UWB modulation and multiple access techniques will be discussed in respectively sections 3-3
and 3-4. Finally, the legal considerations and regulations regarding UWB will be presented
in section 3-5.

3-1 History of Ultra-Wideband

UWRB is often perceived as a very contemporary technology that is the result of recent break-
through in wireless communication, whilst in fact it is already a very old technology. Strictly
speaking, UWB can be seen as the oldest form of wireless communications, since the earliest
work on wireless communication, the spark-gap transmitter of Marconi (following the work
of Hertz), designed in the 1890s, is often perceived as an UWB system due to the physi-
cal nature of spark gap transmission (short pulse, high bandwidth transmission) [35, 76, 87]
Unfortunately, said spark gap transmitters generated radio waves in a largely uncontrolled
manner [36], and therefore did not seem to allow easy spectrum sharing with other users.
In an attempt to allow for a higher degree of spectrum sharing in a controlled manner, and
due to the technology being available at the time, the focus in wireless transmission shifted
towards more controlled narrowband systems [36, 87]. Through allocating bands of the ra-
dio spectrum towards specific purposes, these narrowband systems seemed like a good way
to prevent interference between different systems. [36]. The cost, of course, was that this
resulted in large portions of the radio spectrum going unused.

The new focus on narrowband wireless communication caused interest in UWB as a com-
munication technology to slowly wane for the decades following the initial successful spark
gap transmission. It was not until decades later, around the area of the second world war,
that some work relating to UWB communication reappeared in the form of patents filed in
the US regarding impulse radio [3]. However, especially during the times of war, the US
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government wanted these technologies to remain a secret, and did not grant the patent rights
to these patent applications until more than a decade later [3].

Since the 1960s the military and UWB remained intertwined for a long time, as much of the
real early UWB systems designed were for military purposes. The military had especial need
for Low Probability of Detection (LPD) wireless transmission, and UWB seemed capable
of filling that role. For that reason, the early military applications constituted mainly of
LPD radar and communication systems [35, 36]. Clearly, due to the military nature of the
developments, a lot of the early work regarding UWB was classified [36] and therefore did
not help to spark interest for commercial or research applications.

It was actually only in 1989 that the term "ultra-wideband” was first coined by the U.S.
Department of Defense [8, 83, 111], and the term "UWB” was used by the Defense Advanced
Research Projects Agency (DARPA) in a radar study in 1990 in order to differentiate between
conventional and short-pulse radar [35]. Before that time UWB was known under different
names, such as ”baseband”, "impulse” or "carrier-free” radio [35, 83].

Development regarding UWB systems were first accelerated in 1994, when some of the
previously classified research material was unclassified [87]. The United States of America’s
(USA’s) Federal Communications Commission (FCC) caught on to the technology, and further
accelerated its development in 1998 when they released a Notice of Inquiry that proposed the
unlicensed use of UWB. In cooperation with the public they formalized the rules to which
UWRB systems had to abide in order to operate legally in April 2002 with the release of the
First Report and Order regarding UWB [30]. Whilst UWB would be strictly limited in the
amount of legally allowable power it can radiate, it was still a very controversial ruling due
to the large amount of unlicensed bandwidth that was made available. This was in sharp
contrast with the narrow frequency ranges previously available for commercial use. To make
the controversy even greater, the allocated bandwidth overlapped with some of the previously
allocated narrowband frequencies [36], such as those used by WiFi and GPS.

Rather than just for military operations, commercial companies now started to realize its
potential also for the consumer market. UWB was deemed capable of low power communica-
tion at both short and long ranges, at respectively high and low data rates [106]. Many articles
on UWB were published, and a vast variety of uses for UWB were proposed and envisioned.
Examples of these uses are for wireless personal area networks, sensor networks, imaging sys-
tems, radar systems, outdoor peer-to-peer networks, intelligent wireless area networks, etc.
(86, 111].

Upon reading the papers published shortly after the FCC’s report and order, UWB appeared
like a phenomenon that would surely become a widely adopted technology. However, whilst
standards like Bluetooth and WiFi are known by most people today, and are present in
many contemporary electronic devices, UWB is largely unknown and only available in niche
products. It is not even serving a small portion of its envisioned uses.

One of the large contributions to the failure of UWB to live up to its envisioned potential
is the fact that the IEEE failed to come up with a standardized physical layer (PHY) for
UWB [17]. The two main contenders for becoming the standard PHY were the Multi-Band
UWB (MB-UWB) and Direct Sequence UWB (DS-UWB). Both proposals were backed by
different organizations (respectively the WiMedia Alliance and the UWB Forum), and had
valid arguments in their favor, making the decision between the two a difficult one. The
IEEE 802.15.3a task group, which was the task group tasked with the standardization of
UWRB, tried for three years to appoint one of the two proposals as the standard, but failed
to ever reach the required 75% approval rating to conclude on a standard [17]. The task
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group finally recognized its inability to make a decision and unanimously voted to disband at
a meeting in Hawaii on January 19, 2006 [36, 83]. Instead, they decided to let the industry
determine which of the PHY ought to become the standard. Unfortunately the industry did
not do so, and instead started largely to back off from UWB development [17].

To date UWB is not the all-purpose radio technology that it was once hypothesized to be.
Most companies that focused on commercial (communication) applications have either backed
off from the technology, or have gone bankrupt [17]. Despite the commercial disappointment
of the technology, however, it is still a technology with distinct advantages over other RF
technologies, as mentioned in section 2-2-4. For that reason there are still researchers to date
that investigate its potential, and there are numerous niche applications for which UWB is
being used today. An example of this is for real time precision localization, which is also the
purpose that this thesis will use UWB for. More information on (contemporary) UWB uses
can be found in chapter 4.

3-2 Theory behind Ultra-Wideband

Now that UWB’s historical perspective has briefly been introduced, it is time to look at the
theoretical foundations of UWB in order to understand what makes the technology appealing.
Somewhat simplistically put, UWB communication consists of a transmitter that emits
an EM wave, a wireless channel through which the signal propagates, and a receiver that
receives this wave. In order to understand what the signal that is received will look like, one
essentially needs two pieces of information. The first piece of information is the signal that is
being transmitted (the input), and the second piece of information is the impulse response of
the system that this signal propagates through. Mathematically this is described in the well
known convolution integral, which tells us that the output y(¢) of a Linear Time Invariant
(LTT) system with impulse response h(t) in response to an arbitrary input x(t) is given by:

“+o00

y(t) = / h(T)a(t —7)dr 2 h(t) * 2(t) (3-1)
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where the * operator is defined to be the convolution operator.

To fully characterize how the received signal therefore looks, one must consider both the
impulse response h(t) of the UWB propagation system and the input signals z(¢) of UWB.
These concepts will both be described in sections 3-2-1 and 3-2-3 respectively.

3-2-1 UWB Channel Impulse Response

The impulse response is the first term appearing in the convolution integral and will be
discussed first. As mentioned, the impulse response essentially characterizes the response of
the entire system that the input excites. In the study of wireless transmission the impulse
response of the channel is referred to as the Channel Impulse Response (CIR).

Whilst there is substantial literature on channel modeling for narrowband wireless channels,
these methods cannot automatically be generalized for UWB channels. One of the key reasons
for this conclusion is the fact that for narrowband systems the frequency dependent nature
of signal reflection may be ignored or assumed constant due to the limited range of frequency
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over which a narrowband system radiates. Obviously this cannot equally be assumed for
UWRB signals, which are characterized by the large range of frequencies that they span [13].

There are essentially two methods of CIR modeling, which are the deterministic and the
stochastic method [13]. The deterministic methods are those methods that attempt to model
the behavior of a wireless channel specifically in one particular environment. An example of
such a method is ray tracing. An example of where this type of channel modeling is used
to enhance UWB localization precision is given in [41]. The other method, the stochastic
method, is more general. It attempts to model the channel not for a specific location, but
instead attempts to model how the channel would typically behave in a generic location
by using statistical methods [13]. The following considerations will be regarding stochastic
channel models because of their more general nature.

The UWB Channel Impulse Response (CIR) model in its most basic form is essentially a
summation of dirac delta functions [83]:

N
h(t) = and(t — 7)exp(j6,) (3-2)
n=1

Where N is the total amount of Multipath Components (MPCs) in the channel, n is the
counter of the nth arriving multipath, and a,, 7, and 8,, are the amplitude, delay, and phase
of the nth arriving MPC. When the UWB that is being considered is a baseband signal, the
phase term in equation 3-2 can be excluded [83].

Looking at equation 3-2 one can quickly make some observations as to what the effect of
such a CIR will be. Most notable is the effect that a dirac delta function § has on an arbitrary
signal z(t) in a convolution integral. Using the ‘sifting’ property of the dirac delta function
in an integral:

[ a3t - t0) = atto (3-3)

and the definition of a convolution (equation 3-1), one quickly arrives at the following property
of a dirac delta function in a convolution:

o(t) % 6(t — to) = x(t — to) (3-4)

meaning that the convolution of a signal z(t) with the dirac delta function that is located at
to results in a time-shifted version of the signal z:(¢) where the time shift is equal to .

Ignoring the phase shift in equation 3-2, the basic CIR is essentially a (finite) sum of
these time shifted dirac delta functions. Combining this realization with property 3-4 one
quickly realizes that a transmitted wireless signal z(¢) after passing through the propagation
channel will result in a received signal that is the summation of N time-shifted versions of
the transmitted signal x(¢). This corresponds with the intuitive notion of MPCs, where the
same signal is received with different time delays due to the signal being reflected off of walls,
floors, etc. Clearly, in order to be able extract the original direct path of the signal, these
MPCs must have minimal overlap in time. This is exactly why UWB is favorable in that
sense, since an UWB signal is very narrow in time domain. This will be further demonstrated
in the next section.

Other stochastic CIR models for UWB channel modeling exist, but they are mostly based
on the standard CIR model presented in equation 3-2 and therefore show similar conclusions
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as those that can be made from the basic CIR model. The IEEE also proposed standardized
UWB CIR models which are similar to the basic model with some added assumptions on for
example the time shifts of the dirac-delta functions (which represent the arrival times of the
MPCs). The proposed standardized IEEE models are introduced next.

3-2-2 IEEE Proposed Ultra-Wideband Channel Impulse Response Models

The first standardized CIR model was proposed by the IEEE 802.15.3a task group in [32]. One
of the primary assumptions used in the creation of this model was that the arrival times of the
different UWB multipath rays at the receiver can be represented as a double poisson process.
It is assumed that the different multipaths occur in so-called "clusters” of multipath rays,
where both the clusters themselves as well as the individual multipath rays within a cluster
arrive according to a poisson process. This model is essentially a slightly modified version of
a well known model presented by Saleh and Valenzuela (S-V model) in 1987 (see [99]) where
the notion of modeling the arrival times as a double poisson process was introduced. The
IEEE model proposed is given by [32]:

L K
h(t) =X ) onb(t — T) — 7y) (3-5)
1=0 k=0
The assumption of Multipath Components (MPCs) arriving in a double poisson process leads
to the double summation present in the IEEE standard model in equation 3-5. This model
includes L clusters and a total of K Multipath Components (MPCs) arriving within those
clusters. This consequently means that a total of L- K MPCs arrive at the receiver according
to this model. Furthermore, oy is the multipath gain of the kth MPC arriving in the I/th
cluster, 7 is the time delay of the Ith cluster, and 7;; is the time delay of the kth MPC
with respect to the delay time of the Ith cluster. Finally, the parameter X was introduced
to represent the shadowing of the total multipath energy, and is proposed to be log-normally
distributed (such that 20log10(X) o« Normal(0,02), where o, is the standard deviation
corresponding to the variance of the stochastic shadowing effect). The model is valid for the
ranges 3-10 GHz in an indoor environment [76].

Clearly it is desirable to have an UWB CIR model that is valid in a more versatile range of
environments. A different IEEE task group, namely task group IEEE 802.15.4a recognized
the need for this and developed an improved model. The IEEE 802.15.4a task group was also
studying UWB systems, but contrarily to their counterpart (802.15.3a) they focused on the
alternative low-rate UWB applications for wireless personal area networks (WPANs). They
presented their model in a technical report in 2005 [75] and it was later described in an
article in 2006 by Molisch et al. [76]. Although the model of the CIR changed only slightly
compared to the one presented in equation 3-5, it offers, among others, a more versatile range
of environments in which it is valid. Furthermore, despite the group’s focus on the low-rate
UWB alternative, the model holds for UWB signals at any desired data rate [76].

The alternative IEEE CIR model, again based on the S-V model, is given by:

L K
h(t) = Z Z ak7lexp(j0k7l)(5(t - Tl - Tk,l) (3—6)

=0 k=0
Clearly the newly proposed model is similar to the earlier proposed model in equation 3-5.
Some differences have been made to the equation though, namely the introduction of the
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phase 0y ; of the arriving MPCs and the exclusion of the shadow fading parameter X.

The reason for putting the phase of the arriving MPCs back into the CIR in equation 3-6
might be due to the need for making the model more versatile and applicable to a wider variety
of situations. In the model it was proposed to model the phases of each MPC as a uniform
distribution on the range [0, 27], thereby adding some more randomness into the system [76].
Furthermore, excluding the shadow fading parameter seems odd at first (the shadow fading
is still present after all), but it becomes clear that rather than having a separate term in the
equation for the shadow fading, this phenomenon is now included in the computation of the
MPC gains oy, ;. The full description of how all the different parameters should be computed
(used statistical distributions, their fitted parameters, etc.) can be found in [76].

As mentioned, the newly accepted model by the IEEE 802.15.4a task group offers support
for a wider variety of environments, both indoor and outdoor, as opposed to the only indoor
support of the earlier model presented by IEEE task group 802.15.3a. This can largely be
attributed to the fact that the authors of the new model simply present a wider variety of
parameters that can be adopted into the model, where every set of parameters represents
a new environment [76]. Another big advantage of the new model is that the presented
parameters accompanying the model exclude the effects of antennas [76]. This makes the
model easier and more versatile in its use and allows comparable results across a wide variety
of used systems.

3-2-3 UWB Signal Shapes and Properties

Having the CIR model available is important to understand and model UWB behaviour.
However, as equation 3-1 tells us, having the impulse response h(t) available is not enough.
Additionally the actual signal that will be sent through the channel must be studied to
really characterize an UWB system’s performance. Because of the wide range of frequencies
allocated for UWB signals, and the different PHY proposals for UWB, there are quite a lot
of signal shapes that are proposed to be used in UWB. The most common signal shapes
used will be described here. The focus will be on the actual shape of a single signal pulse.
Depending on the modulation technique these pulses are congregated in one way or another to
form the actual signal. More information on the modulation techniques is given in section 3-3.

The most basic shape of a pulse that can be used in an UWB system is the rectangular
monocycle pulse [13]. Its definition in time domain is given by:

1

plt) = 7 U0 ~ Ut~ T,)] (37)

P
where U(t) is the unit step function, and 7}, is the width of the pulse, which will be in the
order of nanoseconds for UWB systems in order to generate the higher bandwidth required
for UWB systems. The parameter 7}, can be directly used to shape the bandwidth of the
signal. This can be seen when taking the Fourier transform of the rectangular monocycle,
which is given by:

sin(Tyn f)
mf
where P(f) is the fourier transform of p(¢), and where the F symbol will be used to char-

P(f) = Flp(t)] = (3-8)
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acterize the Fourier transform. An example of how the rectangular monocycle pulse looks in
both time and frequency domain is given in figure 3-1. In this figure a pulse width of 5 ns is
used.

From equation 3-8 it immediately becomes apparent how the pulse width can be used to
adjust the bandwidth of the signal, since T}, scales the frequency of the Fourier transformed
pulse. Unfortunately the Fourier transform of this signal also reveals that the signal has a
strong Direct Current (DC) component. In fact, figure 3-1b shows that the signal peak occurs
for zero frequency. This is an undesirable property for EM wave transmission [114], because
antennas are not efficient at DC [83]. This is the reason why the rectangular monocycle
pulse signal is rarely used in practical systems. However, due to its simplicity it is still often
used in academic research [114].
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Figure 3-1: Example of a rectangular monocycle pulse

The most typical UWB pulse shape which also has a more practical application, is the Gaus-
sian pulse and the time-derivatives thereof [19, 83]. In time domain the basic Gaussian pulse
is given by:

A (- (3:9)
27-[-0-2 exp 20—2 _

where in this case A and o control the amplitude and spread of the signal. For this signal the
Fourier transform is given by:

p(t) =

3-10
; (3-10)
An example of the Gaussian pulse is given in figure 3-2 for a o value of 0.1 ns. The
amplitude A of both the time domain and frequency domain representation has been
scaled to have a maximum value of one. In real systems the amplitude would be scaled
in order to comply with spectral masks as defined by the relevant authorities (see section 3-5).

71'0'2
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Clearly the basic Gaussion pulse still has a relatively large portion of its radiated power in
the lower frequencies, which is undesirable. For this reason higher time-derivatives of the
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Figure 3-2: Example of a Gaussian pulse

Gaussian pulse can be used instead, since time derivatives of the Gaussian pulse cause the
frequency spectrum to shift towards higher frequencies [83].

Because of the properties of the exponential present in the Gaussian pulse, the nth derivative
of this pulse can easily be computed in a recursive manner according to the equation from

[83]:

n n—1 n— t n—
p(t) = =5 "I () - "I (0) (3-11)
with the corresponding frequency spectra:
. n 21 fo)?
P$) = F [i0)] = Gz a-eon (- 27070 (312)

Figure 3-3 shows that indeed time derivatives shift the frequency content of the Gaussian
pulse towards higher frequencies by plotting the frequency response of the 1st to the 6th
order time derivatives of the Gaussian pulse. Again a signal spread o of 0.1 ns is used
and the amplitude scaled to 1 in order to be able to compare the different frequency responses.

A number of popular UWB signal shapes are not directly derivatives of the Gaussian pulse,
but are in some way similar to, or derived from derivatives of the Gaussian pulse. One of
the most popular pulse shapes is for example the Gaussian monocycle [90], which is in fact
derived from the first derivative of the basic Gaussian pulse [19]. Similarly, the Rayleigh
monocycle is another example of a signal shape that is derived from the first derivative of
the Gaussian pulse. Finally, the popular Gaussian doublet is in fact simply the addition of
two Gaussian pulses (one positive one negative) that are time-shifted with respect to each
other [114].

To conclude the section on UWB signal shapes, it is important to mention that the consider-
ations regarding UWB signal shapes in this section, and also those in the literature, concern
themselves with the properties of the signal from an analytical perspective. In reality with
real physical hardware it will be impossible to generate exact realizations of the analytically
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Figure 3-3: 1st to 6th order time derivatives of the Gaussian pulse in frequency domain

described waveforms due to antenna and RF matching problems [13]. The actual transmitted
signals will therefore only be approximations of the theoretical signal shapes. In essence the
UWB antennas act as filters on the signal that is to be transmitted. The effect of the antenna
is often considered to be a differentiation of the pulse to be transmitted [83, 92, 110]. This
assumption might however for certain applications be too simplified, as it is also reported in
the literature that the UWB antennas shape the signal differently under different angles, as
has been experimentally observed [87]. However, as technology evolves, the hardware used is
increasingly capable of generating the desired signal shapes accurately.

3-3 UWB Modulation

The discussions so far show the foundations of UWB, but still have not shown how UWB can
actually be used to transmit information. In order to do so, one must modulate the signal in
order to encode information onto it. How that will be done will be discussed in this section.

One of the most important realizations regarding UWB modulation techniques is that, in
the end, “a radio is a radio” [3, p.39], and therefore many of the modulation schemes that
have previously been invented for any other type of radio, can apply to UWB radio as well.
The most popular and common modulation methods for UWB will be discussed.

3-3-1 Pulse Position Modulation

The most popular UWB modulation technique is Pulse Position Modulation (PPM) [83].
PPM is a modulation technique that allows the encoding of information by displacing an
UWRB pulse in time. PPM essentially divides the time axis into an (infinite) series of "nominal”
time positions. Sending an UWB pulse at exactly this nominal time position can for example
represent the bit '0’. Sending an UWB pulse after the nominal time position can represent
the bit "1’ [3]. Clearly, it is possible to also allow multiple delays of different lengths within
a time slot to allow the coding of additional bits in one time slot.
Mathematically the PPM algorithm for a single user can be represented in time as:
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o0

x(t)= Y p(t—jTy +od;) (3-13)

j=—o00

where p(t) is the signal being emitted in time by a certain UWB transmitter, j is the counter
for the amount of time-frames that have past, T is the duration of a single time-frame, and
d is a small time-shift. Typically § << T} in order to prevent Inter Symbol Interference (ISI)
[13]. Finally, the terms d; encode the bit that is transmitted at time-frame j, where

0, bitj=0
dj = ’ ' J ’ (3_14)
1, bitj=1.

or similar (for example d; could also be -1 for bit j = 0).

3-3-2 Pulse Amplitude Modulation

A different modulation technique in UWB is the Pulse Amplitude Modulation (PAM). Rather
than encoding information by altering the times at which an UWB pulse is being transmitted,
this modulation technique encodes information in the amplitude of the pulse that is being
transmitted. In time the PAM modulation can be represented as:

o0

w(t)= > aj-p(t—jTy) (3-15)

j=—o00

where in this case the addition of a; is used to encode information. The term a; scales the
amplitude of the pulse p(t) being transmitted, and the amplitude of the transmitted signal
can be related to the bit that is being transmitted.

Several possibilities exist with respect to the exact definitions of a;, and sometimes the dif-
ferent possibilities are also mentioned as separate modulation techniques.

The most simple variant of PAM is called On-Off Keying (OOK) [83]. In OOK modulation
the bit 1’ is indicated by an amplitude a; of "1’ Similarly, the modulation of the bit '0’
corresponds to an amplitude a; of '0’. Essentially the system only transmits a pulse when
the bit '1’ is being transmitted, and transmits nothing otherwise. Note that in this case
it is necessary for the receiver of the signal to be aware of the time slots at which bits are
transmitted.

Another variant that can be considered an implementation of PAM in specific cases goes by
the name of Binary Phase Shift Keying (BPSK), Bi-Phase Modulation (BPM) [83], bipolar
signaling [33], or similar. In this type of modulation the amplitude a; is given the value '+1’ in
the case of the bit '1’, and the value -1’ in the case of a bit ’0". Alternatively the amplitude a;
may also be assigned the complex values #1414, in which case the method is called Quadrature
Phase Shift Keying (QPSK), allowing the signal to carry 2 bits of information per pulse [83].

The final variant of PAM is often called M-ary PAM. This method is characterized by the
fact that it can transmit more than one or two bits of information per frame of time. It
does this by assigning multiple levels of amplitude to the term a; which allows for additional
information being transmitted per frame of time.
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3-3-3 Pulse Shape Modulation

The final mentioned modulation technique is Pulse Shape Modulation (PSM). Rather than
encoding information in the amplitude or time position of a certain pulse, PSM encodes
information into the actual shape of the pulse that is being transmitted. It is again possible
to encode multiple bits of information per frame of time, as long as a sufficient set of distinct
pulse shapes are available to encode information. Clearly the different pulse shapes must all
adhere to the definition of UWB as defined by the appropriate authorities (see section 3-5),
and it is at the same time desirable for these pulse shapes to be mutually orthogonal such as
to cause minimum interference [13].

3-4 UWB Multiple Access and Spectrum Randomisation

The considerations on UWB modulation in section 3-3 cover essentially how information can
be encoded into an UWB data link in the perfect theoretical case of a single transmitter
communicating with a single receiver without interference from other users. Naturally in
reality a viable wireless technology needs to be able to cope with demand of different users
operating in the same area. Essentially it is possible to distinguish between users both from
a time domain perspective as well as from a frequency domain perspective. Both of these
approaches have been studied specifically in the case of UWB, and these different approaches
will be discussed here.

3-4-1 Time-Hopping UWB

One method of allowing for multiple access through time domain separation of users was
already introduced by Scholtz in 1993 in [101], and is referred to as Time-Hopping UWB(TH-
UWB).

TH-UWB can essentially be used with any of the modulation techniques mentioned in
section 3-3, except for OOK. Depending on which of the modulation techniques is used the
mathematical description of the complete signal changes slightly. However, when covering the
TH-UWB scheme for just one of the modulation techniques, the method can quite easily be
extrapolated to the other modulation techniques as well. Since the original work presented
TH-UWB in combination with PPM, that is also the combination that will be presented
here. The mathematical description of the TH-UWB format with PPM is given for the kth
transmitter by [101]:

o0
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Where t(®) is the local time of the kth transmitter, and p(t) is the pulse shape that is being
transmitted. The remainder of the equation consists of a number of time shifts, which each
have a distinct function.

The first time shift is 7', where T’ is the Pulse Repetition Time (PRT) and j is the counter
for the transmitted pulses. This time-shift is constant and would result in a uniformly spaced
pulse train if it were the only time-shift occurring. It essentially divides the time axis in an
infinite number of equal-width time-slots within which a pulse will occur. The time T} is
typically a hundred to a thousand times the width of the pulse being transmitted [101].



52 Introduction to Ultra-Wideband technology

(*)

The second time shift corresponds with the term ¢, which is the pseudorandom time-
hopping code, which is distinct for each user k. This term together with 7. provides an
additional time-shift of cg-k)TC seconds to the jth transmitted pulse of the kth user. The main
purpose of the pseudorandom time-hopping code is that it reduces the likeliness that different
users consistently send pulses at the same time, because each user will be allocated a new
pseudorandom time shift each frame duration.

Finally the actual data is encoded in the term d[(f/)Ns} which together with the time-shift

0 provides the final time-shift of the signal of (5dEj].€/)N§] seconds. The subscript [j/N;] is
used to indicate that a single bit is not per definition transmitted only once, but is instead
transmitted Ny times. This is done in order to allow the system to achieve higher processing

gains (and thereby higher ranges).

What is noteworthy about this technique is its inherent smoothing of the frequency response
of the transmitted signal [101, 110]. If an Impulse Radio (IR) based UWB signal transmits
pulses with a relatively constant Pulse Repeat Frequency (PRF) this will result in spikes
occurring at integer multiples of the PRF in the frequency domain. This will make it hard for
an UWB system to remain within the legal spectral mask (see section 3-5 for an introduction
into these spectral masks). By introducing randomness into the times at which the UWB
pulses are transmitted (both through the pseudo-random time hopping, as well as through
the PPM modulation technique in the example given in equation 3-16) these spikes in the
frequency domain are smoothed out, which is a desirable property. This is also the reason why
the authors originally proposed the TH-UWB method in combination with PPM modulation
[101, 110].

3-4-2 Direct Sequence Spread Spectrum Ultra Wideband

The alternative multiple access scheme in time domain is called Direct Sequence Spread
Spectrum UWB (DSSS-UWB), and was also one of the technologies that the IEEE considered
as a potential candidate for the standard UWB PHY layer. In this technique each user k£ has
assigned a spreading signal ¢(t) which can be described mathematically as [83]:

(e}

B0y = 3 Ppr, (¢ - 1) (3-17)

j=—o0

Where c? is a periodic sequence of elements from {+1,-1} and Pr,(t) is a pulse with time
duration 7T,.. The signal that the kth user wishes to transmit is indicated as:

sB(E®) = N dMpr (™ - 1) (3-18)

j=—o0

Where dg.k) is again the jth transmitted bit of the kth user, pr(t) is a pulse with time 7. The
duration T >> T..

Finally, the two time signals are multiplied to produce the final transmitted signal of user
k. In other words:

B (1 Ry = k) (k) . g(k) (4(R) (3-19)
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Note that in this description two pulses are multiplied with each other in time domain.
Other implementations of DSSS-UWB consider only the case where the original signal is
multiplied with fixed values of {41,-1}, rather than multiplying it with a second pulse of time
T.. The implementation presented here is more general and can be reduced to the fixed value
implementation presented in [13, 114] by choosing as the pulse shape for the spreading signal
(pr.) the unit step function.

A big difference between DS-UWB and TH-UWRB is thus that in the case of DSSS-UWB
each user k is continuously transmitting a signal. The multiple access is provided by the
fact that each user modulates their signal with a spreading sequence, which can later be
demodulated at the receiver again for every user k. For TH-UWB each user only sends a
signal for a small portion of the time, and the receiver can therefore distinguish between
different users by checking the time at which a specific user is supposed to send their signal.

3-4-3 Multi-band Ultra Wideband

Rather than directly modulating data and multiple access through manipulating data in time
domain, another approach is to modulate data and multiple access in the frequency domain,
which is what the multi-band UWB approach is aimed at.

One specific popular multi-band approach is the Multi-Band Orthogonal Frequency Division
Multiplexing (MB-OFDM) UWB scheme, proposed by Batra et al. in 2003 in [11]. This is the
alternative proposal to DSSS-UWB that was considered to become a standard UWB PHY
layer for the IEEE task group 802.15.3a.

In Batra’s proposal the available spectrum of UWB is divided into subbands with a band-
width of 528 MHz each. The subbands are non-overlapping (hence “orthogonal”) and therefore
allow theoretically for information to be simultaneously transmitted on each of the subbands
without mutual interference. In the proposal, within each subband information is encoded
using QPSK modulation. Different users are assigned a subband on which they can transmit
information.

3-5 Ultra-Wideband Regulations

Now that an understanding has been formed of how UWB works in theory, it is good to
look at the more practical aspects of using UWB technology, and part of these practical
considerations is looking at the regulations that hold for using UWB, since those must be
adhered to in order to legally use the technology.

As mentioned in section 3-1, the U.S. based FCC was the first to take initiative into al-
locating legal RF bandwidth for commercial UWB use in April 2002 with the release of its
First Report and Order (FRO) [30]. The report not only has significance in the U.S., but also
globally, since its outcomes have influenced also the legislation in other areas of the world,
and also because many of the research articles abide by the rules imposed by the FCC.

One of the important results of the report is that it finally formalized what type of EM
waves are considered UWB, such that debates regarding this issue are henceforth easily solved
by using the formal definition. Taking into accounts the comments of the industry, the FCC
finally settled on the following definition for UWB. For a signal to be considered UWB, it
must have either:

e A fractional bandwidth greater than 0.2.
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¢ A total bandwidth larger than 500 MHz.

In this case the bandwidth of the signal should be measured at the -10 dB point [30]. The
fractional bandwidth mentioned above is defined as 2(f, — fi)/(fn + f1), where f; and f; are
respectively the upper and lower frequency emission point at the -10 dB point. Furthermore
it also defines the center frequence as being (f, + f;)/2, or equivalently the average value
between the upper and lower frequency points. The definition of UWB as mentioned above
has as a result that "UWB systems with a center frequency greater than 2.5 GHz need to
have a —10 dB bandwidth of at least 500 megahertz while UWB systems operating with a
center frequency below 2.5 GHz need to have a fractional bandwidth of at least 0.20” [30, p.15].

Apart from formally defining UWB, the FCC also set out in its FRO to define the maximum
allowable Effective Isotropic Radiated Power (EIRP) per unit of frequency that UWB devices
will be allowed to emit, which is referred to as a spectral mask. The regulations are quite
elaborate and also change depending on the type and purpose of an UWB device. For example,
a ground penetrating radar system is expected to cause less interference with other devices
because most of the radiated power should go into the ground, therefore these systems have
slightly less stringent radiation limits than for example communication devices [30].

Most notable is the limit of -41.3 dBm/MHz EIRP for the frequency ranges from 3.1-10.6
GHz. This is also the limit that is most often noted in the literature on UWB (for example
in [33, 86, 90]). The reason for this value often being named, despite the fact that the FRO
names many more limits depending on the device and frequency range, is probably because
this limit occurs for the largest range of frequencies, and because it is the same for most of
the different devices and use cases mentioned in the FRO [30]. Interestingly enough, the -41.3
dBm/MHz limit is the same limit set by the FCC to unintentional EM radiators like hair
dryers and laptops [36].

As an example, the full spectral mask as reported in the FRO for handheld UWB devices
that are not restricted to a specific location is given in table 3-1. These are the most stringent
requirements imposed by the FRO due to this category of devices causing the greatest concerns
regarding their interference to other devices [30].

Table 3-1: Radiation spectral mask as specified by the FCC for handheld UWB devices [30]

Frequency range [GHz] | EIRP [dBm/MHz]
0.96 - 1.61 -75.3
1.61-1.9 -63.3
1.9-31 -61.3
3.1-10.6 -41.3
Above 10.6 -61.3

The spectral mask notably only allows a very low amount of radiated power for UWB
uses, as is obvious from table 3-1. The limit of -41.3 dBm/MHz corresponds to a limit of
75 nW/MHz of EIRP. When integrating this amount over the entire bandwidth of 3.1 to
10.6 GHz this corresponds to a maximum integrated EIRP of 0.56 mW, which is very low.
However, despite this low admissible power there is still potential for UWB, because it is the
first time such a large amount of bandwidth was made freely available.
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Other regions of the world caught on to the potential of UWB and also decided to investi-
gate into UWB regulations. In Europe, the main bodies involved with the regulations are
the European Commission (EC), the European Conference of Postal and Telecommunica-
tions Administrations (CEPT), the Electronic Communications Committee (ECC) and the
European Telecommunications Standards Institute (ETSI).

The CEPT is today comprised of regulatory administrations of 48 countries that work
in a cooperative way in the field of radio spectrum usage, telecommunications, etc. They
often provide the technical knowledge required for the ECC and EC to establish regulations
and legislation [29]. The ECC ”brings together 48 countries to develop common policies and
non-binding requlations in electronic communications and related applications for Europe...”
[29]. The EC can perform similar tasks, but their decisions are legally binding under EU law
[29]. Finally, ETSI is a European standards organization that describes standards regarding
Information and Communications Technologies (ICT) related topics [29].

On 18 February 2004 the EC issued its first mandate to the CEPT, after which the CEPT
was tasked to investigate the possibilities for harmonized introduction of UWB radio into the
European Union. Following CEPT’s results, the ECC made a decision on the 24th of March
2006 where they presented technical requirements for UWB devices operating in bands below
10.6 GHz. Following ECC’s decision and CEPT’s work, the EC published its first decision
regarding UWB use on the 21st of February 2007 [26]. In this decision they specify an
UWRB spectral mask similar to the FCC’s spectral mask. This decision was later amended by
publications on the 21st of April 2009, and again on the 7th of October 2014 [27].

Noteworthy of the original decision by the EC is the definition of UWB according to EC,
which is significantly different than the definition issued by the FCC. According to the EC,
ultra-wideband technology is “equipment incorporating, as an integral part or as an acces-
sory, technology for short-range radiocommunication, involving the intentional generation
and transmission of radio-frequency energy that spreads over a frequency range wider than 50
MHz...” [26]. Whereas according to the FCC a signal must have a minimum bandwidth of
500 MHz or a fractional bandwidth higher than 0.2 in order to be considered an UWB signal,
the EC already considers it an UWB signal if its bandwidth exceeds 50 MHz. This clearly
allows many more radio signals to apply to the UWB regulation than is the case for the FCC
legislation. Clearly this is for the industry advantageous because it gives more freedom in
design compared to if the FCC definition were to apply

However, whilst the definition of UWB allows for more freedom under EC legislation, the
opposite is true for the allowable EIRP. Although similar regulations are published by the
EC, the EIRP limits are more stringent than the FCC regulations.

The EC allows somewhat less stringent spectral masks if the UWB products are using Detect
and Avoid (DAA) an/or Low Duty Cycle (LDC) techniques. DAA is “a active mitigation
technique for the protection of sensitive potential victim systems in the vicinity of the UWB
device based on a sensing approach including an active reduction of the interference potential
if required” [28, p.30]. LDC is “a limitation to activity of a transmitter within certain time
and power boundaries” [28, p.30].

The most recent spectral mask, as published in [27], is given in table 3-2 for generic UWB
usage. For an easy comparison between FCC and EC regulations, the two spectral masks are
compared directly in figure 3-4.

It quickly becomes apparent from comparing the spectral masks of the EC in table 3-2 to
the FCC spectral mask in table 3-1 that the EC spectral mask is a bit more complicated than
the one proposed by the FCC. Another observation of note is that the spectral mask proposed
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Table 3-2: Radiation spectral mask as specified by the EC for generic UWB devices [27]

Frequency range [GHz] | Maximum mean EIRP [dBm/MHz| | Maximum peak EIRP [dBm/50MHz|
<1.6 -90 -50

1.6 - 2.7 -85 -45
2.7-3.1 -70 -36
3.1-34 -70 or -41.3 using LDC or DAA -36 or 0
3.4-3.8 -80 or -41.3 using LDC or DAA -40 or 0
3.8-4.8 -70 or -41.3 using LDC or DAA -30 or 0
48-6 -70 -30

6 -85 -41.3 0
8.5-9 -65 or -41.3 using DAA -25 0r 0
9-10.6 -65 -25
>10.6 -85 -45

FCC limit
EC limit
— — — EC limit with DAA

EIRP limit [dBm/MHz]

‘90 L 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12
Frequency [GHz]

Figure 3-4: EIRP limits for UWB devices according to FCC and EC regulations

by the EC is at best equally lenient as the one proposed by the FCC, and in the other cases
the EC spectral mask is more stringent.

Also in the EC spectral mask the limit EIRP of -41.3 dBm/MHz occurs. However, except
for the band of 6-8.5 GHz, the EC imposes additional requirements on UWB systems in order
to be allowed to radiate -41.3 dBm/MHz. These requirements are that the UWB systems
must use DAA and/or LDC techniques. In comparison, the FCC legislation does not require
either of these techniques for an UWB device to be allowed to radiate an EIRP of -41.3
dBm/MHz in the band from 3.1 - 10.6 GHz.



Chapter 4

Uses of Ultra-Wideband Technology in
the Literature

We know that theoretically, UWB has numerous advantages associated with it. In order to
see if these theoretical understandings are also translated into practice, a review of how UWB
has been used in the past literature is given in this chapter. This can give us a benchmark
for the results obtained in this thesis.

There are essentially three main areas of use for UWB. These areas are localization, radar,
and communication. The areas that are most important within the scope of this thesis are
localization and communication. This means that the radar capabilities of UWB are less
interesting for this thesis. The reasons why that is are given in section 4-1. This leaves
the areas of localization and communication, which are discussed in sections 4-2 and 4-3
respectively.

4-1 Localization Compared to Radar

In order to analyze the difference between the localization and radar applications of UWB, it
is first important to gain an understanding of what the distinction between them actually is.
The distinction made in this work is whether the specific method that is employed to localize
a target requires cooperation from the target to be localized (in which case it is considered
a localization technology) or not (in which case it is considered a radar technology). In
this case cooperation means that the target to be localized is essentially aware that it is
being localized, and therefore can participate in the protocol used to determine its location.
Contrarily in radar applications the target is often passive and does not participate in the
protocol. It simply reflects EM waves which can then be used to determine its location.

The area of radar technology is actually one of the first areas where UWB found a practical
use [85]. The first uses of the technology were mostly military due to the Low Probability
and Detect (LPD) characteristics of UWB technology. [35] However, since some years UWB
radar has also proven to be useful for non-military purposes.

Many of the same advantages that UWB has in the context of localization hold also in the
context of radar. An example of especially the UWB frequency content up to 4 GHz is its
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ability to penetrate through most non-metallic materials, including many materials used in
construction, such as wood, concrete, plastic, rock, etc. [58, 97]. This gives it the ability to
detect the presence of objects or people even inside of buildings. Other advantages include
UWB radar’s fine range resolution, its fine angular resolution, its ability to detect stationary
targets and previously considered stealth targets, its ability to operate under all weather
conditions, and its power efficiency [34, 35, 45]. These advantages can be attributed to the
high bandwidth of UWB signals, and their narrow spacing in time.

The favorable material penetration properties of UWB are often exploited in radar
applications. For example researchers Sachs et al. report having designed an UWB radar
capable of detecting people trapped in rubble [97]. This could be important in search and
rescue scenarios where people may be trapped in rubble after for example the event of an
earthquake. Researchers Kocur et al. report having designed a handheld UWB radar capable
of detecting moving targets through 30 cm thick walls with errors less than a meter [58].
Finally, an entirely different application is reported by Klemm et al. where they use UWB
radar for breast cancer detection [56, 57].

It is clear that UWB radar is an interesting topic of research and also shows promising results
for different uses. It is still however decided to not pursue this particular use of UWB for the
application in this thesis for several reasons.

In the case of localization, the methods required to interpret the signals being propagated
back from a target are often much less computationally intensive than those required in the
case of radar. The response signal can often be identified using relatively simple procedures,
such as threshold and energy detectors, or signal correlation techniques [35]. This is because
the signal shape is known a priori due to the fact that this is carefully controlled by the
transmitters. In the case of radar, where the response signal is a reflected version of the
transmitted signal, the shape of the signal is often unknown, because it is altered as it reflects
off of the target [46]. For this reason, often many more steps are required to interpret the
signals in radar applications. For example, in [58] an UWB radar algorithm takes four different
steps (background subtraction, target detection, TOA estimation, wall effect compensation)
before it can finally get to the localization part of the algorithm.

Many of the UWB radar applications seek to exploit the material penetrating properties of
UWRB [58, 68, 79, 97]. This can be a desirable property of radar, as it means that it is even
possible to detect targets inside buildings. When considering material penetration, however,
it becomes very important that the antennas have a low cut-off frequency [97]. This in turn
imposes restrictions on the minimum size of the antenna, often resulting in antenna arrays
that will be too large for applications on pocket drones. The localization focused papers
instead seek to exploit the fine temporal resolution of the UWB signal, which is best utilized
at the higher frequencies. Consequently, these solutions impose less severe restrictions on
the minimum antenna size, resulting in smaller antennas that are even applicable on pocket
drones.

Another difference between radar and localization is that in radar applications the radar will
only be aware of the fact that there is a target, and potentially be aware of some geometrical
properties of the target. In the case of localization UWB transceivers can not only determine
range between one another, but can simultaneously exchange data as well [35, 47]. Within
the requirements imposed by the performance of the system (such as required update rate)
the UWB localization systems are free to exchange other data than the data required for
localization [47]. This is essential for what this thesis aims to achieve, since range information
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alone is not enough to determine relative locations of other agents in the swarm.
It is for these reasons that this thesis will explore the area of localization rather than the
area of radar, despite their apparent similarities.

4-2 Ultra-Wideband for Localization

One of the main problems of ranging and localization using any type of EM waves is that the
technique generally suffers from multipath errors. These errors occur due to the fact that the
EM waves bounce off of walls, furniture, etc., causing the receiving end to receive the same
signal multiple times at different time delays. Traditionally these multipaths are difficult to
separate from the direct path, causing erroneous estimation of the range between transmitter
and receiver. Fortunately, as demonstrated in chapter 3, UWB’s high temporal resolution
(caused by the narrow width of an UWB signal in time) naturally provides robustness against
the multipath problem.

The advantages of UWB spurred the scientific community to research its potential for
localization applications. A lot of research regarding this subject involves the usage of UWB
beacons with known positions to aid in the localization of an agent in the environment through
a process called triangulation. These types of systems along with how they work are assumed
background knowledge throughout this chapter. If terms such as Time of Arrival (TOA),
Time Difference of Arrival (TDOA), or Two Way Ranging (TWR) sound unfamiliar, the
interested reader is referred to chapter 5 and 6 for an introduction into these concepts and
triangulation in general.

4-2-1 Early Research on UWB localization

Some early research done on UWB localization is done by Lee and Scholtz in 2002 [65].
They examine specifically the ranging capabilities of UWB signals in a dense multipath en-
vironment. The researchers perform ranging measurements for a variety of scenarios using a
Generalized-Maximum Likelihood (GML) estimation algorithm in a TWR scheme to reduce
clock offset errors. The easiest scenario that was examined by Lee and Scholtz is one with a
clear unobstructed Line-Of-Sight (LOS) between transmitter and receiver, and with a rela-
tively short distance between the two. The researchers report a ranging error of less than 15
cm in this scenario. As the scenarios increase in difficulty the error in TOA estimation goes
up, up to about 1.2 meters maximally. One of the interesting aspects that the researchers
report is that the error in TOA estimation appears to increase as distance between transmit-
ter and receiver increase. Lee and Scholtz suggest that this could be due to the fact that the
LOS blockage becomes more complex as the distance increases.

Correal et al. did early research on UWB localization in an article published in 2003 [22].
Rather than only utilising the information that fixed UWB beacons offer for the purpose of
localizing agents in an environment, the researchers suggest also utilizing the measured range
between the agents (with unknown positions) themselves. The researchers again use a TWR
ranging scheme to obtain range estimates. It is mentioned in the paper that their relative
localization scheme achieves Root Mean Square Error (RMSE) of about 3 and 3.6 cm in x
and y directions. According to the researchers, the same data using classical multilateration
would have resulted in location RMSE of 14 and 9.8 cm in respectively the x and y direction.
This suggest a significant improvement in performance when utilizing the data available
from relative agent to agent ranging as well. The results are quite accurate, but it should be
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noted that the results are obtained using clear LOS measurements.

4-2-2 Research on Highly Accurate UWB Localization

As hardware and software improved, so did the accuracy of the UWB localization systems
presented in the literature. Gradually the UWB localization systems became capable of
producing millimeter accurate localization results. For example, researchers Zhang et al.
reported in 2006 [112] and later in 2008 [69] to have acquired mean localization errors of 1.49,
2.61 in 1D and 2D respectively. In 3D the authors reported an accuracy of 3.32 mm in their
article from 2006, and an accuracy of 2.45 mm in their article from 2008.

The researchers combine Received Signal Strength (RSS) methods with first peak detection
algorithms. They further use a TDOA method to transform the range measurements into
a location of the tracked tag. In their article the agent is transmitting information that
is received by receivers at specific reference locations. In order to get the highly accurate
results, the receivers are time synchronized amongst themselves. Furthermore, the tag and
the receivers have synchronized PRF and local oscillators. The accurate 3D result is obtained
by using 6 receiving stations to do the TDOA computation. The researchers show that
by having an over determined system (6 receivers instead of 4) the accuracy of the system
increases. Particularly for the case of 4 receiving stations with a high Position Dilution of
Precision (PDOP) value, the accuracy of the system deteriorates rapidly (a mean error of
43.3 mm is reported in the worst case scenario). This also hints towards the dependency
of the accuracy of these localization systems on position, since the PDOP value changes
depending on the base station layout and the tag position.

4-2-3 UWB Localization Applied to Indoor Navigation

Whilst some articles focus on the development of accurate UWB localization systems, other
articles focus on applying UWB localization systems in real applications. An example of
where this can be used is for indoor navigation.

Researchers Krishnan et al. look at this application of UWB systems [60]. The researchers
suggest alternatives to an UWB localization system (odometry, IR, or ultrasound based)
but note that each of these technologies have problems that make them ill suited for proper
indoor robot navigation [60]. Instead they propose an UWB system using receivers in known
locations, in combination with centrally processed TDOA computations. The receivers are
wired to a central computer in order to virtually mitigate all clock synchronization errors.
They keep the cost of the receivers low, and consequently claim that by doing so they can
easily use a lot of receivers with minimal costs. They use this to prevent problems associated
with Non Line of Sight (NLOS) conditions. By simply making sure there are enough receivers
spatially distributed the robot will at all times have LOS with enough receivers to compute its
position. Interestingly enough, the central computer communicates with the robot through
Zigbee, rather than UWB. The researchers report that this is mainly due to the unavailability
of low rate UWB Integrated Circuits (ICs) at the time of writing, but mention that they
would consider UWB also for communication when such I1Cs become available in the future.
All together the localization system keeps track of the robot with a Root Mean Squared Error
(RMSE) of less than 15 cm, and a maximum error of 25 cm across its trajectory.
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4-2-4 UWB Localization for Aerial Vehicle Applications

Most recently a lot of articles have also started to focus on applying UWB localization
systems for the use of localizing Aerial Vehicles, which is the most interesting for the
research in this thesis work. Localizing aerial vehicles introduces the difficulty of another
dimension, namely height. This is often considered a non trivial extension to just 2D
position estimation because now beacon based systems must make a trade-off between ac-
curacy in horizontal and vertical localization. The different research found is described below.

Benini et al. investigate combining UWB localization data with other sources of localization
data in order to get accurate indoor localization of an Unmanned Aerial Vehicle (UAV). [14]
Specifically, it attempts to fuse Inertial Measurement Unit (IMU) data with vision based
sensor data and UWB localization data in an EKF. The researchers use a commercially
available UWB localization system developed by UbiSense. Benini et al. mention that the
UbiSense system has an accuracy of 15 cm with a 95% confidence, which it obtains by using
two different localization methods, namely TDOA and Angle of Arrival (AOA) methods. The
localization computations are performed off-board. The researchers report that after fusing
this data with IMU and vision odometry, the accuracy is increased to 10 cm. This is not a
very large improvement yet considering the substantial additional computational complexity
of the system.

Researchers Mueller et al. attempt to accomplish a similar task in [77] when they describe
and implement an algorithm that fuses UWB localization data with rate gyroscopic and ac-
celerometer data. Mueller et al. do not use the popular TDOA method, but instead use
a TWR method to eliminate the clock synchronization errors. This therefore requires both
the agent and the reference beacons to be able to receive and transmit messages. Through a
variety of experiments (hovering, waypoint following at slow and fast speeds) the researchers
examine the localization error of the proposed methods. In horizontal direction the researchers
realize reasonable accuracy, namely approximately 5 cm mean error for the hovering exper-
iment. In vertical direction, however, the mean error is much worse, namely approximately
24.4 cm. The researchers attribute this anomaly to the orientation dependent group-delay of
an antenna [77].

In the same spirit, Tiemann et al. attempt to design and implement an indoor localization
system for UAV navigation using commercially available UWB technology [105]. They use
an interesting method of emulating GNSS signals over UWB in order to maximize compati-
bility of the localization system with many commercially available UAVs that use GNSS. The
researchers focus on achieving a high horizontal accuracy (as opposed to vertical accuracy),
and therefore also again achieve higher accuracy in the horizontal plane than in the vertical
plane. The researchers report a RMSE of less than 10 cm in the horizontal plane with a 95%
probability. In the vertical plane, the accuracy is less than 20 cm in the vertical plane with
a 95% probability.

Finally, Nguyen et al. also describe an indoor UWB UAV localization system [82]. Apart
from the often used EKF, they propose an alternative method for computing localization
data, namely using Non-Linear Regression (NLR). The advantage of the NLR is that it
does not require data from the previous localization step, like the EKF does, making the
NLR more robust in the case of loss of connection for some time. The disadvantage of
the filter, however, is that because it computes an entirely new estimate of position every
time step, and it converges only to a local optimum, it can happen that from one time
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step to the next the computed position are significantly different. This could potentially
prove dangerous for the stability of the system. The researchers observe this effect in the
estimate of the altitude, which according to them causes the computed altitude to sometimes
"flip” at some points. The researchers report a maximum RMSE in horizontal direction
of 0.162 m, and a maximum RMSE in vertical direction of 0.353 m with the EKF. For
the NLR, the maximum RMS in horizontal direction is 0.144 m, and in vertical direction
0.356 m, which is thus slightly more accurate than the EKF results in the horizontal direction.

The researchers mentioned so far in this section all use a beacon based system to perform
localization through lateration. In those systems, there are several UWB beacons present with
known coordinates. Whilst this is interesting research, it is different from using UWB as an
on-board sensor for localization. One other group of researchers is performing research that is
closer in spirit to the intended use of UWB within this thesis. Guo et al. demonstrate in [39]
a method of combining self displacement information with UWB ranging to perform relative
localization. They do, however, have an initialization phase that requires a static drone that
essentially performs the function of a beacon. They derive the methodology required to be
able to fly with all the drones simultaneously after the initialization phase, but they do not
show this experimentally. In their experiments in [39] they keep the static beacon stationary
throughout the experiment. A relative localization error within 1 meter is achieved in their
experiment with inter-UAV distances of up to 30 meters.

4-3 Ultra-Wideband as a Communication Technology

UWRB is also a capable communication technology. However, as mentioned in chapter 3, UWB
did not take off as a communication technology as rapidly as was initially expected. This is
also reflected in the literature when looking for practical uses of UWB as a communication
technology. It should be noted that technically any UWB system used for localization is also
an UWB system capable of communicating, since all of the EM based localization principles
rest on the fact that information is communicated between devices. The difference in this
consideration is that for the purpose of localization the focus is on getting low localization
erros (which means accurate timestamps on the signals). For the purpose of communication
the focus is on getting high data rates, with accurate timestamps of messages being of minimal
importance.

One of the few mentions of developed UWB communication systems was done in [35] by
Fontana, where the existence of three UWB communication devices is mentioned, named
DRACO, ORION, and AWICS. According to Fontana, DRACO uses Frequency-Division
Multiplex (FDM) in combination with Time-Division Multiple Access (TDMA) to allow com-
munication with multiple users simultaneously over several kilometers of range. ORION is a
system that uses a fixed TDMA architecture that allows long communication ranges of up to
60 km [35]. Finally, Fontana mentions AWICS, a system that again uses the TDMA archi-
tecture and which is designed for use in high multipath environments. However, according to
Fontana the ORION system was designed for the military (infantry and platoon operations)
and the AWICS system for the navy, thus neither of those systems are for commercial or
research purposes.

One good example of research performed on creating a UWB communication system is
presented by Kikkawa et al. in [54]. The researchers designed an UWB transmitter with
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integrated antennas for the purpose of high speed communication over UWB. The researchers
present a chip that is only a few millimeters in width and height. This is partially possible
because of the fact that the high frequency that was aimed for in the design (3.5 GHz center
frequency) allows for relatively small antenna lengths [54]. Using a Gaussion Monocycle Pulse
as the UWB signal of the choice, the researchers report being able to attain transmission
speeds of 1.16 Gb/s with the small UWB transmitter. The article is however dedicated to the
design of an UWB pulse transmitter, rather than showing its use in a practical application.

Most research that is in one way or another related to UWB communication is dedicated
to only parts of an UWB communication system, such as considerations regarding the signal
design for UWB communications in [92] or the design of a suitable antenna in [66]. Perhaps
in the further future UWB will take off as a communication technology as demand for high
speed wireless data exchange increases, but to date only few examples exist.
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Chapter 5

Beacon Based Localization and
Ranging

This chapter gives an introduction into beacon based Electromagnetic (EM) wave based
localization methods. These methods are essentially the alternative, more widely used way to
use wireless signals for localization purposes, compared to how this thesis uses wireless signals
for the purpose of localization. They rely on static beacons in the environment with respect
to which an agent (referred to as a “tag”) can localize itself. These methods of localization
often go hand in hand with the process of ranging as well, which is why these topics are
treated simultaneously in this chapter. However, the specific ranging method called two-way
ranging is discussed separately in chapter 6 due to its relevance to this thesis.

Beacon based navigation uses the concept of triangulation, which means that the geometric
properties of triangles are used in the determination of position [67]. Beacon based local-
ization can be further divided into lateration and angulation methods. Lateration methods
determine an agent’s position by measuring the relative distance between an agent and
several reference points. Angulation methods uses the angles between an agent and several
reference points to deduce a location. The lateration techniques are discussed in section 5-1,
and angulation is described in section 5-2. Finally, the direction in which information is
shared between beacons and tags is further explored in section 5-3.

5-1 Lateration Techniques for Localization

The first discussed lateration method uses information of the Time of Arrival (TOA) of an EM
wave at a tag. TOA methods are based on the fact that knowing the departure and arrival
time of an EM wave allows one to deduce the distance it traveled. A tag can determine its
range to a beacon using the equation R = ¢(tgr — tg). In this equation R is the computed
range, c¢ is the speed at which an EM wave propagates, and tr and tg are respectively the
time at which a tag receives a message from a beacon, and the time at which the beacon sent
that message.

Knowing the range to multiple beacons in space allows a tag to solve a set of equations
to deduce its own location. In two dimensions (2D) a tag needs a minimum of three range
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measurements to beacons to unambiguously solve for its location, and in three dimensions
(3D) a tag needs a minimum of four range measurements to beacons. Some methods however
can reduce the number of required beacons by one beacon for part of the operation, such
as done by Radovnikovich et al. in [89], by cleverly using information from previous range
measurements (in this case by deducing a tag’s velocity) in order to resolve the location
ambiguity. However, to get an initial fix on a tag, still three range measurements are necessary
in 2D and four in 3D.

Intuitively this can be understood by geometrically visualizing the situation. For reference
the situation is schematically depicted in figure 5-1 for the 2D case. In 2D, knowing your
range towards a beacon (denoted by R;) means that you can be located anywhere on a
circle of radius R around the beacon. By measuring at the same time your range towards
a seccond beacon (R2), you know now that you are also located somewhere on the circle
of radius Ry from the second beacon. The intersection of these two circles in space gives
you the possible locations where you could be located in space. If the two beacons are not
spatially identical, this gives you 2 (or in a rare case 1) possible locations where you could be
located. By measuring the range to a third spatially different beacon, one can unambiguously
determine their location at the intersection of the three circles. This is why a minimum of
three intersections are needed to unambiguously solve for a position in 2D space. A similar
reasoning can be extrapolated to determining one’s position in 3D and why it requires a
minimum of 4 range measurements.

In 3D, the equation for the range towards a beacon can be expressed as follows:

R=/(x—zr)?+ (y —yr)®> + (2 — 2R)? (5-1)
Where R is the (measured) range to a certain beacon, (zg, yr, zr) are the known Euclidean
coordinates of the beacon in 3D space, and (z,y, z) are the unknown Euclidean coordinates
of the tag in 3D space. In order to unambiguously solve for the tag’s coordinates in 3D space,
equation 5-1 must be simultaneously solved for 4 (independent) range measurements to 4
different beacons.

The considerations presented above work perfectly under the assumption that the location
of the beacons in space are perfectly known, and that the range to these beacons is measured
without error. In reality such conditions are never true. This means that in 2D, rather
than being located precisely on a circle around a beacon, a tag will be located anywhere on
an annulus around the beacon (with a width proportionate to the uncertainty in the range
measurement). The intersections of multiple of these annuli will geometrically not result in
a single point, but rather an area where the tag can be located on. This means that it won’t
be possible to exactly solve equation 5-1. Furthermore, this means that the estimation of a
tag’s position is going to be less accurate.

In order to combat some of these problems, other methods of solving equation 5-1 exist.
A number of these methods involve the construction of a cost function. This cost function
allows adding more than the minimum amount of range measurements to beacons in order to
improve the localization accuracy. Such a cost function will look similar to:

N

F(x) =) ai(Ri — /(¢ —z:)* + (y —v:)* + (= — 20)?) (5-2)

=1

where «; is a weighing factor that can be chosen to for example represent the strength of a
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Beacon 2

‘ Beacon 3

Figure 5-1: Schematic depiction of 2D trilateration process

measurement’s signal, N is the number of beacons used in the computation, ¢ is the counter
for the beacons, R; is the measured range (through TOA determination) to each beacon 4,
(x4,v;, z;) are the Euclidean coordinates of each beacon i and x = (x,y, z) are the Euclidean
coordinates of a tag that are to be estimated.

A variety of methods can be used to minimize the cost function as defined by equation
5-2, which will result in an estimate of the tag’s coordinates. Note that the cost function is
non-linear, such that a non-linear optimizer should be used to minimize the cost function.
These optimizers typically run the risk of converging to local optima, so they often require a
decent initial guess of the tag’s coordinates to converge to the global optimal solution of the
tag’s coordinates.

One of the main problems in using TOA techniques is that the clock time of the receiver
and the clock time of the transmitter must be precisely synchronized. Due to the high speed
at which EM waves propagate, an error in clock synchronization of only 1 nanosecond results
in almost 30 centimeters error in range. Especially when the tracked tag is equipped with an
inexpensive and inaccurate clock, time synchronization can be a troublesome procedure and
result in inaccuracies rapidly.
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An alternative to the TOA method is the Time Difference of Arrival (TDOA) method. Sim-
ilarly to TOA techniques, TDOA also uses EM wave propagation times to deduce locations.
However, unlike TOA, TDOA uses differences of propagation times between signals received
from distinct beacons, rather than raw the propagation times.

Much like the TOA method, the TDOA method also has a geometric interpretation. Mea-
suring the range difference between two beacons gives the receiver enough information to
determine that it must lie on a hyperboloid of constant range difference between the two
beacons. This is schematically depicted in figure 5-2.

Ri1,2

Beacon ZA

ABeacon 1
R1,3

A Beacon 3
Figure 5-2: Schematic depiction of 2D TDOA process

Just like the equation of a circle was used in the TOA case, the equation of a hyperboloid
is used in the TDOA case:

Rij= a2t (- u)P+ (-2 —\Je 2+ (=) + (-2 (53)

In this equation (3, y;, 2;) and (x5, y;, zj) represent the known coordinates of transmitter ¢ and
J, (x,y,2) are again the unknown coordinates of the receiver, and R; ; is now the difference
between the range from the receiver to transmitter ¢, and the range from the receiver to
transmitter j.

Somewhat simplistically put, the range R; ; can be calculated as

R;j = c((tr; —tsq) — (try —ts,j)) (5-4)

where tr; and tg ; are respectively the times at which the tag received a signal from beacons
i and j, and tg; and tg; are respectively the times at which the beacons i and j transmitted
that signal.

If it is assumed that the beacons have synchronized time clocks, and send their signal at
the same time, then t5; and t5; are equal, and will cancel out in equation 5-4. This will
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consequently mean that equation 5-4 depends only on the received signal times, which are
measured both by the same receiver clock. This essentially eliminates the need for time
synchronization between the beacons and the tag. This is advantageous when the beacons
are for example fixed, and perhaps even wired together. In this case it is much easier and
more accurate to synchronize the beacons, than it would be to synchronize tag and beacon.

In order to estimate a 2D location, a minimum of two TDOA measurements are needed
to find a location, instead of the minimum three TOA measurements. This is because the
intersection of two hyperboloids already gives an unambiguous intersection point. However,
since two beacons are needed for every TDOA measurement, still a minimum of three beacons
are needed to find a solution (provided one of the transmitters is used in two different TDOA
measurements). Just like for the TOA case, it is again possible to add more measurements
in combination with some optimization method to increase the localization accuracy.

A third lateration method is called Roundtrip Time-Of-Flight in [67] or Two-Way Ranging
(TWR) in some other articles [55, 62, 63]. TWR is very similar to the TOA method, with the
exception of how the EM wave propagation time is determined. In pure TOA methods the tag
and beacon must have synchronized clocks. The transmitter then sends a signal containing a
time stamp of when the signal was sent, such that the receiver can deduce from the time stamp
and the received time what the propagation time (and thus distance to target) was. TWR,
however, has two way communication between transmitter and receiver. If this technique is
used in the proper way, then there is no need for synchronization between transmitter and
receiver to deduce range. For this reason, TWR has the potential to be simpler and more
precise than simple TOA ranging, but comes at the expense of a higher channel usage per
ranging request [105]. Once the range between the tag and some beacons is determined, the
same lateration principles as used for the TOA case can be used.

TWR knows quite a few different implementations, each with their own considerations
and advantages. Because of the particular relevance of TWR to this thesis, is is treated
separately in chapter 6.

The fourth lateration method discussed here is the method of Received Signal Strength (RSS)
or Received Signal Strength Indicator (RSSI). This method directly uses the strength of a
received signal to estimate a range between tag and beacon, instead of using the information

the signal contains. If 7(t) is the signal received by a receiver antenna, the RSS is given by
[41]:

+o0o
RSS = / Ir(t) 2t (5-5)

The measured strength of the received signal needs to be mapped into a distance, so distance
d is a function of the RSS, expressed as d = f(RSS). The difficulty in RSS based localization
is finding out the mapping f : RSS — d. There are a variety of approaches to do this, both
theoretical as well as experimental [67].

The theoretical models typically try to model the strength of a signal in relation to the
distance between tag and beacon, in order to be able to directly map the RSS value to a
distance value. The downside of this is that especially in indoor environments these models
are almost never accurate enough because the constants used in the theoretical models often
change depending on the indoor environment, and because shadow fading is too unpredictable
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in the indoor environment [41].

For indoor localization using RSS methods that leaves mostly the empirical methods. These
methods require a priori information on the RSS values that will be measured in different
parts of an indoor environment. A database of this information must be collected, which is
called location fingerprinting. With the known database in place, the actual RSS values that
a tag measures with respect to multiple beacons must be compared to the values present in
the database in order to extract position information. Many algorithms of vastly ranging
complexities exist for specifically this task, such as nearest neighbour algorithms or bayesian
statistics based methods. An indepth approach to RSS based localization using statistical
location fingerprinting is given in [51]. These methods require a lot of location-specific knowl-
edge, and therefore cannot quickly be employed in a new location without performing all the
measurements for the database again.

The RSS method is very different from the other lateration methods discussed so far, and
therefore has its own unique advantages compared to the other methods discussed so far. The
main advantage of the RSS method is that it does not need any time clock synchronization
at all, neither between tag and beacon (as with TOA), nor between the beacons themselves
(as with TDOA). In fact, because it does not use any time clock in the ranging scheme
directly, it does not contain any clock drift errors whatsoever (which TWR does still suffer
from). Another advantage of RSS methods is that the performance of RSS methods is not
significantly affected by the bandwidth of the used signal [5], or the occurance of possible
undetected direct paths in the signal [41]. This is a big advantage from a practical point
of view, because it means that that many existing wireless networks, such as the existing
wifi networks present in many buildings, can be used for RSS ranging, without imposing
additional bandwidth or network architecture requirements on these networks.

The final lateration method that can be employed is the Received Signal Phase (RSP)
method. In RSP, the tag measures the received phase of a signal arriving from a beacon,
and uses that information to determine distance towards that beacon. This method
is again very similar to the TOA method, except that it does not map a signal delay
into a distance metric, but instead maps a signal phase shift into a distance metric.
Because of the similarities, the same algorithms can be used as those explained in the para-
graphs on TOA methods to translate the distances to several beacons into a location in space.

5-2 Angulation Technique for Localization

Apart from lateration method, there is also a group of localization methods that are referred
to as angulation techniques in [67], or Angle Of Arrival (AOA) techniques. These methods
do not make use of distance information, but instead use the angle at which a tag receives an
EM wave from a beacon to perform localization. In 2D, a single AOA measurement from a
beacon geometrically means that the tag is anywhere on a line going from the beacon to the
tag. This is schematically depicted in figure 5-3, where the angles to the reference beacons
are o; and a. The intersection of two of these lines already give the tag’s position.

Of course the situation is somewhat simplified here by assuming the AOA can simply be
determined. In reality retrieving the angle of an arriving EM wave is more complex than
retrieving the distance to the transmitter of the EM wave. There are however methods that
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can accomplish this, and these systems are also being used in practice. An example system
used by aircraft is the Very high frequency Omnidirectional Radio (VOR) range beacon. In
this system the transmitter is responsible for encoding the angle information into its signal.
By having a circular array of transmitting antennas, a VOR beacon uses the Doppler effect
to encode the angle into the signal. Depending on the bearing that an observer has with
respect to the VOR beacon, a different phase of the transmitted signal will be received. By
comparing the phase with a certain baseline signal that the VOR beacon also transmits, the
observer can extract a bearing. For example, a zero phase shift indicates being North of the
VOR beacon, a 90° phase shift indicates East, etc.

A method that might be more applicable to smaller drones is using two spatially dislocated
receivers that receive the same signal. One can compare the phase between the two signals
to extract a bearing (up to a flip ambiguity).

Figure 5-3: Schematic depiction of 2D angulation process

An obvious advantage of angulation techniques over lateration techniques is that it requires
one less beacon to determine a tag’s position (two are needed in 2D and three in 3D) [5].
The disadvantage of the method is that the error in localization increases proportionally to
the distance from the beacons [93], making this method most suitable for short ranges. In
comparison, the lateration methods are theoretically independent of distance (although also
the lateration methods typically have some error dependency on the range [50, 65|, because
the propagation channel of the EM waves become more complex for larger distances [65]).
Another disadvantage of angulation is that, as mentioned, measuring the AOA is more difficult
than measuring just the distance, which makes the dependency of the method on antenna
geometry bigger, potentially leading to more complex and heavy antennas [67] [4].
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5-3 Uplink, Downlink, and Hybrid Localization

All of the ranging and/or localization methods described in sections 5-1 and 5-2 require
communication between tag and beacon. So far it has mostly been assumed for the sake
of clarity that it is the beacon that is sending information, and the tag that is receiving
information. It is however also possible that the direction of information is reversed, such
that the tag is the one transmitting a signal, and the beacon is receiving this signal. The
direction in which information flows determines whether an architecture is a downlink,
uplink, or hybrid localization system.

An example of a strict downlink localization system is the well known GPS [47]. In the case
of downlink systems, the beacons (or satellites in the case of GPS) with known coordinates
are strictly transmitters. the tag that wishes to deduce its location is in this case the receiver.
The transmitters provide information to the tag in a downlink fashion, and they do not receive
any information back. The transmitters thereby only provide information, but no service [47].
It is the task of the tag to perform computations in order to deduce its own location (through
lateration or angulation methods). The advantage of such a system is that it is theoretically
scalable to serve an infinite amount of users [47], because any number of a tags can receive
the signals from the transmitters and deduce their location as long as the signal is strong
enough to be received. The disadvantage of such an architecture is that it imposes additional
requirements on the receiving a tags, because they must be capable of doing the computations
required to solve for their position.

The alternative is a strict uplink localization system. In this case the beacons are the
receivers, and the tag is the transmitter. Depending on the method, the tag will transmit
a certain message. Multiple beacons in this case will receive the signal from the tag, and
by combining the received signals in a central computer, the central computer can deduce
the tag’s position. In this case, of course, it is the central system that is aware of the tag’s
location, but the tag is still unaware of its own location. In some cases this is exactly as
desired, since some applications require only the system to be aware of a tag’s position,
without requiring the tag to be aware of its own position. However, when the tag must also
know its own position, its location should separately be communicated to the tag [91]. The
advantage of this is that the tag no longer has to perform lateration computations anymore,
this is instead done by the central computer. The disadvantage is that the capacity of the
system is limited, because it requires communication from every tag, and because the central
system must perform the computations for all the tags.

Finally it is recognized that some systems are best classified as hybrid uplink/downlink
systems. An example of these systems is those that use the TWR scheme to perform rang-
ing. In this case both the tag and the beacons must be capable of sending and receiving
information to accomplish the TWR scheme. Depending on the situation, both the tag and
a central system could perform the lateration computations to determine the location of the
tag. As mentioned, the advantage of this type of setup is that it eliminates the need for time
synchronization between a tag and beacons. The disadvantage is again the limited capacity
of such a system to serve many users.



Chapter 6

Two-Way Ranging Implementations
and Considerations

Two-way ranging (TWR) methods are very suitable for use in combination with UWB
to establish range information between drones. This is due to the fact that some TWR
algorithms focus on the suppression of ranging errors due to clock crystal drift [63], an
important property when considering that most drones won’t be equipped with heavy
and/or expensive clocks with low clock drift. As the name suggests, TWR indeed requires
both devices participating in the ranging procedure to participate in sending and receiving
information. This means that both devices (device A and device B) must be equipped with
transceivers to provide this functionality.

The communication required between two devices (device A and B) for the basic TWR algo-
rithm is schematically depicted in figure 6-1.

Device A Device B

tround treplyB

Figure 6-1: Schematic depiction of the basic TWR algorithm

In figure 6-1, t,4ynq is the complete round trip time, t,cpyp is the time that device B waits
after receiving a message from device A before sending a reply message, and ¢, is the actual
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propagation time of the signal, which is the variable of interest. Under the assumption of a
perfect clock, equation 6-1 holds.

tround = 2. 7510 + treplyB (6_1)

This equation can be rewritten to extract the parameter of interest, namely the propagation
time t,, which is expressed by equation 6-2.

1
tp = 5 (tround - treplyB) (6‘2)

In reality, however, both device A and device B will have an imperfect clock that drifts
over time. Consequently, t,ounq, Which is measured by device A will be slightly inaccurate,
and t,epiyp, Which is measured by device B, will also be slightly inaccurate. This can be
expressed by introducing the clock errors e4 and ep of device A and device B respectively.
Introducing these factors into equation 6-2 results in equation 6-3, where fp is the estimate
of the propagation time, which is affected by the clock errors.

. 1

tp = 5 (tround(l + eA) - treplyB(l + 63)) (6‘3)
By subtracting equation 6-2 from equation 6-2, and by substituting equation 6-1 for ¢,4,q4, the
following expression is found for the difference between the estimated and the real propagation

time:

R 1
tp_tp:tp'€A+§treplyB(6A_eB) (6—4)

It is typically assumed that t,cpyp >> t,, such that the main contribution in the ranging
error comes from the reply time at device B.

The dependency of the ranging error in the basic TWR method on the reply time caused
interest in the development of algorithms that are more robust against clock drift. Most
of the improved algorithms take the form of Double Sided Two Way Ranging (DS-TWR)
algorithms. This family of methods started when Rainer Hach proposed a Symmetric Double
Sided Two Way Ranging (SDS-TWR) algorithm to the IEEE ranging subcommittee in 2005
[40]. The SDS-TWR algorithm is schematically depicted in figure 6-2.

It is shown in [62] that with this TWR scheme the time of flight can be calculated according
to:

1
tp = Z ((troundA - treplyA) + (troundB - treplyB)) (6'5)

Using this calculation method, the corresponding error equation becomes:

1 1
tl’ - tp = §tl7 (eA + eB) + Z((treplyB - treplyA)(eA - eb)) (6—6)

At this point the constraint of the SDS-TWR scheme on the reply times tells us that ¢,¢py 4 is
equal to t,epyB, in which case the second term in equation 6-6 would drop out. In that case,
it is clear when comparing equation 6-6 to equation 6-4 that the error in the propagation time
is no longer dependent on the reply times. It is now only dependent on the propagation time
of the signal, which is typically much smaller than the reply time of the devices.
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Device A Device B

troundA

troundB

Figure 6-2: Schematic depiction of the SDS-TWR algorithm, adapted from [81]

Unfortunately, the assumption of equal reply times between devices A and B does not
always hold, or is otherwise impractical from an operational point of view. It would be much
more convenient if both sides were free to choose a reply time. It is shown by Neirynck et
al. in [81] that this can actually be accomplished with exactly the same messages as for the
SDS-TWR scheme shown in figure 6-2, only now without imposing any requirements on the
reply times of the two devices. This method is therefore simply called Double Sided TWR
(DS-TWR) since no symmetry properties are used.

The only change that needs to be made for DS-TWR to work is that rather than using
equation 6-5 to compute the time of flight, one of the following expressions should be used:

troundAtroundB — t'replyAtreplyB (6—7)
2(trounclA + treplyA)

_ troundAtroundB — treplyAtreplyB

N 2(troundB + treplyB)
troundAtroundB — treplyAtreplyB

 troundA + trepiyA + troundB + trepiyB

t, =

It is shown in [81] that when using either the first or the second expression to calculate the
TOF, the error equation reduces to:

tp —tp = eatp (6-8)
For the first equation, and to:
ty —t, = eyt (6-9)

For the second equation.
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These error equations are independent of the reply times of either device A or device B,
regardless of whether these reply times are equal or not, which is a big advantage. The
disadvantage of this method is that it relies on several multiplications and divisions to
compute the TOF. These might be expensive operations on some microprocessors, increasing
the computation time required to run this algorithm. This is however considered a small
cost to pay for favorable algorithm properties, which is why this specific TWR algorithm is
used within this thesis.

There are however yet other implementations of TWR with each their own unique properties.
Kwak and Chong suggest in [62] a potentially even better TWR algorithm, which they call
Double Two-way Ranging (D-TWR). Their proposed algorithm is schematically depicted in
figure 6-3.

Device A Device B

troundAl

Figure 6-3: Schematic depiction of the D-TWR algorithm, adapted from [62]

Using this communication scheme, it is shown in [62] that the TOF can be computed using;:

1

tp = troundA2 — §troundA1 (6'10)

With this method the error equation becomes [62]:

tp—tp=tp-ea (6-11)

Which is the same as the error obtained by using the method presented by Neirynck et al. [81].

Baba and Matia further expand on the concept of sending multiple request messages at once
in [7], where they introduce a method that they call Burst Mode Symmetric Double Sided Two
Way Ranging (BM-SDS-TWR). This method uses even more than two consecutive request
packages at once, in fact it leaves the amount of consecutive request packages variable, so n
request messages at once. The schematic depiction of the BM-SDS-TWR algorithm is given
in figure 6-4.

For this algorithm, they derive the following range error equation:
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Figure 6-4: Schematic depiction of the BM-SDS-TWR algorithm, adapted from [7]

n
tp —tp = an Z {2(ea +eB)- tp + (ea —eB) (TreplyBi - TreplyAi>} + AR (6-12)
i=1
where in this case AR indicates the clock resolution error, which was not considered in the
previous discussions, and ¢ is the counter for the messages being sent.

Notice how for a single request message being sent at a time, thus for n equal to 1, and
without considerig the clock resolution error, equation 6-12 reduces to equation 6-6, which is
exactly as expected, given that the BM-SDS-TWR algorithm is just an extension to the SDS-
TWR algorithm where multiple messages are sent consecutively. Just like for the SDS-TWR
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algorithm, if the reply times of device A and B are the same for every request message i, the
range error becomes only dependent on the propagation time of the signal, which is typically
very small. The authors show in [7] that in fact this formulation of the algorithm causes the
error to decrease as m increases.

At first sight it seems that increasing the number of messages n will also have an adverse
effect, namely that it will take longer to get a single ranging measurement. However,
Kim illustrates in [55] that this is not necessarily the case. This becomes apparent when
considering the implementation of these algorithms in a real ranging system. Sometimes it
might be necessary in reality to iterate the ranging algorithms multiple times in order to
get a stable ranging result. [55] Whilst it is necessary in the case of SDS-TWR to repeat
the entire ranging procedure when an iteration of the ranging algorithm is performed, the
BM-SDS-TWR algorithm can achieve such an iteration by simply adding another message to
the sequence. This means that especially in the case where many iterations of the algorithm
are necessary to get a stable ranging result (such as in the case of severe signal interference)
the BM-SDS-TWR actually uses less messages to get the stable ranging result, thus has the
potential to reduce ranging time.

In this thesis, it has been decided to use DS-TWR, represented by equation 6-7 as the TWR
method of choice. This choice has been made due to the favorable properties of an asymmet-
rical TWR algorithm. Especially when more than two devices are involved in the ranging
algorithm, the asymmetrical properties can be exploited to efficiently range with multiple
modules, without having to worry about keeping equal reply times.
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Chapter 7

Ranging Experiments with Ultra
Wideband

It is important to verify the ranging performance of the UWB modules used in this thesis.
For this purpose an experiment was conducted, which will be described in this chapter.

7-1 Hardware Used in Ranging Experiment

The first thing that was needed for this experiment were a pair of UWB transceivers. For this
thesis it was decided to use the DWM1000 UWB module by Decawave.! These modules were
chosen for a number of reasons. First and foremost is the fact that these modules are relatively
easy to use. The DWM1000 module is a package that already has an integrated circuit,
UWB antenna, power management, and clock control in a single product. This therefore
allows transferring some of the low level details of managing complex UWB interactions to
the module, but it still allows for a good amount of customization options. A second reason is
the fact that the DWM1000 is designed for real time localization applications in mind, which
corresponds with the primary use case that this thesis explores.

Decawave themselves report that the DWM1000 is capable of locating objects to a precision
of 10 centimeters indoors [25]. They are not very precise however as to how this value is
obtained and what kind of error representation is used. For this reason it was necessary to
also perform tests on the chips to find out what the real precision is, starting with the pure
ranging performance of the modules.

The decawave module still needs to be controlled by an external controller that programs its
registers, sends it commands, and interprets its data outputs. This function was performed
by an Arduino Pro Mini 3.3V with an ATmega328 microcontroller running at 8 MHz. In
order to connect the Arduino’s with the DWM1000 modules, specialized breakout boards were
purchased that are specifically designed to connect an Arduino Pro Mini with a DWM1000.%3

The code used to control the Decawave is adapted from an open source arduino library that

"https://www.decawave . com/products/dwm1000-module
2https://www.localino.net/
3h‘c‘l:ps ://sites.google.com/site/wayneholder/uwb-ranging-with-the-decawave-dwm1000---part-ii
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is written to control the DWM1000 with an arduino.* It already contains build in functions
that configure the DWM1000 by programming its registers, and contains examples on how to
perform ranging measurements with the library.

7-2 Antenna Delay Calibration

One important parameter that the DWM1000 internally takes into account is the antenna
delay. In order to precisely determine the time of flight, it is necessary that only the time
that the Electromagnetic (EM) wave travels through the air is recorded. Unfortunately there
is a delay between when the DWM1000 commands a signal to be sent, and when the signal
finally leaves the antenna and propagates through the air. This delay is called the antenna
delay. Since the antenna delay would cause erroneous calculations of the time of flight,
the DWM1000 internally takes it into account. When the DWM1000 sends a message, the
antenna delay is added to the recorded timestamp to represent the actual time at which the
EM wave left the antenna. When the DWM1000 receives a message, the antenna delay is
subtracted from the timestamp to represent the actual time at which the EM wave arrived
at the antenna.

Unfortunately these antenna delays are not the same for different antennas. The effect of
this different antenna delay is non-negligible, because an error in the antenna delay as small
as 1 nanosecond corresponds with a ranging error of approximately 30 cm due to the fact
that it scales with the speed of EM waves. For this reason this antenna delay value must be
calibrated.

In the experiments the antenna delay value was calibrated at a distance of 1 meter. A pair
of DWM1000 modules were placed carefully at 1 meter distance, and ranging measurements
were collected over a period of time. The mean range that the TWR protocol determined was
compared to the true value of 1 meter. The error was calculated, and the correct antenna
delay was computed by calculating how much the antenna delay must be changed to correct
for the determined error. Figure 7-1 shows the calibration procedure being executed.

It should be noted that Decawave recommends a calibration distance of 5 meters for the
DWM1000 modules with the settings that were used during the experiment. This distance
is likely chosen as it represents an intermediate position between short range and long range
measurements, and calibration at such a distance would intuitively result on average in better
performance over a larger set of distances. A calibration distance of 1 meter was instead
chosen for practical reasons, due to the fact that calibration was easier with both DWM1000
modules hooked up to a laptop. The experimental results presented in section 7-4-2 later
on show that the effect of this decision is rather small. The reason for this is that the error
changes depending on distance and orientation of the antenna. It will therefore be difficult to
get a consistent value for the antenna delay regardless of the distance at which the calibration
has taken place. Perhaps a better future alternative would be to collect range data over a
variety of distances, and optimizing the antenna delay to get a minimum error over all those
distances.

“https://github.com/thotro/arduino-dwi000
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Figure 7-1: Calibrating antenna delays for two UWB modules at 1 meter distance

7-3 Experiment Execution

The idea behind the experiment is to put the UWB modules at a known distance from
each other, and to subsequently instruct the UWB modules to perform range measurements
between themselves over a 30 second time frame. By choosing a sufficiently long time
interval, a large number of ranging samples can be collected. This will allow statistical
analyses to be performed on the ranging measurements. Because the true distance between
the UWB modules is known, the range determined by the UWB modules can be compared
to the true range between them.

The UWB modules were mounted onto a tripod as is depicted in figure 7-2a. There are several
reasons for using a tripod. First of all the tripod made sure that the UWB modules were
lifted off the ground. This is beneficial because the antennas might behave differently close
to the ground due to reflections that can occur from the ground. The lifted position more
closely represents the eventual scenario where the UWB modules are attached to drones.

Another reason for attaching the UWB modules to a tripod is that this allowed the UWB
modules to be fixed in a certain position during the test. This will make sure that the range
measurements are only minimally influenced by the UWB antenna being perturbed and
allowed for a constant orientation of the two antennas with respect to each other.

The ranging experiment was conducted in a MCS environment. Within this MCS environment
it is possible to determine the location and orientation of objects with millimeter and sub-
degree accuracy. This is made possible by an overhead system of IR cameras. By attaching
reflective markers onto objects of interest, these IR cameras are able to keep track of specific
objects. The different measurements of the same object by multiple cameras allow accurate
determination of the location and orientation of the object.

The actual range experiment was conducted for measurement ranges of 50, 100, 150, 250,
500, and 750 centimeters. These measurement distances were marked on the ground with tape
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(a) Depiction of tripod (b) Depiction of reflective stickers

Figure 7-2: Tripod setup used in the experiment

to aid in the initial positioning of the tripods. The actual distances that the tripods are apart
will however be read using the MCS with accuracy less than a centimeter. The experiment
was repeated with two different pairs of DWM1000 modules to also test differences between
modules. Both pairs were calibrated at a 1 meter distance according to the method described
in section 7-2.

Finally, in order to capture the effects of antenna orientation, for one of the DWM1000
pairs, the experiment was conducted at 0, 45, and 90 degree antenna orientations (where one
of the antennas was rotated about the yawing axis by that amount). This will give insight
into the ranging performance when the two antennas are not perfectly facing one another.

7-4 Ranging Experiment Results

With the ranging set-up complete, the results of the experiment were collected. The results
have been processed and will be presented in this section.

7-4-1 Raw ranging data

As mentioned, the experiment consisted of collecting range measurements over a time frame
of 30 seconds. To give an idea of how the raw range measurements look, a plot of all the
collected range samples in one of the experimental conditions is presented in figure 7-3.

It is quite clear just by looking at figure 7-3 by eye that the mean value of the data is above
the true value. It is however also true that the range measurements lie within a relatively
small interval, which is favorable. The minimum and maximum measured ranges over the
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Figure 7-3: Raw range measurement data for measurement distance of 1 meters

whole thirty second interval are 0.94 and 1.14 meters respectively, a difference of only 20 cm.

7-4-2 Processed Range Error Results and Discussion

Raw range measurement data is available for all these experimental conditions similar to that
presented in figure 7-3. For all these conditions the raw range measurements are processed
and presented in a more suitable format. First the range measurements for two different
DWM1000 modules will be compared, and afterwards the range measurements for varying
antenna orientations will be compared.

An interesting parameter to first of all look at is the mean range that the UWB modules
measure over the 30 second time window, and comparing that to the ground truth value of
the range. Ideally the mean measured range and the ground truth should correspond exactly,
but in reality there will be a difference between the two. In order to compare these values for
all the experimental conditions, a bar chart of the error between the mean measured range
and ground truth range for the two different DWM1000’s is given in figure 7-4.

Figure 7-4 shows that the mean errors between different pairs of modules have low
correlation with each other. The overall performance of the two is however quite similar. The
maximum absolute mean error for the first module pair is 10.1 cm, the maximum absolute
mean error for the second module is 8.1 cm. The minimum absolute mean error for the first
module pair is 0.4 cm, and for the second pair it is 0.6 cm. On average the first module pair
has a mean absolute error of 4.3 cm, and the second module pair has a mean absolute error
of 4.4 cm over the six measured ranges. The overall performance of the two module pairs is
therefore very comparable.
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Figure 7-4: Bar chart comparing mean measured ranges to ground truth ranges

Another important parameter to look at is the standard deviation of the collected range data.
A similar bar chart, but this time of the standard deviation is given in figure 7-5.

The standard deviations between the two pairs of modules are much more similar than the
mean errors presented earlier. The clear exception is the standard deviation of the second
module pair measured at 750 cm range. For this particular measurement the standard devia-
tion is much greater than the standard deviations in any of the other conditions. This is quite
an unexpected result, especially because the standard deviations in all the other conditions
are all very similar (ranging from about 1.5-3 cm).

One possible explanation is that for that particular experimental condition there was a
specific multipath profile that was difficult for the algorithm within the DWM1000 modules
to identify. This could consequently result in the DWM1000 incorrectly identifying the first
arriving path of the received signal, which is necessary to perform Time of Flight (TOF)
measurements. Instead it might have identified one of the multipath reflections as the first
arriving path, which would cause the determined range to increase (since multipaths take
longer to arrive than the direct paths). This is supported by inspecting the raw data of that
specific experimental condition, which shows that there are a large number of spikes in the
data going towards higher determined ranges.

Other variables that could have influenced the result is the fact that it was the last experi-
ment, and that the tripod had been moved about several times before. Some of the equipment
may have come loose, resulting in less stable ranging performance. Furthermore, the exper-
iment was conducted in an area with lots of electromechanical equipment. Other equipment
may have radiated EM energy in the UWB frequency range during the final test, which could
have resulted in poorer performance.
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Figure 7-5: Bar chart comparing standard deviations of two DWM1000 pairs

Apart from this one experimental condition the standard deviations of the range mea-
surements are mostly around 2 cm. This is a good result, especially considering that the
standard deviation does not necessarily increase as measurement distance increases. The
same can be said for the mean errors in figure 7-4, which also do not necessarily increase
with increasing range. This means that the modules can provide good performance at lower
and higher ranges, making it a versatile piece of hardware.

Now that the ranging data of the two DWM1000 module pairs has been presented, the effect
of changing antenna orientation (about the yaw axis) will be analyzed. Just like before, the
mean ranging error and its standard deviation are presented in figures 7-6 and 7-7.

It can clearly be seen that the antenna orientation has an effect on the ranging performance at
different individual measurement distances, but overall the performance between the different
orientations is very similar. All orientations have maximum absolute errors of around 10 cm,
and minimum absolute errors of less than 3 cm. On average, the 0, 45, and 90 degree
orientations have absolute errors of 4.3, 5.7, and 6.3 cm. The trends in the error appear to be
relatively similar between the different antenna orientations as well. The maximum negative
error is obtained at a distance of 50 cm, the error then increases as the measurement distance
increases to 250 cm, then decreases again for 500 cm, and increases a little bit again towards
750 cm.

The standard deviations across all the different antenna orientations and measurement
distances is very similar. All standard deviations lie between 1.2 and 3.7 cm, with average
standard deviations around 2 cm. This time there is no observation of a single experimental
condition showing much higher standard deviations like the one observed in figure 7-5.

Regardless of the antenna orientation the mean absolute error stays below 12 cm. When
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the modules are equipped to drones, it is important that the errors stay reasonably low even
with changing orientations. We do however see that in the leader follower flight experiments
presented in part I of the thesis that in this case we do observe larger errors. Of course
in the actual leader-follower flight the UWB modules are constantly moving and changing
orientation, making the ranging more difficult.

7-4-3 Normality of Ranging Data and Error Bounds

It is ultimately desirable for the errors between measured range and true range to be normally
distributed. This can be useful for example when using these measured ranges in filters like
the Kalman filter that make use of the assumption of normally distributed errors.

In order to test for normality, two well known tests will be applied to the data, namely
the Kolmogorov Smirnov (K-S) test, and the Shapiro Wilk (S-W) test. Both these tests
allow the comparison of sample data with the (nul-)hypothesis that the sample is drawn from
a normal distribution. Unfortunately both tests show that none of the samples from the
different experimental conditions are normally distributed.

Finally, the 95% worst case error is determined for the experimental conditions that
compared the two different DWM1000 module pairs. The resulting error bounds are
displayed in figure 7-8.

60
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Figure 7-8: 95% confidence worst case error for each measurement distance

It is shown that the 95% confidence worst case error stays below 16 cm for both module pairs
except for the second module pair at 750 cm range. Again this is caused by the fact that
this particular experimental condition had much higher standard deviation than the other
conditions did.
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Chapter 8

Parrot Bebop 2 characteristics

In this chapter we briefly look at the characteristics of the Bebop 2 drone by parrot!, which
is the drone used for the experiments presented in the scientific paper in part I of this thesis.
First the step response to a velocity command is examined in section 8-1. Afterwards, some
data regarding the on-board measurements of height and velocity by the Bebop 2 is given in
section 8-2.

8-1 Parrot Bebop 2 step response

In the scientific paper in part I of this thesis, the step response of the Bebop 2 with respect
to a velocity input is approximated as a first order delay. In this section a brief analysis is
given of the actual step response of the Bebop 2 to a velocity command.

In figure 8-1 we see the step response of a Bebop 2 in forward and backward direction to a
velocity command of 0.5 m/s. In the same figure, there are two approximations to the step
response of the Bebop 2, one is a first order approximation, whose transfer function is:

H _ 8-1
i(s) = Ts+1 &1)

with s being the Laplace variable and 7 the characteristic time delay of the system.
The other approximation is a second order approximation, with transfer function:

w2

n
82+ 2Cwy, + w2 (82)
where ( is the damping of the system, and w,, the natural frequency.

To generate the approximations in figure 8-1, the value chosen for 7 is 1. The value chosen
for ¢ is 0.32 and the value for w,, is 0.95. These values were tuned by hand to match the data
of the Bebop 2 as well as possible.

It is very obvious from figure 8-1 that the step response of the Bebop 2 to a velocity
command is much better approximated by a second order system than by a first order system.
In the scientific paper in part I, however, the control method still assumes the Bebop 2 step
response to a velocity command to be approximated as a first order delay.

HQ(S)

"https://www.parrot.com/us/drones/parrot-bebop-2
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Figure 8-1: Step response of Bebop 2 to a velocity command of 0.5 m/s, along with first and
second order approximations.

Despite the discrepancy in the assumed model, and the real step response of the Bebop
2, the derived control law still accomplishes the desired leader-follower behavior. This is
primarily the result of the fact that the control law simply responds to the mismatch in
models by issuing more aggressive commands as soon as the Bebop 2 does not respond as
expected according to a first order delay.

It can further be shown that deriving a control law with a second order approximation for
the step response results in a very similar control law. The control law with a second order
approximation was also implemented on a Bebop 2, but was not seen to make the follower
behave any better than the control law with a first order approximation did. This might
change if the command saturation is increased to higher values, but this would have to be
investigated in future research. Due to the sufficiency of the results obtained with just a first
order delay, the control law with a second order approximation was not further investigated.

8-2 Parrot Bebop 2 on-board measurements

In the scientific paper in part I, the leader-follower flight is first performed with height and
velocity data provided by an overhead Motion Capture System (MCS). Afterwards, in a
second iteration, the height and velocity data is obtained from on-board sensor information.
The height is obtained from an on-board ultrasonic sensor, and the velocity is obtained using
Lucas-Kanade based optical flow measurements from the drone’s bottom-facing camera.

Despite the switch to on-board sensory information, the followers were still able to success-
fully follow the leader. This can largely be attributed to the fact that the on-board sensors
are actually quite accurate. To demonstrate this, the on-board sensory information will be
compared to that provided by the MCS.

Consider first of all the height information provided by the on-board ultrasonic sensor in
figure 8-2. Whilst the noise is slightly increased compared to MCS height information, the
mean is actually very close to the MCS data. This is especially important when using it
in the Extended Kalman Filter (EKF), since the noise can easily be filtered out. The main
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Figure 8-2: Height of Bebop 2 as measured by a MCS and through on-board ultrasonic sensor
measurements

difference, as also discussed in the paper, is that the update rate is quite a lot lower for the
ultrasonic sensor than for MCS measurements. This does not affect the performance of the
relative localization filter so much, since that filter also does not run at a very high frequency,
but it does affect the drone’s flight performance when using only on-board sensing. It was
seen that the drone struggled to maintain altitude, which was likely caused by the lower
update rate of the ultrasonic height measurements. In turn, this affected the ability of the
drone to move also in the horizontal plane, since it sometimes had to use a lot of thrust to
compensate its height.

The second measurement that is replaced with on-board information in the paper is the
velocity measurement of the drone. This is replaced by optical flow measurements from the
drone’s bottom-facing camera. Consider in figure 8-3 a comparison between MCS velocity
data, and velocity data from optical flow measurements.
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Figure 8-3: Velocity of Bebop 2 as measured by a MCS and through on-board optical flow
measurements
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Again it is clear that the difference between on-board measurements and MCS measure-
ments is not that high. A slight increase in noise is observed, but nothing that an EKF
cannot easily filter out. Much like for the ultrasonic sensor, the update rate of the opti-
cal flow measurements will also be lower than the update rate for the MCS measurements,
however.

The main issue with optical flow measurement data is that occasionally it does produce
much larger errors than visible in figure 8-3. Optical flow measurements rely on the ability
of the algorithm to identify features in the camera image from the bottom-facing camera.
Occasionally it fails to identify any such features, during which the optical flow measurements
will estimate a much lower velocity than the drone is really flying at. This is however not
observed very frequently. Most of the time the velocity data from optical flow measurements
is very reliable.
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