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1	 ABSTRACT

This paper explores the scope of using a deep learning framework for shape optimization of Catalan vaults for medium 
seismic areas. Catalan vaults are thin tile vaults that optimize the material usage of a floor slab without form-work and 
thus, additional material and labour. These structures can be constructed from tiles made from locally sourced earth 
which can provide an alternate to steel, timber, and concrete for areas with poor access to such materials, bringing down 
transportation, material, and carbon costs, providing opportunity to accommodate the consequences of rapid population 
growth. 

Seismic optimization of these vaults usually requires topology optimization and shape optimization tools. However, 
conventionally, these are computationally expensive and time-consuming - making them unsuitable for initial design 
explorations where a vast array of designs need to be quickly explored. As an alternative, a deep learning framework is 
explored as a design generation and optimization tool. This uses a Variational Autoencoder  (VAE) trained on a dataset 
of 10,000 samples to extract novel meshes whose seismic performance is then predicted with the help of fully-connected 
dense Neural Network (NN) surrogate models trained on the results of a Linear Dynamic analysis in Karamba (in 
Grasshopper). An optimization loop is set-up through Gradient Descent Optimization where the gradient of the predicted 
score is minimized with respect to the latent space of the VAE - for single and multi-objective optimization. Conditioning 
the latent space of the VAE is further explored (Conditional VAE) so that the user is able to extract samples from the 
latent space with particular desirable characteristics such as a desirable height of the vault. This opens up opportunities 
to gain better control of the latent space and generate meaningful new samples that are able to incorporate user 
specifications. The geometry of the Catalan vault is represented in terms of polyedge force-densities that allow a 99.91% 
reduction in dimensionality and thus, faster convergence, as compared to other data structuring techniques explored in 
the literature as half-adjacency matrices. 
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1	 ABBREVIATIONS

ANN - Artificial Neural Network

BGD – Batch Gradient Descent

CNN - Convolutional Neural Network

DEM – Discrete Element Method

FDM - Force Density Method

FD – Force Density

FEA – Finite Element Analysis

GAN – Generative Adversarial Network

GCN – Graph Convolutional Network

GBF - Gaussian Basis Network

GNN - Graph Neural Network

LSP – Linear Static Procedure

MARS - Multivariate Adaptive Regression Spline 
Models

NMRSE - Normalized Root Mean Squared Error

NN - Neural Network

NSP – Non-linear Static Procedure

OANN - Optimized Artificial Neural Network

PSS - Particle Spring System analysis

PGA - Peak Ground Acceleration

RMSE - Root Mean Squared Error

RSA - Response Spectrum Analysis

RF - Random Forest

RL - Reinforcement Learning

ReLU - Rectified Linear Unit

SLS - Serviceability Limit State

SPGD – Stochastic Gradient Descent

SPRP - Shape-Preserving Response Prediction

SSS - Stability, Stifness, Strength

TNA - Thrust Network Analysis

ULS - Ultimate Limit State

VAE – Variational Autoencoder

WF – Workflow
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0 1	 INTRODUCTION 1

1.1	 PROBLEM STATEMENT

1.1.1	 Defining the Problem

By 2050, it is projected that the world population will 
increase to 8.8-10 billion (Cleland, 2013). A shortage of 
usable land comes as a consequence of the rising 
population. This has resulted in a need to go vertical. In 
cities, this need is satisfied by the concrete, steel, and 
timber – materials necessary to construct the floor slab. 
However, in rural and peri-urban areas in the developing 
world, lacking easy access to these construction materials, 
constructing multi-storey buildings can pose challenges. 
In many cases in such areas, the need for multi-storey 
residential buildings is fulfilled by the use of reinforced 
concrete which comes at a high carbon, material, and 
transportation cost (Papanikolaou & Taucer, 2004).  While 
reinforced concrete structures offer strong materials, 
inadequate construction methods can compromise safety. 
This problem is exacerbated in seismic regions where the 
heavy structure further needs to resist lateral loads. The 
scale of the problem in the concerned regions can be 
qualitatively extrapolated from the fact that there are 
approximately 1000 large cities in the developing world at 
earthquake risk (Wyss & Rosset, 2013), and due to inferior 
strength, rural homes are much more vulnerable to risk 
than urban.  

To contextualize the problem, one may consider the remote 
valleys of the Chitral and Gilgit-Baltistan districts in the 
North of Pakistan. These are seismic areas, where due to 
risk of natural hazards from seismic activity such as 
rockfall, flash floods, and landslides, much of the land is 
not safe to be inhabited, as shown in the Figure 04. The 
roads that lead to many such valleys located here including 
Shimshal Valley are unmetalled and present a hindrance 
for large trucks to carry large construction materials from 
the city where concrete and steel are available (Butz & 
Cook, 2011). Freight and transport costs become 
exceedingly high as the material has to be supplied by 
smaller vehicles through numerous trips; which further 
increases the carbon cost as a result. Concerning the 
supply of wood for construction, that too presents issues. 
Excessive deforestation has resulted in a shortage of tress 
so there has been a strict enforcement of permits for 
cutting down trees for construction (T.Z.Ishrat, personal 
communication, March 2022). Furthermore, the market 
supply for construction timber is largely unaffordable for 
vast majority of the public. 

To summarize, this has resulted in the need for a more 
affordable, resilient, and sustainable alternative utilizing 
local resources for floor-slab construction for rural/ peri-
urban seismic areas of the developing world.

FIGURE 01: Multi-storey house. (Own Work)

FIGURE 03: Carbon cost and transport cost. (Own Work)

FIGURE 02: Absence of steel, concrete, timber. (Own Work)
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1.1.2	 A Solution?

By leveraging local soil, the lower compressive strength can be offset by optimizing the slab’s shape for effective load 
distribution. An effective topology that makes use of this is the shell; it is more structurally efficient due to which it can 
become more lightweight and reduce the material demand (Nanayakkara, 2019). However, to offer support to construction 
– formwork is often required which can become complex, expensive, material intensive, and labour intensive. Whilst 
there are different types of shells, the Catalan vault offers a particularly promising solution. A minimally reinforced floor 
constructed as a thin-tiled Catalan vault eliminates the need for form-work, reducing costs. However, whilst the thin 
compression-only nature of the Catalan vault gives it efficiency under static gravity loads, it becomes vulnerable under 
seismic loads which introduce bending stresses that may lead to structural failure.FIGURE 03: Carbon cost and transport cost. (Own Work)

FIGURE 02: Absence of steel, concrete, timber. (Own Work)

FIGURE 04: Hazard Vulnerability map of Lower Yarkhun Valley, Chitral.- showing high risk areas in red, medium risk in orange,  low risk in 
yellow, and safe in green. Ishrat & Baig (2022). AKAH Model Home Report: Country Analysis. [unpublished NGO Report]   
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1.1.3	 Proposal

To address these concerns, the project aimed to develop 
a computational framework that optimizes the design of 
Catalan vault slabs to withstand seismic loads. Multiple 
simulations may be necessary during the initial design 
stages, where varying inputs are common to allow for 
greater design flexibility. This can become time-consuming 
and computationally expensive. Moreover, conducting 
shape optimization simulations can be additionally 
resource-intensive. This is especially true for detailed 
simulation models such as non-linear (FEA) micro-models 
or discrete element models (DEM). Implementing an AI-
powered generative model could potentially reduce 
computational time whilst enhancing design freedom in 
generating diverse design options. Generative Adversarial 
Networks  (GAN) and Variational Autoencoders (VAE)  are 
both types of generative models. The scope of the project 
is limited to the VAE as GANs would merit a research paper 
of their own due to their complexity and issues such as 
instability in training, as mentioned by many sources 
including Salimans et al. and Arjovsky & Bottou, according 
to Regenwetter et al. (2022).

1.1.4	 Applicability and Scope

In the broader context, the chosen case aims to serve as 
a test to determine whether the AI framework can generate 
reliable outputs. If the VAE learns to generate optimized 
solutions from a simpler dataset, it may be extrapolated 
that this means that there is also high potential for it to 
generate optimized solutions for more complex micro-
models if the training dataset had been trained on that 
performance evaluation model as well. This would inform 
whether the case can serve as an application for the use 
of a VAE in shape optimization tasks which would otherwise 
be far too computationally expensive to perform. The 
project also aims to determine whether user-defined 
specifications can be considered while sampling as this 
would present immense potential in the future for 
controlling the types of samples that are desirable such as 
of a vaults of a particular height in this case.
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1.2	 RESEARCH QUESTIONS

1.2.1	 Main Research Question

•	Can an AI based framework generate new Catalan vaults for optimized seismic performance for use as a floor slab?

1.2.2	 Sub Questions

Deep generative + Vault

•	Can a user be able to tune the latent space in order to generate novel samples with user-defined desirable 
characteristics?

•	Can individual dimensions of the VAE’s latent space be interpretable?

•	Can having a reduced sample dimension still justify the use of a Deep Neural Network

Deep generative + Seismic + Vault

•	Can the vaults be optimization for multiple performance metrics?

Seismic + Vault

•	What effect does varying the force densities have on overall seismic performance?

•	Is there any favourable pattern in terms of force densities for seismic performance?  
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The goal was to create a deep generative model based on 
the problem earlier highlighted in the last section. It would 
consist of a Variational Autoencoder that is able to generate 
novel designs of Catalan vaults optimized for seismic loads 
in order for them to be used as floor-slabs. Baked earthen 
tiles were to be used as the material for the masonry vault 
as a low-cost alternative to more material-intensive, 
expensive, and carbon-intensive materials that are not 
easily accessible.

The project can be divided into largely a two-tiered 
approach. The first phase involved the literature review 
which guided the formation of a workflow for the problem. 
In the second phase, the workflow was applied in the 
formation and testing of a generative model. The workflow 
is highlighted in the Research Methodology Chapter.

1.3	 DESIGN ASSIGNMENT 1.4	 RESEARCH WORKFLOW

A deep generative model was to be constructed for shape 
optimization. The main workflow was categorized into 4 
main parts: Geometry Generation, Performance Evaluation, 
Data Structuring, and Variational Autoencoder, as shown 
in Figure 05. This section briefly introduces the workflow 
which will be elaborated later in the Research Methodology 
chapter. The methodology for the workflow was inspired 
by the work of Sterrenberg (2023) and Pavlidou (2022). 

FIGURE 05: Overall Workflow. (Own Work)

Geometry Generation

Performance Evaluation

Data Structuring
Variational 

Autoencoder
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Please refer to Figure 06.

Data Generation

An input shape was defined in the initial step. This would 
form the perimeter of the floor slab. In the initial workflow, 
for simplification, the footprint was to be kept as a rectangle 
with constant dimensions x and y. Form-finding would next 
done be on the input footprint inside Grasshopper where 
multiple design variations would be  produced through the 
use of Force Densities through COMPAS (See Section 
3.1.2 for detail). 

Performance Evaluation

The geometry was then evaluated seismically through a 
Linear Dynamic Procedure in the software Karamba. Since 
this was also integrated inside Grasshopper, it helped 
connect the Geometry generation in Grasshopper.  
ABAQUS was used for validation purposes for modal 
analysis. 

Data Structuring

After this, the data was restructured in a form readable for 
the neural network. 

VAE  

The structured dataset was then used to train a Variational 
Autoencoder. Initially, Graph convolutions (GCN) were to 
be used inside the encoder layers to learn distinct features 
and for permutation invariance. However, another way of 
expressing the geometry into a smaller dimensions became 
evident which did not require graphs. This is why GCNs 
were ultimately not used. A surrogate model was then used 
to evaluate the performance of the reconstructed  output 
from the decoder using back-propagation which would then 
be used for gradient descent optimization. 

CVAE

Once the VAE had been trained and tested successfully 
generating new designs, the latent space would be 
conditioned. 

constant footprint

regular grid

COMPAS

RSA

Karamba

encoder latent space decoder Gradient 
Descent

Graph 
Convolutional 

Network
surrogate 
model

conditioning the 
latent space

FIGURE 06: Overall Workflow breakdown. (Own Work)
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The research consists of tools, software, and concepts that 
are novel for the author of this paper. Therefore, for 
practical purposes considering time limitations and 
computational power, the approach had been structured 
in the form of a basic structure with incremental layers of 
complexity introduced as the project develops. This aimed 
to firstly establish a basic yet holistic framework, then work 
towards developing more complexity through prioritization 
of goals and realistic choices under the time-frame. This 
aimed to keep alternative workflows available in case of 
possible bottlenecks caused by unforeseen delays instead 
of reformulation of the workflow altogether.  

The other auxiliary workflows were ultimately not carried 
out due to time constraints. Nevertheless, they have been 
kept in this document to add context to how the project may 
be developed in the future. For context, the workflow 
highlighted earlier is Workflow 1, which would be carried 
out in all cases to set the foundational structure. Refer to 
Appendices Section 10.2 for further details.
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This section deals with the application of the generative 
model – the Catalan Vault.

2.1	 BACKGROUND

Shells and vaulted structures are not a modern invention. 
They have been around for thousands of years. They 
provide one of the most efficient ways of spanning spaces 
by making use of the compression-only properties of the 
funicular geometric form. The earliest vaulted structures 
date back to 3000BC in Mesopotamia (Nanayakkara, 
2019). 

Though there are multiple types of vaults. For this paper, 
we shall only focus on Catalan vaults also known as 
Guastavino vaults, timbrel vaults, tile vaults, or thin-tile 
vaults. As mentioned earlier, these can be constructed with 
little to no formwork. As the alternate names suggest, these 
are made by 2,3, or more layers of thin tiles. Whilst the 
Nubian vault also eliminates the use of form-work – the 
vault itself is heavy and material intensive. For this reason, 
it was not considered.

2.2	 CONSTRUCTION METHOD

The first layer is constructed ‘in space’ because of which 
a quick setting mortar is needed which in most cases is 
gypsum. This allows the inter-tile bond to set in seconds 
without the need for additional support. The tiles are placed 
flat and edge to edge, usually of 15-25mm thickness with 
a mortar thickness of about 10mm (Nanayakkara, 2019). 
Once the first layer of tiles is complete, it acts like formwork 
for the second layer. Gypsum is susceptible to 
environmental conditions so the bonding agent for the 
second layer of tiles is usually cement mortar. This sets 
slowly. If a third layer is also required which is constructed 
the same way as the second layer. In some cases, a third 
layer can be avoided by increasing the thickness of the 
second layer. 

Once the vault is complete, it can act as permanent form-
work for an infill layer. López López et al. suggest that the 
addition of a top layer of concrete can help reduce time 
and labour (2019). This would mean a higher weight for 
the same thickness. However, it is pertinent to mention that 
the bonding between the two different materials of the 
composite structure introducing complexity in the structural 
behaviour (López López et al., 2019). To avoid continuous 
seams that may lead to failure, the tiling pattern for the 
second layer is rotated at 45°, as shown in Figure 07. 

During construction of the Catalan vault, guide work is 
required. An example of guide work can be drawn from 
SUDU, an urban housing project in Ethiopia, where steel 
frames are positioned on opposite ends of the longitudinal 
axis of the Catalan vault, and strings are threaded between 
them to serve as guides. The spacing of these guidelines 
relies on the abilities of the masons; a proficient mason, 
with a keen spatial sense, can work effectively even with 
coarser guide work (Nanayakkara, 2019). SUDU is also an 
example where the Catalan vault was created as a floor 
slab for economic in a low cost project (Figure 09).

2	 LITERATURE REVIEW: CATALAN VAULT2

FIGURE 08: Types of vaults: a) Roman (semi-circular section 
built using formwork),b) Nubian (catenary section, no formwork), 
c) Catalan Vaulting (catenary section, can also be shallow, no 
formwork). Image retrieved from  Chichester: John Wiley and Sons. 
Form and Forces. (2009). Archweb. https://www.archweb.com/en/
design/page/catalan-vaulting/

FIGURE 09: Catalan vault floor slab at SUDU project, Ethiopia with 
lightweight stiffening walls. Image retrieved from López López, D., 
Van Mele, T., & Block, P. (2016). Tile vaulting in the 21st century. 
Informes de La Construcción, 68(544), 162. https://doi.org/10.3989/
ic.15.169.m15

FIGURE 07: Catalan vault made from layers of thin tiles. The 
second layer is angled at 45 degrees to avoid continuous seams 
causing instability. Image retrieved from Moya, L. (1957). Archweb. 
https://www.archweb.com/en/design/page/catalan-vaulting/
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For achieving high double curvature in vaults with 
orthogonal masonry units, an effective strategy is custom 
cutting bricks. This prevents compensation with a high 
amount of mortar in joints.  Davis et al. identify two main 
methods – one cut systems and two cut systems (2012). 
Two cut systems are more effective in achieving greater 
curvature. One cut systems are simpler allowing for high 
degrees of curvature in one axis. Both systems use three 
brick primitives (Davis et al., 2012): 

•	 short-end oblique cut

•	 short-end bevel cut

•	 long-end bevel cut

2.3	 STRUCTURAL PERFORMANCE

In the design of masonry structures, there are three main 
structural performance metrics – strength, stability, and 
stiffness (Heyman, 1966). The structure must be strong 
enough to carry its own weight in addition to imposed 
loads, it must be stiff enough not to undergo large 
deflections, and the structural forces may be contained 
within the arch preventing (four-bar chain) collapse  
(Heyman, 1966).

Failure in unreinforced masonry structures is usually due 
to instability instead of lack of compressive strength 
(Panozzo et al., 2013). The concept is that the connectivity 
should represent the flow of forces (Panozzo et al., 2013). 
The forces follow the shortest path so the risk of sliding 
can be reduced if the pattern follows the stress flow. The 
analysis of masonry vaults (applicable to Catalan vaults) 
has roots in Heyman’s Safe Theorem where the equilibrium 
approach is used. Heyman’s Safe Theorem states 
(Nanayakkara, 2019): 

“If a set of internal forces in a masonry structure can be 
found that equilibrate the external loads, and which lie 
everywhere within the masonry, then the structure is safe 
– safe in the sense that it cannot collapse under those 
loads.”

The limitations of l inear analysis concerning shell 
structures have been highlighted by Block at al. (2006). 
There is a potential for unsafe and deceptive results, 
especially for thinner structures. Linear elastic FEA 
analysis may not accurately predict the stability or collapse 
of the structure, as it assumes the material is capable of 
resisting tension without considering the actual collapse 
mechanisms. This is especially true for thinner arches. 
Additionally, linear elastic analysis may not provide insights 
into the stability or collapse of the structure based on its 
geometry and equilibrium conditions, which can be crucial 
for understanding the behaviour of vaulted masonry 
buildings. Block et al. highlight that even for 2D problems, 
it is difficult to draw conclusions from the Linear analysis 
(2006). It can be understood that the problem may become 
greater when done in 3 dimensions for double curvature.  

FIGURE 10: Brick primitives for the one-cut and two cut systems. 
Redrawn by author. Original retrieved from Davis, L., Rippmann, M., 
& Pawlofsky, T. (2012). Innovative funicular tile vaulting: A prototype 
vault in Switzerland.



2.3.1	 Variable load

While the thin shell makes it lightweight, the Catalan slab 
is vulnerable to variable loads. Vertical stiffeners can be 
used to for increasing the stiffness against this as shown 
in Figure 13. Stiffness can also be increased by introducing 
double curvature as it provides multiple load paths to carry 
asymmetric loads; this was used widely by Rafael 
Guastavino in his designs (Nanayakkara, 2019). See 
Figure 12 for reference, where the double curvature of the 
vaults support variable loading from vehicular traffic on the 
bridge above. 

2.3.2	 Lateral thrust

To carry the lateral thrusts, modern precedents have used 
steel tie rods as reinforcement for Catalan vault such as in 
the Armadillo Vault by Block Research Group. Antoni Gaudi 
used inclined columns for this purpose in his work Park 
Güell (Nanayakkara, 2019). Traditionally buttresses would 
be used for this purpose.

a)

c)

b)

d)

From Heyman’s theory, it is clear that thin tile vaults are 
more vulnerable to collapse because the thrust line may 
not lie inside the masonry vault (Nanayakkara, 2019), and 
within the middle third to avoid tension (Block et al., 
2006). 
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FIGURE 11: An arch which fails according to Heyman’s Safe 
Theorem. Possible limit of deformation when the arch in (a) 
becomes (b) unstable, and (c) a snapshot of animation during 
collapse. (d) Four hinges define a three bar mechanism. Image 
retrieved from Block, P., Ciblac, T., & Ochsendorf, J. (2006). 
Real-time limit analysis of vaulted masonry buildings. Computers 
& Structures, 84(29–30), 1841–1852. https://doi.org/10.1016/j.
compstruc.2006.08.002

FIGURE 12: Queensboro Bridgemarket, in New York City, USA, 
has doube curvature supports vehicular traffic on top. Image 
retrieved from Michael Freeman, n.d., Urbanomnibus.net. https://
urbanomnibus.net/2014/08/palaces-for-the-people-guastavino-and-
the-art-of-structural-tile/

FIGURE 13: Partly demolished part of a Catalan slab showing 
vertical stiffeners in the hollow slab. Image retrieved from 
Nanayakkara, K. I. (2019). Shell Structures from Catalan to 
Mapungubwe Lessons from Structural Efficiency for Sustainable 
Construction in Developing Countries. https://doi.org/10.13140/
RG.2.2.30878.89922



2.3.3	 Seismic loads

For stability against asymmetric loading and seismic loads, 
reinforcement can be added in between the layers of the 
Catalan vault in the intermediate mortar joints. Additional 
tensile and bending capacity is provided this way. This also 
allows for a reduction of thickness. Though steel rods 
provide such reinforcement in single-curved vaults, they 
cannot be used for double-curvature – which is a property 
that is important to the vault system that is to be developed 
for this project. 

Moreover, the steel exposed to environmental conditions 
rusts causing structural concerns. Instead, a geo-grid 
reinforcement is proposed that is appropriate for complex 
double curvature as well as being corrosion resistant and 
weatherproof (Surat, 2017) . Polymeric grids and glass-
fibre meshes are used widely nowadays (López et al., 
2019). A recent case study of such reinforcement used in 
thin tile vaults is the work of Michael Ramage and Matthew 
DeJong where they applied a geo-grid in between the 
layers of bricks in the Bowls Project in San Francisco as 
illustrated in the Figure 14, (Ramage & Dejong, n.d.) which 
is a low to moderate earthquake risk area. The geo-grid 
increased the ductility of the structure and improved its 
bending capacity. This is relevant to the economic nature 
of the project as it too is an inexpensive solution. 

Surat tested 3 techniques of reinforcement of thin tile 
vaults with basalt geo-grid - laying it over the base and 
mortared, anchoring it and epoxied, and pre-stressing it. 
The last two methods were found to be the most effective 
with observed collapse accelerations being over 60% 
higher than that of the same unreinforced vault. It was 
concluded that the anchoring solution is the most effective 
as pre-stressing requires considerable technical expertise 
(Surat, 2017). This is shown in Figure 15.
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FIGURE 14: Geogrid embedded in between mortar layers and 
tiles, for reinforcement against seismic loads, in the Bowls Centre, 
Yerba Buena Centre for the Arts, in San Francisco, USA. Image 
retrieved from Ramage, M. H., & Dejong, M. J. (n.d.). Design and 
Construction of Geogrid-reinforced Thin-shell Masonry.

FIGURE 15: Reinforcement strategies for thin tile vaults. a) laying 
geogrid over the base, b) anchorage of geogrid, c) pre-stressing 
the geogrid. Image retrieved from Surat, D. (2017). Seismic 
Analysis of Thin Shell Catenary Vaults [Master Thesis]. University of 
Witwatersrand.  

a)

b)

c)



The tiling pattern is an important consideration.  Cross-
herringbone patterns have been used to increase the 
stability by prevention of sliding of tiles and overturning. 
Used famously by Brunelleschi, the pattern makes a plate-
bande resistant system enables equilibrium states of self-
supporting shells (Paris et al., 2020). The pattern is defined 
by a network of double loxodromic curves, one right-
handed and one left-handed loxodromic. This is shown in 
Figure 17. 

2.3.4	 Strengthening

To strengthen the vault, Auguste Choisy (1873, as cited in 
López et al., 2019) echoed Fray Lorenzo (1633, as cited 
in López et al., 2019) as he mentioned the typical practice 
of adding filling material from the supports of the tile vault, 
extending it to about one-third of its length. This was also 
carried out by Guastavino in his design where he used 
concrete as an infill to stiffen the vault and level it to be 
used as a flat floor. The same strategy of using an infill was 
also used for the SUDU project, as mentioned earlier, by 
ETH Zurich’s Block Research Group, for the Catenary floor 
slab, as shown in Figure 16.

2.4	 CHALLENGES AHEAD

Superior structural efficiency may not be enough for the 
adoption of such a technology. According to Nanayakkara, 
it wasn’t structural performance which led to the adoption 
of the Guastavino vault in USA (2019). It was its superior 
fire resistance as compared to the norm at the time which 
was timber construction. There are social implications of 
construction material especially in the developing world 
which present an obstacle to its adoption. Earth as is 
viewed as an ‘inferior ’ building material to steel and 
concrete as the latter materials are associated with 
progress and modernity. This is true in the districts of 
Chitral and Gilgit-Baltistan where the poor insulating 
properties of concrete as compared to earth are widely 
known; however, the homeowners make a conscious 
decision to opt for concrete construction for new homes 
because of the status it signifies (T.Z.Ishrat, personal 
communication, March 2022). The stigma, however, comes 
from the poor finishing and constant need for maintenance 
that the construction presents. This also means that there 
is potential of removing that stigma if the finishing can be 
improved upon. That, however, is outside the scope of this 
paper. The same stigma also exists in India but exceptions 
like Auroville exist where earth construction is well 
respected (Nanayakkara, 2019).
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FIGURE 16: Catalan vault floor slab at SUDU 
project, Ethiopia, with lightweight stiffening walls and 
compacted fill. Image retrieved from López López, D., 
Van Mele, T., & Block, P. (2016). Tile vaulting in the 
21st century. Informes de La Construcción, 68(544), 
162. https://doi.org/10.3989/ic.15.169.m15

FIGURE 17: The view of a dome under construction, showcasing a plate-bande 
(emphasized in dark gray), a closed brick course (highlighted in light gray shading), 
and loxodromic trajectories on both sides (highlighted in purple). Image retreived 
from Paris, V., Pizzigoni, A., & Adriaenssens, S. (2020). Statics of self-balancing 
masonry domes constructed with a cross-herringbone spiraling pattern. Engineering 
Structures, 215, 110440. https://doi.org/10.1016/j.engstruct.2020.110440
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This section deals with the literature related to the 
generative model. It has been structured in the same way 
as the overall Research Workflow in its constituent 
sections. See Figure 05 for reference.

3.1	 GEOMETRY GENERATION

The first step of the project was to generate the dataset. 
This was to be composed of the geometry that would be 
structurally analyzed in the next step. The target sample 
size of the dataset from the literature had found to been at 
least 10,000 samples. (Sterrenberg, 2023) and 7,338 
(Pavlidou, 2022). 

3.1.1	 Input Footprint

An input shape was defined in the initial step. This would 
form the perimeter of the floor slab. For simplification the 
footprint was a rectangle with constant dimensions 
10mx15m. This size was chosen as the footprint of a 
residence.

3.1.2	 Form-finding

Form-finding was done by relaxing the input shape into a 
funicular mesh. It was a crucial part of the workflow. This 
is because it was the tool to generate the large variation 
of geometries that was needed for the generative model. 
The workflow for this follows the following steps (Oval & 
Rippmann, 2017):

•	1 - defining the boundaries

•	2 - designing a planar mesh

•	3 - setting constraints

•	4 - form finding

Different methods were considered for form-finding – 
Particle Spring System analysis (PSS) (used by Kangaroo, 
the Grasshopper plugin) and Thrust Network Analysis 
(TNA) (used by RhinoVAULT). It was found, through an 
FEA in Karamba, that TNA obtained a more structurally 
efficient design than PSS based on the quantity of masonry 
used, variations in geometry, differences in curvature and 
stress distributions, and deformations under two load 
combinations(Contestabile et al., n.d.). The method also 
allows greater control over the geometry produced than 
PSS as it is especially tailored for funicular forms, which 
is significant for this project. By changing the force 
densities of the edges that make up the structure of the 
vault, the force that the edge carries changes, due to which 
pattern changes could be achieved. This was especially 
important in introduction of creases and vault segmentation 
for a large richer geometrical design space. For this 
reason, TNA was selected.

3	 LITERATURE REVIEW: GENERATIVE MODEL3
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Thrust Network Analysis

TNA was developed by Phillipe Block and evolved by his 
research group, Block Research Group. It relies on the 
principles of graphic statics applied to three-dimensional 
structures. Similar to graphic statics, the approach revolves 
around two interrelated diagrams— the form diagram and 
force diagram that correspond to equilibrium states 
represented by force polygons (Contestabile et al., n.d.). 
It uses the concept of force densities from the Force 
Density Method introduced by Linkwitz and Scheck (1971, 
as cited in Aboul-Nasr & Mourad, 2015) and Scheck (1974, 
as cited in Aboul-Nasr & Mourad, 2015). By using FDM, 
any state of equilibrium of a funicular structure can be 
obtained by the solution of one system of linear equations. 
This system is constructed using the force-length ratios or 
“force densities” in the branches as parameters that 
describe the network (“degrees of freedom”). Simply put, 
we specify a singular quantity, namely the force density, 
for each branch. By solving one system of linear equations, 
we obtain a unique result—the equilibrium structure with 
the designated force-length ratio in each branch. (Schek, 
1973). TNA is able to manipulate and compute these force 
densities this intuitively through manipulation of the force 
diagram. Based on Heyman’s Safe Theorem, for a masonry 
structure, if any graph is completely contained inside the 
thickness of the masonry structure, then the structure is in 
equilibrium. The Thrust Network Analysis allows the user 
to manipulate the force diagram to visualize these graphs 
for which the structure is in equilibrium which entails that 
the equilibrium equations are satisfied for each node.

However, RhinoVAULT, the plugin for TNA works directly 
in the Rhino interface and not Grasshopper. The 
Grasshopper environment is necessary for the automation 
of the dataset generation. Whilst RhinoVAULT was not able 
to be used, COMPAS, the Python framework that it is 
based on may be used instead directly as a GH Python 
script in Grasshopper provided by Robin Oval. A number 
of different geometries can be found from the same load 
case by changing force densities of  the different edges via 
the force diagram, as shown in Figure 18.

a)

c)

b)

d)
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FIGURE 18: For the same UDL, the figure shows different vault 
geometries formed as a result of indeterminacy of a 4-valent 
network. a) equal distribution of horizontal forces forms a thrust 
network with a typical pillow shape, (b-d) higher force densities 
in different regions result in creases for the equilibrium solutions. 
Image retrieved from Adriaenssens, S., Block, P., Veenendaal, D., 
& Williams, C. (Eds.). (2014). Shell structures for architecture: Form 
finding and optimization. Routledge/ Taylor & Francis Group.  



Mesh Generation for Force Diagram 

Two main categories of methods were identified for 
meshing – backward processes and forward processes. 
(Oval & Rippmann, 2017). Both generate a 2D pattern input 
as a force diagram for generation of a 3D funicular structure 
based on the TNA. Backward processes use an input 3D 
geometry to approximate a self-supporting structure 
entailing its optimization, rationalization, and post 
processing. Forward processes, on the other hand, result 
in a more open-ended design approach which includes 
mesh generation, exploration, and design.

a)

c)

b)

d)

Forward process

The methodology proposed by Oval & Rippmann is a 
forward process which makes use of a surface that is 
represented by its boundaries. It is split into a set of 
topologically simpler patches through a medial-axis based 
block decomposition process. Each patch is then 
subdivided after which a quad meshing pattern is used to 
generate the mesh. Then, through a relaxation technique 
the mesh is smoothed (Oval & Rippmann, 2017). A quad 
mesh pattern is generally preferred as it  makes 
manipulation of the funicular geometry more stable and 
simpler. It also gives allows for directionality useful for 
tiling patterns. 

It is a feature-based topology finding technique where 
additional features such as curve features and point 
features. Inclusion of these features change the mesh 
geometry according to a set of prescribed rules (Oval & 
Rippmann, 2017). Boundary point features may represent 
concentrated lateral thrust acting at the corners of the 
vault. Inner point features may be able to represent nodal 
supports or point loads. Curve features may represent line 
loads or creases in the vault. 
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FIGURE 19: Forward Process. 
(Own Work)

FIGURE 20: Forward Process. Generation of a smooth quad mesh 
without boundary singularities based on the medial axis. Image 
retrieved from Oval, R., & Rippmann, M. (2017). Patterns for 
Masonry Vault Design.

FIGURE 21: Forward Process. a) transformation rule for 4 sided 
patches for point features, b) mesh pattern from boundary point 
feature, c) mesh pattern from inner point feature, d) mesh pattern 
from curve feature. Image retrieved from Oval, R., & Rippmann, M. 
(2017). Patterns for Masonry Vault Design.

defining boundaries

designing a planar mesh

setting constraints

form-finding

funciular 
mesh



Backward Process

The other category is a backward process where an 
existing input form is altered to create a structurally-sound 
mesh. 

The forces have to be aligned with the edges. If, for 
instance, an arbitrary discretization is done and the quad 
mesh aligns with some features of the surface, the surface 
will not be properly represented. For instance, the forces 
in Figure 23a can either go to that feature highlighted in 
red, or an open edge (orange). In both cases, they do not 
go to the supports so the feature cannot be represented. 
If optimization is done through that discretization, then the 
features of the original surface are lost. However, in Figure 
23b it can be seen that from the same point the force goes 
directly to the support. In this case the features are 
preserved.

Negative gaussian curvature is also difficult to be 
represented. If an arbitrary discretization is done as in 
Figure 24a, and a point is taken, the forces acting on the 
point are all downwards leaving no resultant force to cancel 
out gravity.  Figure 24b, however, shows a different 
discretization where a resultant upward force cancels out 
gravity. The idea of aligning to the principle curvature 
direction, however, is limited to local properties and does 
not take into account global features like open boundaries. 
For instance, if a hole is made, the curvature doesn’t 
change but the stress distribution has to change as the 
forces cannot go straight to the hole. Panozzo et al. base 
their methodology upon both concepts, aligning to the 
principal curvature direction combined with global 
optimization. Open edges are first analyzed – as we want 
the forces to go as fast as possible to the closest support. 
Then negative curvature and sharp features are identified. 
These directional form constraints are then interpolated 
obtaining a cross-field across the whole surface. A quad 
mesh is then generated on to this aligned with the crosses. 
The diagram is then projected on to the plane and is input 
as a form diagram (Panozzo et al., 2013). 

Pattern to Funicular form

The output from both the approaches is a 2D projection of 
the shell. Once the pattern generation process has been 
done, the mesh edges that are fully supported are removed. 
The output can now serve as the form diagram that is input 
into the COMPAS framework. The reciprocal force diagram 
is obtained after which horizontal equilibrium is computed 
and subsequently, vertical equilibrium is then computed 
afterwards to achieve the funicular geometry. In the case 
of the backward process by Panozzo et al., the distance 
between the generated mesh and the original is minimized 
through a gradient descent optimization. This approach 
differs from Vouga et al. where the input form is deformed 
to make it self-supporting whilst in this case a self-
supporting form is deformed to approximate the generated 
form – which, according to Panozzo, is more robust 
(Panozzo et al., 2013). 
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FIGURE 22: Backward Process. (Own Work)

FIGURE 23: a) mesh loses features after becoming self-
supporting while b) mesh retains most of the features. Edited 
image of original retrieved from Panozzo, D., Block, P., & Sorkine-
Hornung, O. (2013). Designing unreinforced masonry models. 
ACM Transactions on Graphics, 32(4), 1–12. https://dl.acm.org/
doi/10.1145/2461912.2461958

target mesh

a)

a) b)

b)

FIGURE 24: In areas with anticlastic curvature (a), an incorrect 
alignment of the force pattern prevents the representation of 
equilibrium at a vertex (depicted in red), as all directions of the 
force flow are directed downward. This issue does not arise in 
cases where a discretization allows a resultant upward force to 
cancel out gravity (b). Image retrieved from Panozzo, D., Block, P., 
& Sorkine-Hornung, O. (2013). Designing unreinforced masonry 
models. ACM Transactions on Graphics, 32(4), 1–12. https://doi.
org/10.1145/2461912.2461958



Conclusion

While the backward process presented by Panozzo et al. 
presented an interesting approach towards approximation 
of a self-supporting form from a given 3D geometry, it 
required a target shape adding complexity that was not 
necessary for this project. As the development of the 
funicular mesh of the Catalan Vault was meant as a floor 
slab, it made sense to consider an input 2D footprint rather 
than a 3D vault that is to be made into a self-supporting 
structure. Due to this, a forward process was selected 
going forward. The feature-based topology finding 
approach has a lot of potential to generate a large variation 
of designs and incorporating reinforcement. 

3.1.3	 Tiling Pattern

The Catalan vault is a masonry vault composed of thin 
tiles. The meshing pattern of its global geometry, as 
discussed in the section above, is a function of the force 
pattern used to compute static equilibrium in the form-
finding process (Thrust Network Analysis). Therefore, it 
seems logical to base the tiling pattern on the meshing 
pattern employed in form finding to maximize structural 
efficiency. This approach ensures that sliding failure 
between the voussoirs is averted by aligning the force flow 
with the interface normals between them (Heyman, 1997, 
as cited in Oval & Rippmann, 2017).  This is echoed by 
Adiels et al. as they describe how if principal stresses are 
perpendicular to the head joint and the bed joint of the tiles, 
there is no possibility of sliding along the bed joints (Adiels 
et al., 2017). Though earth tiles are used here instead of 
stone voissoirs, it may be assumed that it would also be 
applicable in this case.

Up till now we have described how an initial mesh can be 
generated and manipulated to form the funicular structure 
that is found through form finding (TNA). If the output mesh 
were to be extruded and segmented into tiles, there would 
be issues with fabrication as all tiles may be different. In 
the context of the case study, it would be highly impractical 
to suggest this as it would mean production of new moulds 
for each tile. Therefore, the til ing pattern must be 
standardized. 

Generating the Tiling Curves

Two different approaches have been found by Adiels et al. 
using geodesic coordinates. Both propose a constant 
distance between the bed joints. This equal spacing allows 
constant sized bricks when offset where the tolerance 
between bricks would be mortar joints, as shown in Figure 
25. 

Patterning Approach 1:  form & pattern 
integration

The first approach combines form-finding and pattern 
generation using dynamic relaxation. This integrates 
geometric and structural properties into the pattern avoid 
sliding along the head joints, as discussed above. In the 
dynamic relaxation process, nodes move opposite to the 
direction of the out-of-balance force equivalent to a 
negative mass. 

Patterning Approach 2: form and pattern 
disconnect

The second approach separates form and pattern by 
offsetting an initial curve, from which geodesics emerge at 
90°. A sequence of circles, centered on the surface and 
situated in the normal plane at its midpoint, intersects the 
surface, creating a collection of points that define the 
geodesics. Due to the points lying within normal planes 
along the geodesics, the geodesic curvature is zero. This 
means that this can be discretized into tiles. The initial 
curve is offset to repeat the pattern. It is important that the 
geodesics do not cross; therefore, for a complex shape, it 
is better to patch each area separately then generate the 
geodesic pattern. This is shown in Figure 26.
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FIGURE 25: Equal sized tiles due to equal spacing of coordinate 
curves made possible using geodesic coordinates. Image retrieved 
from Adiels, E., Ander, M., & Williams, C. (2017). Brick patterns on 
shells using geodesic coordinates



Staggering the Tile

Panozzo et al. describe how the tiles or tessellations can 
be derived from a quad mesh once the funicular mesh has 
been generated. Every second edge in the preferential 
direction (towards the closest boundary) of the mesh is 
removed resulting in a staggered tiling pattern, as shown 
in Figure 27. An exception is made if this results in strong 
voussoir concavit ies as this may result in stress 
concentrations and difficulty in positioning correctly. The 
orientation of the pattern becomes significant to remove 
the chain of quads that may slide off from the open edges 
(unsupported arches and openings). It is not important in 
the regions far from the edges, but nonetheless the pattern 
is smoothed for aesthetic purposes and ease of 
constructability (Panozzo et al., 2013). 

Conclusion

We can conclude that the Patterning Approach 1 offers the 
most structurally plausible option as it integrates the 
pattern formation with form-finding. However, it remains to 
be seen what design flexibility it offers to generate such a 
vast array of designs. Patterning Approach 2 offers a more 
flexible solution which can generate a vast number of 
design options. Multiple design variations can be made for 
the dataset by dividing the surface into different patches 
and varying the initial curve in those patches. The 
disconnect between form and pattern may allow testing the 
VAE with poor performing vaults in addition to better 
performing ones. Moreover, it can be hypothesised that, 
in this approach, to account for discrepancies between two 
curve boundaries, it may be useful to generate tween 
curves in between to smooth the transition of the pattern.

To segment the geodesic curves into a staggered pattern, 
Panozzo et al.’s approach may be applied not to the initial 
quad mesh generated from the form-finding but to the 
standardized geodesic curves mentioned in Patterning 
Approach 2. These can be extruded to form the tiles.

It would have been interesting to incorporate the cross-
herringbone / loxodrome pattern,  inside the DEM and see 
how the absence, and different variations of the pattern 
may affect structural stability. 

Tiling is outside the scope of this paper as they were a part 
of the initial Workflow 3 which was not implemented (See 
Appendices Section 10.2). However, these strategies have 
been left in the paper as they are useful to consider going 
forward in the future. 

3.1.4	 Layers

The actual Catalan vault is composed of 2 or more layers. 
However, for simplicity, the model was based on a single 
layer. The thickness of the layers was to be defined. From 
the literature discussed earlier, the tiles thickness varied 
between 15 and 25mm, and the mortar was 10mm total. 
Based on this, 3 different thicknesses were used depending 
upon the number of layers of tiles.

1 layer of variable thickness. Inclusion of the thin layers 
may allow the VAE to check for failure.

•	35mm (1 masonry layer + 1 mortar layer)

•	60mm ( 2 masonry layers + 1 mortar layers)

•	95mm ( 3 masonry layers + 2 mortar layers)
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FIGURE 26: Generation of geodesic curves. Image retrieved from 
Adiels, E., Ander, M., & Williams, C. (2017). Brick patterns on shells 
using geodesic coordinates 

FIGURE 27: a) a quad mesh used to generate a b) Tiling/
brick pattern made by c) removing edges corresponding with 
yellow nodes. Image retrieved from Panozzo, D., Block, P., & 
Sorkine-Hornung, O. (2013). Designing unreinforced masonry 
models. ACM Transactions on Graphics, 32(4), 1–12. https://doi.
org/10.1145/2461912.2461958
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3.2.1	 Graphs

While parameters at the vault-level and layer-level would 
be floats values, a different data structure would be needed 
to represent the mesh geometry of the vault at the node-
level.  A way to represent this is through graphs.

A graph is used to represent relations (edges) between 
different entities (nodes). The graph can store 3 different 
types of information – node (vertex) embedding, edge (or 
link) embedding, and global (master node) embedding. 

been used where instead of 0 and 1. Figure 30 shows an 
example of a weighted adjacency matrix.

There are 2 main problems associated with adjacency 
matrices - sparsity and permutation invariance (Sanchez-
Lengeling et al., 2021).

Sterrenberg (2023) and Pavlidou (2022) worked on a 
similar design problem that also required data structuring 
of a shell mesh to be used inside a VAE. Different types of 
graph structures were tested including adjacency matrix, 
edge-vertex matrix, vertex-vertex mesh, face-vertex mesh, 
winged-edge mesh, half-edge mesh. Sterrenberg (2022) 
found that data representations based on the position of 
vertices provided unrepresentative outputs. This included 
coordinate data and movement data. However, data 
representations based on edge/ topology connectivity 
provided more accurate results. It was noted that (half) 
adjacency matrices performed the best (Sterrenberg, 
2023). This is also echoed by Pavlidou who found 
adjacency matrices to perform better than data based on 
vertex coordinates (2022). For this reason, adjacency 
matrices shall be used as to represent the node-level data 
structures. 

3.2.2	 Adjacency Matrix

Adjacency matrices are able to visualize connectivity of a 
graph. Conventionally, as shown in Figure 29, binary digits 
represent connectivity. Each row and column represent a 
node, and the presence of an edge is denoted by the value 
1 while the absence of an edge by 0. 

In this project, however, as mentioned earlier, the nodes 
must represent float values (to represent force densities, 
height,an direction vector) so the binary representations 
are not adequate to represent this. For this reason, 
weighted adjacency matrices using float values could have 

Sparsity

A high number of nodes and few number of edges can 
cause the adjacency matrix to be very sparse which causes 
space inefficiency. Therefore, a sparse graph would lead 
to a sparse adjacency matrix.

Permutation invariant

Another problem with adjacency matrices is that they are 
not permutation invariant. This means that the model’s 
output should be the same regardless of the order in which 
the items are presented. Permutation invariance is 
desirable for deep learning models. This is because there 
can be a number of adjacency matrices that encode the 
same connectivity and there’s no assurance that the same 
output  would be produced  (Sanchez-Lengeling et al., 
2021). As shown in Figure 31, for a 4-node graph, 4! (24) 
adjacency matrices represent the same graph. We can 
evaluate that for many nodes, as our vault would have, the 
permutations increase by an order of magnitude. 

A 4

2

5 6

1

3 B

C

D
E

3.2	 DATA STRUCTURING

A B C D E
A 0 1 1 0 1
B 1 0 0 1 0
C 1 0 0 1 0
D 0 1 1 0 1
E 1 0 0 1 0

A B C D E
A 0 2 4 0 3
B 2 0 0 5 0
C 4 0 0 6 0
D 0 5 6 0 1
E 3 0 0 1 0
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FIGURE 28: A graph and its embeddings. Image retrieved from 
Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. 
(2021). A Gentle Introduction to Graph Neural Networks. Distill, 6(9), 
e33. https://doi.org/10.23915/distill.00033

FIGURE 29: An adjacency matrix. (Own Work)

FIGURE 30: A weighted adjacency matrix. (Own Work) 



A B C D E
A 0 2 4 0 3
B 2 0 0 5 0
C 4 0 0 6 0
D 0 5 6 0 1
E 3 0 0 1 0
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FIGURE 32: An adjacency matrix 
is symmetric (shown by axis of 
symmetry in orange) so a half 
adjacency matrix can be used 
to avoid repeating information to 
reduce storage. (Own Work)

FIGURE 31: Permutation invariance. The same graph is represented by all the adjacency matrices. 
Image retrieved from Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. (2021). A Gentle 
Introduction to Graph Neural Networks. Distill, 6(9), e33. https://doi.org/10.23915/distill.00033



3.2.3	 Graph Neural Networks

A way to solve issues of permutation invariance associated 
with adjacency matrices for neural networks is to use 
Graph Neural Networks (GNN). These preserve graph 
symmetries (permutation invariance) and are optimizable 
transformations on all attributes (nodes, edges, and global 
context) of the graph. By employing a ‘graph in graph out’ 
architecture, the connectivity of an input graph is preserved 
while the embeddings are transformed (Sanchez-Lengeling 
et al., 2021). 

Graph Convolutional Networks (GCN) are a type of GNN 
which use convolutional layers similar to convolutional 
layers in Convolutional Neural Networks (CNN) to capture 
patterns inside the data. In a convolutional layer of a CNN, 
a filter slides over patches of information and aggregates 
it. It doesn’t matter what order the filter slides over it. 
Hence, it is permutation invariant. Even though GCNs use 
graphs instead of images, the comparison is still useful to 
visualize how information is aggregated from neighbour 
nodes similar to neighbouring pixels in CNNs with the help 
of filters. This is shown in Figure 33. These filters are 
learned during the training process and contribute to the 
ability of the GCN to capture and propagate information 
through the graph structure. A schematic of a GCN 
architecture is shown in Figure 34a.

1*1=1 
0*0=0 
0*1=0 
1*0=0 
1*1=1 
0*0=0 
0*1=0 
1*0=0 
1*1=1

Message passing is used to exchange information from 
neighbouring embeddings (nodes, edges). This happens 
in 3 steps. This operation leverages the connectivity of the 
graph and is permutation invariant as well. This is shown 
in Figure 34b.

a)

b)
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FIGURE 33: Image Convolution  in CNNs. Edited image. Original 
retrieved from Dhiman, R., Joshi, G., & Rama Krishna, C. (2021). 
A deep learning approach for Indian sign language gestures 
classification with different backgrounds. Journal of Physics: 
Conference Series, 1950(1), 012020. https://doi.org/10.1088/1742-
6596/1950/1/012020

FIGURE 34: a) GCN architecture schematic displaying updates of node representations in a graph through the aggregation of neighboring 
nodes within a one-degree distance. b) message passes from an edge and its connected nodes to another node. Image retrieved from 
Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. (2021). A Gentle Introduction to Graph Neural Networks. Distill, 6(9), e33. 
https://doi.org/10.23915/distill.00033 



Message passing happens in 3 steps:
•	1 - Each embedding gathers the neighbouring 

embeddings/ messages

•	2 - Message aggregation happens by an aggregation 
function like sum

•	3 - The aggregated messages are updated using an 
update function that is usually a learned neural 
network

Information can also be shared between nodes and edges 
inside the GNN layer.

Through stacking GCN layers, through message passing 
and convolution, a node can gradually incorporate 
information from the whole graph.  How far a message 
travels is dependent upon the number of layers. For 
instance, if there are k layers, a node will capture 
information from k steps away (Sanchez-Lengeling et al., 
2021).

Problem : Embeddings too far apart

An issue arises with nodes being far apart from each other. 
A solution, called virtual edges, lies in having all nodes 
pass information to one another. However, this becomes 
computationally expensive for larger graphs. An alternate 
solution lies in using the global context vector (or master 
node) pass information between them building up a richer 
representation of the graph .

Solution

By conditioning the information of a specific attribute with 
respect to the others, we can harness them during pooling 
as all attributes of a graph have learned representations. 
For a given node, this includes considering information 
from neighbouring nodes, connected edges, and global 
information. To condition the new node embedding on 
these diverse sources of information, one can concatenate 
them directly. Alternatively, these sources may be mapped 
to the same space using a linear mapping and combined 
through addition (Sanchez-Lengeling et al., 2021). 

Sanchez-Lengeling et al. note the that if the node and edge 
don’t have information of the same shape or size, linear 
mapping can be used from the space of one type of 
embedding to another (2021). Alternatively it can be done 
by concatenation before the update function (Sanchez-
Lengeling et al., 2021). The decision to update which graph 
attribute first and in which order is an open area of 
research. 

Hyperparameter trends

It is useful to note some trends concerning training data 
and hyperparameters pertaining to a GNN model (Sanchez-
Lengeling et al., 2021)). 

Dimensionality 

Higher dimensionality of the learned representations for 
different graph attributes does not necessarily maximize 
higher bound performance but it does improve lower bound 
and mean performance.

Layers

The best performing models had two layers but mean 
performance increased with 4 layers. The lower bound 
performance tended to decrease after 4 layers due to 
dilution of node representations form many iterations.

Aggregation function

The sum function performs slightly better than those that 
used mean or max. There is no one-size-fits-all operation 
that is universally the best choice for GNN aggregations. 
‘Mean’ proves beneficial when nodes exhibit considerable 
variability in the number of neighbours or when a 
normalized view of local neighbourhood features is 
needed. On the other hand, ‘max’ is advantageous when 
emphasizing individual standout features in local 
neighbourhoods is the objective. The sum operation strikes 
a balance between mean and max operations. While 
commonly used in practice, it should be noted that the sum 
operation is not normalized, which means it can also 
accentuate outliers.

Attribute Communication

Increasing the communication between graph attributes 
(nodes, edges, globals), the better the performance  

 Conclusion

For sparsity, to reduce the space, one approach that could 
have been taken was to use a half-adjacency matrix 
instead of a full one to reduce the input size for 
computational efficiency as shown in Figure 32. This works 
for undirected adjacency matrices as they are symmetric 
across the diagonal (Sterrenberg, 2023). An alternate 
approach is using adjacency lists. Given the number of 
edges will be significantly fewer than the total entries in an 
adjacency matrix, computation and storage is skipped for 
the disconnected segments of the graph (Sanchez-
Lengeling et al., 2021). Another approach was to simplify 
the edge relationships and group them into polyedges. This 
technique simplifies the data. See Section 5.2 for details.
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3.3	 GENERATOR

3.3.1	 Generative Design

“Generative design varies the parameters of the problem 
definition while parametric design varies parameters of the 
geometry directly.” (Matejka et al., 2018 cited in Oh et al., 
2019)

The quote above describes how generative design is used 
as design generator rather than a design parametrizer 
allowing the designer the generate different boundary 
conditions for the generation of a variety of optimized 
designs under different boundary conditions (Oh et al., 
2019). There are different types of generative models 
including Variational Autoencoders, Generative Adversarial 
Networks, and Reinforcement Learning models.

3.3.2	 VAE

An Autoencoder is an unsupervised embedding algorithm 
which uses a 3 tiered system – an encoder, latent space, 
and a decoder. An input dataset is given. The encoder 
compresses this input into a lower dimensional structure 
only retaining its most prominent features. The decoder 
then reconstructs that as accurately as possible to give the 
output. Since the latent space is usually sparse which 
means sampling a latent vector can cause issues since 
data is not present there. This shortfall is addressed by 
Variational Autoencoders (VAE). It regularizes the latent 
space with a probabilistic distribution with a mean and 
covariance. To maintain predictability in the latent space, 
Kullback-Liebler (KL) divergence is added between the 
distribution of the latent space and a standard Gaussian 
(Regenwetter et al., 2022).

Given an observed variable x, a vanilla VAE introduces a 
continuous latent variable z and assumes that x is 
generated from z. This relationship is expressed as:

pθ(x, z) = pθ(x | z)pθ(z)

Here, θ represents the model parameters. The term pθ(z) 
is the prior distribution, commonly a simple Gaussian 
distribution. The conditional distribution pθ(x | z) describes 
the process of generating x from z and is typically modeled 
using a deep nonlinear neural network (Zhang et al., 
2016).

What is The Loss Function in a VAE?

Evidence Lower Bond (ELBO) is the loss function of a VAE. 
It is a combination of 2 two terms, the reconstruction loss 
and the regularization term, often called the KL divergence. 
The ELBO is a lower bound on the log likelihood of the data 
and is used as the objective function to be maximized 
during training(Burgess et al., 2018).

ELBO(φ) = Eqφ(z|x)[log pθ(x | z)] − DKL(qφ(z | x) || p(z )).

What is the Reparametrization Trick?

Latent space

After the encoder of the VAE maps input data to the latent 
space, the distribution of the latent variables is typically 
modelled as a multivariate Gaussian distribution (as each 
dimension of the latent space has its own mean and 
variance).

Ideally, the unique latent dimensions of the VAE should 
represent unique underlying features that provide 
variations to the generated data. This unfortunately is not 
the case with the Vanilla VAE, or simply, VAE. Changes in 
a single latent dimension often do not result in a single 
feature variation. This can be seen in Figure 36a. This 
makes the process of sampling from the latent 
unpredictable and chaotic so if it is hard to control features 
that the user requires. 

The prior p(z)) and the posterior qθ(z | x) distributions are 
modeled as Gaussians with diagonal covariance matrices. 
Typically, the prior is set to an isotropic unit Gaussian, 
N(0,1) (Burgess et al., 2018). 

During training, we need to backpropagate with respect to 
θ to minimize the ELBO. However, since the ELBO depends 
on z, which is sampled from the distribution qθ(z | x), we 
face a challenge. The Reparameterization Trick (Kingma 
et al., 2015) addresses this by decomposing z into a 
deterministic component and a stochastic component, 
enabling safe backpropagation through the sampling 
step.

z = μ + σ      ∈  

where ∈ ∼ N (0, 1), and μ and σ are the mean and the standard 
deviation of qφ(z | x). ∈ is a standard Gaussian variable that 
plays a role of introducing noise, and     denotes an 
element-wise product (Zhang et al., 2016). 
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FIGURE 35: Reparametrization trick. Image retrieved from 
https://www.youtube.com/watch?v=rZufA635dq4&ab_
channel=AlexanderAmini



3.3.3	 Variations of VAEs

For the issue highlighted above, variations to the VAE can be studied. Disentanglement provides a solution to this. 
According to Pastrana, this involves a combination of two types of VAEs (2022).  

•	β-VAE: adding a term on the KL divergence in the ELBO

•	C-VAE: conditioning the autoencoder by introducing labels to the data

β-VAE

Beta Variational Autoencoder (β-VAE) allows control over disentanglement. This allows singular latent dimensions to 
control singular characteristics allowing for greater control over the generated designs. By addition a term β on the 
regularization term whereby providing a weightage. If β is too large, there is larger disentanglement but the reconstruction 
loss term becomes smaller due to which the output loses fidelity. If β is too small, there is less disentanglement so the 
reconstruction loss term is large so the single latent dimensions may not be representative of single characteristics. The 
lowest value of β is 1 which corresponds to a Vanilla VAE. β needs to be calibrated either through quantitative methods 
by adding a linear classifier to the trained VAE – or through qualitative methods such as visual heuristics (Pastrana, 
2022).  

It should be noted, however, that β-VAE is a fairly new concept that was introduced in 2017 (Higgins et al., 2017). 
According to Fil et al., its brittleness and difficulty in defining disentanglement, and the inconsistency of metrics across 
datasets and models has been described (Fil et al., 2021). This view, however, is contradicted by Higgins et el., who 
compares it to GANs and describes how it is very stable to train unlike InfoGAN and DC-IGN, requiring no design decisions 
or assumptions about the data. They go on to describe how β-VAE consistently and robustly discovers more latent factors 
and learns cleaner disentangled representations even on challenging datasets such as celebA (Higgins et al., 2017). 

Figure 36b shows that the β term is not enough to allow single latent dimensions to learn unique features. It is also 
necessary to introduce labels into the dataset as done with C-VAEs. On a dataset of 60,000 images of the MNIST 
database, the methodology produced 3 interpretable visual features of the digits – their tilt, width, and line weight 
(Pastrana, 2022).

C-VAE

Conditional Autoencoder (C-VAE) allows for the addition of labelled (supervised) data to the input dataset. This allows 
the latent space to learn the interpretable latent space. While β-VAE is unsupervised learning, CVAE introduces 
supervised learning. This allows the possibility of generating outputs specific to a particular class label. 

By introducing labels during the training process of the variational autoencoder, the latent space can be conditioned to 
output novel samples specific to the input condition. This means that instead of just mapping the feature x, a label y is 
also added to the encoder and decoder (Ivasiuk & Misino, 2020).

p(x, z, y) = p(x | z, y)p(z | y)

The conditional VAE tries to maximize:

log pθ(x | y) = ∫z log(p(x | z, y)p(z | y))dz

while the loss function to minimize is:

ELBO(φ) = Eqφ(z|x,y)[log p(x | z, y)] − DKL(qφ(z | x, y) || p(z | y)).
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a) standard (vanilla) VAE

b) β-VAE, β=10

c) Conditional β-VAE, β=10

Conclusion

The combination of a C-VAE and β-VAE produces the best 
results as shown in Figure 36c - single latent dimensions 
represent unique features. 

3.3.4	 Generative Adversarial Network 
(GAN)

Generative Adversarial Network (GAN) is deep generative 
model that uses a discriminator and a generator that work 
against each other (maximizing and minimizing the loss 
function respectively to generate novel designs. Oh et al. 
(2019) have used GANs for optimization of the design of 
a  2D wheel based on three criteria: aesthetic quality, 
diversity, and robustness. Rawat & Shen (2019) have used 
WGANs for 3D structural topology optimization tasks with 
empolying CNNs as predictive surrogate models.

3.3.5	 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a branch of Machine 
Learning in which an agent learns decision-making by 
interacting with an environment (Regenwetter et al, 2022). 
The agent receives rewards or penalties based on its 
actions, aiming to maximize cumulative rewards over time 
through trial and error. Unlike other ML approaches, RL 
doesn’t rely on labels and is well-suited for tasks where 
the optimal strategy is uncertain. It finds applications in 
solving sequential decision-making problems across 
various domains. Existing research involves optimizing the 
structure and material distribution of a 2D wheel to meet 
performance criteria such as compliance minimization and 
similarity maximization (Jang et al., 2022). 
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FIGURE 36: A disentangled latent space with 
distinguishable features is represented only in c) where 
a conditional β-VAE is used. The features learnt are 
weight, tilt, and width. Image retrieved from Pastrana, R. 
(2022). Disentangling Variational Autoencoders. https://doi.
org/10.48550/arxiv.2211.07700



3.3.6	 Surrogate Model

A surrogate model is a predictive model that approximates 
a more computationally expensive real model. It requires 
inputs and outputs through which it generates a trend 
representative of the structure when the actual relationship 
between the two is unknown or far too computationally 
expensive. It may use machine learning but does not 
necessarily require it. The type of surrogate model that is 
appropriate for a particular case depends upon the data 
that is given and the desired model that is required. Its 
construction entails 3 steps (Williams & Cremaschi, 
2019).

•	1 - Sample point selection

•	2 - Training/ optimization of model parameters

•	3 - Evaluation of model 

Why is a surrogate model used for VAEs?

In the context of VAEs, a surrogate model can be used to 
save computational time to perform the Perfomance 
Evaluation on the generated output from the latent space. 
Instead of performing an FEA analysis again, the surrogate 
model may be able to predict the performance. This 
methodology had been used by Pavlidou (2022) and 
Sterrenberg (2023). To study where it performed in the 
architecture of the generator, a surrogate model was 
connected in one option to the output of the encoder, and 
in one to the output of the decoder. It was found that when 
connected to the output of the decoder, it provided 
promising results.

Selection of a surrogate model

There are different types of surrogate models that can be 
used depending on the type of relationship between the 
input and output data, and the desired application for the 
model. Williams & Cremaschi document their findings on 
8 different surrogate models. A diverse set of datasets were 
generated to model comprehensive evaluation of the 8 
models across different scenarios to develop insights 
about their performance.  It was found that Multivariate 
Adaptive Regression Spline Models (MARS) and single 
hidden-layer feed-forward Neural Networks (ANN) are 
well-suited for accurately approximating the design space, 
while Random Forest (RF) models are particularly effective 
for guiding optimization efforts towards optimal solutions 
within the design space (Williams & Cremaschi, 2019). It 
is important to note, however, that the performance of the 
surrogate model depends upon the type of dataset and 
nature of the optimization problem. For instance, a linear 
model may be used to model linear relationships may 
easily be interpretable whilst not being suitable to non-
linear relationships. Gaussian Processes may be useful in 
that case to quantify uncertainties. 

Since the dataset and nature of optimization dictate the 
use of surrogate models, it would be natural to draw on 
conclusions from similar design problems:

Artificial Neural Network (ANN)

Javanmardi & Ahmadi-Nedushan use the Optimized 
Artificial Neural Network (OANN) for optimizing the 
structure of a double-layer barrel vault. The OANN is a 
special type of ANN which is optimized to minimize the risk 
of over-fitting, which is a significant issue in learning neural 
networks. It is a suitable surrogate model for solving 
structural optimization problems efficiently and accurately 
(Javanmardi & Ahmadi-Nedushan, 2023). 

White et al. use a Gaussian Basis Network (GBF) which is 
a type of ANN in a topology optimization problem. It was 
trained using the Sobolev norm, which involves training 
the network with both function data and derivative data. 
This is valuable for sensitivity analysis and optimization in 
topology problems where derivative information is 
important. The model parameters being determined via 
optimization. This is because if the model has an objective 
function that is dependent on a variable, The rate of change 
of the variable (derivative) needs to considered in order to 
evaluate how the objective function behaves.

Shape-Preserving Response Prediction (SPRP)

Leifsson & Koziel use a physics based surrogate modelling 
approach called Shape-Preserving Response Prediction 
(SPRP) to optimize the shape of an aerodynamic 
component. SPRP is used to find the optimal configuration 
or parameters for a given system or device where the goal 
is to maximize or minimize an objective function while 
satisfying constraints (Leifsson & Koziel, 2016). 

Conclusion

To conclude, two types of surrogate models have been 
identified which can potentially be used. SPRP aligns with 
the optimization type (shape optimization) as well as being 
a physics-based approach it may be able to model the 
complexity of the seismic simulation. ANNs are useful for 
accurate approximation of the design space whilst OANNs 
reduce the risk of overfitting.
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3.3.7	 Gradient Descent 
(Optimization)

Gradient Descent Optimization is an optimization algorithm 
which minimizes the loss function. It does this by computing 
the gradient of the function at a given point and moves 
opposite to the direction of the slope increase by that 
computed amount. The process entails passing the training 
set through the hidden layers of the neural network and 
then updating the layer parameters by computing gradients 
derived from the training samples within the training 
dataset (Patrikar, 2019). 

How quickly the model learns determines the learning rate; 
a balance between efficiency and stability is sought. If the 
learning rate is too high, the model is unstable and may 
overshoot the global minima. If the learning rate is too low 
then it may get stuck in the local minima and be very 
sensitive to noise. This is shown in Figure 37.

There are 3 different methods of Gradient Descent 
optimization:

Batch Gradient Descent

In Batch Gradient Descent, all gradients are considered 
simultaneously, and the sum of errors is calculated to 
update all weights in a single epoch (Patrikar, 2019; Roy, 
2020). While effective for convex curves, this method 
becomes computationally intensive with inefficient in large 
batches, such as those encountered in sizable datasets 
(Patrikar, 2019). 

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) deals with the issue 
of BGD. With SGD, one example is processed at a time, 
and the weights are updated after calculating the gradient 
for each starting point, completing one epoch. Fluctuations 
allow it to jump to possibly better minima but at the cost of 
overshooting (Ruder, 2017).  

Min-batch Gradient Descent

Mini-batch Gradient Descent offers a balanced approach 
by incorporating advantages from both BGD and SGD. This 
method achieves two crucial goals. It ensuring more stable 
convergence  by reducing the variance in parameter 
updates. It also enhances the efficiency of computing 
gradients for mini-batches by capitalizing on optimized 
matrix operations prevalent in advanced deep learning 
libraries. While typical mini-batch sizes range between 50 
and 256, the choice may vary across different applications. 
Overall, mini-batch gradient descent stands out as the 
preferred algorithm for training neural networks (Ruder, 
2017).

3.3.8	 Evolutionary Algorithm 
(Optimization)

Evolutionary Algorithms are heuristic-based methods used 
to solve complex problems that resist efficient polynomial-
time solutions. These algorithms mimic natural selection, 
where fitter individuals thrive and less fit ones are 
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FIGURE 37: Different learning rates. Image retrieved from CS231n Convolutional Neural Networks for Visual Recognition. https://cs231n.
github.io/neural-networks-3/



eliminated. The process involves four key steps: 
initialization, selection, genetic operators, and termination. 
These steps correspond to facets of natural selection, 
allowing for modular algorithm design. Evolutionary 
Algorithms find application in combinatorial problems and 
can complement other methods by providing optimal 
starting points for further processing (Soni, 2018).

3.3.9	 Encoding Strategies 

In this paper, 3 encoding strategies were considered for 
encoding the labels of the Conditional VAE:

Label Encoding

In label encoding, each category/ label within a categorical 
variable is assigned a unique integer value (Al-Shehari & 
Alsowail, 2021). 

In label encoding, it is standard to assign integers to 
categorical variables instead of floats. This approach is 
used because label encoding converts categorical data 
into a numerical format suitable for machine learning 
algorithms. Using floats can create unnecessary complexity 
and may cause the algorithms to misinterpret the data. 
Therefore, it is recommended to use integer values for 
label encoding.

For example, for a categorical variable ‘City’ with the 
categories ‘New York’, ‘London’, and ‘Paris’, the label 
encoding might look like this:

‘New York’ : 0

‘London’ : 1

‘Paris’ : 2

One Hot Encoding

One-hot encoding is a technique in machine learning and 
data processing that converts categorical variables into a 
numerical format. In this approach, each category is 
represented by a binary vector with a single “hot” (1) bit 
and the rest “cold” (0). This method helps machine learning 
algorithms accurately interpret categorical data by 
eliminating any false ordinal relationships between 
categories (Al-Shehari & Alsowail, 2021). It is commonly 
used to enhance the performance of classification tasks 
involving categorical variables. Different integer values of 
Label Encoding may introduce biases. This is avoided by 
One-hot-encoders due to binary data. The dimensionality 
of the One-hot encoding depends upon the number of 
labels that are required. Therefore, for a high number of 
labels, the encoding becomes high dimensional and sparse 
which may not be desirable. 

For instance, the ‘City’ labels would be represented as 
follows;

‘New York’ : [1 0 0 0 ]

‘London’ : [0 1 0 0]

‘Paris’ : [0 0 1 0]

Sinusoidal Positional Encoding

Sinusoidal positional encoding is a technique used in 
Transformer models to incorporate information about token 
positions in a sequence. It involves using sine and cosine 
functions of varying frequencies to create positional 
embeddings (Vaswani et al., 2023). These embeddings 
have the same dimensionality as the input embeddings 
and are added together. By doing so, the model learns to 
attend to relative positions within the sequence without 
relying on recurrence or convolution. This approach has 
contributed to the Transformer ’s success in natural 
language processing tasks (Vaswani et al., 2023).

where pos is the position and i is the dimension of the 
positional encoding corresponding to a sinusoid.

3.3.10	 Sensitivity Analysis

The Sensitivity Analysis is used to analyze the effect of 
hyperparameters on the output of the model. It can be used 
to study how changes in hyperparameters affect the 
performance metrics of the model, such as accuracy, 
precision, recall, or any other relevant metric. This 
information can guide the hyperparameter optimization 
process by focusing on tuning the most influential 
hyperparameters to achieve the desired model 
performance. This can involve using techniques such as 
grid search, random search, or Bayesian optimization to 
systematically explore the hyperparameter space and 
identify the optimal values that lead to the best model 
performance.

In VAEs, hyperparameters such as the learning rate, batch 
size, number of latent dimensions, and the weight of the 
KL divergence term in the ELBO objective function can 
have a significant impact on the performance of the model. 
Optimizing these hyperparameters is crucial for achieving 
the best performance of the model.
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/0 4	 RESEARCH METHODOLOGY4

4.1	 INDIVIDUAL WORKFLOWS 

4.1.1	 Geometry Generation

The Geometry Generation involved generation of csvs with 
force densities in python. These were used to make 
COMPAS meshes that were saved and imported into 
Grasshopper. The COMPAS meshes were converted into 
a format for Grasshopper for visualization and Performance 
Evaluation. The main Geometry Generation workflow was 
carried out in python rather than Grasshopper to save 
computational time and provide easier connectivity with 
other scripts for Data Structuring, Performance Evaluation, 
and the Generator. A large dataset of meshes (10,000) with 
variable force densities for a given constant loading (40.0) 
and a set footprint (15m x 10m) with an equal mesh density 
(1 division per unit metre). 

For the holistic workflow to see all individual parts working 
together, See Figure and Figure 6 in Section 1.4. 
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FIGURE 38: Geometry Generation Workflow. (Own Work)
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4.1.2	 Performance Evaluation

Once the Geometry Generation was complete, the 
Performance Evaluation was performed using python and 
Grasshopper.  Firstly, the seismic weight of the building 
was calculated. The modal analysis was performed to 
check the dominant modes of vibration of the structure. 
The Time Period from the dominant modes was used for 
performing Response Spectrum Analysis, a linear dynamic 
analysis to derive the applied forces for the dominant 
modes. The seismic combination, Square-Root-of-Sum-
of-Squares (SRSS), was used to derive the combined 
loading for dominant modes followed by an FE analysis 
conducted in Grasshopper with Karamba. A PGA of 0.2g 
was used to simulate seismic activity in lateral directions 
in different simulations. The performance metrics in both 
directions were compared and the worst performing one 
was used. 

4.1.3	 Generator

The Generator consisted of a pipeline that used a 
Conditional Variational Autoencoder to learn the distribution 
of the dataset of 10,000 samples generated through the 
Geometry Generation process. The same training features 
that was used to train the VAE was used for training the 
surrogate model and the performance metrics from the 
Performance Evaluation were used as labels. This way it  
was able to predict the performance of meshes that had 
not been seen during training. Lastly, optimization was 
carried out that used the performance score of the new 
geometries sampled from the VAE generated using the 
surrogate model in an optimization loop where the latent 
space of the VAE was explored for better solutions. In the 
context of the gradient descent, this meant the gradient of 
the performance score. 

From the latent space of the VAE, new meshes could be  
sampled whose seismic performance was predicted by 

Neural Network surrogate models.
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FIGURE 39: Workflow of Performance Evaluation. (Own Work)
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FIGURE 40: Overall Workflow of the Generator connecting the CVAE to the surrogate model and optimization through Gradient Descent. 
Inspired by Gladstone, R. J., Nabian, M. A., Keshavarzzadeh, V., & Meidani, H. (2021). Robust Topology Optimization Using Variational 
Autoencoders (arXiv:2107.10661). arXiv. http://arxiv.org/abs/2107.10661
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4.1.4	 VAE
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FIGURE 41: Workflow for training the VAE / CVAE. (Own Work)



For the Variational Autoencoder, once the dataset of 10,000 samples had been generated and evaluated in Karamba 
for seismic performance, the data was restructured into an array of shape (10000, 27) where n is the number of samples, 
and 27 are the number of force densities of each sample. An additional feature was added to each sample later 
representing the thickness of the mesh so the shape changed to (10000, 28). The data was normalized so the maximum 
value was kept 1. Details of normalization of the thickness feature will be covered ahead in the Section 7.1.2. Height 
labels were later added to turn the VAE in to a Conditional VAE and 2 label encoding  strategies were explored - One 
Hot encoding and Sinusoidal Position encoding where a dimensionality of 58 and 28 were explored respectively 
concatenated with the 28 dimensional feature vector.  

10 random samples were excluded from the training to be used as test data to test the trained model at the end on 
unseen data. A validation split of 20% was used so 80% was used as training data while the remaining was used for 
validation. The hyperparameters were tuned over the course of several simulations; these are also shown in Figure 41. 
These include the number of epochs, batch size, learning rate, the latent dimension, and the beta term. The loss type 
used in all simulations was Mean Square Error as the features consisted of continuous data rather than discrete, which 
otherwise may have required Binary Cross Entropy (BCE) instead. 

Different architectures of the VAE were tested. After the required number of epochs were completed, the training was 
stopped. The aim was to end up with the simplest architecture (least number of layers and least number of neurons in 
each layer) for computational efficiency.

To determine whether the model was sufficiently trained or not, validation loss and training loss were plotted against 
epochs. If the model was sufficiently trained, there would be convergence. If not, the number of epochs was increased 
or the training rate was increased.

Select sample vector from latent space (z)

Start

Stop

Select desired condition (ĉ)VAE is 
conditioned?

no

yes

 ŷ

 ŷ

Decoded normalized feature vector (θ)

De-normalize feature vector(θ)
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FIGURE 42: Workflow for sampling from the VAE / CVAE. (Own Work)



Normalize the samples (θ)

Pre-processing features (θ)

Start

Stop

Architecture of the Surrogate Model

Split the dataset into training (80%), 
test  validation data (20%)

Reshape the data into (n, 28)

Set the hyperparameters

Pre-processing labels (y)

Set the thickness parameter

Training to get the prediction ŷ

batch size

number of neurons of 
each layer

normalized along with 
force densities

learning rate

activation function at 
layer

normalized 
independantly

thickness not included

number of epochs

loss type

number of layers
required 
epochs 

completed?

number of   
surrogate 

models (x)

no

yes

x

Normalize the samples (y) across 
each metric

Extracting best 10 samples in 
each of the three metrics

Select metric(s)

Reshape labels into (n,x)

Extracting worst results for each 
performance metric from both 

seismic directions for each sample 
of the dataset 

For the overall workflow to function, it was important that 
the surrogate model used the same feature dataset that 
was input into the VAE. Similar to the VAE, the feature 
dataset was normalized and reshaped into (10000, 27) 
(without thickness) and (10000,28) with thickness. Similar 
to the VAE, for all surrogate model simulations, to 
determine whether the model was sufficiently trained, 
validation and training loss curves were plotted against the 
epochs to look at convergence. If  there was no 
convergence, the number of epochs was increased or the 
training rate was increased before an assessment was 
made on the result. A single surrogate model was trained 
on the three SSS metrics as well separate surrogate 
models for each SSS metric in addition to Mass and Height 
as shown in Figure 43.

4.1.5	 Surrogate Model
BLF UTL IDR MAS HGT
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FIGURE 43: Surrogate Model Workflow. (Own Work)



Start

Stop

Selection of a input mesh

required 
iterations 

completed?

no

yes

Normalization and reshaping 
of the input mesh (θ)

VAE

Surrogate Model

Compressing the tensor 
into latent vecor (z)

Predicting the performance (ŷ) 
through the surrogate model

Calculating the gradient

Setting the learning rate and number of 
iterations

Set weights for objectives

Set number of objectives to optimize

Select metric(s)

Decoding(z) to get the decoded 
tensor (θ)

z = z - learning_rate * gradient

 ŷ’(z) = 
δ ŷ   
δz   

4.1.6	 Gradient Descent Optimization

Buckling Load Factor

Utilization

Interstorey Drift Ratios

Mass

Height
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FIGURE 44: Gradient Descent Workflow. Inspired by the work of Pavlidou (Own Work)

BLF

UTL

IDR

MAS

HGT



If ŷ is Buckling Load Factor, then 

If ŷ is Utilization, then 

If ŷ is Interstorey Drift Ratio, then 

The workflow for the optimization involved selection of a 
input mesh. This step depended on the requirements of 
the user and the scenario. In the literature, Gladstone et 
al. had recommended finding a good starting point by 
randomly sampling 100 samples from the latent space and 
predicting the best performing one (Gladstone et al., 2021). 
In case the user would like to perform the optimization on 
a sample of this choice, he would have had an initial mesh 
to start with, so then that step can be replaced.

The sample was reshaped into (1,28) and normalized 
before compressed into a latent vector (z) of the VAE. After 
decoding z, the performance of the output tensor, ŷ, was 
then predicted. Then the performance tensor (ŷ) could be 
optimized with respect to the latent vector (z). 

In this case, the optimizer performed gradient descent by 
using a Neural Network. ŷ is calculated according to the 
following rules depending on what performance metric was 
being considered.

Failure conditions are taken into account in each 
performance metric and ŷ is calculated accordingly.

The gradient of the performance tensor (ŷ) with respect to 
z is updated according to the following rule: 

The learning rate determines the step size in each iteration. 
Once the iterations are completed, the mesh has been  
optimized.

For Utilization and Interstorey Drift Ratios, a global minima 
is sought to give the optimized result. However, for Buckling 
Load Factor, a global maxima is sought to give the 
optimized result. The minus sign in front of the gradient of 
Buckling Load Factor allows for this change and updates 
the update rule accordingly as shown below. 

Furthermore, it becomes unnecessary to try to decrease 
(Utilization, Interstorey Drift Ratio) or increase (Buckling 
Load Factor) that metric if the metric is already under 
acceptable limits (no failure). To account for such 
conditions, the gradient update is configured accordingly 
by adding additional conditions.

(Equation I)

(Equation II)

(Equation III)

(Equation IV)

(Equation V)

(Equation VI)
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In order to constrain the optimized meshes to be within a certain height threshold and to minimize material usage by 
minimizing mass, the gradient function was altered to account for multiple objectives instead of  a single objective. 

To consider multiple objectives, the different gradients were aggregated to form the overall gradient. Weights were 
included for each gradient to allow the user to optimize specific metrics over others. 

The performance metric (ŷ3) may be Buckling Load Factor, Utilization, or Interstorey Drift Ratio. It should be noted that 
instead of selecting one performance metric, multiple performance metrics may be selected by additional terms in the 
gradient descent optimization - and the weights can be changed accordingly. For our case, as the likelihood of failure 
in Utilization was by far the highest, so Utilization was considered as the only performance metric (ŷ3) in most simulations.  
Nonetheless the same workflow can be used to optimize other metrics simultaneously by applying different weights.

For single objective optimizations, the gradient function was as mentioned below:

(Equation VII)
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TABLE 02: Output Parameters for both SLS and 
ULS. (Own Work)

4.2	 CONDUCTING PERFORMANCE EVALUATION 

For conducting the Performance Analysis, due to the geometric complexity of doubly curved vaults, a numerical approach 
(in Karamba) was employed rather than an analytical one. This was done through Response Spectrum Method (RSA), 
a linear dynamic analysis. Since this is also integrated inside Grasshopper, it provided an easy transition from the 
Geometry Generation phase. 

The scheme for the computation of the seismic response is visualized in Figure 45. This is based on the model used by 
Marseglia et al. (2020).

4.2.1	 Performance Metrics

All of the output parameters from the Performance 
Evaluation are shown in Table 01. However, only 3 were 
chosen  for the surrogate model. based on Strength, 
Stability, and Stiffness (SSS) (Heyman, 1966) indicating 
Ultimate Limit State (ULS) and Serviceability Limit State 
(SLS). These metrics from that were used are shown in 
Table 02.

SLS 

This was conducted to check the serviceability limit state. 
The maximum interstorey drift of the vault was tabulated 
from this.

ULS

This was conducted to check the ultimate limit state. 
Utilization and Buckling Load Factor were assessed.

Other metrics were saved in case necessary for future use 
but were not used in the final surrogate model. These other 
metrics included maximum bending stress that would 
indicate failure in bending induced by lateral (seismic) 
loads when the applied stress exceeds the flexural 
strength. The maximum principal stress indicated if failure 
will occur in compression or tension when applied loads 
exceed the compressive strength or tensile strength. 
Average bending stress and average principal indicated 
stresses building up over a long period of time, which may 
not exceed the ULS but it may cause weakening over 
time.

F = ∑F i

F 

Performance metric
0 Buckling_Load_Factor
1 Utilization
2 Interstorey_Drift_Ratios
3 Avg_Displacement
4 Max_Displacement
5 Avg_Shear_Force
6 Max_Shear_Force
7 Avg_Bending_Moment
8 Max_Bending_Moment
9 Max_Compresive_Stress

10 Max_Tensile_Stress
11 Max_Principal_Stress

TABLE 01: All Output Parameters from Performance 
Evaluation. (Own Work) 

Load 
case Property

ULS
Utilization

Buckling Load Factor
SLS Interstorey Drift Ratio
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FIGURE 45: Seismic response scheme. (Own Work) 



4.2.2	 Methods And Softwares Used 
For The Analysis 

A balance of speed and accuracy was required as 10,000 
simulations needed to be run efficiently. As the geometry 
was produced in Grasshopper, it was preferable to use a 
plugin for Grasshopper in keeping with the workflow. 
Nonetheless simulations in ABAQUS were also run, but 
mostly for validation purposes. 

Karamba and Alpaca4d were explored. Alpaca4d is a 
plugin for Grasshopper developed on top of OpenSees. 
While it was specifically made for running dynamic 
analysis, it is still under development, therefore containing 
a considerable number of software defects. Therefore, its 
results needed to be first validated before moving on with 
it. 

A simple case of a cantilevered beam was considered and 
simulations were run in Karamba and Alpaca and verified 
with hand calculations. Alpaca gave correct results for 
mass participation and Time periods (as verified by similar 
results in Karamba and ABAQUS). This was also true for 
internal reactions for line elements (beams), but it did not 
give accurate internal reactions (stresses, deflections) for 
shell elements. As the vaults needed to be modeled as 
shells, this would not work for the project. Moreover, Alpaca 
was found to be incompatible with the computer that was 
going to be used to run the 10,000 Performance Evaluation 
simulations in TU Delft Bouwkunde’s VR Lab. For this 
reason, Alpaca proved to be useful but only as a validation 
tool for modal analysis but not for the seismic analysis 
afterwards. 

For the seismic analysis, it was initially considered running 
non-linear analysis but it was found inappropriate for the 
project due to the number of simulations that needed to be 
run as it was far too time-consuming. Moreover, a non-
linear analysis would only be possible in ABAQUS where 
the workflow would have had to be revisited as manual 
pre-processing was required to convert the imported rhino 
geometry into a mesh for ABAQUS. These steps would 
have had to be automated and that was not possible within 
the limited time-frame of the project.

A Linear Time History Analysis was considered in Alpaca 
but it took longer than was computationally feasible. In 
addition, instead of exciting the ground, point loads had to 
be applied on the building which get accelerated with the 
earthquake which may not have yielded accurate results 
and as mentioned earlier, results for shells are also 
inaccurate in Alpaca.  For this reason, a linear dynamic 
analysis was chosen – the Response Spectrum Analysis. 
This would take into account the dominant modes - each 
with a minimum mass participation ratio of 5% combining 
to give a total mass participation ratio equal to or greater 
than 90% of the total mass, as prescribed by the Eurocode 
(image of Eurocode mass participation). This would 
produce more realistic results than the linear static 

approach of Equivalent Lateral Force method and still be 
fast enough for running a large number of simulations – 
with each simulation taking 3.0-4.6 seconds.

Properties
Macromodel

Units Unit (mortar + 
masonry)

Young’s Modulus E GPa 3.2

Possion ratio v - 0.15

Density ρ kg/
m3 1219.4

Tension
Gfl N/

mm 0.14

ft MPa 0.24

Compression
Gfc N/

mm 9.44

fc MPa 5.9
Flexure fflex MPa -

Cohesion c MPa -
Friction angle φ deg -

TABLE 03: Material property for Macromodel. Material properties 
for the macromodel are retrieved from López, L., Rodríguez, D., & 
Fernández, P. (n.d.). Using a Construction Technique to Understand 
it: Thin-Tile Vaulting. 

To carry out the analysis on a continuous model as is the 
case in the Linear Dynamic analysis, the brick and mortar 
would behave in combination like a single masonry unit. 
The properties are shown in Table 03. 
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FIGURE 46: Eurocode 8 formulation on Modal Response Spectrum 
Analysis. Image taken from International Organization for 
Standardization. (2004). EN 1998-1:2004 Eurocode 8: Design of 
structures for earthquake resistance - Part 1: General rules, seismic 
actions and rules for buildings. https://www.phd.eng.br/wp-content/
uploads/2015/02/en.1998.1.2004.pdf



4.2.3	 Site

The location was chosen based on sesimicity and prevalence of earth construction. Pakistan is divided into 5 seismic 
zones (Zone 1, Zone 2A, Zone 2B, Zone 3, and Zone 4) in increasing order of seismicity level. A medium seismicity 
location was chosen based on the literature in the previous sections where it was concluded in resources that thin tile 
vaults reinforced with basalt geo-grids may be used in low to medium seismic regions.  According to Figure 48, the 
Khuzdar District, in the province of Balochistan, in Pakistan, houses predominantly adobe construction. It also lies in a 
seismic zone where low to high seismicity is found. A location in Zone 2B, was selected corresponding to a Peak Ground 
Acceleration of 0.2g - a medium seismicity level. The dataset was also generated based on this Peak Ground Acceleration 
(PGA). The location can be seen marked in Figure 47.
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FIGURE 47: Sesimic Zoning map of Pakistan according to Building Code of Pakistan (BCP). Edited by Author. Image Taken from Siddique, 
M. S., & Schwarz, J. (2015). Elaboration of Multi-Hazard Zoning and Qualitative Risk Maps of Pakistan. Earthquake Spectra, 31(3), 1371–
1395. https://doi.org/10.1193/042913EQS114M 



 Tahir Zahid Ishrat - 5698928 
58

Tahir Zahid Ishrat - 5698928 
58INTRODUCTION

Tahir Zahid Ishrat - 5698928 
58RESEARCH METHODOLOGY

FIGURE 48: Building type region map of Pakistan. Image taken from Siddique, M. S., & Schwarz, J. (2015). Elaboration of Multi-Hazard 
Zoning and Qualitative Risk Maps of Pakistan. Earthquake Spectra, 31(3), 1371–1395. https://doi.org/10.1193/042913EQS114M



Constants to calculate spectral accelerations from 
the Design Spectrum

Characteristics

Ground Type (macro) Type 1
Ground Type (micro) B

importance factor (γ1) 1
Behaviour factor (q) 1.5
Number of storeys 1

Peak Ground Accelration (PGA) 2.0 g

4.2.4	 Response Spectrum Analysis

After the Time Periods were taken out for the dominant 
modes, the following was done for all modes

Residences belong to an Importance factor, (γ1), of 1.0 
corresponding to Importance Class II. The behaviour 
factor, q, was taken as 1.5, assumed for unreinforced 
masonry according to the Eurocode formulation given 
below.

TABLE 04: Constants to calculate spectral accelerations from the 
Design Spectrum. (Own Work)

Design Spectrum. 
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FIGURE 49: Eurocode 8 formulation on Design Spectrum. Image 
taken from International Organization for Standardization. (2004). 
EN 1998-1:2004 Eurocode 8: Design of structures for earthquake 
resistance - Part 1: General rules, seismic actions and rules for 
buildings. https://www.phd.eng.br/wp-content/uploads/2015/02/
en.1998.1.2004.pdf

FIGURE 50: Behaviour factor for unreinforced masonry. Table taken 
from En 1990: Eurocode - basis of structural design. (n.d.). https://
www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf



Vertical Distribution of Forces

As the main dataset consisted of a single storey structure, 
the base shear was distributed into the first storey base of 
the vault and the rest of the vault. It was done using the 
following expression:

Seismic Combinations

The forces were combined for the different modes using  
the Square Root of the Sum of Squares (SRSS) method.

where Fi is the force for a specific mode and n is the 
number of different modes.

Base Shear

Base shear was calculated according to the expression.

Other constants

The seismic weight of the structure was calculated using 
factors as relayed in the Eurocode.
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FIGURE 52: Eurocode 8 formulation for the vertical distribution 
of force. Image taken from International Organization for 
Standardization. (2004). EN 1998-1:2004 Eurocode 8: Design of 
structures for earthquake resistance - Part 1: General rules, seismic 
actions and rules for buildings. https://www.phd.eng.br/wp-content/
uploads/2015/02/en.1998.1.2004.pdf

FIGURE 51: Eurocode 8 formulation of Base Shear. Image taken 
from International Organization for Standardization. (2004). EN 
1998-1:2004 Eurocode 8: Design of structures for earthquake 
resistance - Part 1: General rules, seismic actions and rules for 
buildings. https://www.phd.eng.br/wp-content/uploads/2015/02/
en.1998.1.2004.pdf



The calculation of combination coefficent for variable, ψEi,  
action is further given by

As mentioned in Figure X, the value of φ = 1.0 is considered 
as it is a single storey structure.

The value of ψ2 was considered to be 0.3 according to the 
values for residential areas as shown in Figure 54.

Interstorey Drift

Whilst the other two performance metrics used (Buckling 
Load Factor and Utilization) were calculated directly by the 
FEA model in Karamba, calculations for interstorey drift 
depended on Eurocode formulations. It should be less than 
0.010h, where h is the storey height, which was 3 meters 
in for all samples.
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FIGURE 53: Combination coefficients. Image taken from  En 1990: 
Eurocode - basis of structural design. (n.d.). https://www.phd.eng.br/
wp-content/uploads/2015/12/en.1990.2002.pdf

FIGURE 54: Recommended values for ψ2 factor. Image taken from 
En 1990: Eurocode - basis of structural design. (n.d.). https://www.
phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf

FIGURE 55: Interstorey Drift. Image taken from International 
Organization for Standardization. (2004). EN 1998-1:2004 
Eurocode 8: Design of structures for earthquake resistance - Part 1: 
General rules, seismic actions and rules for buildings. https://www.
phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf



Δ1

dc = Δ1/H1

H1

Since the importance class was II, the value for the reduction factor, v , was taken as 0.5. The design interstorey drift, 
dr ,  was evaluated as the difference of the average lateral displacements, ds , at the top and bottom  of the storey and 
calculated using the following expression as specified in Section 4.3.4 of the Eurocode:

ds = qd. dc

where,

ds is the displacement of a point of the structural system induced by the design seismic action

qd is the displacement behaviour factor assumed to be q unless otherwise specified

dc is the displacement of the same point of the structural system, as determined by a linear analysis based on the design 
response spectrum. 

The results of the Performance Evaluation are shown later in Section 06.
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FIGURE 56: Interstorey Drift visualization. (Own Work)



/0 

Since variation in force densities served as the input 
variable that was used to generate a variations in geometry 
to produce the large dataset for the generator, it is 
important to understand the effect of varying force densities 
on the geometry. Figure 58 shows that for a mesh with 
uniform force densities for all edges, the effect on the 
height of the vault of increasing force densities diminishes 
rapidly. The simulation was carried out with a constant load 
(10.0). It should be noted that varying the load and force 
densities serve the same purpose as they produce inverse 
geometric effects. Throughout the paper, for simulations 
over a dataset, the load is kept constant so that the effect 
of varying force densities can be seen.

5	 RESULTS : GEOMETRY GENERATION

5.1	 FORCE DENSITIES

As mentioned earlier in the paper, the method that was 
used to generate geometries of the vault was by varying 
the force densities. The flat 2D projection of the vault was 
composed of a flat mesh. Each edge of the mesh was 
assigned a force density denoting how much force per unit 
length is carried. Negative force densities correspond to 
tensile structures while positive force densities correspond 
to compression structures. This is shown in Figure 57. The 
scope of this paper is limited to compression structures so 
only positive force densities will be discussed.

5

See Section 4.1.1 for the workflow.
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FIGURE 57: Positive Force Densities (left) and Negative Force 
Densities. (Own Work)

FIGURE 58: Relationship of Height of vault with force density. (Own 
Work)



5.2	 POLYEDGES VS SINGLE EDGES

By assigning force densities to polyedges, we also reduce the size of the representative dataset considerably. For 
instance, a mesh of 15x10 divisions would be represented by an adjacency matrix of shape 176x176 which flattens to 
form a list of 30,976 values, where each value represents the force density of each single edge connection. Since 
adjacency matrices are symmetrical, if we only consider half of the adjacency matrix, we get 176x175/2 values which 
flattens to form 15,400 values.

In contrast to this, if we only consider polyedges, there is no need to look at connectivity or edge-based relationship 
representations such as adjacency matrices or any other type of graphs. This is because, for a quad mesh, all the edge-
based relationships are the same, only the value of the force density for each polyedge matters. Therefore, each mesh 
can be represented as a list with a size equal to the number of polyedges present. For the same mesh density of 15x10 
divisions, a nested list would have a total of 27 flattened values – 16 values in one direction, while 11 values in the 
perpendicular one. 

To conclude, by keeping the following data-structure, the size of each sample has been reduced by 99.91% (relative to 
adjacency matrix) and 99.82% (relative to half-adjacency matrix). This may be visualized in Figure 59. 

The greater the force density of the vault, the shallower the part of the vault becomes. Since we are dealing with tile 
vaults, the degree in variability of force densities is restricted to polyedges rather than single edges. Figure 59 illustrates 
the difference. Such forms as Figure 59a would not be possible to construct for practical purposes out of thin tile vaults. 
The term polyedges here represents the series of continuous edges connected. This is further highlighted in Figure 
59b.

a) edge based force densities b) polyedge based force densities
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FIGURE 59: Force density change in single edges (left) and polyedges (right). (Own Work)



a) adjacency matrix (30,976 values)

15m

1m

1m

10m

The size of the mesh is kept constant throughout all samples of the dataset. The dimensions are 15mx10m. The size was chosen 
to represent the case of footprint of a 150m2 house. The mesh density was kept constant at 1 division per metre.

b) half-adjacency matrix (15,400 values)
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c) polyedge list (27 values)

FIGURE 60: Reduction of the dataset size. (Own Work)



An example is shown below of a sample taken from the ‘crease’ dataset. It highlights how multiple edges are grouped 
into a single polyedge that may be either a row or a column. This is represented in the form of a nested list where,

number of polyedges =  nx,y+1

For the dataset, x=15, y=10, so nx = 11, ny = 16. Each value in the nested list corresponds to the force density, q, of the 
polyedge.
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col_1

row_16

row_1

row_3

row_7

row_13

row_5

row_11

row_9

row_15

row_2

row_4

row_8

row_14

row_6

row_12

row_10

col_5 col_9col_3 col_7 col_11col_2 col_6 col_10col_4 col_8

[  [ q1, q2, q3,q4,q5,q6,q7,q8, q9, q10, q11]  ,  [q12,q13,q14, q15, q16,q17,q18,q19,q20, q21, q22, q23, q24, q25, q26, q27  ]  ]

polyedge = column polyedge = row

COLUMN 

Individual 
Edge 

number

1 2 3 4 5 6 7 8 9 10 11

1 31 62 93 124 155 186 217 248 279 310
3 33 64 95 126 157 188 219 250 281 311
5 35 66 97 128 159 190 221 252 283 312
7 37 68 99 130 161 192 223 254 285 313
9 39 70 101 132 163 194 225 256 287 314
11 41 72 103 134 165 196 227 258 289 315
13 43 74 105 136 167 198 229 260 291 316
15 45 76 107 138 169 200 231 262 293 317
17 47 78 109 140 171 202 233 264 295 318
19 49 80 111 142 173 204 235 266 297 319
21 51 82 113 144 175 206 237 268 299 320
23 53 84 115 146 177 208 239 270 301 321
25 55 86 117 148 179 210 241 272 303 322
27 57 88 119 150 181 212 243 274 305 323
29 59 90 121 152 183 214 245 276 307 324

ROW

Individual 
Edge 

number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 61
63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 92
94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 123

125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 154

156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 185
187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 216

218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 247

249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 278

FIGURE 61: Representation of polyedges and their relationship to force densities in a creased dataset. (Own Work)



5.3	 MAKING THE POLYEDGES

The COMPAS library was used to generate mesh geometries using python and grasshopper. A ghpython script (python 
script in Grasshopper) was provided by Robin Oval which generated a mesh for constant force densities for all edges. 
The script was modified to include grouping of edges into polyedges and assigning force densities to these polyedges 
separately. Another script was provided by Oval which included already grouped polyedges but due to software 
compatibility issues, it was not used. 

In order to group the edges into polyedges, the output of the compas script was analyzed from Grasshopper. This 
numbering of edges was studied for different mesh densities to derive patterns for numbering the mesh edges. It was 
found that 7 basic numbering sequences existed. The sequence repeated as the mesh-density in the y-axis was 
increased. This is visualized in Figure 62. Therefore, the same numbering pattern could be used for different mesh 
densities in the y-axis. As shown in Figure X, the same numbering sequence happens when y=27 as well as when y=13.  
The first polyedge is shown in the figure with which the numbering begins.
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FIGURE 62: Pattern recognition of the first polyedge of a mesh of y dimension from COMPAS meshes in Grasshopper. The 7 repeating 
patterns are highlighted (Own Work)



Figure 63 shows the 7 different patterns highlighted earlier 
in Figure 62 as A,B,C,D,E,F,and G. The pattern represents 
the numbering sequence for the rest of the polyedges. 

However, it was found that the sequence changed if the 
COMPAS mesh was generated in python rather than in the 
Grasshopper environment. These conflicts were resolved 
and the sequence was updated accordingly. An example 
of the conflicts is shown in Figure 64.

5.4	 DATASETS

Different types of datasets were created to study the effect 
of different parameters to see what was the effect on 
performance. 10,000 samples were to be generated for the 
final dataset to be used for the Generator. 

•	Uniform force densities

•	Creases

•	Randomized force densities

Creases allowed controlled variability while increasing the 
design space keeping randomness limited to specific 
polyedges for a given sample. Randomized force densities, 
however, introduced complete randomness (within a 
probability distribution) for all polyedges for a given 
sample.

DATASET: uniform force densities

Edge 
number

mesh number
0 1 2 3 4 5

column_1 5 3 2 1 0.6 0.3

column_2 5 3 2 1 0.6 0.3

column_4 5 3 2 1 0.6 0.3

column_5 5 3 2 1 0.6 0.3

column_6 5 3 2 1 0.6 0.3

column_7 5 3 2 1 0.6 0.3

column_8 5 3 2 1 0.6 0.3

column_9 5 3 2 1 0.6 0.3

column_10 5 3 2 1 0.6 0.3

column_11 5 3 2 1 0.6 0.3

row_1 5 3 2 1 0.6 0.3

row_2 5 3 2 1 0.6 0.3

row_3 5 3 2 1 0.6 0.3

row_4 5 3 2 1 0.6 0.3

row_5 5 3 2 1 0.6 0.3

row_6 5 3 2 1 0.6 0.3

row_7 5 3 2 1 0.6 0.3

row_8 5 3 2 1 0.6 0.3

row_9 5 3 2 1 0.6 0.3

row_10 5 3 2 1 0.6 0.3

row_11 5 3 2 1 0.6 0.3

row_12 5 3 2 1 0.6 0.3

row_13 5 3 2 1 0.6 0.3

row_14 5 3 2 1 0.6 0.3

row_15 5 3 2 1 0.6 0.3

row_16 5 3 2 1 0.6 0.3

row_17 5 3 2 1 0.6 0.3
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FIGURE 63: The 7 patterns of how different dimensioned COMPAS meshes are ordered in Grasshopper. Pattern recognition of all edges for 
a specific y-axis dimension from COMPAS meshes in Grasshopper. (Own Work)

FIGURE 64: Discrepancy in edge numbering patterns in meshes 
formed in Grasshopper and directly in python in COMPAS. (Own 
Work)



DATASET: uniform force densities

Edge 
number

mesh number
0 1 2 3 4 5

column_1 5 3 2 1 0.6 0.3

column_2 5 3 2 1 0.6 0.3

column_4 5 3 2 1 0.6 0.3

column_5 5 3 2 1 0.6 0.3

column_6 5 3 2 1 0.6 0.3

column_7 5 3 2 1 0.6 0.3

column_8 5 3 2 1 0.6 0.3

column_9 5 3 2 1 0.6 0.3

column_10 5 3 2 1 0.6 0.3

column_11 5 3 2 1 0.6 0.3

row_1 5 3 2 1 0.6 0.3

row_2 5 3 2 1 0.6 0.3

row_3 5 3 2 1 0.6 0.3

row_4 5 3 2 1 0.6 0.3

row_5 5 3 2 1 0.6 0.3

row_6 5 3 2 1 0.6 0.3

row_7 5 3 2 1 0.6 0.3

row_8 5 3 2 1 0.6 0.3

row_9 5 3 2 1 0.6 0.3

row_10 5 3 2 1 0.6 0.3

row_11 5 3 2 1 0.6 0.3

row_12 5 3 2 1 0.6 0.3

row_13 5 3 2 1 0.6 0.3

row_14 5 3 2 1 0.6 0.3

row_15 5 3 2 1 0.6 0.3

row_16 5 3 2 1 0.6 0.3

row_17 5 3 2 1 0.6 0.3

5.4.1	 Uniform force densities

The script generated vaults where force densities of all 
polyedges was the same. This is termed as uniform mesh 
density throughout the rest of the paper.

A high value of force density corresponds to a greater force 
per unit length for edge. This creates shallower vaults for 
higher force densities. The change in seismic performance 
of varying the force densities for uniform vaults will be 
discussed in the next chapter.

Table 05 shows examples of uniform mesh densities and 
the corresponding meshes are visualized in Figure 65. 

a) mesh_0: uniform dataset

b) mesh_3 : uniform dataset

c) mesh_5: uniform dataset

TABLE 05: Uniform Force Densities Dataset. (Own Work)
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FIGURE 65: Meshes from the Uniform Force Densities Dataset. 
(Own Work)



5.4.2	 Creases

Different creases were formed by increasing the force 
density of specific polyedges while keeping force-densities 
of the rest constant. In this case, the force densities of the 
rest of the polyedges were kept 1 while the force densities 
of the creases were randomly sampled from a uniform 
distribution of mean = 150 and standard deviation = 30. 
Figure 66 visualizes the creases corresponding to a sample 
from the dataset. 

Constraints were coded inside the script for crease 
formation such that a minimum distance between 
consecutive parallel creases would be maintained. This 
distance would also be maintained between the edge and 
the first crease. This was done to avoid flattening of 
meshes due to the presence of consecutive high force 
densities spaced apart at short distances. Flat meshes 
perform poorly (as later highlighted in Section 6.2.2). 
Another reason for the introduction of these constraints 
were practical considerations such as constructability in 
making densely creased vaults.

To generate the dataset, all possible crease combinations 
were extracted using itertools in python, where each 
crease was assigned a force density sampled randomly 
from the uniform distribution. 

DATASET: creases

Edge 
number

mesh number
0 1 2 3 4 5

column_1 1 1 1 1 1 1

column_2 1 1 1 1 1 1

column_4 1 1 1 137 137 170

column_5 1 1 1 1 1 1

column_6 1 1 94 1 1 1

column_7 118 100 1 1 1 1

column_8 1 1 1 127 1 1

column_9 1 120 1 1 147 1

column_10 1 1 1 1 1 140

column_11 1 1 1 1 1 1

row_1 1 1 1 1 1 1

row_2 1 1 1 1 1 1

row_3 1 1 1 1 1 1

row_4 1 1 93 1 198 93

row_5 1 1 1 1 1 1

row_6 1 1 1 1 1 1

row_7 1 1 1 1 1 1

row_8 95 131 1 1 1 1

row_9 1 1 1 1 1 1

row_10 1 1 1 1 1 1

row_11 1 1 1 1 1 1

row_12 1 1 1 217 1 1

row_13 1 1 1 1 1 1

row_14 1 96 1 1 1 1

row_15 1 1 1 1 1 1

row_16 1 1 1 1 1 1

a) mesh_0 : creases dataset

b) mesh_1 : creases dataset

TABLE 06: Creased Dataset. (Own Work)
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FIGURE 66: Meshes from the Creased Force Densties Dataset. 
(Own Work)

FIGURE 67: Normal Distribution force densities at creases. (Own 
Work)



The introduction of constraints and combinations allowed 
for greater control over the crease dataset. However,  this 
also meant greater inclusion of user bias. This would also 
be reflected in sampling from the VAE which would only 
produce samples similar to the dataset; this is later covered 
in Section 7.1.1. 

5.4.3	 Randomized force densities

In this dataset, bias was removed from the Geometry 
Generation process. Instead of assigning randomized force 
densities to specific polyedges, all polyedges were 
assigned randomized values. While the normal distribution 
used for creases only gave very high force densities, a 
different distribution was required which would result in a 
high probability of values and a low probability of high 
ones. Force densities were randomly sampled from values 
normally distributed in a logarithmic scale. This was done 
to increase the probability of sampling lower force densities 
than higher ones as a mesh containing high values would 
result in a flattened mesh as shown in Figure 69b.

This method reduced control over the generated dataset. 
This allowed for generation of less desirable samples in 
terms of seismic performance. At the same time, it also 
allowed for generation of more novel samples that may not 
have been considered intuitively of instead of ones pre-
conceived by the architect/engineer.  

For different datasets, the effects of different parameters 
on performance will be elaborated in Section 6.2.5. This 
section deals only with generation of the geometry for 
these datasets.

log_min = math.log(0.2) 

log_max = math.log(100) 

mean = math.log(1)  

standard_deviation = (log_max - log_min) /4 

a) mesh_40 : randomized dataset

b) mesh_30 : randomized dataset
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FIGURE 69: Meshes from Randomized Force Densities Dataset. 
(Own Work)FIGURE 68: Python code for generating distribution for randomized 

force densities. (Own Work)



DATASET: randomized

Edge 
number

mesh number
6 10 12 20 30 40

column_1 0.1 6.3 2.6 2.1 0.5 0.2

column_2 1.1 0.8 0.1 1.3 2 0.1

column_4 0.2 0.6 1.1 0.2 1.7 1.4

column_5 0.2 0.5 0.5 0.3 9.9 5.5

column_6 0.3 3.1 1 0.1 0.5 4.4

column_7 0.2 6 0.3 1.5 7 1

column_8 4.6 0.4 1 0.2 8 10

column_9 1.9 1.3 0.4 2.9 2.2 0.3

column_10 0.6 4.1 1 1.4 0.9 8.5

column_11 4.3 3.7 0.6 0.1 0.2 1.4

row_1 10 1.7 12.3 3.9 0.8 6.6

row_2 1.9 0.9 3 0.5 3 1.7

row_3 0.3 0.3 0.2 1.4 0.7 2.3

row_4 0.4 0.4 0.1 0.6 1 1.6

row_5 1 6.5 0.4 3.3 0.7 0.8

row_6 0.8 1.6 1.2 0.1 0.1 0.1

row_7 3.2 0.6 1.1 0.2 4.9 0.3

row_8 5.3 1 0.8 0.5 0.3 0.1

row_9 1.4 0.9 12.1 0.3 5.2 0.6

row_10 4.7 0.4 0.4 1.3 0.2 0.8

row_11 1.6 2.2 4.2 0.9 0.9 0.4

row_12 0.6 0.1 7.1 2.1 1.2 0.1

row_13 0.1 0.2 1.2 0.1 0.4 0.2

row_14 1.6 0.1 0.2 0.6 1.2 14.5

row_15 0.8 2 3.6 0.2 1.4 2.5

row_16 0.8 1 1 0.1 2.8 0.6

row_17 0.1 2.2 0.7 1.5 1.1 0.9

a) mesh_6 : randomized dataset

c) mesh_12: randomized dataset

b) mesh_10 : randomized dataset

d) mesh_20 : randomized dataset

TABLE 07: Randomized Force Densities Dataset. (Own Work)
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FIGURE 70: Log Normal Distribution of randomized force densities. 
(Own Work)

FIGURE 71: Meshes from Randomized Force Densities Dataset. 
(Own Work)



/0 6	 RESULTS: PERFORMANCE EVALUATION6

See Section 4.1.2 for the workflow.
The vault was modeled with different boundary conditions. 
Initially, the vault was modeled as directly supported on 
the floor for simplicity. Later it was supported on the 
structure representative of the actual house. Adding a 
complexity incrementally allowed analysis of the vault as 
an isolated element initially and then analyzing it in the 
broader context with the rest of the structure. 

To check whether a vault may behave similar in different 
storey structures, the force densities were kept constant  
but the loading was varied. As mentioned earlier, this would 
equally affect all of the polyedge force densities uniformly.   
Figure 73 shows the performance of the same basic vault 
structure with increasing loading for a 3-storey structure, 
1-storey structure, and one that is directly supported on 
the floor. It was interesting to note that there were 
behavioural changes noted in the different cases. The best 
seismically performing vault in terms of lowest utilization, 
highest buckling load factor, and lowest displacement, was 
not the same in all cases (1-storey, 3-storey, isolated 
vault). 

Therefore, it can be concluded that seismic performance 
of a vault is unique for a particular structure in relation to 
the number of storeys that structure has. This is makes 
sense as a taller/shorter structure would influence the Time 
Period of its natural vibration and therefore would be affect 
the base shear.

6.1	 BOUNDARY CONDITIONS

The design spectrum was calculated. Figure 72 shows the 
spectrum. All 10,000 samples had Time Periods in the 
range between 0.08s and 0.13s.
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FIGURE 72: Response Spectrum of Model. (Own Work)
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FIGURE 73: Performance for single storey, 3-storey and vault supported on ground. (Own Work)



6.1.1	 Vault

From the results, the following were known for a vault 
(supported directly on the ground):

•	Translational mass participation in lateral directions x 
and y is negligible. There is a high mass participation 
in the z axis (axis parallel with gravity) 

•	Rotational mass participation in x and y is high. There 
is negligible mass participation in the rotational  z axis

For seismic analysis, considering that conventionally the 
dominant mode is taken in the direction of the lateral load 
(translation x or y) but it is negligible in these cases, the 
model without supporting walls may not represent the 
actual dominant mode as one with supporting walls. 
Moreover, the seismic weight would also be significantly 
less than one with the rest of the structure. This would give 
a seismic force much smaller than one in reality. Due to 
these reasons, it would not be correct that seismic analysis 
done on an isolated vault supported on the ground could 
be used for a structure where it is used as a roof slab/floor 
slab of the upper storey.

Once results from the Karamba model were validated with 
those from the ABAQUS and Alpaca Model, the rest of the 
structure was modeled adding more complexity in the next 
step.

Modal Analysis validation

Mode 
number

Natural Frequency / Hz
Karamba Abaqus

Mode 1 3.64 3.74
Mode 2 6.42 6.35

Mode 3 6.81 6.71

Mode 4 8.94 8.95
Mode 5 9.47 10.31
Mode 6 11.84 11.21

TABLE 08: Comparison of Natural Frequency of the same mesh 
through validation in Abaqus of Karamba model results. (Own Work)
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FIGURE 74: Modal Analysis in Abaqus (left) and in Karamba (right) showing first 3 modes. (Own Work)



6.1.2	 Vault + rest of the structure

The structure was assumed as a one-storey building where 
the vault was the roof slab. 

It was considered that load-bearing walls would support 
the vault and the walls would be made from earth having 
the same material properties as the earth material in 
macro-model (See Table 03 in Section 4.2.2 for reference). 

Walls

This was initially modelled as walls in Abaqus. As shown 
in Figure 75, the results from the modal analysis show 
atypical behaviour in the different modal states.  These 
elements were found to be very stiff and did not represent 
masonry walls realistically – especially because there are 
no openings for doors and windows. Similar results were 
also found in Karamba.

Columns

Next, instead of the walls, bernoulli elements were used 
to model columns with equivalent bending stiffness as the 
walls. Two different cross-sections were calculated – one 
for the corner columns and one for the other columns. This 
approach was in line with estimated behaviour in the modal 
analysis. This is shown in Figure 79
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FIGURE 75: Modal Analysis showing first 3 modes of 1 storey vault 
with walls modeled as solids in Abaqus. (Own Work)

FIGURE 76: Modal Analysis showing first 3 modes of 1 
storey vault with columns in Alpaca4d. (Own Work)



Figure 77 and Figure 78 show how different the modes of vibrations are with columns as compared to walls
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FIGURE 77: Modal Analysis showing first 3 modes of 3 storey vault 
with walls modeled as shells in Karamba. (Own Work)

FIGURE 78: Modal Analysis showing first 3 modes of 3 storey vault 
with columns in Alpaca4d. (Own Work)
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However, this approach did not capture the shear stiffness 
correctly. An amendment was suggested to include 
appropriate bracings between consecutive columns for this 
that would account for the loss in shear stiffness. This 
would have also been a viable option but the structure was 
revisited afterwards which removed the application of this 
model.  
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FIGURE 79: Equivalent Bending Stiffness Column stiffness to that of walls. (Own Work)



Shear Walls

The overall structure of the building was revisited and it was reconsidered whether a building with earthen masonry 
walls would be appropriate against seismic activity. It was found in the literature that such structures with unreinforced 
masonry are highly susceptible to collapse in seismic areas due to the brittle nature of the material and its high seismic 
weight. Appropriate strategies for reinforcement were identified suitable for the type of construction that the project 
entails; as the building typology was for low-income homes in remote areas, construction guidelines for non-engineered 
structures in seismic regions were studied. These included local guidelines (AKAH Seismic Housing Report BACIP) and 
international guidelines (Auroville Earth Institute).

The structure was composed of a ring beam that supported 
the vault-slab which was supported, in turn, by shear walls. 
Unreinforced walls were not modelled. The shear walls 
were placed at corners of the structure which are the most 
vulnerable places for tensile cracks to form. Long 
unreinforced walls greater than 4.5m were supported by 
external buttresses with depth 0.75m. This is equivalent to 
3 times the thickness of the walls (0.25m) as required as 
shown in Figure 81.  This was the final structure that was 
used for running the Performance Evaluation on the 
dataset (See Figure 82).

T

More than 4.5m

More than 4.5m

T

T

T

T

2T to 3T
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FIGURE 80: Vulnerability of Adobe Structures in Seismic events. Tarque, N., Sayın, E., Rafi, M.M., Tolles, E.L. 
(2021). Behaviour of Adobe Construction in Recent Earthquakes. In: Varum, H., Parisi, F., Tarque, N., Silveira, 
D. (eds) Structural Characterization and Seismic Retrofitting of Adobe Constructions. Building Pathology and 
Rehabilitation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-74737-4_2

FIGURE 81: Butressing / Crosswalls needed for unreinforced 
masonyry walls greater than 4.5m. https://dev.earth-auroville.com/
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Appropriate literature could not be found to estimate the 
material properties for reinforced masonry so material was 
assumed as unreinforced masonry as that of the macro-
model of the vault; an assumption was made that high 
tensile zones would be identified, and tensile cracks would 
be accommodated by adding reinforcement in those places 
at a later stage in the design process. The same assumption 
was also valid for the vault itself where basalt geo-grid 
masonry would be applied at a later stage. For details into 
the basalt geo-grid reinforcement, please refer to Section 
2.3.4.

Table 09 shows the performance indicators that were taken 
out from the Performance Evaluation. However, for the 
surrogate model, only the Buckling Load Factor, Utilization, 
and Interstorey Drift Ratios were used to account for failure 
in Stability, Strength, and Stiffness respectively (See Table 
10).  Table 12 also shows the properties of the modal 
analysis for the selected samples shown. This was done 
to check the mass participation for each sample and their 
Time Periods, and whether it met the requirements for 
Eurocode.

Simulations were carried out with the applied force in x 
direction and y direction separately. For every sample, the 
lower performance in x and y was taken (minimum buckling 
loading factor, maximum utilization, maximum interstorey 
drift).

DATASET: randomized

Performance metric
Mesh number

mesh_1 mesh_2 mesh_3 mesh_4 mesh_5
Buckling_Load_Factor 20.384 2.468 20.807 17.458 21.273

Utilization 12.469 11.034 5.908 10.041 9.830
Interstorey_Drift_Ratios 0.0033542h 0.00841904h 0.00197305h 0.00251683h 0.00287915h
Avg_Displacement/mm 10.051 21.939 6.192 9.438 8.500
Max_Displacement/mm 30.015 76.820 17.778 26.988 26.866
Avg_Shear_Force/KN 1.233 0.370 1.249 1.568 1.368
Max_Shear_Force/KN 12.666 3.052 9.481 13.098 16.628

Avg_Bending_Moment/KNm 0.614 0.092 0.469 0.722 0.559
Max_Bending_Moment/KNm 5.055 0.580 2.278 3.965 4.088

Max_Compresive_Stress/MPa -0.996 -1.551 -0.315 -0.804 -0.802
Max_Tensile_Stress/MPa 3.314 3.222 1.492 2.719 2.615

Max_Principal_Stress/MPa 0.022 0.035 0.017 0.019 0.020

DATASET: randomized

Performance metric
Mesh number

mesh_1 mesh_2 mesh_3 mesh_4 mesh_5
Buckling_Load_Factor 20.384 2.468 20.807 17.458 21.273

Stability_Failure? Safe Safe Safe Safe Safe
Utilization 12.469 11.034 5.908 10.041 9.830

Strength_Failure? Failure Failure Failure Failure Failure
Interstorey_Drift_Ratios 0.0033542h 0.00841904h 0.00197305h 0.00251683h 0.00287915h

Stiffness_Failure? Safe Safe Safe Safe Safe
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FIGURE 82:  Final structure with shear walls and ring beams. (Own 
Work)

FIGURE 83: Modal Analysis of final structure in Karamba. First 3 
modes are shown. (Own Work)



DATASET: randomized

Performance metric
Mesh number

mesh_1 mesh_2 mesh_3 mesh_4 mesh_5
Buckling_Load_Factor 20.384 2.468 20.807 17.458 21.273

Utilization 12.469 11.034 5.908 10.041 9.830
Interstorey_Drift_Ratios 0.0033542h 0.00841904h 0.00197305h 0.00251683h 0.00287915h
Avg_Displacement/mm 10.051 21.939 6.192 9.438 8.500
Max_Displacement/mm 30.015 76.820 17.778 26.988 26.866
Avg_Shear_Force/KN 1.233 0.370 1.249 1.568 1.368
Max_Shear_Force/KN 12.666 3.052 9.481 13.098 16.628

Avg_Bending_Moment/KNm 0.614 0.092 0.469 0.722 0.559
Max_Bending_Moment/KNm 5.055 0.580 2.278 3.965 4.088

Max_Compresive_Stress/MPa -0.996 -1.551 -0.315 -0.804 -0.802
Max_Tensile_Stress/MPa 3.314 3.222 1.492 2.719 2.615

Max_Principal_Stress/MPa 0.022 0.035 0.017 0.019 0.020

DATASET: randomized

Performance metric
Mesh number

mesh_1 mesh_2 mesh_3 mesh_4 mesh_5
Buckling_Load_Factor 20.384 2.468 20.807 17.458 21.273

Stability_Failure? Safe Safe Safe Safe Safe
Utilization 12.469 11.034 5.908 10.041 9.830

Strength_Failure? Failure Failure Failure Failure Failure
Interstorey_Drift_Ratios 0.0033542h 0.00841904h 0.00197305h 0.00251683h 0.00287915h

Stiffness_Failure? Safe Safe Safe Safe Safe

Though only 5 samples are shown in Table 10, they show a significant trend of failure in strength (utilization) of the vaults 
but no failure in buckling.

TABLE 09: All Performance Metrics of Randomized Force Densities Dataset. (Own Work)

TABLE 10: Performance Metrics to be used as labels for surrgoate model of Randomized Force Densities Dataset, and Failure state. (Own 
Work)
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DATASET: randomized

Mesh 
number

Modal Analysis Metrics

Mass Participation   
total cumulative 

(x,y,z) / %
Time Period 

/ s
Mass 

Participation 
total / %

Mode

Mass 
Participation 

for 
dominant 

modes / %

Base 
shear /

KN
  Eurocode 

satsisfied?

mesh_1 [82.75, 115.82, 
48.92] [0.11] 100.91 [3] [100.91] 130.37 yes

mesh_2 [55.04, 48.52, 
19.79] [0.09] 36.6 [9] [16.52] 85 no

mesh_3 [78.79, 67.25, 
47.51] [0.11] 54.34 [3] [27.07] 131.33 no

mesh_4 [119.89, 106.52, 
59.73] [0.11] 92.07 [5] [60.81] 137.12 yes

mesh_5 [111.76, 68.48, 
50.2] [0.11] 54.5 [3] [27.85] 130.74 no

mesh_6 [69.42, 66.21, 
21.63] [0.1, 0.08] 48.3 [8, 11] [19.52, 

11.76] 123.3 no

mesh_7 [112.85, 118.38, 
60.8] [0.11] 90.89 [4] [90.89] 138.83 yes

mesh_8 [131.91, 106.32, 
37.63] [0.1] 95.22 [7] [47.68] 102.71 yes

mesh_9 [90.84, 98.73, 
39.72] [0.1] 74.18 [8] [66.36] 102.24 no

mesh_10 [120.31, 116.9, 
58.6] [0.11] 98.3 [4] [37.57] 135.06 yes

mesh_11 [98.56, 75.71, 
23.59] [0.1, 0.08] 48.09 [7, 11] [21.09, 

13.04] 128.79 no

DATASET: randomized

Mesh

Physical Characteristics

Mass / kg Height of vault 
/ m Thickness / m

mesh_1 39552.84929 1.474194 0.095
mesh_2 28502.54607 1.562264 0.035
mesh_3 39842.25422 1.505192 0.095
mesh_4 41598.92123 2.361411 0.095
mesh_5 39663.53523 1.665554 0.095
mesh_6 29194.68304 2.461413 0.035
mesh_7 42119.57844 2.606465 0.095
mesh_8 32719.5475 1.643492 0.06
mesh_9 32567.36816 1.255298 0.06

mesh_10 40975.36613 2.105192 0.095
mesh_11 30495.84377 3.316291 0.035

TABLE 11: Physical characteristics of Randomized Force Densities Dataset. (Own Work)

TABLE 12: Modal analysis results of Randomized Force Densities Dataset. (Own Work)
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6.2.1	 Variation in Seismic Zone

20 samples each from 3 different types of datasets were 
tested in high, medium, and low seismicity and analyzed. 
The 3 three different seismicity levels could be tested with 
ground accelerat ions inside the same province, 
Balochistan. In Zone 2A (0.12 g), the location was the in 
the Chaghi District Zone. A location in Zone 2B (0.18g) was 
in the Khuzdar District while a location in Zone 3 (0.28g) 
was in the Awaran District. These are shown in Figure 84. 

Seismic zoning BCO - PGA (g)

Zone 2A (0.08g - 0.16g) - low 

Zone 2B (0.16g - 0.25g) - medium

Zone 3 (0.25g - 0.33g) - high

Chaghi

Awaran

Khuzdar

a) uniform force densities dataset

For the dataset where only uniform densities were present 
for each vault, according to the data, there is a large 
increase in interstorey drift ratios in for higher seismicity. 
The interstorey drift ratio increased with increasing 
seismicity by 39.5% for low to medium and 65.2% for 
medium to high. The reduction in the buckling loading 
factor and increase in utilization only becomes more 
significant for taller vaults. The reduction in performance 
with a decrease in height of the vault is also notable for all 
three performance metrics caused by an increase in force 
density.

The three different levels of PGA were applied to the same 
datasets. Different conclusions were drawn for the effect 
of increasing seismicity for different types of datasets - 
uniform force densities, creases, and randomized force 
densities.

6.2	  PERFORMANCE COMPARISON
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FIGURE 84: Seismic Zoning map of Balochistan, Pakistan 
according to Building Code of Pakistan (BCP). Edited by Author. 
Image Taken from Siddique, M. S., & Schwarz, J. (2015). 
Elaboration of Multi-Hazard Zoning and Qualitative Risk Maps 
of Pakistan. Earthquake Spectra, 31(3), 1371–1395. https://doi.
org/10.1193/042913EQS114M FIGURE 85: Correlation of performance and variation in seismicity: 

uniform dataset. (Own Work)



b) creased dataset c) random force densities dataset

For a dataset with creases, a similar trend was present as   
with the uniform force densities. However, what is notable 
is the where a larger effect of increasing seismicity is noted 
in utilization and buckling where the crease was in the 
direction parallel to the seismic load. The interstorey drift 
ratios for especially for vaults with perpendicular creases 
did not get affected by seismic loading.

For the dataset with randomized force densities, similar to 
the uniform densities dataset, there was only a noticeable 
increase in the Buckling load factor for taller vaults. It was 
interesting to note that utilization was reduced uniformly 
regardless of height (by 3.4% per 1g)- different than the 
other two datasets. The interstorey drift ratio also increased 
with increasing seismicity by 68.6% for low to medium and 
42.9% for medium to high.
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FIGURE 86: Correlation of performance and variation in seismicity: 
creased dataset. (Own Work)

FIGURE 87: Correlation of performance and variation in seismicity: 
randomized dataset. (Own Work)



b) creased dataset

a) uniform densities dataset

DATASET 21

DATASET 16

DATASET 22

force density of 
crease = 20

force density of 
crease = 50

6.2.2	 Variation in Force Densities

The effect of increasing force densities was analyzed in the uniform force densities dataset, and the creased dataset to 
determine how performance was affected. There was no pattern to consider in the randomized dataset because of the 
nature of its randomness.

If each sample has polyedges with all the same force densities ( uniform force densities), an increase in force densities 
causes a reduction in height of the vault. This means that the buckling load factor is reduced, and utilization and 
displacement increases. 

Figure 89 shows that if the force density of the crease polyedge is increased from 20 to 50, there is a 5.5% increase in 
buckling load factor increasing the stability but also a 29.2% increase in utilization and 11.3% increase in displacement. 
However, it should be noted that because the rest of the force densities of the dataset were identical, a higher force 
density in the crease produced shallower vaults.   
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FIGURE 88: Correlation of performance and variation in force densities: uniform dataset. (Own Work)

FIGURE 89: Correlation of performance and variation in force densities: creased dataset. (Own Work)



Figure 90 shows that there is a prominent trend in how the stability, stiffness, and strength increase with thickness for 
despite randomized force densities.

The correlation of height with performance is an important consideration for performance as mentioned earlier. Therefore, 
it is important to ascertain how important thickness is for shallower or deeper vaults in terms of performance. As the 
height increases, a divergent spread between different thicknesses is noted for vaults of the same height. This is shown 
in Figure 91. Contrary to this, the spread  of utilization and interstorey drift converges to a minimum with an increase in 
height. In conclusion, the effect of thickness on performance in stiffness and strength reduces with the increase in height 
whereas the effect of thickness on performance in stability increases with height. Thin vaults become stiffer with 
increasing height comparable to thicker (double/triple layered) vaults but the this is for a 4-5m high vault which cannot 
be used as a floor slab for a house. The same cannot be said for thin vaults in terms of buckling and strength. 

6.2.3	 Variation in Number of Layers of Tiles

As mentioned in the earlier chapters, the dataset was composed of three different thickness for vaults (0.035m, 0.06m, 
and 0.095m) representing single, double, and triple layers of tiles. 

DATASET: randomized

Performance metric
Number of layers of tiles

single layer to double layer tiles double layer tiles to triple layer 
tiles

Buckling_Load_Factor 213.4% increase 59.1% increase
Utilization 16.3% reduction 26.6% reduction

Interstorey_Drift_Ratios 38.5% reduction 62.3% reduction
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FIGURE 90: Correlation of Performance and variation in thickness. (Own Work) 

FIGURE 91: Correlation of Performance, thickness, and height. (Own Work)



DATASET: randomized

Performance metric
Number of layers of tiles

single layer to double layer tiles double layer tiles to triple layer 
tiles

Buckling_Load_Factor 213.4% increase 59.1% increase
Utilization 16.3% reduction 26.6% reduction

Interstorey_Drift_Ratios 38.5% reduction 62.3% reduction

From the results of the seismic analysis, there is a notable 
difference especially in the buckling load factor when 
thickness (number of tile layers) is changed. The average 
reduction/ increase in performance is noted in Table 13 for 
change in thickness from single layers to 2 layers and 2 
layers to 3 layers across the entire 10,000 samples. The 
buckling load factor increases with a 213.4% increase from 
a transition from a single to a double layer and a 59.1% 
increase further to a triple layer vault. The strength also 
increases with a 16.3% and 26.6% reduction in utilization 
respectively for the same change in thickness. The 
stiffness also increases with a 38.5% and 62.3% reduction 
as well.

TABLE 13: Performance change with number of layer of tiles/ thickness. (Own Work)
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6.2.4	 Variation in Support 
Conditions 

To determine appropriate support conditions for the vault, 
simulations were carried out for fixed supports and pinned 
supports separately. 

Figures 92, 93, and 94 show the performance results for 
different datasets. Table 14 shows the percentage 
difference in performance for each dataset between the 
supporting conditions for the 20 samples.

a) uniform force densities dataset

For the uniform force densities dataset, there was better 
performance against buckling, in utilization, and in stiffness 
for fixed supports as indicated in the graph. As the uniform 
force density reduces, the height of the vault increases and 
the difference in performance in ut i l izat ion and 
displacement for fixed and pinned supports reduces. The 
opposite happens in buckling; reduction in force densities  
increases the buckling load factor.

Percentage difference in support conditions

Performance 
metric

DATASET: 
uniform 

force 
densities

DATASET: 
creases

DATASET: 
randomized 

force 
densites

Buckling 
Load 

Factor
26.0% 53.4% 27.2%

Utilization 26.2% 6.0% 2.8%
Interstorey 

Drift Ratios 90.7% 22.6% 9.1%

TABLE 14: Percentage difference in support condition. (Own Work)
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FIGURE 92: Pinned vs Fixed supports: uniform dataset. (Own Work)



b) creased dataset c) random force densities dataset

For different creases, the performance with fixed supports 
was better than that with pinned supports in terms of 
buckling and displacement. However, in some vaults, there 
was better performance in utilization for pinned supports.

For randomized force densities, there was no clear pattern 
in utilization. There was better performance for fixed 
supports overall in buckling. Some samples performed 
better in displacement with fixed supports. 

In conclusion, the fixed support was chosen for overall 
better performance for the main dataset as it also  
composed of meshes with uniform force densities.
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FIGURE 93: Pinned vs Fixed supports: creased dataset. (Own 
Work)

FIGURE 94: Pinned vs Fixed supports: random dataset. (Own 
Work)



6.2.5	 Variation in Sample Datasets 

To find the which dataset strategy would give comparably better performing solutions, different sample datasets were 
compared made from different input strategies.

a) random force densities vs uniform force densities

b) creased vaults (into thirds of length) vs uniform force densities

c) creased vaults (into thirds of length) vs small vaults (third of original length)

DATASET 19

DATASET 17

DATASET 17

DATASET 16

DATASET 16

DATASET 15

For the same height, the performance of the uniform force densities dataset under buckling, utilization, and displacement 
was better than the randomized dataset. However, it should be noted that this was just 30 samples.

The performance of the uniform force densities was also better in all three performance metrics than the creased dataset. 
As the force densities of the creases became closer to the rest of the vault, the performance increased - so sharp creases 
performed qualitatively worse than smoother creases. This can be seen in Figure 96.

The creased dataset had creases at every third along the longer dimension of the vault. This was compared to a smaller 
vault measuring the third of the longer dimension. It was found that for the same height, the performance of the smaller 
vault was significantly better than the creased vault. It should be noted that no supports were present at the creases. 
There were only supports at the outer perimeter.

supports at outer perimeter
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FIGURE 95: random force densities vs uniform force densities. (Own Work)

FIGURE 96: creased vaults (into thirds of length) vs uniform force densities. (Own 
Work)

FIGURE 97: creased vaults (into thirds of length) vs small vaults (third of original 
length). (Own Work)



d) segmented vaults (third of original length) supported separately vs small vaults (third of original length)

e) segmented vaults (third of original length) supported separately vs uniform force densities

DATASET 18

DATASET 18

DATASET 15

DATASET 16

In theory, the smaller vault should behave the same as a vault segmented in the same dimension if each of the segments 
had with fixed supports. The hypothesis was correct which meant that performance could be increased by segmentation.

The uniform force densities dataset had performed better than all other previous datasets. However, it was noted that 
the performance of the segmented vault was significantly better than that of uniform force densities.

supports also along the 
whole perimeter of each 

segmented vault
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FIGURE 98: segmented vaults (third of original length) supported separately vs small 
vaults (third of original length). (Own Work)

FIGURE 99: segmented vaults (third of original length) supported separately vs 
uniform force densities. (Own Work)



uniform force densities vault

creased vault (at thirds along length)

segmented vault (at thirds along length)
seismic 
load

seismic 
load

seismic 
load

seismic 
load

randomized force densities vault

Conclusion 

In conclusion, the best performing strategy was found to be segmentation of the vault into smaller vaults that are 
supported along each of their own perimeter. Each segment behaves like a uniform force densities vault with uniform 
stress distribution avoiding build-up of stress concentrations. It can be seen in Figure 100 how introduction of creases 
introduces areas of stress concentrations subsequently increasing risk of failure especially forming high tensile zones 
the bottom of the vault. These would induce cracking. This also happens in the randomized force densities where variation 
in force densities causes unequal load distribution causing stress concentrations. 

Even though they are the best performing strategy for seismic optimization of vaults, segmented meshes were not used 
as they would require a different data-structure altogether as the support conditions were not taken into consideration 
by the current data-structure of a nested list of force densities. Moreover, it was not clear whether a large enough dataset 
for the VAE could be generated from just this strategy alone. The final dataset was made from randomized force densities 
to remove user bias and have a large variation is generated data for novel samples. 50 meshes of uniform force densities 
were also included in the dataset  as this strategy gave the second best performances (for the limited sample sizes that 
were tested). 
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FIGURE 100: Stresses on different types of vaults. (Own Work)



6.2.6	 Best Performing Samples in the Main Dataset

The main dataset composed of 9950 samples of randomly generated force densities and 50 samples of uniform force 
densities. The 50 best performing samples were chosen from each performance metric and plotted.
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FIGURE 101: Top 50 best performing meshes in Buckling Load Factor from the main (randomized) dataset. (Own Work)

FIGURE 102: Top 50 best performing meshes in Utilization from the main (randomized) dataset. (Own Work)

FIGURE 103: Top 50 best performing meshes in Interstorey Drift Ratios from the main (randomized) dataset. (Own Work)



From Figures 100, 101, and 102, we can conclude the following: 
•	Stability: For the best performing samples, there is no failure in buckling except for one sample that performs the 

4th best under interstorey drift (mesh_3835). 

•	Strength: For all meshes, even the best performing ones in utilization, it can be seen that all have failure in utilization. 
This can be attributed due to failure due to tensile stresses resulting in cracking.

•	Stiffness: There is no failure in interstorey drifts for any mesh within 1 standard deviation from the mean.

It can be concluded that primarily failure will happen in Utilization first. All samples failed in Utilization.

6.2.7	 Performance of Uniform Force Densities in the main Dataset

From the comparative results of samples from randomized force densities against those generated from uniform force 
densities at the initial stage, it seemed likely that the highest of the best performing meshes would be those of uniform 
force densities. It was found the number of uniform meshes that were also one the 50 best performing meshes out of 
the main dataset of 10,000 samples in buckling, utilization, and interstorey drift ratios were 4,7, and 12 respectively. 
However, it should be noted that another parameter that governed performance was the thickness of the vault which 
was also randomly assigned to each sample. Therefore, a fair estimate would be to check whether a thick mesh with 
uniform force densities failed to make it to the top 50 best meshes. For this reason Figure 104, has been plotted.

For each performance metric, we can see the force densities of the uniform meshes. 

Meshes with maximum thickness (95mm) were found to be perform best in buckling - as confirmed by the analysis earlier 
on correlating significant increase in buckling load factor with increased thickness. These belong to meshes with force 
densities between 0.7 to 1.3 - lower thickness meshes in between with FD (force density) =0.9, 0.11,0.12 did not perform 
as well. This is not the case with utilization where high thickness meshes like FD=1.0 (95mm), and FD=1.1 (60mm) 
performed poorer in utilization than FD=1.2 with lower thickness (35mm). There was range of force densities that 
performed well under buckling (FD = 0.7-1.3), as well as utilization (FD = 0.3-1.2). However, all meshes except one (with 
35mm low thickness) performed well for interstorey drifts below FD = 1.3
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FIGURE 104: Relationship of the force densities and thickness of Uniform meshes and whether they are in the top 50 best meshes for each 
category. (Own Work) 
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Creased Dataset

See Section 4.1.4 for the workflow of the VAE.

7.1.1	 Latent Distribution of the 
Creased Dataset vs Random Dataset

Two different types of datasets were used. Some notable 
differences were found in the distribution. Although the 
same set of hyperparameters are unique to a particular 
dataset, the set of hyperparameters and the architecture 
used for comparison will be kept constant to reduce the 
number of variables for the comparison for the sensitivity 
analysis.

HYPERPARAMETERS: latent_dimension = 4, beta = 0.2, 
epochs = 600, batch_size = 64, learning_rate = 1E-03

See Section 4.1.3 for the overall workflow of the overall Generator which includes the VAE, Surrogate model and Gradient 
Descent optimizer. All the modeling for this chapter was done in Python using the Tensorflow library.
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7.1	 VARIATIONAL AUTOENCODER

FIGURE 105: VAE architecture + hyperparameters - creased vs 
random dataset. (Own Work)

FIGURE 107: Predictions vs Ground Truth - creased dataset. (Own 
Work)

FIGURE 106: Training loss vs Validation Loss - creased dataset. 
(Own Work)



Randomized Dataset Figure 107 and Figure 108 show in how each case the test 
data is predicted. Each graph represents one mesh with 
its 27 force densities. In each case, the predictions differ 
significantly. For the creased dataset, the VAE seems to 
make good predictions based on the closeness of the red 
and green lines. This may be due to the fact that is able to 
recognize the distribution of the dataset and generate good 
predictions based on that dataset. However, for the 
randomized dataset, this is not the case, because even 
though samples from the ground truth contain highly 
variable force densities, the predictions are mostly uniform 
along a mean. This may be because the creased dataset 
was made from samples generated using a pattern as 
discussed in the earlier sections so it is able to detect the 
distribution.

However, in the randomized dataset, for every mesh, as 
each force density  from the 27 was generated randomly 
from a logarithmic distribution of 10,000 values, there isn’t 
a pattern to be captured in the  randomness makes up the 
dataset. 

In the workflow of this project, the purpose of the VAE, 
however, involves just producing novel samples rather than 
predicting the test samples - and the distribution of the 
latent space represents how well novel samples may 
perform. As illustrated earlier in Section 6.2.5, large 
variations in force densities are likely to produce poor 
performing meshes. A latent space that samples more 
uniform force densities like the one from the randomized 
dataset has a greater likelihood to produce better 
performing meshes.
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FIGURE 108: Training loss vs Validation Loss (top). Predictions vs 
Ground Truth (bottom) - randomized dataset. (Own Work)
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FIGURE 109: Latent space representation - creased dataset. (Own 
Work)

FIGURE 110: Latent space representation - randomized dataset. 
(Own Work)

FIGURE 111: KL loss and Reconstruction Loss of Training Loss 
(top) and Validation Loss (bottom) - creased dataset. (Own Work)

FIGURE 112: KL loss and Reconstruction Loss of Training Loss 
(top) and Validation Loss (bottom) - randomized dataset. (Own 
Work)
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The number of neurons in each layer were increased (from 27 to 32, then 64) to note changes in the distribution of the 
randomized dataset but it showed similar results. The hyperparameters were kept the same. The same trend follows 
other changes in architecture (using a single dense layer each in the encoder and decoder) and change in hyperparameters 
as well like varying batch sizes, learning rates, beta, number of latent dimensions. 
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FIGURE 113: VAE of architecture 27-64-64-4-64-64-27 (top) and its 
ground truth vs predictions (bottom). (Own Work)

FIGURE 114: VAE of architecture 27-32-32-4-32-32-27 (top) and its 
ground truth vs predictions (bottom). (Own Work)



7.1.2	 Inclusion of the Thickness

The VAEs that had been shown until now only used force densities as the features for training. However, as thicknesses 
were also varied they were to be included as well. They were included as features. The figure below represents how 
this is represented in the randomized dataset.

The data-structure of the first 8 meshes are shown in the 
figure. Each mesh is represented a single row consisting 
of 27 numbers equal to the number of force densities per 
polyedge in that mesh. The 28th value represents the 
thickness of the mesh. It can be either a single layer of tile 
(0.035m),  two layers (0.060m), or three layers (0.095m).

It was important to consider how the thickness would be 
normalized in relation to the rest of the dataset. Two 
approaches were carried out whilst keeping the architecture 
and the hyperparameters constant:

•	Normalization with the rest of the force densities

•	Normalization independent of the force densities.

When thickness was normalized along with the rest of the 
features, it gave a wider distribution along the mean of the 
thickness dataset (μ=0.06349m). However, if it was 
normalized independent of the force densities, the 
distribution along the mean was narrower.  

The effect of the normalization technique considered is 
more apparent on the output of the surrogate model when 
thickness is input as a feature. This will be discussed in 
the next section on the Surrogate Model. 

It is notable to mention that the inclusion of thickness as a 
label instead of a feature was also considered but not 
carried out. This would be the subject of a further study 
into Conditional Variational Autoencoders.
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 
epochs = 600, batch_size = 64, learning_rate = 1E-04
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FIGURE 115: thickness inclusion in feature dataset. (Own Work)

FIGURE 116: Architecture of VAE (top). Visualization of thickness 
across dimensions of the latent space - independent normalization 
(middle) thickness normalization along with force densities  
(bottom). (Own Work) 
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7.1.3	 Sampling across the Latent 
Dimensions

Some observations were noted in sampling while changing 
the architecture of the VAE. The randomness of the latent 
space distribution is highly dependent upon the activation 
functions used - ReLU and sigmoid.

Only ReLU

When only Rectified Linear Unit (ReLU) was used as the 
activation function, mostly zero values were produced by 
the decoder as shown below. This was the case in 
variations of other architectures and hyperparameters 
using ReLU as the only activation function. Figure 117a 
shows  50 samples that were predicted from unseen data. 
All 50 samples produced zero values for force densities 
while 10 of those only produced non-zero values. Figure 
117b shows 5 new samples generated from the latent 
space. Peak values were sampled up to a force density of 
60. After several training models, as shown in Table 15, 
using ReLU alone was abandoned.

DATASET: randomized

#

Hyperparameters - in models where the only 
activation function that used is ReLU

Latent 
Dimension 

(x)
Beta Batch 

size
Learning 

Rate

1a 2 1 128 1E-05
2a 3 1 128 1E-05
3a 3 0.2 128 1E-05
4a 4 0.2 128 1E-05
5a 4 0.2 128 1E-03
1b 2 0.5 256 1E-05
2b 2 0.1 512 1E-05
1c 2 1 128 1E-05
2c 2 0.2 256 1E-05

TABLE 15: VAE hyperparameters tested only using ReLU. The 
corresponding architectures are shown in Figure 119 (Own Work)

1)

a)

b)

2)

3)
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FIGURE 117: Force densties of 50 predicted samples (top). force 
densities of 5 new. (Own Work)

FIGURE 118: sigmoid (left) and ReLU activation function. Image 
taken from https://www.researchgate.net/publication/352419028_
Automatic_decision_making_system_with_environmental_and_
traffic_data/figures?lo=1

FIGURE 119: VAE architectures tested only using ReLU. The 
corresponding hyperparameters are shown in Table 15. (Own Work) 



Only Sigmoid

When sigmoid was used in combination with ReLU or with 
sigmoid alone, the decoder of the latent space produced 
non-zero values with significantly smaller peaks. These 
are further highlighted using by visualizing the latent space 
and sampling new designs from across its dimensions. In 
the simulations the latent dimensions were kept 2 which is 

Sampling Across Latent Dimension 1 
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 
epochs = 600, batch_size = 128, learning_rate = 1E-05
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FIGURE 120: VAE architecture - only sigmoid (Own Work)

FIGURE 121: Latent space distribution across dimension 1 - only 
ReLU. (Own Work)

FIGURE 122: Visualizing Force densities of samples across Latent dimension 1 - only ReLU. (Own Work)  



easier to visualize along the x (Latent Dimension 1) and y 
axis (Latent Dimension 2).

Figure 122 and Figure 123 show the newly sampled force 
meshes and their force densities across each latent 
dimension. Although samples were taken from across a 
large area of the latent space as visualized in Figure 124, 
the samples that were produced were very similar. The 
values of force densities range between 3.1 and 3.9 despite 
the large variation in input data. The same peaks were 
seen in all samples, with deviation from the mean across 
different samples. When we move across Latent Dimension 
2 in the positive axis, the value of the force densities 
reduce (marked in the figures as dark to light) except for 
some polyedges whose force densities remain nearly 
constant with minimal variation like 9,10, and 19. Movement 
across Latent Dimension 2 produced a similar result in the 
fact that there is little deviation from the standard pattern. 

Sampling Across Latent Dimension 2 
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FIGURE 123: Visualizing Force densities of samples across Latent dimension 2 - only ReLU. (Own Work)  

FIGURE 124: Latent space distribution across dimension 2 - only 
ReLU



However, the pattern changes differently as movement in 
the positive direction sometimes causes an increase 
(Polyedge 0, 2, 3, 6,and 7), while sometimes there is a 
decrease (Polyedge 13-25) and in some cases  there is 
minimal change (6, 7, 18, and 26). It is important to note 
that the same patterns were followed at different positions 
in the latent space.    

There is a clear linear trend in thickness as it reduces with 
movement in the positive direction of the Latent space in 
either Latent Dimension. There is minimal variation overall 
with a change of just a millimeter (0.0631m-0.0641m).

Relu + Sigmoid

It could be concluded that using either ReLU or sigmoid 
alone for the VAE would not be adequate. Using ReLU as 
the only activation function produced many zero force 
densities as that results in invalid meshes. It produced 
higher peak values than using only the sigmoid function - 
which smoothens the distribution along a mean. Using the 
sigmoid function alone smoothens the distribution and it 
results in producing very similar samples. For this reason, 
a models were tested which used a combination of the two 
to produce valid meshes that were not too similar. 
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 
epochs = 600, batch_size = 128, learning_rate = 1E-04

Similar to the model with sigmoid alone, the force densities 
were sampled from a low range but there was a higher 
degree of randomness in sampling each sampling each 
polydege’s force density. Nonetheless, both dimensions 
showed similar patterns in how force densities change 
across the dimensions. There is an oscillating trend where 
force densities increase unlike the linear trends earlier 
shown by ReLu alone. Across Dimension 1, there is a 
general trend of values moving towards a maximum in the 
centre (maroon) region while minimum values are seen 
towards the peripheries of the latent space (blue). Another 
trend can be seen where the periphery minimas remain 
(blue) but central values (maroon, orange) are maximum 
at the peripheries of the latent space but they decrease 
towards the centre. This is seen especially evident in 
comparison sets such as where Latent Dimension 2 = 0.0 
and 0.5 where the maximas shift.

In Dimension 2, the same trend can be seen as dimension 
one where the force densities of the samples towards the 
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FIGURE 125: Architecture of VAE - sigmoid + ReLU. (Own Work)

FIGURE 126: Visualizing thickness across dimensions - only 
sigmoid. (Own Work)

FIGURE 127: Latent space distribution across dimensions - sigmoid 
+ ReLU. (Own Work)

FIGURE 128: Visualizing thickness across dimensions - sigmoid + 
ReLU. (Own Work)



centre (dark) decrease but the minimas (light values) stay 
constant.  

It is interesting to note is that the thickness does not follow 
the same trend as the force densities even though it is just 
another value in the same array in the training set. An 
oscillating trend can be seen where thickness reduces 
towards the positive direction of Dimension 1. No clear 
pattern can be seen for Dimension 2 in this case.   

There is still a minimal range over which the thickness is 
distributed (0.0618m to 0.0655m) over the sampling space 

considered. However, a better way of gauging the maximum 
thickness represented by the latent space of the VAE would 
be by using the gradient descent for maximizing the 
Buckling Load Factor. As buckling is highly dependent 
upon thickness, the maximum thickness was be sampled 
this way. This was found to be 0.0932m for this architecture 
- very close to the maximum thickness that was present in 
the dataset - 0.0950m.  It should also be noted that 
although discrete values were input representing thickness 
of layers of tiles - the output from the latent space is of a 
continuous nature. This is expected as the distribution of 
the input data is mapped as a Gaussian distribution in the 
latent space.
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FIGURE 129: Visualizing Force densities of samples across Latent dimension 1 (left) and dimension 2 (right) - sigmoid + ReLU. (Own Work)  



7.1.4	 Conditioning the VAE

The next step was to extract samples from the VAE with specific to desired characteristics. The characteristic, in this 
case was the height of the vault, because for a floor slab certain heights are preferred over others. This was achieved 
through conditioning the features through supervised data (See Section 3.3.3 for details on derivation). Therefore, in 
addition to θ (features), c (labels) were also added to the encoder and decoder. 

DATASET: randomized
Label 
Height 

/m
%

0.5 0.12
0.6 0.32
0.7 0.74
0.8 1.38
0.9 2.32
1 3.22

1.1 4.28
1.2 5.49
1.3 5.52
1.4 6.37
1.5 6.54
1.6 6.58
1.7 6.1
1.8 5.9
1.9 5.7
2 4.7

2.1 4.33
2.2 4.64
2.3 3.71
2.4 2.9
2.5 2.91
2.6 2.45
2.7 2.11
2.8 1.73
2.9 1.49
3 1.19

3.1 1.2
3.2 0.91
3.3 0.96

Label 
Height 

/m
%

3.4 0.66
3.5 0.58
3.6 0.45
3.7 0.38
3.8 0.37
3.9 0.24
4 0.3

4.1 0.12
4.2 0.24
4.3 0.17
4.4 0.13
4.5 0.09
4.6 0.06
4.7 0.08
4.8 0.06
4.9 0.04
5 0.02

5.1 0.02
5.3 0.03
5.4 0.04
5.5 0.02
5.6 0.02
5.8 0.01
6 0.01

6.7 0.01
7.6 0.01
8.9 0.01

13.3 0.01
26.7 0.01

The heights labels, c, were rounded off to the nearest 
0.1m. This gave a total of 58, and 28 different labels    
respectively for One-Hot encoding and Sinusoidal 
Positional Encoding ranging from 0.5m to 26.7m. All of the 
labels are shown in Table 16 against the frequency of 
occurrence in the main dataset in terms of percentage. 
This is also plotted below in the Figure 130. Different 
strategies were tried to represent the label c. 

•	 Label Encoding

example: 0.5m is represented as an array of shape 
(58,) where only the position of the one-hot-encoded 
label is represented as 1 while the rest are 0. 

 [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

example: 0.5m is represented as an integer like 3. See 
Section 3.3.9 for detail on encoding strategies.

example: 0.5m is represented as a tensor of a user-
defined dimension. Since the feature shape is (28,), 
this is also the same shape of the encoding.   

•	One-Hot-Encoding

TABLE 16: Height labels and their distribution 
in the randomized dataset. (Own Work) 

•	Sinusoidal Positional Encoding
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FIGURE 130: Probability Density of Heights of randomized Dataset. 
(Own Work)



label = 3

a) Label Encoding

b) One-Hot Encoding

c) Sinusoidal Positional 
Encoding

label = 9

Label: One-Hot-Encoded Vector vs Label Encoding vs Sinusoidal Positional Encoding

To determine the appropriate strategy, initial tests were carried out for checking the script whether the unique samples 
were being extracted as desired by the condition. The MNIST dataset was used at this stage only for visualization 
purposes.  400 samples were plotted across the latent dimensions in a 20x20 grid. The same architecture was used for 
all encoding strategies (794-32-32-2-32-32-794). 
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FIGURE 131: Comparison of label conditioning strategies with MNIST dataset. a) Label Encoding, b) One-hot Encoding, c) Sinusoidal 
Positional Encoding. Samples across the latent space visualized from Conditional VAE (Own Work) 



As shown in Figure 131, the distinguishable samples produced by One-Hot-Encoding and Sinusoidal Positional Encoding 
were constrained to the desired label (e.g. when label = 9, only handwritten digits of 9 are produced) but distinguishable 
samples that were produced from Label Encoding were across a range of labels (e.g. when label = 9, handwritten digits 
of 6,7,8,9 are produced and when label = 3, handwritten digits of 3,4 are produced). Therefore, it was evaluated that 
One-Hot-Encoding and Sinusoidal Positional Encoding produce better results so these were used for the Randomized 
Force densities dataset. 

One Hot Encoding

Similar to the MNIST dataset, samples from the randomized 
force densities dataset were sampled from across the 
latent space for different labels. For 5 different height 
labels (0.5m, 0.8m, 1.0m, 1.5m, 1.8m), 1000 samples each 
were randomly taken from the area under the graph 
represented by the rectangle in Figure 133a. A surrogate 
model was used for predicting their heights and these were 
plotted in the form of a probability density graph in Figure 
133b. This represents the probability of sampling heights 
when a desired height is input as the label/ condition. 
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 
epochs = 600, batch_size = 64, learning_rate = 1E-04

Height of the Conditioned Samples

From the results, we can see that conditioning with a height 
does not produce the exact same height but a range of 
heights on either side of the label. Even though a One-Hot-
Encoded Vector was used, the results are similar as 
produced previously in the MNIST dataset when Label 
Encoding was used. 

Furthermore, we can see that from 0.5m to 1.0m, samples 
are produced close to the conditioned value. However, 
when the height is further increased, very few samples 
close to that desired label are found. It is hypothesized that 
because the distribution of the heights in the training set 
is concentrated towards the lower heights, perhaps that is 
why sampling from lower heights produces higher accuracy. 
It must be noted, however, that the heights that are 
sampled fairly better do not have the highest frequency of 
occurrence in the main dataset. The distribution is skewed 
to the left as shown in Figure 133c. It should be noted that 
5m onwards, labels are not shown in the figure.  

 Tahir Zahid Ishrat - 5698928 
107

Tahir Zahid Ishrat - 5698928 
107INTRODUCTION

Tahir Zahid Ishrat - 5698928 
107RESULTS

FIGURE 132: Conditional VAE architecture and hyperparameters 
where label is a One-Hot-encoded vector. (Own Work)

FIGURE 133: a) CVAE latent space , b)  height - probably density 
relationship for 1000 samples taken from the latent space (x = -2 to 
2, y= -2 to 2) for different labels of the CVAE, c) Probability Density 
of Heights of the randomized dataset. Label is One Hot Encoded 
Vector. (Own Work)



It should also be noted that meshes with extreme values of heights can be sampled if the area of the rectangle in Figure 
133b. However, this would also introduce  samples out of the distribution. This is shown in Figure 134.

Patterns in Sampling Heights across the Latent Dimensions

9x9 samples were taken from the area under the graph represented by the rectangle in Figure 135. From the graph it 
becomes apparent how the pattern of heights changes from the periphery towards the centre of the latent space. 

In Figure 136, at the centre of Latent Dimension 2 (Latent Dimension 2 = 0), as we move across Dimension 1 from its 
periphery (C) towards its centre (D), the height of the mesh decreases under all label conditions. This change in height 
decreases as the we move from the centre towards the periphery of Latent Dimension 2 (from a CD trajectory to an AB 
trajectory). This is marked in Figure 136c. 

A

A A

A

DC C

B

B

a) label = 0.5m

b) label = 0.8m

c) label = 1.0m

d) label = 3.8m

C

A

C

A

D

B
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FIGURE 134: height - probably density relationship for 
100 samples taken from the latent space (x = -3 to 3, 
y= -3 to 3) for different labels of the CVAE, where label 
is  One Hot Encoded Vector. (Own Work)

FIGURE 135: CVAE latent space where label is  
One Hot Encoded Vector. (Own Work)

FIGURE 136: Visualizing height across dimensions  of the CVAE for different labels where label is  One Hot Encoded Vector. (Own Work) 



a) label = 0.5m

b) label = 0.8m

c) label = 1.0m

d) label = 3.8m

On the contrary, at the centre of Latent Dimension 1 (Latent Dimension 1 = 0 ) moving across Latent Dimension 2 from 
its periphery (B) to its centre (D) causes an increase in height. Similarly, this change in height increases as we move 
from the centre towards the periphery of Latent Dimension 1 (from a BD trajectory to an AC trajectory). See Figure 136c.

Patterns in Sampling Force Densities across the Latent Dimensions

For each label, a similar pattern follows when we scroll across Latent Dimension 1 which has been discussed in Section 
6.2.4. What is notable is that for each label, the meshes seem to have a different force density pattern. Scrolling across 
Latent Dimension 1 only produces fluctuations in that pattern but it largely remains the same as seen in earlier cases 
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FIGURE 137: Visualizing Force densities of samples across Latent Dimension 1 of the CVAE for different labels. Label is  One Hot Encoded 
Vector (Own Work)  



Sinusoidal Positional Encoding

Besides the One-Hot-Encoding, Sinusoidal Positional Encoding was also explored for encoding the labels. The results 
were very different. The number of dimensions is not restricted to the number of different labels unlike One-Hot-encoded 
vectors so Sinusoidal Encoded provided greater flexibility. The dimensions of the features were matched so the shape 
was (n,28). Figure 139 and Figure 140 show the distribution of heights of 100 meshes each for each label (0.5m, 0.8m, 
1.0m, 1,8m). The rectangles in Figure 139a and Figure 140a show where in the latent space the meshes were sampled  
from.
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 
epochs = 600, batch_size = 64, learning_rate = 1E-04

a)

b) Sinusoidal positional encoding c) One Hot vector encoding
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FIGURE 138: Conditional VAE architecture and hyperparameters 
where label is sinusoidally positional encoded. (Own Work)

FIGURE 139: a) a small dense area of the CVAE latent space shown by the rectangle to be sampled from, b) and c) Percentage of 
Occurrence of heights of samples for each label where samples are randomly taken from a dense latent space in a). (Own Work)



The most prominent difference can be seen that the Sinusoidal Positional Encoding constrained the sample heights to 
a much larger degree as compared to the One-Hot-encoded vector. Therefore, there was much less variation in the 
spread of sample heights generated. See Appendices for other results for the positional encoding.

a)

b) Sinusoidal Positional Encoding b) One Hot Encoding
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FIGURE 140: a) a large sparse area of the CVAE latent space shown by the rectangle to be sampled from, b) and c) Percentage of 
Occurrence of heights of samples for each label where samples are randomly taken from a large sparse latent space in a). (Own Work)



a) label = 0.5m, actual height = 0.7m

b) label = 0.8m, actual height = 0.8m

d) label =1.8m, actual height = 1.8m

c) label = 1.0m, actual height = 0.9m

d) label = 1.5m, actual height = 1.4m

The meshes sampled from different height labels for the Sinusoidal Positional Encoding are shown below. For correction 
in scaling, the meshes have been scaled by twice the total load of the original dataset. 
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This is a visualization of the meshes sampled across dimensions for label of height = 1.8m, where the encoding is 
Sinusoidal Positional Encoding. 

Latent Dimension 1

Latent Dimension 2
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See Section 4.1.5 for the workflow of the Surrogate Model.

For the label dataset, the SSS (Stiffness, Stability, Strength) performance metrics extracted. As the performance data 
for each mesh involved two simulations - one for seismic loads in x direction and the other in y direction - a combination 
strategy had to be implemented. SRSS was considered initially but would have yielded overestimations of Buckling Load 
Factor and underestimations of capacity in strength and SLS. As an alternate, the worst performance value was chosen 
(highest Utilization and Interstorey Drift Ratio, lowest Buckling Load Factor). The labels were then normalized with 
respect to each metric separately. 

seismic load in x 

example mesh: mesh_10

seismic load in y 

23.9

23.5 9.09e-4h

9.10e-4h4.54

4.54

BLF UTL IDR

The best 10 samples of each metric were extracted in addition to 50 random test samples. This was done to compare 
with how the surrogate performed on samples not seen by during training.  

7.2	 SURROGATE MODEL
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FIGURE 141: Selection of metrics for seismic load in both directions based on choosing the metric more likely to cause failure. (Own Work)



BLF

UTL

IDR

7.2.1	 Seismic Performance: 1 combined Surrogate Model

At the very first stages it was considered combining the three metrics into a single performance score. However, this 
approach would not give any indication of the type of failure whether it is in strength, stability, or stiffness. Moreover,    
the single score would be an oversimplification based on a biased formulation. Initially, one surrogate model was created 
which gave three metrics each as the output so the shape of the labels was (n,3). Although auxiliary inputs generally 
improve the training of the model, it was found that some metrics were performing better than others. 

A likely possibility for this could be discrepancy in the weight of the loss function as the Mean Square Error of each loss 
is combined  to give the overall loss.

where,

loss1 = Loss of the Buckling Load Factor

loss2 = Loss of the Utilization

loss2 = Loss of the Interstorey Drift Ratio

The individual losses are then aggregated to form the overall loss

Tensorflow assigns the weights (w1, w2, w3) equally. This means that a loss function of an individual metric may have a 
larger effect than others. 
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FIGURE 142: One surrogate model. inspired by the work of Sterrenberg (2023). (Own Work) 
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HYPERPARAMETERS: epochs = 600, batch_size = 128, 
learning_rate = 5E-06

Thickness not Considered

As mentioned earlier in the VAE section, early simulations 
did not include thickness so the shape of the feature 
dataset was (n,27). Figures 144 shows how well the model 
learnt to predict each metric for each test mesh sample 
that was not seen during training. It should be noted that 
the performance values on the y axis are normalized and 
do not indicate actual performance values. 

This particular architecture performed well for Utilization 
and Interstorey Drift Ratios. Most models were able to 
predict Interstorey Drift Ratios while only some were able 
to predict Utilization. No model was able to learn how to 
predict Buckling Load Factor. This corresponds to the 
earlier findings mentioned in the previous chapter on the 
dependence of the Buckling Load Factor on the thickness 
of the vault. Reducing the learning rate from 5E-06 to 1E-
07 required increasing the epochs from 600 to 40000 but 
that yielded nearly the same results. 

Reducing the number of layers by removing the 256 neuron 
layer to make the neural network simpler did not help. The 
figure below shows the results. The architecture of the NN 
is shown in Figure 147. 
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FIGURE 143: Validation vs Training loss - thickness not considered. 
(Own Work)

FIGURE 144: Ground Truth- Prediction 4 dense layers. (Own Work)

FIGURE 145: SG (surrogate model) architecture - 4 dense layers 
thickness not considered. (Own Work)

FIGURE 146: Ground Truth- Prediction 3 dense layers. (Own Work)
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HYPERPARAMETERS: epochs = 4000, batch_size = 64, 
learning_rate = 1E-07

HYPERPARAMETERS: epochs = 3000, batch_size = 128, 
learning_rate = 1E-06

HYPERPARAMETERS: epochs = 4000, batch_size = 64, 
learning_rate = 1E-07

It can be seen that training has finished as convergence 
has been found shown in Figure 151. However, decreasing 
the layers further reduces the predictive capabilities by a 
great degree as shown in Figure 149.

Thickness Included: Normalization of 
Thickness along with the rest of the Force 
Densities

As seen in all cases, the Buckling Load Factor was not able 
to be predicted  with appropriate accuracy without 
considering the thickness. By including this, the shape of 
the input changed from (n,27) to (n,28). Including the 
thickness as a feature presented different options of 
normalization.  

Reducing the layers further proved to be counterproductive 
and worsened the results.
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FIGURE 147: SG architecture - 3 dense layers thickness not 
considered. (Own Work)

FIGURE 148: Validation vs Training loss - 3 dense layers -thickness 
not considered. (Own Work)

FIGURE 149: Ground Truth- Prediction 2 dense layers. (Own Work)

FIGURE 150: SG architecture - 2 dense layers thickness not 
considered. (Own Work)

FIGURE 151: Validation vs Training loss - 2 dense layers -thickness 
not considered. (Own Work)

FIGURE 152: SG architecture - 3 dense layers thickness included. 
(Own Work)



The same architecture and hyperparameters were 
used to test the effect on normalization. Figure 153 
shows the when normalization of thickness is done 
along with the rest of the parameters. The effect on 
prediction capabilities is very similar to when the same 
architecture was used without the inclusion of 
thickness in Figure 144 and 146 - the model fails to 
predict the Buckling Load Factor with any success but 
seems to give better results for Interstorey Drift Ratios 
and Util ization. However, when thickness was 

normalized independently, the model was able to learn how 
to predict the Buckling Load Factor. This was because the 
thicknesses have a maximum value of 0.095 whereas the 
maximum value of the rest of the dataset (the force 
densities) is 1038.8 whilst the minimum is 0.1. If the 
thickness is normalized along with the rest of the other 
force densities it’s weight reduces by the factor of 10934. 
This makes all values of thickness smaller than the 
minimum value of force densities. Therefore, there is little 
to no effect on the loss function. In contrast when the 
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FIGURE 153: Validation vs Training loss (top) - Prediction vs 
Ground Truth (bottom). 3 dense layers. Thickness normalization 
along with force densities. (Own Work) 

FIGURE 154: Validation vs Training loss (top) - Prediction vs 
Ground Truth (bottom). 3 dense layers. Thickness normalization 
independently. (Own Work)  



th ickness is  normal ized separate ly,  i t  ass igns 
proportionately much higher value to the value of thickness 
which is why there is such a remarkable increase in 
buckling accuracy. This can be assessed by comparing the 
mean and standard deviation of the force densities against 
that of the thickness as shown in Table 17. After 
normalization, the mean of thickness values is 2.08e4% 
greater that than that of the mean of force densities.

DATASET: randomized

Statistical quantities Thickness Force 
Densities

Before normalization
Maximum 0.0950 1038.8000
Minimum 0.0350 0.1000
Mean (μ) 0.0635 3.3485

Standard deviation (σ) 0.0245 10.1136
After independant normalization

Maximum 1.0000 1.0000
Minimum 0.3684 9.63E-5
Mean (μ) 0.6683 0.0032

Standard deviation (σ) 0.2583 0.0097

7.2.2	 Seismic Performance: 3 Separate Surrogate Models

After testing different architectures, a different approach was tried where each of the performance metric divided into 
the a single output tensor from a separate surrogate model. This method aimed at eliminating the effect of variable 
weights of each of the three losses on the overall loss - which may allow the model to learn to predict some metrics and 
not predict others. This would be done as because the overall loss would not need to aggregated.

TABLE 17: Statistical quantities of Dataset features for SG. (Own 
Work)

BLF

UTL

IDR
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FIGURE 155: Three surrogate model. inspired by the work of Sterrenberg (2023). (Own Work) 



where,

loss1 = Total Loss of the Buckling Load Factor

loss2 = Total Loss of the Utilization

loss2 = Tota Loss of the Interstorey Drift Ratio

As thickness was a parameter that had an effect on 
performance metrics, all surrogate models took it into 
account as a feature - so the shape of all feature datasets 
was (n, 28). As a single tensor was output, the shape of all 
label datasets was (n,1). 

Model 1: Buckling Load Factor

Several simulations were carried  out. The best performing 
one is highlighted below.

HYPERPARAMETERS: epochs = 2000, batch_size = 256, 
learning_rate = 5E-06
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FIGURE 156: best SG architecture for Buckling Load Factor.- 
thickness normalized independently. (Own Work)  

FIGURE 157: Prediction pattern on test data. (Own Work)

FIGURE 158: Validation vs Training loss. (Own Work)

FIGURE 159: Prediction vs Ground Truth. (Own Work)



We can see from the validation and training loss curves, 
there is convergence. The relationship between the perfect 
model and the actual predictive model is expressed in 
Figure 157. We can qualitatively assess that the line of 
perfect performance passes through the actual predictive 
capability. 

To make quantitative assessments of the performance, 
Normalized Root Mean Squared Error (NRMSE was used. 
While Root Mean Square Error (RMSE) is popular for 
assessing performance accuracy in similar regression 
tasks as a metric for comparing different predictive models, 
the absolute value of the RMSE  is highly relative to the 
type of data and the dataset itself so it does not serve well 
as an indicator of how ‘good’ the model is to predict the 
ground truth.  

NRMSE is expressed as a fraction of the RMSE divided by 
the range of target variable. While in some instances the 
denominator is the mean instead, it is relevant to scenarios 
where the accuracy is to be calculated relative to the 
average value of the target variable. In our case, since we 
required the accuracy relative to the spread of values, the 
range was used. NMRSE is measured in percentages, with 
percentages close to 0 having high accuracy.

de
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e

independant variable

difference

actual score
KEY

predicted score The best performing model for Buckling Load Factor was 
found to have an NRMSE of 7.27% (RMSE = 3.01). It was 
found that in all hyperparameter combinations, the model 
with thickness normalized independently performed better 
than the one where the it was normalized with the rest of 
the force densities. The best performing model with 
thickness normalized along with force densities had a 
14.25% absolute increase in NRMSE than the best 
performing one with thickness normalized independently. 
The results of the different types of models are shown in 
the summary on the next page. 

As mentioned earlier, the 10 best performing meshes from 
each performance metric (including Buckling Load Factor) 
were excluded from the training dataset to monitor how the 
model predicted their results. It can be seen that the 
predicted scores lie below the values of the actual scores. 
This is expected as the training set had not seen any 
values that had performed as well so the mode could only 
generate a lower performance. The predicted performances 
are between 1 and 2 standard deviations above the mean 
of the training dataset.
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FIGURE 160: Root Mean Squared Error. (Own Work)

FIGURE 161: Prediction on 10 best samples of Buckling Load 
Factor. (Own Work)



f___d-256-relu___d-128-relu___d-1-relu________epochs-2000___batch-256___val-0.2___lr-5e-06________BUCK___thick-separate

NRMSE: 7.27 %

RMSE: 3.0113935776828527

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 13.4 %

RMSE: 2.4979500939334214

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________BUCK___thick-separate

NRMSE: 14.06 %

RMSE: 2.6200409686651596

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 14.74 %

RMSE: 2.7471964734982413

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06___thick-norm_with-only-one-loss

NRMSE: 15.73 %

RMSE: 2.930791694228252

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________BUCK___thick-separate

NRMSE: 17.41 %

RMSE: 3.2445617003847795

1

2

3

4

5

6

Flattened layer

Neurons Activation function

batch 
size

learning 
rate

if BUCK is present, then model is separately for Buckling Load 
Factor as described in Section 7.2.2, otherwise it is a model 
which outputs Buckling Load Factor as one of 3 tensors as 
describe in Section 7.2.1 

This is a summary of the various models that had been made to calculate the Buckling Load Factor and their RMSE and NRMSE 
for comparison. The list is in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for 
Buckling Load Factor are also included in terms of NRMSE performance for Buckling Load Factor.

thick-separate = thickness is normalized independently
thick-together = thickness is normalized along with force densities
if thickness is not present, then model does not consider thickness

number of 
epochs

validation 
split

Dense layer

ARCHITECTURE HYPERPARAMETERS OTHER PARAMETERS
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----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-256___val-0.2___lr-5e-06________BUCK___thick-separate

NRMSE: 17.75 %

RMSE: 3.308732461290613

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 17.79 %

RMSE: 3.3156644940893405

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________BUCK___thick-together

NRMSE: 21.51 %

RMSE: 8.914716884731384

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________BUCK___thick-together

NRMSE: 34.19 %

RMSE: 6.371296332688003

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 36.6 %

RMSE: 6.821276430654844

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________BUCK___thick-together

NRMSE: 37.02 %

RMSE: 6.899975407392418

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1500___batch-256___val-0.2___lr-1e-06________BUCK___thick-together

NRMSE: 37.02 %

RMSE: 6.899975407392418

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-together

NRMSE: 37.02 %

RMSE: 6.900158783783083

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 37.33 %

RMSE: 6.956856323841029

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 37.7 %

RMSE: 7.026840288131792

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-separate

NRMSE: 53.22 %

RMSE: 9.917899103284437
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Model 2: Utilization

Several simulations were also carried out for the surrogate 
model predicting Utilization. The best one is highlighted 
below

HYPERPARAMETERS: epochs = 2000, batch_size = 256, 
learning_rate = 5E-06
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The training losses and validation losses indicate 
convergence. The model gives an NRMSE of 9.18% - a 
value that is higher than the error received during buckling. 
The model performs well on the best 10 samples of 
Utilization. The values are distributed below 1 standard 
deviation below the mean close to the best performing 
sample of the training set. 

As there are 4 dense layers, simpler models were tested 
with lesser number of dense layers. The NRMSE increased 
1.41% when the 64 neuron layer was dropped. However, 
there was significant reduction in performance for the  10 
best performing samples. The values are distributed below 
the mean within half a standard deviation. One sample was 
detected (mesh 7772) with the best accuracy detecting the 
normalized value of 0.0610 with a predicted value 0.0487. 
This is close to the best score of the training data.
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FIGURE 162: best SG architecture for Utilization - thickness 
normalized independantly. (Own Work)

FIGURE 163: Prediction pattern on test data. (Own Work)

FIGURE 164: Validation vs Training loss. (Own Work)

FIGURE 165: Prediction vs Ground Truth. (Own Work)



Besides architectures with 4 layers and above, it is 
interesting to note that models that predicted the best 
performing meshes did not necessary give the best 
predictions on the 50 unseen samples. This can be 
visualized in the difference between the predicted best 
scores (orange line) in Figure 167 and Figure 168. The 
architecture for Figure 168 shows better prediction for the 
50 best samples but worse predictions for the rest of the 
samples.

Increase in the number of neurons in each layer showed  
reduction in the NRMSE. This can be seen when moving 
from 256-128-1 to 512-256-1. The absolute reduction is 
1.05%. A further 1.18% absolute reduction is seen when 
the number of layers are increased from 3 dense layers to 
4 dense layers of 512-256-1 to 512-256-128-1.  However, 
this was only the case when normalization of thickness was 
done independently. When thickness was normalized along 
with force densities, there was minimal change - a 0.06% 
absolute increase with increasing the number of layers. 

In terms of activation functions, ReLU produced better 
results than sigmoid for the same hyperparameters and 
architecture.  There is 1.08% absolute reduction for the 
same architecture and hyperparameters.
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FIGURE 166: Prediction on 10 best samples of Utilization for best 
performing SG for utilization. (Own Work)

FIGURE 167: Prediction on 10 best samples of Utilization for 3 
dense layers - thickness normalized independently. (Own Work)

FIGURE 168: Prediction on 10 best samples of Utilization for 3 
dense layers - thickness normalized along with force densities. 
(Own Work)



f___d-512-relu___d-256-relu___d-128-relu___d-64-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 9.18 %

RMSE: 1.234909477260432

----------------------------------------------------------

f___d-1024-relu___d-512-relu___d-256-relu___d-128-relu___d-64-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 9.22 %

RMSE: 1.2398733225002645

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 10.59 %

RMSE: 1.4234490793780434

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 11.77 %

RMSE: 1.5830211050191585

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 12.82 %

RMSE: 1.7233268529980592

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-sigmoid________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 13.9 %

RMSE: 1.868948555884073
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Flattened layer

Neurons Activation function

batch 
size

learning 
rate

if UTIL is present, then model is only for Utilization as described in 
Section 7.2.2,, otherwise it is a model which outputs Utilization as 
one of 3 tensors  as described in Section 7.2.1

This is a summary of the various models that had been made to calculate Utilization and their RMSE and NRMSE for comparison. 
The list is in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for Utilization are 
also included in terms of NRMSE performance for Utilization.

thick-separate = thickness is normalized independently
thick-together = thickness is normalized along with force densities
if thickness is not present, then model does not consider thickness

number of 
epochs

validation 
split

Dense layer

ARCHITECTURE HYPERPARAMETERS OTHER PARAMETERS
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----------------------------------------------------------

f___d-512-relu___d-256-relu___d-128-relu___d-64-relu___d-1-relu________epochs-600___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 14.31 %

RMSE: 1.9239409368081997

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-together

NRMSE: 14.37 %

RMSE: 1.9325439599071121

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-together

NRMSE: 14.43 %

RMSE: 1.9403529014796959

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-separate

NRMSE: 15.06 %

RMSE: 1.6570501291747386

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 15.92 %

RMSE: 1.7511587561866122

----------------------------------------------------------

f___d-256-relu___d-128-sigmoid___d-1-sigmoid________epochs-3000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 17.02 %

RMSE: 2.288209422814802

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 19.26 %

RMSE: 2.119297175430908

----------------------------------------------------------

f___d-256-relu___d-1-relu________epochs-1000___batch-256___val-0.2___lr-5e-06________UTIL___thick-separate

NRMSE: 19.37 %

RMSE: 2.604651135792025

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 20.92 %

RMSE: 2.301628917187026

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-together

NRMSE: 23.83 %

RMSE: 2.622125577645853

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 24.81 %

RMSE: 2.7295861049831456

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________UTIL___thick-together

NRMSE: 25.79 %

RMSE: 2.8372870707384292
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----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 26.62 %

RMSE: 2.9293060658312426

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 27.6 %

RMSE: 3.037264517987134

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-1e-06___UTIL___thick-norm

NRMSE: 28.4 %

RMSE: 3.1244642731656778

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 28.54 %

RMSE: 3.1400811607284513

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06___thick-norm_with-only-one-loss

NRMSE: 30.36 %

RMSE: 3.3402097374194626

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-1e-06___UTIL

NRMSE: 30.61 %

RMSE: 3.367366692057121
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Model 3: Interstorey Drift Ratios

Several simulations were also carried out for the surrogate 
model predicting Interstorey Drift Ratios. The best result 
is shown below.

HYPERPARAMETERS: epochs = 3000, batch_size = 256, 
learning_rate = 5E-06
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It can be seen Figure X how the predicted values lie close 
to the perfect prediction line besides some outliers.  A total 
NRMSE was found to be 9.81% in this case. By increasing 
the number of neurons from 256-128-1 to 512-256-1, the 
NRMSE reduced by an absolute percentage of 2.1%. 
Predicting the 10 best samples in Interstorey Drift not seen 
during training was challenging as the 10 best samples 
including the best sample during training had actual values 
close to zero. It was unexpected to see 60% of the 
predicted values fall below the best performing sample 

 Tahir Zahid Ishrat - 5698928 
129

Tahir Zahid Ishrat - 5698928 
129INTRODUCTION

Tahir Zahid Ishrat - 5698928 
129RESULTS

FIGURE 169: best SG architecture for Interstorey Drift Ratios - 
thickness normalized independently. (Own Work)

FIGURE 170: Prediction pattern on test data. (Own Work)

FIGURE 171: Validation vs Training loss. (Own Work)

FIGURE 172: Prediction vs Ground Truth. (Own Work)



during training even though the model had no values below 
that. 1 out of those 6 values was non zero. Therefore, it 
would not be fair to assess the model as performing poorly 
on the best values as the best values themselves were 
close to zero.

As was the case with Buckling Load Factor and Utilization, 
the best performing models were those with thickness 
normalized independent of the force densities. Using just 
ReLU as the activation functions for all dense layers had 
a better effect on the performance as using sigmoid on the 
model increased the absolute NRMSE by 1.57%. 

It was also interesting to note that increasing the number 
of dense layers from 3 to 4 reduced performance by an 
absolute percentage of 1.19%. Moreover, reducing the 
number of layers from 3 to 2 (512-256-1 to 512-1) caused 
a 1.76% absolute reduction. It was notable that the 512-1 
model performed better than 88.46% of all models including 
the 256-128-1. This shows that increasing the number of 
neurons had a much stronger effect than increasing the 
number of layers on the outcome. However, there is a 
threshold beyond which performance starts to flatten out 
and then decrease so the increase in the size of the NN is 
not worth the computational cost. For instance the two 
layered NN 512-1 performed better than 1024-1. 
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FIGURE 173: Prediction on 10 best samples of Utilization for best 
performing SG for Interstorey Drift Ratios. (Own Work)



f___d-512-relu___d-256-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 9.81 %

RMSE: 0.0009780667564782254

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 11.0 %

RMSE: 0.0010974877328150067

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-1-sigmoid________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 11.38 %

RMSE: 0.0011351569237790884

----------------------------------------------------------

f___d-512-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 11.57 %

RMSE: 0.0011536630079410665

----------------------------------------------------------

f___d-1024-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 11.89 %

RMSE: 0.0011859609732852864

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 11.93 %

RMSE: 0.0011894115681266308

1

2

3

4

5

6

Flattened layer

Neurons Activation function

batch 
size

learning 
rate

if DRIFT is present, then model is only for Interstorey Drift Ratios, 
as described in Section 7.2.1 otherwise it is a model which outputs 
Interstorey Drift Ratios as one of 3 tensors as described in Section 
7.2.2 

This is a summary of the various models that had been made to calculate Interstorey Drift Ratios and their RMSE and NRMSE for 
comparison. The list is in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for 
Interstorey Drift Ratios are also included in terms of NRMSE performance for Interstorey Drift Ratios.

thick-separate = thickness is normalized independently
thick-together = thickness is normalized along with force densities
if thickness is not present, then model does not consider thickness

number of 
epochs

validation 
split

Dense layer

ARCHITECTURE HYPERPARAMETERS OTHER PARAMETERS
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----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 12.03 %

RMSE: 0.0009996250650747952

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-6000___batch-128___val-0.2___lr-1e-06________DRIFT___thick-separate

NRMSE: 12.47 %

RMSE: 0.0012435723003128211

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-together

NRMSE: 12.9 %

RMSE: 0.001071398708132039

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________DRIFT___thick-separate

NRMSE: 13.26 %

RMSE: 0.001322514377068918

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 13.62 %

RMSE: 0.001131338065472033

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-1000___batch-256___val-0.2___lr-5e-06________DRIFT___thick-separate

NRMSE: 13.74 %

RMSE: 0.0011412395446222328

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 14.26 %

RMSE: 0.0011848487975821562

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-together

NRMSE: 14.89 %

RMSE: 0.0014854920337636825

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-3-relu________epochs-3000___batch-512___val-0.2___lr-1e-06________thick-together

NRMSE: 15.43 %

RMSE: 0.0015391005433508082

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________DRIFT___thick-together

NRMSE: 15.7 %

RMSE: 0.0015660532326641982

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-together

NRMSE: 15.72 %

RMSE: 0.001567525906330497

----------------------------------------------------------

d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 15.89 %

RMSE: 0.0015846452463676509
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----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________DRIFT___thick-together

NRMSE: 16.19 %

RMSE: 0.001614825566051438

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 16.31 %

RMSE: 0.0016267079440805666

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-1-relu________epochs-3000___batch-128___val-0.2___lr-5e-06________DRIFT___thick-together

NRMSE: 16.35 %

RMSE: 0.0016307541455895754

----------------------------------------------------------

f___d-512-relu___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-together

NRMSE: 17.28 %

RMSE: 0.001723631356911795

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-together

NRMSE: 20.06 %

RMSE: 0.001666860115000885

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-1000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 21.13 %

RMSE: 0.0017555871659895369

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-3000___batch-256___val-0.2___lr-5e-06________thick-separate

NRMSE: 53.77 %

RMSE: 0.004467771333400297

----------------------------------------------------------

f___d-256-relu___d-128-relu___d-3-relu________epochs-4000___batch-128___val-0.2___lr-1e-06________thick-separate

NRMSE: 53.77 %

RMSE: 0.004467771333400297
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7.2.3	  Vault Properties: Separate Surrogate Models

HYPERPARAMETERS: epochs = 6000, batch_size = 128, 
learning_rate = 5E-06 HYPERPARAMETERS: epochs = 3000, batch_size = 256, 

learning_rate = 5E-06
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Mass

The goal of optimization was to improve performance 
(Buckling Load Factor / Utilization / Interstorey Drift Ratio)
while having the lowest amount of material possible. The 
condition for minimizing material was included by 
minimizing mass. In order to predict the mass of each 
sample, a surrogate model was created. If the condition of 
mass was not included, the samples would result in 
minimizing the force densities creating very high and thus, 
very massive vaults. Therefore, a condition minimizing 
mass would provide regulation.    

Height

As mentioned earlier, in order to retrieve samples of a 
particular height, the VAE was conditioned with heights. 
However, since the output of the VAE was feature data 
comprising of force densities and thicknesses, another 
prediction model was needed to validate whether the new 
samples were indeed of the desired height as specified in 
the condition. For this reason, a surrogate model was 
created to predict the height. This would also be used for 
regulating the height during gradient descent in case a 
particular height of the final optimized vault was required.
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FIGURE 174: Best Height surrogate model a) architecture, b) 
Prediction vs Ground Truth, c) Prediction pattern on test data. (Own 
Work)

FIGURE 175: Best Height surrogate model a) architecture, b) 
Prediction vs Ground Truth, c) Prediction pattern on test data. (Own 
Work)



7.2.4	 Conclusion

To summarize, the strategy to divide the 1 surrogate model 
with 3 tensor outputs into 3 separate surrogate models 
worked for all three performance metrics. Though larger 
neural networks with 5 and 6 dense layers performed 
slightly better, one with 4 dense layers was chosen 
(performing the 3rd highest in all Utilization models).

The best separate models gave these NRMSE (Figure 
177):

•	Buckling Load Factor: 7.27%

•	Utilization: 9.18%

•	Interstorey Drift Ratio: 9.81%

In contrast, the best model which had 3 tensor outputs 
gave the following result. It is shown in Figure 176:

•	Buckling Load Factor: 14.74%

•	Utilization: 20.92%

•	Interstorey Drift Ratio: 14.26%

By having separate models, the performance metrics 
decreased by 50.7%, 56.1%, and 31.2% respectively. 
Thus, there is a significant increase in performance for all 
three metrics.

Moreover, normalization of thickness independent to the 
force densities and use of ReLU as the activation function 
also produced the best results in all three cases. The 
following summarizes the architectures an hyperparameters 
of the chosen surrogate models to be used in the 
optimization. Although each metric has a different 
architecture for its own optimal performance, similarities 
arose during  hyperparameter tuning. Though other 
learning rates were tested such as 1E-05, 1E-06 and 1E-
07, the most optimal one found was 5E-06 in all three 
cases with a batch size of 256. 

HYPERPARAMETERS: epochs = 2000, batch_size = 256, 
learning_rate = 5E-06

HYPERPARAMETERS: epochs = 3000, batch_size = 128, 
learning_rate = 1E-06
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HYPERPARAMETERS: epochs = 3000, batch_size = 256, 
learning_rate = 5E-06
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HYPERPARAMETERS: epochs = 3000, batch_size = 128, 
learning_rate = 5E-06
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a) Surrogate Model 1: Buckling Load Factor

Single Surrogate Model

b) Surrogate Model 2: Utilization

c) Surrogate Model 3: Interstorey Drift Ratios
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FIGURE 176: Best single surrogate model architecture - thickness 
normalized independently. (Own Work)

FIGURE 177: Best separate surrogate model architectures - 
thickness normalized independently. top (a) Buckling Load Factor, 
(b) Utilization, (c) Interstorey Drift Ratios (Own Work)



Besides predicting the performance metrics, two additional 
surrogate models were created to predict features of 
samples - the mass and the height. This was done in order 
to minimize material in the optimization process and 
selecting specific new samples having specific user-
defined characteristics such as a desired height.

The best models gave the following NRMSE:
•	Height: 6.95%

•	Mass: 3.58% HYPERPARAMETERS: epochs = 10000, batch_size = 128, 
learning_rate = 5E-06

HYPERPARAMETERS: epochs = 3000, batch_size = 256, 
learning_rate = 5E-06
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a) Surrogate Model 4: Height

b) Surrogate Model 5: Mass

DATASET: randomized

Sample for Optimization: Mesh_237

Metric Values before 
Optimization

Buckling Load Factor 12.6452
Utilization 10.6016
Interstorey Drift Ratio 2.83E-03h
Thickness 0.060m
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FIGURE 178: Best feature predicting surrogate model architectures 
- thickness normalized independently. top (a) Height, (b) Mass.  
(Own Work)



7.3.1	 Single Objective Optimizations 

As each surrogate model predicted a separate performance 
metric, that part icular metric could be optimized 
accordingly.  This was useful for cases where it is known 
what the likely failure mode is. This was also true for our 
case where we know that failure is likely to occur in 
Utilization of the vault. Nonetheless, gradient descent on 
other performance metrics was explored to develop 
conclusions for future explorations for different datasets 
and geometries. It should be noted the Equations I - 
Equations VI in Section 4.1.6 were not considered for this. 

VAE

Tests were initially conducted on the VAE. A sample from 
the test data was selected. Different learning rates were 
tested and the percentage change in performance was 
noted. 

DATASET: randomized

Sample for Optimization: Mesh_237

Metric Values before 
Optimization

Buckling Load Factor 12.6452
Utilization 10.6016
Interstorey Drift Ratio 2.83E-03h
Thickness 0.060m

The learning rates were 0.01, 0.1, 1, 5 , 10, 15, 20 and 30. 
1000 iterations were run for each simulation. In each case, 
the tables are organized according to the best performing 
optimizations at the top. The best learning rates for each 
metric has been highlighted in Figure 180.

For Buckling Load Factor, a learning rate of 20 was found 
to give the maximum optimization increasing the Buckling 
Load Factor from 12.6542 to 45.0239 by a percentage of 
265.05%. The Gradient Descent algorithm optimized the 
thickness from 0.060m to 0.094m. This is expected as 
Where thickness could not be increased, such as in 
learning rate 1,5,10, and 30, the Buckling Load Factor 
instead reduced.

For Utilization, the best learning rate found was 15 which  
reduced the Utilization from 10.6016 to 2.0123 - a change 
of 81.02%. The thickness increased from 0.060m to 
0.0688. 

Even though the predicted performances of the surrogate 
models indicate better performances, the predicted force 
densities for Utilization and Buckling are too small to 
generate valid meshes.  Though it may seem that the 

TABLE 18: Metrics of mesh 237 - before optimization. (Own Work)

7.3	 GRADIENT DESCENT OPTIMIZATION
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FIGURE 179: Mesh to be optimized: mesh 237. (Own Work)

FIGURE 180: Log of learning rate vs percentage change in performance - gradient descent optimization. (Own Work)



DATASET: randomized  - Mesh 37

#

Gradient Descent: Utilization

Learning 
Rate

Percentage 
change 

Final 
Thickness / 

m

Final 
Performance 

score

1 15 -81.02% 0.0688 2.0123
2 20 -81.02% 0.0688 2.0123
3 1 -80.95% 0.068 2.0197
4 5 -80.43% 0.0718 2.0750
5 0.1 -19.99% 0.0637 8.4822
6 10 -19.85% 0.0637 8.4973
7 30 -17.53% 0.0634 8.7430
8 0.01 -16.04% 0.0637 8.9007

DATASET: randomized  - Mesh 37

#

Gradient Descent: Interstorey Drift Ratios

Learning 
Rate

Percentage 
change 

Final 
Thickness / 

m

Final 
Performance 

score

1 0.1 -100% 0.0649 0.00E+00h
2 10 -100% 0.0668 0.00E+00h
3 1 -100% 0.0654 0.00E+00h
4 5 -100% 0.0654 0.00E+00h
5 0.01 39.99% 0.0636 3.96E-03h
6 30 49.89% 0.0636 4.24E-03h
7 15 50.03% 0.0636 4.24E-03h
8 20 50.12% 0.0636 4.24E-03h

DATASET: randomized - Mesh 37

#

Gradient Descent: Buckling Load Factor

Learning 
Rate

Percentage 
change 

Final 
Thickness / 

m

Final 
Performance 

score

1 20 256.05% 0.094 45.0239
2 15 255.97% 0.094 45.0139
3 0.1 159.13% 0.0702 32.768
4 0.01 72.99% 0.0646 21.8748
5 1 -49.14% 0.0637 6.4318
6 5 -49.19% 0.0637 6.4251
7 10 -49.27% 0.0637 6.4149
8 30 -49.61% 0.0637 6.3714

TABLE 19: Gradient descent on Buckling Load Factor. (Own Work)

TABLE 20: Gradient descent on Utilization. (Own Work)

TABLE 21: Gradient descent on Interstorey Ratios. (Own Work)

DATASET: randomized

Edge 
no.

Initial 
Mesh

Optimized mesh
Buckling 

Load 
Factor

Utilization Drift 
Ratio

col_1 0.20 3.75E-16 3.01E-02 0.60
col_2 0.30 1.22E-18 1.36E-02 0.34
col_4 0.40 9.66E-19 9.68E-03 0.35
col_5 0.10 9.29E-16 1.69E-02 0.38
col_6 0.50 1.40E-17 1.26E-02 0.43
col_7 3.30 6.74E-17 2.29E-02 0.60
col_8 0.50 1.50E-18 9.51E-03 0.27
col_9 0.50 2.52E-17 1.60E-02 0.48

col_10 4.20 4.75E-17 1.42E-02 0.44
col_11 0.60 1.51E-17 1.57E-02 0.45
row_1 1.30 1.03E-16 1.31E-02 0.34
row_2 7.50 3.06E-18 2.18E-02 0.46
row_3 0.80 4.78E-17 1.25E-02 0.39
row_4 3.40 5.69E-17 1.27E-02 0.33
row_5 1.00 3.95E-17 1.73E-02 0.48
row_6 1.00 2.63E-18 1.25E-02 0.43
row_7 0.30 5.50E-18 1.27E-02 0.33
row_8 3.40 5.12E-17 2.17E-02 0.48
row_9 9.60 6.38E-18 9.30E-03 0.29
row_10 4.90 1.70E-18 1.04E-02 0.45
row_11 0.80 1.13E-17 2.06E-02 0.38
row_12 0.40 5.89E-17 1.46E-02 0.40
row_13 0.60 1.34E-16 2.42E-02 0.48
row_14 1.90 2.72E-17 2.16E-02 0.47
row_15 0.40 6.59E-17 1.19E-02 0.42
row_16 0.10 2.47E-17 1.25E-02 0.36
row_17 0.50 9.19E-18 1.34E-02 0.43
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FIGURE 181: Predicted Buckling Load Factor without normalization, 
Gradient, and thickness vs iterations. learning rate = 20 (Own Work)

FIGURE 182: Predicted Utilization without normalization, Gradient, 
and thickness vs iterations. learning rate = 15 (Own Work)

FIGURE 183: Predicted Interstorey Drift without normalization, 
Gradient, and thickness vs iterations. learning rate = 0.1 (Own Work)



DATASET: randomized

Edge 
no.

Initial 
Mesh

Optimized mesh
Buckling 

Load 
Factor

Utilization Drift 
Ratio

col_1 0.20 3.75E-16 3.01E-02 0.60
col_2 0.30 1.22E-18 1.36E-02 0.34
col_4 0.40 9.66E-19 9.68E-03 0.35
col_5 0.10 9.29E-16 1.69E-02 0.38
col_6 0.50 1.40E-17 1.26E-02 0.43
col_7 3.30 6.74E-17 2.29E-02 0.60
col_8 0.50 1.50E-18 9.51E-03 0.27
col_9 0.50 2.52E-17 1.60E-02 0.48

col_10 4.20 4.75E-17 1.42E-02 0.44
col_11 0.60 1.51E-17 1.57E-02 0.45
row_1 1.30 1.03E-16 1.31E-02 0.34
row_2 7.50 3.06E-18 2.18E-02 0.46
row_3 0.80 4.78E-17 1.25E-02 0.39
row_4 3.40 5.69E-17 1.27E-02 0.33
row_5 1.00 3.95E-17 1.73E-02 0.48
row_6 1.00 2.63E-18 1.25E-02 0.43
row_7 0.30 5.50E-18 1.27E-02 0.33
row_8 3.40 5.12E-17 2.17E-02 0.48
row_9 9.60 6.38E-18 9.30E-03 0.29
row_10 4.90 1.70E-18 1.04E-02 0.45
row_11 0.80 1.13E-17 2.06E-02 0.38
row_12 0.40 5.89E-17 1.46E-02 0.40
row_13 0.60 1.34E-16 2.42E-02 0.48
row_14 1.90 2.72E-17 2.16E-02 0.47
row_15 0.40 6.59E-17 1.19E-02 0.42
row_16 0.10 2.47E-17 1.25E-02 0.36
row_17 0.50 9.19E-18 1.34E-02 0.43

optimization has gone wrong, it is evaluated that the reason for such numbers is that lower force densities show increased 
performance in all three metrics. The non-highlighted section of Figure 184 shows the pattern that that is representative 
of the data in the training set. It can be seen a decrease in force density is synonymous with an increase in performance. 
However, as the force densities fall below a certain threshold, performance decreases with a further decrease in the 
mean force density. This relationship (highlighted in orange in Figure 184) is not represented in the randomly generated 
dataset adequately enough for the pattern to be recognized by the surrogate models. This is quantitatively highlighted 
ahead.

TABLE 22: Force densities of best samples from each optimization. 
(Own Work)

 Tahir Zahid Ishrat - 5698928 
139

Tahir Zahid Ishrat - 5698928 
139INTRODUCTION

Tahir Zahid Ishrat - 5698928 
139RESULTS

FIGURE 184: Performance vs Force Density pattern - smaller force 
densities below inversion threshold highlighted in orange and larger 
force densities above inversion threshold. (Own Work)

a) Buckling Load Factor

b) Utilization

c) Interstorey Drift Ratios

0.15%

0.05%

0.00%

OF DATASET

FD = 0.8

FD = 0.6

FD = 0.3

OF DATASET

OF DATASET



A mean force density less than 0.8 is required for this 
performance inversion in Buckling Load Factor but only 
0.15% of samples in the dataset represent this. A mean 
force density less than 0.6 is required for a performance 
inversion in Utilization but only 0.05% of the samples 
represent this. A mean force density of 0.3 is required for 
a performance inversion in Interstorey Drift Ratios but 
0.00% of the samples represent this.

It is probable that the reason why the force densities for 
Interstorey Drift Ratios is near real values and not near 
zero is that Interstorey Drift Ratios reduce significantly  for 
lower uniform force densities, as seen earlier. Before such 
low values reached for force densities, the minima is 
already reached. This also explains the lower learning rate 
(0.1) as compared to that for the other two metrics. Higher 
learning jump over the minima and instead of reducing the 
gradient, it increases. This can be seen by the fluctuating 
Gradient RMS in Figure 185 for the learning rate of 30 that 
instead causes an increase in the Interstorey Drift Ratio 
by 49.89%.

DATASET: randomized

Sample for Optimization

Metric Values before 
Optimization

Buckling Load Factor 2.56
Utilization 14.41
Interstorey Drift Ratio 0.009612
Thickness 0.065m

Mass 32591 kg

Height 0.86m
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FIGURE 185: (top) Optimized mesh for Interstorey Drift Ratios 
- learning rate = 0.1, (bottom) Gradient RMS and predicted 
Interstorey Drift Ratios vs iterations for learning rate = 30



Conditional VAE

After the VAE, tests were conducted on a Conditional VAE 
where the initial sample was not taken from the dataset 
Instead a sample of desired height was extracted from the 
latent space and then optimized. 

When one-hot-encoding was used, similar results resulted 
for all optimizations in Buckling Load Factor, Interstorey 
Drift Ratios, and Utilization. Invalid meshes formed due to 
force densities falling near zero.

However, when Sinusoidal positional encoding was used, 
the latent space was better constrained to the desired label 
(height). Hence, this problem did not occur.

DATASET: randomized

Sample for Optimization

Metric Values before 
Optimization

Buckling Load Factor 2.56
Utilization 14.41
Interstorey Drift Ratio 0.009612
Thickness 0.065m

Mass 32591 kg

Height 0.86m
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Initial mesh before optimization

Mesh after optimization of Buckling Load Factor

Learning rate = 1. iterations =1000



The Buckling Load Factor was optimized by 293% as it changed from 2.56 to 10.07. Interstorey Drift Ratios reduced by 
95.8% as it changed from 0.009 to 0.0003. For Utilization, a higher number of iterations such as 10 caused force densities 
to drop near zero so 100 iterations were kept. This caused a reduction of 82.2% changing from 15.41 to 2.64      

DATASET: randomized

Sample for Optimization

Metric Values before 
Optimization

Buckling Load Factor 8.63
Utilization 6.79
Interstorey Drift Ratio 0.00265
Thickness 0.061m

Mass 32701 kg

Actual Height 1.08 m

Predicted Height 1.42m

Desired Height 2.0m
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Mesh after optimization of Utilization Mesh after optimization of Interstorey Drift Ratios

Learning rate = 8. iterations =100 Learning rate = 1. iterations =1000



7.3.2	 Multi-objective Optimization

All optimizations using Sinusoidal Positional Encoding 
caused an increase in height and thus, an increase in 
mass. Multi-objective optimizations were explored where 
the objective was of improving seismic performance 
metrics (SSS) in addition of decreasing material usage by 
reduction of mass. Experiments introducing the mass  
objective directly were unsuccessful but when the height 
objective was minimized, this worked (as mass reduces as 
a result of reduction of height). See Equations I - Equations 
VI in Section 4.1.6 which were considered for this. 

Multi-objective optimizations were not successful at 
optimizing conflicting objectives such as reducing material 
(by reducing height) and reducing Utilization. Manipulating 
the weights of objectives only allowed optimization of one 
objective and not the other.

DATASET: randomized

Sample for Optimization

Metric Values before 
Optimization

Buckling Load Factor 8.63
Utilization 6.79
Interstorey Drift Ratio 0.00265
Thickness 0.061m

Mass 32701 kg

Actual Height 1.08 m

Predicted Height 1.42m

Desired Height 2.0m

The weights were 1.0 for Utilization and 0.5 for Height. See 
Section 4.1.6 for the equation. Utilization reduced by 
19.69% from 6.79 to 5.45 but Height (and thus, material) 
increased. 
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Mesh after optimization of Utilization and material.
 Predicted Height = 1.8m, Actual Height = 1.4m

Initial mesh sampled from latent space.
 Actual Height = 1.08m

Learning rate = 0.5. iterations =1000



The weights were 1.0 for Utilization, 0.1 for Interstorey Drift 
Ratios and 0.5 for Height. There was a reduction in 
Utilization of 46.74% reducing from 6.99 to 3.72 and 
Interstorey Drift Ratio reduction of 92.42% from 0.00292 
to 0.000222. The gradient was stabilized by the objective 
reducing height so near zero force densities did not form. 

DATASET: randomized

Sample for Optimization

Metric Values before 
Optimization

Buckling Load Factor 8.89
Utilization 6.99
Interstorey Drift Ratio 0.00292
Thickness 0.064m

Mass 33383 kg

Actual Height 1.06m

Predicted Height 1.38m

Desired Height 2.0m

Mesh after optimization of Utilization and material.
 Predicted height = 3.17m, Actual Height = 2.68m

Initial mesh sampled from latent space.
 Actual Height = 1.08m

Learning rate = 0.5. iterations =1000
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8.1	 CONCLUSIONS

8.1.2	 Subquestions

Q) Can the vaults be optimized for multiple 
performance metrics?

It is important to consider the nature of the optimization 
problem. Although non-conflicting objectives were able to 
be optimized together, it should be noted that conflicting 
objectives were not able to be optimized simultaneously 
during the multi-objective optimization such as reducing 
both, material usage and  Utilization.   A decrease in one 
caused an increase in the other. The reason for this may 
be that the latent space is restricted in generating a wide 
enough variety of samples that may satisfy the conflicting 
objectives; this is because even though the dataset is 
randomized, for each label condition, new samples only 
fluctuate around the same force density pattern so there 
is only a prominent change in height  whilst force density 
distribution across polyedges largely remains similar. 

Q) Can a user be able to tune the latent space 
in order to generate novel samples with user-
defined desirable characteristics? 

Yes, when the characteristic was encoded as a label, this 
was able to be done by conditioning the VAE. When the 
characteristic was encoded as a feature, this would be able 
to be done as long as the appropriate activation function 
was chosen in the hyperparameters. 

Characteristic is a Feature

Thickness of the vault and force densities were encoded 
as features during training. Two different thickness 
normalization strategies were implemented. It was found 
that thickness normalization independent from the force 
densities provided better results for surrogate model 
predictions in all cases especially for the Buckling Load 
Factor.  

Thickness was seen to change across both latent 
dimensions in all cases except ReLU being used as the 
only activation function. When Sigmoid was used as the 
only activation function, this change in thickness was linear 
across Dimension 1. This means that it can be used as a 
scrollable feature as well if a particular thickness needs to 
be sampled. However, very similar samples were generated 
this way which would be undesirable for sample 
generation.

8	 CONCLUSIONS AND REFLECTION8

The main research question and sub-questions that the 
research paper aimed to answer will be answered below.

8.1.1	 Main Research Question 

Q) Can an AI based framework generate new 
Catalan vaults for optimized seismic 
performance for use as a floor slab?

Yes. The results have shown that the preliminary design 
of a vault may be optimized using the presented pipeline 
where optimization happens with respect to the latent 
space of a Conditional Variational Autoencoder using the 
predictive capabilities of surrogate models. 

The framework uses a Conditional VAE trained on features 
(force densities and thickness) and labels (heights of each 
vault) to generate new vaults. Separate surrogate models 
are used to predict seismic performance metrics (Buckling 
Load Factor, Utilization, Interstorey Drift Ratios) as well as 
other metrics (height, mass) that  are used in a multi-
objective optimization that minimizes the aggregated 
gradient with respect to the latent space for gradient 
descent optimization. 

Without including a threshold to minimize mass and limit 
the height for use as a floor slab, single-objective 
optimizations for Buckling, and Utilization generated invalid 
meshes with force densities close to zero. Interstorey Drift 
Ratio optimizations generated valid meshes only because 
the minima was reached much quicker. 

However, once the thresholds were added to the gradient 
descent algorithm, optimized valid meshes were able to 
be generated through multi-objective optimization. Each 
objective has a weight which can be changed according to 
the requirement of the user. In this project, as failure was 
happening in Utilization, the weights for Buckling Load 
Factor and Interstorey Drift Ratios were kept zero while 
Utilization, Height, and Mass were non-zero. This way, 
separate metrics can be considered. Once the gradient 
falls below the threshold where failure in either metrics in 
ULS or SLS  no longer happens, the gradient descent is 
stopped for that metric. 

 Tahir Zahid Ishrat - 5698928 
145

Tahir Zahid Ishrat - 5698928 
145REFLECTION



Characteristic is a Label

Height was encoded as a label during training. Conditioning 
the VAE allowed for better control of the latent space. It 
has been proven that the latent space  can be conditioned 
using labels to extract samples close to the desired label 
- height of the vault (in this project). For this, Sinusoidal 
Positional Encoding provided more accurate results than 
One-Hot Encoding and restricted the spread of sampled 
heights to a much larger degree. However, it should be 
noted that new samples were not exactly of the desired 
height  but were instead ‘close to’ the desired heights. The 
deviation from the desired height continued to increase as 
the desired height itself/ label was increased (above 1.5m). 
There is potential to increase the accuracy  by hyper-
parameter tuning of the Conditional VAE. Another 
recommendation is to filter out outliers from the main 
dataset as this may affect  the learning process; the heights 
ranged from 0.5m to 26.7m but only 6.06% of the total 
dataset had heights above 3.0m. If the total spread of 
heights is reduced, accuracy in sampling the desired height 
may be increased.

Q) Can individual dimensions of the VAE’s 
latent space be interpretable?

Yes, this is true when considering characteristics that are 
encoded as features (thickness) or labels (height). 
Dimension 1 of the latent space was able to show an 
interpretable pattern in the change in thickness  and height 
as we scrolled across that latent dimension.

It was seen that interpretability of Latent Dimension 1 
improved and became almost linear when only Sigmoid 
was used as the activation function. This approach, 
however, did not work for the CVAE as all meshes sampled 
from the latent space were of the same height around 
1.1m.    

In conclusion, while individual dimensions may be 
interpretable to some extent, if the purpose is to tune it like 
a control knob to extract samples with a particular 
characteristic, it is recommended to include that as a label 
to condition the VAE with rather than use it as a scrollable 
feature of a latent dimension. 

It would be interesting to see additional labels being 
encoded inside the Conditional VAE including thickness. 

Q) What effect does varying the force 
dens i t ies  have  on  overa l l  se ismic 
performance? 

Decreasing the force densities increases the height of the 
vault which causes a improvement in seismic performance. 
This is due to an increase in the Buckling Load Factor, a 
decrease in Utilization and a decrease in Interstorey Drift 
Ratio. However, this improvement happens only till a 
threshold after which performance reduces if force 
densities decrease any further. For the specific vault 
properties used in this paper (dimensions = 10m x 15m, 
load = 40.0, PGA = 0.2g), the threshold for Buckling Load 
Factor is FD (force density) = 0.8, for Utilization  FD = 0.6, 
and for Interstorey Drift Ratio FD = 0.3. These values are   
for vaults of uniform force densities.

Q) Is there any favourable pattern in terms of 
force densities for seismic performance?  

In terms of force density patterns,the best performing 
meshes are those with uniform force densities for overall 
structural performance including seismic performance. 
Variations in force densities of the vault cause stress 
concentrations which reduces performance such when 
they are randomly generated or in the presence of 
creases.   

Q) Can having a reduced sample dimension 
still justify the use of a Deep Neural Network?

The use of polyedges allowed the dataset to be reduced 
from 30,976 values to 27 values (for force densities) 
causing a reduction of 99.91%. If the VAE is seen in 
isolation, then no, using a Neural Network (NN) makes no 
sense as a randomizer can also generate force densities 
and thicknesses (features of the VAE). However, in the 
conditional VAE where a vault with a specific label (height) 
can be generated this becomes much more useful in 
extracting samples with hidden characteristics that cannot 
be explicitly stated during the geometry generation process 
- characteristics that they are not necessarily inputs to the 
process but are outputs. In the  larger framework where 
the CVAE is connected to surrogate models used for 
gradient descent optimization, the approach becomes 
much more useful. The decrease in size allows it to be 
highly efficient as the final gradient descent optimization 
takes under 30 seconds for 1000 iterations (changing force 
densities in each iteration).  This is incomparable to 
running a genetic algorithm in Grasshopper where each 
iteration in geometry takes 3.0-4.6 seconds (on the same 
computer) so the equivalent number of iterations would 
take 1 hr and 6 minutes.   
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8.2	 CONSTRAINTS AND SHORTCOMINGS

8.2.1	 ‘Garbage in Garbage Out’

A predictive optimization model is only as good as its dataset. In this case, since the dataset was composed of randomized 
force densities, the probability of having a vast array of ‘bad performing designs’ was great - which gives little room for 
optimization of already good performing meshes. This is because we have learnt from the Performance Evaluation 
chapter that fluctuations in force densities cause stress concentrations leading to a higher risk of failure - showing that 
uniform force densities show greatest seismic performance. The same is true for the accuracy of the Conditional VAE. 
A large variation in heights due to the randomized nature of the dataset generation process had an adverse effect.  

In essence, if the initial sample to be optimized is taken from the latent space or is any other non-uniform vault from the 
dataset, that, by the nature of its variable geometry performs poorly, the current model is able to optimize the gradient 
to a lower minima as it is trained on a dataset of randomized force densities. This however, does not mean that a good 
performing uniform vault from the dataset (made from uniform force densities)  can be optimized using the same dataset. 

8.2.2	 Practical Application

From the literature it became clear that the dominant construction materials  (wood, steel, concrete) could not be avoided 
completely especially for earth buildings due to their high mass and low stability in seismic events which is why ring 
beams and shear walls were included in the final structure designed using seismic guidelines for non-engineered 
structures. There is scope, however, to minimize the use of these materials by the strategies highlighted in the research 
- through the use of earthen vaults as floor slabs reinforced with basalt geo-grids. This has also been showcased in 
projects highlighted in the paper such as the SUDU housing in low seismic zones.

To conclude, there is some success in the optimization workflow by use of a VAE, surrogate model, and optimizer for 
initial stage design. However, practical considerations for such a workflow would not be feasible for use in a low-income 
housing project currently. This is we now know that because simpler is better in terms of force density distribution for 
structural stability of a vault. 

The starting point of a design is integral to the outcome of the optimization.  This would be useful as an optimizer for 
optimizing sculptural vaults which would be more appropriate as museum pieces rather than floors for a low-cost homes. 
By nature, the engineer/ architect would start from a simple vault (of uniform force densities). While it does not fit the 
intended purpose, the workflow shows scope for complex optimization tasks.

A significant absence in complete earthen construction lies in the absence of a slab system. Catalan vaulting highlights 
how shells can serve as the structural element for an earthen slab system. However, considering that Catalan vaulting 
might not be feasible everywhere, it’s crucial to explore and experiment with other local material technologies. It can be 
concluded that seismic performance of a vault is unique for a particular structure in relation to the number of storeys 
that structure. Therefore, if this construction technology is to be scaled for mid-rise buildings, each floor slab would need 
to need to designed uniquely.

8.2.3	 Time Constraints

Due to time constraints in the project, it was not possible to conduct a more accurate non-linear analysis such as Non-
linear Time History Analysis (NLTHA) for the Performance Evaluation as intended at the very initial stages. It became 
clear that such a technique was not feasible for a large dataset of 10,000 samples. 
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8.3	 LOOKING AHEAD

8.3.1	 Future Potential

Zooming out

In this research, for optimization, a linear dynamic seismic 
analysis was performed. The NRMSE for the surrogate 
models for the seismic performance metrics were 7.27%, 
9.18% and 9.81% respectively, and it is highly probable 
that the error can be further reduced if a more structured 
dataset is used which limits the spread of data, such as 
the one recommended in Section 8.3.2. From this, it may 
be extrapolated that other more computationally expensive 
FEA approaches such as Non-linear Static Procedures 
(NSPs) and Discrete Element Modeling (DEM) may also 
be used in this way which provide greater accuracy. These 
could be run on supercomputers for the initial dataset 
generation process and then the same accuracy of these 
otherwise complex time consuming techniques could be 
harnessed through trained surrogate models.  This may 
not be feasible for stand-alone niche design problems but 
for those problems where the dataset gives a good 
generalization of usage, it could be highly effective 
especially for companies which run the same type of 
optimization tasks. It may be a Utopian dream that 
surrogate models like such are trained and made open-
source so that the average freelancer may be able to 
harness the power of complex macro-models and micro-
models but the pace at which the AI is growing is somewhat 
of a dream itself I would think.   

Though sinusoidal positional encoding already constrains 
the latent space well, gradient descent forces the z vector 
to be sampled from extreme ends of the latent space - 
which may results in large deviations from the desired 
condition. It would be interesting to see how the conditioned 
latent space during the gradient descent can be further 
restricted so that values outside the desired label are not 
sampled.

Zooming in

The dataset used in this project was based on a uniform 
footprint. It would be interesting to see how a variable 
footprint can be accommodated which opens up the 
potential for wider applications for floor sizes of variable 
dimensions. This can be challenging because the data-
structure would need to be rethought as this would entail 
a different number of  polyedges across different vaults 
(for the same polyedge density). A possibility lies in 
padding the ‘missing’ polyedges for smaller vaults. 
Moreover, in the future, tiling patterns may also be explored 
due and how they may contribute to increased seismic 
performance of the vault through patterns such as 
loxodrome. Representing these patterns into data for a 

neural network may pose a significant challenge. A possible 
approach for this is highlighted in the Appendices Section 
10.2.4 and Section 3.1.3. 

The polyedge density was kept constant throughout this 
project (1 polyedge per metre); as an increase in density 
would result in a smoother vault (for a vault with uniform 
force densities), it would be interesting to the effect of 
optimizing the polyedge density to evaluate the trade off 
between calculation time and structural performance and  
see how the graph converges. The 99.82% reduction in 
dimensionality of the sample size did not require the use 
of graphs due to the grouping of edges into polyedges. This 
was necessary for thin tile vault geometry. However, if 
other shell geometries are used that require individual 
edges to be expressed, then there is potential to explore 
Graph Convolution Networks for permutation invariance 
(See Section 3.2 for further detail). 

8.3.2	 Improvements for Future 
Reference

All samples failed in utilization . In terms of designing thin 
shell vaults for seismic loads, alternate form-finding 
strategies may be explored in the future for better 
performance. It would be very useful if appropriate 
reinforcement techniques such as geo-grids can be 
represented into data usable for neural network 
implementation.

Shell Corrugation

There is high potential to explore shell corrugation to allow 
the compression load path to carry lateral loads for 
earthquake resilience. Michiels et al. have highlighted a 
workflow that derives the geometries through a series of 
funicular polygons that are obtained by employing graphics 
statics for combined gravity and seismic loads ( 2019). This 
has resulted in a lateral capacity that is 79% greater than 
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FIGURE 186: Shell corrugation. Image retrieved from Michiels, T., 
Adriaenssens, S., & Dejong, M. (2019). Form finding of corrugated 
shell structures for seismic design and validation using non-linear 
pushover analysis. Engineering Structures, 181, 362–373. https://
doi.org/10.1016/j.engstruct.2018.12.043
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non-form-found shapes for the same material usage (Michiels et al., 2019) outperforming Eladio Dieste’s shell of a 
similar shape. Michiels et al. use a non-linear pushover analysis to determine change in capacity where it is found that 
corrugation depth has a high influence on the capacity whereas the corrugation period has a minor effect. It is yet unclear 
whether such an approach may be suitable to generate a large enough dataset required for a deep generative model 
as used in this paper. Nevertheless, it opens up potential for seismic design of thin tile masonry vaults.

Vault Segmentation 

Another option is using vault segmentation as we’ve found that this improves the seismic performance of a uniform vault 
further, where each segment is supported independent to the rest of the vault. However, the data-structure for this may 
need to be rethought as the current data-structure does not account for variability in boundary supports as the current 
scheme assumes supports at the periphery. A solution may lie in using the creased dataset  as an inspiration but with 
binary digits. (0) could represent polyedges where all force densities are the same while (1) could represent the polyedge 
that is supported. However, this would only work if all force densities for all samples are the same. To give a unique 
value of a force density to each sample, an additional digit may be added to represent the value of that force density It 
would be interesting to see if the binary values remain binary and the force density remains non-zero. 
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FIGURE 187: Possible data-structure visualization for vault segmentation. (Own Work)



dataset. This is because Grasshopper based algorithms 
will not be constrained to the latent space of a VAE and 
thus would be able to generate a large variety of solutions. 
Therefore, the  optimized performance may likely be better 
for inefficient latent spaces. However, it is imperative to 
consider the time it takes for Grasshopper to calculates a 
single iteration (ranges between 3.0 to 4.6 seconds) as 
compared to the current pipeline (0.015 seconds) which 
makes convergence in the Grasshopper-based 
optimizations196-400 times slower than the proposed 
framework. 

A comparison that could be more interesting in the future  
would be to replace the Gradient Descent Optimization 
with Genetic Algorithms within the proposed pipeline. This 
would harness the computational efficiency of the fast 
structural predictions on instantly generated geometry in 
the latent space.

8.3.4	 Comparison with other 
Generative models 

The scope of the project was limited to exploration of a 
VAE. There is reason to believe there are other deep 
generative models that can be used as an alternate instead 
for topology optimization and shape optimization tasks. 
GANs are notoriously unstable and difficult to train but 
WGANs  present potential in improving the stability of the 
environment and have been used for 3D structural topology 
optimization (Rawat & Shen, 2019) with a similar pipeline 
using CNN based surrogate models. 

Reinforcement learning may also be explored alternatively  
as topology optimization problems have been solved with 
this (Jang et al., 2022). 

A practical drawback of using segmentation, however, is 
the increase in the number of beams that are used - and 
the avoidance of a large number of beams (due to the 
absence of wood, steel, concrete) was the initial motivation 
behind the research. This would present a question: at 
what point does it make sense to even consider using a 
vault instead of a floor slab if there is already a large 
network of beams that is needed from the standpoint of 
seismic performance, mater ia l  usage and cost 
effectiveness. 

Feature-based Topology Finding 

In feature-based topology finding techniques (Section 
3.1.2), additional features such as curve features and point 
features were introduced. This could be of high significance 
if it could be able to represent vertical stiffeners like ribs 
for strengthening of vaults. Using force densities that have 
smoother transitions across polyedges instead may 
prevent stress concentrations. 

Thickness Variation

In this research, a constant thickness of the vault was kept 
throughout all the samples. Though this is simpler in terms 
of construction, it is not very efficient in terms of material 
usage because of non-uniform force distribution. A strategy 
of non-uniform thickening may be adopted. This can be 
done by increase the thickness of the vault in areas of 
higher forces. To maintain continuity in the shell structure, 
an additional layer of tile can be sandwiched between the 
intrados and extrados such as in Los Manantiales 
Restaurant at Xochimilco, Mexico City by Felix Candela  
(Davis et al., 2012). Areas of higher force densities 
correspond to higher forces experienced –  corresponding 
to areas where the thickness of the cross-section is to be 
increased. 

8.3.3	 Comparison With Other 
Optimization Techniques

This project only utilized the Gradient Descent algorithm 
for optimization. It would be interesting to see comparisons 
with other optimization algorithms in terms of performance 
and time. 

When comparing the current optimization pipeline with  
conventional evolut ionary algori thms bui l t  inside 
Grasshopper such as Galapagos (for single objective 
optimization) and Wallacei (for multi-objective optimization, 
we can make educated guesses based on two different 
criteria - time and performance. In terms of performance, 
the results lead to the assumption that a greater variety of 
opt ions may be explored in Grasshopper-based 
evolutionary algorithms when compared to the current 
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8.4	 THE TOPIC IN CONTEXT 

8.4.1	 In Context of the Studio

The topic, ’Generative Design of Catalan Vaults for Multi-
storey Seismic Design’, combines two fields of the Building 
Technology Master Track – Design Informatics (DI) and 
Structural Design (SD). Within the two fields, it specifically 
delves into the field of Deep Generative Design due to 
which it is relevant to the AiDAPT Lab as well.

The topic builds up from the foundations laid by previous 
courses completed in the Masters Program. The field of 
Art i f ic ial  Intel l igence (AI) was introduced in the 
Computational Intelligence for Integrated Design (AR0202), 
Sustainable Architectural whilst CORE (AR30B12) 
established a background in python programming and 
provided an introduction to seismic design. Materials and 
Structures (AR1B023) and Technoledge Structural Design 
(AR0133) developed a foundation for understanding of 
structural mechanics.

This thesis dealt with three complex fields with massive 
learning curves. The initial goals were kept quite ambitious 
and some of them were not achieved. However, this 
allowed the overall potential of the project to be explored 
further. The complexity of three different fields produced 
constraints on achievability of the initial targets and a 
greater in-depth study into either fields could not be carried 
out. Nonetheless, looking back, it proved to be a great 
learning experience where different interests were 
juxtaposed into a singular topic.  

8.4.2	 In Context of a Larger Social/ 
Technological Framework

In the broader context, the project aimed to serve as a test 
to determine whether the AI framework could generate 
reliable outputs - aiming to add to the state of the art. 
Learning to generate optimized solutions from a simpler 
dataset may be indicative of high potential for the model  
to generate optimized solutions for more complex micro-
models if the training dataset had been trained on that 
performance evaluation model as well. This way, the 
proposed framework can serve as an application for the 
use of a VAE in shape optimization tasks which would 
otherwise be far too computationally expensive to 
perform.

Generative design is a developing field and has great 
potential in several disciplines including engineering and 
architectural design. While there is some precedent 
research that deals with generative design of skeletal 
shells, there was a research gap in generative design for 
thin tiled shells. Moreover, there is also a gap in research 
in the development of a generative framework for seismic 
design as well. This research had aimed to deal with these 
research gaps in the larger scientific framework. 

The project targets a problem that is a growing concern in 

the present – the need to go vertical in an absence of 
conventional building materials. Due to a need for 
multistorey construction arising from rapid population 
growth, it may pose a much greater problem in the future
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/0 10	 APPENDICES10

The code for this project can be found in the Git Hub repository: 

https://github.com/tahirzahid995/tu_delft_msc_thesis_2023-2024.git

The grasshopper script ‘performance_evaluation.gh’ is the script for the seismic analysis while 01 and 02 are directories 
for the python code. ‘01’ is relevant to the Geometry Generation while ‘02’ is relevant to the Generator containing the 
VAE/CVAE, surrogate models, and Gradient Descent. DATASET 24 is the randomized dataset used but directory ‘01’  
can be used for generating a new dataset while the grasshopper script can be used to perform the Performance Evaluation 
on it.
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10.1	 GRADUATION TIMELINE 

23-Jan-’24

21-Oct-’24

26-Mar-’24

22-Apr-’24

21-Jun-’24

KEY (except for P1)

P2

P3

P4

P5

P1

Literature Research - Generative Design
Literature Research - Catalan Vault
Literature Research - Seismic
Development of Workflow 
Creating an Autoencoder with MNIST
Preparing P2 report and presentation

Creating a VAE with MNIST
Geometry Generation in COMPAS and Grasshopper
Performance Evaluation: testing overall structure options with 1) stiff walls,  2) columns 
Data structuring
VAE: setting up the vanilla version, hyperparameter tuning, testing, and sampling  
Study VAE codes from repositories
Preparing presentation

Performance Evaluation: testing other overall structure strategies including finalized scheme
Study surrogate model working
Surrogate Model: combined and separate surrogate models for performance metrics
Gradient Descent: single objective optimization
Preparing P4 report and presentation

Conditioning the VAE with height labels
Surrogate Model: separate surrogate models for Height and Mass
Gradient Descent: multi-objective optimization
Finalizing report and presentation

1 2 4

weeks
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10.2	INITIAL ALTERNATIVE WORKFLOWS

After the initial workflow shown in Figure 05 in  Section 1.4, the regular footprint was to be made variable and non-linearity 
introduced in the analysis. Refer to Section 3.2.2 where the limitations of LSP are discussed for masonry vaults – which 
is the reason it was considered initially. For all the alternative workflows (WF2A, WF2B, WF3), the Performance Evaluation 
was to be done using NSP. This applied to  Workflow 3 as well where tiling was to be done. This is because although 
the Discrete Element Method (DEM) simulates a discretized, hence tiled surface, it would be far too computationally 
intensive to be done for a dataset of 10,000 simulations. Therefore, a continuous model was to be assumed for the 
Performance Evaluation phase, and if time permitted, a DEM analysis could have been carried out on 1 sample  be 
carried out later as Validation. It was found, however, that non-linear analysis techniques were far too time consuming 
to be carried out within the project time-frame. This could be carried out in the future when there is greater time and 
computational power. 

Either Workflow 2A (WF2A) would be carried out or Workflow 2B (WF2B). The main difference between the two was the 
form finding approach - Workflow 2B had much greater complexity in generating a different topology patterns through 
the feature-based topology finding approach. Workflow 3 would build upon Workflow 2A introducing tiling patterns. This 
is shown in Figure 07. 
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FIGURE 188: Initial Workflow logic. (Own Work)



 Tahir Zahid Ishrat - 5698928 
157

Tahir Zahid Ishrat - 5698928 
157INTRODUCTION

Tahir Zahid Ishrat - 5698928 
157APPENDICES

10.2.1	 Workflow 2A (WF2A) and 2B 
(WF2B)

Please refer to Figure 08 for reference.

Data Generation

A variable input rectangular footprint would generated of 
x and y dimensions. Form-finding would be next done like 
in WF1. In WF2A, a regular grid like the one in WF1 would 
be used; in WF2B, feature-based topology finding would 
be done instead.

Performance Evaluation

For both workflows, the continuous geometry would be 
then evaluated seismically through a Non-linear Static 

Procedure (NSP) in ABAQUS. For material properties, 
please refer to the Section 3.2. 

Data Structuring

For WF2A, it is the same as WF1. For WF2B, graphs may 
not be used to represent nodal data. 

VAE 2

For WF2A, the structured data would be used as an input 
dataset to VAE 2. In case of WF2B, GCNs may not be used 
due to absence of graph data. 

10.2.2	 Workflow 3 (WF3)

Please refer to Figure 09 for reference. This is only done 
if Workflow 2A is chosen in the previous step.

WF2A

WF2B

if WF2A 
is used GCN 
will be used

if WF2B is used, 
graphs may not be used

variable footprint

regular

feature-based 
topology finding

or

COMPAS

encoder latent space decoder

surrogate 
model

Gradient 
Descent

ABAQUS

NSP

FIGURE 189: Workflow 2A and 2B. (Own Work)
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Data Generation

The same Data Generation process from Workflow 2A 
would also be done here. However, after that, tiling curves 
would be mapped onto it; Patterning Approach 1 would be 
used for this purpose due to integration of patterning with 
structural stability (See Section 3.1.3 for more information 
on Patterning Approaches). Then, Patterning Approach 2 
will be pursued. It should be noted that mesh is not 
discretized, it is a continuous one - the tiling only exists as 
curves.

Performance Evaluation

Same as Workflow 2A. 

Data Structuring

The data would  then be restructured similar to Workflow 
2A. However, this time, the tile geometry would need to be 
restructured as wel l .  I t  would become far  too 
computationally expensive to represent every ti le 
separately as a node. Hence, it is hypothesized that this 

may have been done by grouping similar tiles and 
representing them by a single node. It would have been 
logical that the tiling pattern could have been based on the 
meshing pattern so nodes are based on aggregations of 
similar tiles according to position and direction (as 
indicated in Patterning Approach 1). This is shown in 
Figure 31. The tiling direction was to be represented by a 
vector in radians.

VAE 2

Same as Workflow 2A.

Validation through DEM (Optional)

This part was optional. The tiles were to be extruded. Then 
two simulations of different tiling patterns were to be run 
to see how the tiling pattern affects seismic performance 
through Discrete Element Method. It is too computationally 
expensive to be included in the dataset formation. 

variable footprint

COMPAS

Discrete 
Element 
Method

encoder

Graph 
Convolutional 

Network

latent space decoder

surrogate 
model

Gradient 
Descent

ABAQUS

tile pattern

tile 
extrusion

direction vector 
for tile coursing

NSP

regular grid

FIGURE 190: Workflow 3. (Own Work)



10.2.3	 Material Properties of the DEM model for WF3

To carry out the analysis on a discrete model (DEM), the brick and mortar will behave independently. The properties for 
that have been tabulated below in Table 2. 

Discrete model

Units Masonry Mortar Interface /   
joints

Young’s Modulus E GPa 6.2 0.370 -
Possion ratio v - 0.25 - -

Density ρ kg/
m3 1800 - -

Tension
Gfl N/

mm - - -

ft MPa - - 0.3

Compression
Gfc N/

mm - - -

fc MPa - - 9.1
Flexure fflex MPa - - -

Cohesion c MPa - - 0.3
Friction angle φ deg - - 38

TABLE 23: Material property for Discrete model. Material properties of the discrete model are 
retrieved from Oktiovan, Y. P., Davis, L., Wilson, R., Dell’Endice, A., Mehrotra, A., Pulatsu, B., & 
Malomo, D. (2023). Simplified Micro-Modeling of a Masonry Cross-Vault for Seismic Assessment 
Using the Distinct Element Method. International Journal of Architectural Heritage, 1–34. https://
doi.org/10.1080/15583058.2023.2277328

10.2.4	 Data Structuring Strategy for WF3  

For vectors representing tile direction, it would become far too computationally expensive to represent every tile 
separately as a node. Therefore, similar tiles may be grouped  and represented as a single node. It would be logical that 
the tiling pattern can be based on the meshing pattern so nodes are based on aggregations of similar tiles according to 
position and direction (as indicated in Patterning Approach 1). This is shown in Figure 31. The tiling direction is to be 
represented by a vector in radians.
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c) Tiling is done. Examples below show different options.

(Blue) Tween between 2 curves for averaging out pattern. 
Offsets may not be of same spacing. (Orange) Pattern follows 
offset from curves highlighted in orange maintaining constant 
spacing. Staggering of pattern is done next but not shown 
here.

a) Form diagram 

b) Segmented into 3 patches for tiling input

d) After tiling, Nodes identified for each tile after discretization

e) Master nodes identified representing aggregated tiles

f) Master nodes filtered One vector direction is 
discarded as it would 
be perpendicular

 A group of tiles (orange 
nodes) is represented 
by a single (black) 
master node

Vectors are averaged 
out

radians

g) Master nodes with 1 vector 
represented in radians
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FIGURE 191: Representation of tiles for Data Structuring. (Own Work)



10.3	  GRASSHOPPER SCRIPT (PERFORMANCE EVALUATION)
For the script, See the repository link.
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a) label = 0.5m

b) label = 0.8m

c) label = 1.0m

d) label = 3.8m

10.4	RESULTS: CONDITIONAL VAE 

This is for Sinusoidal Positional Encoding.
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a) label = 0.5m

b) label = 0.8m

c) label = 1.0m

d) label = 3.8m
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