5
TU Delft

GENERATIVE DESIGN OF CATALAN VAULTS FOR
MULTI-STOREY SEISMIC CONSTRUCTION

BUILDING TECHNOLOGY GRADUATION STUDIO AR3B025

Tahir Zahid Ishrat | 5698928

FINAL REPORT

Mentors

Charalampos Andriotis (1st mentor)
Simona Bianchi (2nd mentor)

Robin Oval (3rd mentor)

Prateek Bhustali (AiDAPT research buddy)

Delegate of the Board of Examiners
Olindo Caso



ABSTRACT

This paper explores the scope of using a deep learning framework for shape optimization of Catalan vaults for medium
seismic areas. Catalan vaults are thin tile vaults that optimize the material usage of a floor slab without form-work and
thus, additional material and labour. These structures can be constructed from tiles made from locally sourced earth
which can provide an alternate to steel, timber, and concrete for areas with poor access to such materials, bringing down
transportation, material, and carbon costs, providing opportunity to accommodate the consequences of rapid population
growth.

Seismic optimization of these vaults usually requires topology optimization and shape optimization tools. However,
conventionally, these are computationally expensive and time-consuming - making them unsuitable for initial design
explorations where a vast array of designs need to be quickly explored. As an alternative, a deep learning framework is
explored as a design generation and optimization tool. This uses a Variational Autoencoder (VAE) trained on a dataset
of 10,000 samples to extract novel meshes whose seismic performance is then predicted with the help of fully-connected
dense Neural Network (NN) surrogate models trained on the results of a Linear Dynamic analysis in Karamba (in
Grasshopper). An optimization loop is set-up through Gradient Descent Optimization where the gradient of the predicted
score is minimized with respect to the latent space of the VAE - for single and multi-objective optimization. Conditioning
the latent space of the VAE is further explored (Conditional VAE) so that the user is able to extract samples from the
latent space with particular desirable characteristics such as a desirable height of the vault. This opens up opportunities
to gain better control of the latent space and generate meaningful new samples that are able to incorporate user
specifications. The geometry of the Catalan vault is represented in terms of polyedge force-densities that allow a 99.91%
reduction in dimensionality and thus, faster convergence, as compared to other data structuring techniques explored in
the literature as half-adjacency matrices.
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ABBREVIATIONS

ANN - Artificial Neural Network

BGD — Batch Gradient Descent

CNN - Convolutional Neural Network
DEM — Discrete Element Method
FDM - Force Density Method

FD — Force Density

FEA — Finite Element Analysis

GAN — Generative Adversarial Network
GCN — Graph Convolutional Network
GBF - Gaussian Basis Network

GNN - Graph Neural Network

LSP — Linear Static Procedure

MARS - Multivariate Adaptive Regression Spline
Models

NMRSE - Normalized Root Mean Squared Error
NN - Neural Network

NSP — Non-linear Static Procedure

OANN - Optimized Artificial Neural Network
PSS - Particle Spring System analysis

PGA - Peak Ground Acceleration

RMSE - Root Mean Squared Error

RSA - Response Spectrum Analysis

RF - Random Forest

RL - Reinforcement Learning

ReLU - Rectified Linear Unit

SLS - Serviceability Limit State

SPGD — Stochastic Gradient Descent
SPRP - Shape-Preserving Response Prediction
SSS - Stability, Stifness, Strength

TNA - Thrust Network Analysis

ULS - Ultimate Limit State

VAE — Variational Autoencoder

WF — Workflow
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] O1 / INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Defining the Problem

By 2050, it is projected that the world population will
increase to 8.8-10 billion (Cleland, 2013). A shortage of
usable land comes as a consequence of the rising
population. This has resulted in a need to go vertical. In
cities, this need is satisfied by the concrete, steel, and
timber — materials necessary to construct the floor slab.
However, in rural and peri-urban areas in the developing
world, lacking easy access to these construction materials,
constructing multi-storey buildings can pose challenges.
In many cases in such areas, the need for multi-storey
residential buildings is fulfilled by the use of reinforced
concrete which comes at a high carbon, material, and
transportation cost (Papanikolaou & Taucer, 2004). While
reinforced concrete structures offer strong materials,
inadequate construction methods can compromise safety.
This problem is exacerbated in seismic regions where the
heavy structure further needs to resist lateral loads. The
scale of the problem in the concerned regions can be
qualitatively extrapolated from the fact that there are
approximately 1000 large cities in the developing world at
earthquake risk (Wyss & Rosset, 2013), and due to inferior
strength, rural homes are much more vulnerable to risk
than urban.

To contextualize the problem, one may consider the remote
valleys of the Chitral and Gilgit-Baltistan districts in the
North of Pakistan. These are seismic areas, where due to
risk of natural hazards from seismic activity such as
rockfall, flash floods, and landslides, much of the land is
not safe to be inhabited, as shown in the Figure 04. The
roads that lead to many such valleys located here including
Shimshal Valley are unmetalled and present a hindrance
for large trucks to carry large construction materials from
the city where concrete and steel are available (Butz &
Cook, 2011). Freight and transport costs become
exceedingly high as the material has to be supplied by
smaller vehicles through numerous trips; which further
increases the carbon cost as a result. Concerning the
supply of wood for construction, that too presents issues.
Excessive deforestation has resulted in a shortage of tress
so there has been a strict enforcement of permits for
cutting down trees for construction (T.Z.Ishrat, personal
communication, March 2022). Furthermore, the market
supply for construction timber is largely unaffordable for
vast majority of the public.

To summarize, this has resulted in the need for a more
affordable, resilient, and sustainable alternative utilizing
local resources for floor-slab construction for rural/ peri-
urban seismic areas of the developing world.
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FIGURE 01: Multi-storey house. (Own Work)

FIGURE 02: Absence of steel, concrete, timber. (Own Work)

FIGURE 03: Carbon cost and transport cost. (Own Work)
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1.1.2 A Solution?

By leveraging local soil, the lower compressive strength can be offset by optimizing the slab’s shape for effective load
distribution. An effective topology that makes use of this is the shell; it is more structurally efficient due to which it can
become more lightweight and reduce the material demand (Nanayakkara, 2019). However, to offer support to construction
— formwork is often required which can become complex, expensive, material intensive, and labour intensive. Whilst
there are different types of shells, the Catalan vault offers a particularly promising solution. A minimally reinforced floor
constructed as a thin-tiled Catalan vault eliminates the need for form-work, reducing costs. However, whilst the thin
compression-only nature of the Catalan vault gives it efficiency under static gravity loads, it becomes vulnerable under
seismic loads which introduce bending stresses that may lead to structural failure.




1.1.3 Proposal

To address these concerns, the project aimed to develop
a computational framework that optimizes the design of
Catalan vault slabs to withstand seismic loads. Multiple
simulations may be necessary during the initial design
stages, where varying inputs are common to allow for
greater design flexibility. This can become time-consuming
and computationally expensive. Moreover, conducting
shape optimization simulations can be additionally
resource-intensive. This is especially true for detailed
simulation models such as non-linear (FEA) micro-models
or discrete element models (DEM). Implementing an Al-
powered generative model could potentially reduce
computational time whilst enhancing design freedom in
generating diverse design options. Generative Adversarial
Networks (GAN) and Variational Autoencoders (VAE) are
both types of generative models. The scope of the project
is limited to the VAE as GANs would merit a research paper
of their own due to their complexity and issues such as
instability in training, as mentioned by many sources
including Salimans et al. and Arjovsky & Bottou, according
to Regenwetter et al. (2022).

1.1.4 Applicability and Scope

In the broader context, the chosen case aims to serve as
a test to determine whether the Al framework can generate
reliable outputs. If the VAE learns to generate optimized
solutions from a simpler dataset, it may be extrapolated
that this means that there is also high potential for it to
generate optimized solutions for more complex micro-
models if the training dataset had been trained on that
performance evaluation model as well. This would inform
whether the case can serve as an application for the use
of a VAE in shape optimization tasks which would otherwise
be far too computationally expensive to perform. The
project also aims to determine whether user-defined
specifications can be considered while sampling as this
would present immense potential in the future for
controlling the types of samples that are desirable such as
of a vaults of a particular height in this case.




1.2 RESEARCH QUESTIONS

+Can an Al based framework generate new Catalan vaults for optimized seismic performance for use as a floor slab?

Deep generative + Vault

+Can a user be able to tune the latent space in order to generate novel samples with user-defined desirable
characteristics?

- Can individual dimensions of the VAE'’s latent space be interpretable?

+ Can having a reduced sample dimension still justify the use of a Deep Neural Network

Deep generative + Seismic + Vault

» Can the vaults be optimization for multiple performance metrics?

Seismic + Vault

* What effect does varying the force densities have on overall seismic performance?

*Is there any favourable pattern in terms of force densities for seismic performance?
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1.3 DESIGN ASSIGNMENT

The goal was to create a deep generative model based on
the problem earlier highlighted in the last section. It would
consist of a Variational Autoencoder that is able to generate
novel designs of Catalan vaults optimized for seismic loads
in order for them to be used as floor-slabs. Baked earthen
tiles were to be used as the material for the masonry vault
as a low-cost alternative to more material-intensive,
expensive, and carbon-intensive materials that are not
easily accessible.

The project can be divided into largely a two-tiered
approach. The first phase involved the literature review
which guided the formation of a workflow for the problem.
In the second phase, the workflow was applied in the
formation and testing of a generative model. The workflow
is highlighted in the Research Methodology Chapter.

Geometry Generation

Q

Performance Evaluation

FIGURE 05: Overall Workflow. (Own Work)

Data Structuring

1.4 RESEARCH WORKFLOW

A deep generative model was to be constructed for shape
optimization. The main workflow was categorized into 4
main parts: Geometry Generation, Performance Evaluation,
Data Structuring, and Variational Autoencoder, as shown
in Figure 05. This section briefly introduces the workflow
which will be elaborated later in the Research Methodology
chapter. The methodology for the workflow was inspired
by the work of Sterrenberg (2023) and Pavlidou (2022).

Variational
Autoencoder

~
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Please refer to Figure 06.

Data Generation

An input shape was defined in the initial step. This would
form the perimeter of the floor slab. In the initial workflow,
for simplification, the footprint was to be kept as a rectangle
with constant dimensions x and y. Form-finding would next
done be on the input footprint inside Grasshopper where
multiple design variations would be produced through the
use of Force Densities through COMPAS (See Section
3.1.2 for detail).

Performance Evaluation

The geometry was then evaluated seismically through a
Linear Dynamic Procedure in the software Karamba. Since
this was also integrated inside Grasshopper, it helped
connect the Geometry generation in Grasshopper.
ABAQUS was used for validation purposes for modal
analysis.

_________________

regular grid

constant footprint

Karamba

FIGURE 06: Overall Workflow breakdown. (Own Work)
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Data Structuring

After this, the data was restructured in a form readable for
the neural network.

VAE

The structured dataset was then used to train a Variational
Autoencoder. Initially, Graph convolutions (GCN) were to
be used inside the encoder layers to learn distinct features
and for permutation invariance. However, another way of
expressing the geometry into a smaller dimensions became
evident which did not require graphs. This is why GCNs
were ultimately not used. A surrogate model was then used
to evaluate the performance of the reconstructed output
from the decoder using back-propagation which would then
be used for gradient descent optimization.

CVAE

Once the VAE had been trained and tested successfully
generating new designs, the latent space would be
conditioned.

conditioning the
latent space

Gradient

latent space
P Descent

decoder

|
&

surrogate
model




The research consists of tools, software, and concepts that
are novel for the author of this paper. Therefore, for
practical purposes considering time limitations and
computational power, the approach had been structured
in the form of a basic structure with incremental layers of
complexity introduced as the project develops. This aimed
to firstly establish a basic yet holistic framework, then work
towards developing more complexity through prioritization
of goals and realistic choices under the time-frame. This
aimed to keep alternative workflows available in case of
possible bottlenecks caused by unforeseen delays instead
of reformulation of the workflow altogether.

The other auxiliary workflows were ultimately not carried
out due to time constraints. Nevertheless, they have been
kept in this document to add context to how the project may
be developed in the future. For context, the workflow
highlighted earlier is Workflow 1, which would be carried
out in all cases to set the foundational structure. Refer to
Appendices Section 10.2 for further details.
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] O 2/ LITERATURE REVIEW: CATALAN VAULT

This section deals with the application of the generative
model — the Catalan Vault.

2.1 BACKGROUND

Shells and vaulted structures are not a modern invention.
They have been around for thousands of years. They
provide one of the most efficient ways of spanning spaces
by making use of the compression-only properties of the
funicular geometric form. The earliest vaulted structures
date back to 3000BC in Mesopotamia (Nanayakkara,
2019).

Though there are multiple types of vaults. For this paper,
we shall only focus on Catalan vaults also known as
Guastavino vaults, timbrel vaults, tile vaults, or thin-tile
vaults. As mentioned earlier, these can be constructed with
little to no formwork. As the alternate names suggest, these
are made by 2,3, or more layers of thin tiles. Whilst the
Nubian vault also eliminates the use of form-work — the
vault itself is heavy and material intensive. For this reason,
it was not considered.

2.2 CONSTRUCTION METHOD

The first layer is constructed ‘in space’ because of which
a quick setting mortar is needed which in most cases is
gypsum. This allows the inter-tile bond to set in seconds
without the need for additional support. The tiles are placed
flat and edge to edge, usually of 15-25mm thickness with
a mortar thickness of about 10mm (Nanayakkara, 2019).
Once the first layer of tiles is complete, it acts like formwork
for the second layer. Gypsum is susceptible to
environmental conditions so the bonding agent for the
second layer of tiles is usually cement mortar. This sets
slowly. If a third layer is also required which is constructed
the same way as the second layer. In some cases, a third
layer can be avoided by increasing the thickness of the
second layer.

Once the vault is complete, it can act as permanent form-
work for an infill layer. Lépez Lopez et al. suggest that the
addition of a top layer of concrete can help reduce time
and labour (2019). This would mean a higher weight for
the same thickness. However, it is pertinent to mention that
the bonding between the two different materials of the
composite structure introducing complexity in the structural
behaviour (Lopez Lépez et al., 2019). To avoid continuous
seams that may lead to failure, the tiling pattern for the
second layer is rotated at 45°, as shown in Figure 07.

During construction of the Catalan vault, guide work is
required. An example of guide work can be drawn from
SUDU, an urban housing project in Ethiopia, where steel
frames are positioned on opposite ends of the longitudinal
axis of the Catalan vault, and strings are threaded between
them to serve as guides. The spacing of these guidelines
relies on the abilities of the masons; a proficient mason,
with a keen spatial sense, can work effectively even with
coarser guide work (Nanayakkara, 2019). SUDU is also an
example where the Catalan vault was created as a floor
slab for economic in a low cost project (Figure 09).




For achieving high double curvature in vaults with
orthogonal masonry units, an effective strategy is custom
cutting bricks. This prevents compensation with a high
amount of mortar in joints. Davis et al. identify two main
methods — one cut systems and two cut systems (2012).
Two cut systems are more effective in achieving greater
curvature. One cut systems are simpler allowing for high
degrees of curvature in one axis. Both systems use three
brick primitives (Davis et al., 2012):

. short-end oblique cut
. short-end bevel cut
. long-end bevel cut

a) short-end oblique cut

0 A

=y 000
SRR 0° 8  16°

DIRECTIONAL UNIT

b) short-end bevel cut

o

b) Long-end bevel cut

~
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2.3 STRUCTURAL PERFORMANCE

In the design of masonry structures, there are three main
structural performance metrics — strength, stability, and
stiffness (Heyman, 1966). The structure must be strong
enough to carry its own weight in addition to imposed
loads, it must be stiff enough not to undergo large
deflections, and the structural forces may be contained
within the arch preventing (four-bar chain) collapse
(Heyman, 1966).

Failure in unreinforced masonry structures is usually due
to instability instead of lack of compressive strength
(Panozzo et al., 2013). The concept is that the connectivity
should represent the flow of forces (Panozzo et al., 2013).
The forces follow the shortest path so the risk of sliding
can be reduced if the pattern follows the stress flow. The
analysis of masonry vaults (applicable to Catalan vaults)
has roots in Heyman’s Safe Theorem where the equilibrium
approach is used. Heyman’s Safe Theorem states
(Nanayakkara, 2019):

“If a set of internal forces in a masonry structure can be
found that equilibrate the external loads, and which lie
everywhere within the masonry, then the structure is safe
— safe in the sense that it cannot collapse under those
loads.”

The limitations of linear analysis concerning shell
structures have been highlighted by Block at al. (2006).
There is a potential for unsafe and deceptive results,
especially for thinner structures. Linear elastic FEA
analysis may not accurately predict the stability or collapse
of the structure, as it assumes the material is capable of
resisting tension without considering the actual collapse
mechanisms. This is especially true for thinner arches.
Additionally, linear elastic analysis may not provide insights
into the stability or collapse of the structure based on its
geometry and equilibrium conditions, which can be crucial
for understanding the behaviour of vaulted masonry
buildings. Block et al. highlight that even for 2D problems,
it is difficult to draw conclusions from the Linear analysis
(2006). It can be understood that the problem may become
greater when done in 3 dimensions for double curvature.
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From Heyman’s theory, it is clear that thin tile vaults are
more vulnerable to collapse because the thrust line may
not lie inside the masonry vault (Nanayakkara, 2019), and
within the middle third to avoid tension (Block et al.,
2006).

FIGURE 11: An arch which fails according to Heyman’s Safe
Theorem. Possible limit of deformation when the arch in (a)
becomes (b) unstable, and (c) a snapshot of animation during
collapse. (d) Four hinges define a three bar mechanism. Image
retrieved from Block, P., Ciblac, T., & Ochsendorf, J. (2006).
Real-time limit analysis of vaulted masonry buildings. Computers
& Structures, 84(29-30), 1841—-1852. hitps://doi.org/10.1016/].
compstruc.2006.08.002

2.3.1 Variable load

While the thin shell makes it lightweight, the Catalan slab
is vulnerable to variable loads. Vertical stiffeners can be
used to for increasing the stiffness against this as shown
in Figure 13. Stiffness can also be increased by introducing
double curvature as it provides multiple load paths to carry
asymmetric loads; this was used widely by Rafael
Guastavino in his designs (Nanayakkara, 2019). See
Figure 12 for reference, where the double curvature of the
vaults support variable loading from vehicular traffic on the
bridge above.

2.3.2 Lateral thrust

To carry the lateral thrusts, modern precedents have used
steel tie rods as reinforcement for Catalan vault such as in
the Armadillo Vault by Block Research Group. Antoni Gaudi
used inclined columns for this purpose in his work Park
Guell (Nanayakkara, 2019). Traditionally buttresses would
be used for this purpose.

FIGURE 12: Queensboro Bridgemarket, in New York City, USA,
has doube curvature supports vehicular traffic on top. Image
retrieved from Michael Freeman, n.d., Urbanomnibus.net. https://
urbanomnibus.net/2014/08/palaces-for-the-people-guastavino-and-
the-art-of-structural-tile/

vertical stiffeners in the hollow slab. Image retrieved from
Nanayakkara, K. . (2019). Shell Structures from Catalan to
Mapungubwe Lessons from Structural Efficiency for Sustainable
Construction in Developing Countries. https://doi.org/10.13140/
RG.2.2.30878.89922
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2.3.3 Seismic loads

For stability against asymmetric loading and seismic loads,
reinforcement can be added in between the layers of the b
Catalan vault in the intermediate mortar joints. Additional
tensile and bending capacity is provided this way. This also ™~ -
allows for a reduction of thickness. Though steel rods 4 - b d . W
provide such reinforcement in single-curved vaults, they T
cannot be used for double-curvature — which is a property —1 b - .

that is important to the vault system that is to be developed - oJ BN
for this project.

Moreover, the steel exposed to environmental conditions
rusts causing structural concerns. Instead, a geo-grid
reinforcement is proposed that is appropriate for complex
double curvature as well as being corrosion resistant and
weatherproof (Surat, 2017) . Polymeric grids and glass-
fibre meshes are used widely nowadays (Lépez et al.,
2019). Arecent case study of such reinforcement used in
thin tile vaults is the work of Michael Ramage and Matthew
Dedong where they applied a geo-grid in between the
layers of bricks in the Bowls Project in San Francisco as
illustrated in the Figure 14, (Ramage & Dejong, n.d.) which
is a low to moderate earthquake risk area. The geo-grid
increased the ductility of the structure and improved its
bending capacity. This is relevant to the economic nature
of the project as it too is an inexpensive solution.

Surat tested 3 techniques of reinforcement of thin tile
vaults with basalt geo-grid - laying it over the base and
mortared, anchoring it and epoxied, and pre-stressing it.
The last two methods were found to be the most effective
with observed collapse accelerations being over 60%
higher than that of the same unreinforced vault. It was
concluded that the anchoring solution is the most effective
as pre-stressing requires considerable technical expertise
(Surat, 2017). This is shown in Figure 15.

P TRPp—— RN LRI R L s
i T TR LA TR AR R Sl

FIGURE 14: Geogrid embedded in between mortar layers and FIGURE 15: Reinforcement strategies for thin tile vaults. a) laying
tiles, for reinforcement against seismic loads, in the Bowls Centre, geogrid over the base, b) anchorage of geogridﬁ C) pre-s‘[ressing
Yer_ba Buena Centre for the Arts, in San Francisco, USA. I.mage the geogrid. Image retrieved from Surat, D. (2017). Seismic
retrieved from Ramage, M. H., & Dejong, M. J. (n.d.). Design and Analysis of Thin Shell Catenary Vaults [Master Thesis]. University of
Construction of Geogrid-reinforced Thin-shell Masonry. Witwatersrand.
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The tiling pattern is an important consideration. Cross-
herringbone patterns have been used to increase the
stability by prevention of sliding of tiles and overturning.
Used famously by Brunelleschi, the pattern makes a plate-
bande resistant system enables equilibrium states of self-
supporting shells (Paris et al., 2020). The pattern is defined
by a network of double loxodromic curves, one right-
handed and one left-handed loxodromic. This is shown in
Figure 17.

2.3.4 Strengthening

To strengthen the vault, Auguste Choisy (1873, as cited in
Lopez et al., 2019) echoed Fray Lorenzo (1633, as cited
in Lopez et al., 2019) as he mentioned the typical practice
of adding filling material from the supports of the tile vault,
extending it to about one-third of its length. This was also
carried out by Guastavino in his design where he used
concrete as an infill to stiffen the vault and level it to be
used as a flat floor. The same strategy of using an infill was
also used for the SUDU project, as mentioned earlier, by
ETH Zurich’s Block Research Group, for the Catenary floor
slab, as shown in Figure 16.

2.4 CHALLENGES AHEAD

Superior structural efficiency may not be enough for the
adoption of such a technology. According to Nanayakkara,
it wasn’t structural performance which led to the adoption
of the Guastavino vault in USA (2019). It was its superior
fire resistance as compared to the norm at the time which
was timber construction. There are social implications of
construction material especially in the developing world
which present an obstacle to its adoption. Earth as is
viewed as an ‘inferior’ building material to steel and
concrete as the latter materials are associated with
progress and modernity. This is true in the districts of
Chitral and Gilgit-Baltistan where the poor insulating
properties of concrete as compared to earth are widely
known; however, the homeowners make a conscious
decision to opt for concrete construction for new homes
because of the status it signifies (T.Z.Ishrat, personal
communication, March 2022). The stigma, however, comes
from the poor finishing and constant need for maintenance
that the construction presents. This also means that there
is potential of removing that stigma if the finishing can be
improved upon. That, however, is outside the scope of this
paper. The same stigma also exists in India but exceptions
like Auroville exist where earth construction is well
respected (Nanayakkara, 2019).

Plate-Bande I-I
| Close Brick Course




] O3/ LITERATURE REVIEW: GENERATIVE MODEL

This section deals with the literature related to the
generative model. It has been structured in the same way
as the overall Research Workflow in its constituent
sections. See Figure 05 for reference.

3.1 GEOMETRY GENERATION

The first step of the project was to generate the dataset.
This was to be composed of the geometry that would be
structurally analyzed in the next step. The target sample
size of the dataset from the literature had found to been at
least 10,000 samples. (Sterrenberg, 2023) and 7,338
(Pavlidou, 2022).

3.1.1 Input Footprint

An input shape was defined in the initial step. This would
form the perimeter of the floor slab. For simplification the
footprint was a rectangle with constant dimensions
10mx15m. This size was chosen as the footprint of a
residence.

3.1.2 Form-finding

Form-finding was done by relaxing the input shape into a
funicular mesh. It was a crucial part of the workflow. This
is because it was the tool to generate the large variation
of geometries that was needed for the generative model.
The workflow for this follows the following steps (Oval &
Rippmann, 2017):

+1 - defining the boundaries
* 2 - designing a planar mesh
+ 3 - setting constraints

*4 - form finding

Different methods were considered for form-finding —
Particle Spring System analysis (PSS) (used by Kangaroo,
the Grasshopper plugin) and Thrust Network Analysis
(TNA) (used by RhinoVAULT). It was found, through an
FEA in Karamba, that TNA obtained a more structurally
efficient design than PSS based on the quantity of masonry
used, variations in geometry, differences in curvature and
stress distributions, and deformations under two load
combinations(Contestabile et al., n.d.). The method also
allows greater control over the geometry produced than
PSS as it is especially tailored for funicular forms, which
is significant for this project. By changing the force
densities of the edges that make up the structure of the
vault, the force that the edge carries changes, due to which
pattern changes could be achieved. This was especially
important in introduction of creases and vault segmentation
for a large richer geometrical design space. For this
reason, TNA was selected.
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Thrust Network Analysis

TNA was developed by Phillipe Block and evolved by his
research group, Block Research Group. It relies on the
principles of graphic statics applied to three-dimensional
structures. Similar to graphic statics, the approach revolves
around two interrelated diagrams— the form diagram and
force diagram that correspond to equilibrium states
represented by force polygons (Contestabile et al., n.d.).
It uses the concept of force densities from the Force
Density Method introduced by Linkwitz and Scheck (1971,
as cited in Aboul-Nasr & Mourad, 2015) and Scheck (1974,
as cited in Aboul-Nasr & Mourad, 2015). By using FDM,
any state of equilibrium of a funicular structure can be
obtained by the solution of one system of linear equations.
This system is constructed using the force-length ratios or
“force densities” in the branches as parameters that
describe the network (“degrees of freedom”). Simply put,
we specify a singular quantity, namely the force density,
for each branch. By solving one system of linear equations,
we obtain a unique result—the equilibrium structure with
the designated force-length ratio in each branch. (Schek,
1973). TNAis able to manipulate and compute these force
densities this intuitively through manipulation of the force
diagram. Based on Heyman’s Safe Theorem, for a masonry
structure, if any graph is completely contained inside the
thickness of the masonry structure, then the structure is in
equilibrium. The Thrust Network Analysis allows the user
to manipulate the force diagram to visualize these graphs
for which the structure is in equilibrium which entails that
the equilibrium equations are satisfied for each node.

However, RhinoVAULT, the plugin for TNA works directly
in the Rhino interface and not Grasshopper. The
Grasshopper environment is necessary for the automation
of the dataset generation. Whilst RhinoVAULT was not able
to be used, COMPAS, the Python framework that it is
based on may be used instead directly as a GH Python
script in Grasshopper provided by Robin Oval. A number
of different geometries can be found from the same load
case by changing force densities of the different edges via
the force diagram, as shown in Figure 18.

v




Mesh Generation for Force Diagram

Two main categories of methods were identified for
meshing — backward processes and forward processes.
(Oval & Rippmann, 2017). Both generate a 2D pattern input
as a force diagram for generation of a 3D funicular structure
based on the TNA. Backward processes use an input 3D
geometry to approximate a self-supporting structure
entailing its optimization, rationalization, and post

processing. Forward processes, on the other hand, result

in a more open-ended design approach which includes

mesh generation, exploration, and design. .
defining boundaries

N2

designing a planar mesh

N2

setting constraints

N2

form-finding

{a) Boundaries (b} Delaunay mesh (¢) Skeletonisation (d) Pruning

(e} Rebranching (f) Patching () Meshing (h) Relaxation

\l, Feature Feature
point point

N

funciular a)
mesh

Forward process

The methodology proposed by Oval & Rippmann is a
forward process which makes use of a surface that is
represented by its boundaries. It is split into a set of
topologically simpler patches through a medial-axis based
block decomposition process. Each patch is then
subdivided after which a quad meshing pattern is used to
generate the mesh. Then, through a relaxation technique
the mesh is smoothed (Oval & Rippmann, 2017). A quad
mesh pattern is generally preferred as it makes
manipulation of the funicular geometry more stable and
simpler. It also gives allows for directionality useful for
tiling patterns.

It is a feature-based topology finding technique where
additional features such as curve features and point
features. Inclusion of these features change the mesh
geometry according to a set of prescribed rules (Oval &
Rippmann, 2017). Boundary point features may represent
concentrated lateral thrust acting at the corners of the
vault. Inner point features may be able to represent nodal
supports or point loads. Curve features may represent line
loads or creases in the vault.
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Negative gaussian curvature is also difficult to be
represented. If an arbitrary discretization is done as in
J Figure 24a, and a point is taken, the forces acting on the
point are all downwards leaving no resultant force to cancel
out gravity. Figure 24b, however, shows a different

defining boundaries

designing a planar mesh

J J discretization where a resultant upward force cancels out

: : gravity. The idea of aligning to the principle curvature
SNy GOA LS direction, however, is limited to local properties and does
J J not take into account global features like open boundaries.

o For instance, if a hole is made, the curvature doesn’t

el RG T backward change but the stress distribution has to change as the

N J process forces cannot go straight to the hole. Panozzo et al. base

their methodology upon both concepts, aligning to the

non principal curvature direction combined with global
fl#"g;war optimization. Open edges are first analyzed — as we want

the forces to go as fast as possible to the closest support.
Then negative curvature and sharp features are identified.
These directional form constraints are then interpolated
obtaining a cross-field across the whole surface. A quad
mesh is then generated on to this aligned with the crosses.
The diagram is then projected on to the plane and is input
as a form diagram (Panozzo et al., 2013).

a) b)
Backward Process ’ \O‘\__ F "“9’; ;

The other category is a backward process where an o

existing input form is altered to create a structurally-sound ‘ ‘

mesh.

The forces have to be aligned with the edges. If, for ~
instance, an arbitrary discretization is done and the quad il
mesh aligns with some features of the surface, the surface
will not be properly represented. For instance, the forces
in Figure 23a can either go to that feature highlighted in
red, or an open edge (orange). In both cases, they do not
go to the supports so the feature cannot be represented.
If optimization is done through that discretization, then the
features of the original surface are lost. However, in Figure
23b it can be seen that from the same point the force goes
directly to the support. In this case the features are

i
O'\

preserved. Pattern to Funicular form
The output from both the approaches is a 2D projection of
the shell. Once the pattern generation process has been
a) done, the mesh edges that are fully supported are removed.

The output can now serve as the form diagram that is input
into the COMPAS framework. The reciprocal force diagram
is obtained after which horizontal equilibrium is computed
and subsequently, vertical equilibrium is then computed
afterwards to achieve the funicular geometry. In the case
of the backward process by Panozzo et al., the distance
between the generated mesh and the original is minimized
through a gradient descent optimization. This approach
differs from Vouga et al. where the input form is deformed
to make it self-supporting whilst in this case a self-
supporting form is deformed to approximate the generated
form — which, according to Panozzo, is more robust
(Panozzo et al., 2013).
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Conclusion

While the backward process presented by Panozzo et al.
presented an interesting approach towards approximation
of a self-supporting form from a given 3D geometry, it
required a target shape adding complexity that was not
necessary for this project. As the development of the
funicular mesh of the Catalan Vault was meant as a floor
slab, it made sense to consider an input 2D footprint rather
than a 3D vault that is to be made into a self-supporting
structure. Due to this, a forward process was selected
going forward. The feature-based topology finding
approach has a lot of potential to generate a large variation
of designs and incorporating reinforcement.

3.1.3 Tiling Pattern

The Catalan vault is a masonry vault composed of thin
tiles. The meshing pattern of its global geometry, as
discussed in the section above, is a function of the force
pattern used to compute static equilibrium in the form-
finding process (Thrust Network Analysis). Therefore, it
seems logical to base the tiling pattern on the meshing
pattern employed in form finding to maximize structural
efficiency. This approach ensures that sliding failure
between the voussoirs is averted by aligning the force flow
with the interface normals between them (Heyman, 1997,
as cited in Oval & Rippmann, 2017). This is echoed by
Adiels et al. as they describe how if principal stresses are
perpendicular to the head joint and the bed joint of the tiles,
there is no possibility of sliding along the bed joints (Adiels
et al., 2017). Though earth tiles are used here instead of
stone voissoirs, it may be assumed that it would also be
applicable in this case.

Up till now we have described how an initial mesh can be
generated and manipulated to form the funicular structure
that is found through form finding (TNA). If the output mesh
were to be extruded and segmented into tiles, there would
be issues with fabrication as all tiles may be different. In
the context of the case study, it would be highly impractical
to suggest this as it would mean production of new moulds
for each tile. Therefore, the tiling pattern must be
standardized.

Generating the Tiling Curves

Two different approaches have been found by Adiels et al.
using geodesic coordinates. Both propose a constant
distance between the bed joints. This equal spacing allows
constant sized bricks when offset where the tolerance
between bricks would be mortar joints, as shown in Figure
25.

Shell

Bricks = |

Patterning Approach 1:
integration

form & pattern

The first approach combines form-finding and pattern
generation using dynamic relaxation. This integrates
geometric and structural properties into the pattern avoid
sliding along the head joints, as discussed above. In the
dynamic relaxation process, nodes move opposite to the
direction of the out-of-balance force equivalent to a
negative mass.

Patterning Approach 2: form and pattern
disconnect

The second approach separates form and pattern by
offsetting an initial curve, from which geodesics emerge at
90°. A sequence of circles, centered on the surface and
situated in the normal plane at its midpoint, intersects the
surface, creating a collection of points that define the
geodesics. Due to the points lying within normal planes
along the geodesics, the geodesic curvature is zero. This
means that this can be discretized into tiles. The initial
curve is offset to repeat the pattern. It is important that the
geodesics do not cross; therefore, for a complex shape, it
is better to patch each area separately then generate the
geodesic pattern. This is shown in Figure 26.
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Circles generating
the geodesics

Orthogonal  geodesics

trajectories

\
Starting curve ‘

Staggering the Tile

Panozzo et al. describe how the tiles or tessellations can
be derived from a quad mesh once the funicular mesh has
been generated. Every second edge in the preferential
direction (towards the closest boundary) of the mesh is
removed resulting in a staggered tiling pattern, as shown
in Figure 27. An exception is made if this results in strong
voussoir concavities as this may result in stress
concentrations and difficulty in positioning correctly. The
orientation of the pattern becomes significant to remove
the chain of quads that may slide off from the open edges
(unsupported arches and openings). It is not important in
the regions far from the edges, but nonetheless the pattern
is smoothed for aesthetic purposes and ease of
constructability (Panozzo et al., 2013).

~
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Conclusion

We can conclude that the Patterning Approach 1 offers the
most structurally plausible option as it integrates the
pattern formation with form-finding. However, it remains to
be seen what design flexibility it offers to generate such a
vast array of designs. Patterning Approach 2 offers a more
flexible solution which can generate a vast number of
design options. Multiple design variations can be made for
the dataset by dividing the surface into different patches
and varying the initial curve in those patches. The
disconnect between form and pattern may allow testing the
VAE with poor performing vaults in addition to better
performing ones. Moreover, it can be hypothesised that,
in this approach, to account for discrepancies between two
curve boundaries, it may be useful to generate tween
curves in between to smooth the transition of the pattern.

To segment the geodesic curves into a staggered pattern,
Panozzo et al.’s approach may be applied not to the initial
quad mesh generated from the form-finding but to the
standardized geodesic curves mentioned in Patterning
Approach 2. These can be extruded to form the tiles.

It would have been interesting to incorporate the cross-
herringbone / loxodrome pattern, inside the DEM and see
how the absence, and different variations of the pattern
may affect structural stability.

Tiling is outside the scope of this paper as they were a part
of the initial Workflow 3 which was not implemented (See
Appendices Section 10.2). However, these strategies have
been left in the paper as they are useful to consider going
forward in the future.

3.1.4 Layers

The actual Catalan vault is composed of 2 or more layers.
However, for simplicity, the model was based on a single
layer. The thickness of the layers was to be defined. From
the literature discussed earlier, the tiles thickness varied
between 15 and 25mm, and the mortar was 10mm total.
Based on this, 3 different thicknesses were used depending

upon the number of layers of tiles.

1 layer of variable thickness. Inclusion of the thin layers
may allow the VAE to check for failure.

+35mm (1 masonry layer + 1 mortar layer)

+60mm ( 2 masonry layers + 1 mortar layers)

+95mm ( 3 masonry layers + 2 mortar layers)
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3.2 DATA STRUCTURING

3.2.1 Graphs

While parameters at the vault-level and layer-level would
be floats values, a different data structure would be needed
to represent the mesh geometry of the vault at the node-
level. A way to represent this is through graphs.

A graph is used to represent relations (edges) between
different entities (nodes). The graph can store 3 different
types of information — node (vertex) embedding, edge (or
link) embedding, and global (master node) embedding.

/ T Vertex (or node) embedding
|-
Edge (or link) attributes and embedding

Global (or master node) embedding

o -

Sterrenberg (2023) and Pavlidou (2022) worked on a
similar design problem that also required data structuring
of a shell mesh to be used inside a VAE. Different types of
graph structures were tested including adjacency matrix,
edge-vertex matrix, vertex-vertex mesh, face-vertex mesh,
winged-edge mesh, half-edge mesh. Sterrenberg (2022)
found that data representations based on the position of
vertices provided unrepresentative outputs. This included
coordinate data and movement data. However, data
representations based on edge/ topology connectivity
provided more accurate results. It was noted that (half)
adjacency matrices performed the best (Sterrenberg,
2023). This is also echoed by Pavlidou who found
adjacency matrices to perform better than data based on
vertex coordinates (2022). For this reason, adjacency
matrices shall be used as to represent the node-level data
structures.

3.2.2 Adjacency Matrix

Adjacency matrices are able to visualize connectivity of a
graph. Conventionally, as shown in Figure 29, binary digits
represent connectivity. Each row and column represent a
node, and the presence of an edge is denoted by the value
1 while the absence of an edge by 0.

In this project, however, as mentioned earlier, the nodes
must represent float values (to represent force densities,
height,an direction vector) so the binary representations
are not adequate to represent this. For this reason,
weighted adjacency matrices using float values could have

been used where instead of 0 and 1. Figure 30 shows an
example of a weighted adjacency matrix.

There are 2 main problems associated with adjacency
matrices - sparsity and permutation invariance (Sanchez-
Lengeling et al., 2021).

C
B
D
E
A 4 c
2
3 B 5 O
D
E 1
Sparsity

A high number of nodes and few number of edges can
cause the adjacency matrix to be very sparse which causes
space inefficiency. Therefore, a sparse graph would lead
to a sparse adjacency matrix.

Permutation invariant

Another problem with adjacency matrices is that they are
not permutation invariant. This means that the model’s
output should be the same regardless of the order in which
the items are presented. Permutation invariance is
desirable for deep learning models. This is because there
can be a number of adjacency matrices that encode the
same connectivity and there’s no assurance that the same
output would be produced (Sanchez-Lengeling et al.,
2021). As shown in Figure 31, for a 4-node graph, 4! (24)
adjacency matrices represent the same graph. We can
evaluate that for many nodes, as our vault would have, the
permutations increase by an order of magnitude.
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FIGURE 31: Permutation invariance. The same graph is represented by all the adjacency matrices.

Image retrieved from Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. (2021). A Gentle
Introduction to Graph Neural Networks. Distill, 6(9), €33. https://doi.org/10.23915/distill.00033

2 14 |0 |3
2 0 |5 |0
4 |0 6 |0
0O |5 |6 1
3 10 |0 |1

FIGURE 32: An adjacency matrix
is symmetric (shown by axis of
symmetry in orange) so a half
adjacency matrix can be used

to avoid repeating information to
reduce storage. (Own Work)
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3.2.3 Graph Neural Networks

A way to solve issues of permutation invariance associated
with adjacency matrices for neural networks is to use
Graph Neural Networks (GNN). These preserve graph
symmetries (permutation invariance) and are optimizable
transformations on all attributes (nodes, edges, and global
context) of the graph. By employing a ‘graph in graph out’
architecture, the connectivity of an input graph is preserved
while the embeddings are transformed (Sanchez-Lengeling
etal., 2021).

Graph Convolutional Networks (GCN) are a type of GNN
which use convolutional layers similar to convolutional
layers in Convolutional Neural Networks (CNN) to capture
patterns inside the data. In a convolutional layer of a CNN,
a filter slides over patches of information and aggregates
it. It doesn’t matter what order the filter slides over it.
Hence, it is permutation invariant. Even though GCNs use
graphs instead of images, the comparison is still useful to
visualize how information is aggregated from neighbour
nodes similar to neighbouring pixels in CNNs with the help
of filters. This is shown in Figure 33. These filters are
learned during the training process and contribute to the
ability of the GCN to capture and propagate information
through the graph structure. A schematic of a GCN
architecture is shown in Figure 34a.
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Message passing is used to exchange information from
neighbouring embeddings (nodes, edges). This happens
in 3 steps. This operation leverages the connectivity of the
graph and is permutation invariant as well. This is shown
in Figure 34b.
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Message passing happens in 3 steps:

1 - Each embedding gathers the neighbouring
embeddings/ messages

+ 2 - Message aggregation happens by an aggregation
function like sum

+3 - The aggregated messages are updated using an
update function that is usually a learned neural
network

Information can also be shared between nodes and edges
inside the GNN layer.

Through stacking GCN layers, through message passing
and convolution, a node can gradually incorporate
information from the whole graph. How far a message
travels is dependent upon the number of layers. For
instance, if there are k layers, a node will capture
information from k steps away (Sanchez-Lengeling et al.,
2021).

Problem : Embeddings too far apart

An issue arises with nodes being far apart from each other.
A solution, called virtual edges, lies in having all nodes
pass information to one another. However, this becomes
computationally expensive for larger graphs. An alternate
solution lies in using the global context vector (or master
node) pass information between them building up a richer
representation of the graph .

Solution

By conditioning the information of a specific attribute with
respect to the others, we can harness them during pooling
as all attributes of a graph have learned representations.
For a given node, this includes considering information
from neighbouring nodes, connected edges, and global
information. To condition the new node embedding on
these diverse sources of information, one can concatenate
them directly. Alternatively, these sources may be mapped
to the same space using a linear mapping and combined
through addition (Sanchez-Lengeling et al., 2021).

Sanchez-Lengeling et al. note the that if the node and edge
don’t have information of the same shape or size, linear
mapping can be used from the space of one type of
embedding to another (2021). Alternatively it can be done
by concatenation before the update function (Sanchez-
Lengeling et al., 2021). The decision to update which graph
attribute first and in which order is an open area of
research.

~
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Hyperparameter trends

It is useful to note some trends concerning training data
and hyperparameters pertaining to a GNN model (Sanchez-
Lengeling et al., 2021)).

Dimensionality

Higher dimensionality of the learned representations for
different graph attributes does not necessarily maximize
higher bound performance but it does improve lower bound
and mean performance.

Layers

The best performing models had two layers but mean
performance increased with 4 layers. The lower bound
performance tended to decrease after 4 layers due to
dilution of node representations form many iterations.

Aggregation function

The sum function performs slightly better than those that
used mean or max. There is no one-size-fits-all operation
that is universally the best choice for GNN aggregations.
‘Mean’ proves beneficial when nodes exhibit considerable
variability in the number of neighbours or when a
normalized view of local neighbourhood features is
needed. On the other hand, ‘max’ is advantageous when
emphasizing individual standout features in local
neighbourhoods is the objective. The sum operation strikes
a balance between mean and max operations. While
commonly used in practice, it should be noted that the sum
operation is not normalized, which means it can also
accentuate outliers.

Attribute Communication

Increasing the communication between graph attributes
(nodes, edges, globals), the better the performance

Conclusion

For sparsity, to reduce the space, one approach that could
have been taken was to use a half-adjacency matrix
instead of a full one to reduce the input size for
computational efficiency as shown in Figure 32. This works
for undirected adjacency matrices as they are symmetric
across the diagonal (Sterrenberg, 2023). An alternate
approach is using adjacency lists. Given the number of
edges will be significantly fewer than the total entries in an
adjacency matrix, computation and storage is skipped for
the disconnected segments of the graph (Sanchez-
Lengeling et al., 2021). Another approach was to simplify
the edge relationships and group them into polyedges. This
technique simplifies the data. See Section 5.2 for details.
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3.3 GENERATOR

3.3.1 Generative Design

“Generative design varies the parameters of the problem
definition while parametric design varies parameters of the
geometry directly.” (Matejka et al., 2018 cited in Oh et al.,
2019)

The quote above describes how generative design is used
as design generator rather than a design parametrizer
allowing the designer the generate different boundary
conditions for the generation of a variety of optimized
designs under different boundary conditions (Oh et al.,
2019). There are different types of generative models
including Variational Autoencoders, Generative Adversarial
Networks, and Reinforcement Learning models.

3.3.2 VAE

An Autoencoder is an unsupervised embedding algorithm
which uses a 3 tiered system — an encoder, latent space,
and a decoder. An input dataset is given. The encoder
compresses this input into a lower dimensional structure
only retaining its most prominent features. The decoder
then reconstructs that as accurately as possible to give the
output. Since the latent space is usually sparse which
means sampling a latent vector can cause issues since
data is not present there. This shortfall is addressed by
Variational Autoencoders (VAE). It regularizes the latent
space with a probabilistic distribution with a mean and
covariance. To maintain predictability in the latent space,
Kullback-Liebler (KL) divergence is added between the
distribution of the latent space and a standard Gaussian
(Regenwetter et al., 2022).

Given an observed variable x, a vanilla VAE introduces a
continuous latent variable z and assumes that x is
generated from z. This relationship is expressed as:

Pe(X,2) = pgy(x | 2)py(2)

Here, 6 represents the model parameters. The term p (z)
is the prior distribution, commonly a simple Gaussian
distribution. The conditional distribution p,(x | z) describes
the process of generating x from z and is typically modeled
using a deep nonlinear neural network (Zhang et al.,
2016).

What is The Loss Function in a VAE?

Evidence Lower Bond (ELBO) is the loss function of a VAE.
It is a combination of 2 two terms, the reconstruction loss
and the regularization term, often called the KL divergence.
The ELBO is a lower bound on the log likelihood of the data
and is used as the objective function to be maximized
during training(Burgess et al., 2018).

~
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ELBO(¢@) =E ,,,[log pe(x | 2)] = Dy, (q,(z | x) || p(z)).
What is the Reparametrization Trick?

The prior p(z)) and the posterior q,(z | x) distributions are
modeled as Gaussians with diagonal covariance matrices.
Typically, the prior is set to an isotropic unit Gaussian,
N(0,1) (Burgess et al., 2018).

During training, we need to backpropagate with respect to
0 to minimize the ELBO. However, since the ELBO depends
on z, which is sampled from the distribution q,(z | x), we
face a challenge. The Reparameterization Trick (Kingma
et al., 2015) addresses this by decomposing z into a
deterministic component and a stochastic component,
enabling safe backpropagation through the sampling
step.

Z=U+00© €
where € ~N (0, 1), and p and o are the mean and the standard
deviation ofq(P(Z | x). € is a standard Gaussian variable that

plays a role of introducing noise, and © denotes an
element-wise product (Zhang et al., 2016).

z ~ pglz|x)

Stachastic riode é

Original form

~N(0,1)

Reparametrized form

Latent space

After the encoder of the VAE maps input data to the latent
space, the distribution of the latent variables is typically
modelled as a multivariate Gaussian distribution (as each
dimension of the latent space has its own mean and
variance).

Ideally, the unique latent dimensions of the VAE should
represent unique underlying features that provide
variations to the generated data. This unfortunately is not
the case with the Vanilla VAE, or simply, VAE. Changes in
a single latent dimension often do not result in a single
feature variation. This can be seen in Figure 36a. This
makes the process of sampling from the latent
unpredictable and chaotic so if it is hard to control features
that the user requires.
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3.3.3 Variations of VAEs

For the issue highlighted above, variations to the VAE can be studied. Disentanglement provides a solution to this.
According to Pastrana, this involves a combination of two types of VAEs (2022).

* B-VAE: adding a term on the KL divergence in the ELBO

+ C-VAE: conditioning the autoencoder by introducing labels to the data

B-VAE

Beta Variational Autoencoder (B-VAE) allows control over disentanglement. This allows singular latent dimensions to
control singular characteristics allowing for greater control over the generated designs. By addition a term 3 on the
regularization term whereby providing a weightage. If B is too large, there is larger disentanglement but the reconstruction
loss term becomes smaller due to which the output loses fidelity. If B is too small, there is less disentanglement so the
reconstruction loss term is large so the single latent dimensions may not be representative of single characteristics. The
lowest value of B is 1 which corresponds to a Vanilla VAE. B needs to be calibrated either through quantitative methods
by adding a linear classifier to the trained VAE — or through qualitative methods such as visual heuristics (Pastrana,
2022).

It should be noted, however, that B-VAE is a fairly new concept that was introduced in 2017 (Higgins et al., 2017).
According to Fil et al., its brittleness and difficulty in defining disentanglement, and the inconsistency of metrics across
datasets and models has been described (Fil et al., 2021). This view, however, is contradicted by Higgins et el., who
compares it to GANs and describes how it is very stable to train unlike InfoGAN and DC-IGN, requiring no design decisions
or assumptions about the data. They go on to describe how B-VAE consistently and robustly discovers more latent factors
and learns cleaner disentangled representations even on challenging datasets such as celebA (Higgins et al., 2017).

Figure 36b shows that the B term is not enough to allow single latent dimensions to learn unique features. It is also
necessary to introduce labels into the dataset as done with C-VAEs. On a dataset of 60,000 images of the MNIST

database, the methodology produced 3 interpretable visual features of the digits — their tilt, width, and line weight
(Pastrana, 2022).

C-VAE

Conditional Autoencoder (C-VAE) allows for the addition of labelled (supervised) data to the input dataset. This allows
the latent space to learn the interpretable latent space. While B-VAE is unsupervised learning, CVAE introduces
supervised learning. This allows the possibility of generating outputs specific to a particular class label.

By introducing labels during the training process of the variational autoencoder, the latent space can be conditioned to

output novel samples specific to the input condition. This means that instead of just mapping the feature x, a label y is
also added to the encoder and decoder (lvasiuk & Misino, 2020).

p(xzy)=px|zy)p|y)

The conditional VAE tries to maximize:

log pB(x |y) = [, log(p(x |z, y)p(z | y))dz

while the loss function to minimize is:

ELBO(¢) =E_ . logp(x |z y)] =Dy (q,(z]xy) [l p(z|y)).
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Conclusion

The combination of a C-VAE and B-VAE produces the best
results as shown in Figure 36¢ - single latent dimensions
represent unique features.

3.3.4 Generative Adversarial Network
(GAN)

Generative Adversarial Network (GAN) is deep generative
model that uses a discriminator and a generator that work
against each other (maximizing and minimizing the loss
function respectively to generate novel designs. Oh et al.
(2019) have used GANs for optimization of the design of
a 2D wheel based on three criteria: aesthetic quality,
diversity, and robustness. Rawat & Shen (2019) have used
WGANSs for 3D structural topology optimization tasks with
empolying CNNs as predictive surrogate models.

3.3.5 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a branch of Machine
Learning in which an agent learns decision-making by
interacting with an environment (Regenwetter et al, 2022).
The agent receives rewards or penalties based on its
actions, aiming to maximize cumulative rewards over time
through trial and error. Unlike other ML approaches, RL
doesn’t rely on labels and is well-suited for tasks where
the optimal strategy is uncertain. It finds applications in
solving sequential decision-making problems across
various domains. Existing research involves optimizing the
structure and material distribution of a 2D wheel to meet
performance criteria such as compliance minimization and
similarity maximization (Jang et al., 2022).
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3.3.6 Surrogate Model

A surrogate model is a predictive model that approximates
a more computationally expensive real model. It requires
inputs and outputs through which it generates a trend
representative of the structure when the actual relationship
between the two is unknown or far too computationally
expensive. It may use machine learning but does not
necessarily require it. The type of surrogate model that is
appropriate for a particular case depends upon the data
that is given and the desired model that is required. Its
construction entails 3 steps (Williams & Cremaschi,
2019).

+1 - Sample point selection
+ 2 - Training/ optimization of model parameters

* 3 - Evaluation of model

Why is a surrogate model used for VAEs?

In the context of VAESs, a surrogate model can be used to
save computational time to perform the Perfomance
Evaluation on the generated output from the latent space.
Instead of performing an FEA analysis again, the surrogate
model may be able to predict the performance. This
methodology had been used by Pavlidou (2022) and
Sterrenberg (2023). To study where it performed in the
architecture of the generator, a surrogate model was
connected in one option to the output of the encoder, and
in one to the output of the decoder. It was found that when
connected to the output of the decoder, it provided
promising results.

Selection of a surrogate model

There are different types of surrogate models that can be
used depending on the type of relationship between the
input and output data, and the desired application for the
model. Williams & Cremaschi document their findings on
8 different surrogate models. A diverse set of datasets were
generated to model comprehensive evaluation of the 8
models across different scenarios to develop insights
about their performance. It was found that Multivariate
Adaptive Regression Spline Models (MARS) and single
hidden-layer feed-forward Neural Networks (ANN) are
well-suited for accurately approximating the design space,
while Random Forest (RF) models are particularly effective
for guiding optimization efforts towards optimal solutions
within the design space (Williams & Cremaschi, 2019). It
is important to note, however, that the performance of the
surrogate model depends upon the type of dataset and
nature of the optimization problem. For instance, a linear
model may be used to model linear relationships may
easily be interpretable whilst not being suitable to non-
linear relationships. Gaussian Processes may be useful in
that case to quantify uncertainties.

~
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Since the dataset and nature of optimization dictate the
use of surrogate models, it would be natural to draw on
conclusions from similar design problems:

Artificial Neural Network (ANN)

Javanmardi & Ahmadi-Nedushan use the Optimized
Artificial Neural Network (OANN) for optimizing the
structure of a double-layer barrel vault. The OANN is a
special type of ANN which is optimized to minimize the risk
of over-fitting, which is a significant issue in learning neural
networks. It is a suitable surrogate model for solving
structural optimization problems efficiently and accurately
(Javanmardi & Ahmadi-Nedushan, 2023).

White et al. use a Gaussian Basis Network (GBF) which is
a type of ANN in a topology optimization problem. It was
trained using the Sobolev norm, which involves training
the network with both function data and derivative data.
This is valuable for sensitivity analysis and optimization in
topology problems where derivative information is
important. The model parameters being determined via
optimization. This is because if the model has an objective
function that is dependent on a variable, The rate of change
of the variable (derivative) needs to considered in order to
evaluate how the objective function behaves.

Shape-Preserving Response Prediction (SPRP)

Leifsson & Koziel use a physics based surrogate modelling
approach called Shape-Preserving Response Prediction
(SPRP) to optimize the shape of an aerodynamic
component. SPRP is used to find the optimal configuration
or parameters for a given system or device where the goal
is to maximize or minimize an objective function while
satisfying constraints (Leifsson & Koziel, 2016).

Conclusion

To conclude, two types of surrogate models have been
identified which can potentially be used. SPRP aligns with
the optimization type (shape optimization) as well as being
a physics-based approach it may be able to model the
complexity of the seismic simulation. ANNs are useful for
accurate approximation of the design space whilst OANNs
reduce the risk of overfitting.
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3.3.7 Gradient Descent
(Optimization)

Gradient Descent Optimization is an optimization algorithm
which minimizes the loss function. It does this by computing
the gradient of the function at a given point and moves
opposite to the direction of the slope increase by that
computed amount. The process entails passing the training
set through the hidden layers of the neural network and
then updating the layer parameters by computing gradients
derived from the training samples within the training
dataset (Patrikar, 2019).

How quickly the model learns determines the learning rate;
a balance between efficiency and stability is sought. If the
learning rate is too high, the model is unstable and may
overshoot the global minima. If the learning rate is too low
then it may get stuck in the local minima and be very
sensitive to noise. This is shown in Figure 37.

There are 3 different methods of Gradient Descent
optimization:

Batch Gradient Descent

In Batch Gradient Descent, all gradients are considered
simultaneously, and the sum of errors is calculated to
update all weights in a single epoch (Patrikar, 2019; Roy,
2020). While effective for convex curves, this method
becomes computationally intensive with inefficient in large
batches, such as those encountered in sizable datasets
(Patrikar, 2019).

Elur) Llu) Liw)

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) deals with the issue
of BGD. With SGD, one example is processed at a time,
and the weights are updated after calculating the gradient
for each starting point, completing one epoch. Fluctuations
allow it to jump to possibly better minima but at the cost of
overshooting (Ruder, 2017).

Min-batch Gradient Descent

Mini-batch Gradient Descent offers a balanced approach
by incorporating advantages from both BGD and SGD. This
method achieves two crucial goals. It ensuring more stable
convergence by reducing the variance in parameter
updates. It also enhances the efficiency of computing
gradients for mini-batches by capitalizing on optimized
matrix operations prevalent in advanced deep learning
libraries. While typical mini-batch sizes range between 50
and 256, the choice may vary across different applications.
Overall, mini-batch gradient descent stands out as the
preferred algorithm for training neural networks (Ruder,
2017).

3.3.8 Evolutionary Algorithm
(Optimization)

Evolutionary Algorithms are heuristic-based methods used
to solve complex problems that resist efficient polynomial-
time solutions. These algorithms mimic natural selection,
where fitter individuals thrive and less fit ones are
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eliminated. The process involves four key steps:
initialization, selection, genetic operators, and termination.
These steps correspond to facets of natural selection,
allowing for modular algorithm design. Evolutionary
Algorithms find application in combinatorial problems and
can complement other methods by providing optimal
starting points for further processing (Soni, 2018).

3.3.9 Encoding Strategies

In this paper, 3 encoding strategies were considered for
encoding the labels of the Conditional VAE:

Label Encoding

In label encoding, each category/ label within a categorical
variable is assigned a unique integer value (Al-Shehari &
Alsowail, 2021).

In label encoding, it is standard to assign integers to
categorical variables instead of floats. This approach is
used because label encoding converts categorical data
into a numerical format suitable for machine learning
algorithms. Using floats can create unnecessary complexity
and may cause the algorithms to misinterpret the data.
Therefore, it is recommended to use integer values for
label encoding.

For example, for a categorical variable ‘City’ with the
categories ‘New York’, ‘London’, and ‘Paris’, the label
encoding might look like this:

‘New York’: 0
‘London’: 1

‘Paris’: 2

One Hot Encoding

One-hot encoding is a technique in machine learning and
data processing that converts categorical variables into a
numerical format. In this approach, each category is
represented by a binary vector with a single “hot” (1) bit
and the rest “cold” (0). This method helps machine learning
algorithms accurately interpret categorical data by
eliminating any false ordinal relationships between
categories (Al-Shehari & Alsowail, 2021). It is commonly
used to enhance the performance of classification tasks
involving categorical variables. Different integer values of
Label Encoding may introduce biases. This is avoided by
One-hot-encoders due to binary data. The dimensionality
of the One-hot encoding depends upon the number of
labels that are required. Therefore, for a high number of
labels, the encoding becomes high dimensional and sparse
which may not be desirable.
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For instance, the ‘City’ labels would be represented as
follows;

‘New York’:[1000]
‘London’: [0 10 0]

‘Paris’: [0 0 1 0]

Sinusoidal Positional Encoding

Sinusoidal positional encoding is a technique used in
Transformer models to incorporate information about token
positions in a sequence. It involves using sine and cosine
functions of varying frequencies to create positional
embeddings (Vaswani et al., 2023). These embeddings
have the same dimensionality as the input embeddings
and are added together. By doing so, the model learns to
attend to relative positions within the sequence without
relying on recurrence or convolution. This approach has
contributed to the Transformer’s success in natural
language processing tasks (Vaswani et al., 2023).

. pos
PE(pos,2i) = sIn (m)
pos
PE(pos,2i+1) = Cos (m)

where pos is the position and i is the dimension of the
positional encoding corresponding to a sinusoid.

3.3.10 Sensitivity Analysis

The Sensitivity Analysis is used to analyze the effect of
hyperparameters on the output of the model. It can be used
to study how changes in hyperparameters affect the
performance metrics of the model, such as accuracy,
precision, recall, or any other relevant metric. This
information can guide the hyperparameter optimization
process by focusing on tuning the most influential
hyperparameters to achieve the desired model
performance. This can involve using techniques such as
grid search, random search, or Bayesian optimization to
systematically explore the hyperparameter space and
identify the optimal values that lead to the best model
performance.

In VAEs, hyperparameters such as the learning rate, batch
size, number of latent dimensions, and the weight of the
KL divergence term in the ELBO objective function can
have a significant impact on the performance of the model.
Optimizing these hyperparameters is crucial for achieving
the best performance of the model.
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] 04 /RESEARCH METHODOLOGY

For the holistic workflow to see all individual parts working
together, See Figure and Figure 6 in Section 1.4.

4.1 INDIVIDUAL WORKFLOWS

4.1.1 Geometry Generation

The Geometry Generation involved generation of csvs with
force densities in python. These were used to make
COMPAS meshes that were saved and imported into
Grasshopper. The COMPAS meshes were converted into
a format for Grasshopper for visualization and Performance
Evaluation. The main Geometry Generation workflow was
carried out in python rather than Grasshopper to save
computational time and provide easier connectivity with
other scripts for Data Structuring, Performance Evaluation,
and the Generator. A large dataset of meshes (10,000) with
variable force densities for a given constant loading (40.0)
and a set footprint (15m x 10m) with an equal mesh density
(1 division per unit metre).
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4.1.2 Performance Evaluation

Once the Geometry Generation was complete, the
Performance Evaluation was performed using python and
Grasshopper. Firstly, the seismic weight of the building
was calculated. The modal analysis was performed to
check the dominant modes of vibration of the structure.
The Time Period from the dominant modes was used for
performing Response Spectrum Analysis, a linear dynamic
analysis to derive the applied forces for the dominant
modes. The seismic combination, Square-Root-of-Sum-
of-Squares (SRSS), was used to derive the combined
loading for dominant modes followed by an FE analysis
conducted in Grasshopper with Karamba. A PGA of 0.2g
was used to simulate seismic activity in lateral directions
in different simulations. The performance metrics in both
directions were compared and the worst performing one
was used.

4.1.3 Generator

The Generator consisted of a pipeline that used a
Conditional Variational Autoencoder to learn the distribution
of the dataset of 10,000 samples generated through the
Geometry Generation process. The same training features
that was used to train the VAE was used for training the
surrogate model and the performance metrics from the
Performance Evaluation were used as labels. This way it
was able to predict the performance of meshes that had
not been seen during training. Lastly, optimization was
carried out that used the performance score of the new
geometries sampled from the VAE generated using the
surrogate model in an optimization loop where the latent
space of the VAE was explored for better solutions. In the
context of the gradient descent, this meant the gradient of
the performance score.

From the latent space of the VAE, new meshes could be
sampled whose seismic performance was predicted by

Neural Network surrogate models.

~
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CONDITION: Height

Topology Reconstruction VAE NN Surrogate Model

LATENT SPACE
FEATURE:
force-densities + Gradient Based Topology Optimization using NN surrogates
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FIGURE 40: Overall Workflow of the Generator connecting the CVAE to the surrogate model and optimization through Gradient Descent.
Inspired by Gladstone, R. J., Nabian, M. A., Keshavarzzadeh, V., & Meidani, H. (2021). Robust Topology Optimization Using Variational
Autoencoders (arXiv:2107.10661). arXiv. http://arxiv.org/abs/2107.10661
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4.1.4 VAE

‘ Start ’

WV

( Normalize the samples )
2 Sinusoidal Positional encoding E

( Reshape the data (0) )
T . One-Hot encoding labels not included E

Split the dataset into training (80%), test
validation data (20%) ST ooooosoosoosoooosooooooooooooooooooos

‘l’ number of epochs latent dimensions

Concaetenate with Conditioning labels (c)
\L ﬂ batch size beta

Set the hyperparameters E E

learning rate loss type

Set the thickness parameter . 5

i normalized along with ~ normalized

T force densities independantly ;

Architecture of the VAE thickness not included E
_ ) \\ E number Of |ayers E
- \\\E i

: number of neurons of activation functionat !

; each layer layer E

( Training )F

required
epochs
completed?

no

FIGURE 41: Workflow for training the VAE / CVAE. (Own Work)
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/ Select sample vector from latent space (z) /

y

con(;/iﬁgr::d? yes > Select desired condition (€)
/ Decoded normalized feature vector (8) /4

J

( De-normalize feature vector(9) )

¥

For the Variational Autoencoder, once the dataset of 10,000 samples had been generated and evaluated in Karamba
for seismic performance, the data was restructured into an array of shape (10000, 27) where n is the number of samples,
and 27 are the number of force densities of each sample. An additional feature was added to each sample later
representing the thickness of the mesh so the shape changed to (10000, 28). The data was normalized so the maximum
value was kept 1. Details of normalization of the thickness feature will be covered ahead in the Section 7.1.2. Height
labels were later added to turn the VAE in to a Conditional VAE and 2 label encoding strategies were explored - One
Hot encoding and Sinusoidal Position encoding where a dimensionality of 58 and 28 were explored respectively
concatenated with the 28 dimensional feature vector.

10 random samples were excluded from the training to be used as test data to test the trained model at the end on
unseen data. A validation split of 20% was used so 80% was used as training data while the remaining was used for
validation. The hyperparameters were tuned over the course of several simulations; these are also shown in Figure 41.
These include the number of epochs, batch size, learning rate, the latent dimension, and the beta term. The loss type
used in all simulations was Mean Square Error as the features consisted of continuous data rather than discrete, which
otherwise may have required Binary Cross Entropy (BCE) instead.

Different architectures of the VAE were tested. After the required number of epochs were completed, the training was
stopped. The aim was to end up with the simplest architecture (least number of layers and least number of neurons in
each layer) for computational efficiency.

To determine whether the model was sufficiently trained or not, validation loss and training loss were plotted against

epochs. If the model was sufficiently trained, there would be convergence. If not, the number of epochs was increased
or the training rate was increased.

~
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4.1.5 Surrogate Model

Select metric(s)

\

Pre-processing labels (y) Pre-processing features (8)

Extracting worst results for each ( Normalize the samples (8) )
performance metric from both
seismic directions for each sample J

of the dataset

v

Extracting best 10 samples in
each of the three metrics

( Reshape the data into (n, 28) )

2
Normalize the samples (y) across For the overall workflow to function, it was important that
each metric the surrogate model used the same feature dataset that

was input into the VAE. Similar to the VAE, the feature
dataset was normalized and reshaped into (10000, 27)
(without thickness) and (10000,28) with thickness. Similar
to the VAE, for all surrogate model simulations, to
determine whether the model was sufficiently trained,
validation and training loss curves were plotted against the
epochs to look at convergence. If there was no
convergence, the number of epochs was increased or the

training rate was increased before an assessment was
( Reshape labels into (n,x) ) made on the result. A single surrogate model was trained

on the three SSS metrics as well separate surrogate
j models for each SSS metric in addition to Mass and Height

number of
surrogate
models (x)

as shown in Figure 43.
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test validation data (20%)
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Set the thickness parameter learning rate loss type
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N e e ]
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\
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FIGURE 43: Surrogate Model Workflow. (Own Work)



4.1.6 Gradient Descent Optimization

e
/ Selection of a input mesh /
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[Calculating the gradient ¥’(z) = 6_;/ j no
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FIGURE 44: Gradient Descent Workflow. Inspired by the work of Pavlidou (Own Work)
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The workflow for the optimization involved selection of a
input mesh. This step depended on the requirements of
the user and the scenario. In the literature, Gladstone et
al. had recommended finding a good starting point by
randomly sampling 100 samples from the latent space and
predicting the best performing one (Gladstone et al., 2021).
In case the user would like to perform the optimization on
a sample of this choice, he would have had an initial mesh
to start with, so then that step can be replaced.

The sample was reshaped into (1,28) and normalized
before compressed into a latent vector (z) of the VAE. After
decoding z, the performance of the output tensor, y, was
then predicted. Then the performance tensor (y) could be
optimized with respect to the latent vector (z).

In this case, the optimizer performed gradient descent by

using a Neural Network. y is calculated according to the
following rules depending on what performance metric was

being considered.

If y is Buckling Load Factor, then JUUBUEEE L 7

..........................

(Equation 1)

9y du (Equation I1)
3

=2u—1) x—
z (u ) dz

If ¥ is Interstorey Drift Ratio, then

y = (i —0.010)?

ay di
D 2i-0010)x 2
0z

(Equation I11)
dz

Failure conditions are taken into account in each
performance metric and y is calculated accordingly.

Buckling Load Factor <1
Utilization > 1

Interstorey Drift Ratio > 0.010h (as specified in Eurocode 8)

(Equation 1V)

The gradient of the performance tensor (y) with respect to
z is updated according to the following rule:

~

l i te X 0y
z = z — learning_rate X —
g- 0z

The learning rate determines the step size in each iteration.
Once the iterations are completed, the mesh has been
optimized.

For Utilization and Interstorey Drift Ratios, a global minima
is sought to give the optimized result. However, for Buckling
Load Factor, a global maxima is sought to give the
optimized result. The minus sign in front of the gradient of
Buckling Load Factor allows for this change and updates
the update rule accordingly as shown below.

~

d
z = z — learning_rate X eB_Jz}

~

z = z@learning_rate x el

Equation V
%7 (Equati )

Furthermore, it becomes unnecessary to try to decrease
(Utilization, Interstorey Drift Ratio) or increase (Buckling
Load Factor) that metric if the metric is already under
acceptable limits (no failure). To account for such
conditions, the gradient update is configured accordingly
by adding additional conditions.

If (u—1) > 0, perform the update; otherwise, do nothing.
If (1 —=b) > 0, perform the update; otherwise, do nothing.

If (i — 0.010) > 0, perform the update; otherwise, do nothing.

(Equation VI)

~
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In order to constrain the optimized meshes to be within a certain height threshold and to minimize material usage by
minimizing mass, the gradient function was altered to account for multiple objectives instead of a single objective.

For single objective optimizations, the gradient function was as mentioned below:

To consider multiple objectives, the different gradients were aggregated to form the overall gradient. Weights were
included for each gradient to allow the user to optimize specific metrics over others.

~

v =m(G57) v (52) +ms ()
where,
V' = aggregated gradient
V.= Height
¥, = Mass
373 = Performance metric
z = latent space

Wi, W, W3 = Weightage for respective gradients )
(Equation VII)

The performance metric (y,) may be Buckling Load Factor, Utilization, or Interstorey Drift Ratio. It should be noted that
instead of selecting one performance metric, multiple performance metrics may be selected by additional terms in the
gradient descent optimization - and the weights can be changed accordingly. For our case, as the likelihood of failure
in Utilization was by far the highest, so Utilization was considered as the only performance metric (y,) in most simulations.
Nonetheless the same workflow can be used to optimize other metrics simultaneously by applying different weights.

~
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4.2 CONDUCTING PERFORMANCE EVALUATION

For conducting the Performance Analysis, due to the geometric complexity of doubly curved vaults, a numerical approach
(in Karamba) was employed rather than an analytical one. This was done through Response Spectrum Method (RSA),
a linear dynamic analysis. Since this is also integrated inside Grasshopper, it provided an easy transition from the
Geometry Generation phase.

The scheme for the computation of the seismic response is visualized in Figure 45. This is based on the model used by

Marseglia et al. (2020).

T
1}

™M
T

LlI|

4.2.1 Performance Metrics

All of the output parameters from the Performance
Evaluation are shown in Table 01. However, only 3 were
chosen for the surrogate model. based on Strength,
Stability, and Stiffness (SSS) (Heyman, 1966) indicating
Ultimate Limit State (ULS) and Serviceability Limit State
(SLS). These metrics from that were used are shown in
Table 02.

SLS

This was conducted to check the serviceability limit state.
The maximum interstorey drift of the vault was tabulated
from this.

ULS

This was conducted to check the ultimate limit state.
Utilization and Buckling Load Factor were assessed.

Other metrics were saved in case necessary for future use
but were not used in the final surrogate model. These other
metrics included maximum bending stress that would
indicate failure in bending induced by lateral (seismic)
loads when the applied stress exceeds the flexural
strength. The maximum principal stress indicated if failure
will occur in compression or tension when applied loads
exceed the compressive strength or tensile strength.
Average bending stress and average principal indicated
stresses building up over a long period of time, which may
not exceed the ULS but it may cause weakening over
time.

~
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Performance metric

Buckling_Load_Factor

Utilization

Interstorey_Drift_Ratios

Avg_Displacement

Max_Displacement

Avg_Shear_Force

Max_Shear_Force

Avg_Bending_Moment

Max_Bending_Moment

Max_Compresive_Stress

Max_Tensile_Stress

Max_Principal_Stress

Utilization

Buckling Load Factor

Interstorey Drift Ratio




4.2.2 Methods And Softwares Used
For The Analysis

A balance of speed and accuracy was required as 10,000
simulations needed to be run efficiently. As the geometry
was produced in Grasshopper, it was preferable to use a
plugin for Grasshopper in keeping with the workflow.
Nonetheless simulations in ABAQUS were also run, but
mostly for validation purposes.

Karamba and Alpaca4d were explored. Alpaca4d is a
plugin for Grasshopper developed on top of OpenSees.
While it was specifically made for running dynamic
analysis, it is still under development, therefore containing
a considerable number of software defects. Therefore, its
results needed to be first validated before moving on with
it.

A simple case of a cantilevered beam was considered and
simulations were run in Karamba and Alpaca and verified
with hand calculations. Alpaca gave correct results for
mass participation and Time periods (as verified by similar
results in Karamba and ABAQUS). This was also true for
internal reactions for line elements (beams), but it did not
give accurate internal reactions (stresses, deflections) for
shell elements. As the vaults needed to be modeled as
shells, this would not work for the project. Moreover, Alpaca
was found to be incompatible with the computer that was
going to be used to run the 10,000 Performance Evaluation
simulations in TU Delft Bouwkunde’s VR Lab. For this
reason, Alpaca proved to be useful but only as a validation
tool for modal analysis but not for the seismic analysis
afterwards.

For the seismic analysis, it was initially considered running
non-linear analysis but it was found inappropriate for the
project due to the number of simulations that needed to be
run as it was far too time-consuming. Moreover, a non-
linear analysis would only be possible in ABAQUS where
the workflow would have had to be revisited as manual
pre-processing was required to convert the imported rhino
geometry into a mesh for ABAQUS. These steps would
have had to be automated and that was not possible within
the limited time-frame of the project.

A Linear Time History Analysis was considered in Alpaca
but it took longer than was computationally feasible. In
addition, instead of exciting the ground, point loads had to
be applied on the building which get accelerated with the
earthquake which may not have yielded accurate results
and as mentioned earlier, results for shells are also
inaccurate in Alpaca. For this reason, a linear dynamic
analysis was chosen — the Response Spectrum Analysis.
This would take into account the dominant modes - each
with a minimum mass participation ratio of 5% combining
to give a total mass participation ratio equal to or greater
than 90% of the total mass, as prescribed by the Eurocode
(image of Eurocode mass participation). This would
produce more realistic results than the linear static

approach of Equivalent Lateral Force method and still be
fast enough for running a large number of simulations —

with each simulation taking 3.0-4.6 seconds.

4333 Maodal response spectrum analysis
4.3.3.3.1 General

(1P This type of analysis shall be applied to buildings which do not sabsty Lhe
conditions given in 4.3.3.2.1(2) for applying the lateral foree method of analysis.

(2)P The response of all modes of vibrubion contributing significantly to the global
response shall be taken into account,

(3) The requirements specified in paragraph (2)P may be deemed to be satistied it
either of the following can be demonstrated:

~ the sum of the effective modal masses for the modes taken into account amounts to
at least 90% of the total mass of the stnicture;

— all modes with effective modal masses greater than 5% of the total mass arve taken
into account.

NOTE The effective madal mass an,. corresponding to o mode &, 15 determined so that (he base
shear force Py, acting in the divection of application of the seismic acliai, may be expressed us
Fiao = STidam. It can be shown thal the sum of the effective modal masses (for all modes and a
given direction) is equal to the mass of the structure.

To carry out the analysis on a continuous model as is the
case in the Linear Dynamic analysis, the brick and mortar
would behave in combination like a single masonry unit.
The properties are shown in Table 03.

Macromodel

Properties

~
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4.2.3 Site

The location was chosen based on sesimicity and prevalence of earth construction. Pakistan is divided into 5 seismic
zones (Zone 1, Zone 2A, Zone 2B, Zone 3, and Zone 4) in increasing order of seismicity level. A medium seismicity
location was chosen based on the literature in the previous sections where it was concluded in resources that thin tile
vaults reinforced with basalt geo-grids may be used in low to medium seismic regions. According to Figure 48, the
Khuzdar District, in the province of Balochistan, in Pakistan, houses predominantly adobe construction. It also lies in a
seismic zone where low to high seismicity is found. A location in Zone 2B, was selected corresponding to a Peak Ground
Acceleration of 0.2g - a medium seismicity level. The dataset was also generated based on this Peak Ground Acceleration
(PGA). The location can be seen marked in Figure 47.

Seismic zoning
BCP - PGA (m/sq. sec)

B Zone1(<0.8)

B Zone2A(0.8-1.6)
. Zone2B(1.6-2.4)
M Zone3(24-3.2)
B Zone4(>3.2)

0 4000
e —

kilometers

FIGURE 47: Sesimic Zoning map of Pakistan according to Building Code of Pakistan (BCP). Edited by Author. Image Taken from Siddique,
M. S., & Schwarz, J. (2015). Elaboration of Multi-Hazard Zoning and Qualitative Risk Maps of Pakistan. Earthquake Spectra, 31(3), 1371—
1395. https://doi.org/10.1193/042913EQS114M
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Predominantly timber structures with all
the other building types in “few” range.
| —)
Predominantly brick masonry and all
other building types in “few” range.
B G e it

Adobe, stone masonry and brick

masonry in almost equal proportions.

Predominantly adobe and timber

structures,

Predominantly adobe and brick masonry

5 CEM

with all others in “few” range.
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T
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CBM
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_Predominam]y adobe along with timber

in “many” range.

A
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T

Predominantly adobe structures with all

the other building types in “few” range.

FIGURE 48: Building type region map of Pakistan. Image taken from Siddique, M. S., & Schwarz, J. (2015). Elaboration of Multi-Hazard
Zoning and Qualitative Risk Maps of Pakistan. Earthquake Spectra, 31(3), 1371-1395. https://doi.org/10.1193/042913EQS114M
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4.2.4 Response Spectrum Analysis

After the Time Periods were taken out for the dominant
modes, the following was done for all modes

Design Spectrum.

(4)P  For the horizontal components of the seismic action the design spectrum, Sy(7),
shall be defined by the following expressions:

502
0T <Ty: Sy(T)=a, S 2,725 2 (3.13)
= 30Ty vg 3
25
Ty=T<T: §,(F)=u, 5= (3.14)
L)
i
" =¢7,-S-—_-‘-§--|?—I
TosT2Ty:8fr) 4 ¢ " ¢ LT 3.15)
=4 a,
[ 2.5 [TeT
o e | T -('P-‘
LT S(md ey T {3.16)
E.S ﬁ-clu
where
a.. 8, Teand Ty are as defined in 3.‘&%2
S is the design spectrum;
q is the behaviour factor;
¥ii is the lower bound factor for the horizontal design spectrum.

MOTE The value 1o he aseribed 10 8 for nse in a country can be found in its National Annex. The
recommended vilue for f#is40,2,

FIGURE 49: Eurocode 8 formulation on Design Spectrum. Image
taken from International Organization for Standardization. (2004).
EN 1998-1:2004 Eurocode 8: Design of structures for earthquake
resistance - Part 1: General rules, seismic actions and rules for
buildings. https://www.phd.eng.br/wp-content/uploads/2015/02/
en.1998.1.2004.pdf
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Constants to calculate spectral accelerations from
the Design Spectrum

TABLE 04: Constants to calculate spectral accelerations from the
Design Spectrum. (Own Work)

Residences belong to an Importance factor, (y,), of 1.0
corresponding to Importance Class Il. The behaviour
factor, q, was taken as 1.5, assumed for unreinforced
masonry according to the Eurocode formulation given
below.

Table 9.1: Types of construction and upper limit of the behaviour factor

Type of construction Behaviour factor ¢

Unreinforced masonry in accordance with EN 1,5
1996 alone (recommended only for low seismicity
cases).

Unreinforced masonry in accordance with EN 1,5-25

1998-1

2,0-3.0
2,5-3.0

NOTE 1 The upper limit values ascribed to ¢ for use in a country (within the ranges of Table
9.1) may be found in its National Annex. The recommended values are the lower limits of the
ranges in Table 9.1,

Confined masonry

Reinforced masonry

NOTE 2 For buildings constructed with masonry systems which provide an enhanced ductility of
the structure, specific values of the behaviour factor ¢ may be used, provided that the sysiem and
the related values for ¢ are veritied experimentally. The values ascribed to g for use in a country
for such buildings may be found [1) in its National Annex of this document €7,

FIGURE 50: Behaviour factor for unreinforced masonry. Table taken
from En 1990: Eurocode - basis of structural design. (n.d.). https://
www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf




Base Shear

Base shear was calculated according to the expression.

£, = 8,07 )m- 2 (4.5)
where

STy is the ordinate of the design spectrum (see 3.2.2.5) at penod 75

Ty is the fundamental period of vibration of the building for lateral motion in the
direction considerad;

m is the total mass of the building, above the foundation or above the top of a ngid
basement, computed in accordance with 3.2.4(2);

A is the correction factor, the value of which is equal 10: A= 085 11 T = 2 Te and
the building has more than two storeys, or A= 1.0 otherwise.
NOTE The fuctor 4 sccounts for the fact that in buildings with at least (hree storeys and

translational degrees of freedom in each horizonial direction, he effective modal mass of the |17
(fundaimentaly mode is smaller. on average by 13%, than the total building mass

FIGURE 51: Eurocode 8 formulation of Base Shear. Image taken
from International Organization for Standardization. (2004). EN
1998-1:2004 Eurocode 8: Design of structures for earthquake
resistance - Part 1: General rules, seismic actions and rules for
buildings. https://www.phd.eng.br/wp-content/uploads/2015/02/
en.1998.1.2004.pdf

Vertical Distribution of Forces

As the main dataset consisted of a single storey structure,
the base shear was distributed into the first storey base of
the vault and the rest of the vault. It was done using the
following expression:

(3) When the fundamental mode shape is approximated by horizontal displacements
mereasing linearly along the height, the horizontal forces &5 should be laken as being
given hy:

z) -

£ = @

b=
Ezomy
where

7,z are the heights of the masses m; m; above the level of application of the seismic
action (foundation or top of a rigid basement).

(4)P The horizontal forces F; determined in accordance with this clause shall be
distributed to the lateral load resisting system assuming the floors are rigid in their
plane.

FIGURE 52: Eurocode 8 formulation for the vertical distribution

of force. Image taken from International Organization for
Standardization. (2004). EN 1998-1:2004 Eurocode 8: Design of
structures for earthquake resistance - Part 1: General rules, seismic
actions and rules for buildings. https://www.phd.eng.br/wp-content/
uploads/2015/02/en.1998.1.2004.pdf
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Seismic Combinations

The forces were combined for the different modes using
the Square Root of the Sum of Squares (SRSS) method.

where F, is the force for a specific mode and n is the
number of different modes.

Other constants

The seismic weight of the structure was calculated using
factors as relayed in the Eurocode.

(1)P  The design value E, of the effects of actions in the seismic design situation shall
be determined in accordance with EN 1990:2002, 6.4.3.4.

(2)F  The inertial effects of the design seismic action shall be evaluated by taking into
account the presence of the masses associated with all gravity loads appearing in the
following combination of actions:

3G, "V I O (3.17)

where

;i the combination coefficient for variable action / (see 4.2.4).

(3) The combination coefficients g take into account the likelihood of the loads
O, ; not being present over the entire structure during the eanthquake. These coefficients
may also account for a reduced participation of masses in the motion of the structure
due to the non-rigid connection between them.

(4) Values of yn, are given in EN 1990:2002 and values of g for buildings or
other types of structures are given in the refevant parts of EN 1998,




The calculation of combination coefficent for variable, QEi,
action is further given by

(1)P The combination coefficients ya (for the quasi-permanent value of variable
action ¢;) for the design of buildings (see 3.2.4) shall be those given in EN 1990:2002,
Annex Al

(2)P  The combination coefficients w4 introduced in 3.2.4(2)P for the calculation of
the effects of the seismic actions shall be computed from the following expression:
V=@ ¥y (4.2)

NOTE The values 1o be ascribed to @ for use in a country may be found in its National Annex.
The recommended values for ¢ are listed in Table 4.2

Table 4.2: Values of @ for calculating w4,
Type of vanable Storey

o |
action | B

Categories A-C’ Roof | 1.0
Storeys with correlated occupancies | 0.8
Independently occupied storeys 0,5

Caltegories D-F’

T

FIGURE 53: Combination coefficients. Image taken from En 1990:
Eurocode - basis of structural design. (n.d.). https://www.phd.eng.br/
wp-content/uploads/2015/12/en.1990.2002.pdf

and Archives
* Categories us defined in EN 1991-1-1:2002,

As mentioned in Figure X, the value of ¢ = 1.0 is considered
as it is a single storey structure.

The value of Y2 was considered to be 0.3 according to the
values for residential areas as shown in Figure 54.

Table Al.1 - Recommended values of yfactors for buildings

Action W W W

Imposed loads in buildings, category (see
EN 1991-1-1)
Category A : domestic, residential areas 0,7 0,5 03
Category B : office areas 0,7 0,5 03
Category C : congregation areas 0,7 0,7 0.6
Category D : shopping areas 0,7 0,7 0,6
Category E : storage areas 1,0 09 0,8
Category F : traffic area,

vehicle weight < 30kN 0.7 0.7 0,6
Category G : traffic area,

30kN < vehicle weight < 160kN 0,7 0.5 0,3
Category H : roofs 0 0 0
Snow loads on buildings (see EN 1991-1-3)*
Finland, Iceland, Norway, Sweden 0,70 0,50 0,20
Remainder of CEN Member Stales, for sites 0,70 0,50 0,20
located at altitude H > 1000 m a.s.l.
Remainder of CEN Member States, for sites 0.50 0,20 0
located at altitude H < 1000 m a.s.l.
Wind loads on buildings (see EN 1991-1-4) 0.6 0,2 0
Temperature (non-fire) in buildings (see EN 0,6 0,5 0

1991-1-5)
NOTE The g values may be set by the National annex.
* For countries not mentioned below, see relevant local conditions.

FIGURE 54: Recommended values for Y2 factor. Image taken from
En 1990: Eurocode - basis of structural design. (n.d.). https://www.
phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf
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Interstorey Drift

Whilst the other two performance metrics used (Buckling
Load Factor and Utilization) were calculated directly by the
FEA model in Karamba, calculations for interstorey drift
depended on Eurocode formulations. It should be less than
0.010h, where h is the storey height, which was 3 meters
in for all samples.

4.4.3.2 Limitation of interstorey drift

(1 Unless otherwise specified in Sections § 1w 9, the following limits shall be
observed:

a) for buldings having non-structural elements of brittle materials attached to the
structure;

dv=0005h: (4.31)
b) for buildings having ductile non-structural elements:
dv<0,0075h ; (4.32)

¢) for buildings having non-structural elements fixed in a way so as not to interfere with
structural deformations, or without non-structural elements:

dv<0010h (4.33)
where
d; is the design interstorey drift as defined in 4.4.2.2(2):
h is the storey height;
v 1 the reduction factor which takes into account the lower return period of the
seismic action associated with the damage hmitation requirement,
2) The value of the reduction factor v may also depend on the importance class of

the building. Implicit in its use is the assumption that the elastic response spectrum of
the seismic action under which the “damage limitation requirement” should be met (see
3.2.2.1(1)P) has the same shape as the elastic response spectrum of the design seismic
action corresponding to the “[E)no-collapse requirement@]” in accordance with
2.1(1)P and 3.2.1(3).
NOTE The values 10 be ascribed 1o v for use in a country may be found in its National Annex.
Different values of vimay be defined for the various seismic zones of a country, depending on
the seismic hazard conditions and on the protection of property objective. The recommended
values of vare 0.4 for importance classes 111 and IV and v= 0,5 for importance classes I and 1.

FIGURE 55: Interstorey Drift. Image taken from International
Organization for Standardization. (2004). EN 1998-1:2004
Eurocode 8: Design of structures for earthquake resistance - Part 1:
General rules, seismic actions and rules for buildings. https://www.
phd.eng.br/wp-content/uploads/2015/02/en.1998.1.2004.pdf




Since the importance class was Il, the value for the reduction factor, v, was taken as 0.5. The design interstorey drift,
d,, was evaluated as the difference of the average lateral displacements, d_, at the top and bottom of the storey and
calculated using the following expression as specified in Section 4.3.4 of the Eurocode:

d.=q, d,

where,

d, is the displacement of a point of the structural system induced by the design seismic action

q, is the displacement behaviour factor assumed to be q unless otherwise specified

dis the displacement of the same point of the structural system, as determined by a linear analysis based on the design
response spectrum.

The results of the Performance Evaluation are shown later in Section 06.
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] O 5 /RESULTS : GEOMETRY GENERATION

5.1 FORCE DENSITIES

See Section 4.1.1 for the workflow. As mentioned earlier in the paper, the method that was
used to generate geometries of the vault was by varying
the force densities. The flat 2D projection of the vault was
composed of a flat mesh. Each edge of the mesh was
assigned a force density denoting how much force per unit
length is carried. Negative force densities correspond to
tensile structures while positive force densities correspond
to compression structures. This is shown in Figure 57. The
scope of this paper is limited to compression structures so
only positive force densities will be discussed.

Since variation in force densities served as the input
variable that was used to generate a variations in geometry
to produce the large dataset for the generator, it is
important to understand the effect of varying force densities
on the geometry. Figure 58 shows that for a mesh with
uniform force densities for all edges, the effect on the
height of the vault of increasing force densities diminishes
rapidly. The simulation was carried out with a constant load
(10.0). It should be noted that varying the load and force
densities serve the same purpose as they produce inverse
geometric effects. Throughout the paper, for simulations
over a dataset, the load is kept constant so that the effect
of varying force densities can be seen.

HEIGHT V5 FORCE_DENSITY

2.0 1

-
w
L

Height/m
A
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5.2 POLYEDGES VS SINGLE EDGES

The greater the force density of the vault, the shallower the part of the vault becomes. Since we are dealing with tile
vaults, the degree in variability of force densities is restricted to polyedges rather than single edges. Figure 59 illustrates
the difference. Such forms as Figure 59a would not be possible to construct for practical purposes out of thin tile vaults.
The term polyedges here represents the series of continuous edges connected. This is further highlighted in Figure
59b.

a) edge based force densities b) polyedge based force densities

By assigning force densities to polyedges, we also reduce the size of the representative dataset considerably. For
instance, a mesh of 15x10 divisions would be represented by an adjacency matrix of shape 176x176 which flattens to
form a list of 30,976 values, where each value represents the force density of each single edge connection. Since
adjacency matrices are symmetrical, if we only consider half of the adjacency matrix, we get 176x175/2 values which
flattens to form 15,400 values.

In contrast to this, if we only consider polyedges, there is no need to look at connectivity or edge-based relationship
representations such as adjacency matrices or any other type of graphs. This is because, for a quad mesh, all the edge-
based relationships are the same, only the value of the force density for each polyedge matters. Therefore, each mesh
can be represented as a list with a size equal to the number of polyedges present. For the same mesh density of 15x10
divisions, a nested list would have a total of 27 flattened values — 16 values in one direction, while 11 values in the
perpendicular one.

To conclude, by keeping the following data-structure, the size of each sample has been reduced by 99.91% (relative to
adjacency matrix) and 99.82% (relative to half-adjacency matrix). This may be visualized in Figure 59.

~
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The size of the mesh is kept constant throughout all samples of the dataset. The dimensions are 15mx10m. The size was chosen
to represent the case of footprint of a 150m? house. The mesh density was kept constant at 1 division per metre.

15m

10m

imT]

a) adjacency matrix (30,976 values)

b) half-adjacency matrix (15,400 values)

c) polyedge list (27 values)

FIGURE 60: Reduction of the dataset size. (Own Work)
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An example is shown below of a sample taken from the ‘crease’ dataset. It highlights how multiple edges are grouped
into a single polyedge that may be either a row or a column. This is represented in the form of a nested list where,

number of polyedges = n_ +1

For the dataset, x=15, y=10, son, =11, n = 16. Each value in the nested list corresponds to the force density, q, of the
polyedge.

polyedge = row

[ [q1’ 9,5 9::9495:96:9,dgs s i q11] ’ [q12’q13’q14’ (S FETIS PYYAS PYRLe RIS FrYie PYYIIC PRPILC PYTILS PYVILS PYTIIC PRTIIC PAYRe PO IF]

row_16

row_15

row_14

row_13

row_12

row_11

row_10

row_9

row_8

row_7

COLUMN

row_6

Individual
Edge
number

row_5

row_4

row_3

row_2

row_1

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 61

63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 92
'"dé;;’e“a' 94 |96 | 98 [100 |102 [104 | 106 [108 |[110 [112 | 114 [116 | 118 [ 120 | 122 |[123
SOOI 105 127 | 129 | 131 | 133 [ 135 | 137 | 139 |141 |143 | 145 |147 | 149 | 151 | 153 | 154
156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 185
187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 216

218 | 220 |[222 | 224 | 226 | 228 230 232 | 234 | 236 238 (240 | 242 244 246 247

249 | 251 253 | 255 | 257 | 259 261 263 | 265 | 267 269 | 271 273 275 277 278




5.3 MAKING THE POLYEDGES

The COMPAS library was used to generate mesh geometries using python and grasshopper. A ghpython script (python
script in Grasshopper) was provided by Robin Oval which generated a mesh for constant force densities for all edges.
The script was modified to include grouping of edges into polyedges and assigning force densities to these polyedges
separately. Another script was provided by Oval which included already grouped polyedges but due to software
compatibility issues, it was not used.

In order to group the edges into polyedges, the output of the compas script was analyzed from Grasshopper. This
numbering of edges was studied for different mesh densities to derive patterns for numbering the mesh edges. It was
found that 7 basic numbering sequences existed. The sequence repeated as the mesh-density in the y-axis was
increased. This is visualized in Figure 62. Therefore, the same numbering pattern could be used for different mesh
densities in the y-axis. As shown in Figure X, the same numbering sequence happens when y=27 as well as when y=13.
The first polyedge is shown in the figure with which the numbering begins.

26 53 86 o7 134 6t 168 245 242 269

2524 52 79 106 183 160 87 214 21 268 282
cq P 105 132 4cg 18 21 240 267

232249 76 103 130 157 184 21 238 265 281

o 27 104 434 40 4gc 292 230 Y

o 34 56 185 o

212047 74 m 128 155 182 209 236 263 280
46 75 6 129 56 83 Hor 237 264
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15 14 11 t} 95 12 149 176 203 230 257 277
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Figure 63 shows the 7 different patterns highlighted earlier
in Figure 62 as A,B,C,D,E,F,and G. The pattern represents
the numbering sequence for the rest of the polyedges.

However, it was found that the sequence changed if the
COMPAS mesh was generated in python rather than in the
Grasshopper environment. These conflicts were resolved
and the sequence was updated accordingly. An example
of the conflicts is shown in Figure 64.

B T Y 4 160 1F8 205 332
1644+ 9B 125, J52--179- 2606 233
4241 @ I 12’&;;49 o176 @@ﬁ 230 i

4269|661 123 1150 17 2041 231
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5.4 DATASETS

Different types of datasets were created to study the effect
of different parameters to see what was the effect on
performance. 10,000 samples were to be generated for the
final dataset to be used for the Generator.

« Uniform force densities
*Creases
* Randomized force densities

Creases allowed controlled variability while increasing the
design space keeping randomness limited to specific
polyedges for a given sample. Randomized force densities,
however, introduced complete randomness (within a
probability distribution) for all polyedges for a given
sample.

RESULTS
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5.4.1 Uniform force densities

The script generated vaults where force densities of all
polyedges was the same. This is termed as uniform mesh
density throughout the rest of the paper.

A high value of force density corresponds to a greater force
per unit length for edge. This creates shallower vaults for
higher force densities. The change in seismic performance
of varying the force densities for uniform vaults will be
discussed in the next chapter.

Table 05 shows examples of uniform mesh densities and
the corresponding meshes are visualized in Figure 65.

DATASET: uniform force densities

Edge mesh number
number 0 1 2 3 4 5
5 ) 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 ) 2 1 0.6 0.3
5 & 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 3 2 1 0.6 0.3
5 & 2 1 0.6 0.3

a) mesh_0: uniform dataset
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5.4.2 Creases

Different creases were formed by increasing the force
density of specific polyedges while keeping force-densities
of the rest constant. In this case, the force densities of the
rest of the polyedges were kept 1 while the force densities
of the creases were randomly sampled from a uniform
distribution of mean = 150 and standard deviation = 30.
Figure 66 visualizes the creases corresponding to a sample
from the dataset.

Constraints were coded inside the script for crease
formation such that a minimum distance between
consecutive parallel creases would be maintained. This
distance would also be maintained between the edge and
the first crease. This was done to avoid flattening of
meshes due to the presence of consecutive high force
densities spaced apart at short distances. Flat meshes
perform poorly (as later highlighted in Section 6.2.2).
Another reason for the introduction of these constraints
were practical considerations such as constructability in
making densely creased vaults.

To generate the dataset, all possible crease combinations
were extracted using itertools in python, where each
crease was assigned a force density sampled randomly
from the uniform distribution.

a) mesh_0 : creases dataset

Narmal Distribution: p =150, o= 30
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DATASET: creases

Edge mesh number

number




The introduction of constraints and combinations allowed
for greater control over the crease dataset. However, this
also meant greater inclusion of user bias. This would also
be reflected in sampling from the VAE which would only
produce samples similar to the dataset; this is later covered
in Section 7.1.1.

5.4.3 Randomized force densities

In this dataset, bias was removed from the Geometry
Generation process. Instead of assigning randomized force
densities to specific polyedges, all polyedges were
assigned randomized values. While the normal distribution
used for creases only gave very high force densities, a
different distribution was required which would result in a
high probability of values and a low probability of high
ones. Force densities were randomly sampled from values
normally distributed in a logarithmic scale. This was done
to increase the probability of sampling lower force densities
than higher ones as a mesh containing high values would
result in a flattened mesh as shown in Figure 69b.

This method reduced control over the generated dataset.
This allowed for generation of less desirable samples in
terms of seismic performance. At the same time, it also
allowed for generation of more novel samples that may not
have been considered intuitively of instead of ones pre-
conceived by the architect/engineer.

For different datasets, the effects of different parameters
on performance will be elaborated in Section 6.2.5. This
section deals only with generation of the geometry for
these datasets.

log min = math.log (0.2)
log max = math.log (100)
mean = math.log (1)

standard deviation = (log max - log min) /4

~
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a) mesh_40 : randomized dataset
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Probability Density

Log-Normal Distribution

a) mesh_6 : randomized dataset
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DATASET: randomized
Edge mesh number

number 6 10 12 20 30 40
0.1 6.3 2.6 2.1 0.5 0.2
1.1 0.8 0.1 1.3 2 0.1

0.2 0.6 1.1 0.2 1.7 1.4
0.2 0.5 0.5 0.3 9.9 5.5

0.3 3.1 1 0.1 0.5 4.4
0.2 6 0.3 1.5 7 1
4.6 0.4 1 0.2 8 10
1.9 1.3 0.4 2.9 2.2 0.3
0.6 4.1 1 1.4 0.9 G5
4.3 3.7 0.6 0.1 0.2 1.4
10 1.7 12.3 3.9 0.8 6.6
1.9 0.9 3 0.5 3 1.7
0.3 0.3 0.2 1.4 0.7 2.3
0.4 0.4 0.1 0.6 1 1.6
1 6.5 0.4 3.3 0.7 0.8

0.8 1.6 1.2 0.1 0.1 0.1
3.2 0.6 1.1 0.2 4.9 0.3
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0.1 0.2 1.2 0.1 0.4 0.2
1.6 0.1 0.2 0.6 1.2 14.5
0.8 2 3.6 0.2 1.4 2.5
0.8 1 1 0.1 2.8 0.6
0.1 2.2 0.7 i.8 1.1 0.9
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See Section 4.1.2 for the workflow.

The design spectrum was calculated. Figure 72 shows the
spectrum. All 10,000 samples had Time Periods in the
range between 0.08s and 0.13s.

Design Response Spectrum

3.5
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6.1 BOUNDARY CONDITIONS

The vault was modeled with different boundary conditions.
Initially, the vault was modeled as directly supported on
the floor for simplicity. Later it was supported on the
structure representative of the actual house. Adding a
complexity incrementally allowed analysis of the vault as
an isolated element initially and then analyzing it in the
broader context with the rest of the structure.

To check whether a vault may behave similar in different
storey structures, the force densities were kept constant
but the loading was varied. As mentioned earlier, this would
equally affect all of the polyedge force densities uniformly.
Figure 73 shows the performance of the same basic vault
structure with increasing loading for a 3-storey structure,
1-storey structure, and one that is directly supported on
the floor. It was interesting to note that there were
behavioural changes noted in the different cases. The best
seismically performing vault in terms of lowest utilization,
highest buckling load factor, and lowest displacement, was
not the same in all cases (1-storey, 3-storey, isolated
vault).

Therefore, it can be concluded that seismic performance
of a vault is unique for a particular structure in relation to
the number of storeys that structure has. This is makes
sense as a taller/shorter structure would influence the Time
Period of its natural vibration and therefore would be affect
the base shear.
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FIGURE 73: Performance for single storey, 3-storey and vault supported on ground. (Own Work)




6.1.1 Vault

From the results, the following were known for a vault
(supported directly on the ground):

« Translational mass participation in lateral directions x
and y is negligible. There is a high mass participation
in the z axis (axis parallel with gravity)

* Rotational mass participation in x and y is high. There
is negligible mass participation in the rotational z axis

For seismic analysis, considering that conventionally the
dominant mode is taken in the direction of the lateral load
(translation x or y) but it is negligible in these cases, the
model without supporting walls may not represent the
actual dominant mode as one with supporting walls.
Moreover, the seismic weight would also be significantly
less than one with the rest of the structure. This would give
a seismic force much smaller than one in reality. Due to
these reasons, it would not be correct that seismic analysis
done on an isolated vault supported on the ground could
be used for a structure where it is used as a roof slab/floor
slab of the upper storey.

Once results from the Karamba model were validated with
those from the ABAQUS and Alpaca Model, the rest of the
structure was modeled adding more complexity in the next
step.

~
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6.1.2 Vault + rest of the structure

The structure was assumed as a one-storey building where
the vault was the roof slab.

It was considered that load-bearing walls would support
the vault and the walls would be made from earth having
the same material properties as the earth material in
macro-model (See Table 03 in Section 4.2.2 for reference).

Walls

This was initially modelled as walls in Abaqus. As shown
in Figure 75, the results from the modal analysis show
atypical behaviour in the different modal states. These
elements were found to be very stiff and did not represent
masonry walls realistically — especially because there are
no openings for doors and windows. Similar results were
also found in Karamba.

Columns

Next, instead of the walls, bernoulli elements were used
to model columns with equivalent bending stiffness as the
walls. Two different cross-sections were calculated — one
for the corner columns and one for the other columns. This
approach was in line with estimated behaviour in the modal
analysis. This is shown in Figure 79
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Figure 77 and Figure 78 show how different the modes of vibrations are with columns as compared to walls
Delft
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column section = equivalent wall However, this approach did not capture the shear stiffness
section correctly. An amendment was suggested to include
appropriate bracings between consecutive columns for this
El,.i = Eloumn that would account for the loss in shear stiffness. This

would have also been a viable option but the structure was
I revisited afterwards which removed the application of this
model.
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Shear Walls

The overall structure of the building was revisited and it was reconsidered whether a building with earthen masonry
walls would be appropriate against seismic activity. It was found in the literature that such structures with unreinforced
masonry are highly susceptible to collapse in seismic areas due to the brittle nature of the material and its high seismic
weight. Appropriate strategies for reinforcement were identified suitable for the type of construction that the project
entails; as the building typology was for low-income homes in remote areas, construction guidelines for non-engineered
structures in seismic regions were studied. These included local guidelines (AKAH Seismic Housing Report BACIP) and
international guidelines (Auroville Earth Institute).

Fall of roof

Corner
detachment

Vertical crack
in the corner

Horizontal crack

at the gamble base Diagonal cracks

Diagonal cracks B Fall of stucco

Vertical cracks  Tilt of walls

T More than 4.5m T

The structure was composed of a ring beam that supported

the vault-slab which was supported, in turn, by shear walls.

Unreinforced walls were not modelled. The shear walls

were placed at corners of the structure which are the most |_| #ZT to 3T
-

vulnerable places for tensile cracks to form. Long
unreinforced walls greater than 4.5m were supported by
external buttresses with depth 0.75m. This is equivalent to
3 times the thickness of the walls (0.25m) as required as
shown in Figure 81. This was the final structure that was
used for running the Performance Evaluation on the T More than 4.5m T
dataset (See Figure 82). i {
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FIGURE 82: Final structure with shear walls and ring beams. (Own
Work)

Appropriate literature could not be found to estimate the
material properties for reinforced masonry so material was
assumed as unreinforced masonry as that of the macro-
model of the vault; an assumption was made that high
tensile zones would be identified, and tensile cracks would
be accommodated by adding reinforcement in those places
at a later stage in the design process. The same assumption
was also valid for the vault itself where basalt geo-grid
masonry would be applied at a later stage. For details into
the basalt geo-grid reinforcement, please refer to Section
2.3.4.

Table 09 shows the performance indicators that were taken
out from the Performance Evaluation. However, for the
surrogate model, only the Buckling Load Factor, Utilization,
and Interstorey Drift Ratios were used to account for failure
in Stability, Strength, and Stiffness respectively (See Table
10). Table 12 also shows the properties of the modal
analysis for the selected samples shown. This was done
to check the mass participation for each sample and their
Time Periods, and whether it met the requirements for
Eurocode.

Simulations were carried out with the applied force in x
direction and y direction separately. For every sample, the
lower performance in x and y was taken (minimum buckling
loading factor, maximum utilization, maximum interstorey
drift).

FIGURE 83: Modal Analysis of final structure in Karamba. First 3
modes are shown. (Own Work)
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DATASET: randomized

mesh_1

mesh_2

Mesh number
mesh_3

20.384

2.468

20.807

17.458

21.273

12.469 11.034 5.908 10.041 9.830
0.0033542h |[0.00841904h |0.00197305h |0.00251683h | 0.00287915h
10.051 21.939 6.192 9.438 8.500
30.015 76.820 17.778 26.988 26.866
1.233 0.370 1.249 1.568 1.368
12.666 3.052 9.481 13.098 16.628
0.614 0.092 0.469 0.722 0.559
5.055 0.580 2.278 3.965 4.088
-0.996 -1.551 -0.315 -0.804 -0.802
3.314 3.222 1.492 2.719 2.615
0.022 0.035 0.017 0.019 0.020

TABLE 09: All Performance Metrics of Randomized Force Densities Dataset. (Own Work)

DATASET: randomized

Mesh number

mesh_1
20.384

mesh_2
2.468

mesh_3
20.807

17.458

21.273

Safe Safe Safe Safe Safe
12.469 11.034 5.908 10.041 9.830
Failure Failure Failure Failure Failure

0.0033542h [0.00841904h |0.00197305h |0.00251683h | 0.00287915h

Safe Safe Safe Safe Safe

TABLE 10: Performance Metrics to be used as labels for surrgoate model of Randomized Force Densities Dataset, and Failure state. (Own

Work)

Though only 5 samples are shown in Table 10, they show a significant trend of failure in strength (utilization) of the vaults

but no failure in buckling.
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mesh_1
mesh_2
mesh_3
mesh_4
mesh_5
mesh_6

mesh_7

mesh_8

mesh_9
mesh_10
mesh_11

mesh_1

mesh_2

mesh_3

mesh_4

mesh_5

mesh_6

mesh_7

mesh_8

mesh_9

mesh_10

mesh_11

DATASET: randomized

39552.84929

1.474194

28502.54607 1.562264 0.035
39842.25422 1.505192 0.095
41598.92123 2.361411 0.095
39663.53523 1.665554 0.095
29194.68304 2.461413 0.035
42119.57844 2.606465 0.095
32719.5475 1.643492 0.06
32567.36816 1.255298 0.06
40975.36613 2.105192 0.095
30495.84377 3.316291 0.035

DATASET: randomized

[82'12_’9121]5'82’ [0.11] 100.91 [3] [100.91] 130.37 yes
[55'1094_’7;‘?52’ [0.09] 36.6 [9] [16.52] 85 no
[78;177?’5?]7'25’ [0.11] 54.34 [3] [27.07] 131.33 no
[119'589?’7;,(])6'52’ [0.11] 92.07 [5] [60.81] 137.12 yes
n '57(?’2(]38'48’ [0.11] 54.5 [3] [27.85] 130.74 no
[69'2412.62?'21’ [0.1, 0.08] 48.3 8, 11] 5119756? 123.3 no
[”2'2§j;]18'38’ [0.11] 90.89 [4] [90.89] 138.83 yes
[1315971_;3;?6'32’ [0.1] 95.22 [7] [47.68] 102.71 yes
[90589%’72?'73’ [0.1] 74.18 8] [66.36] 102.24 no
[1205381,51116'9’ [0.11] 98.3 [4] [37.57] 135.06 yes
[98'253%;?'71’ [0.1,0.08] 48.09 [7, 1] %1.6?1?' 128.79 o




6.2 PERFORMANCE COMPARISON

6.2.1 Variation in Seismic Zone

20 samples each from 3 different types of datasets were
tested in high, medium, and low seismicity and analyzed.
The 3 three different seismicity levels could be tested with
ground accelerations inside the same province,
Balochistan. In Zone 2A (0.12 g), the location was the in
the Chaghi District Zone. A location in Zone 2B (0.18g) was
in the Khuzdar District while a location in Zone 3 (0.289)
was in the Awaran District. These are shown in Figure 84.

Seismic zoning BCO - PGA (g)

@ Zone 2A(0.08g - 0.16g) - low
Zone 2B (0.16g - 0.25g) - medium

@ Zone 3 (0.25g - 0.33g) - high

The three different levels of PGA were applied to the same
datasets. Different conclusions were drawn for the effect
of increasing seismicity for different types of datasets -
uniform force densities, creases, and randomized force
densities.

a) uniform force densities dataset
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For the dataset where only uniform densities were present
for each vault, according to the data, there is a large
increase in interstorey drift ratios in for higher seismicity.
The interstorey drift ratio increased with increasing
seismicity by 39.5% for low to medium and 65.2% for
medium to high. The reduction in the buckling loading
factor and increase in utilization only becomes more
significant for taller vaults. The reduction in performance
with a decrease in height of the vault is also notable for all
three performance metrics caused by an increase in force
density.
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b) creased dataset

c) random force densities dataset
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For a dataset with creases, a similar trend was present as
with the uniform force densities. However, what is notable
is the where a larger effect of increasing seismicity is noted
in utilization and buckling where the crease was in the
direction parallel to the seismic load. The interstorey drift
ratios for especially for vaults with perpendicular creases
did not get affected by seismic loading.
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For the dataset with randomized force densities, similar to
the uniform densities dataset, there was only a noticeable
increase in the Buckling load factor for taller vaults. It was
interesting to note that utilization was reduced uniformly
regardless of height (by 3.4% per 1g)- different than the
other two datasets. The interstorey drift ratio also increased
with increasing seismicity by 68.6% for low to medium and
42.9% for medium to high.



6.2.2 Variation in Force Densities

The effect of increasing force densities was analyzed in the uniform force densities dataset, and the creased dataset to
determine how performance was affected. There was no pattern to consider in the randomized dataset because of the
nature of its randomness.

a) uniform densities dataset
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If each sample has polyedges with all the same force densities ( uniform force densities), an increase in force densities
causes a reduction in height of the vault. This means that the buckling load factor is reduced, and utilization and
displacement increases.

b) creased dataset

DATASET 21

DATASET 22 - .

] ® DATASET 11 » Dwara
® oM »  DERET2

vt

Figure 89 shows that if the force density of the crease polyedge is increased from 20 to 50, there is a 5.5% increase in
buckling load factor increasing the stability but also a 29.2% increase in utilization and 11.3% increase in displacement.
However, it should be noted that because the rest of the force densities of the dataset were identical, a higher force
density in the crease produced shallower vaults.
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6.2.3 Variation in Number of Layers of Tiles

As mentioned in the earlier chapters, the dataset was composed of three different thickness for vaults (0.035m, 0.06m,
and 0.095m) representing single, double, and triple layers of tiles.

Buckling_Load_Factor Utilization Interstorey_Drift_Ratios
thickness = .035m 50 thickness = 0.035m thickness = .035m
i thicknass = 0.06m thickness = 0.06m 0.06h - thickness = 0,.06m
Top thickness = D.095m thickness = 0.095m thickness = 0.095m
40 - 0.05h
a0
0.04h
30 |
60 -
0.03h -
a0 - 20
0.02h
&
= 104 0.01h4
o 5 0.0h 1
Mesh Mumber Mesh Number Mesh Number

FIGURE 90: Correlation of Performance and variation in thickness. (Own Work)

Figure 90 shows that there is a prominent trend in how the stability, stiffness, and strength increase with thickness for
despite randomized force densities.

Buckling_Load_Factor Utilization Interstorey_Drift_Ratios
thickness = 0.035m 50 thickness = 0.035m thickness = 0.035m
100 thickness = 0.06m thickness = 0.06m 0.06h - thickness = 0.06m
thickness = 0.035m thickness = 0.095m thickness = 0.095m
40 4 0.05h 4
80
004h
30 -

60 4
0.03h

40 1
0.02h

2 0.01h

Height/m Heightim Heightim

FIGURE 91: Correlation of Performance, thickness, and height. (Own Work)

The correlation of height with performance is an important consideration for performance as mentioned earlier. Therefore,
it is important to ascertain how important thickness is for shallower or deeper vaults in terms of performance. As the
height increases, a divergent spread between different thicknesses is noted for vaults of the same height. This is shown
in Figure 91. Contrary to this, the spread of utilization and interstorey drift converges to a minimum with an increase in
height. In conclusion, the effect of thickness on performance in stiffness and strength reduces with the increase in height
whereas the effect of thickness on performance in stability increases with height. Thin vaults become stiffer with
increasing height comparable to thicker (double/triple layered) vaults but the this is for a 4-5m high vault which cannot
be used as a floor slab for a house. The same cannot be said for thin vaults in terms of buckling and strength.
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From the results of the seismic analysis, there is a notable
difference especially in the buckling load factor when
thickness (number of tile layers) is changed. The average
reduction/ increase in performance is noted in Table 13 for
change in thickness from single layers to 2 layers and 2
layers to 3 layers across the entire 10,000 samples. The
buckling load factor increases with a 213.4% increase from
a transition from a single to a double layer and a 59.1%
increase further to a triple layer vault. The strength also
increases with a 16.3% and 26.6% reduction in utilization
respectively for the same change in thickness. The
stiffness also increases with a 38.5% and 62.3% reduction
as well.

DATASET: randomized

Number of layers of tiles

double layer tiles to triple layer
tiles

213.4% increase 59.1% increase
16.3% reduction 26.6% reduction
38.5% reduction 62.3% reduction

single layer to double layer tiles
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6.2.4 Variation in Support a) uniform force densities dataset
Conditions

To determine appropriate support conditions for the vault,
simulations were carried out for fixed supports and pinned
supports separately.

Pinnned_vs_Fixed: Stability

Figures 92, 93, and 94 show the performance results for = &c::_ing-ﬁ?‘ed-;umﬂs
. — KA inned_su s
different datasets. Table 14 shows the percentage ne i
difference in performance for each dataset between the %
supporting conditions for the 20 samples. g
£ w0
o
§ 40
a
Percentage difference in support conditions 20
DATASET: DATASET: 0
uniform DATASET: randomized 0123456 7 8 910111213 14151617 18 19
h
force creases force e
densities densites Pinnned_vs_Fixed: Strength
= ytilization_fixed_supports
B —— utilization_pinned_supports
27.2% .
53
26.2% 6.0% 2.8% %
£l
90.7% 22.6% 9.1% 2
TABLE 14: Percentage difference in support condition. (Own Work) -
1]
012 3 456 7 8 91011121314 151617 1819
mesh
Pinnned_vs_Fixed: Stiffness
—— displacement_fixed_supports
10 —— displacement_pinned_supports

placement { mm
&

Max_Dis|

....................
012 3 456 7 89 1011121314 15161718 19

mesh

FIGURE 92: Pinned vs Fixed supports: uniform dataset. (Own Work)

For the uniform force densities dataset, there was better
performance against buckling, in utilization, and in stiffness
for fixed supports as indicated in the graph. As the uniform
force density reduces, the height of the vault increases and
the difference in performance in utilization and
displacement for fixed and pinned supports reduces. The
opposite happens in buckling; reduction in force densities
increases the buckling load factor.
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b) creased dataset

c) random force densities dataset

Pinnned_vs_Fixed: Stability
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Pinnned_vs_Fixed: Strength

354
30 | r\\ /(\\\
\ ]
c 25
g
£ 504
154
—_— —— utilization_fixed_supports
104 —— utilizatior_pinned_supports
012345678 01011121314151617 181920
mesh
Pinnned_vs_Fixed: Stiffness
wod — displacement_fixed_supports
—— displacement_pinned_supparts //\\
E 804
E
£ i
. /\ L ¥ |
£ 60 \ /
m
B s
0
=}
sI
= 40
20

012345678 81011121314151617181920
mesh
FIGURE 93: Pinned vs Fixed supports: creased dataset. (Own
Work)

For different creases, the performance with fixed supports
was better than that with pinned supports in terms of
buckling and displacement. However, in some vaults, there
was better performance in utilization for pinned supports.

~
TUDelft

Pinnned_vs_Fixed: Stability

—— buckling_fixed supports

56 |1 buckling_pinned_supports

e
(=1

Buckling_Loading_Factor
5 trl

0123465678 91611121314151617181920
mesh

Pinnned_vs_Fixed: Strength

—— utilization_fixed_supports
—— utilization_pinned_supports
201
154
4
g
g
104
5
012346567 & 01011121314151617181920
mesh
Pinnned_vs_Fixed: Stiffness
— displacement_fixed_supports
704 — displacement_pinned_supports
&l - \
E
= 50 il
c
g \
T 40
=
3
& 304 /
x!
)
204
104
04

0123465678 91011121314151617181920
mesh
FIGURE 94: Pinned vs Fixed supports: random dataset. (Own
Work)

For randomized force densities, there was no clear pattern
in utilization. There was better performance for fixed
supports overall in buckling. Some samples performed
better in displacement with fixed supports.

In conclusion, the fixed support was chosen for overall
better performance for the main dataset as it also
composed of meshes with uniform force densities.




6.2.5 Variation in Sample Datasets

To find the which dataset strategy would give comparably better performing solutions, different sample datasets were
compared made from different input strategies.

a) random force densities vs uniform force densities
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For the same height, the performance of the uniform force densities dataset under buckling, utilization, and displacement
was better than the randomized dataset. However, it should be noted that this was just 30 samples.

b) creased vaults (into thirds of length) vs uniform force densities
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The performance of the uniform force densities was also better in all three performance metrics than the creased dataset.
As the force densities of the creases became closer to the rest of the vault, the performance increased - so sharp creases
performed qualitatively worse than smoother creases. This can be seen in Figure 96.

¢) creased vaults (into thirds of length) vs small vaults (third of original length)
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The creased dataset had creases at every third along the longer dimension of the vault. This was compared to a smaller
vault measuring the third of the longer dimension. It was found that for the same height, the performance of the smaller
vault was significantly better than the creased vault. It should be noted that no supports were present at the creases.
There were only supports at the outer perimeter.




d) segmented vaults (third of original length) supported separately vs small vaults (third of original length)
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FIGURE 98: segmented vaults (third of original length) supported separately vs small
vaults (third of original length). (Own Work)

In theory, the smaller vault should behave the same as a vault segmented in the same dimension if each of the segments
had with fixed supports. The hypothesis was correct which meant that performance could be increased by segmentation.

e) segmented vaults (third of original length) supported separately vs uniform force densities
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FIGURE 99: segmented vaults (third of original length) supported separately vs
uniform force densities. (Own Work)

The uniform force densities dataset had performed better than all other previous datasets. However, it was noted that
the performance of the segmented vault was significantly better than that of uniform force densities.
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Conclusion

In conclusion, the best performing strategy was found to be segmentation of the vault into smaller vaults that are
supported along each of their own perimeter. Each segment behaves like a uniform force densities vault with uniform
stress distribution avoiding build-up of stress concentrations. It can be seen in Figure 100 how introduction of creases
introduces areas of stress concentrations subsequently increasing risk of failure especially forming high tensile zones
the bottom of the vault. These would induce cracking. This also happens in the randomized force densities where variation
in force densities causes unequal load distribution causing stress concentrations.

Even though they are the best performing strategy for seismic optimization of vaults, segmented meshes were not used
as they would require a different data-structure altogether as the support conditions were not taken into consideration
by the current data-structure of a nested list of force densities. Moreover, it was not clear whether a large enough dataset
for the VAE could be generated from just this strategy alone. The final dataset was made from randomized force densities
to remove user bias and have a large variation is generated data for novel samples. 50 meshes of uniform force densities
were also included in the dataset as this strategy gave the second best performances (for the limited sample sizes that
were tested).

o segmented vault (at thirds along length) o uniform force densities vault
seismic seismic

load ¢¢\L\L\L

N randomized force densities vault - creased vault (at thirds along length)
seismic seismic

load

FIGURE 100: Stresses on different types of vaults. (Own Work)
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6.2.6 Best Performing Samples in the Main Dataset

The main dataset composed of 9950 samples of randomly generated force densities and 50 samples of uniform force
densities. The 50 best performing samples were chosen from each performance metric and plotted.
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FIGURE 101: Top 50 best performing meshes in Buckling Load Factor from the main (randomized) dataset. (Own Work)
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FIGURE 102: Top 50 best performing meshes in Utilization from the main (randomized) dataset. (Own Work)
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FIGURE 103: Top 50 best performing meshes in Interstorey Drift Ratios from the main (randomized) dataset. (Own Work)
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From Figures 100, 101, and 102, we can conclude the following:

« Stability: For the best performing samples, there is no failure in buckling except for one sample that performs the
4th best under interstorey drift (mesh_3835).

« Strength: For all meshes, even the best performing ones in utilization, it can be seen that all have failure in utilization.
This can be attributed due to failure due to tensile stresses resulting in cracking.

- Stiffness: There is no failure in interstorey drifts for any mesh within 1 standard deviation from the mean.

It can be concluded that primarily failure will happen in Utilization first. All samples failed in Utilization.

6.2.7 Performance of Uniform Force Densities in the main Dataset

From the comparative results of samples from randomized force densities against those generated from uniform force
densities at the initial stage, it seemed likely that the highest of the best performing meshes would be those of uniform
force densities. It was found the number of uniform meshes that were also one the 50 best performing meshes out of
the main dataset of 10,000 samples in buckling, utilization, and interstorey drift ratios were 4,7, and 12 respectively.
However, it should be noted that another parameter that governed performance was the thickness of the vault which
was also randomly assigned to each sample. Therefore, a fair estimate would be to check whether a thick mesh with
uniform force densities failed to make it to the top 50 best meshes. For this reason Figure 104, has been plotted.

For each performance metric, we can see the force densities of the uniform meshes.

Meshes with maximum thickness (95mm) were found to be perform best in buckling - as confirmed by the analysis earlier
on correlating significant increase in buckling load factor with increased thickness. These belong to meshes with force
densities between 0.7 to 1.3 - lower thickness meshes in between with FD (force density) =0.9, 0.11,0.12 did not perform
as well. This is not the case with utilization where high thickness meshes like FD=1.0 (95mm), and FD=1.1 (60mm)
performed poorer in utilization than FD=1.2 with lower thickness (35mm). There was range of force densities that
performed well under buckling (FD = 0.7-1.3), as well as utilization (FD = 0.3-1.2). However, all meshes except one (with
35mm low thickness) performed well for interstorey drifts below FD = 1.3

UNIFORM MESHES PERFORMANCE
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] 07/ RESULTS: GENERATOR

See Section 4.1.3 for the overall workflow of the overall Generator which includes the VAE, Surrogate model and Gradient
Descent optimizer. All the modeling for this chapter was done in Python using the Tensorflow library.

7.1 VARIATIONAL AUTOENCODER

See Section 4.1.4 for the workflow of the VAE.

. . . i
7.1.1 Latent Distribution of the mesh. 762
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FIGURE 106: Training loss vs Validation Loss - creased dataset. FIGURE 107: Predictions vs Ground Truth - creased dataset. (Own
(Own Work) Work)
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Randomized Dataset

Validation loss vs Training loss

—— training_loss

Figure 107 and Figure 108 show in how each case the test
data is predicted. Each graph represents one mesh with
its 27 force densities. In each case, the predictions differ

69 valldation |oss . e
e significantly. For the creased dataset, the VAE seems to
*1 make good predictions based on the closeness of the red
ad and green lines. This may be due to the fact that is able to
p recognize the distribution of the dataset and generate good
239 . .
predictions based on that dataset. However, for the
1 randomized dataset, this is not the case, because even
il though samples from the ground truth contain highly
\ variable force densities, the predictions are mostly uniform
1 ——— along a mean. This may be because the creased dataset
epach was made from samples generated using a pattern as
discussed in the earlier sections so it is able to detect the
distribution.
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FIGURE 109: Latent space representation - creased dataset. (Own FIGURE 110: Latent space representation - randomized dataset.
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The number of neurons in each layer were increased (from 27 to 32, then 64) to note changes in the distribution of the
randomized dataset but it showed similar results. The hyperparameters were kept the same. The same trend follows
other changes in architecture (using a single dense layer each in the encoder and decoder) and change in hyperparameters
as well like varying batch sizes, learning rates, beta, number of latent dimensions.

27 27 27 27
el
4 5
— o o o o £ |5 = 5
O O | r =)
2 ) ) ) ) 2 1o T &
Z o o o o * 5 = 5
Z|l=> >G> - —> —|3 £ 3
mesh_105 mesh_237
10
4 A
]
# i 8 ' i
& 20 I i i A
o & 1 I
& B — = 6 i Ly e
5 15- i1 = prediction < ! I I = prediction
D, i i —=- ground_truth Bl 2 Py B g —=- ground_truth
£ 10 L & MMW
£ ’l’\\ S ’ é T3 i 1 1‘ " ‘i ‘
i 1 a ] 2 ! A 1
5 A £y : 1 iy s 5 A F L [T ; H Pk
= = s s e ST 7 A e op s S L
0 - - > L —-— 0] == a ——
012345678 091011121314151617181920212223242526 012345678 91011121314151617181920212223242526
Polyedge_index Polyedge_index
mesh_982 mesh_1117
) i
20 i 200 i
i
£ " 4 £ N
= E (] i =
& 15 ! 2 150 1k
& A Lk X ) — prediction G i — prediction
10 ) L 0 o === ground_truth 100 ! H === ground_truth
o 1 o
g &8 It ik g g i
-E 5 J) 1[ l'!.-“\ ! H " Il J’ [} -E 50 II .I
’ | R ) e ; ! oy
0 “'—_-'\-J} \‘: [, ._: “__ T || 0 L II == =
012345676 91011121314151617181920212223242526 01234567881011121314151617181920212223242526
Folyedge index Polyedge_index
mesh_1287 mesh_2053
6-
4 10 I
5 f‘i e F“.
w j 1 1oy w 8 I g
2 4 P jii 2 i
] L = e ] s = e
< 3 /—_-\-,—._/——AI'-’":'\_/TJ‘,\\_""—/ —— prediction g [ P4 I: — prediction
= 3 u A ] 1 i - =~ ground_truth = r‘ 1 - =~ ground_truth
g, A i % ! \ Y g 4 y |
5 .- I&! T ) i L F 5 /\}L—’T‘_‘_/_\/;‘/\—E\'-’-—A
& 1 “\ / “n - :l .\ i ‘\-.," ¥R T2 g} H \ ,'J\\ .r'*‘\ r" L N
ol ‘.__J‘ l\__/ \"--._l “___J g ‘\" \ ‘\____,-____'__--—*“\‘F ‘J '.,‘ VX
012345678 81011121314151617181920212223242526 01234567891011121314151617181920712223742526
Polyedge_index Polyedge_index
mesh_2940 mesh_2679
)
il an ?"l
i 301 i A i
z 5 i x 10 i4
= 1 = 304 H
2 20 bt h —— prediction g ! " —— prediction
gl A il i ——- ground_truth =20 4 roh f" ;“ ~—- ground_truth
g | A Y 0l : i A4
gl /) § i & i e
[ A i 10 g r X% o
EiY e ! LE e P s O iy R
T e | T = s = e —_
o4 ? .\ i e ¥ ? i T Rt P R —— 7 e . N ) T riiws
0 l 2 34567885310 1112131415 161718 1920212223242525 012345678 91011121314151617181920212223242526
Polyedge_index Polyedge_index
mesh_3053 mesh_2849
4 ]
o L i
@ ,". 15 ) |'l1‘
. J‘ a 1 ]
L2 h - i i
g 151 1y =~ prediction 104 1\ i | 1 — prediction
= e - == ground_truth b [ Iy J 4 - =~ ground_truth
o' 110 z gk = o ! T3 i =
4 i T 55l TN S O i
5 it flaiolk B T T U SV
- 1 [ PE LS i B i'
] SR N e o L Seed A J W ey
01234567 891011121314151617181920212223242526 012345678 91011121314151617181920212223242526
Polyedge_index Polyedge_index

FIGURE 113: VAE of architecture 27-64-64-4-64-64-27 (top) and it FIGURE 114: VAE of architecture 27-32-32-4-32-32-27 (top) and its
ground truth vs predictions (bottom). (Own Work) ground truth vs predictions (bottom). (Own Work)

~
TUDelft




7.1.2 Inclusion of the Thickness

The VAEs that had been shown until now only used force densities as the features for training. However, as thicknesses
were also varied they were to be included as well. They were included as features. The figure below represents how
this is represented in the randomized dataset.

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28|

07 93 01 93 01 06 01 06 11 73 63 04 26 01 35 34 36 03 03 12 21 01 22 17 08 01 01 |0.085
06 76 37 39 05 01 11 07 12 06 08 14 01 17 04 10 09 04 05 114 13 18 0.8 11.0 0.1 13.8 10.6 |0.060
55 34 02 02 268 7.6 0.2 3097 45 04 06 01 11 102 67 26 7.3 06 04 06 02 10 20 70 34 03 01 |0.085
01 01 06 14 25 09 02 19 10 197 05 11 05 15 04 03 1.2 72 01 65 03 09 04 38 105 1.0 15 |0.035
19 05 66 05 50 07 03 07 181 05 31 03 10 €69 11 02 03 02 08 106 0.1 23 19 02 11.0 102 0.9 |0.095
33 10 209 16 01 25 02 03 01 72 60 04 03 111 84 09 05 160 22 14 15 157 3.1 06 08 01 01 |0.035
14 11 08 03 01 02 46 31 18 11 04 02 10 44 40 07 10 10 06 08 0.2 168 02 03 20 01 04 |0.09
29 06 16 10 01 06 19 01 12 01 13 02 04 03 02 08 06 05 26 11 29 06 244 18 16 0.1 0.7 |0.060

28 64 28

4 S |

5 5 I =1 - BB

0— o o I

The data-structure of the first 8 meshes are shown in the Z|l—> 8 —> & —>|3

figure. Each mesh is represented a single row consisting
of 27 numbers equal to the number of force densities per
polyedge in that mesh. The 28th value represents the
thickness of the mesh. It can be either a single layer of tile
(0.035m), two layers (0.060m), or three layers (0.095m).

HYPERPARAMETERS: latent_dimension = 2, beta = 0.2,
epochs = 600, batch_size = 64, learning_rate = 1E-04

It was important to consider how the thickness would be

Visualizing Thickness across dimensions

normalized in relation to the rest of the dataset. Two R
approaches were carried out whilst keeping the architecture 0.06451 & . - ws Dimension 2: 1.5/ +1.5
T e Dimension 2: -1.0/ +1.0
and the hyperparameters constant: ’ Dimension 2: 0.5 40.5
I | I | & * Dimension 2: 0
* Normalization with the rest of the force densities %mm st V8
% e ) | (| ! 1
* Normalization independent of the force densities. RS E I T 1
. . . 0.06301 & b4 P
When thickness was normalized along with the rest of the °
features, it gave a wider distribution along the mean of the = ‘.’5 VY 2'0
thickness dataset (u=0.06349m). However, if it was TR T Y tinas T o

normalized independent of the force densities, the
distribution along the mean was narrower.

Visualizing Thickness across dimensions

The effect of the normalization technique considered is i ¢ o @ 8| "= oimension220/4+20
more apparent on the output of the surrogate model when S0 . ? g ’ i s G
thickness is input as a feature. This will be discussed in M I B T S S (R T il o e
the next section on the Surrogate Model. £ 0062102 : !

:Cfo_oso— oy
It is notable to mention that the inclusion of thickness as a £ ooss] e
label instead of a feature was also considered but not 00561 |
carried out. This would be the subject of a further study 0.0504—
into Conditional Variational Autoencoders.
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o sigmoid " RelU

7.1.3 Sampling across the Latent o(z) = () —miaz(t, 2
Dimensions

Some observations were noted in sampling while changing o Y

the architecture of the VAE. The randomness of the latent . )

space distribution is highly dependent upon the activation

functions used - ReLU and sigmoid. sl - ; 5 % = 5 ;)

Only ReLU

When only Rectified Linear Unit (ReLU) was used as the
activation function, mostly zero values were produced by 1)
the decoder as shown below. This was the case in

variations of other architectures and hyperparameters |28 32 28
using ReLU as the only activation function. Figure 117a X -
. - O e O o] D o |5
shows 50 samples that were predicted from unseen data. > A © E @ @ @ o
iy o o o [a sy a sy
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Only Sigmoid Sampling Across Latent Dimension 1

When sigmoid was used in combination with ReLU or with

. . Latent § Distributi
sigmoid alone, the decoder of the latent space produced < bl bl

non-zero values with significantly smaller peaks. These 41
are further highlighted using by visualizing the latent space 5l
and sampling new designs from across its dimensions. In
the simulations the latent dimensions were kept 2 which is 5 0=--0-=-0-=0-=--0-=-=-==-=-: - -=>
= !
‘G -0--0--0-=--0=—==--~~- -
28 28 £ :
kel o kel t
<) S o |- g
5 5 2l 5 5 |2 =
o »n [ %) (-
Z|l> —> Il el —> | 3
= E T 1 2 3 4
HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, Latent Dimension 1

epochs = 600, batch_size = 128, learning_rate = 1E-05
FIGURE 121: Latent space distribution across dimension 1 - only

ReLU. (Own Work
FIGURE 120: VAE architecture - only sigmoid (Own Work) “ (Own Work)

Dimension 1: Visualizing Force Densities across dimensions
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FIGURE 122: Visualizing Force densities of samples across Latent dimension 1 - only ReLU. (Own Work)




Sampling Across Latent Dimension 2

easier to visualize along the x (Latent Dimension 1) and y

T T

-1 0 1 4 constant with minimal variation like 9,10, and 19. Movement
Latant Dimenslony across Latent Dimension 2 produced a similar result in the
fact that there is little deviation from the standard pattern.

N N AN AN AN
I Latént Spake Distlibutiord axis (Latent Dimension 2).
E 1 1 I 1 L}
’ ! ! ! ! ! Figure 122 and Figure 123 show the newly sampled force
34 | omRe I & | meshes and their force densities across each latent
5 . & o X dimension. Although samples were taken from across a
2 . A " ) d large area of the latent space as visualized in Figure 124,
8 14 o) o) e} ¢ the samples that were produced were very similar. The
g = 1 . ! : : values of force densities range between 3.1 and 3.9 despite
= ® ? (:> ° the large variation in input data. The same peaks were
8 1. d ¢ seen in all samples, with deviation from the mean across
1 1 different samples. When we move across Latent Dimension
“#1 ’ .’: ' 2 in the positive axis, the value of the force densities
-3 i 2d reduce (marked in the figures as dark to light) except for
T ! -“. > some polyedges whose force densities remain nearly
-2

FIGURE 124: Latent space distribution across dimension 2 - only
RelLU

Dimension 2: Visualizing Force Densities across dimensions
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FIGURE 128: Visualizing Force densities of samples across Latent dimension 2 - only ReLU. (Own Work)
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However, the pattern changes differently as movement in
the positive direction sometimes causes an increase
(Polyedge 0, 2, 3, 6,and 7), while sometimes there is a
decrease (Polyedge 13-25) and in some cases there is
minimal change (6, 7, 18, and 26). It is important to note
that the same patterns were followed at different positions
in the latent space.

There is a clear linear trend in thickness as it reduces with
movement in the positive direction of the Latent space in
either Latent Dimension. There is minimal variation overall
with a change of just a millimeter (0.0631m-0.0641m).

Relu + Sigmoid

It could be concluded that using either ReLU or sigmoid
alone for the VAE would not be adequate. Using ReLU as
the only activation function produced many zero force
densities as that results in invalid meshes. It produced
higher peak values than using only the sigmoid function -
which smoothens the distribution along a mean. Using the
sigmoid function alone smoothens the distribution and it
results in producing very similar samples. For this reason,
a models were tested which used a combination of the two
to produce valid meshes that were not too similar.

28 28
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HYPERPARAMETERS: latent_dimension = 2, beta = 0.2,
epochs = 600, batch_size = 128, learning_rate = 1E-04

Similar to the model with sigmoid alone, the force densities
were sampled from a low range but there was a higher
degree of randomness in sampling each sampling each
polydege’s force density. Nonetheless, both dimensions
showed similar patterns in how force densities change
across the dimensions. There is an oscillating trend where
force densities increase unlike the linear trends earlier
shown by Relu alone. Across Dimension 1, there is a
general trend of values moving towards a maximum in the
centre (maroon) region while minimum values are seen
towards the peripheries of the latent space (blue). Another
trend can be seen where the periphery minimas remain
(blue) but central values (maroon, orange) are maximum
at the peripheries of the latent space but they decrease
towards the centre. This is seen especially evident in
comparison sets such as where Latent Dimension 2 = 0.0
and 0.5 where the maximas shift.

In Dimension 2, the same trend can be seen as dimension
one where the force densities of the samples towards the
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centre (dark) decrease but the minimas (light values) stay = considered. However, a better way of gauging the maximum
constant. thickness represented by the latent space of the VAE would
be by using the gradient descent for maximizing the
It is interesting to note is that the thickness does not follow  Buckling Load Factor. As buckling is highly dependent
the same trend as the force densities even though itis just  upon thickness, the maximum thickness was be sampled
another value in the same array in the training set. An  this way. This was found to be 0.0932m for this architecture
oscillating trend can be seen where thickness reduces - very close to the maximum thickness that was present in
towards the positive direction of Dimension 1. No clear the dataset - 0.0950m. It should also be noted that
pattern can be seen for Dimension 2 in this case. although discrete values were input representing thickness
of layers of tiles - the output from the latent space is of a
There is still a minimal range over which the thickness is  continuous nature. This is expected as the distribution of
distributed (0.0618m to 0.0655m) over the sampling space  the input data is mapped as a Gaussian distribution in the
latent space.
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FIGURE 129: Visualizing Force densities of samples across Latent dimension 1 (left) and dimension 2 (right) - sigmoid + ReLU. (Own Work)
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7.1.4 Conditioning the VAE

The next step was to extract samples from the VAE with specific to desired characteristics. The characteristic, in this
case was the height of the vault, because for a floor slab certain heights are preferred over others. This was achieved
through conditioning the features through supervised data (See Section 3.3.3 for details on derivation). Therefore, in
addition to 0 (features), c (labels) were also added to the encoder and decoder.

The heights labels, ¢, were rounded off to the nearest ) .
0.1m. This gave a total of 58, and 28 different labels DATASET: randomized
respectively for One-Hot encoding and Sinusoidal
Positional Encoding ranging from 0.5m to 26.7m. All of the
labels are shown in Table 16 against the frequency of
occurrence in the main dataset in terms of percentage.
This is also plotted below in the Figure 130. Different
strategies were tried to represent the label c.

Height of vaults in dataset

0.6

0.5

o
s
1

Probability Density
o
w

o
8]
I

0.1 4

0.0 A

0 5 10 15 20 25
Height/m
FIGURE 130: Probability Density of Heights of randomized Dataset.
(Own Work)

+ Label Encoding

example: 0.5m is represented as an integer like 3. See
Section 3.3.9 for detail on encoding strategies.

* One-Hot-Encoding

example: 0.5m is represented as an array of shape
(58,) where only the position of the one-hot-encoded
label is represented as 1 while the rest are 0.

[0.12
0.32
0.74
| 1.38
232
3.22
4.28
549 |
5,52
6.37
6.54
6.58
4.33
| 4.64
3.71
291
245
[ 211
| 1.73
149
[ 119 |
| 12
0.91
0.96

[1T000000000000000O0O00O0OO0O0O0O0O0OCOO0QOO

0000000000000000000000000000 0] TABLE 16: Height labels and their distribution

in the randomized dataset. (Own Work)

+ Sinusoidal Positional Encoding
example: 0.5m is represented as a tensor of a user-

defined dimension. Since the feature shape is (28,),
this is also the same shape of the encoding.
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Label: One-Hot-Encoded Vector vs Label Encoding vs Sinusoidal Positional Encoding

To determine the appropriate strategy, initial tests were carried out for checking the script whether the unique samples
were being extracted as desired by the condition. The MNIST dataset was used at this stage only for visualization
purposes. 400 samples were plotted across the latent dimensions in a 20x20 grid. The same architecture was used for
all encoding strategies (794-32-32-2-32-32-794)
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As shown in Figure 131, the distinguishable samples produced by One-Hot-Encoding and Sinusoidal Positional Encoding
were constrained to the desired label (e.g. when label = 9, only handwritten digits of 9 are produced) but distinguishable
samples that were produced from Label Encoding were across a range of labels (e.g. when label = 9, handwritten digits
of 6,7,8,9 are produced and when label = 3, handwritten digits of 3,4 are produced). Therefore, it was evaluated that
One-Hot-Encoding and Sinusoidal Positional Encoding produce better results so these were used for the Randomized
Force densities dataset.

Latent Space Distribution

4
One Hot Encoding ; Lade 8

2 - & W
Similar to the MNIST dataset, samples from the randomized A Y | 2y
force densities dataset were sampled from across the 1
latent space for different labels. For 5 different height s "l
labels (0.5m, 0.8m, 1.0m, 1.5m, 1.8m), 1000 samples each g !
were randomly taken from the area under the graph -2 sesy 5=
represented by the rectangle in Figure 133a. A surrogate = o L ar &%
model was used for predicting their heights and these were i s g =
plotted in the form of a probability density graph in Figure -4 - =2 a0 1 2z 3

Latent Dimension 1

133Db. This represents the probability of sampling heights

when a desired height is input as the label/ condition.
Height of sampled vaults - 1000 samples per label

E i — label=05m
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fw | = K 212 : E |5 12 I l —— label =1.5m
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i - > >B| zoy i i i
L 3 5 : : : :
S 8 ; | : !
HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, 2 6 i i i i
epochs = 600, batch_size = 64, learning_rate = 1E-04 £ .
41 I ol ‘ i
g TN \’x U\A, i i
0 E — N— !
0?4 0,6 D,IB 1. 0 1.2 1‘.4 1.‘6 1fa
Height/m
Height of the Conditioned Samples Height of vaults in dataset
From the results, we can see that conditioning with a height 0.6 1 /“,\‘
does not produce the exact same height but a range of /
heights on either side of the label. Even though a One-Hot- 0.51

Encoded Vector was used, the results are similar as
produced previously in the MNIST dataset when Label
Encoding was used.

o
s
L

Probability Density
]
w
|

Furthermore, we can see that from 0.5m to 1.0m, samples
are produced close to the conditioned value. However,
when the height is further increased, very few samples
close to that desired label are found. It is hypothesized that
because the distribution of the heights in the training set

T

0.1+

0.04

is concentrated towards the lower heights, perhaps that is e . ‘ .
why sampling from lower heights produces higher accuracy. Height/m

It must be noted, however, that the heights that are

sampled fairly better do not have the highest frequency of

occurrence in the main dataset. The distribution is skewed

to the left as shown in Figure 133c. It should be noted that

5m onwards, labels are not shown in the figure.




Height of sampled vaults - 100 samples per label
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It should also be noted that meshes with extreme values of heights can be sampled if the area of the rectangle in Figure
133b. However, this would also introduce samples out of the distribution. This is shown in Figure 134.

Patterns in Sampling Heights across the Latent Dimensions

9x9 samples were taken from the area under the graph represented by the rectangle in Figure 135. From the graph it
becomes apparent how the pattern of heights changes from the periphery towards the centre of the latent space.

In Figure 136, at the centre of Latent Dimension 2 (Latent Dimension 2 = 0), as we move across Dimension 1 from its
periphery (C) towards its centre (D), the height of the mesh decreases under all label conditions. This change in height
decreases as the we move from the centre towards the periphery of Latent Dimension 2 (from a CD trajectory to an AB
trajectory). This is marked in Figure 136c¢c.




On the contrary, at the centre of Latent Dimension 1 (Latent Dimension 1 = 0 ) moving across Latent Dimension 2 from
its periphery (B) to its centre (D) causes an increase in height. Similarly, this change in height increases as we move
from the centre towards the periphery of Latent Dimension 1 (from a BD trajectory to an AC trajectory). See Figure 136c.
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FIGURE 137: Visualizing Force densities of samples across Latent Dimension 1 of the CVAE for different labels. Label is One Hot Encoded
Vector (Own Work)

Patterns in Sampling Force Densities across the Latent Dimensions

For each label, a similar pattern follows when we scroll across Latent Dimension 1 which has been discussed in Section
6.2.4. What is notable is that for each label, the meshes seem to have a different force density pattern. Scrolling across
Latent Dimension 1 only produces fluctuations in that pattern but it largely remains the same as seen in earlier cases
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Sinusoidal Positional Encoding

Besides the One-Hot-Encoding, Sinusoidal Positional Encoding was also explored for encoding the labels. The results
were very different. The number of dimensions is not restricted to the number of different labels unlike One-Hot-encoded
vectors so Sinusoidal Encoded provided greater flexibility. The dimensions of the features were matched so the shape
was (n,28). Figure 139 and Figure 140 show the distribution of heights of 100 meshes each for each label (0.5m, 0.8m,
1.0m, 1,8m). The rectangles in Figure 139a and Figure 140a show where in the latent space the meshes were sampled

from.
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FIGURE 139: a) a small dense area of the CVAE latent space shown by the rectangle to be sampled from, b) and ¢) Percentage of
Occurrence of heights of samples for each label where samples are randomly taken from a dense latent space in a). (Own Work)
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FIGURE 140: a) a large sparse area of the CVAE latent space shown by the rectangle to be sampled from, b) and c) Percentage of
Occurrence of heights of samples for each label where samples are randomly taken from a large sparse latent space in a). (Own Work)

The most prominent difference can be seen that the Sinusoidal Positional Encoding constrained the sample heights to
a much larger degree as compared to the One-Hot-encoded vector. Therefore, there was much less variation in the
spread of sample heights generated. See Appendices for other results for the positional encoding.
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The meshes sampled from different height labels for the Sinusoidal Positional Encoding are shown below. For correction
in scaling, the meshes have been scaled by twice the total load of the original dataset.

a) label = 0.5m, actual height = 0.7m c) label = 1.0m, actual height = 0.9m
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Latent Space Distribution

L J

This is a visualization of the meshes sampled across dimensions for label of height = 1.8m, where the encoding is

Sinusoidal Positional Encoding.
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7.2 SURROGATE MODEL

See Section 4.1.5 for the workflow of the Surrogate Model.

For the label dataset, the SSS (Stiffness, Stability, Strength) performance metrics extracted. As the performance data
for each mesh involved two simulations - one for seismic loads in x direction and the other in y direction - a combination
strategy had to be implemented. SRSS was considered initially but would have yielded overestimations of Buckling Load
Factor and underestimations of capacity in strength and SLS. As an alternate, the worst performance value was chosen
(highest Utilization and Interstorey Drift Ratio, lowest Buckling Load Factor). The labels were then normalized with
respect to each metric separately.

example mesh: mesh_10

Buckling_Load_Factor Utilization Interstorey_Drift_Ratios

2500

it 2000

Frequency

400 1000

200 500

03 . a5 [i %] 0.4 a8 2] 10 0o 02 0.4 06 0.8 1.0
value value Valuz

FIGURE 141: Selection of metrics for seismic load in both directions based on choosing the metric more likely to cause failure. (Own Work)

The best 10 samples of each metric were extracted in addition to 50 random test samples. This was done to compare
with how the surrogate performed on samples not seen by during training.
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7.2.1 Seismic Performance: 1 combined Surrogate Model

At the very first stages it was considered combining the three metrics into a single performance score. However, this
approach would not give any indication of the type of failure whether it is in strength, stability, or stiffness. Moreover,
the single score would be an oversimplification based on a biased formulation. Initially, one surrogate model was created
which gave three metrics each as the output so the shape of the labels was (n,3). Although auxiliary inputs generally
improve the training of the model, it was found that some metrics were performing better than others.

Q=

A likely possibility for this could be discrepancy in the weight of the loss function as the Mean Square Error of each loss
is combined to give the overall loss.

n
1 2
loss; = - Z(yu - yl,true,i)
=1

n
1 2
loss, = 5 Z(}’z,i - yz,true,i)

i=1

n
1 2
loss; = n Z(J’3,i - y3,true,i)
i=1

where,
loss, = Loss of the Buckling Load Factor
loss, = Loss of the Utilization

loss, = Loss of the Interstorey Drift Ratio

The individual losses are then aggregated to form the overall loss

l0SStptqr = Wq.l0SS 1+ wy.loss; + wy.loss

Tensorflow assigns the weights (w,, w,, w;) equally. This means that a loss function of an individual metric may have a
larger effect than others.
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Thickness not Considered

As mentioned earlier in the VAE section, early simulations
did not include thickness so the shape of the feature
dataset was (n,27). Figures 144 shows how well the model
learnt to predict each metric for each test mesh sample
that was not seen during training. It should be noted that
the performance values on the y axis are normalized and
do not indicate actual performance values.

Validation loss vs Training loss
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HYPERPARAMETERS: epochs = 600, batch_size = 128,
learning_rate = 5E-06

This particular architecture performed well for Utilization
and Interstorey Drift Ratios. Most models were able to
predict Interstorey Drift Ratios while only some were able
to predict Utilization. No model was able to learn how to
predict Buckling Load Factor. This corresponds to the
earlier findings mentioned in the previous chapter on the
dependence of the Buckling Load Factor on the thickness
of the vault. Reducing the learning rate from 5E-06 to 1E-
07 required increasing the epochs from 600 to 40000 but
that yielded nearly the same results.

Reducing the number of layers by removing the 256 neuron
layer to make the neural network simpler did not help. The
figure below shows the results. The architecture of the NN
is shown in Figure 147.
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HYPERPARAMETERS: epochs = 4000, batch_size = 64,
learning_rate = 1E-07

FIGURE 147: SG architecture - 3 dense layers thickness not
considered. (Own Work)

Validation loss vs Training loss
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FIGURE 148: Validation vs Training loss - 3 dense layers -thickness
not considered. (Own Work)

Reducing the layers further proved to be counterproductive
and worsened the results.
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FIGURE 149: Ground Truth- Prediction 2 dense layers. (Own Work)
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HYPERPARAMETERS: epochs = 4000, batch_size = 64,
learning_rate = 1E-07

FIGURE 150: SG architecture - 2 dense layers thickness not
considered. (Own Work)

Validation loss vs Training loss
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FIGURE 151: Validation vs Training loss - 2 dense layers -thickness
not considered. (Own Work)

It can be seen that training has finished as convergence
has been found shown in Figure 151. However, decreasing
the layers further reduces the predictive capabilities by a
great degree as shown in Figure 149.

Thickness Included: Normalization of
Thickness along with the rest of the Force
Densities

As seen in all cases, the Buckling Load Factor was not able
to be predicted with appropriate accuracy without
considering the thickness. By including this, the shape of
the input changed from (n,27) to (n,28). Including the
thickness as a feature presented different options of
normalization.

(~ )
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HYPERPARAMETERS: epochs = 3000, batch_size = 128,
learning_rate = 1E-06

FIGURE 152: SG architecture - 3 dense layers thickness included.
(Own Work)
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Validation loss vs Training loss
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FIGURE 153: Validation vs Training loss (top) - Prediction vs
Ground Truth (bottom). 3 dense layers. Thickness normalization
along with force densities. (Own Work)

The same architecture and hyperparameters were
used to test the effect on normalization. Figure 153
shows the when normalization of thickness is done
along with the rest of the parameters. The effect on
prediction capabilities is very similar to when the same
architecture was used without the inclusion of
thickness in Figure 144 and 146 - the model fails to
predict the Buckling Load Factor with any success but
seems to give better results for Interstorey Drift Ratios
and Utilization. However, when thickness was

~
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FIGURE 154: Validation vs Training loss (top) - Prediction vs
Ground Truth (bottom). 3 dense layers. Thickness normalization
independently. (Own Work)

normalized independently, the model was able to learn how
to predict the Buckling Load Factor. This was because the
thicknesses have a maximum value of 0.095 whereas the
maximum value of the rest of the dataset (the force
densities) is 1038.8 whilst the minimum is 0.1. If the
thickness is normalized along with the rest of the other
force densities it’s weight reduces by the factor of 10934.
This makes all values of thickness smaller than the
minimum value of force densities. Therefore, there is little
to no effect on the loss function. In contrast when the




thickness is normalized separately, it assigns
proportionately much higher value to the value of thickness
which is why there is such a remarkable increase in
buckling accuracy. This can be assessed by comparing the
mean and standard deviation of the force densities against
that of the thickness as shown in Table 17. After
normalization, the mean of thickness values is 2.08e4%
greater that than that of the mean of force densities.

DATASET: randomized

Before normalization
1038.8000
0.0350 0.1000
0.0635 3.3485
10.1136

After independant normalization
1.0000

0.3684 9.63E-5
0.6683 0.0032
0.2583 0.0097

TABLE 17: Statistical quantities of Dataset features for SG. (Own
Work)

7.2.2 Seismic Performance: 3 Separate Surrogate Models

After testing different architectures, a different approach was tried where each of the performance metric divided into
the a single output tensor from a separate surrogate model. This method aimed at eliminating the effect of variable
weights of each of the three losses on the overall loss - which may allow the model to learn to predict some metrics and
not predict others. This would be done as because the overall loss would not need to aggregated.

FIGURE 155: Three surrogate model. inspired by the work of Sterrenberg (2023). (Own Work)
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As thickness was a parameter that had an effect on 1 n
performance metrics, all surrogate models took it into loss, = — Z(J’n‘ —y, tmei)z
account as a feature - so the shape of all feature datasets n ’ ’ ’
was (n, 28). As a single tensor was output, the shape of all
label datasets was (n,1).

i=1

n
1 2
loss,; = - Z(yz,i - yz,true,i)
i=1

1

n

2

loss; = E (y:;,i - :VB,true,i)
i=1

where,
loss, = Total Loss of the Buckling Load Factor
loss, = Total Loss of the Utilization

loss, = Tota Loss of the Interstorey Drift Ratio
Model 1: Buckling Load Factor

Validation loss vs Training loss

Several simulations were carried out. The best performing —
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FIGURE 156: best SG architecture for Buckling Load Factor.- epoch
thickness normalized independently. (Own Work) FIGURE 158: Validation vs Training loss. (Own Work)
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FIGURE 157: Prediction pattern on test data. (Own Work) FIGURE 159: Prediction vs Ground Truth. (Own Work)

~
TUDelft



We can see from the validation and training loss curves,
there is convergence. The relationship between the perfect
model and the actual predictive model is expressed in
Figure 157. We can qualitatively assess that the line of
perfect performance passes through the actual predictive
capability.

To make quantitative assessments of the performance,
Normalized Root Mean Squared Error (NRMSE was used.
While Root Mean Square Error (RMSE) is popular for
assessing performance accuracy in similar regression
tasks as a metric for comparing different predictive models,
the absolute value of the RMSE is highly relative to the
type of data and the dataset itself so it does not serve well
as an indicator of how ‘good’ the model is to predict the
ground truth.

n
1
RMSE = |~ Z(y,f—ﬁ,})z
i=1

KEY

@ actual score
— predicted score

dependant variable

independant variable

NRMSE is expressed as a fraction of the RMSE divided by
the range of target variable. While in some instances the
denominator is the mean instead, it is relevant to scenarios
where the accuracy is to be calculated relative to the
average value of the target variable. In our case, since we
required the accuracy relative to the spread of values, the
range was used. NMRSE is measured in percentages, with
percentages close to 0 having high accuracy.

1 " o~
IR

Ymax — Ymin

NRMSE =
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The best performing model for Buckling Load Factor was
found to have an NRMSE of 7.27% (RMSE = 3.01). It was
found that in all hyperparameter combinations, the model
with thickness normalized independently performed better
than the one where the it was normalized with the rest of
the force densities. The best performing model with
thickness normalized along with force densities had a
14.25% absolute increase in NRMSE than the best
performing one with thickness normalized independently.
The results of the different types of models are shown in
the summary on the next page.

As mentioned earlier, the 10 best performing meshes from
each performance metric (including Buckling Load Factor)
were excluded from the training dataset to monitor how the
model predicted their results. It can be seen that the
predicted scores lie below the values of the actual scores.
This is expected as the training set had not seen any
values that had performed as well so the mode could only
generate a lower performance. The predicted performances
are between 1 and 2 standard deviations above the mean
of the training dataset.
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This is a summary of the various models that had been made to calculate the Buckling Load Factor and their RMSE and NRMSE
for comparison. The list is in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for
Buckling Load Factor are also included in terms of NRMSE performance for Buckling Load Factor.

if BUCK is present, then model is separately for Buckling Load
Factor as described in Section 7.2.2, otherwise it is a model
which outputs Buckling Load Factor as one of 3 tensors as
describe in Section 7.2.1

thick-separate = thickness is normalized independently
thick-together = thickness is normalized along with force densities

if thickness is not present, then model does not consider thickness
Dense layer
Flattened layer
number of validation
epochs batch  SPlit  jearning
size rate
ARCHITECTURE HYPERPARAMETERS OTHER PARAMETERS
| || |

1 Bf,d-256-relu,7,d-1 28-re|u7Jd-1 -relu_] I BUCK,UJhick-separate |

NRMSE: 7.27 %

RMSE: 3.0113935776828527

2 f___d-256-relu___d-128-relu___d-3-relu__ epochs-4000___batch-128___val-0.2___Ir-1e-06

thick-separate
NRMSE: 13.4 %
RMSE: 2.4979500939334214

3 f___d-256-relu___d-128-relu___d-1-relu__ epochs-1000___batch-128___val-0.2___Ir-1e-06 BUCK___thick-separate

NRMSE: 14.06 %
RMSE: 2.6200409686651596

4 f___d-256-relu___d-128-relu___d-3-relu__ epochs-3000___batch-128___val-0.2___Ir-1e-06 thick-separate

NRMSE: 14.74 %
RMSE: 2.7471964734982413

5 f___d-256-relu___d-128-relu___d-3-relu______ epochs-1000___batch-128___val-0.2___Ir-1e-06___thick-norm_with-only-one-loss

NRMSE: 15.73 %
RMSE: 2.930791694228252

6 f___d-256-relu___d-128-relu___d-1-relu

epochs-1000___batch-128___val-0.2___Ir-5e-06 BUCK___thick-separate
NRMSE: 17.41 %

RMSE: 3.2445617003847795

~
TUDelft




7 f___d-256-relu___d-128-relu___d-1-relu epochs-1000___batch-256___val-0.2___Ir-5e-06 BUCK___thick-separate

NRMSE: 17.75 %
RMSE: 3.308732461290613

8 f___d-256-relu___d-128-relu___d-3-relu_______ epochs-1000___batch-128___val-0.2__ _Ir-1e-06___

thick-separate
NRMSE: 17.79 %
RMSE: 3.3156644940893405

9 f___d-256-relu___d-128-relu___d-1-relu epochs-3000___batch-128___val-0.2___Ir-5e-06 BUCK___thick-together

NRMSE: 21.51 %
RMSE: 8.914716884731384

10 f___d-256-relu___d-128-relu___d-1-relu epochs-1000___batch-128___val-0.2___Ir-5e-06 BUCK___thick-together

NRMSE: 34.19 %
RMSE: 6.371296332688003

11 f___d-256-relu___d-128-relu___d-3-relu_______ epochs-1000___batch-128___val-0.2___Ir-1e-06____

thick-together
NRMSE: 36.6 %
RMSE: 6.821276430654844

12 f___d-256-relu___d-128-relu___d-1-relu epochs-1000___batch-128___val-0.2___Ir-1e-06 BUCK___thick-together

NRMSE: 37.02 %
RMSE: 6.899975407392418

13 f___d-256-relu___d-128-relu___d-1-relu

epochs-1500___batch-256___val-0.2___Ir-1e-06 BUCK___thick-together
NRMSE: 37.02 %

RMSE: 6.899975407392418

14 f___d-256-relu___d-128-relu___d-3-relu________ epochs-3000___batch-256___val-0.2___Ir-5e-06___

thick-together
NRMSE: 37.02 %
RMSE: 6.900158783783083

15 f___d-256-relu___d-128-relu___d-3-relu epochs-4000___batch-128___val-0.2___Ir-1e-06 thick-together

NRMSE: 37.33 %
RMSE: 6.956856323841029

16 f___d-256-relu___d-128-relu___d-3-relu epochs-3000___batch-128___val-0.2___Ir-1e-06 thick-together

NRMSE: 37.7 %
RMSE: 7.026840288131792

17 f___d-256-relu___d-128-relu___d-3-relu________ epochs-3000___batch-256___val-0.2__ _Ir-5e-06___

thick-separate
NRMSE: 53.22 %
RMSE: 9.917899103284437
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Model 2: Utilization

Several simulations were also carried out for the surrogate
model predicting Utilization. The best one is highlighted
below
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HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06

Utilization
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The training losses and validation losses indicate
convergence. The model gives an NRMSE of 9.18% - a
value that is higher than the error received during buckling.
The model performs well on the best 10 samples of
Utilization. The values are distributed below 1 standard
deviation below the mean close to the best performing
sample of the training set.

Validation loss vs Training loss
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As there are 4 dense layers, simpler models were tested
with lesser number of dense layers. The NRMSE increased
1.41% when the 64 neuron layer was dropped. However,
there was significant reduction in performance for the 10
best performing samples. The values are distributed below
the mean within half a standard deviation. One sample was
detected (mesh 7772) with the best accuracy detecting the
normalized value of 0.0610 with a predicted value 0.0487.
This is close to the best score of the training data.
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Besides architectures with 4 layers and above, it is
interesting to note that models that predicted the best
performing meshes did not necessary give the best
predictions on the 50 unseen samples. This can be
visualized in the difference between the predicted best
scores (orange line) in Figure 167 and Figure 168. The
architecture for Figure 168 shows better prediction for the
50 best samples but worse predictions for the rest of the
samples.

Increase in the number of neurons in each layer showed
reduction in the NRMSE. This can be seen when moving
from 256-128-1 to 512-256-1. The absolute reduction is
1.05%. A further 1.18% absolute reduction is seen when
the number of layers are increased from 3 dense layers to
4 dense layers of 512-256-1 to 512-256-128-1. However,
this was only the case when normalization of thickness was
done independently. When thickness was normalized along
with force densities, there was minimal change - a 0.06%
absolute increase with increasing the number of layers.

In terms of activation functions, ReLU produced better
results than sigmoid for the same hyperparameters and
architecture. There is 1.08% absolute reduction for the
same architecture and hyperparameters.
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This is a summary of the various models that had been made to calculate Utilization and their RMSE and NRMSE for comparison.
The list is in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for Utilization are
also included in terms of NRMSE performance for Utilization.

if UTIL is present, then model is only for Utilization as described in
Section 7.2.2,, otherwise it is a model which outputs Utilization as
one of 3 tensors as described in Section 7.2.1

thick-separate = thickness is normalized independently

thick-together = thickness is normalized along with force densities

if thickness is not present, then model does not consider thickness

OTHER PARAMETERS

Dense layer
number of validation
Flattened layer epochs batch  SPlit  |earning
size rate
ARCHITECTURE HYPERPARAMETERS
| |

1 Bf,d-512-re|u,7,d-256-relu7 d-128-relul __d-64-relu___d-1-relu____ | Lpochs-SOOO‘LJbatch-2561,Jval-0.2J,Jlr-5e-06I

2

3

4

5

6

NRMSE: 9.18 %
RMSE: 1.234909477260432

I UTIL??Uhick-separate |

f___d-1024-relu___d-512-relu___d-256-relu___d-128-relu___d-64-relu___d-1-relu

NRMSE: 9.22 %
RMSE: 1.2398733225002645

f___d-512-relu___d-256-relu__

NRMSE: 10.59 %
RMSE: 1.4234490793780434

_d-128-relu___d-1-relu

_d-t-relu______ __epochs-3000___batch-256___val-0.2___Ir-5e-06

f___d-512-relu___d-256-relu__

NRMSE: 11.77 %
RMSE: 1.5830211050191585

f___d-256-relu___d-128-relu__

NRMSE: 12.82 %
RMSE: 1.7233268529980592

f___d-256-relu___d-128-relu__

NRMSE: 13.9 %
RMSE: 1.868948555884073

~
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_d-t-relu________ epochs-3000___batch-256___val-0.2___Ir-5e-06_____
_d-t-relu______ epochs-3000___batch-256___val-0.2___Ir-5e-06____
_d-1-sigmoid____ epochs-3000___batch-256___val-0.2___Ir-5e-06

epochs-3000___batch-256___val-0.2___Ir-5e-06

UTIL___thick-separate

UTIL___thick-separate

UTIL___thick-separate

UTIL___thick-separate

UTIL___thick-separate




11

f___d-512-relu___d-256-relu___d-128-relu___d-64-relu___d-1-relu

NRMSE: 14.31 %
RMSE: 1.9239409368081997

f___d-256-relu___d-128-relu___d-1-relu

NRMSE: 14.37 %
RMSE: 1.9325439599071121

f___d-512-relu___d-256-relu___d-128-relu___d-1-relu

NRMSE: 14.43 %
RMSE: 1.9403529014796959

f___d-256-relu___d-128-relu___d-3-relu

NRMSE: 15.06 %
RMSE: 1.6570501291747386

f___d-256-relu___d-128-relu___d-1-relu

NRMSE: 15.92 %
RMSE: 1.7511587561866122

f___d-256-relu___d-128-sigmoid___d-1-sigmoid

NRMSE: 17.02 %
RMSE: 2.288209422814802

f___d-256-relu___d-128-relu___d-3-relu

NRMSE: 19.26 %
RMSE: 2.119297175430908

f___d-256-relu___d-1-relu

NRMSE: 19.37 %
RMSE: 2.604651135792025

epochs-1000___batch-256___val-0.2___Ir-5e-06

f___d-256-relu___d-128-relu___d-3-relu

NRMSE: 20.92 %
RMSE: 2.301628917187026

f___d-256-relu___d-128-relu___d-3-relu

NRMSE: 23.83 %
RMSE: 2.622125577645853

f___d-256-relu___d-128-relu___d-3-relu

NRMSE: 24.81 %
RMSE: 2.7295861049831456

f___d-256-relu___d-128-relu___d-1-relu

NRMSE: 25.79 %
RMSE: 2.8372870707384292

~
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epochs-3000___batch-256___val-0.2___Ir-5e-06

epochs-1000___batch-128___val-0.2___Ir-5e-06

epochs-3000___batch-128___val-0.2___Ir-1e-06

epochs-3000___batch-256___val-0.2___Ir-5e-06

epochs-3000___batch-128___val-0.2___Ir-1e-06

epochs-1000___batch-128___val-0.2___Ir-5e-06

UTIL___thick-separate

UTIL___thick-together

UTIL___thick-together

thick-separate

UTIL___thick-separate

UTIL___thick-separate

thick-separate

UTIL___thick-separate

thick-separate

thick-together

thick-together

UTIL___thick-together




19 f___d-256-relu___d-128-relu___d-3-relu
NRMSE: 26.62 %

epochs-4000___batch-128___val-0.2___Ir-1e-06 thick-together

RMSE: 2.9293060658312426

20 f___d-256-relu___d-128-relu___d-3-relu epochs-1000___batch-128___val-0.2___Ir-1e-06

NRMSE: 27.6 %

thick-separate

RMSE: 3.037264517987134

21 f___d-256-relu___d-128-relu___d-1-relu

NRMSE: 28.4 %

epochs-1000___batch-128___val-0.2___Ir-1e-06___UTIL___thick-norm

RMSE: 3.1244642731656778

22 f___d-256-relu___d-128-relu___d-3-relu
NRMSE: 28.54 %

epochs-1000___batch-128___val-0.2___Ir-1e-06 thick-together

RMSE: 3.1400811607284513

23 f___d-256-relu___d-128-relu___d-3-relu

epochs-1000___batch-128___val-0.2___Ir-1e-06___thick-norm_with-only-one-loss

NRMSE: 30.36 %
RMSE: 3.3402097374194626

24 f___d-256-relu___d-128-relu___d-1-relu
NRMSE: 30.61 %

epochs-1000___batch-128___val-0.2___Ir-1e-06___UTIL

RMSE: 3.367366692057121

~
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Model 3: Interstorey Drift Ratios
Several simulations were also carried out for the surrogate

model predicting Interstorey Drift Ratios. The best result
is shown below.

Validation loss vs Training loss

— training_loss
0.006 - —— walidation_loss
O\ 7\ 0.005 1
28 1
— 0.004 -
= 3 3 il = j
) [0) (0] 0] o 8
o o o C |+~ 0.003 -
Z|l—> —> 8
0.002 4
\—/ \—/
0.001 -
HYPERPARAMETERS: epochs = 3000, batch_size = 256, —
learning_rate = 5E-06 0.0004_ . , . . ; .
0 500 1000 1500 2000 2500 3000
epoch
FIGURE 169: best SG architecture for Interstorey Drift Ratios - FIGURE 171: Validation vs Training loss. (Own Work)
thickness normalized independently. (Own Work)
Interstorey_Drift_Ratios
0.16 4 === Calculated Scores .
| —— Predicted Scores :
” 1 0.14 ;
g s
5 g 0121
5 &
X ;_ﬂ 0.10 -
2 5
a -/ 0.08 -
2 o
£ 2
§ E 0.06 4
S £
g 0.04 -
.
0.02 -
T ; ; ; ; T ; T 0.00 4
002 004 006 008 010 012 014 0.16
Calculated Interstarey_Drift_Ratios
FIGURE 170: Prediction pattern on test data. (Own Work) FIGURE 172: Prediction vs Ground Truth. (Own Work)

It can be seen Figure X how the predicted values lie close
to the perfect prediction line besides some outliers. Atotal
NRMSE was found to be 9.81% in this case. By increasing
the number of neurons from 256-128-1 to 512-256-1, the
NRMSE reduced by an absolute percentage of 2.1%.
Predicting the 10 best samples in Interstorey Drift not seen
during training was challenging as the 10 best samples
including the best sample during training had actual values
close to zero. It was unexpected to see 60% of the
predicted values fall below the best performing sample

~
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Interstorey_Drift_Ratios

0064 | i
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a" 0.03 A -=-- Best Score of Training Data
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I=

0.01

0.00

Sample

during training even though the model had no values below
that. 1 out of those 6 values was non zero. Therefore, it
would not be fair to assess the model as performing poorly
on the best values as the best values themselves were
close to zero.

As was the case with Buckling Load Factor and Utilization,
the best performing models were those with thickness
normalized independent of the force densities. Using just
RelLU as the activation functions for all dense layers had
a better effect on the performance as using sigmoid on the
model increased the absolute NRMSE by 1.57%.

It was also interesting to note that increasing the number
of dense layers from 3 to 4 reduced performance by an
absolute percentage of 1.19%. Moreover, reducing the
number of layers from 3 to 2 (512-256-1 to 512-1) caused
a 1.76% absolute reduction. It was notable that the 512-1
model performed better than 88.46% of all models including
the 256-128-1. This shows that increasing the number of
neurons had a much stronger effect than increasing the
number of layers on the outcome. However, there is a
threshold beyond which performance starts to flatten out
and then decrease so the increase in the size of the NN is
not worth the computational cost. For instance the two
layered NN 512-1 performed better than 1024-1.
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This is a summary of the various models that had been made to calculate Interstorey Drift Ratios and their RMSE and NRMSE for
comparison. The listis in the order of decreasing performance. Models which used 3 tensor outputs instead of 1 specifically for
Interstorey Drift Ratios are also included in terms of NRMSE performance for Interstorey Drift Ratios.

if DRIFT is present, then model is only for Interstorey Drift Ratios,
as described in Section 7.2.1 otherwise it is a model which outputs
Interstorey Drift Ratios as one of 3 tensors as described in Section
7.2.2

thick-separate = thickness is normalized independently
thick-together = thickness is normalized along with force densities

if thickness is not present, then model does not consider thickness
Dense layer
Flattened layer
number of validation
epochs batch  SPlit  |earning
size rate
ARCHITECTURE HYPERPARAMETERS OTHER PARAMETERS
| || |

1 Bffd-51 2-re|u,7,d-256-relu7Jd-1 -relu_l Iepochs-SOOOLfJ,batch-1 28L71va|-0.2171lr-5e-06| ,,,,, I,DRIFTlfl‘thick-separate|

NRMSE: 9.81 %

RMSE: 0.0009780667564782254

2 f___d-512-relu___d-256-relu___d-128-relu___d-1-relu __epochs-3000___batch-128___val-0.2___Ir-5e-06

DRIFT___thick-separate
NRMSE: 11.0 %
RMSE: 0.0010974877328150067

3 f___d-512-relu___d-256-relu___d-1-sigmoid DRIFT___thick-separate

NRMSE: 11.38 %
RMSE: 0.0011351569237790884

4 f___d-512-relu___d-1-relu DRIFT___thick-separate

NRMSE: 11.57 %
RMSE: 0.0011536630079410665

5 f___d-1024-relu___d-1-relu epochs-3000___batch-128___val-0.2___Ir-5e-06

DRIFT___thick-separate
NRMSE: 11.89 %
RMSE: 0.0011859609732852864

6 f___d-256-relu___d-128-relu___d-1-relu DRIFT___thick-separate

NRMSE: 11.93 %
RMSE: 0.0011894115681266308
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7 f___d-256-relu___d-128-relu___d-3-relu epochs-4000___batch-128___val-0.2___Ir-1e-06 thick-together

NRMSE: 12.03 %
RMSE: 0.0009996250650747952

8 f___d-256-relu___d-128-relu___d-1-relu_______ epochs-6000___batch-128___val-0.2__ _Ir-1e-06___

DRIFT___thick-separate
NRMSE: 12.47 %
RMSE: 0.0012435723003128211

9 f___d-256-relu___d-128-relu___d-1-relu epochs-1000___batch-128___val-0.2___Ir-5e-06 DRIFT___thick-together

NRMSE: 12.9 %
RMSE: 0.001071398708132039

10 f___d-256-relu___d-128-relu___d-1-relu epochs-3000___batch-128___val-0.2___Ir-1e-06 DRIFT___thick-separate

NRMSE: 13.26 %
RMSE: 0.001322514377068918

11 f__ d-256-relu___d-128-relu___d-1-relu____ epochs-1000___batch-128___val-0.2___Ir-5e-06___

DRIFT___thick-separate
NRMSE: 13.62 %
RMSE: 0.001131338065472033

12 f___d-256-relu___d-128-relu___d-1-relu epochs-1000___batch-256___val-0.2___Ir-5e-06 DRIFT___thick-separate

NRMSE: 13.74 %
RMSE: 0.0011412395446222328

13 f___d-256-relu___d-128-relu___d-3-relu

epochs-3000___batch-128___val-0.2___Ir-1e-06 thick-separate
NRMSE: 14.26 %

RMSE: 0.0011848487975821562

14 f___d-512-relu___d-256-relu___d-3-relu_____ epochs-3000___batch-256___val-0.2___Ir-5e-06___

thick-together
NRMSE: 14.89 %
RMSE: 0.0014854920337636825

15 f___d-512-relu___d-256-relu___d-3-relu epochs-3000___batch-512___val-0.2___Ir-1e-06 thick-together

NRMSE: 15.43 %
RMSE: 0.0015391005433508082

16 f___d-256-relu___d-128-relu___d-1-relu epochs-3000___batch-128___val-0.2___Ir-1e-06 DRIFT___thick-together

NRMSE: 15.7 %
RMSE: 0.0015660532326641982

17 f___d-256-relu___d-128-relu___d-3-relu_____ epochs-3000___batch-256___val-0.2__ _Ir-5e-06___

thick-together
NRMSE: 15.72 %
RMSE: 0.001567525906330497

18 d-256-relu___d-128-relu___d-3-relu thick-together

NRMSE: 15.89 %
RMSE: 0.0015846452463676509
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19§ d-256-relu___d-128-relu___d-1-relu epochs-3000___batch-256___val-0.2___Ir-5e-06 DRIFT___thick-together

NRMSE: 16.19 %
RMSE: 0.001614825566051438

20§ _ d-256-relu___d-128-relu___d-3-relu

epochs-3000___batch-128___val-0.2___Ir-1e-06 thick-together
NRMSE: 16.31 %

RMSE: 0.0016267079440805666

21 f___d-256-relu___d-128-relu___d-1-relu epochs-3000___batch-128___val-0.2___Ir-5e-06 DRIFT___thick-together

NRMSE: 16.35 %
RMSE: 0.0016307541455895754

22 f  d-512-relu___d-256-relu___d-128-relu___d-3-relu thick-together

NRMSE: 17.28 %
RMSE: 0.001723631356911795

23§ __d-256-relu___d-128-relu___d-3-relu epochs-1000___batch-128___val-0.2___Ir-1e-06

thick-together
NRMSE: 20.06 %
RMSE: 0.001666860115000885

24 f___d-256-relu___d-128-relu___d-3-relu epochs-1000___batch-128___val-0.2___Ir-1e-06 thick-separate

NRMSE: 21.13 %
RMSE: 0.0017555871659895369

25 f___d-256-relu___d-128-relu___d-3-relu epochs-3000___batch-256___val-0.2___Ir-5e-06 thick-separate

NRMSE: 53.77 %
RMSE: 0.004467771333400297

26 f__ d-256-relu___d-128-relu___d-3-relu epochs-4000___batch-128___val-0.2___Ir-1e-06

thick-separate
NRMSE: 53.77 %
RMSE: 0.004467771333400297
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7.2.3 Vault Properties: Separate Surrogate Models

Height

As mentioned earlier, in order to retrieve samples of a
particular height, the VAE was conditioned with heights.
However, since the output of the VAE was feature data
comprising of force densities and thicknesses, another
prediction model was needed to validate whether the new
samples were indeed of the desired height as specified in
the condition. For this reason, a surrogate model was
created to predict the height. This would also be used for
regulating the height during gradient descent in case a
particular height of the final optimized vault was required.

)
28 1

=
L 2
—
= =
5 2
T o

\—/

HYPERPARAMETERS: epochs = 6000, batch_size = 128,
learning_rate = 5E-06

Height
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Caleulated Height
FIGURE 174: Best Height surrogate model a) architecture, b)

Prediction vs Ground Truth, c) Prediction pattern on test data. (Own
Work)

Mass

The goal of optimization was to improve performance
(Buckling Load Factor / Utilization / Interstorey Drift Ratio)
while having the lowest amount of material possible. The
condition for minimizing material was included by
minimizing mass. In order to predict the mass of each
sample, a surrogate model was created. If the condition of
mass was not included, the samples would result in
minimizing the force densities creating very high and thus,
very massive vaults. Therefore, a condition minimizing
mass would provide regulation.

8] 12 1)
- L 5
) (2} o
o =z -
Z|l— = 8
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HYPERPARAMETERS: epochs = 3000, batch_size = 256,
learning_rate = 5E-06
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FIGURE 175: Best Height surrogate model a) architecture, b)
Prediction vs Ground Truth, c) Prediction pattern on test data. (Own

Work)
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7.2.4 Conclusion

To summarize, the strategy to divide the 1 surrogate model
with 3 tensor outputs into 3 separate surrogate models
worked for all three performance metrics. Though larger
neural networks with 5 and 6 dense layers performed
slightly better, one with 4 dense layers was chosen
(performing the 3rd highest in all Utilization models).

The best separate models gave these NRMSE (Figure
177):

* Buckling Load Factor: 7.27%
+ Utilization: 9.18%
* Interstorey Drift Ratio: 9.81%

In contrast, the best model which had 3 tensor outputs
gave the following result. It is shown in Figure 176:

* Buckling Load Factor: 14.74%
+ Utilization: 20.92%
* Interstorey Drift Ratio: 14.26%

By having separate models, the performance metrics
decreased by 50.7%, 56.1%, and 31.2% respectively.
Thus, there is a significant increase in performance for all
three metrics.

Moreover, normalization of thickness independent to the
force densities and use of ReLU as the activation function
also produced the best results in all three cases. The
following summarizes the architectures an hyperparameters
of the chosen surrogate models to be used in the
optimization. Although each metric has a different
architecture for its own optimal performance, similarities
arose during hyperparameter tuning. Though other
learning rates were tested such as 1E-05, 1E-06 and 1E-
07, the most optimal one found was 5E-06 in all three
cases with a batch size of 256.

Single Surrogate Model

() PR
28 28 56 28 3 3
z ) ) o |E
w w w
5 = o Kl 2 B © R
o = Z I Z e ZzZ =
zZ < LU L L )
= | (=) o (@] (@)
T
\—/ N

HYPERPARAMETERS: epochs = 3000, batch_size = 128,
learning_rate = 1E-06

FIGURE 176: Best single surrogate model architecture - thickness
normalized independently. (Own Work)

a) Surrogate Model 1: Buckling Load Factor
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HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06

b) Surrogate Model 2: Utilization
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HYPERPARAMETERS: epochs = 3000, batch_size = 256,
learning_rate = 5E-06

c) Surrogate Model 3: Interstorey Drift Ratios
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HYPERPARAMETERS: epochs = 3000, batch_size = 128,
learning_rate = 5E-06

FIGURE 177: Best separate surrogate model architectures -
thickness normalized independently. top (a) Buckling Load Factor,
(b) Utilization, (c) Interstorey Drift Ratios (Own Work)
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Besides predicting the performance metrics, two additional a) Surrogate Model 4: Height
surrogate models were created to predict features of

samples - the mass and the height. This was done in order N o
to minimize material in the optimization process and 28 28 1
selecting specific new samples having specific user- — Z '5
defined characteristics such as a desired height. ) = x
o
. Z|l—> |<TZ -
The best models gave the following NRMSE: = T O
*Height: 6.95% \—/ \—/
*Mass: 3.58% HYPERPARAMETERS: epochs = 10000, batch_size = 128,

learning_rate = 5E-06

b) Surrogate Model 5: Mass

N\ N\
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- 2 - |5
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o o r |F
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\_/ \_/

HYPERPARAMETERS: epochs = 3000, batch_size = 256,
learning_rate = 5E-06

FIGURE 178: Best feature predicting surrogate model architectures
- thickness normalized independently. top (a) Height, (b) Mass.
(Own Work)
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7.3 GRADIENT DESCENT OPTIMIZATION

7.3.1 Single Objective Optimizations

As each surrogate model predicted a separate performance
metric, that particular metric could be optimized
accordingly. This was useful for cases where it is known
what the likely failure mode is. This was also true for our
case where we know that failure is likely to occur in
Utilization of the vault. Nonetheless, gradient descent on
other performance metrics was explored to develop
conclusions for future explorations for different datasets
and geometries. It should be noted the Equations | -
Equations VI in Section 4.1.6 were not considered for this.

VAE

Tests were initially conducted on the VAE. A sample from
the test data was selected. Different learning rates were
tested and the percentage change in performance was
noted.

DATASET: randomized

12.6452
10.6016
2.83E-03h

0.060m

The learning rates were 0.01, 0.1, 1,5, 10, 15, 20 and 30.
1000 iterations were run for each simulation. In each case,
the tables are organized according to the best performing
optimizations at the top. The best learning rates for each
metric has been highlighted in Figure 180.

For Buckling Load Factor, a learning rate of 20 was found
to give the maximum optimization increasing the Buckling
Load Factor from 12.6542 to 45.0239 by a percentage of
265.05%. The Gradient Descent algorithm optimized the
thickness from 0.060m to 0.094m. This is expected as
Where thickness could not be increased, such as in
learning rate 1,5,10, and 30, the Buckling Load Factor
instead reduced.

For Utilization, the best learning rate found was 15 which
reduced the Utilization from 10.6016 to 2.0123 - a change
of 81.02%. The thickness increased from 0.060m to
0.0688.

Even though the predicted performances of the surrogate
models indicate better performances, the predicted force
densities for Utilization and Buckling are too small to
generate valid meshes. Though it may seem that the

Optimization Percentage for Different Learning Rates
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Interstorey Drift_Ratios
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Predicted_Utilization_without_normalization

20 256.05% 0.094 45.0239
15 255.97% 0.094 45.0139
0.1 159.13% 0.0702 32.768
0.01 72.99% 0.0646 21.8748
1 -49.14% 0.0637 6.4318
5 -49.19% 0.0637 6.4251
10 -49.27% 0.0637 6.4149
30 -49.61% 0.0637 6.3714
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optimization has gone wrong, it is evaluated that the reason for such numbers is that lower force densities show increased
performance in all three metrics. The non-highlighted section of Figure 184 shows the pattern that that is representative
of the data in the training set. It can be seen a decrease in force density is synonymous with an increase in performance.
However, as the force densities fall below a certain threshold, performance decreases with a further decrease in the
mean force density. This relationship (highlighted in orange in Figure 184) is not represented in the randomly generated
dataset adequately enough for the pattern to be recognized by the surrogate models. This is quantitatively highlighted
ahead.
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A mean force density less than 0.8 is required for this
performance inversion in Buckling Load Factor but only
0.15% of samples in the dataset represent this. A mean
force density less than 0.6 is required for a performance
inversion in Utilization but only 0.05% of the samples
represent this. A mean force density of 0.3 is required for
a performance inversion in Interstorey Drift Ratios but
0.00% of the samples represent this.

It is probable that the reason why the force densities for
Interstorey Drift Ratios is near real values and not near
zero is that Interstorey Drift Ratios reduce significantly for
lower uniform force densities, as seen earlier. Before such
low values reached for force densities, the minima is
already reached. This also explains the lower learning rate
(0.1) as compared to that for the other two metrics. Higher
learning jump over the minima and instead of reducing the
gradient, it increases. This can be seen by the fluctuating
Gradient RMS in Figure 185 for the learning rate of 30 that
instead causes an increase in the Interstorey Drift Ratio
by 49.89%.
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Conditional VAE

After the VAE, tests were conducted on a Conditional VAE
where the initial sample was not taken from the dataset
Instead a sample of desired height was extracted from the
latent space and then optimized.

When one-hot-encoding was used, similar results resulted
for all optimizations in Buckling Load Factor, Interstorey
Drift Ratios, and Utilization. Invalid meshes formed due to
force densities falling near zero.

However, when Sinusoidal positional encoding was used,
the latent space was better constrained to the desired label
(height). Hence, this problem did not occur.
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The Buckling Load Factor was optimized by 293% as it changed from 2.56 to 10.07. Interstorey Drift Ratios reduced by
95.8% as it changed from 0.009 to 0.0003. For Utilization, a higher number of iterations such as 10 caused force densities
to drop near zero so 100 iterations were kept. This caused a reduction of 82.2% changing from 15.41 to 2.64
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7.3.2 Multi-objective Optimization Mesh after optimization of Utilization and material.
Predicted Height = 1.8m, Actual Height = 1.4m

All optimizations using Sinusoidal Positional Encoding
caused an increase in height and thus, an increase in
mass. Multi-objective optimizations were explored where
the objective was of improving seismic performance
metrics (SSS) in addition of decreasing material usage by
reduction of mass. Experiments introducing the mass
objective directly were unsuccessful but when the height
objective was minimized, this worked (as mass reduces as
a result of reduction of height). See Equations | - Equations
VI in Section 4.1.6 which were considered for this.

Multi-objective optimizations were not successful at
optimizing conflicting objectives such as reducing material
(by reducing height) and reducing Utilization. Manipulating
the weights of objectives only allowed optimization of one Learning rate = 0.5. iterations =1000
objective and not the other.
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The weights were 1.0 for Utilization and 0.5 for Height. See
Section 4.1.6 for the equation. Utilization reduced by
19.69% from 6.79 to 5.45 but Height (and thus, material)
increased.
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to 0.000222. The gradient was stabilized by the objective
reducing height so near zero force densities did not form.
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] O 8/ CONCLUSIONS AND REFLECTION

8.1 CONCLUSIONS

The main research question and sub-questions that the
research paper aimed to answer will be answered below.

8.1.1 Main Research Question

Q) Can an Al based framework generate new
Catalan vaults for optimized seismic
performance for use as a floor slab?

Yes. The results have shown that the preliminary design
of a vault may be optimized using the presented pipeline
where optimization happens with respect to the latent
space of a Conditional Variational Autoencoder using the
predictive capabilities of surrogate models.

The framework uses a Conditional VAE trained on features
(force densities and thickness) and labels (heights of each
vault) to generate new vaults. Separate surrogate models
are used to predict seismic performance metrics (Buckling
Load Factor, Utilization, Interstorey Drift Ratios) as well as
other metrics (height, mass) that are used in a multi-
objective optimization that minimizes the aggregated
gradient with respect to the latent space for gradient
descent optimization.

Without including a threshold to minimize mass and limit
the height for use as a floor slab, single-objective
optimizations for Buckling, and Utilization generated invalid
meshes with force densities close to zero. Interstorey Drift
Ratio optimizations generated valid meshes only because
the minima was reached much quicker.

However, once the thresholds were added to the gradient
descent algorithm, optimized valid meshes were able to
be generated through multi-objective optimization. Each
objective has a weight which can be changed according to
the requirement of the user. In this project, as failure was
happening in Utilization, the weights for Buckling Load
Factor and Interstorey Drift Ratios were kept zero while
Utilization, Height, and Mass were non-zero. This way,
separate metrics can be considered. Once the gradient
falls below the threshold where failure in either metrics in
ULS or SLS no longer happens, the gradient descent is
stopped for that metric.

~
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8.1.2 Subquestions

Q) Can the vaults be optimized for multiple
performance metrics?

It is important to consider the nature of the optimization
problem. Although non-conflicting objectives were able to
be optimized together, it should be noted that conflicting
objectives were not able to be optimized simultaneously
during the multi-objective optimization such as reducing
both, material usage and Utilization. A decrease in one
caused an increase in the other. The reason for this may
be that the latent space is restricted in generating a wide
enough variety of samples that may satisfy the conflicting
objectives; this is because even though the dataset is
randomized, for each label condition, new samples only
fluctuate around the same force density pattern so there
is only a prominent change in height whilst force density
distribution across polyedges largely remains similar.

Q) Can a user be able to tune the latent space
in order to generate novel samples with user-
defined desirable characteristics?

Yes, when the characteristic was encoded as a label, this
was able to be done by conditioning the VAE. When the
characteristic was encoded as a feature, this would be able
to be done as long as the appropriate activation function
was chosen in the hyperparameters.

Characteristic is a Feature

Thickness of the vault and force densities were encoded
as features during training. Two different thickness
normalization strategies were implemented. It was found
that thickness normalization independent from the force
densities provided better results for surrogate model
predictions in all cases especially for the Buckling Load
Factor.

Thickness was seen to change across both latent
dimensions in all cases except ReLU being used as the
only activation function. When Sigmoid was used as the
only activation function, this change in thickness was linear
across Dimension 1. This means that it can be used as a
scrollable feature as well if a particular thickness needs to
be sampled. However, very similar samples were generated
this way which would be undesirable for sample
generation.
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Characteristic is a Label

Height was encoded as a label during training. Conditioning
the VAE allowed for better control of the latent space. It
has been proven that the latent space can be conditioned
using labels to extract samples close to the desired label
- height of the vault (in this project). For this, Sinusoidal
Positional Encoding provided more accurate results than
One-Hot Encoding and restricted the spread of sampled
heights to a much larger degree. However, it should be
noted that new samples were not exactly of the desired
height but were instead ‘close to’ the desired heights. The
deviation from the desired height continued to increase as
the desired height itself/ label was increased (above 1.5m).
There is potential to increase the accuracy by hyper-
parameter tuning of the Conditional VAE. Another
recommendation is to filter out outliers from the main
dataset as this may affect the learning process; the heights
ranged from 0.5m to 26.7m but only 6.06% of the total
dataset had heights above 3.0m. If the total spread of
heights is reduced, accuracy in sampling the desired height

may be increased.

Q) Can individual dimensions of the VAE’s
latent space be interpretable?

Yes, this is true when considering characteristics that are
encoded as features (thickness) or labels (height).
Dimension 1 of the latent space was able to show an
interpretable pattern in the change in thickness and height
as we scrolled across that latent dimension.

It was seen that interpretability of Latent Dimension 1
improved and became almost linear when only Sigmoid
was used as the activation function. This approach,
however, did not work for the CVAE as all meshes sampled
from the latent space were of the same height around
1.1m.

In conclusion, while individual dimensions may be
interpretable to some extent, if the purpose is to tune it like
a control knob to extract samples with a particular
characteristic, it is recommended to include that as a label
to condition the VAE with rather than use it as a scrollable
feature of a latent dimension.

It would be interesting to see additional labels being
encoded inside the Conditional VAE including thickness.
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Q) What effect does varying the force
densities have on overall seismic
performance?

Decreasing the force densities increases the height of the
vault which causes a improvement in seismic performance.
This is due to an increase in the Buckling Load Factor, a
decrease in Utilization and a decrease in Interstorey Drift
Ratio. However, this improvement happens only till a
threshold after which performance reduces if force
densities decrease any further. For the specific vault
properties used in this paper (dimensions = 10m x 15m,
load = 40.0, PGA = 0.2g), the threshold for Buckling Load
Factor is FD (force density) = 0.8, for Utilization FD = 0.6,
and for Interstorey Drift Ratio FD = 0.3. These values are
for vaults of uniform force densities.

Q) Is there any favourable pattern in terms of
force densities for seismic performance?

In terms of force density patterns,the best performing
meshes are those with uniform force densities for overall
structural performance including seismic performance.
Variations in force densities of the vault cause stress
concentrations which reduces performance such when
they are randomly generated or in the presence of
creases.

Q) Can having a reduced sample dimension
still justify the use of a Deep Neural Network?

The use of polyedges allowed the dataset to be reduced
from 30,976 values to 27 values (for force densities)
causing a reduction of 99.91%. If the VAE is seen in
isolation, then no, using a Neural Network (NN) makes no
sense as a randomizer can also generate force densities
and thicknesses (features of the VAE). However, in the
conditional VAE where a vault with a specific label (height)
can be generated this becomes much more useful in
extracting samples with hidden characteristics that cannot
be explicitly stated during the geometry generation process
- characteristics that they are not necessarily inputs to the
process but are outputs. In the larger framework where
the CVAE is connected to surrogate models used for
gradient descent optimization, the approach becomes
much more useful. The decrease in size allows it to be
highly efficient as the final gradient descent optimization
takes under 30 seconds for 1000 iterations (changing force
densities in each iteration). This is incomparable to
running a genetic algorithm in Grasshopper where each
iteration in geometry takes 3.0-4.6 seconds (on the same
computer) so the equivalent number of iterations would
take 1 hr and 6 minutes.
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8.2 CONSTRAINTS AND SHORTCOMINGS

8.2.1 ‘Garbage in Garbage Out’

A predictive optimization model is only as good as its dataset. In this case, since the dataset was composed of randomized
force densities, the probability of having a vast array of ‘bad performing designs’ was great - which gives little room for
optimization of already good performing meshes. This is because we have learnt from the Performance Evaluation
chapter that fluctuations in force densities cause stress concentrations leading to a higher risk of failure - showing that
uniform force densities show greatest seismic performance. The same is true for the accuracy of the Conditional VAE.

A large variation in heights due to the randomized nature of the dataset generation process had an adverse effect.

In essence, if the initial sample to be optimized is taken from the latent space or is any other non-uniform vault from the
dataset, that, by the nature of its variable geometry performs poorly, the current model is able to optimize the gradient
to a lower minima as it is trained on a dataset of randomized force densities. This however, does not mean that a good
performing uniform vault from the dataset (made from uniform force densities) can be optimized using the same dataset.

8.2.2 Practical Application

From the literature it became clear that the dominant construction materials (wood, steel, concrete) could not be avoided
completely especially for earth buildings due to their high mass and low stability in seismic events which is why ring
beams and shear walls were included in the final structure designed using seismic guidelines for non-engineered
structures. There is scope, however, to minimize the use of these materials by the strategies highlighted in the research
- through the use of earthen vaults as floor slabs reinforced with basalt geo-grids. This has also been showcased in
projects highlighted in the paper such as the SUDU housing in low seismic zones.

To conclude, there is some success in the optimization workflow by use of a VAE, surrogate model, and optimizer for
initial stage design. However, practical considerations for such a workflow would not be feasible for use in a low-income
housing project currently. This is we now know that because simpler is better in terms of force density distribution for
structural stability of a vault.

The starting point of a design is integral to the outcome of the optimization. This would be useful as an optimizer for
optimizing sculptural vaults which would be more appropriate as museum pieces rather than floors for a low-cost homes.
By nature, the engineer/ architect would start from a simple vault (of uniform force densities). While it does not fit the
intended purpose, the workflow shows scope for complex optimization tasks.

A significant absence in complete earthen construction lies in the absence of a slab system. Catalan vaulting highlights
how shells can serve as the structural element for an earthen slab system. However, considering that Catalan vaulting
might not be feasible everywhere, it’s crucial to explore and experiment with other local material technologies. It can be
concluded that seismic performance of a vault is unique for a particular structure in relation to the number of storeys
that structure. Therefore, if this construction technology is to be scaled for mid-rise buildings, each floor slab would need
to need to designed uniquely.

8.2.3 Time Constraints

Due to time constraints in the project, it was not possible to conduct a more accurate non-linear analysis such as Non-
linear Time History Analysis (NLTHA) for the Performance Evaluation as intended at the very initial stages. It became
clear that such a technique was not feasible for a large dataset of 10,000 samples.
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8.3 LOOKING AHEAD

8.3.1 Future Potential

Zooming out

In this research, for optimization, a linear dynamic seismic
analysis was performed. The NRMSE for the surrogate
models for the seismic performance metrics were 7.27%,
9.18% and 9.81% respectively, and it is highly probable
that the error can be further reduced if a more structured
dataset is used which limits the spread of data, such as
the one recommended in Section 8.3.2. From this, it may
be extrapolated that other more computationally expensive
FEA approaches such as Non-linear Static Procedures
(NSPs) and Discrete Element Modeling (DEM) may also
be used in this way which provide greater accuracy. These
could be run on supercomputers for the initial dataset
generation process and then the same accuracy of these
otherwise complex time consuming techniques could be
harnessed through trained surrogate models. This may
not be feasible for stand-alone niche design problems but
for those problems where the dataset gives a good
generalization of usage, it could be highly effective
especially for companies which run the same type of
optimization tasks. It may be a Utopian dream that
surrogate models like such are trained and made open-
source so that the average freelancer may be able to
harness the power of complex macro-models and micro-
models but the pace at which the Al is growing is somewhat
of a dream itself | would think.

Though sinusoidal positional encoding already constrains
the latent space well, gradient descent forces the z vector
to be sampled from extreme ends of the latent space -
which may results in large deviations from the desired
condition. It would be interesting to see how the conditioned
latent space during the gradient descent can be further
restricted so that values outside the desired label are not
sampled.

Zooming in

The dataset used in this project was based on a uniform
footprint. It would be interesting to see how a variable
footprint can be accommodated which opens up the
potential for wider applications for floor sizes of variable
dimensions. This can be challenging because the data-
structure would need to be rethought as this would entail
a different number of polyedges across different vaults
(for the same polyedge density). A possibility lies in
padding the ‘missing’ polyedges for smaller vaults.
Moreover, in the future, tiling patterns may also be explored
due and how they may contribute to increased seismic
performance of the vault through patterns such as
loxodrome. Representing these patterns into data for a
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neural network may pose a significant challenge. A possible
approach for this is highlighted in the Appendices Section
10.2.4 and Section 3.1.83.

The polyedge density was kept constant throughout this
project (1 polyedge per metre); as an increase in density
would result in a smoother vault (for a vault with uniform
force densities), it would be interesting to the effect of
optimizing the polyedge density to evaluate the trade off
between calculation time and structural performance and
see how the graph converges. The 99.82% reduction in
dimensionality of the sample size did not require the use
of graphs due to the grouping of edges into polyedges. This
was necessary for thin tile vault geometry. However, if
other shell geometries are used that require individual
edges to be expressed, then there is potential to explore
Graph Convolution Networks for permutation invariance
(See Section 3.2 for further detail).

8.3.2 Improvements for Future
Reference

All samples failed in utilization . In terms of designing thin
shell vaults for seismic loads, alternate form-finding
strategies may be explored in the future for better
performance. It would be very useful if appropriate
reinforcement techniques such as geo-grids can be
represented into data usable for neural network
implementation.

Shell Corrugation

There is high potential to explore shell corrugation to allow
the compression load path to carry lateral loads for
earthquake resilience. Michiels et al. have highlighted a
workflow that derives the geometries through a series of
funicular polygons that are obtained by employing graphics
statics for combined gravity and seismic loads ( 2019). This
has resulted in a lateral capacity that is 79% greater than
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non-form-found shapes for the same material usage (Michiels et al., 2019) outperforming Eladio Dieste’s shell of a
similar shape. Michiels et al. use a non-linear pushover analysis to determine change in capacity where it is found that
corrugation depth has a high influence on the capacity whereas the corrugation period has a minor effect. It is yet unclear
whether such an approach may be suitable to generate a large enough dataset required for a deep generative model
as used in this paper. Nevertheless, it opens up potential for seismic design of thin tile masonry vaults.

Vault Segmentation

Another option is using vault segmentation as we’ve found that this improves the seismic performance of a uniform vault
further, where each segment is supported independent to the rest of the vault. However, the data-structure for this may
need to be rethought as the current data-structure does not account for variability in boundary supports as the current
scheme assumes supports at the periphery. A solution may lie in using the creased dataset as an inspiration but with
binary digits. (0) could represent polyedges where all force densities are the same while (1) could represent the polyedge
that is supported. However, this would only work if all force densities for all samples are the same. To give a unique
value of a force density to each sample, an additional digit may be added to represent the value of that force density It

would be interesting to see if the binary values remain binary and the force density remains non-zero.

polyedge = row force density
[ [0’0’0!0!0!0!‘ !O!O)O’O] H [019101010’0’031’O’O!O!O!O!O!O’O]l’ ]
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A practical drawback of using segmentation, however, is
the increase in the number of beams that are used - and
the avoidance of a large number of beams (due to the
absence of wood, steel, concrete) was the initial motivation
behind the research. This would present a question: at
what point does it make sense to even consider using a
vault instead of a floor slab if there is already a large
network of beams that is needed from the standpoint of
seismic performance, material usage and cost
effectiveness.

Feature-based Topology Finding

In feature-based topology finding techniques (Section
3.1.2), additional features such as curve features and point
features were introduced. This could be of high significance
if it could be able to represent vertical stiffeners like ribs
for strengthening of vaults. Using force densities that have
smoother transitions across polyedges instead may
prevent stress concentrations.

Thickness Variation

In this research, a constant thickness of the vault was kept
throughout all the samples. Though this is simpler in terms
of construction, it is not very efficient in terms of material
usage because of non-uniform force distribution. A strategy
of non-uniform thickening may be adopted. This can be
done by increase the thickness of the vault in areas of
higher forces. To maintain continuity in the shell structure,
an additional layer of tile can be sandwiched between the
intrados and extrados such as in Los Manantiales
Restaurant at Xochimilco, Mexico City by Felix Candela
(Davis et al., 2012). Areas of higher force densities
correspond to higher forces experienced — corresponding
to areas where the thickness of the cross-section is to be
increased.

8.3.3 Comparison With Other
Optimization Techniques

This project only utilized the Gradient Descent algorithm
for optimization. It would be interesting to see comparisons
with other optimization algorithms in terms of performance
and time.

When comparing the current optimization pipeline with
conventional evolutionary algorithms built inside
Grasshopper such as Galapagos (for single objective
optimization) and Wallacei (for multi-objective optimization,
we can make educated guesses based on two different
criteria - time and performance. In terms of performance,
the results lead to the assumption that a greater variety of
options may be explored in Grasshopper-based
evolutionary algorithms when compared to the current

~
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dataset. This is because Grasshopper based algorithms
will not be constrained to the latent space of a VAE and
thus would be able to generate a large variety of solutions.
Therefore, the optimized performance may likely be better
for inefficient latent spaces. However, it is imperative to
consider the time it takes for Grasshopper to calculates a
single iteration (ranges between 3.0 to 4.6 seconds) as
compared to the current pipeline (0.015 seconds) which
makes convergence in the Grasshopper-based
optimizations196-400 times slower than the proposed
framework.

A comparison that could be more interesting in the future
would be to replace the Gradient Descent Optimization
with Genetic Algorithms within the proposed pipeline. This
would harness the computational efficiency of the fast
structural predictions on instantly generated geometry in
the latent space.

8.3.4 Comparison with other
Generative models

The scope of the project was limited to exploration of a
VAE. There is reason to believe there are other deep
generative models that can be used as an alternate instead
for topology optimization and shape optimization tasks.
GANs are notoriously unstable and difficult to train but
WGANs present potential in improving the stability of the
environment and have been used for 3D structural topology
optimization (Rawat & Shen, 2019) with a similar pipeline
using CNN based surrogate models.

Reinforcement learning may also be explored alternatively

as topology optimization problems have been solved with
this (Jang et al., 2022).
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8.4 THE TOPIC IN CONTEXT

8.4.1 In Context of the Studio

The topic, 'Generative Design of Catalan Vaults for Multi-
storey Seismic Design’, combines two fields of the Building
Technology Master Track — Design Informatics (DI) and
Structural Design (SD). Within the two fields, it specifically
delves into the field of Deep Generative Design due to
which it is relevant to the AiDAPT Lab as well.

The topic builds up from the foundations laid by previous
courses completed in the Masters Program. The field of
Artificial Intelligence (Al) was introduced in the
Computational Intelligence for Integrated Design (AR0202),
Sustainable Architectural whilst CORE (AR30B12)
established a background in python programming and
provided an introduction to seismic design. Materials and
Structures (AR1B023) and Technoledge Structural Design
(AR0133) developed a foundation for understanding of
structural mechanics.

This thesis dealt with three complex fields with massive
learning curves. The initial goals were kept quite ambitious
and some of them were not achieved. However, this
allowed the overall potential of the project to be explored
further. The complexity of three different fields produced
constraints on achievability of the initial targets and a
greater in-depth study into either fields could not be carried
out. Nonetheless, looking back, it proved to be a great
learning experience where different interests were
juxtaposed into a singular topic.

8.4.2 In Context of a Larger Social/
Technological Framework

In the broader context, the project aimed to serve as a test
to determine whether the Al framework could generate
reliable outputs - aiming to add to the state of the art.
Learning to generate optimized solutions from a simpler
dataset may be indicative of high potential for the model
to generate optimized solutions for more complex micro-
models if the training dataset had been trained on that
performance evaluation model as well. This way, the
proposed framework can serve as an application for the
use of a VAE in shape optimization tasks which would
otherwise be far too computationally expensive to
perform.

Generative design is a developing field and has great
potential in several disciplines including engineering and
architectural design. While there is some precedent
research that deals with generative design of skeletal
shells, there was a research gap in generative design for
thin tiled shells. Moreover, there is also a gap in research
in the development of a generative framework for seismic
design as well. This research had aimed to deal with these
research gaps in the larger scientific framework.

The project targets a problem that is a growing concern in
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the present — the need to go vertical in an absence of
conventional building materials. Due to a need for
multistorey construction arising from rapid population
growth, it may pose a much greater problem in the future

REFLECTION

Tahir Zahid Ishrat - 569892¢



] 09/ BIBLIGORAPHY

Adiels, E., Ander, M., & Williams, C. (2017). Brick patterns
on shells using geodesic coordinates.

Al-Shehari, T., & Alsowail, R. A. (2021). An Insider Data
Leakage Detection Using One-Hot Encoding, Synthetic
Minority Oversampling and Machine Learning Techniques.
Entropy, 23(10), 1258. https://doi.org/10.3390/e23101258

Block, P., Ciblac, T., & Ochsendorf, J. (2006). Real-time
limit analysis of vaulted masonry buildings. Computers &
Structures, 84(29-30), 1841-1852. https://doi.
org/10.1016/j.compstruc.2006.08.002

Butz, D. A., & Cook, N. E. (2011). Accessibility interrupted:
The Shimshal road, Gilgit-Baltistan, Pakistan. Canadian
Geographies / Géographies Canadiennes, 55(3), 354—-364.
https://doi.org/10.1111/j.1541-0064.2011.00365.x

Burgess, C. P, Higgins, |., Pal, A., Matthey, L., Watters,
N., Desjardins, G., & Lerchner, A. (2018). Understanding
disentangling in $\beta$-VAE (arXiv:1804.03599). arXiv.
http://arxiv.org/abs/1804.03599

Cleland, J. (2013). World Population Growth; Past, Present
and Future. Environmental and Resource Economics,
55(4), 543-554. https://doi.org/10.1007/s10640-013-9675-
6

Contestabile, M., luorio, O., & Garrity, S. W. (n.d.). An
Investigation of Alternative Form-Finding Methods for
Free-Form Masonry Shells.

Davis, L., Rippmann, M., & Pawlofsky, T. (2012). Innovative
funicular tile vaulting: A prototype vault in Switzerland.

EN 1990: Eurocode - basis of structural design. (n.d.).
https://www.phd.eng.br/wp-content/uploads/2015/12/
en.1990.2002.pdf

Fil, M., Mesinovic, M., Morris, M., & Wildberger, J. (2021).
Beta-VAE Reproducibility: Challenges and Extensions
(arXiv:2112.14278). arXiv. http://arxiv.org/abs/2112.14278

Gladstone, R. J., Nabian, M. A., Keshavarzzadeh, V., &
Meidani, H. (2021). Robust Topology Optimization Using
Variational Autoencoders (arXiv:2107.10661). arXiv. http://
arxiv.org/abs/2107.10661

Heyman, J. (1966). The stone skeleton. International
Journal of Solids and Structures, 2(2), 249-279. https://
doi.org/10.1016/0020-7683(66)90018-7

Higgins, |., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., & Lerchner, A. (2017). B-VAE:
Learning Basic Visual Concepts with a Constrained
Variational Framework.

~
TUDelft

International Organization for Standardization. (2004). EN
1998-1:2004 Eurocode 8: Design of structures for
earthquake resistance - Part 1: General rules, seismic
actions and rules for buildings. https://www.phd.eng.br/
wp-content/uploads/2015/02/en.1998.1.2004.pdf

Ivasiuk, B., & Misino, E. (n.d.). Conditional Image
Generation.

Jang, S., Yoo, S., & Kang, N. (2022). Generative Design
by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs. Computer-Aided Design,
146, 103225. https://doi.org/10.1016/j.cad.2022.103225

Javanmardi, R., & Ahmadi-Nedushan, B. (2023). Optimal
design of double-layer barrel vaults using genetic and
pattern search algorithms and optimized neural network
as surrogate model. Frontiers of Structural and Civil
Engineering, 17(3), 378-395. https://doi.org/10.1007/
s11709-022-0899-9

Kingma, D. P., Salimans, T., & Welling, M. (2015).
Variational Dropout and the Local Reparameterization
Trick (arXiv:1506.02557). arXiv. http://arxiv.org/
abs/1506.02557

Leifsson, L., & Koziel, S. (2016). Surrogate modelling and
optimization using shape-preserving response prediction:
A review. Engineering Optimization, 48(3), 476—-496.
https://doi.org/10.1080/0305215X.2015.1016509

L6épez Lopez, D., Van Mele, T., & Block, P. (2019). The
combination of tile vaults with reinforcement and concrete.
International Journal of Architectural Heritage, 13(6), 782—
798. https://doi.org/10.1080/15583058.2018.1476606

Marseglia, P. S., Micelli, F., & Aiello, M. A. (2020). Analysis
of Equivalent Diaphragm Vault Structures in Masonry
Construction under Horizontal Forces. Heritage, 3(3),
989-1017. https://doi.org/10.3390/heritage3030054

Michiels, T., Adriaenssens, S., & Dejong, M. (2019). Form
finding of corrugated shell structures for seismic design
and validation using non-linear pushover analysis.
Engineering Structures, 181, 362-373. https://doi.
org/10.1016/j.engstruct.2018.12.043

Nanayakkara, K. I. (2019). Shell Structures from Catalan
to Mapungubwe Lessons from Structural Efficiency for
Sustainable Construction in Developing Countries. https://
doi.org/10.13140/RG.2.2.30878.89922

Oh, S.,Jung, Y., Kim, S., Lee, I., & Kang, N. (2019). Deep
Generative Design: Integration of Topology Optimization
and Generative Models. Journal of Mechanical Design,
141(11), 111405. https://doi.org/10.1115/1.4044229

BIBLIOGRAPHY

Tahir Zahid Ishrat - 5698928



Oval, R., & Rippmann, M. (2017). Patterns for Masonry
Vault Design.

Panozzo, D., Block, P., & Sorkine-Hornung, O. (2013).
Designing unreinforced masonry models. ACM
Transactions on Graphics, 32(4), 1-12. https://doi.
0org/10.1145/2461912.2461958

Paris, V., Pizzigoni, A., & Adriaenssens, S. (2020). Statics
of self-balancing masonry domes constructed with a cross-
herringbone spiraling pattern. Engineering Structures, 215,
110440. https://doi.org/10.1016/j.engstruct.2020.110440

Pastrana, R. (2022). Disentangling Variational
Autoencoders. https://doi.org/10.48550/arxiv.2211.07700

Patrikar, S. (2019, October 1). Batch, Mini Batch &
Stochastic Gradient Descent. Medium. https://
towardsdatascience.com/batch-mini-batch-stochastic-
gradient-descent-7a62echa642a

Pavlidou, S. (2022). A Deep Learning Framework for
Optimized Shell Structures [Master Thesis]. TU Delft.

Rawat, S., & Shen, M. (2019). Application of Adversarial
Networks for 3D Structural Topology Optimization. SAE
Technical Paper 2019-01-0829. https://doi.
org/10.4271/2019-01-0829.

Ramage, M. H., & Dejong, M. J. (n.d.). Design and
Construction of Geogrid-reinforced Thin-shell Masonry.

Regenwetter, L., Nobari, A. H., & Ahmed, F. (2022). Deep
Generative Models in Engineering Design: A Review.
Journal of Mechanical Design, 144(7), 071704. https://doi.
org/10.1115/1.4053859

Ruder, S. (2017). An overview of gradient descent
optimization algorithms (arXiv:1609.04747). arXiv. http://
arxiv.org/abs/1609.04747

Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko,
A. B. (2021). A Gentle Introduction to Graph Neural
Networks. Distill, 6(9), e33. https://doi.org/10.23915/
distill.00033

Schek, H. J. (1973). The Force Density Method for Form-
Finding and Computation of General Networks. North-
Holland Publishing Company.

Siddique, M. S., & Schwarz, J. (2015). Elaboration of Multi-
Hazard Zoning and Qualitative Risk Maps of Pakistan.
Earthquake Spectra, 31(3), 1371-1395. https://doi.
org/10.1193/042913EQS114M

Soni, A. (2018). Introduction to evolutionary algorithms.
Towards Data Science.

Sterrenberg, A. (2023). A Deep Learning Framework for
Optimized Spatial Truss Structures with Stock Constraints

~
TUDelft

[Master Thesis]. TU Delft.

Surat, D. (2017). Seismic Analysis of Thin Shell Catenary
Vaults [Master Thesis]. University of Witwatersrand.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023).
Attention Is All You Need (arXiv:1706.03762). arXiv. http://
arxiv.org/abs/1706.03762

Webmaster, A. E. I. (n.d.). http://www.earth-auroville.com/
design_and_masonry_en.php

Williams, B. A., & Cremaschi, S. (2019). Surrogate Model
Selection for Design Space Approximation And
Surrogatebased Optimization. In Computer Aided Chemical
Engineering (Vol. 47, pp. 353-358). Elsevier. https://doi.
org/10.1016/B978-0-12-818597-1.50056-4

Wyss, M., & Rosset, P. (2013). Mapping seismic risk: The
current crisis. Natural Hazards, 68(1), 49-52. https://doi.
org/10.1007/s11069-012-0256-8

Zhang, B., Xiong, D., Su, J., Duan, H., & Zhang, M. (2016).
Variational Neural Machine Translation. Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing, 521-530. https://doi.org/10.18653/
v1/D16-1050

BIBLIOGRAPHY

Tahir Zahid Ishrat - 5698928



] 10 /APPENDICES

The code for this project can be found in the Git Hub repository:

https://github.com/tahirzahid995/tu_delft_msc_thesis_2023-2024.git

. tu_delft msc_thesis 2023-2024 rubiic

Add file ~ <> Code ~

@ tahirzahid99s A 271080 - now 1) 13 Commits
01
02
DATASETS/DATASET 24

[ README.md

| ] performance evaluation.gh

[ requirements.txt

The grasshopper script ‘performance_evaluation.gh’is the script for the seismic analysis while 01 and 02 are directories
for the python code. ‘01’ is relevant to the Geometry Generation while ‘02’ is relevant to the Generator containing the
VAE/CVAE, surrogate models, and Gradient Descent. DATASET 24 is the randomized dataset used but directory ‘01’

can be used for generating a new dataset while the grasshopper script can be used to perform the Performance Evaluation
on it.
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10.1 GRADUATION TIMELINE

21-Oct-'24

® | iterature Research - Generative Design
@ Literature Research - Catalan Vault

®| iterature Research - Seismic

® Development of Workflow

® Creating an Autoencoder with MNIST

® Preparing P2 report and presentation

23-Jan-'24

. O Creating a VAE with MNIST

o Geometry Generation in COMPAS and Grasshopper

© Performance Evaluation: testing overall structure options with 1) stiff walls, 2) columns
@ Data structuring

O VAE: setting up the vanilla version, hyperparameter tuning, testing, and sampling

O Study VAE codes from repositories

® Preparing presentation

I 26-Mar-'24

© Performance Evaluation: testing other overall structure strategies including finalized scheme
O Study surrogate model working

O Surrogate Model: combined and separate surrogate models for performance metrics

@ Gradient Descent: single objective optimization

® Preparing P4 report and presentation

U125

P4 @----
O Conditioning the VAE with height labels
O Surrogate Model: separate surrogate models for Height and Mass

@ Gradient Descent: multi-objective optimization
® Finalizing report and presentation

21-Jun-'24

7
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10.2INITIAL ALTERNATIVE WORKFLOWS

After the initial workflow shown in Figure 05 in Section 1.4, the regular footprint was to be made variable and non-linearity
introduced in the analysis. Refer to Section 3.2.2 where the limitations of LSP are discussed for masonry vaults — which
is the reason it was considered initially. For all the alternative workflows (WF2A, WF2B, WF3), the Performance Evaluation
was to be done using NSP. This applied to Workflow 3 as well where tiling was to be done. This is because although
the Discrete Element Method (DEM) simulates a discretized, hence tiled surface, it would be far too computationally
intensive to be done for a dataset of 10,000 simulations. Therefore, a continuous model was to be assumed for the
Performance Evaluation phase, and if time permitted, a DEM analysis could have been carried out on 1 sample be
carried out later as Validation. It was found, however, that non-linear analysis techniques were far too time consuming
to be carried out within the project time-frame. This could be carried out in the future when there is greater time and
computational power.

Either Workflow 2A (WF2A) would be carried out or Workflow 2B (WF2B). The main difference between the two was the
form finding approach - Workflow 2B had much greater complexity in generating a different topology patterns through
the feature-based topology finding approach. Workflow 3 would build upon Workflow 2A introducing tiling patterns. This
is shown in Figure 07.
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10.2.1 Workflow 2A (WF2A) and 2B
(WF2B)

Please refer to Figure 08 for reference.

Data Generation

A variable input rectangular footprint would generated of
x and y dimensions. Form-finding would be next done like
in WF1. In WF2A, a regular grid like the one in WF1 would
be used; in WF2B, feature-based topology finding would
be done instead.

Performance Evaluation

For both workflows, the continuous geometry would be
then evaluated seismically through a Non-linear Static

wr2A

regular

wr2B

feature-based
topology finding

I
L N
I
QLT

FIGURE 189: Workflow 2A and 2B. (Own Work)
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if WFZB is used,

graphs may not be used

________

encoder

Procedure (NSP) in ABAQUS. For material properties,
please refer to the Section 3.2.

Data Structuring

For WF2A, it is the same as WF1. For WF2B, graphs may
not be used to represent nodal data.

VAE 2

For WF2A, the structured data would be used as an input
dataset to VAE 2. In case of WF2B, GCNs may not be used
due to absence of graph data.

10.2.2 Workflow 3 (WF3)

Please refer to Figure 09 for reference. This is only done
if Workflow 2A is chosen in the previous step.
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Data Generation

The same Data Generation process from Workflow 2A
would also be done here. However, after that, tiling curves
would be mapped onto it; Patterning Approach 1 would be
used for this purpose due to integration of patterning with
structural stability (See Section 3.1.3 for more information
on Patterning Approaches). Then, Patterning Approach 2
will be pursued. It should be noted that mesh is not
discretized, it is a continuous one - the tiling only exists as
curves.

Performance Evaluation

Same as Workflow 2A.

Data Structuring

The data would then be restructured similar to Workflow
2A. However, this time, the tile geometry would need to be
restructured as well. It would become far too
computationally expensive to represent every tile
separately as a node. Hence, it is hypothesized that this

may have been done by grouping similar tiles and
representing them by a single node. It would have been
logical that the tiling pattern could have been based on the
meshing pattern so nodes are based on aggregations of
similar tiles according to position and direction (as
indicated in Patterning Approach 1). This is shown in
Figure 31. The tiling direction was to be represented by a
vector in radians.

VAE 2

Same as Workflow 2A.

Validation through DEM (Optional)

This part was optional. The tiles were to be extruded. Then
two simulations of different tiling patterns were to be run
to see how the tiling pattern affects seismic performance
through Discrete Element Method. It is too computationally
expensive to be included in the dataset formation.
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~
TUDelft

: ABAQUS

1 - 4

1

: ," 2% siauLa E Graph

| L ABAQUS Convolutional surrogate
i N Network model

1

1




10.2.3 Material Properties of the DEM model for WF3

To carry out the analysis on a discrete model (DEM), the brick and mortar will behave independently. The properties for
that have been tabulated below in Table 2.

Discrete model

TABLE 23: Material property for Discrete model. Material properties of the discrete model are
retrieved from Oktiovan, Y. P., Davis, L., Wilson, R., Del’Endice, A., Mehrotra, A., Pulatsu, B., &
Malomo, D. (2023). Simplified Micro-Modeling of a Masonry Cross-Vault for Seismic Assessment
Using the Distinct Element Method. International Journal of Architectural Heritage, 1-34. https://
doi.org/10.1080/15583058.2023.2277328

10.2.4 Data Structuring Strategy for WF3

For vectors representing tile direction, it would become far too computationally expensive to represent every tile
separately as a node. Therefore, similar tiles may be grouped and represented as a single node. It would be logical that
the tiling pattern can be based on the meshing pattern so nodes are based on aggregations of similar tiles according to
position and direction (as indicated in Patterning Approach 1). This is shown in Figure 31. The tiling direction is to be

represented by a vector in radians.
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d) After tiling, Nodes identified for each tile after discretization
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10.3 GRASSHOPPER SCRIPT (PERFORMANCE EVALUATION)

For the script, See the repository link.
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10.4 RESULTS: CONDITIONAL VAE

This is for Sinusoidal Positional Encoding.
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Visualizing Height across dimensions, Sampled Height = 0.5 m

a) label = 0.5m
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Visualizing Height across dimensions, Sam

Dimension 1

b) label = 0.8m

pled Height = 0.8 m
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c) label =1.0m

Visualizing Height across dimensions, Sampled Height = 1.0 m
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d) label = 3.8m
Visualizing Height across dimensions, Sampled Height = 3.8 m
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