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Variations in storm‑induced bed 
level dynamics across intertidal 
flats
P. L. M. de Vet1,2*, B. C. van Prooijen1, I. Colosimo1, N. Steiner3, T. Ysebaert3,4, 
P. M. J. Herman1,2 & Z. B. Wang1,2

Hydrodynamic forces on intertidal flats vary over a range of temporal and spatial scales. These 
spatiotemporal inhomogeneities have implications for intertidal flat morphodynamics and ecology. 
We determine whether storm events are capable of altering the long-term morphological evolution 
of intertidal flats, and unravel the contributions of tidal flow, wind-driven flow, waves, and water 
depth on inhomogeneities in bed level dynamics (bed level changes over ~days) across these areas. 
We complement decades of bed level measurements on eight intertidal flats in two estuaries in the 
Netherlands with an extensive 1-month field campaign on one of those flats. Across this intertidal 
flat, the hydrodynamics and morphodynamics of a storm event were captured, including the post-
storm recovery. We show that individual events can persistently alter the morphological evolution of 
intertidal flats; magnitudes of some bed level changes are even comparable to years of continuous 
evolution. The morphological impacts of events are largely controlled by the relative timing of 
the forcing processes, and not solely by their magnitudes. Spatiotemporal variations in bed level 
dynamics of intertidal flats are driven by a combination of: (1) the inhomogeneous distributions of 
the hydrodynamic forcing processes (including the under-explored role of the wind); and (2) the linear 
proportionality between bed level dynamics and the local bed slope.

With accelerated sea level rise and anthropogenic interventions, increasing interest is being given by scientists 
and system managers to the long-term morphological evolution of estuarine intertidal flats1–8. These areas provide 
essential ecological values and ecosystem services9,10. Intertidal flats are also of interest for flood protection, as 
these areas serve as a buffer against storm waves11,12. The equilibrium state of intertidal flats has been thoroughly 
researched13–15, often considering a uniform bottom shear stress across these areas16. However, the existence 
of equilibria in the morphology of intertidal flats is questionable as the forcing processes change continuously 
over diverse time scales13–15. Intertidal flats evolve under spatiotemporally variable natural and anthropogenic 
forces1–3,6–8. In recent studies, (variations in) wind-driven flow3–5 and wind-driven waves2 were excluded in 
long-term model simulations on intertidal flat morphodynamics (i.e., assuming gradual changes over decades/
centuries). In order to assess whether short-term fluctuations need to be included when studying long-term 
morphodynamics, it is key to understand the patterns in short-term bed level dynamics (defined as the bed level 
changes over ∼days, i.e., variations in the bed level evolution). Seasonal changes are relatively well described17, 
but the understanding of the role of storm events on the morphological evolution and bed level dynamics is still 
developing18–21. As bed level dynamics affect benthic macrofauna22,23 and salt marshes24, this understanding has 
also ecological relevance.

Previous studies emphasized the role of storm events on the sediment transport and morphology of intertidal 
flats13,25–29. The spatial distribution in hydrodynamic energy was used to explain erosion and accretion patterns 
following an individual event29,30. However, the individual contributions of the underlying hydrodynamic forces 
fluctuate within an event over various time scales25,27,31–34. Furthermore, the spatial distribution of hydrodynamic 
energy is site-dependent25,29. Therefore, for a more thorough understanding, the underlying variations in the 
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hydrodynamic forcing need to be assessed. Only this knowledge can reveal if certain parts of intertidal flats are 
generally more vulnerable to events (i.e., are more dynamic) than other parts.

This study aims at unravelling the effects of short-term events (on the scale of days) on the long-term mor-
phodynamics (on the scale of years—decades) of intertidal flats. We consider eight intertidal flats in the Eastern 
Scheldt and Western Scheldt, the Netherlands (Fig. 1). These intertidal flats are gradually evolving (e.g., Fig. 1b, 
c) in response to human interventions (barriers and sediment relocations)6–8 and (related) large-scale changes 
in forcing processes35–38. We combine various datasets on these intertidal flats. With decades of high-resolution 
morphological measurements (average interval of 40 days; exceptionally small for decades of measurements), 
we identify the role of storm events on these evolutions and quantify the spatial inhomogeneities in bed level 
dynamics. Complementary measurements on the hydro-morphodynamics in the field provide insights on the 
forcing processes affecting the bed level dynamics. For 1 month we measured the hydro-morphodynamics over a 
cross-section on the Zuidgors intertidal flat (Western Scheldt; Fig. 1), capturing the bed level impact and recovery 
of a storm event (with 10-min averaged wind speeds of at most 22 m/s and above 15 m/s for 9 h). Furthermore, 
ecological implications were assessed by investigating the abundance of the benthic macrofauna before and after 
storm events. Finally, we explain the spatiotemporal patterns in bed level dynamics by considering both gradients 
in sediment transport and variations in bed slope across intertidal flats.

Results
Bed level dynamics on decadal time scales.  Figure 2 presents the bed level evolution at fixed loca-
tions on two intertidal flats (Fig. 1a), measured on average 7 and 14 times a year, respectively. The Zuidgors 
intertidal flat (mean tidal range of 4.2 m; Western Scheldt) and Galgeplaat intertidal flat (mean tidal range of 
2.9 m; Eastern Scheldt) are considered here. The measurement points (Z1–Z3; G1–G4) were 40 m to 175 m apart 
(Fig. 2a, b). Some short-term deviations along the long-term bed level trends, which were well in excess of the 
centimetre measurement precision, only affected specific locations (circles in Fig. 2c, d), while other impacts 
affected (almost) all measurement points (squares in Fig. 2c ,d). Even then, the impact was non-uniform (e.g., 
the first highlighted event in Fig. 2c). The intertidal flats recovered from various events in Fig. 2c, d within the 
next measurements, while other events affected the long-term evolution persistently.

Both identified setbacks (i.e., bed level changes against the long-term evolution) at Zuidgors (Fig. 2c) had a 
vertical impact similar to approximately 4 months of evolution (impact of ∼ 15 cm, evolution of ∼50 cm/year). 
The largest bed level change that persisted at Galgeplaat occurred in 1990 simultaneously at G1–G3 (Fig. 2d). 
The bed level changes resulted from a major storm event (26 February–2 March), characterized by 10-min aver-
aged wind speeds that peaked locally at 27 m/s and were above 15 m/s for 73 h. The Eastern Scheldt has a storm 
surge barrier at its mouth (Fig. 1), that closed for four tides within this event, two more than any other storm 
in the record. This implied an absence of tidal forcing for a large part of the storm while wind-driven flow and 
waves affected the intertidal flat for long durations of near-constant water levels. Figure 2e shows the evolution 
of G1 including a linear fit based on the data measured during the two years before the storm, and a linear fit 
based on the data measured after the storm. The bed level evolution rate did not significantly change: − 1.90 cm/
year before the storm and − 1.94 cm/year after the storm (both one order of magnitude larger than the sea level 
rise rate), implying no sign of recovery. The 17 cm of erosion during that event was equivalent to nine years of 
erosion at the average rate.

Figure 1.   (a) Overview of the Eastern Scheldt (top estuary) with its storm surge barrier (SSB) and the Western 
Scheldt (bottom estuary), including their bathymetry. Both estuaries connect to the North Sea. The Zuidgors 
and Galgeplaat intertidal flats are indicated. The location of Vlissingen meteorological station (V) is indicated 
with the black marker. (b, c) The evolution of the red transects across the two intertidal flats over the past 
decades, vertically bounded between mean low water (MLW) and mean high water (MHW). All data is shown 
versus a fixed reference frame (the 2014 mean sea level; MSL).
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The bed level evolution at the highest location of Zuidgors Z3 (Fig. 2c) had a more gradual character than 
at the other two locations (Z1 and Z2). While these two lower sampling locations gained elevation in the long 
term, the variations in bed level (i.e., the bed level dynamics) reduced in time (i.e., their evolution became more 
gradual). This suggests that there may be a relation between the bed level dynamics and the bed elevation.

With Fig. 3, the existence of such a relation is tested for intertidal flats in the Eastern Scheldt and Western 
Scheldt. Only locations with sufficient data are considered (Fig. 3i): seven intertidal flats in the Western Scheldt 
and only the Galgeplaat in the Eastern Scheldt. The bed level dynamics are computed by dividing the absolute 
elevation change of two successive measurements (after removal of the 5 year trend) by the time interval. The bed 
level dynamics are shown versus the average elevation of the two successive measurements. For each intertidal 
flat, data from all measurement locations were merged. The average duration between successive measurements 
was 40 days. For each bin of 0.5 m, the 25th, 50th, 75th, and 95th percentiles were determined.

The vertical trends are relatively consistent along the different percentiles. Consistently for all sites in the West-
ern Scheldt (i.e., excluding Galgeplaat), the bed level dynamics reduce by approximately one order of magnitude 
from the lower to the higher part of the flat. In contrast, such a pattern in bed level dynamics was not observed 
for the Galgeplaat intertidal flat, where the bed was actually more dynamic above MSL (mean sea level). In the 
Western Scheldt 3–22% of the variance in the logarithm of the bed level dynamics is explained by elevation 
alone, whereas none of this variance is explained by elevation for the Eastern Scheldt samples (see coefficients 
of determination in Fig. 3). Therefore, there is a relation between the bed level dynamics and bed elevation in 
the Western Scheldt. However, as bed elevation alone explains only part of the variance, the bed level dynamics 
are also affected by other aspects. The role of the hydrodynamic forcing processes is studied in the next sections.

Figure 2.   Bed level evolution of the point-elevation measurements. (a, b) Location of the sampling points 
Z1–Z3 on the Zuidgors intertidal flat (Western Scheldt) and G1–G4 on the Galgeplaat intertidal flat (Eastern 
Scheldt). See Fig. 1 for the position of these transects. The elevation maps, measured halfway the period of the 
time series, are shown as a reference. (c, d) Time series of the bed level evolution at Zuidgors and Galgeplaat, 
respectively. The black rectangular and circular annotations indicate examples of sudden changes in evolution. 
(e) The time series at Galgeplaat location G1 is repeated. Here, also a linear fit based on the data between 1988 
and 1990 and a linear fit based on the data after February 1990 are shown (before and after the 1990 storm). All 
data is shown versus a fixed reference frame (the 2014 mean sea level; MSL).
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Inhomogeneous morphological impact of a storm event.  The long-term data infer a spatiotempo-
rally inhomogeneous character in the bed level dynamics of intertidal flats. To reveal the hydrodynamic mecha-
nisms that drive this spatiotemporal inhomogeneity, measurements of wind, water levels, flow, waves, suspended 
sediment concentrations, and bed levels during a single storm event (20 November 2016) were analysed in 
detail. Time series of these processes at three stations at the transect across the Zuidgors intertidal flat (Fig. 1a) 

Figure 3.   (a)–(h) Averaged bed level of two successive measurements versus the bed level rate of change 
between those measurements (considered as the bed level dynamics). The data is grouped per intertidal flat, 
see (i) for the location of intertidal flats a–h with the measurement locations indicated as black markers. 
The number of measurement locations for each flat (S), the total number of samples (N) and the coefficient 
of determination ( r2 ) are shown in the top right corner for each flat. The horizontal grid lines represent the 
boundaries of the vertical bins over which the percentiles are computed. Percentiles are only shown for vertical 
bins that contained at least 20 data points. All plots are vertically bounded by mean low water (MLW) and mean 
high water (MHW), apart from (h) that contained also a substantial amount of data points below MLW. Absence 
of data at the top of the tidal window in (d), (e), and (h) is due to the limited height of these flats, while absence 
of data at the bottom of the tidal window is solely due to absence of measurements at those elevations. All data is 
shown versus a fixed reference frame (the 2014 mean sea level; MSL).
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are shown in Fig. 4b–n. As visualised in Fig. 4a, these three stations consist of an ADCP in the channel, the low 
elevated frame FL at 0.4 m above MLW (mean low water), and the high elevated frame FH at 1.0 m above MSL.

The peak of the storm (hourly-averaged wind speeds up to 22 m/s, Fig. 4b) coincided with low water 
(Fig. 4c–e). The storm surge reached 1.3 m on top of the astronomical water level at Zuidgors. FL was submerged 
during the storm peak (Fig. 4d), while it would have been emerged in absence of the storm. The water depth at 
this station was 0.8–1.3 m for four successive hours around low water. By contrast, FH was emerged during the 
peak of the storm.

Under mild wind conditions (e.g., the first and last tide in Fig. 4), the velocities were flood-dominant, with 
maximum velocities occurring just before high water. The velocities were predominantly alongshore directed 

Figure 4.   Process measurements for four tides along a storm event in 2016 on the Zuidgors intertidal flat 
(Western Scheldt). (a) Measurement stations (see Fig. 1a for the location of the transect). (b) Hourly-averaged 
wind speeds and directions at Vlissingen meteorological station (location in Fig. 1). (c)–(e) Water depths, 
including the derived astronomical water depths (the difference is the storm surge). (f)–(h) Flow velocity 
magnitudes (flood and ebb directions indicated in Fig. 1). (i, j) Significant wave heights (the wave logger of 
FH was positioned 50 m downslope), including the significant wave height over depth ratio. (k, l) Suspended 
sediment concentrations at various distances from the bed. (m, n) Bed level changes relative to the initial 
elevations. The vertical black dashed lines indicate the peak of the storm. All time series are in CET (UTC+1).
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(not shown here), with spring-tidal velocities near the MLW line up to 1.5 m/s. The velocity magnitudes gradu-
ally decreased towards higher bed elevations of the flat.

The wind affected the flow on the flat substantially. While the flow in the channel reversed precisely at low 
water (Fig. 4h), the flow at FL reversed 2 h before (Fig. 4g), even though the two locations were only 200 m apart. 
At FL , the velocity exceeded 0.7 m/s for 2 h around low water, while the velocity around low water is normally 
one order of magnitude smaller or even absent (by emergence of the bed). The flow at FH was also modified: it 
was almost solely ebb-directed in the tide preceding the storm peak (second tide in Fig. 4f). The wind was in 
ebb direction during the largest part of the tide preceding the storm peak, only at the end of this tide preceding 
the storm peak (when FH was emerged) the wind was in flood direction (Fig. 4b). The wind remained in flood 
direction for 9 h in the tide following the storm peak. The largest amplification of the flow occurred at FL (in 
flood direction), as FH was emerged during the peak of the storm. But even with the 0.7 m/s amplification at FL 
during low water, larger velocities occurred during calmer wind conditions (e.g., first tide in Fig. 4f). However, 
these larger velocities occurred for larger water depths and for shorter durations.

Waves on the flat were limited by the water depth for a large part of the storm. Significant wave heights 
exceeded 0.60 m at both frames. However, waves at FH were for a large portion of time absent (by emergence of 
the bed) or depth-limited (at most 50% of the water depth at this intertidal flat). Even though FL was submerged 
during the peak of the storm, waves were still depth-limited for more than three successive hours around low 
water.

Suspended sediment concentrations were largely affected by the storm. Suspended sediment concentrations 
were measured at 0.1 m and 0.6 m from the bed at both frames, and also at 1.1 m and 1.8 m from the bed at FL 
(Fig. 4k–l). The concentrations were relatively uniform over the water column (differences smaller than 30%). 
Concentration peaks are observed during flow peaks and during conditions for which the wave heights were 
depth-limited. These two conditions did not occur simultaneously for the tides with mild wind conditions. 
However, during the low water at the storm peak, the amplified flow and breaking waves coincided for hours at 
FL . As a result, concentrations exceeded 1 g/L for 2.5 h. This concentration peak lasted one order of magnitude 
longer than the other observed concentration peaks.

The morphological changes by the storm event varied across the flat. The changes in bed level at FH were 
less than half a centimetre during these four tides. The storm did not cause a distinctive impact here (Fig. 4m). 
Conversely, the bed level at FL lowered 20 cm during the storm (Fig. 4n). This drop in elevation occurred within 
a 3 h window around low water at the peak of the storm. This 3 h window at FL coincided precisely with the 
windows during which the water depth was limited to 0.8–1.3 m, the velocity was amplified to ∼ 0.7 m/s, the 
waves experienced depth-induced breaking, and the suspended sediment concentrations were above 1 g/L. A 
comparable simultaneous peaking of the forcing processes for hours did not occur at FH.

Identifying patterns in forcing processes.  The spatiotemporal variability in the forcing processes drove 
the inhomogeneity of the storm impact. In this section, we aim to unravel the long-term patterns of the hydro-
dynamic forcing processes across the Zuidgors tidal flat, which is relevant to understand the related bed level 
dynamics patterns. For this aim, the processes measured in the full 1-month measurement campaign at Zuidgors 
are analysed (Fig. 5) and relations between the processes are derived. A relation between the flow velocity and 
the bed elevation is not only assessed for this specific tidal flat, but is also tested for all intertidal areas in the 
Eastern Scheldt and Western Scheldt (Fig. 6). Finally, the distributions, relative timing, and importance of the 
various hydrodynamic processes across the intertidal flat are unravelled by integrally assessing the identified 
relations between the processes (Fig. 7).

The 1-month measurement campaign at Zuidgors shows also in the calm periods a substantial spatiotemporal 
variability in the bed level changes (Fig. 5; the vertical dashed lines highlight the storm discussed in Sect. 2.2). 
Significant wave heights were, apart from the highlighted storm event, below ∼ 0.4 m and for most tides even 
below ∼ 0.2 m. Figure 5a indicates that the bed level at FH was not only relatively stable during the storm, but 
also over the full month (less than 2 cm erosion over 30 days). Before the 20 cm erosion event, the bed level at FL 
was relatively stable (comparable evolution as at FH ). In the three days after the storm, half of the erosion (0.1 m) 
recovered. After two weeks, the bed returned to a relatively stable and similar evolution as at FH . However, 25% 
of the erosion (5 cm) persisted.

In the 1-month campaign, the tidal forcing was almost the smallest for the tides in the highlighted storm 
event (Fig. 5c; almost the smallest tidal range). The tidal range fluctuated over the month between 3.0 and 4.9 m. 
These fluctuations resulted mainly from spring-neap fluctuations (spring tide at the beginning, halfway, and end 
of the record), which were affected by storm surges (up to 1.3 m for the storm indicated with the vertical dashed 
lines in Figs. 4e and 5c). Spring-neap fluctuations were reflected in the peak flood velocities, with variations 
between 0.35 and 1.46 m/s (a ratio of maximum variation of 4.2) at FL (Fig. 5d). Fig. 5f–h show a proportional-
ity between the high water level and the peak velocity for all measurement locations. On the flat, 78–88% of the 
variance in the peak velocities was explained by the high water level, in the channel this was 57%. The tidal range 
is a similar indicator for the peak velocities which explains 77–83% of the variance on the flat and 81% in the 
channel (not shown in these figures). The spring-neap fluctuations in the ebb peaks were much less, these varied 
only between 0.43 and 0.58 m/s (a ratio of maximum variation of 1.3; Fig. 5d). Nevertheless, the consequential 
variation in velocity asymmetry (relative magnitude of flood versus ebb velocities) across the spring-neap cycles 
did not affect the relation between peak velocity and high water level, as almost all tides were flood-dominant.

The suspended sediment concentrations varied with the spring-neap cycles (Fig. 5e; measured 0.6 m above 
the bed). This is especially visible in the values that were exceeded for 2 h each tide (less sensitive to outliers 
than the maxima). However, even though the spring tides in the middle of the record did not feature the largest 
tidal range (nor high water level) and peak velocities in the record, the concentrations were higher than during 
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the preceding and following spring periods. This is expressed in Fig. 5j as well, which shows no clear relation 
( r2 of 0.01) between the concentrations that were exceeded for 2 h and the peak velocities at FL . However, these 
concentrations did correlate well to the peak velocities at FH ( r2 of 0.75).

Not only at Zuidgors do the peak flow velocities generally decrease for increasing bed elevations (Fig. 5f–h). 
For the full Western Scheldt and Eastern Scheldt (which include also tidal flats surrounded by channels) are 
the peak velocities generally smaller at higher bed elevations (Fig. 6; modelled average peak velocities). In the 
Western Scheldt 51% of the variance in the average peak velocities on the intertidal flats is explained by only the 
elevation, in the Eastern Scheldt (which has closed branches) this is 9%. Almost all data points in the Eastern 
Scheldt are below the linear fit of the Western Scheldt. There is thus an inhomogeneity in flow velocities over 
different elevations, within an estuary (spread across the linear fits), and between different estuaries.

Also over long time scales, the distributions of both the occurrence and strength of the forcing processes vary 
across intertidal flats. The remainder of this section focusses on unravelling the relative importance of the tide, 

Figure 5.   Process measurements for the full 1 month campaign on the Zuidgors intertidal flat (Western Scheldt; 
see Figs. 1a and 4a for the locations). (a) Bed level changes for both frames relative to the initial elevations. (b) 
Significant wave heights at FL (near mean low water). (c) Water levels as measured in the channel (indicative for 
the full flat), the markers indicate the tidal range. (d) Flow velocity magnitudes at FL , the markers indicate the 
flood and ebb peaks. (e) Suspended sediment concentrations 60 cm above the bed at FL , the markers indicate the 
concentration that was exceeded for 2 h. (f)–(h) the maximum velocity of each tide versus the high water level. 
(i, j) the suspended sediment concentrations that were exceeded for 2 h versus the maximum velocity of each 
tide. The vertical black dashed lines indicate the peak of the storm of Fig. 4. All time series are in CET (UTC+1).
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waves, and wind over different water depths and bed elevations at the Zuidgors intertidal flat (Fig. 7). The result 
is implemented in a schematic diagram, with the importance of the processes visualized over both bed elevation 
and water depth (Fig. 7h). The background colour represents the probability of occurrence of a water depth at a 
certain bed elevation (i.e., the relative duration). This probability of occurrence of a water depth results directly 
(water level–bed level) from the water level distribution (Fig. 7a, b). Here, the distribution over a full year is 
considered, to include surge and spring-neap fluctuations (Fig. 7c). Even with these fluctuations, the probability 
of occurrence of a water level near MLW and MHW (mean high water) is the largest. There is hence a variation 
in probability of occurrence of a certain water depth across the intertidal flat (Fig. 7h).

Tidal flow velocities generally decrease with water depth (Fig. 7d). Outliers are part of the wind event of 
Fig. 4, illustrating the effect of the wind. At large water depths, smaller velocities occur because of the reversal 
of the tidal flow. The average water level at which the tidal flow velocities peak equals 0.88±0.10 (scaled between 
MLW and MHW) at FL and almost identically 0.93±0.10 at FH (Fig. 7e). Therefore, the water depth at which 
tidal velocities peak decreases almost linearly with an increase in bed elevation (the dotted region in Fig. 7h), 
which goes together with a decrease in peak velocity magnitude (Figs. 5f–h, 6). Furthermore, the higher the 
water level at which tidal flow velocities peak (i.e., larger water depths), the larger the magnitude of these peak 
flow velocities. This is a consequence of (1) an increase of the water level at which the tidal flow velocity peaks 
for an increase of the high water level of the tide ( r2 = 0.85 at FL ; Fig. 7e) and (2) larger peak flow velocities for 
higher high water levels (especially on the flat, Fig. 5f–g). Peak flow velocities decrease hence both for higher 
bed elevations and smaller water depths (illustrated by the dot size in Fig. 7h).

Waves are limited by the water depth. At this location, the significant wave height does not exceed half the 
water depth (Fig. 7g), with the same wave-breaking index at FH (not shown in the figure). Within the 16 months 
of wave measurements, the maximum wave-induced shear stress occurred for water depths smaller than 1.2 m 
(Fig. 7f), which is roughly twice the maximum observed significant wave height (Fig. 5b). These limited water 
depths for which waves are most important occur the longest at the lowest part of the intertidal flat (Fig. 7h).

Inhomogeneous impact on benthic macrofauna.  As bed level dynamics may affect benthic macro-
fauna (and the other way around), we investigate whether the spatiotemporal inhomogeneity of storm impacts 
has consequences for the benthic macrofauna on the Zuidgors intertidal flat. Figure 8 presents the logarithm of 
the abundance (mean and standard deviation) of benthic macrofauna before and after two storms in 2017 (in 
October and November, respectively; i.e., different storms than the one of Fig. 4) over six stations along a cross-
shore transect of 210 m on the Zuidgors intertidal flat (1 km west of the frames of Fig. 4). During both storm 
events, the hourly-averaged wind speed exceeded 15 m/s for several hours.

In general, the abundance increased along the cross-shore transect with a higher emersion time (i.e., higher 
bed elevation). Storm events imposed substantial reductions in abundance. These changes in abundance occurred 
spatially inhomogeneous, just as observed for the morphological changes (e.g., Fig. 4m–n). For example, the 
highest two stations (66% and 80% emersion time) had an almost equal quantity of benthic macrofauna before 
the first storm, whereas the reduction by the storm was four times larger at the 66% emersion time station than 
at the 80% emersion time station. In contrast to the morphological observations, almost no ecological recovery 
was observed over the time scale of a month (abundance after October storm was similar to the situation before 
November storm). Furthermore, the decrease in abundance due to the second storm was smaller compared to 
the decrease due to the first storm.

Figure 6.   Bed level, scaled along mean low water (MLW; 0) and mean high water (MHW; 1), versus the average 
peak flow velocity from a 1 month simulation. All points on the intertidal areas of the full (a) Western Scheldt 
(WS) and (b) Eastern Scheldt (ES) are shown. Linear fits are provided with coefficients of determination ( r2 ). 
The fits of both estuaries are shown in both graphs to allow comparisons.
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Figure 7.   Distributions in hydrodynamic forcing for variations in water depth and bed level. (a) Water level 
time series over a single tidal cycle (29 November 2016) at the Zuidgors intertidal flat (Western Scheldt). The 
horizontal lines indicate 20 cm bins. (b) The corresponding probability distribution of the water level across 
these bins. (c) The probability distribution of the water level over a full year (2016). (d) Water depth versus flow 
velocities at FL (10 min interval). The wind-induced flow during the storm event of Fig. 4 is marked with the 
ellipse. (e) Water levels at which the velocities peak at FL , versus the high water of each tide. The storm of Fig. 4 
is indicated. Both axes are scaled along mean low water (MLW; 0) and mean high water (MHW; 1). (f) Water 
depth versus the wave-induced shear stresses at FL (10 min interval). (g) Significant wave height versus water 
depth measured at FL (10 min interval), with the wave-breaking index γ indicated. (h) For a range in bed levels 
(scaled along MLW and MHW) the probability that the water depth is within a certain 20 cm bin is indicated 
with the colours, using the distribution of (c). The diagonal dotted region indicates the water depths at which the 
tidal velocities peak, using the average and standard deviation of (e). The range of depths at which the wave-
induced shear stress peaks, based on (f), are indicated on the left. The vertical dashed lines show the position of 
the frames.
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Discussion
Substantial spatiotemporal inhomogeneities in the impact of storm events on the bed level dynamics (bed level 
changes over ∼ days, i.e., variations in the bed level evolution) of intertidal flats have been identified. There is 
a variation in the spatial extent of storm impacts on intertidal flats, in which variations in storm intensity and 
duration play a role (similar to Talke and Stacey27). We can distinguish the short-term bed level variations around 
a storm event (the bed level dynamics) and the long-term evolution of an intertidal flat. But also sudden bed 
level changes during storm events can persist in the long-term evolution, even if they partially recover. Sudden 
bed level changes during storm events are relevant to consider in the long-term evolution of intertidal flats, as 
they may compare to years of continuous evolution. Systems that face shortages in sediment supply (such as the 
Eastern Scheldt) have typically less recovery capacity29. Differences in recovery will also relate to differences in 
tidal forcing (the sole forcing present during calm conditions), which varies over elevations, within an estuary, 
and between different estuaries (e.g., Fig. 6). Whether or not the impact is in line with the long-term evolu-
tion direction (i.e., towards a possible equilibrium) may also affect the recovery. But even in case of a complete 
morphological recovery, consequences of events can persist in the long term. For example, benthic macrofauna 
eroded or washed out during events are not necessarily recovered within the recovery time scale of the morphol-
ogy (Fig. 8). Consequentially, changes in erodibility of the bed can follow39.

Consistently across the intertidal flats in the Western Scheldt, the highest bed level variations (i.e., bed level 
dynamics) occurred generally at the lower parts of the flats (Fig. 3a–g). A similar trend was observed in other 
studies in this estuary18,19,21. In contrast to our decades of measurements with an average measurement interval 
of 40 days, these studies measured the dynamics with an interval of about one day over approximately one year. 
The relation between bed level dynamics and the bed elevation persists hence over various measurement inter-
vals (tides—weeks) and is present over various time frames (years—decades). For the Galgeplaat intertidal flat 
(Eastern Scheldt), such a trend was not observed (Fig. 3h).

To explain differences in bed level dynamics across intertidal flats, we consider the sediment conserva-
tion equation for an alongshore uniform intertidal flat (i.e., no gradients in sediment transport in alongshore 
direction):

where zb is the bed level, t time, p the porosity, S the depth-integrated sediment transport rate, and x the distance 
in cross-shore direction. This equation shows that bed level changes/dynamics are a consequence of gradients 
in the sediment transport rates. We showed that the forcing processes, and hence also the resulting sediment 
transport rates, are partly a function of the bed elevation (Figs. 6, 7h). Therefore, it is meaningful to consider 
the gradients in sediment transport over the bed elevations. Substituting the bed slope ( β = ∂zb/∂x ) in Eq. (1) 
results in:

This equation expresses the bed level dynamics as the product of (1) the local steepness of an intertidal flat and (2) 
the gradient in depth-integrated sediment transport (i.e., forcing processes) over the bed elevation. Even though 
the bed slope may change by morphological changes, it can be considered relatively constant (i.e., as a forcing 
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Figure 8.   The abundance of benthic macrofauna (number of individuals per m2 ) across six stations equally 
spaced in emersion time on the Zuidgors intertidal flat (Western Scheldt). Benthic macrofauna were sampled 
around the 5 October 2017 and the 23 November 2017 storm events, with at most 10 days between the before 
storm and the after storm measurements. The error bars (one standard deviation above and below) are based on 
three replicates.
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parameter in Eq. 2) over the time scale of an individual storm event (changes in bed slope occur generally over 
longer time scales13, e.g., Fig. 1b, c). We now consider both components.

Component (1) of Eq. (2) indicates that the bed level dynamics of intertidal flats are linearly proportional 
to their local bed slope (i.e., a larger bed level variability for a steeper bed). This effect was not considered in 
recent studies on bed level dynamics patterns on intertidal flats18–21. In the Western Scheldt, the bed slope typi-
cally decreases by one order of magnitude for elevations from MLW to MHW6. This implies that the bed level 
dynamics decrease by one order of magnitude across these elevations due to variations in bed slope alone, which 
is precisely the trend observed in Fig. 3. The bed slope gradients are less across the intertidal flats in the Eastern 
Scheldt6, which is (part of) the explanation for the smaller variation in bed level dynamics (i.e., more similar 
bed level variability) over the vertical in the Eastern Scheldt (Fig. 3). Bed slopes of intertidal flats can evolve 
significantly over decades6. The proportionality between the bed slope and the bed level dynamics implies then 
also structural changes in bed level dynamics in the long term.

Following component (2) of Eq. (2), the bed level dynamics are also proportional to the variations in the 
sediment transport (i.e., forcing processes) over bed elevations. The erosion at the lowest elevated frame was over 
the storm event two orders of magnitudes larger than at the highest elevated frame. The large bed level changes 
at the lowest elevated frame related to a concurrence of: an almost maximum water depth for which the acting 
waves still broke, flow velocities that were relatively large for these water depths, higher suspended sediment 
concentrations than during calm conditions for these water depths, and this all for a large duration (hours). This 
concurrence of processes, in contrast with the emerged higher elevated frame, was conducive to the large bed 
level change. Differences in hydrodynamic forcing with the channel were observed as well. As the peak of the 
storm coincided with low water, the flow in the channel (only 200 m from the MLW line) was almost stagnant 
(Fig. 4h), whereas on the intertidal flat a flow of 0.7 m/s was still observed. Firstly, this implies that the flow on 
the flat was not tide-driven but largely wind-driven32 instead. Without wind, the flow on the flat would have been 
almost stagnant as well. The magnitude of the flow velocity on the flat at the peak of the storm is in line with 
the estimate of wind-driven velocities of order 1/40 of the wind speed28, with smaller contributions for larger 
tidal forcing (tidal forcing is limited in these hours around low water) and larger water depths (where inertia is 
significant). When the flow was wind-dominated (e.g., at the peak of the storm), the flow was aligned with the 
wind direction while geometrical constraints by the bathymetry still had to be followed28,32 (i.e., predominantly 
alongshore directed flow). Secondly, the limited flow and wave effects in the channel imply large variations in 
sediment transport between the channel and the intertidal flat (i.e., implying bed level changes).

Figure 7h revealed that it was not a coincidence that the largest bed level dynamics, resulting from the varia-
tions in forcing processes, occurred at the lowest elevation of the intertidal flat. This is a consequence of the forc-
ing processes depending on water depth and bed elevation. Wave impacts relate strongly to water depth31,32,40,41, 
with maximum wave-induced shear stresses at water depths (hereafter referred to as the critical water depths) 
equal to the significant wave height divided by the wave-breaking index31. In shallow water, these maximum 
bed shear stresses are (almost) not a function of the wave period31. At the low elevations of the intertidal flat the 
tidal flow velocities are small (almost stagnant) for the critical water depths (Fig. 7h), but can be amplified by the 
wind especially for small tidal velocities28. At higher elevations the tidal velocities may peak at the critical water 
depths (as these velocity peaks occur at higher water levels), although the magnitude of these velocities is there 
less (Figs. 6, 7h). The smaller importance of the local tidal flow for the morphodynamics at low bed elevations 
follows also from the measured suspended sediment concentrations, as these concentrations related substantially 
weaker to the tidal flow at FL than at FH (Fig. 5i, j). From Fig. 7h it was derived that the duration of the effective 
small critical water depths is the longest just above the MLW line. This means that the long-term likelihood of 
having a storm event occurring with favourable conditions for large bed level dynamics is the largest for the 
lowest part of the intertidal flat, which is another part of the explanation for the long-term patterns in bed level 
dynamics observed in Fig. 3. This is an extension to studies that stressed the crucial role of timing and dura-
tion of events25,27,29, and that observed the largest bed level changes during short fractions of the tidal period42.

A secondary effect of the bed slope on the bed level dynamics through component (2) has to be discussed. 
Even though the forcing processes are largely a function of the bed elevation, the bed slope may still affect the 
waves and the flow. The gradient in wave height over bed elevations is negatively proportional to the wave-
breaking index γ = H/h (with H the wave height and h the water depth which relates to the bed level: ∂h = −∂zb ) 
within the wave-breaking zone:

As γ decreases with decreasing bed slopes32,43, both the wave height and the gradient in wave height over zb are 
smaller for smaller bed slopes. Therefore, a decrease in bed slope implies a decrease in bed level dynamics, just as 
component (1). For systems in which the flow has large alongshore components (like in the Eastern Scheldt and 
Western Scheldt), no general relation exists between a change in bed slope and a change in flow velocity, as they 
depend on the geometry of the channel-flat system. The transport gradients may hence in some cases also increase 
for milder bed slopes. However, due to the wind, the effect of the bed slope on the tidal velocities is irrelevant 
for at least the lowest part of intertidal flats, as the tidal flow is there limited at water depths for which waves 
are important. There, the decrease in bed level dynamics for a decrease in bed slope remains a general concept.

The pattern of decreasing tidal velocities for higher bed elevations within intertidal flats (Fig. 6) is present in 
many other estuaries13,17. Furthermore, the relatively long duration of water levels around low water is a general 
consequence of the shape of a tidal wave. Therefore, in other estuaries similarities in the likelihood distribution 
of the bed level dynamics across intertidal flats are expectable. Apart from gradients in sediment transport and 
the bed slope, bed level dynamics are also affected by aspects such as grain size variability17,44, benthos45–47, and 

(3)
∂H

∂zb
= γ

∂h

∂zb
= −γ .



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12877  | https://doi.org/10.1038/s41598-020-69444-7

www.nature.com/scientificreports/

bed erodibility39. Bed level dynamics may also follow from sediment transported through lateral circulation48, 
which is especially an important mechanism during fair weather in estuaries with highly turbid channels49. 
Differences in wave climate induce differences in bed level dynamics around an individual intertidal flat, for 
example, following variations in fetch (which is a function of location and wind direction)41. Spatial variations in 
the importance of wave-current interaction50,51 play a role too. For example, waves that reached the high part of 
the studied intertidal flat faced generally substantially larger tidal currents in the channel/foreshore than waves 
that reached the low part of the flat, considering similar water depths (Figs. 5h, 7e).

In contrast to previous studies that solely compared the wave and tidal forcing to explain bed level dynamics 
patterns18–21, we showed that it is important to include wind-driven flow when explaining these patterns. For 
the lowest elevations of an intertidal flat, the wind essentially replaces the small tidal forcing for water depths 
at which waves are most efficient (Fig. 7h). Including a full wind/wave climate in long-term morphological 
simulations is computationally very expensive. Instead, given the existence of patterns in the hydrodynamic 
forcing processes over bed elevation and water depth (Fig. 7h), it is worth to investigate whether these effects 
could be parametrized in these models (using the local distributions of the forcing processes). Furthermore, for 
intertidal flats, it was not demonstrated before that patterns in bed level dynamics can be explained partly by 
the linear proportionality with the bed slope, and not only by the gradients in sediment transport. The identified 
spatiotemporal inhomogeneities in forcing processes and bed level dynamics can have direct implications for 
inhomogeneities in benthos (e.g., Fig. 8), which in turn can affect the bed level dynamics45–47. Therefore, not only 
variations in bed level22,23, but also variations in storm impacts, drive variations in benthic macrofauna. When 
the bed level or bed slope of an intertidal flat evolves in the long term, structural changes in bed level dynamics 
will follow with related effects on benthic macrofauna.

Study areas.  This study focused on various intertidal areas within the Eastern Scheldt and Western Scheldt 
(both located in the Netherlands; see Fig. 1). Both estuaries are connected to the North Sea. River inflow to the 
Eastern Scheldt has been blocked by dams. Since 1986, the estuary has a storm surge barrier at its mouth which 
closes under severe storm conditions. The mean tidal range in the Eastern Scheldt ranges from 2.5 m at its mouth 
up to 3.5 m in one of its branches. The Western Scheldt has an average river discharge of about 100 m3

/s , which is 
at the mouth only approximately 0.1% of the tidal discharge. The mean tidal range in the Western Scheldt ranges 
from 3.5 m at its mouth up to 5 m near the Belgian border (upstream). For the deepening and maintenance of 
the navigation channel of the Western Scheldt, sediment relocations take place. The human interventions in both 
systems affect the long-term evolution of the intertidal flats. Although these estuaries are close and similar in 
size, they develop differently. During the past decades, the intertidal flats in the Western Scheldt mainly raised 
and steepened, while in the Eastern Scheldt the intertidal flats lowered and flattened out6,8,52. As these are two 
neighbouring estuaries, their wind climates are relatively comparable, with generally the strongest winds from 
the southwest and wind speeds exceeding 10 m/s roughly 1/8th of the time. Most waves in these systems are 
locally generated, with a peak period of a few seconds.

Methods
Rijkswaterstaat (the Dutch Ministry of Infrastructure and the Environment) has been extensively measuring 
the long-term morphological changes of intertidal flats over various temporal and spatial scales for decades. 
Annual dGPS-RTK elevation transects ( 2σ of 6 cm)53 have been measured on intertidal flats in both the Eastern 
Scheldt and Western Scheldt since 1987. Additionally, point-elevation measurements have been measured at 
fixed locations on the intertidal flats of both estuaries since 1984. Time series of the Zuidgors and Galgeplaat 
intertidal flats are used in this study to analyse the effect of storm events on the long-term evolution of these 
areas. Furthermore, the data of additional intertidal flats in the Western Scheldt are systematically analysed to 
study a possible relation between bed elevation and the bed level dynamics (variations in the bed level evolution). 
The average measurement interval was 40 days. These data have been gathered with Sediment Erosion Bars until 
2008, and with RTK-dGPS afterwards. For every measurement, 15 samples were averaged within a 2 m radius, 
such that local irregularities were excluded and centimetre precision was achieved. The bathymetric maps in this 
study are based on single beam and LiDAR measurements ( 2σ of 50 cm and 30 cm, respectively)53,54.

Complementary to these long-term morphological datasets, we have deployed instruments to measure the 
hydro-morphodynamics over 1 month (15 November–15 December 2016). These data are used to study the 
hydro-morphodynamic processes during an individual storm event, and the calm period surrounding this event. 
The instruments were placed along a cross-shore transect on the Zuidgors intertidal flat in the Western Scheldt 
(Figs. 1a, 4a). Two measurement frames were deployed on the intertidal flat ( FH 1.0 m above MSL; FL 1.6 m below 
MSL). In the adjacent channel, an Acoustic Doppler Current Profiler (ADCP) was deployed (6.8 m below MSL), 
which measured velocities on a 10 min interval with a 0.5 m bin size.

Each frame contained an Acoustic Doppler Velocimeter that sampled bed elevations at 10 min intervals. Each 
frame also contained a vertical array of two ( FH ) or four ( FL ) Optical Backscatter Sensors (OBSes) that were at 
least 50 cm spaced. After a post-campaign calibration against water samples with suspended sediment from the 
site, the OBSes provided time series of suspended sediment concentrations. Near each frame, an upward-looking 
ADCP was deployed which measured the velocities in the water column on a 10 min interval with a 0.1 m bin 
size. Also a 10 Hz pressure sensor was deployed in the bed near each frame to measure water levels and waves 
(these were deployed for a longer period, October 2016–February 2018). The pressure signals were corrected for 
measured atmospheric pressure fluctuations. Wave-induced shear stresses were computed following Soulsby55. 
Water levels measured by Rijkswaterstaat (retrieved from waterinfo.rws.nl) at the nearby tidal gauge station 
Borssele (7 km downstream of Zuidgors) were used for the analyses that required continuous long-term water 
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level data as the instruments on the intertidal flat emerged. Wind data was retrieved from the KNMI Vlissingen 
wind station (17 km west of Zuidgors).

For the derivation of system-wide peak velocities on the intertidal flats of both estuaries (Fig. 6), depth-aver-
aged numerical simulations with the Delft3D model56 are used. While these simulations are the same as presented 
in De Vet et al.6, we consider in this study the peak velocities in relation to the bed level, instead of visually on a 
map. For both estuaries, the simulations had been calibrated and validated with measured hydrodynamics57,58.

The benthic macrofauna (i.e., macroinvertebrates > 1 mm ) was sampled (3 sediment core replicates, Ø10 cm, 
30 cm depth) on the Zuidgors intertidal flat before and after two storms in 2017 (October and November). 
Samples were taken over a cross-shore transect 1 km west of and parallel to the 2016 measurement frames. The 
benthic macrofauna samples were determined to species level and the abundance ( N/m2 ) of the community 
was calculated. The six sampling stations were equally distributed in emersion time (between 10 and 80% emer-
sion time). The community was characterized by high abundances of short-living species, like the mudshrimp 
Corophium sp. ( < 1 year life span) and the red thread worm Heteromastus filiformis (1–2 year life span).
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