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A B S T R A C T

Landslides are destructive and recurrent natural disasters that cost annually signif-
icant social and economic losses all over the world. These events can be induced by
natural factors as earthquakes and extreme rainfall, as well as by human interven-
tion, including construction and mining. A primary resource to conduct landslides
studies for prediction, risk assessment, and mitigation are historical databases with
accurate location of individual events. To increase the location accuracy of those
past landslide events, and optimize conventional time- and cost- consuming map-
ping routines, this study aims to develop an automatic landslide detection method
from free-of-charge optical satellite imagery (Sentinel-2) and global Digital Eleva-
tion Model (ALOS World3D-30m DEM) using Object-based Image Analysis (OBIA)
in combination with Machine Learning (ML).

Existing works have successfully used earth-observation datasets for the gener-
ation of landslides databases. Most of them apply rule-based techniques using
features thresholds that are not global and therefore perform poorly when applied
to new regions where the method was not developed. This study presents a first
attempt of an automatic method that generalizes to landslides occurring over the
entire world without knowledge of their cause or triggering factor.

To obtain a robust method that can deal with the complex characteristics of land-
slides (e.g. diversity of shapes/sizes, land cover, illumination and spectral variabil-
ity), we explored OBIA, an image processing technique that has demonstrated bet-
ter performance than the pixel-based approach, specially when the target objects are
bigger than the cell resolution. The developed method consists in cloud-free images
acquisition and determination of suitable features for image segmentation and im-
age classification. For the image segmentation, we developed a two-step approach
that consists in an initial segmentation using k-means and the Red/Green Differ-
ence (RGD) as input feature to create homogeneous segments and isolate landslides
from non-landslides. This first approach leads to oversegmentation of non-landslide
areas and, consequently, to an imbalanced dataset. The second step consists in a
merging algorithm using Normalized Difference Vegetation Index (NDVI) as input
feature to merge homogeneous non-landslide segments and balance the dataset.

These two-stages include the setting of parameters as the number of clusters
(K) and NDVI thresholds that were experimentally derived. Once the segments
are created and the dataset is balanced, a non-parametric supervised classification
using Random Forest (RF) was applied to identify landslide segments; the main
advantage of this classifier is that it can deal with different statistical distributions
of features and can handle imbalanced datasets. Using a training and testing set of
70% and 30%, our method achieved a precision of 83%, recall of 83%, and f1-score
of 83%. We found that topographic features have less influence than spectral ones;
however, their exclusion decreases the model performance in about 10%.

Our method is built using entirely open source technologies allowing its appli-
cability and re-usability. For future work, we propose to use our method to detect
new landslides and increase the number of training samples. Additionally, we rec-
ommend to explore a complementary approach to the merging algorithm to reduce
the number of non-landslide segments, balance the dataset, and keep accurate classi-
fication results while more training images are added to the model.
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G LO S S A R Y

Bootstrap Aggregation is a method that uses multiple versions of a predictor and
using them to get an aggregated predictor. It consists in making a random
selection of samples with replacement (or re-substitution) in such a way
that the record already selected for training is placed back into the original
dataset and can be used again to build a new training set. 12, 34

change features are those features derived from applying the image difference
techniques and that are related with changes between the pre- and post-
landslide image (e.g. Red/Green difference (RGD), Vegetation Index dif-
ference (VID), Brightness difference (BrightnessD)). 47, 58

coarse-grained threshold is a flexible threshold. For instance, the similarity thresh-
old between two segments is coarse-grained if it is ≥ 0.1. 47, 48

contextual or relative to the information contained in the image. 2, 11, 27, 31, 49,
58, 63

ensemble is a Machine Learning technique that combines multiple learning algo-
rithms to generate a model with better predictive performance than the
single components of the model. Examples are Random Forest and Boost-
ing algorithms. 7, 12, 13, 16, 32, 34

fine-grained threshold is a strict or non-flexible threshold. The similarity threshold
between two segments is fined-grained if it approximates to 0 (e.g. 0 <
threshold <0.1 ). 28, 47, 48, 56

geomorphological settings are landforms derived from the physical evolution of
the landscape. Examples of geomorphological settings are river valleys,
fluvial terraces, alluvial fans, deltas, hilly topography, and landforms de-
rived from eolian, coastal-marine and glacial processes. 1, 3, 26, 57, 64

heads-up digitization is the manual digitization by tracing a mouse over features
displayed on a computer screen 1. 19

imbalanced dataset, for a binary classification problem, a dataset is said to be im-
balanced when one of the classes constitutes the majority objects, or it
considerably outnumbers the other class.. v, 5

knowledge-based features are features commonly used by experts during visual
image interpretation to identify landslides. 22

landslides diagnostic features are knowledge-based features that give key informa-
tion to characterize and identify landslides. Examples are the Normalized
Difference Vegetation Index (NDVI), Brightness, and Green Normalized
Difference Vegetation Index (GNDVI), slope angle, terrain curvature, slope
direction. 2, 4, 5, 20, 22, 29, 30, 35, 45, 49, 52, 57

non-local or global feature. Feature mean calculated using all pixels contained in
the image. 28, 47

overfitted model refers to a model which does not generalize well to samples not
encountered during the training. 14

1 https://support.esri.com/en/other-resources/gis-dictionary/term/0c14e614-30c2-4bee-a1e4-
4ff2c60d4626

xxi
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Red/Green Difference It is a landslide diagnostic feature calculated as the differ-
ence between the Red/Green ratio in t1 (pre-event) and the Red/Green
ratio in t2 (post-event) to produce a further image which represents the
change between the two times. v

rule-based classification technique that consists in manually define decision trees
using features thresholds. v, 3, 60

spectral features features derived from optical satellite images (e.g. NDVI, bright-
ness). 9, 22, 25, 28, 47, 56, 59, 60, 63

topographic features morphometric features derived from Digital Elevation Models
(e.g. slope, relative relief). 22

variance in Machine Learning, refers to the variability in the predictive performance
of a Machine Learning model when it is tested on the training and the
unseen data. A model with high variance performs well on the training
data but can not generalizes on the test or unseen data. 12, 13, 33, 34, 52



1 I N T R O D U C T I O N

Natural disasters are destructive forces that cost annually significant social and
economic losses all over the world. In particular, landslides are one of the most
recurrent and widespread natural disasters as they are induced not only by natural
factors as earthquakes and extreme rainfall but also by human intervention, includ-
ing construction and mining. According to Froude and Petley [2018], from 2004 to
2016, about 56,000 human lives were lost in 4,862 rainfall-induced landslide events
distributed worldwide, with Asia representing the dominant geographical area.

Landslides can occur in a wide diversity of geomorphological settings from coastal
regions and river valleys to hilly areas. They are not restricted to a particular type
of lithology and can be associated with different types of land cover, including
urban areas, forests, bare-lands, grasslands, and agricultural lands. The large va-
riety of landslides and their dependency on natural factors limit the reliability of
their prediction, risk assessment, and mitigation. Nevertheless, with the advent of
the world wide web, the recent advances in Geographical Information System (GIS)
technologies, the availability of public earth-observation data, and the fast growth
of Machine Learning (ML) during the last decades, many efforts have been made to
reduce uncertainties in landslide-related studies and minimize mortalities and eco-
nomic losses induced by landslides [Pradhan and Lee, 2010; Nithya and Prasanna,
2010; Subhashini and Premaratne, 2013; Zhou et al., 2018; Tehrani et al., 2019].

A primary resource to conduct landslide studies at large, regional, and local
scales, is a landslide inventory map [Raspini et al., 2016]. Van Westen [2016] de-
fines a landslide inventory as a collection of landslide features in a particular area
for a certain period, with spatial information related to the location (as points or
polygons), preferably combined with attribute information such as date of occur-
rence, triggering factor, and landslide size.

1.1 problem statement and motivation

Creating landslides inventories maps is the first step for the training and testing of
landslide forecasting studies [Danneels et al., 2007]. Van Westen et al. [2006] state
that the largest source of error in landslide susceptibility and risk maps for land-
use planning and other mitigation measures is the limited availability of existing
landslides inventories. The main challenge of generating such landslide databases
is the estimation of the accurate spatial location of individual landslide events and
their temporal occurrences. Global landslides catalogs as the one developed by
NASA Goddard Space Flight Center (GSFC) [Kirschbaum et al., 2010], provide ini-
tial insights into the spatiotemporal statistical trends in the worldwide landslides
distribution. Kirschbaum et al. [2010] report significant uncertainties when assign-
ing geographic coordinates to a landslide event. To deal with these uncertainties,
the authors set a radius of confidence (which spans from tens of meters to tens of
kilometers) to the location, indicating the potential area over which the landslide
may have occurred [Herrera, 2018]. The accurate location of landslides events is
critical for the prediction of landslides. Controlling factors such as soil composition,
soil moisture, vegetation index, and topographic features (e.g. slope, aspect) are
strongly dependent on the geographic location of the landslide as their values can
drastically vary within a few meters.

1
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Satellite remote sensing technology plays a central role in the decision-making
process for disaster management. Implementing warnings and mitigation strate-
gies are often challenging if developed without having robust ground observation
data. Therefore, earth-observation data has a higher value when ground data is
limited or unavailable [Kansakar and Hossain, 2016]. Remote sensing has proved
its effectiveness in generating landslide inventories [Martha et al., 2011], assisting
traditional time-consuming mapping methods that mostly rely on field survey and
visual interpretation of aerial photographs [Lu et al., 2011]. Multi-temporal im-
agery for natural disaster assessments has become an alternative source to deal
with areas with limited access to public geo-data. The use of platforms such as
Google Earth Engine (GEE) 1, USGS Earth Explorer 2 and Copernicus 3 allows pub-
lic access to satellite-based datasets, which make possible time series analysis on
a global scale. Imagery collections from the Sentinel program, provide a continu-
ous record of satellite-based observations, and together with Landsat imagery, they
are primary sources of medium-spatial resolution datasets for monitoring global
change. Sentinel-2, with Ground Sample Distance (GSD) of 10m, has a broad list
of applications, including detecting land cover change, estimating chlorophyll con-
centrations, monitoring geohazards, and providing emergency response in natural
disaster management [Lemmens, 2015].

The value of earth-observation data for landslides detection has continuously
increased during the last two decades. The global geographical coverage, high tem-
poral frequency, and low cost, mixed with a broad selection of spatial and spectral
options, highlight the use of remotely sensed imagery for change detection in differ-
ent applications [Chen et al., 2012]. Hölbling et al. [2015] explain that satellite data
is crucial for detecting landslides after triggering events, mainly when they occur
in remote or hardly accessible areas.

To fully exploit the wide range of existing optical imagery, remote sensing has
evolved into a multidisciplinary field where Machine Learning (ML) has caused a
significant impact [Camps-Valls, 2009]. Some of the meaningful advances in de-
veloping ML-based methodologies for remote sensing applications are image clas-
sification and automatic extraction of information by computational and statistical
methods [Lary et al., 2016]. Image detection methods in remote sensing include clas-
sical methods focused on pixel-based approaches [Cheng et al., 2004; Danneels et al.,
2007; Tsangaratos and Ilia, 2014] and advances techniques such as the Object-Based
Image Analysis (OBIA), which has proved high performance in many applications
[Platt and Rapoza, 2008; Blaschke, 2010; Martha et al., 2011; Lu et al., 2011; Martha
et al., 2012; Feizizadeh et al., 2017], especially with medium-high and very-high-
resolution satellite imagery. In contrast to pixel-based approaches, OBIA allows the
integration of several landslides diagnostic features such as spectral, spatial, and
contextual features [Martha et al., 2010] that better resemble visual interpretation of
aerial photographs [Feizizadeh et al., 2017] and reduce the influence of the single-
pixel reflectance [Blaschke, 2013].

Although conventional methods to create landslide inventories have been used
with standardized procedures for several decades, they are resource-intensive and
time-consuming [Raspini et al., 2016]. To optimize these time- and cost- consum-
ing mapping routines exploiting the use of free-of-charge earth-observation data,
this study aims to develop an automatic landslide detection method from Sentinel-
2 and Digital Elevation Model (DEM) using Object-Based Image Analysis OBIA in
combination with Machine Learning (ML).

1 https://earthengine.google.com/
2 https://earthexplorer.usgs.gov/
3 https://www.copernicus.eu/en
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1.2 research questions
Based on the research objective and the problem introduced in the previous section,
the main research question of this thesis is formulated:

How to detect landslides using Machine Learning?

To answer the main research question, the following sub-questions are addressed:

• To what extent can landslides be detected using Sentinel-2 in combination
with a worldwide Digital Elevation Model?

• What are the relevant landslide diagnostic features?

• What is the best segmentation strategy?

• How to exploit features per pixels to produce features per segments?

• What is the most appropriate Machine Learning technique?

• What is the accuracy of the most appropriate Machine Learning technique?

1.3 contribution
The main contributions of this study are:

• Model generalization. Only few works have combined OBIA and ML for land-
slide detection using remote sensing data [Danneels et al., 2007; Stumpf and
Kerle, 2011; Parker, 2013]; most of them apply rule-based techniques using fea-
tures thresholds (e.g. Vegetation index) [Lu et al., 2004; Blaschke, 2010; Martha
et al., 2012; Keyport et al., 2018]. Such models use training data and thresh-
olds that are region-specific and consequently perform poorly when applied
to new regions where the method was not developed. In contrast to previ-
ous research, our method is trained with satellite images from different areas,
landscapes, and geomorphological settings and with different types of land-
slides not tied to a specific triggering factor (e.g. earthquakes, rainfall). This
variety of training samples allowed the generation of a model that general-
izes to landslides occurring worldwide without knowledge of the cause or
triggering factor.

• Multi-scale approach. One of the main difficulties in the application of any im-
age segmentation technique is to deal with different object sizes. Some works
use single segmentation scales [Espindola et al., 2006; Yu et al., 2006; Zhou
and Troy, 2009], while others investigate different approaches to select the op-
timal input parameters for multi-scale segmentation algorithms [Benz et al.,
2004; Johnson and Xie, 2011; Martha et al., 2011] that are implemented within
commercial-software (e.g. eCognition Definiens Developer 4, Envi Zoom, and
ERDAS Objective). Using open-resource alternatives, we use a two-step seg-
mentation approach combining k-means clustering for initial and detailed seg-
mentation, and region growing algorithm at segment level to merge homoge-
neous segments. This strategy allowed to isolate landslides of different sizes
(landslides not merged with non-landslide segments) and balance the training
set;

4 http://www.ecognition.com/
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• Free-of-charge resources. The re-usability and applicability of previous land-
slides detection methods are restricted due to the use of commercial software
(e.g. eCognition) and datasets (e.g. Quickbird, Spot, IKONOS, WorldView-
2). Our method is built using free-of-charge software (Python and GEE) and
datasets (Sentinel-2, ALOS World 3D-30m (AW3D30) DEM).

• Semi-automated implementation. A semi-automated tool that includes the
generation of cloud-free images, the extraction/computation of features, and
the segmentation and classification of optical satellite images is developed to
test our proposed method. This implementation can be used to assist land-
slides experts/non-experts in detecting new landslides events and improve
existing databases at low costs.

1.4 research scope and limitations
The following considerations are made to explain the research scope and highlight
the limitations of this study:

• The main product of this study is a method to detect landslides from optical
satellite imagery and DEM using OBIA in combination with Random Forest (RF).
The semi-automatic tool developed to test and validate our method consists of
a pipeline that includes the image pre-processing stage, image segmentation,
and image classification. Since the pre-processing stage was implemented us-
ing Google Earth Engine (GEE), it could only serve for research, development,
or educational purposes unless the user signs other terms and agreements
with Google. The prototype aimed to validate the methodology and not at
being a production-ready software;

• Due to the GSD of the available dataset (Sentinel-2), this study focuses on large
(100px) to catastrophic-scale landslides with minimum size of approximately
10,000 m2 (100m x 100m);

• Due to the temporal coverage of Sentinel-2 imagery, the model is exclusively
trained with landslides occurred from June 2015 and onwards;

• The developed method has limitations in regions with perennial snow, high
sedimentation rate, densely built-up areas, and regions characterized by sparse
or non-vegetation;

• This study aims at detecting landslides, not their delineation;

• This study does not aim to compare results from different image detection
techniques (pixel-based vs. OBIA) or ML algorithms;

1.5 methodology overview
Based on the research questions (Section 1.2) and the principles of OBIA, the follow-
ing methodology workflow is defined:

1. Pre-processing. This stage involves the sample set preparation, generation of
cloud-free images, the extraction of spectral and topographic features from
Sentinel-2 and AW3D30 DEM, and the computation of landslides diagnostic fea-
tures at pixel level (Figure 1.1 a).

2. Image segmentation. It is the first step towards the application of OBIA. Blaschke
[2010] defines image segmentation as the subdivision of an image into spa-
tially continuous, disjoint, and relative homogeneous regions that refer to
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segments. This stage is implemented as a two-step approach: (a) an initial
segmentation using a k-means implementation; (b) a merging algorithm us-
ing a region-growing implementation (Figure 1.1 b).

3. Image classification. Once segments with features statistics are obtained, the
image is classified by assigning each segment to a class. The classification
problem of this study is binary with the classes landslide and non-landslide.

The image classification is conducted using supervised ML, specifically RF al-
gorithm. It involves the training samples preparation and labeling, the ex-
ploratory analysis to understand the statistical distribution of the data, the
model training, and testing, and finally, the assessment of the model perfor-
mance. The adopted approach for classification is conducted by iteratively
adding features and assessing the model performance at each step (Figure 1.1
c)

1.6 thesis outline
This thesis document is structured as follows:

• Chapter 2 reviews the related works and theoretical background of two main
image detection techniques in remote sensing. The chapter also describes the
OBIA workflow and general concepts related to Random Forest (RF), Support
Vector Machines (SVM) and imbalanced datasets;

• Chapter 3 addresses the mathematical foundations, concepts, and algorithms
implemented for the proposed method including the pre-processing techniques
for image analysis, computation of landslides diagnostic features, image seg-
mentation, and image classification;

• Chapter 4 describes the dataset and tools;

• Chapter 5 describes the implementation details of the methodology, the exper-
iments conducted, and presents the results;

• Chapter 6 addresses the analysis of the results;

• Chapter 7 presents a summary of the conclusions by answering the main re-
search questions. The chapter and the thesis document end with recommen-
dations for future works.
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2 T H E O R E T I C A L B A C KG R O U N D A N D
R E L AT E D W O R K S

This chapter aims to give an overview of the relevant theory and previous scientific
works related to this study. Section 2.1, discusses the developments of two main
image detection techniques for remote sensing applications (pixel-based vs. OBIA).
Section 2.2 addresses the concept of OBIA, its workflow, and its relevance for land-
slide detection. Section 2.3 reviews the definition, early developments, and main
properties the Random Forest (RF) algorithm. Section 2.4 gives a general introduc-
tion to SVM, a ML technique that similar to RF, is commonly used for object-based
classification in remote sensing. Finally, an introduction to imbalanced learning and
the suitable metrics for evaluating model performance are presented in Section 2.5.

2.1 image classification in remote sensing

Statistical pattern recognition and the use of image classification techniques in re-
mote sensing have been widely researched over several years [Fu, 1983; Lemmens,
1994; Chen and Ho, 2008; Dougherty, 2012; Khorram et al., 2016]. First efforts were
mostly dedicated to multispectral classification using pixel-based approaches where
individual pixels are handled as separate objects without exploring their spatial re-
lationships with adjacent pixels [Lemmens, 2011]. Statistical pattern recognition
deals with accurately classifying a pattern into one of several classes [Chen and
Ho, 2008]. In a pixel-based classification problem, each pixel is assumed to be an
individual object and to belong to a single class.

Data-driven techniques are of primary relevance for image processing in remote
sensing. In particular, supervised and unsupervised learning are the two main
approaches for multispectral classification. While in unsupervised classification,
the pixels are grouped into clusters based on their spectral properties before the
class assignment, in supervised classification the spectral signatures of each pixel
are first linked to classes during a training phase. Supervised classification works
on the principle of using labeled information about class membership of single
pixels to create a model that can generalize to the whole image or a set of images
[Camps-Valls, 2009]. The prior knowledge is obtained by collecting ground data for
a limited number of areas that represent the training samples [Lemmens, 2011].

In order to compare the pixel values to those of the training samples, and allocate
individual objects (pixels in pixel-based approach) to the most likely class [Lem-
mens, 1994], different classification algorithms have been used for a great variety
of applications including land-use and land cover classification, object detection,
aquatic vegetation classification, water quality mapping, crops monitoring, urban
planning, and disaster management. Some of the most commonly applied methods
are statistical learning algorithms such as Maximum Likelihood Classification (MLC)
[Strahler, 1980; Rajan et al., 2008; Khorram et al., 2016], K-Nearest Neighbor (KNN)
[Cover et al., 1967; Grabowski et al., 2003], Minimum Distance to Mean Classifier,
and Parallelepiped Classifier [Khorram et al., 2016], as well as more advanced ML al-
gorithms such as ensemble methods or techniques that combine multiple learning
algorithms (e.g. RF, Boosting) [Briem et al., 2002; Ham et al., 2005], SVM [Camps-
Valls et al., 2006; Inglada, 2007; Camps-Valls et al., 2008], and Artificial Neural Net-
works (ANN) [Del Frate et al., 2007; Jensen et al., 2009]. Lately, Deep Learning mod-
els start being used in a variety of image classification problems [Krizhevsky et al.,

7
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2012; Chan et al., 2015; Hu et al., 2015]. For the specific case of satellite imagery
classification, Nguyen et al. [2013] defined an architecture of Convolutional Neural
Networks (CNN) for image classification that does not require any pre-processing
or feature extraction process. Maggiori et al. [2016] proposed a fully CNN for dense
pixel-wise classification of satellite imagery to produce fine-grained classification
maps. Kersbergen [2018] used CNN for automated building damage classification
from radar and very-high-resolution optical imagery.

In the context of land cover classification and landslide detection, a variety of
pixel-based studies have been conducted using different classification techniques
and earth-observation datasets. Danneels et al. [2007] generated an automated pro-
cedure to detect landslides from multispectral remote sensing images using MLC.
Similarly, Sekertekin et al. [2017] used MLC to derive land-use and land cover images
from Landsat 8 and Sentinel-2. Tsangaratos and Ilia [2014] developed a supervised
ML spatial tool to detect terrain deformation induced by landslides occurrences us-
ing Google Earth Engine (GEE). Enderle and Weih Jr [2005], integrating supervised
and unsupervised classification methods, generated an accurate land cover classi-
fication map using Landsat 7 imagery. Lee and Lee [2006] implemented a change
detection technique to detect landslide using KOMPSAT-1 satellite imagery.

With the continuous improvement of the spatial resolution of remote sensors (e.g.
IKONOS, SPOT-5, Quickbird, WorldView), new needs for efficiently extracting in-
formation from high-resolution and very-high-resolution satellite images emerged.
For applications as low-resolution land cover classification where the target objects
approximate the size of the cell resolution (Figure 2.1a), it is assumed that pixels
belong to the same land cover class if they are close in the spectral feature space
[Blaschke, 2013]; however, in the presence of higher resolution imagery (Figure 2.1b),
the same assumption fails, especially in more complex environments composed of
multi-scale objects. The two situations illustrated by Blaschke [2010] in Figure 2.1,
require different approaches to efficiently extract the image information. In case
(a), for medium-low resolution imagery, a pixel by pixel technique might be suit-
able, while in case (b), for high-resolution imagery, the need for a new approach
that makes use of spatial concepts and considers the regionalization of neighboring
pixels into groups of pixels is required. As a result, OBIA technique is developed to
address the pixel-based limitations.

(a) 5m pixel (b) 1.25m pixel

Figure 2.1: Spatial resolution vs. objects under consideration. (a) Objects size similar to the
cell resolution. (b) Objects size bigger than the cell resolution (Modified from
Blaschke [2010]).

One of the first works in the field of object-based analysis was published by
Blaschke et al. [2000]. Their study presented the OBIA method in the context of
GIS and remote sensing, and explained the perspectives for environmental appli-
cations. Blaschke et al. [2004] presented a new contextual approach using image
segmentation for object-based classification. Some years later, a solid overview of
the development of object-based methods and their application in remote sensing
and GIS is presented by Blaschke [2010]. The author clearly states the limitations
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of the pixel paradigm and the considerable progress that OBIA methods were mak-
ing towards a spatial information extraction workflow, as it is required for spatial
planning and in many monitoring programs.

Several works have been dedicated to proving the advantages of OBIA over the
pixel-based approach. Behling et al. [2014] proposed a method that uses pixel-based
thresholds and OBIA to investigate temporal changes in Normalized Difference
Vegetation Index (NDVI) and identify landslide-related land cover changes based on
RapidEye satellite imagery. Platt and Rapoza [2008] compared results from MLC

with results from OBIA for a mixed urban-suburban-agricultural landscape. Key-
port et al. [2018] conducted a comparative analysis of pixel-based and object-based
detection of landslides from very-high-resolution images. Weih and Riggan [2010]
compared object-based classification with supervised and unsupervised pixel-based
classification using SPOT-5 satellite imagery and a high-resolution color infrared
digital orthophoto.

2.2 object-based image analysis

OBIA aims at grouping neighboring pixels in regions before conducting the clas-
sification. In the context of remote sensing applications, this technique provides
adequate and automated methods for the analysis of high-resolution and very-
high-resolution satellite imagery by describing the image reality using the object
diagnostic characteristics [Lang, 2008]. The main advantage of OBIA is the integra-
tion of spectral, textural, and spatial/contextual features [Martha et al., 2010; Lu
et al., 2011] to group image pixels into homogeneous and meaningful objects [Lu
et al., 2011]. In contrast to image-pixels, an image-object can be assigned to valid
corresponding real-world objects [Lang, 2008].

The applicability of OBIA in the context of landslides detection has been proved
in previous works. Martha et al. [2012] conducted an object-based analysis of multi-
temporal panchromatic images for the creation of historical landslide inventories.
Blaschke et al. [2014] established a semi-automated OBIA methodology for locating
landslides in north-western Iran. Hölbling et al. [2015] developed a semi-automatic
OBIA approach for landslide detection in northern Taiwan based on high-resolution
satellite data and DEM. Feizizadeh et al. [2017] presented an OBIA methodology
for landslide-related change detection from multi-temporal satellite images using
spatial and spectral features, and applying fuzzy logic membership functionality.

Due to the out-performance of OBIA over the pixel-based approach [Blaschke,
2010; Weih and Riggan, 2010; Blaschke, 2013; Lu et al., 2011; Hölbling et al., 2015]
for classification of complex geospatial objects (different size/shapes, high spectral
and illumination variability), the former state-of-the-art image detection technique
was selected to develop this study. Landslides have complex shapes, and spectral
properties very close to those of other natural objects such as river sand deposition
and rocks outcrop [Martha et al., 2010], or human-intervened objects as agricultural
lands and deforested areas (Figure 2.2).

Table 2.1 summarizes the main differences between OBIA and pixel-based ap-
proaches. The table also includes the advantages of OBIA over pixel-based when
the target objects are bigger than the cell resolution (Figure 2.1b and Figure 2.2).

Although the input datasets of this study have a medium-spatial resolution (GSD

= 10m), OBIA is still a suitable approach as the target object sizes are considerably
larger than the cell resolution. For a homogeneous object to be identified, a mini-
mum object size of approximately 100px is suggested. Therefore, considering than
the GSD of Sentinel-2 is 10m, the minimum landslide size considered for this re-
search is approximately 10,000m2 (see Section 1.4).

The two basic principles of OBIA involve segmentation and classification. Martha
et al. [2010] state that OBIA is effectively a combination of segmentation to derive
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Figure 2.2: Spectral pixel signatures of different objects in Sentinel-2. (a) Agricultural land.
(b) Landslide. The picture highlights the limitation of pixel-based approaches
when target objects are bigger the cell resolution. Objects are composed of many
pixels. Pixel signatures for different objects can be similar.

Characteristics Pixel-Based OBIA
Object Pixels values Segments statistics
Class Each pixel belongs to a class Each segment belongs to a class.

Advantages of OBIA.

Overcomes the mixed pixel problem within the same class
Overcomes the so-called salt-and-pepper effect
Easily integrated within GIS
Reduces computational classifiers loads
Can address multiple scales
Overcomes the problem of similar pixels for different classes

Table 2.1: OBIA vs. pixel-based approach.
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image primitives, and their subsequent classification based on features calculated
from the extracted objects.

2.2.1 Image Segmentation

Image segmentation defines the building blocks of OBIA [Lu et al., 2004] as the
accuracy of the classification process is directly influenced by the segmentation
results [Lemmens, 2011; Feizizadeh et al., 2017]. According to Blaschke [2010], the
homogeneity of the pixels can be determined by one or more spectral criteria in
one or more dimensions of a feature space; that means that when compared with
single pixels, the segments will have additional spectral information including for
instance, mean, median, standard deviation, minimum, and maximum values per
band. Besides the diversification of spectral values, a more significant advantage of
segmentation is the inclusion of additional spatial and contextual information for
target objects, including the neighborhood relationship [Blaschke, 2010; Benz et al.,
2004; Hay and Castilla, 2006].

Image Segmentation techniques were developed in the 1980s [Haralick and Shapiro,
1985], deriving in numerous segmentation algorithms in the context of image pro-
cessing and computer vision [Pal and Pal, 1993]. For the specific case of segmen-
tation of remote sensing data, Li et al. [2014] explain that spatial-contextual infor-
mation has been added to the original segmentation algorithms. Among the most
common techniques highlight region-based segmentation algorithms [Mannan and
Ray, 2003], Markovian methods [Jackson and Landgrebe, 2002], Watershed methods
[Salembier Clairon et al., 1998], hierarchical algorithms [Dalla Mura et al., 2010], and
k-means clustering implementations [Wang et al., 2010; Clewley et al., 2014; Shep-
herd et al., 2019].

One of the main challenges for segmentation approaches is to segment objects
from different sizes in the same image. Blaschke et al. [2000] state that segments in
an image do not represent meaningful objects at all scales for any application. To ad-
dress the multi-scale issue, Baatz [2000] developed a multi-resolution segmentation
approach based on a region merging technique implemented in the commercial
software eCognition; the approach works as a local optimization procedure that
simulates the synchronous growth of segments over a scene. According to Blaschke
[2010], most of the works referred to as OBIA originated around eCognition in the
early’s 2000.

2.2.2 Object-Based Classification

Object-based classification is defined by Castilla and Hay [2008] as the process of
allocating image-object (segments) to geo-object classes based on both the internal
features of the objects and their mutual relationships. According to Martha et al.
[2011], the use of thresholds is a primary requirement for image classification us-
ing earth-observation data. The most common object-based classification approach
employed in previous works is the application of rule-based techniques [Baraldi
et al., 2006; Martha et al., 2012; Moosavi et al., 2014; Keyport et al., 2018] that can
involve different segmentation, classification, shape adaptation, and merging steps
[Martha et al., 2011]. Danneels et al. [2007] explain the rule-based classification as a
step-wise elimination with several decision rules based on knowledge of the target
object properties.

More advanced techniques for object-based classification have been investigated
during the last decade. ML classifiers such as RF and SVM are among the most
commonly applied algorithms for object-based land cover classification [Peña et al.,
2014; Qian et al., 2015; Li et al., 2016]. A mixed RF and OBIA classification scheme was
developed by Lebourgeois et al. [2017] to combine multi-source datasets (Sentinel-
2 time series, very-high-resolution satellite imagery, and DEM) and generate high-
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resolution land-use classification. Using very-high-resolution satellite imagery from
four case studies, Stumpf and Kerle [2011] explored the applicability and perfor-
mance of RF in combination with object-oriented analysis for image classification in
the context of landslides detection. Tzotsos and Argialas [2008] evaluated the ef-
fectiveness of SVM approach for multi-class classification based on primitive image
objects produced by a multi-resolution segmentation algorithm. Ma et al. [2017]
conducted a literature review based on 173 scientific publications in object-based
classification for land cover mapping; they concluded that RF exhibits the best per-
formance [Stumpf and Kerle, 2011; Duro et al., 2012] followed by SVM [Duro et al.,
2012]. Parker [2013] conducted an object-based segmentation and made a com-
parative analysis of the performance of RF and SVM for landslide detection using
Worldview-2 imagery. The authors demonstrated that RF classification achieved
better results in terms of model performance and processing cost.

2.3 random forest algorithm

2.3.1 Early developments

The Random Forest (RF) algorithm was for the first time introduced by Ho [1995]
and it is nowadays one of the most robust and widely used algorithms within a
wide range of fields [Pretorius et al., 2016; Biau and Scornet, 2016] including remote
sensing [Stumpf and Kerle, 2011; Peña et al., 2014; Ma et al., 2017; Lebourgeois et al.,
2017]. Inspired by the limitations of single decision trees, and following the princi-
ples of the stochastic modeling [Kleinberg, 1990; Berlind, 1995], Ho [1995] proposed
a method to construct tree-based classifiers whose capacity can be arbitrarily ex-
panded to increase both training and testing set accuracy. Amit and Geman [1997]
presented a new approach for shape recognition that allowed to generalize well to
samples not seen during the training; the method was based on growing binary
classification trees using a large number of randomly selected geometric features to
find the best split at each node of the tree. Influenced by the works of Ho [1995]
and Amit and Geman [1997], Breiman [2001a] proposed an improvement of RF by
introducing the Bootstrap Aggregation concept of Breiman [1996] which aimed to
reduce variance by making a random selection of samples from the training set to
grow each tree in the forest. Breiman [2001a] demonstrated that the generalization
error of a forest of tree classifiers depends on the strength of single trees and their
correlation [Koprinska et al., 2006]; the randomness minimizes the correlation to
improve accuracy.

Although different extensions and complementary approaches of the original RF

algorithm have been proposed after Breiman [2001a], Breiman’s findings continue
being the foundation for most of those works. According to Pretorius et al. [2016],
there are two main distinctions between the existing approaches; first, how the inde-
pendent identically distributed random vectors are obtained [Tsymbal et al., 2006;
Bostrom, 2007; Deng and Runger, 2013]; second, the variety of ensemble combi-
nation strategies and voting schemes [Robnik-Šikonja, 2004; Tripoliti et al., 2013;
Seyedhosseini and Tasdizen, 2015].

2.3.2 Definition

RF is an ensemble algorithm that combines multiple ML algorithms to get a better
predictive performance. It works by building multiple decision trees during the
training phase and aggregating them to get a unique prediction.

RF can be used for classification and regression, whose main difference is the type
of predicted variable. While in classification, the output variable is categorical as
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Figure 2.3: Single Decision Tree.

urban/not urban or water/not water, in regression, the variable is a numerical or
continuous value as subsidence rate or wind velocity.

To determine the class for unlabeled instances in classification, a simple and ef-
fective voting scheme like the majority voting proposed by Lam and Suen [1994]
is commonly used. Breiman [2001a] emphasizes that significant improvements in
classification accuracy resulted from growing an ensemble of trees and letting them
vote for the most popular class.

2.3.3 Single Decision Trees in Random Forest

As previously explained, RF is an ensemble of many decisions trees. A decision tree
is a classical supervised learning algorithm that starts at the root node, evaluates the
condition, and takes the appropriate edge to the outcome. The process continues
until a leaf node represented by class names is found; by then, the object is said to
belong to the class named by the leaf.

A decision tree is represented by a tree-graph that expresses a classification rule.
The graph is composed of nodes, which are decisions, and edges which are the
outcomes or possible paths to the next node (Figure 2.3). There are three types of
nodes in the graph:

• The Root Node. It is the top most decision node that performs the first split;

• The Decision Nodes. Those nodes that represent the split in two or more new
edges based on a condition and the value of the evaluated feature;

• The Leaf Nodes. They are the terminal nodes that carry the classification.

2.3.4 Main properties of Random Forest

• Integrating multiple models (ensemble method) allows achieving better pre-
dictive performance than could be obtained from any of the component mod-
els [Fawagreh et al., 2014; Rokach, 2010];

• Using multiple decorrelated trees and random selection of m predictors from
a full set of p predictors, reduce variance, and help to overcome the problem
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of overfitting. An overfitted model does not generalize well to samples that
were not encountered during the training;

• By using Mean Decrease Impurity (MDI) or Mean Decrease Accuracy (MDA)
(Section 3.3.2), RF is able to identify which features are the most important to
make the predictions;

• RF can preserve performance when a large proportion of data is missing and
in the presence of outliers. Additionally, it can also handle dataset with high
dimensionality;

• RF is easy to implement, easily interpretable and it has few parameters to tune;

• RF could handle imbalanced datasets through two different approaches: Bal-
anced Random Forest and Weighted Random Forest (Section 2.5.2);

2.4 support vector machines
Support Vector Machines (SVM) are a family of ML algorithms that make a distinction
between two classes using a hyperplane or decision surface. The idea is to separate
the classes using a decision function that uses support vectors (a selected subset of
data points) and optimizes the separation by maximizing the margin around the
hyperplane. In a two feature space problem, the decision surface could be seen as
a line; in case that the data is not linearly separable, it is possible to transform the
problem into a higher spatial dimension.

For a linearly separable problem, it finds the optimal separating hyperplane by
maximizing the margin, which is the perpendicular distance across the hyperplane
to the closest support vectors on both sides of it (Figure 2.4). When the data is not
separable, two different approaches can be followed: to settle a hyperplane that in-
curs the least error (soft margin method); or to map the data by conducting a nonlin-
ear transformation using properly chosen basis functions into a higher-dimensional
space (kernel trick), where the problem may become linear. [Dougherty, 2012].

The kernel trick transforms the input to a high dimensional space using a func-
tion (kernel function) that allows to express them as inner products in another
space. Some well-studied Kernel functions include the Gaussian Kernel, Linear,
Polynomial, Multiquadric, Exponential, Laplacian, Bessel, Circular, Hyperbolic Tan-
gent (Sigmoid) Kernel, Inverse Multiquadric, Spherical, Rational Quadratic, Wave,
Power, Spline Kernel, B-Spline (Radial Basis Function), Cauchy, and Chi-Square
Kernel.

The most used kernels are the polynomial, Gaussian, and Sigmoid Kernels. A
Polynomial Kernel has adjustable parameters; slope alpha, the constant term C, and
the polynomial degree d. Gaussian Kernel requires to adjust manually a parameter
sigma witch plays a role in how sensitive it is to noise. For the case of a Sigmoid
Kernel, slope alpha and intercept constant C needs to be manually adjusted.

2.4.1 Main properties of Support Vector Machines

• Solid theoretical and mathematical foundation;

• As the hyperplane fitted is based on an optimization function, SVM gives a
large space to classify new data offering an accurate generalization;

• SVM works well with even unstructured and semi-structured data like text,
images, and trees;

• The kernel trick is the real strength of SVM; with an appropriate kernel func-
tion, it is possible to solve complex problems;
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Figure 2.4: Support vectors and classification margin [OpenCv, 2019].

• Complexity on the selection of kernel function parameters. It can be compu-
tationally expensive with large datasets.

2.5 imbalanced learning

Many real-world applications in ML involve the generation of predictive models us-
ing data sets with strongly imbalanced distributions of the target variables [Branco
et al., 2016]. Natural hazards detection, diagnosis of rare medical diseases, and
fraud detection are among ones of the most critical applications.

For a binary classification problem, a dataset is said to be imbalanced when one
of the classes constitutes the majority objects, or it considerably outnumbers the
other class. In such cases, the negative class represents the majority, while the
positive is the minority. Although any dataset that shows an uneven distribution
among classes can be considered imbalanced, in the field of ML, this concept refers
explicitly to significant or extreme imbalances.

The imbalanced distribution of datasets is a big challenge for supervised learn-
ing. As most of the ML algorithms aim to minimize the overall error rate rather
than focus on the positive or target class [Chen et al., 2004], the prediction will be
biased towards the majority class. Therefore, classifiers tend to give an extremely
imbalanced degree of accuracy, having a majority class with accuracies close to 100

% and a minority class with accuracies around 0-10% [He and Garcia, 2008].

2.5.1 Handling imbalanced datasets

Handling imbalanced datasets is influenced by different factors, including the par-
ticular case study, the chosen supervised algorithm, and the ratio of imbalance.
Japkowicz and Stephen [2002] conducted a research to evaluate the nature of the
class imbalance problem and found that the smaller the overall size of the training
set is, the greater the effect of class imbalance will be.

Several researchers have discussed different strategies to address the problem of
imbalanced datasets [Chen et al., 2004; Japkowicz and Stephen, 2002; He and Garcia,
2008; Branco et al., 2016]. Two of the most commonly used approaches are:
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1. Sampling Methods. They consist in the modification of the original dataset
using some techniques that allow either down-sample the majority class, over-
sample the minority class, or both (hybrid methods) [Chen et al., 2004; He
and Garcia, 2008]. Some of the most well-known strategies include random
under/over-sampling, data cleaning approaches, distance techniques, cluster-
ing algorithms, and synthesizing new data from existing observations [Branco
et al., 2016].

2. Cost-Sensitive Methods. They consist in modifying the relative cost linked
with misclassification of the classes. For instance, it will assign a high cost
to misclassification of the minority class [Chen et al., 2004] to compensate for
the imbalance ratio between the classes; thus, with a ratio of imbalance of
1:50, the cost of misclassifying an observation of the minority class is set to
50 times that of misclassifying an observation of the majority class [Japkowicz
and Stephen, 2002].

2.5.2 Random Forest for imbalanced datasets

Similar to most of the classification algorithms, RF is biased toward the majority
class as it tries to minimize the overall error rate. Chen et al. [2004] proposed two
different approaches to address the challenge of imbalanced classification in RF:

1. Weighted Random Forest (WRF). This approach is based on the cost-sensitive
methods (Section 2.5.1). The algorithm adds more weights to the minority
class, thus assigning a higher penalty when misclassifying the minority. The
class prediction of each terminal node is defined by a weighted majority vote,
and a final prediction is determined by aggregating all votes from each tree
[Chen et al., 2004].

2. Balanced Random Forest (BRF). It is a variant of RF that combines the down-
sampling majority class method and ensemble learning by artificially altering
the class distribution to have an equal number of the classes at each tree [Chen
et al., 2004].

2.5.3 Metrics for model performance

Assessing the model performance is a crucial step when applying any supervised
classification method. A well-known representation of the model results is the con-
fusion or error matrix where actual values are compared with the predicted values.
In this representation, the total number of rows (actual class) equals the number
of columns (predictive class) so that for a given number of k classes, the matrix
dimension will be k× k [Lemmens, 2011, 1994].

For a binary classification problem with a positive and negative class, the confu-
sion matrix is given by a 2×2 table (Table 2.2).

Predictive Class
Actual Class Negative Positive

Negative Tn Fp
Positive Fn Tp

Table 2.2: Confusion matrix for binary classification. Tp are the true positives predictions,
Tn are the true negatives, Fp are the false positives, and Fn are the false negatives
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One of the most commonly used metrics derived from the confusion matrix is the
overall accuracy. It is defined as the ratio between the number of correct predictions
and the total number of observations (Equation 2.1):

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(2.1)

Where Tp are the true positives or correctly classified true values, Tn are the true
negative or correctly classified false values, Fp are the false positives or incorrectly
classified true values, and Fn are the false negative or incorrectly classified false
values.

Despite the popularity and simplicity of the overall accuracy as a metric for esti-
mating a classifier performance, for imbalanced datasets where often the minority
is the positive class and the majority the negative, it is not an adequate measure
as the ML algorithm will tend to favor the majority class [Chen et al., 2004]. Since
the overall accuracy is very sensitive to the data distribution [He and Garcia, 2008],
a large number of true negative predicted observations will considerably increase
the classification accuracy results; therefore, the impact of the minority class (target
class) is reduced when compared to that of the majority class [Branco et al., 2016].

Alternative model evaluation metrics for imbalanced classification have been de-
scribed by previous works [Chen et al., 2004; He and Garcia, 2008; Branco et al.,
2016]. Similar to the overall accuracy, those metrics are also functions of the confu-
sion matrix. Some of the most commonly used are:

1. Precision. It measures how many correct predictions are made from a total
number of positively predicted observations (Equation 2.2). It is a useful met-
ric when the cost of false positives is high; thus, the higher the precision, the
less the number of false positives predicted.

Precision =
Tp

Tp + Fp
(2.2)

2. Recall. It measures how many correct predictions are made from the total
amount of observations (Equation 2.3). In contrast to precision, its applicabil-
ity has more significance when the cost of false negative is high. Recall is also
know as true positive rate (TPrate), sensitivity or probability of detection.

Recall =
Tp

Tp + Fn
(2.3)

3. F-Measure. It combines precision and recall to asses the performance of the
classification in terms of a ratio of the weighted importance on either recall or
precision [He and Garcia, 2008]. It can be calculated using Equation 2.4:

Fβ =
(1 + β2). Precision . Recall

β2 . Precision + Recall
(2.4)

Where β is a coefficient to adjust the relative importance of recall with respect
to precision. For a value of β = 1, precision and recall have the same weight.

In contrast to using precision and recall separately, Fβ gives more insight about
the effectiveness of a classifier on correctly making predictions [He and Garcia,
2008; Branco et al., 2016]. According to Equation 2.4, Fβ will be high when
both precision and recall are high.
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Figure 2.5: ROC curve of three classifiers: A, B and a random classifier (Branco et al. [2016]).

4. Receiver Operating Characteristic (ROC) curve. It consists in a graphical repre-
sentation of the relative trade-off between the false positive rate (FPrate) (Equa-
tion 2.5), and the TPrate (Equation 2.3) or sensitivity at different thresholds
settings:

FPrate =
Fp

Fp + Tn
(2.5)

The ROC curve is generated by plotting TPrate on the y-axis against the FPrate
on the x-axis. Every point on the curve corresponds to a different value of a
decision/threshold parameter used to classify an example as belonging to the
positive class [Branco et al., 2016]. In general terms, it gives insight about the
degree of a classifier to distinguish between the two classes.

5. Area Under the Curve (AUC). It can be defined as the area under the ROC

curve and evaluates how much a model can differentiate between different
classes. The AUC can be computed using Equation 2.6:

AUC =
1 + TPrate − FPrate

2
(2.6)



3 R E S E A R C H M E T H O D O LO GY

This chapter describes the methodology proposed to address the main research
questions of this thesis (Section 1.2). Concepts, theories, algorithms, and mathemat-
ical foundations linked to the stages illustrated in Figure 1.1 are discussed in this
chapter.

The overview of the methodology workflow is introduced in Section 1.5. Three
main stages are defined: (a) pre-processing (b) image segmentation, and (c) image
classification (Figure 1.1).

3.1 image pre-processing

3.1.1 Samples set preparation

The sample preparation involves the review of previous landslides inventories and
the manual identification/digitization of landslides events or potential training/test-
ing samples. As a complete and accurate landslide inventory for a specific study
area is not available on open databases, we decided to generate worldwide ground
truth samples through heads-up digitization of landslide events using Sentinel-2
times series and DEM. The following steps are considered to build the sample
datasets:

• Filter large-catastrophic scale landslides out from previous landslide invento-
ries (National Norwegian landslide inventory 1, NASA Catalog 2, the New
Zealand’s National Landslide Database 3). Based on the GSD and temporal
coverage of the input datasets, additional filters are included: high location
accuracy (< 1,000m) and event date from August 2015 and onwards;

• Apply previous knowledge in geomorphology and photogeology to interpret
the geomorphic expression of landslides using Sentinel-2 time series;

• Use hill-shading images derived from DEM to visualize slopes and support the
identification of the potential landslides areas;

• Use visual change on vegetation to identify fresh landslide scarps;

• Use social media and online resources to support the identification of land-
slides occurrences not included in previous databases.

3.1.2 Image set preparation

The image set preparation consists in generating cloud-free images collections of
pre- and post-landslides events.

The main limitation when handling satellite imagery from different scenes is the
scarce availability of pixels with non-null spectral information in the presence of
seasonal changes in vegetation, clouds, and shadows. The challenge is to apply the
most convenient method to remove pixel signatures that are not related to the actual

1 https://www.skredregistrering.no/Forsiden
2 https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4

3 https://data.gns.cri.nz/landslides/
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reflectance of the target objects and generate cloud-free images without altering
their original properties.

Three main strategies are considered to select the most appropriate images:

1. Cleanest image within a period. It consists in finding the least clouded pre-
and post-landslide event images within a pre-defined period. The initial
search is conducted within four months (before and after the event occur-
rence) in order to avoid seasonal changes; however, depending on the case
study, the number of months could be modified.

2. First cloud-free image. It consists in getting the first pre- and post-event im-
age with a cloud percentage less than a pre-defined threshold (approximately
30%).

3. Image composition. It is based on optimizing pixels spectral signature or
identifying the best-suited observation within a pre-defined temporal window.
The appropriate composition strategy depends on the cloudiness of the region
and the sensor revisit time. As clouds often have a high spectral reflectance,
the composite is created using bands median values (per pixels) from all im-
ages under consideration. A disadvantage of this strategy is that it may be
affected by land cover changes or new event occurrences over the selected
period. While short periods may result in occurrences of data gaps, long pe-
riods will increase the amount of valid data but may result in visible changes
of vegetation or land cover.

As shown in Figure 3.1, different pre-processing steps can be applied to handle
satellite images distributed on a global scale. A pre-processing algorithm (Algo-
rithm 3.1) to retrieve cloud-free images pre- and post landslide occurrence is devel-
oped based on the three strategies described above. To find the most appropriate
image, the algorithm analyzes large time-series of Sentinel-2 imagery using as input
the geographical coordinates and the landslide date of occurrence. All the opera-
tions related to the computation of landslides diagnostic features at pixel level are
conducted within the same algorithm, including the band ratioing, image normal-
ization, and image difference (Section 3.1.3). After retrieving the cloud-free images
and calculating the features, the images are downloaded using a fix bounding box
of 5km x 5km (Figure 3.2).

Cleanest image within 4
months

Is the landslide
recognizable?

Sentinel-2

It is within 8 
months pre- and 
post-landslide?

First cloud-free image

Target image 

Cloud masking

Yes

No

Image composite (cloud <30%) 
(10 months)

No

Is the landslide
recognizable?

Image composite (cloud <50%) 
(1 year)

Yes

No

Is the landslide
recognizable?

Yes

No

Yes

Figure 3.1: Cloud-free images pre-processing workflow.
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Figure 3.2: Image set preparation.

Algorithm 3.1: Landslide Image Pre-processing (GEE)
Input: satellite, landslides

1 Initialize image collector
2 for landslides do
3 Add landslide to new before Processor
4 Add landslide to after Processor

5 Process Before (landslide):
6 calculate event time range before event
7 check for cloud free images in time range
8 apply cloud masking
9 add to image collection

10 Process After (landslide):
11 calculate event time range
12 check for cloud-free images in time range after event
13 apply cloud masking
14 add to image collection
15 Process Collector:
16 if image collection is ready then
17 calculate band rationing
18 normalize the image bands Red,Green,Blue
19 calculate NDVI
20 calculate Brightness
21 calculate image difference for NDVI , Brightness, band rationing
22 download image difference as .tiff
23 end
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Cloud masking

As seen in Figure 3.1, a cloud masking algorithm is applied to remove clouds that
remain after an appropriate cloud-free image is selected. The applied algorithm
first selects the Quality Assessment (QA60) band and uses bit 10 and bit 11 to check
whether or not dense or cirrus clouds are present; if they exist, the entire pixel
values are set to ”0” using a masking operation. Sentinel-2 level-1C includes the
QA60 band with one bitmask band containing cloud mask information for both,
dense (bit 10) and cirrus clouds (bit 11). For more details about Sentinel-2 program
and the QA60 bands, the reader is referred to Section 4.1.

3.1.3 Features computation at pixel level

Spectral and spatial information are extracted from Sentinel-2 imagery and ALOS
World 3D-30m DEM (AW3D30) (see Figure 1.1 a). From the extracted pixel signatures,
potential landslides diagnostic features are calculated using band ratioing and im-
age difference techniques (Table 3.1).

The initial selection of features is based on previous works on landslide detec-
tion (Section 2.2) and knowledge-based features commonly used by experts to iden-
tify landslides during visual image interpretation. To provide the basis to develop
object-based landslide mapping routines, Martha et al. [2010] updated and synthe-
sized the diagnostic features for semi-automatic detection (recognition and classifi-
cation) of landslides. In addition to spectral features (e.g. NDVI, Brightness), land-
slides diagnostic features can include topographic features from DEM. Previous re-
searchers have attempted to quantify some of those features. Pike [1988] calculated
the geometric signature derived from DEM for a set of topographic variables that
separates a landslide from its surroundings. Iwahashi and Pike [2007] used slope
gradient and terrain texture for automatic classification of topography. McDermid
and Franklin [1994] demonstrated that the integration of spectral and topographic
features produces better results than working with only spectral information.

Feature nature Feature Target Image Source

Spectral NDVI post-event Sentinel-2
Spectral GNDVI post-event Sentinel-2
Spectral Brightness post-event Sentinel-2
Spectral RGD pre-/post-event Sentinel-2
Spectral VID pre-/post-event Sentinel-2
Spectral BrightnessD pre-/post-event Sentinel-2
Textural NDVItexture Post-event Sentinel-2
Spatial Slope pre-event ALOS (2011)

Table 3.1: Initial landslide diagnostic features.

Band ratioing technique

Band ratioing is a powerful remote sensing technique whose primary purpose is
to highlight the anomaly of the target object while suppressing irrelevant features.
Every object has a spectral reflectance pattern in different wavelength portion [San
et al., 2004]. Depending on the analyzed object, it will tend to absorb in one band
and reflect in another band; those key spectral signatures are used in remote sens-
ing for different geosciences and environmental applications, such as minerals ex-
ploration, vegetation monitoring, and shadows detection.
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red/green ratio. The Red/Green ratio (R/G) helps to minimize the effect of
brightness variation when applying image difference techniques. Identical sur-
face materials can exhibit different brightness values caused by topographic
slope and aspect, shadows, seasonal changes, and differences in sunlight illu-
mination angle and intensity [Haque, 2017].

The method is applied to single multi-spectral Sentinel-2 images (pre- and
post-event) using the Red and the Green bands. For each pixel, the reflectance
value of the Red band is divided by the value of Green band (Equation 3.1):

rg(i, j) =
gk(i, j)
gl(i, j)

(i, j) : i = 1, ..., n; j = 1, ..., m (3.1)

Where rg(i, j) is the output R/G value for pixel x at row i and column j, gk(i, j)
is the reflectance value for the Red band at row i and column j, and gl(i, j) is
the reflectance value for the Green band at row i and column j.

normalized difference vegetation index. The NDVI is often used in remote
sensing for monitoring vegetation. According to Bannari et al. [1995], it ex-
hibits better sensitivity than individual spectral bands for green vegetation
identification. Detecting sudden changes in NDVI is a common practice to an-
alyze disturbances on vegetation as well as for rapid landslide identification
[Yang et al., 2012].

NDVI is built on the fact that chlorophyll largely reflects the Near-Infrared (NIR)
band and absorbs the Red band [Lemmens, 2011]. According to Bannari et al.
[1995], NDVI values approximate to 1 in healthy vegetation, to 0 in bare ground,
and to –1 in water bodies . The mathematical expression used to calculate the
NDVI is shown in Equation 3.2:

ndvi(i, j) =
gq(i, j)− gk(i, j)
gq(i, j) + gk(i, j)

(i, j) : i = 1, ..., n; j = 1, ..., m (3.2)

Where ndvi(i, j) is the output NDVI value for pixel x at row i and column j,
gq(i, j) is the reflectance value for the NIR band at row i and column j, and
gk(i, j) is the reflectance value for the Red band at row i and column j.

From the NDVI values, a textural feature (NDVItexture) that uses the NDVI stan-
dard deviation within a neighbor is computed using a sliding window (ker-
nel=8 neighbors) over the input image. NDVItexture aims to highlight differ-
ences in texture induced by spatial changes in vegetation.

green normalized difference vegetation index. The Green Normalized Dif-
ference Vegetation Index (GNDVI) is a vegetation index widely used in many
phenological applications for being more sensitive than NDVI to chlorophyll
concentration changes. In the context of landslide detection, previous re-
searchers [Hölbling et al., 2015; Veena et al., 2016] have used GNDVI to detect
small-scales vegetation changes not captured by NDVI and to eliminate false
positive as barren lands.

GNDVI is computed similarly than NDVI (Equation 3.2), but the Red band is
replaced by the Green band (Equation 3.3):

gndvi(i, j) =
gq(i, j)− gl(i, j)
gq(i, j) + gl(i, j)

(i, j) : i = 1, ..., n; j = 1, ..., m (3.3)

Where gndvi(i, j) is the output GNDVI value for pixel x at row i and column
j, gq(i, j) is the reflectance value for the NIR band at row i and column j, and
gl(i, j) is the reflectance value for the Green band at row i and column j.
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Image normalization

Image normalization is a technique applied before calculating the Vegetation In-
dex Difference (VID) and Brightness Difference (BrightnessD). This method is useful
to reduce atmospheric and radiometric differences between the pre- and post-event
image. Singh [1989] states that the use of such indices can minimize the topographic
effects and differences in sun illumination when working with multi-temporal im-
ages.

Hölbling et al. [2015] applied a normalization technique to reduce the bias in-
troduced by absolute values of NDVI when comparing pre- and post-event images
for detecting landslides. For this study, a similar normalization approach than the
one proposed by Hölbling et al. [2015] and Singh and Gupta [2014] is used. It
consists in calibrating the spectral values of the pre-event image to the radiometric
characteristic of the post-image (Equation 3.4).

gxn(i, j)t1
= gx(i, j)t1

µx(t2)

µx(t1)
(i, j) : i = 1, ..., n; j = 1, ..., m (3.4)

Where t1 is the first date (pre-event), t2 is the second date (post-event), gxn(i, j)
is the normalized value of pixel x at row i and column j in the Red, Green, Blue,
or NIR bands, gx(i, j) is the absolute value of pixel x at row i and column j in the
Red, Green, Blue, or NIR bands, and µx is the mean values (image global mean) of
all pixels of the image for Red, Green, Blue, or NIR bands.

Previous works [Collins and Woodcock, 1994; Coppin and Bauer, 1996; Song et al.,
2001] have demonstrated that relative radiometric corrections to normalize inten-
sities bands of multitemporal imagery are suitable for different change detection
applications; therefore, complex corrective algorithms not necessarily lead to a sig-
nificant increase in change detection accuracy [Chen et al., 2012]. Hölbling et al.
[2015] states that using image objects instead of pixels decreases the effects of ra-
diometrically and atmospherically not perfectly corrected pixel values, thus making
the task of atmospheric and radiometric image correction not as critical as it is for
pixel-based change detection.

Image difference

The image difference method [Singh, 1989] is applied to detect changes before and
after the landslide occurrence. With this technique, images from t1 (pre-event) and
t2 (post-event) are subtracted, pixel by pixel to produce a further image which
represents the change between the two times. The technique detects a change in
reflectances or radiances values so that those differences are taken as a measure of
change [Mahmoodzadeh, 2007].

According to Ingram et al. [1981], variation in spectral signature caused by land
cover changes (or changes by landslides) should be larger than the changes induced
by other factors, including differences in illumination, atmospheric conditions, sen-
sor calibration, and differences in soil moisture.

red/green ratio difference. The Red/Green Difference (RGD) is computed us-
ing the Red/Green ratio (R/G) previously calculated with Equation 3.1 for
both pre- and post-event images (Equation 3.5):

rgd(i, j) = rg(i, j)t2
− rg(i, j)t1

+ c (i, j) : i = 1, ..., n; j = 1, ..., m (3.5)

Where rgd(i, j) is the output RGD value for pixel x at row i and column j,
rg(i, j) is the pixel value for the R/G feature at row i and column j, t1 is the
first date (pre-event), t2 is the second date (post-event), and c is a constant to
produce positive values.
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vegetation index difference. The VID is calculated using NDVI values from
normalized pre-event image and absolute NDVI values from post-event image
(Equation 3.6):

vid(i, j) = ndvin(i, j)t1
− ndvi(i, j)t2

(i, j) : i = 1, ..., n; j = 1, ..., m (3.6)

Where vid(i, j) is the output VID value at row i and column j, ndvin(i, j) is
the normalized value of NDVI at row i and column j, ndvi(i, j) is the absolute
value of NDVI at row i and column j, t1 is the first date (pre-event), and t2 is
the second date (post-event).

brightness and brightness difference. The Brightness is calculated for pre-
and post event images using Equation 3.7:

Br =
1

gk(i, j) + gl(i, j) + gm(i, j)
(i, j) : i = 1, ..., n; j = 1, ..., m (3.7)

Where Br is the brightness value for pixel x at row i and column j, gk(i, j) is
the pixel value for the Red band at row i and column j, gl(i, j) is the pixel
value for the Green band at row i and column j, and gm(i, j) is the pixel value
for the Blue band at row i and column j.

Areas affected by landslides occurrences are commonly related to high Bright-
ness values due to loss of vegetation and exposure of fresh rock and soil
[Martha et al., 2010]. Very high and low values of Brightness relative to the
landslides signature are used in this study to detect and remove clouds and
shadows respectively.

The BrightnessD feature or difference in Brightness is computed using similar
equation than Equation 3.6, but replacing NDVI by Brightness values.

Topographic feature

The slope or steepness of the ground surface is extracted from AW3D30 DEM. It is
calculated within Google Earth Engine (GEE) API using a moving window of 3x3

kernels and the 4-connected neighbors (horizontal and vertical neighbors of the
central pixel) of each pixel.

3.2 image segmentation
As explained in Section 1.5, a two-step segmentation approach is devised to address
the challenge of multi-scale objects (landslides of different sizes) using exclusively
open and free-of-charge resources. This strategy consists in an image segmentation
stage that segments the image using a k-means implementation, and a merging
algorithm using region growing to balance the dataset (see Figure 1.1 b).

3.2.1 Initial Segmentation

The initial segmentation aims at creating primitive homogeneous segments using
the RGD computed with Equation 3.5. RGD is selected as the input feature for seg-
mentation as it is the homogeneity criterion that demonstrated better performance
to accurately segment landslides of different sizes and shapes, and with a wide
range of spectral features values.

The image segmentation is conducted using the operational large-scale segmenta-
tion algorithm proposed by Shepherd et al. [2019] for exclusively clustering remote
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sensing data. The algorithm uses a k-means implementation for seeding and pro-
vides support for a minimum mapping unit through an innovative iterative elimi-
nation process. Shepherd et al. [2019] demonstrated that their algorithm has com-
parable performance to the multi-resolution segmentation approach [Baatz, 2000]
implemented within eCognition software. As the initial image segmentation relies
on detailed information of pixels (e.g. RGD, NDVI), the Shepherd et al. [2019] algo-
rithm is a suitable approach due to its effectiveness and simplicity in parameter
tuning across a large variety of scenes, and its low-computational cost for large
geographical areas. Additionally, the algorithm does not require any a priori infor-
mation about the study area and allows to work with landslides of different sizes,
including small-scale events occurring across different land covers, landscapes, and
geomorphological settings.

The k-means implementation used within the Shepherd et al. [2019] algorithm
is a simple and widely used clustering algorithm that iteratively partitions a given
dataset (e.g. remotely sensed image) into a user-specified number of clusters k [Wu
et al., 2008; Dougherty, 2012; Khorram et al., 2016]. The algorithm aims at minimiz-
ing the sum of distances from each pixel to its k centroid over all clusters in the
image [Dhanachandra et al., 2015].

The following workflow summarizes the steps for segmenting an image using
k-means algorithm [Dhanachandra et al., 2015], and includes the additional steps
6-8 of Shepherd et al. [2019] algorithm:

1. Initialize k centroids at random rgd values in a one-dimensional space.

2. Calculate the Euclidean distance d between the centroids and each pixel on
the image using Equation 3.8:

d =| prgd − ck | k = 1, ..., kmax (3.8)

Where d is the distance between the pixel and the centroid, prgd is RGD value
for pixel p, and ck is the centroid of the cluster.

3. Assign all the pixels to the nearest centroid based on distance d.

4. After assigning all pixels, recalculate the new position of the centroid using
Equation 3.9:

ck =
1
nk

∑
p∈k

prgd k = 1, ..., kmax (3.9)

Where ck is the centroid of cluster k, nk is the total number of pixels p in
cluster k, and prgd is the RGD value for pixel p.

5. Repeat the process until it satisfies a certain tolerance and no cluster assign-
ment changes.

6. Convert the cluster pixels into an image. The k-means classified pixels are
clumped to define a set of geographically uniquely-labeled regions.

7. Iteratively eliminate segments if they are below the minimum mapping unit
threshold to the neighboring segment that is spectrally closest (regions are
eliminated based on size).

8. Relabel segments to ensure they are sequentially numbered.

The two key input parameters required to apply the Shepherd et al. [2019] are
the initial number of seeds k (number of clusters in the feature space) and the
minimum segment size (measured as the number of pixels) for elimination. k is



3.2 image segmentation 27

estimated using the Elbow method 4 and through experimentation, while the mini-
mum segments size (measured number of pixels) is controlled by the minimum size
of the target landslides (100px) (see Section 1.4).

Elbow method

Despite the advantages of k-means in terms of its simplicity and scalability, the
quality of the final clustering depends on the initial number of k, which can not
be directly estimated. The Elbow method is one of the main techniques used to
estimate this optimal number of k. The basic idea of this method is to fit the model
with a range of values of k and minimize the total sum of squared errors over all
the clusters.

The main steps to estimate the optimal number of k using the Elbow method are:

1. Compute k-means for different values of k.

2. Calculate the sum of squared errors WSS using Equation 3.10:

WSS = ∑
p∈k

(prgd − ck)2 (3.10)

Where WSS is the sum of square errors between each pixel value and its group
mean, prgd is the RGD value for pixel p, and ck is the centroid of cluster k.

3. Plot the WSS against the number of clusters k.

The parameter to be minimized corresponds to total WSS over all clusters. Gen-
erally, the first clusters add much information, and at some value of k, the gain
drops dramatically and gives a point of inflection on the plot (the elbow) that is
considered as a good indicator of the optimal number of clusters [Bholowalia and
Kumar, 2014].

As the input dataset of this study consists of several satellite images, the average
of all k values is considered as an initial estimation of k. This value is adjusted to a
higher value through experimentation in order to enable the proper segmentation
of the smallest target objects (landslide ≈ 10,000m2) (Section 5.2).

For this study, the oversegmentation approach is chosen rather than underseg-
mentation. While a low value of k merges small-scale landslides with larger seg-
ments, a higher value of k leads to oversegmentation but preserved landslides seg-
ments of different sizes. According to Carleer et al. [2005], all target objects in an
image can not be extracted with only one segmentation step. A certain degree of
oversegmentation is generally accepted rather than undersegmentation, as merging
strategies can be later applied to objects of the same class [Shepherd et al., 2019].
In contrast, undersegmentation can not be recovered during classification as target
objects have been already misidentified or merged with larger segments [Debeir,
2001; Carleer et al., 2005] and consequently, spatial and contextual information is
lost.

3.2.2 Merging algorithm

Oversegmentation leads to a high-imbalanced dataset with the landslide or target
class being the minority; thus, resulting in poor model performance. To balance
the dataset, non-landslide segments are merged (down-sampling, Section 2.5) using
an implementation of the region growing algorithm at segment level. This strategy
generates larger and fewer non-landslide segments that preserve a degree of homo-
geneity in terms of their NDVI values. The NDVI is selected as the first criterion
of homogeneity as it has been successfully used in previous works to discriminate

4 https://en.wikipedia.org/wiki/Elbow method (clustering)
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landslides (low NDVI) from vegetated areas (Equation 3.2). Equation 3.11 is used to
calculate the measure of similarity:

Sm =| ndviws − ndvinb | (3.11)

Where ndviws is the weighted mean of the seed region (Equation 3.12), and ndvinb
is the NDVI of the neighbor. A neighbor segment is merged if Sm < t, with t being
a set threshold.

The main challenge of the homogeneity criterion is to define a suitable threshold
that could be applied to different NDVI distributions. For this, a decision algorithm
that uses a threshold adapted to the statistical distribution of spectral features is
devised (Algorithm 3.2). It considers the non-local or global NDVI, VID, and RGD

means to merge similar segments with low probability of being landslides. landslide
segments tend to be located on the left side of the NDVI distributions; therefore,
using the non-local NDVI mean, it is possible to merge all segments located on the
right side of the distribution without the risk of including the landslide segments.
With this approach applied to Gaussian distributions (Figure 3.3), it is possible to
safely merge 50% of the segments without the risk of class mixture.

To merge the remaining non-landslide segments, an additional criterion based on
VID and RGD is applied. As landslide are directly linked to changes before and after
their occurrences, they tend to have higher values of VID and RGD compared to the
image mean; therefore, segments located to the left side of the distribution can be
safely merged. Finally, the remaining segments are merged using a fine-grained
or non-flexible homogeneity threshold. With the NDVI, VID, and RGD criteria and
the similarity measure (Sm), it is possible to merge a large number of non-landslides
avoiding the class mixture and reducing the probability to merge landslides.

Algorithm 3.2: Decision based on homogeneity criterion.
Input: region, neighbor, NDVI non-local mean , NDVI non-local std, VID

non-local, VID non-local std, RGD non-local
Output: True/False

1 set coarse-grained threshold
2 set fine-grained threshold
3 calculate similarity criteria (Sm) using NDVI
4 right VID boundary = vid mean + 2 std
5 right RGD boundary = rgd mean + 2 std
6 if NDVI neighbor > NDVI non-local mean AND Sm < coarse-grained threshold

then
7 return True

8 if VID neighbor < right boundary VID AND Sm < coarse-grained threshold
then

9 return True

10 if RGD neighbour < right RGD boundary AND Sm < coarse-grained threshold
then

11 return True

12 if Sm < fine-grained thershold then
13 return True

14 return False

The implemented region growing algorithm starts by iteratively selecting seed
segments (segments from which the region starts to grow) and finding their nearest
neighbors using the K-Nearest Neighbor (KNN) algorithm (Figure 3.4). The chosen
seeds are those segments with the lowest ratio of change pre- and post-landslides
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Figure 3.3: Gaussian Distribution function (modified from Dougherty [2012]).

Figure 3.4: Region growing representation at segment level. The numerical values are hypo-
thetical NDVI values. (1) The algorithm finds the five nearest adjacent neighbors
to the seed. (2) The region starts to grow from the seed; the first adjacent segment
to be compared is the closer in similarity (closest in NDVI); if the segments satisfy
the homogeneity criterion, then the adjacent segment is added to the seed and
the NDVI is recalculated using the weighted mean. (3) The algorithm finds the
adjacent neighbors of the added segment. (4) Next segment closer in similarity is
added to the region, and the NDVI is recalculated. (5), (6), the process is repeated
until a stop is reached and no new segment can be added.

occurrences (minimum RGD). With this criterion, there is a high probability that the
non-landslide segments are merged first.

The first adjacent neighbor to be compared is the closest in similarity to the seed
region. If the segments are similar enough to satisfy the merging condition, then the
segment is added to the region and the NDVI of the new seed region is recalculated
using Equation 3.12:

ndviws =
∑n

i=1 wi ndvii
∑n

i=1 wi
(3.12)

Where ndviws is the weighted mean of the seed region, wi is the segment weight
(segments area), and ndvii is the NDVI value of segment i. The remaining landslides
diagnostic features are recalculated using a similar expression than Equation 3.12,
but replacing the NDVI value by the corresponding feature value.

The growing continues by examining the adjacent neighbors of the added seg-
ment. If one of the adjacent neighbors of the newly merged segment is also adjacent
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to the initial seed region, the segment is ignored. The process is then repeated until
it reaches a stop, meaning that not more joinable segments remain (Figure 3.4, step
6).

Once all neighbors of the first seed are evaluated, the algorithm moves to the
following seed and iteratively repeats the whole process until no seeds are available.
The pseudo-code for this implementation is presented in Algorithm 3.3.

Algorithm 3.3: Region growing at segment level
Input: list of segments (Kd-tree data structure)
Output: list of regions

1 while list of segments is not empty do
2 seed = []
3 region = []
4 find the segment with minimum RGD
5 add the segment to the seeds list
6 add the segment to the regions list
7 remove segment from the segments list
8 while seeds do
9 find the neighbors of every seed segment;

10 for every neighbor do
11 if similarity measure gives true then
12 add current neighbor to the region;
13 remove current point from the segment list;
14 add neighbor to the seeds list

15 return list of regions

Algorithm optimization

For optimization purposes, a combined approach of KNN and K-Dimensional tree
(KD-tree ) data structure is implemented. KNN is a simple and commonly used algo-
rithm for information retrieval. The algorithm works as follows: for every target
sample (e.g. points or segments), it calculates the Euclidean distance to every other
sample in the dataset. The neighbors are the k samples that are closest to the target.

When using KNN it compares all the samples in the dataset with the target. To
optimize this searching operation, a KD-tree structure is generated to store the seg-
ments efficiently. This spatial access method supported the optimal selection of ad-
jacent segments based on their spatial location. KD-tree splits the global space into
sub-spaces by repeatedly selecting a sample in the dataset. van Oosterom [1999]
describes the algorithm as follows: the root of the tree corresponds to the global
space of interest. Every internal node of the KD-tree is a k-dimensional sample that
also corresponds to a sample on the rectangular region (Figure 3.5). The rectangu-
lar region is divided into half by the x-coordinate of the stored sample on the odd
levels and by the y-coordinate on the even levels in the tree.

3.2.3 Features computation at segment level

In addition to the initial landslides diagnostic features depicted in Table 3.1, contex-
tual information is introduced by computing the value of the features relative to the
information contained in the image (Equation 3.13):

fdeviation = fi − fw (3.13)
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Figure 3.5: KD-tree data structure (modified from van Oosterom [1999]).

Where fdeviation is the deviation of the feature value from the image mean, fi is the
feature value at segment i, fw is the global weighted mean of the feature (computed
using all pixels in the image) (see Equation 3.12).

In addition to slope, another topographic feature named relative relief is com-
puted from ALOS World 3D-30m DEM. It is calculated as the difference between the
highest and lowest points in elevation within each segment Equation 3.14:

Hr = hmax − hmin (3.14)

Where Hr is the relative relief, h is the corresponding elevation value at each
pixel.

3.3 image classification
Object-based classification is the process of assigning objects to classes based on
spectral, spatial, contextual and textural properties (Section 2.2.2). In OBIA, classifi-
cation can be performed applying different approaches [Bunting et al., 2014]:

• Rule-based approach: manually defined decision trees;

• Unsupervised Classification: clustering algorithms;

• Statistical Supervised: e.g. Maximum Likelihood Classification(MLC), Maha-
lanobis Distance, Parallelepiped Classifier;

• Supervised Machine Learning: e.g. Random Forest (RF), Support Vector Ma-
chines (SVM).

Using features extracted from Sentinel-2 imagery and ALOS World 3D-30m DEM,
a supervised ML approach is applied to classify landslides candidates outlined
through segmentation. The classification is binary: landslide or positive class (la-
beled as 1) and non-landslide or negative class (labeled as 0).

Previous scientific works [Melgani and Bruzzone, 2002; Stumpf and Kerle, 2011;
Mountrakis et al., 2011; Puissant et al., 2014; O’Connell et al., 2015] highlight that
non-parametric techniques such as SVM and RF are more suitable for object-based
image classification of remotely sensed images than parametric ones as they can
handle different statistical distributions. SVM demonstrates good performance over
high dimensional data and with small training sets. Drawbacks of the algorithm
are the appropriate selection of the kernel function and the complexity in tuning
parameters.

RF classifier is found to be the most appropriate ML classification technique based
on the following considerations: at an initial stage of this study, both classifiers
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SVM and RF were used, with RF showing more promising results. In the context of
OBIA, it has demonstrated high performance for object-based classification of optical
satellite imagery [Lebourgeois et al., 2017; Ma et al., 2017; Stumpf and Kerle, 2011;
Parker, 2013; Stumpf and Kerle, 2011; Pal, 2005] with just a few relevant tuning
parameters including the number of trees, trees depth, and the number of features
used per split. It can deal with a great variety of statistical distributions, performs
an adequate generalization when data is missing, handles imbalanced datasets us-
ing BRF and WRF (see Section 2.5.2), and it can support the selection of features by
measuring their contribution to the final decision of the model.

3.3.1 Training samples and labeling

A subset of the samples database created in Section 3.1.1 is linked to the target
classes and subsequently used to train the model. Areas in the image containing
landslides polygons are labeled as the landslide segments, while the remaining areas
are labeled as non-landslide.

To generalize the model, landslides of different sizes and types occurring across
various landscapes, and induced by different triggering factors (e.g. rainfall, earth-
quakes, snow avalanches) should be part of the training samples.

3.3.2 Random Forest Classifier

For an introduction of the early developments and definition of RF, the reader is
referred to Section 2.3. The mathematical foundations and basic principles of the
algorithm are addressed in this section.

Mathematical foundation

In ensemble classification, multiple classifiers are used to predict the most fre-
quently occurring class. When the training dataset is input into a decision tree,
it formulates a set of rules and conditions that will be used to make the predictions.
The two main decision-tree algorithms used in RF to define those rules, evaluate the
quality of a split, and iteratively divide the dataset into regions are:

1. Classification and Regression Tree (CART) [Breiman et al., 1984]. For CART the
Gini index is used as a measure of node impurity (quality of a split) when de-
ciding to split. This metric measures the divergences between the probability
distributions of the target attributes value [Singh and Gupta, 2014].

Given a number of k classes in the dataset, the Gini index is defined as a
measure of total variance across the k classes (Equation 3.15):

G =
k

∑
k=1

Pk(1− Pk) (3.15)

Where Pk is the proportion of the number of elements in class k. When Pk is
close to 0 or 1, the Gini index results in a small value. The smaller the values
of the Gini index, the higher the purity of the node; which indicates that the
node predominantly contains observations from a single class [James et al.,
2013].

2. Iterative Dichotomiser (ID3) [Quinlan, 1986]. To construct a decision tree, ID3

develops a classification rule that can determine the class of any object from its
attribute values. The main idea of ID3 is to generate all possible decision trees
that correctly classify the training set and then select the simplest of them.
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Entropy and Information Gain are the mathematical principles used to select
the best split and evaluate the purity of the node [James et al., 2013].

The Entropy or the measure of the amount of uncertainty in the dataset is
defined by Equation 3.16:

H(S) = −
k

∑
k=1

Pk log Pk (3.16)

Where Pk is proportion of the number of elements in class k to the number of
elements in set S, and S is the current dataset.

Similar to the Gini index, the Entropy takes a minimum value when all ob-
servations in the dataset fall into a single target class (high node purity). The
Information Gain is calculated using Equation 3.17:

Gain(S, a) = H(S)t1 − H(S|a)t2 (3.17)

Where Gain (S, a) is the Information Gain (decrease in entropy), H is the
entropy, t1 is the prior state, t2 is the state after the dataset is split, and a is the
attribute evaluated to split.

In general terms, ID3 chooses its splits based on the decrease in Entropy be-
tween the parent node (weighted sum) and the children’s nodes. The main
idea when building the decision tree is to find the attribute that returns the
highest Information Gain.

Splitting and feature selection

The splitting criterion in a classification decision tree aims at decreasing the impu-
rity of a node using metrics such as the Gini index (for CART) and Information Gain
(for ID3) to evaluate the class mixing and the quality of a particular split. The split-
ting measures are defined in terms of the class distribution before and after splitting
[Singh and Gupta, 2014].

The basic principles of RF to select in which feature to split on are:

• When a split in an individual tree is considered, a random sample of m pre-
dictors is chosen as split candidates from the full set of p predictors [James
et al., 2013; Fawagreh et al., 2014];

• The number of m predictors considered at each split is commonly defined by

m =
√

p (3.18)

Where p is the total number of predictors in the dataset, and m is a subset of p.
James et al. [2013] state that choosing the best split among a limited number of

predictors avoids building highly correlated trees. When the p predictors are given
as an option in a collection of trees, most of them will use the strongest predictor
as the top split, leading to very similar trees with an average prediction with high
variance and, therefore, less reliable. In RF, approximately (p− m)/p of the splits
will never consider the strong predictor, allowing other predictors to be selected as
the root node [James et al., 2013].
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Bootstrap sampling

In addition to the random selection of features, RF uses Bagging or Bootstrap Aggre-
gation to build the trees. Breiman [1996] defines Bagging as a method for generat-
ing multiple versions of a predictor and using them to get an aggregated predictor.
Bootstrap Aggregation is used to reduce the variance and increase the prediction
accuracy of statistical learning methods [James et al., 2013]. When creating an indi-
vidual tree in RF, a new training set (bootstrapped training samples) is drawn with
replacement from the original dataset [Breiman, 2001b].

Each bootstrap training set uses about one-third of the instances or observations.
The remaining set of observations (not used to fit a given bagged tree) are the
Out-of-Bag (OOB) observations [Breiman, 2001a]. At each iteration, the algorithm
predicts OOB data using the tree growth with the bootstrap sample and calculates
the classification error [Biau and Scornet, 2016]. Since the error rate decreases as the
number of combinations increases, the OOB estimates will tend to overestimate the
current error rate [Breiman, 2001b]. Given that the response for each observation is
predicted using only the trees that were not fit using that observation, the resulting
OOB error is a valid measure of the test error for the bagged model [James et al.,
2013].

In sum, using the principles of Bootstrap Aggregation, RF improves its perfor-
mance by taking many training sets from the dataset, building a separate prediction
model using each training set, and averaging the resulting predictions [James et al.,
2013].

Majority voting

To predict the class of unlabeled observations, RF aggregates individual trees pre-
dictions and uses a voting scheme to get a final decision. One of the simplest and
most effective voting schemes is the majority voting proposed by Lam and Suen
[1994]. In this method, each classifier is asked to predict the class label of the tested
observation; the class that receives the greatest number of votes is returned as the
final decision of the ensemble [Fawagreh et al., 2014].

Feature importance

There are different methods implemented in RF to rank features [Breiman, 2002];
two of the most common ones are the Mean Decrease Impurity (MDI) and Mean
Decrease Accuracy (MDA) [Biau and Scornet, 2016].

When using MDI, RF computes how much each feature decreases the weighted
impurity in an individual tree [Biau and Scornet, 2016]. Using either the Gini index
or Information Gain, the features are ranked by averaging the total decrease in node
impurity over all trees in the forest.

In the case of the MDA, RF estimates the importance of an individual feature by
looking at how much prediction error increases when the OOB for that feature is
permuted while all others are left unchanged [Liaw et al., 2002]. The process is
repeated for every single tree in the forest and the MDA of the analyzed feature
is obtained by averaging the difference in OOB error estimation before and after
the permutation over all trees. Biau and Scornet [2016] state that MDA is based on
the idea that if the feature is not relevant, then rearranging its values should not
degrade the prediction accuracy [Biau and Scornet, 2016].

3.3.3 Training phase

A subset of the initial number of features extracted from Sentinel-2 and DEM (see
Table 3.1) are used to train the RF classifier.

The approach follows in this study is first to focus on valuable features that a
priori provide diagnostic information to discriminate between the landslide and the
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non-landslide class. The classification strategy is iterative (Figure 1.1 c); that means
that landslides diagnostic features are progressively included as training features,
and the model performance is evaluated at each step. To asses the extent to which
every of the input features is discriminant to build the model, the Mean Decrease
Impurity (MDI) is used.

3.3.4 Model assessment

The model assessment is crucial to evaluate how well the RF classifier generalizes
to unseen data. When a large dataset is not available, alternative approaches to
conducting the accuracy assessment are resampling methods as the cross-validation
technique that consists in estimating the test error rate (probability error) by leaving
out a subset of the training samples before fitting the model and used it to test the
classifier performance [Dougherty, 2012].

A useful and straightforward strategy for model evaluation is the validation set
or holdout approach. It consists in splitting the dataset into two sub-groups: a
training set and a validation or testing set. The classifier is fit on the training set,
and the fitted model is used to make predictions for the observations in the test set
[James et al., 2013].

For this study, the proportion of the data used for train and test the model is 70%
and 30%. The model performance is evaluated using the confusion matrix and those
metrics suitable for imbalanced datasets, including precision, recall, and f-measure
(Section 2.5.3).





4 DATA S E T S A N D TO O L S

4.1 datasets

4.1.1 Sentinel-2 mission

Sentinel-2 mission is selected as the input dataset as it is the free-of-charge optical
satellite imagery with the highest Ground Sample Distance (GSD). The European
Space Agency (ESA) launched the mission as part of the Copernicus program (Sentinel-
2A: June 2015; Sentinel-2B: March 2017). It comprises a constellation of twin polar-
orbiting satellites placed in the same orbit, phased at 180

◦ to each other1. Sentinel-2
aims at monitoring variations in land surface conditions, including vegetation, soil,
and water cover. The constellation has a global spatial coverage between latitudes
56
◦ south and 83

◦ north.
The products comprise 13 spectral bands with variables GSD representing Top-

Of-Atmosphere (TOA) reflectance scaled by 10,000 (Table 4.1). The bands span the
visible, Near-Infrared (NIR) and Short-Wave Infrared (SWIR) of the electromagnetic
spectrum. Additional QA60 bands are included to support the detection and removal
of clouds.

Band GSD (m) Central wavelength (nm) Description
B1 60 443 Aerosols
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Red Edge 1

B6 20 740 Red Edge 2

B7 20 783 Red Edge 31

B8 10 842 NIR
B8A 20 865 Red Edge 4

B9 60 945 Water vapor
B10 60 1375 Cirrus
B11 20 1610 SWIR1

B12 20 2190 SWIR2

QA60 60 - Cloud mask

Table 4.1: Sentinel-2 spectral and QA bands.

For this study, Level-1C products (Sentinel-2 Multispectral Instrument Level-1C,
TOA) are used. They have radiometric and geometric corrections, including orthorec-
tification and georeferencing on a global reference system (WGS84) with sub-pixel
accuracy. The products are resampled with a uniform GSD of 10m, 20m and 60m
depending on the resolution of the different spectral bands [SUHET, 2013]. More
details of the Sentinel-2 mission are given in Table 4.2.

The detection of clouds conducted by Sentinel-2 providers using the QA60 bands
is based on the following considerations [ESA, 2013]:

• Dense or opaque clouds are characterized by high reflectance in the blue spec-
tral region;

1 http://www.esa.int/Our Activities/Observing the Earth/Copernicus/Overview4

37



38 datasets and tools

Revisit 5 days at the Equator
Number of bands 13 spectral bands
GSD 10m, 20m or 60m
Temporal coverage 2015-Present
Spatial coverage 56

◦S - 84
◦N

Swath width 290km
Orbit Polar-orbit, sun-synchronous
Mean orbital altitude 786km
Tiles size (level-1C) 100km x 100km orthoimages
Projection (level-1C) UTM/WGS 84

Radiometric resolution 12 bits

Table 4.2: Sentinel-2 mission details.

• As the snow also has a high reflectance in the Blue band (B2), SWIR in B11

and B12 are used to identify clouds. In contrast to snow, clouds have a high
reflectance in SWIR;

• As high altitude ice clouds have low reflectance in the SWIR (B11 and B12), the
high atmospheric absorption band (B10) is used to avoid confusion with snow;

• Cirrus or semi-transparent clouds can not be identified in the B2. Pixels with
low reflectance in the B2 and high reflectance in the B10 has a high probability
of being cirrus cloud.

4.1.2 Digital Elevation Model

Digital Elevation model (DEM) AW3D30 is selected as the elevation input dataset due
its GSD (30m) and its acquisition time. It is the most updated (2006-2011) free-of-
charge DEM with global coverage (Table 4.3).

AW3D30 derived from the Japan Aerospace Exploration Agency (JAXA) that uses
the archived data of the Panchromatic Remote-sensing Instrument for Stereo Map-
ping (PRISM) onboard the Advanced Land Observing Satellite (ALOS). The dataset
contains a horizontal GSD of approximately 30m mesh (1 arc-seconds latitude and
longitude) generated from the 5m resolution Digital Surface Model (DSM) [Tadono
et al., 2014]. Using an updated version of the Delta Surface Fill method (March
2017), the void height values in cloud and snow pixels between 60

◦ south and 60
◦

north latitudes are filled with existing DEMs. This method consists in replacing the
void values in the original DEM with the adjusted values calculated from surround-
ing valid pixels in other references DSMs [JAXA, 2017].

GSD 30m
Acquisition time 2006-2011

Spatial coverage 60
◦S - 60

◦N
Tile size 1

◦ x 1
◦

Projection UTM/WGS 84

Minimum value -479

Maximum value 8859

Table 4.3: DEM ALOS description.

4.1.3 Software specifications

google earth engine (GEE) is used to pre-processes the dataset. GEE is a cloud-
based platform and free JavaScript programmable interface that offers global
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coverage of earth-observation data. It combines a multi-petabyte catalog of
remotely sensed and geospatial datasets with the capabilities of planetary-
scale analysis. Its parallel processing capacity makes it efficient to run spa-
tial reductions over large image collections [Gorelick et al., 2017], supporting
the process of handling space-time analysis for image set preparation pre-and
post-events on a global scale. GEE library counts with more than 800 functions,
which range in complexity from simple mathematical functions to powerful
geostatistics and image processing operations [Gorelick et al., 2017]. Addition-
ally, available functions as map(), iterate() allow applying a wide variety of
functions to collections of images in parallel.

python is the main programming language used for the processing and visualiza-
tion of the data. Python-Based Open Source System for Geographic Object-
Based Image Analysis (GEOBIA) is used for the initial segmentation and gener-
ation of attribute tables (features statistics per segments) [Clewley et al., 2014].
The system uses the following set of Python packages:

• Numpy for raster data processing;

• Remote Sensing and GIS library (RSGISLib) for segmentation and attri-
bution of objects;

• Geospatial Data Abstraction Library (GDAL) for geospatial data manip-
ulation and raster data model;

• The Raster Input and Output Simplification (RIOS) for reading and writ-
ing raster attribute tables, which are represented internally as NumPy
arrays;

• Tuiview for viewing and manipulating raster attribute tables;

• Kea for storing image objects and associated attributes.

Scikit-learn, a free software ML library is used for the classification stage.
Seaborn, and Matplotlib are used for visualization.

postgresql is used as the database management system for storing the landslide
inventory tables described in Section 5.1.1. It allows data handling among sev-
eral datasets and multiple non-spatial and spatial operations using the Post-
GIS extension.

qgis is used as the tool for creating the landslides polygons and for editing and
visualizing the datasets tables stored in PostgreSQL.

https://numpy.org/
https://www.rsgislib.org/index.html
https://gdal.org/
https://scikit-learn.org/stable/
https://seaborn.pydata.org/
https://matplotlib.org/
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This chapter describes the implementation details of the methodology and presents
the experiments and the results of this study. The source code of this implementa-
tion can be found at https://github.com/mhscience/landslides detection. The chap-
ter is structured as follows: Section 5.1 gives details of the built landslide database.
Section 5.2 describes different strategies and parameters used to produce image
segments and balance the dataset. Finally, Section 5.3 gives an overview of the
experiments and tuning hyperparameters used to train the RF model and presents
the final results of the model assessment. Analysis of the results is presented in
Chapter 6.

5.1 pre-processing

5.1.1 Sample set preparation

Using pre- and post-event images within Google Earth Engine (GEE), we recog-
nize 110 landslides in 32 satellites images distributed worldwide (Figure 5.1) (Sec-
tion 3.1.1). We digitize and store the landslides polygons as shapefiles that are later
used for class labeling in the classification stage. The samples are stored in Post-
greSQL as tables containing the landslide/landslides identification (landslide id), ge-
ographical coordinates (latitude, longitude), event date, triggering factor, landslide
size (Table 5.1), area/length/width of the major landslide recognized in the image,
number of landslides occurrences per image, the source of the information, land
cover class, the quality assessment of the samples, and extra information described
in Appendix A. A summarized representation of the landslide inventory table is
depicted in Table 5.2.

Sizes Area (m2)

Medium > 250 and ≤ 1,000

Large > 1,000 and ≤ 100,000

Very large > 100,000 and ≤ 500,000

Catastrophic > 500,000

Table 5.1: Landslide sizes.

We made a visual and coarse manual labeling per satellite image (land cover col-
umn) that contains the following classes: urban, vegetated areas (e.g. forest, grass-
lands, shrublands), barelands, and croplands. A mixture of classes is commonly
identified per image; when a sample is not labeled as urban, then it is assumed that
the landslide or landslides events occurred in a remote area (Table 5.2).

We perform a quality assessment study (quality column) that consists in a qual-
itative evaluation per image to determine the degree of confidence in using the
samples as part of the training set. This assessment is based on the quality matrix
illustrated in Table 5.3. The rows of the matrix are conditioned by the geographical
location (Gl), the landslide size, and the land cover. A sample with a validated
geographical location has a higher quality than others without validation. The land-
slide sizes consider to make the assessment are catastrophic (high quality), very
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Figure 5.1: Global coverage of the sample set. The red dots represent the location of the
samples images. Given the large-scale of the map, some dots are overlapped in
specific areas such as Japan and New Zealand.

Table 5.2: Landslide database example. The location accuracy ”bbox center” means that
the geographical coordinates represent the center of the bounding box used to
download the image (see Figure 3.2). For an extended version of the database see
Appendix A.

large (medium quality) and large (low quality). Respect to the land cover classes,
a satellite image entirely represented by vegetated areas has a higher quality than
others with a mix of vegetated-urban; the lowest quality is assigned to samples
represented by barelands with sparse of non-vegetation.

The columns of the matrix are the cloud (C) and snow percentage (S) that remain
after pre-processing (Section 3.1.2). A sample has higher quality while lower the
could or snow percentage is. Rows and columns of the matrix are combined to give
a final quality assessment per sample. As indicated in Table 5.3, we define a total
number of nine classes; the quality of a sample progressively increases from label
S3 (lowest quality) to label H1 (highest quality). The assessment conducted to the
entire dataset (Appendix A) resulted in 16 samples labeled with high quality (2:H1,
3:H2, 11:H3) 16 with medium quality (8:M1, 6:M2, 2:M3), and four with low quality
(1:S1, 3:S3). Samples labeled with lower quality than M3 are not used to train/test
the model.

5.1.2 Image set preparation

Exploiting the capabilities of GEE for efficiently handling big earth observation
datasets, we conduct the image set preparation within this cloud-based platform.
The implemented algorithm (Algorithm 3.1) finds the less clouded images within
a pre-determined period, creates cloud-free composites, and removes clouds using
cloud masking. Table 5.4 presents a summary of the sample and image set inven-
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Table 5.3: Quality assessment matrix for the samples set. Gl is the geographical location of
the major landslide recognized in the image, C is the cloud percentage, and S is
the snow percentage.

tory. The effect of image composition and cloud masking in pre- and post-event
images is illustrated in Figure 5.2.

Description Quantity Remark

Retrieved images 96 post- and pre-event/image difference
Processed images (GEE) > 1,500 ≈ 1 TB
Landslides 110 heads-up digitization
Land cover 4 urban/vegetated/barelands/croplands
Quality assesment 9 H1/H2/H3/M1/M2/M3/S1/S2/S3

Table 5.4: Summary of the image and sample sets inventory.

Figure 5.2: Generation of cloud-free images pre- and post landslide event and heads-up digi-
tization of landslides polygons. (a) Cloud-free images are created using the image
composition technique explained in Section 3.1.2 (Landslide L2). (b) Clouds are
removed using cloud masking (Landslide L7).
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Parameters Final values Description

numClusters 19 Number of clusters
minPxls 80 Minimum number pixels within a segments
distThres 100 Distance threshold for joining the segments
bands rgd Sub-set of image bands to use
kmMaxIter 200 Maximum iterations for k-Means

Table 5.5: Initial segmentation parameters.

5.2 image segmentation

5.2.1 Initial segmentation

We perform the initial image segmentation in Python RSGISLib using the Shepherd
et al. [2019] algorithm (Section 3.2.1). For this study, the optimal segmentation scale
is defined as the scale at which landslides candidates of different spectral signatures
and sizes can be identified as non-mixed segments. This is achieved by using as
input segmentation feature the Red/Green Difference (RGD) (see Equation 3.5) and
experimentally tuning a set of parameters that are illustrated in Table 5.5.

To compare segmentation results derived from different input features, the fol-
lowing experiments are conducted:

1. Segmentation on image difference using RGD.

2. Segmentation on post-event images using absolute NDVI values (see Equa-
tion 3.2);

3. Segmentation on post-event using Red band (B4), Green band (B3), and B2;

Results demonstrated that RGD is the feature that better highlights the changes
induced by landslides and reduces variations caused by other irrelevant factors (e.g.
changes in illumination). Using absolute values of NDVI mostly fail in cases where
large-scale landslides occur within urban environments or when they are contam-
inated with vegetation (Figure 5.3). The segmentation conducted using the three
spectral bands B4, B3, B2 does not work well for most of the samples. It generates a
lower number of non-landslide segments but induces the class mixture.

The key parameters that condition the quality of the segmentation in terms of
its capability to preserve landslides candidate segments (avoiding class mixture)
are the minimum number of pixels and the number of clusters k. The minimum
number of pixels is set to 80px; a value slightly lower than the smallest size of the
target landslides defined within the scope of this study (Section 1.4). The optimal
number of clusters is first estimated by applying the Elbow method (Section 3.2.1).
In Appendix B four plots examples of the reduction of the sum of squared errors
(WSS) with the increase in the number clusters k are displayed. The plots show
comparable results, where the points of inflection (elbows) or optimal number of
clusters approximated in the same value. As the same behavior is achieved by
running the k-means clustering over all the training images, a unique minimum k
number is initially estimated in a value of eight for all images.

This k value is subsequently increased and experimentally adjusted to reduce
undersegmentation of large-scale landslides (Figure 5.4). Table 5.5 shows the final
value of k set to 19; this value increases the number of segments from 54,696 (k=8)
to 55,470 (k=19) but reduces class mixture errors within the same segments.

5.2.2 Conversion of features per pixel to features per segments

Once the primitive segments are created, features per pixel are grouped to produce
features per segment. We calculate the features statistics within segments polygons

https://www.rsgislib.org/index.html
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Figure 5.3: Comparison of segmentation results using different input features. (a) Segmen-
tation on image difference using RGD (landslide L7); landslide boundaries well
defined within an urban area (b) Segmentation on post-event image using NDVI;
landslide and building pixels are merged into the same segment. (c) Segmenta-
tion on image difference using RGD (landslide L17); landslide boundaries well
defined in a remote area. (d) Segmentation on post-event image using bands B4,
B4, B2; landslide boundaries (white arrows) are merged to a small deforested
area.

using RSGISLib (Figure 5.5) and generate attribute tables per image with rows repre-
senting the segments and columns the values of the features (Table 5.6). As Table 5.7
indicates, the statistical measure calculated for all landslides diagnostic features is
the mean. For the slope, the maximum values per segment is also calculated.

https://www.rsgislib.org/index.html
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Figure 5.4: Initial segmentation using two values of k (L9). (a) Image difference using RGD.
(b) Segmented image, k=19; large-scale landslide is correctly segmented. (c)
Segmented image, k=8, the landslide is undersegmented and merged with non-
landslides.

Figure 5.5: Pixels to Segments. Features statistic at segment level. (a) Image Difference (b)
Segmented image. (c) Post-event image.

5.2.3 Merging algorithm

We develop the merging algorithm based on region growing within Python (Algo-
rithm 3.3).
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Table 5.6: Attribute table example (L17).

Feature nature Feature Statistics per segment

Spectral NDVI mean
Spectral GNDVI mean
Spectral Brightness mean
Spectral RGD mean
Spectral VID mean
Spectral BrightnessD mean
Textural NDVItexture mean
Spatial Slope mean, maximum
Spatial Relative relief mean
Contextual RGDdeviation mean
Contextual VIDdeviation mean
Contextual BrightnessDdeviation mean

Table 5.7: Landslide diagnostic features at segment level.

The statistical distributions of spectral features vary considerably from one image
to another; examples are the standardized features distributions of L0, L2, and L16
depicted in Figure 5.7. Image samples exhibit different distributions: Gaussian,
skewed left/right, or bi-modal; however, landslides tend to remain around the same
locations of the distributions. As seen in Figure 5.7, NDVI distributions of the three
sample images (Figure 5.6) show that landslides are located to the left of the image
means, while in the case of change features such as Vegetation index difference (VID)
(Equation 3.6) and Red/Green Difference RGD (Equation 3.5), they tend to be found
on the right tail of the distributions (see Section 3.2.2).

To explore how to merge similar segments while preserving landslides, four ex-
periments are conducted starting with a fixed coarse-grained NDVI similarity thresh-
old (Equation 3.11) (0.1, 0.2, 0.3, and 0.4), and subsequently considering image
non-local NDVI, VID, and RGD, and finally a fine-grained threshold of 0.05. The
input is a sample of 32 primary segmented images that after outliers removal gen-
erated 41,529 non-landslide and 199 landslide segments. The outputs of these experi-
ments are the percentage of segment reduction and the percentage error caused by
wrongly merged landslides.

The first experiment explores a simple approach just merging segments with NDVI

thresholds of 0.1, 0.2, and 0.3. Results in Table 5.8 indicate a continuous increase
in the merging error as the threshold becomes coarse-grained. Adding the NDVI

distribution and merging segments exclusively with values higher than the mean
(Table 5.9) reduces the mislabeling error, but only merges around 50% of the seg-
ments. When VID is added, it is possible to merge over 80% of the segments with an
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Figure 5.6: Post-event image of landslides L0, L2, and L16. The white circle depicts the land-
slide location.

Figure 5.7: Standarized NDVI, VID, and RGD distributions for Landslides L0 (a), L2 (b), and
L16 (c).

acceptable error of about 10%. RGD pushed the merging over 90% while maintain-
ing the error at 8%. Finally, a fine-grained threshold with a value of 0.05, reduced
approximately 100 more segments.

Coarse ThrsNDVI Final segments Reduction Missed Error
0.1 7,132 82% 112 60%
0.2 2,407 94% 138 73%
0.3 1,059 97% 162 86%

Table 5.8: Merging algorithm using fixed NDVI thresholds.

To be conservative and keep the merging error below 10% and a high reduction
of segments, the optimal coarse-grained threshold selected is 0.2. The use of a fine-
grained threshold as the last merging strategy is useful to merge similar segments
that might be closer to landslides in NDVI.
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Coarse ThrsNDVI Final segments Reduction Missed Error
Add NDVI

0.1 20,095 56% 0 0%
0.2 18,929 54% 0 0%
0.3 18,671 53% 0 0%

Add VID
0.1 7,779 81% 11 8%
0.2 3,342 91% 15 9%
0.3 2,007 95% 56 10%

Add RGD
0.1 7,397 86% 11 5%
0.2 2,838 93% 16 8%
0.3 1,710 96% 24 13%

Add fine-grained threshold (0.05)
0.1 7,296 82% 11 5%
0.2 2,749 93.3% 16 8%
0.3 1,653 96.3% 24 13%

Table 5.9: Merging algorithm using the distributions of spectral features. A sequential merg-
ing criteria is added: NDVI, VID, RGD, and a fine-grained threshold.

5.3 image classification

5.3.1 Exploratory analysis

Once the attribute tables are derived from the merging algorithm, we conduct an ex-
ploratory analysis of the data in order to analyze the class distribution and identify
discriminant and highly correlated features (Figure 5.8, Figure 5.9, and Figure C.1).

Redundant features such as the spectral bands (B4, B3, B2) which are highly corre-
lated with Brightness are not included in the model (Figure 5.8). Outliers and null-
values that could decrease the model performance are filtered out based on features
thresholds including low Brightness to remove shadows (<0.50), high Brightness to
remove clouds (>2 ), and negative NDVI to remove water (< -0.1).

5.3.2 Training and testing

We conduct the training and testing phase using the RandomForestClassifier pack-
age available in the Python Scikit-learn library.

Input data

A total number of 2,905 segments derived from 32 satellite images (Appendix A)
are used to train (70%) and test (30%) the RF model. From that total sample size,
the landslide or positive class comprises 199 segments derived from 110 individual
landslide events, while the non-landslide or negative class includes 2,706 segments.

Features selection

Using default tuning hyperparameters implemented in RF, the model is iteratively
trained and tested by adding landslides diagnostic features and measuring their
performance at each step (Figure 1.1, Section 3.3.3). An initial ranking of features
(Table 5.10) that determines the order of addition is made based on relevant fea-
tures used in previous researches (e.g. NDVI), and the features distribution derived
from the exploratory analysis (discriminant features). As seen in Figure 5.9, contex-
tual features such as RGDdeviation and BrightnessDdeviation (Section 3.2.3, Equation 3.13)
are more appropriate than absolute values of RGD and Brightness to discriminate

https://scikit-learn.org/stable/
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Figure 5.8: Class distribution and correlations between features: NDVI, Brightness, bands
B4, and B2.

between landslide and non-landslide segments. Regarding the topographic features
derived from DEM (Appendix C), it can be noticed that the distribution of the
Slope mean depicts a better separation between classes than Slope max and Rel-
ative relief.

Ranking Feature
1 NDVI
2 RGDdeviation
3 BrightnessDdeviation
4 VIDdeviation
5 Brightness
6 Slope mean
7 GNDVIdeviation
8 Slope max
9 NDVItexture

10 Relative relief

Table 5.10: Initial ranking of landslides diagnostic features.

Figure 5.10 shows the increase in model performance against the inclusion of new
features (Table 5.10). The x-axis represents the features that are sequentially added,
while the y-axis is the model performance in percentage.
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Figure 5.9: Class distribution and correlations between features: Red/Green dif-
ference (RGD), RGDdeviation, Brightness difference (BrightnessD), and
BrightnessDdeviation.

Figure 5.10: Model performance vs. features. Features represented in Table 5.10 are sequen-
tially input to the model (1-10).

Random Forest classification

A set of RF hyperparameters are tuned in order to get the model with best predictive
performance. The optimal values are experimentally obtained by testing all possi-



52 experiments and results

ble combinations using the GridSearchCV instance available in Scikit-learn. The
following values are tested:

• n estimators or number of decision trees. It is tested for 10, 20, 40, 60, 80, 100,
150, 200, 250, 300, and 400;

• max depth or maximum depth of the tree. It is tested for 5, 10, 20, 30, 35, 40,
45, 50, 60, and 70;

• min samples split or minimum number of samples required to split an internal
node. It is tested for 2, 3, 4, 6;

• min samples leaf or the minimum number of samples required to be at a leaf
node. It is tested fot 2, 3, 4, 6;

• max features or number of features to consider by each tree when splitting
a node. It is set to ”sqrt” to use a random selection of

√
p predictors (Sec-

tion 3.3.2);

• class weight or weights associated with the classes. It is tested for 1:1, 1:2, 1:3
1:4, 1:5, 1:6, 1:8, 1:9 and, 1:10 with higher weighted given to the minority class
(landslide class);

• Bootstrap. It is set to True to use bootstrap samples when building trees
(Section 3.3.2).

The best predictive performance of the model is achieved using the hyperparam-
eters depicted in Table 5.11.

Tuning hyperparameters Final values

n estimators 50

max depth 40

min samples split 6

min samples leaf 4

max features sqrt
class weight 1:5
bootstrap True

Table 5.11: Optimal RF hyperparameters.

RF internally uses random samples with replacement (Bootstrap = True) to get
a predictive model with less variance and therefore more reliable. Furthermore,
the trees correlation is reduced by selecting a random subset of m at each split of
the tree. The voting scheme adopted was the majority voting which is a suitable
approach for classification.

With all the landslides diagnostic features shown in Table 5.10 and the optimal
hyperparameters, the model achieved promising results. The confusion matrix and
the final model performance metrics for the landslide class (precision, Equation 2.2;
recall, Equation 2.3; f-measure, Equation 2.4) are depicted in Figure 5.11 and Ta-
ble 5.12. The f-measure is calculated using a β value of 1 to assign equal weight to
both recall and precision (f1-score)(Equation 2.4)

Metric (%)

Precision 83

Recall 83

f1 score 83

Table 5.12: Final model performance.

https://scikit-learn.org/stable/


5.3 image classification 53

Figure 5.11: Confusion matrix (landslides=1, non-landslides=0).

Figure 5.12: Final ranking of the landslides diagnostic features using Mean Decrease Impu-
rity of RF.

A final assessment of the feature importance is made using the Mean Decrease
Impurity (MDI) implemented in RF (see Section 2.5.2). Figure 5.12 illustrates the final
ranking of the features by order of importance.

To evaluate the impact of using training samples labeled as urban or mixed ur-
ban/vegetated (see Section 3.1.2 and Appendix A), the model performance is as-
sessed removing those samples (L0, L2, L7, L9) and keeping the same features and
tuning parameters depicted in Table 5.11 and Table 5.10. The confusion matrix and
metrics of this model are depicted in Figure 5.13 and Table 5.13.
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Figure 5.13: Confusion matrix excluding samples with mixed land cover: urban/vegetated
(landslides=1, non-landslides=0).

Metric (%)

Precision 78

Recall 60

f1 score 68

Table 5.13: Model performance excluding samples with mixed land cover: urban/vegetated.
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Random Forest (RF) achieved promising results with precision of 83%, recall of 83%,
and f1-score of 83%, using bootstrap aggregation and optimized hyperparameters
such as 50 decision trees, class weights of 1:5 (higher weight to the minority class),
random selection of features at each split, and a maximum tree depth of 40. One
of the main strategies to train the model and obtain acceptable performance results
was to balance the dataset and work with a class ratio not greater than 1:14 (land-
slide: non-landslides). For this particular task, the merging algorithm (Section 5.2.3)
reduced non-landslide segments from 41,529 to ≈ 2,749 with a merging error of 8%.
In most cases, we found that the merging error is caused by mislabeling during
dataset preparation (Section 5.1.1) due to changes in image illumination, shadows,
high sedimentation rate, cloud contamination and presence of small-scale landslides
that were difficult to identify manually.

6.1 segmentation strategies

Dataset pre-processing allowed to generate cloud-free pre- and post-landslide im-
ages and compute band ratios and image differences (e.g. RGD, NDVI, VID) (Fig-
ure 6.1) that were key inputs for the two-step segmentation strategy.

Figure 6.1: Image pre-processing and segmentation; sample in a remote area in Italy (L17).
(a) Cloud-free pre-landslide image. (b) Cloud-free post-landslide image. (c) Im-
age difference using band ratioing red/green (RGD). (d) Image segmentation.

55
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K-means using the Red/Green Difference (RGD) as input feature and a k value
of 19 was the most appropriate approach to identify landslides of different sizes
and with variable spectral information. The applied segmentation strategy allowed
to detect and isolate changes in pixels reflectances that can be likely related to the
occurrence of landslides events. As an example, Figure 6.1 shows large-scale land-
slides occurring in a remote area in Italy. Although the larger landslide is contami-
nated with vegetation, the applied segmentation correctly delineated the borders of
the landslide. The figure also shows how pixel features grouped and average into
segments allowed to reduce the effect of isolated pixels and the problem of the class
mixture within the same object.

The initial segmentation with fixed parameters across the entire dataset leads to
oversegmentation of non-landslide areas, and consequently to an imbalanced dataset
with a class ratio of 1:225 favoring the negative class. As RF and most of ML classi-
fiers are biased toward the majority class, an initial assessment of the model perfor-
mance using the above mentioned class distribution only reached a precision, recall,
and f1-score of 71%, 55%, and 62%.

6.1.1 Optimization of the number of segments

An optimization strategy that reduces the oversegmentation of non-landslide areas
was applied to balance the sample dataset and improve model performance. It
consists in a merging algorithm that groups homogeneous segments based on a
similarity criterion that is adapted to the distribution of the spectral features in
each satellite image (Figure 5.7). This strategy reduces the risk of merging segments
from different classes when compared to the use of a fixed threshold for the entire
dataset. The challenge was to find a trade-off or balance point between the segments
reduction and the merging error that can lead to an optimal class distribution with
minimum negative impact on the RF performance.

Applying the merging algorithm with a sequential merging strategy that uses
NDVI, VID, and RGD distributions, and a fine-grained NDVI threshold, produced the
best results with a merging error of 8%, and non-landslide segments reduction of
93.3% (Table 5.9). The fine-grained threshold of 0.05 helped to merge homogeneous
areas around the landslides avoiding the mixture of classes.

Other strategies as using a fine-grained fixed NDVI threshold (e.g. 0.08) without
considering the distribution of spectral features, did not reduce the segments to an
optimal number that allowed to achieve promising results using RF classification.

An important consideration when applying the aforementioned merging strate-
gies is the fact that even if the goal is to maximize the merging of non-landslide seg-
ments, a minimum degree of heterogeneity should be considered in order to avoid
the generation of segments that could resemble the landslides properties. Exam-
ples are segments belonging to urban areas (e.g. NDVI = 0.2) that could be merged
with segments representing grasslands or croplands (e.g. NDVI = 0.6). Assuming
that both classes cover the same area, the new NDVI values after merging the seg-
ments will be around 0.4, a value that could approximate the NDVI of landslides
contaminated with vegetation.

6.2 model training and classification

A total of 2,749 non-landslide segments are generated from the optimization strategy
applied in previous section (Section 6.1.1). After cleaning outliers (Section 5.3.1),
this number was reduced to 2,706 segments resulting in a class ratio of 1:14; the
minimum optimal class distribution needed to retain a precision and recall over
60%. With this new class distribution (landslides=199, non-landslides=2,706), the RF

classifier was trained using 70% of the sample dataset that corresponds to 1,894
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non-landslides and 139 landslides. The iterative inclusion of selected landslides di-
agnostic features, progressively increased the model performance from precision,
recall, and f1-score of 18%, 17%, and 17% to 85%, 61%, and 71% (Figure 5.10). The
first criterion to discriminate landslide segments candidates from non-landslide was
the NDVI (Table 5.10). It has been widely used as the most important landslides
diagnostic features in previous works; however, as illustrated in Figure 5.10, this
feature itself did not give enough information to detect landslides; thus, the model
needs addition features to reach a good performance. Looking at Figure 6.2, it can
be suggested that when working with different type of landslides, and occurring in
a large variety of land cover, landscapes and geomorphological settings, NDVI can
have a wide range of values (from 0 to 0.5) due to factors such as contamination
by vegetation, and variation in soil composition and soil moisture. Hence, while
more variation in the sample set, the higher is the probability to find non-landslide
segments with similar NDVI values than landslides.

Figure 6.2: NDVI histograms for landslide and non-landslide segments.

Using bootstrap sampling, an experimental value of 50 decision trees, and other
default tuning hyperparameters, features were iteratively added following the order
shown in Table 5.10. It can be noticed that the inclusion of features related to
changes such as RGDdeviation and BrightnessDdeviation, importantly increased the model
performance from precision, recall, and f1-score of 18%, 17%, and 17%, to 61%, 37%,
and 46% (Figure 5.10). These two properties were key to discriminate landslides
from objects with similar NDVI values that were not induced by changes during the
same time of the landslide occurrence, including deforested areas, fresh rock, or
older landslides events. Another measure of change, the VIDdeviation is the fourth
feature input to the model; it achieved a considerable increase in the results to
79%, 56%, and 65%. VIDdeviation helped to discriminate between changes induced by
removal of vegetation (likely landslides) and those caused by vegetation growing.
As Figure 5.10 shows, the remaining features tend to slightly increase the model
performance; however, the higher achievement was made by the first four features
added to the model.

The experiments also revealed that precision always remains higher than recall
(Figure 5.10). It can be suggested that this trend is likely due to the limited number
of landslide segments (139) used to train the model, and the imbalanced distribution
(1:14) that still remains even after the segment optimization. Hyperparmeters tun-
ing assigning weights to classes, was an optimal strategy to increase the balancing
between precision and recall measures.

6.2.1 Final model assessment

With all landslides diagnostic features depicted in Table 5.10 and after hyperparam-
eters tuning, the model achieved a precision of 83%, recall of 83%, and f1-score of
83%, adding more weight (1:5) to the landslide class; i.e. assigning a higher penalty
when misclassifying the minority (Section 2.5.2).



58 analysis of results

Looking at the confusion matrix depicted in Figure 5.11, it can be seen that from
a total number of 65 landslides segments used for the testing, 54 were correctly
identified (true positives), 11 were not identified (false negatives), and 11 were miss-
identified (false positives). It is important to note that, depending on the applica-
tion, the cost of false positives (low precision) will be higher than the cost of false
negatives (low recall). Varying some hyperparameters as the class weight allows
to slightly increase or decrease such metrics. If a higher weight is assigned to the
landslide class, the recall can be improved but at the cost of reducing precision.

The final ranking of the features importance using Mean Decrease Impurity (MDI)
is illustrated in Figure 5.12. It indicates that features related to spectral changes were
the most relevant to build the classification model. One breakthrough in the context
of the landslide detection from optical satellite imagery was the used of change
features (e.g. RGD, BrightnessD and VID) relative to the contextual information of the
image (RGDdeviation, BrightnessDdeviation, VIDdeviation) (Equation 3.13). In the presence
of a dataset characterized by a great variability on the distributions of the spectral
information, those features were crucial to achieving promising results.

Although we initially ranked the NDVI in the first position (Table 5.10), results
from MDI indicate that it is the third more important feature for our model. Regard-
ing the topographic features, the Relative relief shows higher contribution than the
Slope mean and the Slope max. Even though topographic features are less relevant
than the spectral ones, their exclusion reduces the model performance in about 10%.

The experiment conducted in Section 5.3.2 to evaluate the impact of training sam-
ples with mix urban/vegetated areas demonstrated that these samples have a rel-
evant contribution to the model as their exclusion decrease the performance. Fig-
ure 5.13 indicates that without those samples, the model increases considerably the
number of false negatives resulting in a recall of 60%. The precision and f1-score
were also negatively influenced, resulting in a precision of 70% and recall of 68%.
From this experiment we can conclude that the use of training samples located in
urban areas does not negatively impact the model as far as half of the landslide is
bordered by vegetation, it has a minimum size of 10,000m (100m × 100m), and the
image has a minimum quality of class M3 (Table 5.3).

Figure 6.3: Training samples with mixed land cover: urban-vegetated.(a) Landslide L2. (b)
Landslide L7.

6.3 validation
To validate the model we conducted the following experiments:

1. Validation on a satellite image with fresh landslides occurrences. Figure 6.4
illustrates the post-event satellite image (a) and the image difference (b). Re-
gions circled in yellow were correctly identified as landslides, while those
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areas circled in red were not detected. Analyzing the results, we found that
the initial segmentation and merging algorithm separated landslide and non-
landslide segments correctly. By looking at the segment features, we concluded
that the non-detection of the landslide is due to the negative NDVI (-0.17) that
the segment exhibits. These negative values can be related to the proximity
of the segment to a creek, and consequently, to the presence of high water
content. According to Section 5.3.1, segments with NDVI < -0.1 are considered
as outliers and therefore eliminated after the segmentation stage.

Figure 6.4: Model validation of landslides in New Zealand (event date: 2016-11-15). (a) Post-
event image. (b) Image difference using RGD. White areas, high change between
pre- and post image. Dark grey areas, low change. Yellow circle, landslides
detected. Red circle, landslides not detected.

2. Validation on a satellite image that contains landslide that occurred before
the acquisition time of the pre-image that we used to generate the image dif-
ference (Equation 3.5) (Figure 6.5). As expected, the model did not identify
changes in spectral features values (low VID, RGD, BrightnessD); therefore, the
landslide was ignored during the segmentation stage, and consequently dur-
ing classification. This result is inline with the correct funcionality of our
classifier which is to label as non-landslide, those segments with low spectral
changes.

Figure 6.5: Model validation on area with old landslides. (a) Post-event image. (b) Image
difference using RGD. White areas, high change between pre- and post image.
Dark grey areas, low change. No landslides detected.

3. Validation on a satellite image from an area with non-probability of being
affected by landslides occurrences (Figure 6.6). Even though several segments
show similar spectral features values than landslides (high RGD,>0.7; high VID,
> 0.7; low NDVI, <0.2), no landslides were detected. For this case, topographic
features as slope and relative relief can be playing an important role in the
model performance.
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Figure 6.6: Model validation in the Netherlands. (a) Post-event image. (b) Image difference
using RGD. White areas, high change between pre- and post image. Dark grey ar-
eas, low change. Red arrows indicate segments with similar spectral information
than landslides. No landslides detected

4. Validation on a case study in Nepal where the NASA tool 1 [Fayne et al., 2019]
detected landslides (Figure 6.7). (a) Landslides detection using the NASA tool.
(b) Image difference using RGD. (c) Post-event image. Our tool was able to
detect one area with landslides that the NASA tool also identified (yellow
circle). The area circled in red (detected by NASA as positive landslides) was
not identified as a region affected by landslides. For this case, we found that
our segmentation and merging algorithm separate landslide from non-landslide
segments correctly; however, some spectral features of those segments show
values that highly differ from the range of values in landslides. BrightnessD

values (low brightness changes) close to 0 suggest that the landslides were
likely reactivated or occurred before the acquisition time of the pre-image.
The high value in NDVI suggests that those segments (circled in red) were
contaminated with vegetation.

The NASA tool and our method for landslide detection use completely dif-
ferent approaches and have different scopes. In addition to spectral and to-
pographic features, the NASA tool uses changes in soil moisture; therefore,
the tool only works for rainfall-induced landslides and not for events caused
by other triggers as earthquakes. In contrast to our method that is based on
ML for image classification, the NASA tool uses rule-based approaches and
thresholds that are region-specific.

1 Sudden Landslide Identification Product (SLIP) from NASA is a software developed in Google Earth
Engine that applies change-detection algorithms to identify landslides events. The tool uses features
derived from optical satellite images, topographic slope, and soil moisture. It is based on rule-based
approaches using region-specific thresholds that are calibrated from spectral analysis of several landslide
events in Nepal. The model reported an overall accuracy of 56% over the entire study region with errors
of commission (false positive) commonly resulting from newly cleared agricultural areas [Fayne et al.,
2019].
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Figure 6.7: Model validation in Nepal. (a) Landslides detection using the NASA tool. (b)
Image difference using RGD. (c) Post-event image. White areas, high change be-
tween pre- and post image. Dark grey areas, low change. Yellow circle, landslides
detected for our tool. Red circle, landslides not detected.
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7.1 conclusions
The main research question of this study is How to detect landslides using Machine
Learning? To answer this question we investigated a number of sub-questions:

1. To what extent can landslides be detected using Sentinel-2 (GSD = 10m) in combina-
tion with a worldwide DEM (GSD = 30m)?

The results demonstrated that landslides can be detected using features de-
rived from the spectral information of Sentinel-2 images and topographic fea-
tures from DEM with a precision of 83%, recall of 83%, and f1-score of 83%.
Topographic features have less influence than spectral ones; however, their ex-
clusion decreases the model performance to precision, recall, and f1-score of
74%, 71%, and 72%.

2. What are the relevant landslide diagnostic features?

The relevant features to detect landslides are illustrated in Figure 5.12. Contex-
tual features such as BrightnessDdeviation and RGDdeviation are the more relevant
ones with an importance of 26% and 19%. NDVI and VIDdeviation are the third
and forth more important features ranked with 13% and 12%. Each of the
remaining features has less than 10% of importance, being the slope max the
one with less contribution to the model. For this study, contextual features
were key features to overcome the challenge of working with satellite images
distributed worldwide and with a wide variety in the statistical distributions
of spectral features.

3. What is the best segmentation strategy?

The best segmentation strategy is a two-step approach. In the first step, we
use k-means (k=19) and the Red/Green difference (RGD) as the input feature
to segment the image in homogeneous segments. For this segmentation, we
used a criterion in which landslides are not merged with other segments. RGD

was selected as the segmentation feature as it correctly highlights the changes
induced by landslides and reduces variations caused by other irrelevant fac-
tors (e.g. changes in illumination).

The initial segmentation leads oversegmentation of non-landslide areas and,
consequently, to an imbalanced dataset. To overcome the oversegmentation
challenge, we applied a merging algorithm using NDVI as homogeneity crite-
rion to reduce the number of non-landslide segments to a class ratio not greater
than 1:14 (landslide : non-landslides), which was the minimum class distribu-
tion required to keep a precision, recall and f1-score over 60%. Assuming
that the vegetation is sensitive to the occurrences of landslides events due to
the vegetation removal, NDVI was selected as the homogeneity criterion as it
properly allows to discriminate landslides from non-landslides (Section 3.2.2 and
Section 5.2.3). To get the optimal class distribution with minimum negative
impact on the RF performance, we experimentally found a trade-off or bal-
ance point between the segment reduction and the percentage error caused
by wrongly merged landslides. This trade-off resulted in 93.3% of segment
reduction (2,749 segments) with a merging error of 8%.
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4. How to exploit features per pixels to produce features per segments?

Each segment was attributed with the features used to train the model (Sec-
tion 5.2.2). For this, features at pixel level were grouped by computing sta-
tistical measures such as mean and maximum values within the segments
polygons. Mean values were calculated for all features derived from Sentinel-
2 and DEM. For the slope, the maximum value per segment was also computed
(Table 5.7).

5. What is the most appropriate Machine Learning technique?

The most appropriate ML technique is the Random Forest classifier (Section 3.3).
It has proven its effectiveness in a broad range of applications of remote sens-
ing, especially for object-based image classification (Section 2.2.2). As a non-
parametric method, the key property of Random Forest is its capability to
handle different statistical distributions of features, which was one of the
main challenges of this study. Furthermore, its capability to handle imbal-
anced datasets and missing values, as well as the use of few tuning parame-
ters and not complex implementation, make Random Forest the most suitable
algorithm for our binary classification problem.

6. What is the accuracy of the most appropriate ML technique?

The built Random Forest model achieved a precision 83%, recall of 83% , and
f1-score of 83% for the landslide class. The confusion matrix depicted in Fig-
ure 5.11, indicates that from 65 landslides, 54 were correctly identified as true
positives, 11 incorrectly detected as false positive, and 11 were missed or not
identified.

This study achieved promising results for assisting the detection of landslides
and optimizing time- and cost- consuming mapping routines. It is the first attempt
of a method trained with satellite images from different areas, landscapes, and geo-
morphological settings and with different types of landslides not tied to a specific
area and triggering factor.

The developed method is based on the principles OBIA and comprises a set of pre-
processing and processing steps, including image acquisition or generation of cloud-
free images from Sentinel-2, the image segmentation using spectral and topographic
features extracted from Sentinel-2 and DEM, and image classification using Random
Forest. Our method is built using entirely open source technologies allowing its
applicability, re-usability, testing, and improvement (https://github.com/mhscience/

landslides detection).
Our method demonstrated not to be affected by areas with mixed urban-vegetation

land cover as far as half of the landslide is bordered by vegetation, it has a mini-
mum size of 10,000 m2 and the image has a higher quality than M3 (Section 5.1.1,
Table 5.3). The method has limited performance in areas with perennial snow, high
sedimentation rates, regions characterized by sparse or non-vegetation.

7.2 future works
As a continuation of this study we recommend the following:

• Use our method to detect new landslides distributed worldwide and include
them as part of the training samples. A higher number of landslides will in-
crease the robustness and generalization of the model. Additionally, it will
allow the comparison with other ML algorithms as Convolutional Neural Net-
works.

• In addition to the merging algorithm, we propose to explore a complementary
approach to reduce the number of non-landslide segments. One strategy can be

https://github.com/mhscience/landslides_detection
https://github.com/mhscience/landslides_detection
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to evaluate the segment redundancy and eliminate those segments that share
similar spectral information (e.g. similar NDVI, GNDVI, RGD). This strategy
will help to balance the dataset and keep accurate classification results for the
landslide class while new training samples are added to the model.

• Research the inclusion of Synthetic Aperture Radar (SAR) images in our pro-
cessing method to add terrain deformation features from pre-event and post-
events. SAR signal penetration could overcome the limitation of optical im-
ages in regions with perennial snow, sand cover, and sparse or non-vegetation.

• Explore a strategy to include an automatic and dynamic NDVI threshold that
instead of being experimentally derived, can be automatically calculated based
on the spectral information contained in every image.
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Figure A.1: Landslides database. An example of the landslides tables stored in PostgreSQL.
The original data includes additional information such as the length and width
of the major landslide recognized in the image, the landslide category (e.g. land-
slide, mudslide), landslide setting (e.g. natural slope, above river), location name
(e.g. Mocoa, Colombia; Java, Indonesia), water body proximity (e.g. close to river,
lake or coast).



B I M A G E S E G M E N TAT I O N

Figure B.1: Image set preparation.
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C E X P LO R ATO R Y A N A LY S I S

Figure C.1: Class distribution and correlation between features: Slope mean, Slope max,and
Relative relief.

81



colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.
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