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BiVO4-based photoanodes for the photoelectrocatalytic removal
of trace organic pollutants from water: A mini review on recent
developments
Agha Zeeshan Ali1, Sanjeeb Mohapatra1, Jan Peter van der Hoek1,2 and
Henri Spanjers1
This mini review explores the potential of visible light–driven
bismuth vanadate (BiVO4)-based photoanodes for removing
trace organic pollutants from water. It highlights the advan-
tages of using BiVO4-based photoanodes over conventional
UV-driven photoanodes in water treatment. The mechanism of
reactive species generation through water oxidation is
discussed. The review also highlights the role of sulfate and
sulfite radicals in enhancing pollutant degradation. Further-
more, it evaluates how heterojunction formation improves the
removal efficiency of BiVO4-based photoanodes by reducing
charge carrier recombination. Limited research on BiVO4-
based photoanodes for the simultaneous removal of multiple
organic pollutants at low concentrations (<1 mg L−1) from real
wastewater is identified as a key knowledge gap. Addressing
this gap could advance the application of BiVO4-based
photoanodes in photoelectrocatalytic-based advanced oxida-
tion processes.
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Introduction
Organic pollutants such as synthetic dyes, pharmaceu-
ticals and pesticides contaminate water resources and
pose serious risks to human health and aquatic
ecosystem [1e3]. The concentrations of these organic
pollutants vary by source and location, ranging from a
few ng L�1 to several mg L�1 [4,5]. Conventional
wastewater treatment technologies often fail to remove
organic pollutants completely. As a result, these pollut-
ants are released into the aquatic environment [6].
Advanced oxidation processes (AOPs) are gaining
importance for the removal of organic pollutants [7].

AOPs generate hydroxyl radicals ($OH) and superoxide
radicals ($ O�

2 ) in water as the main reactive oxygen
species (ROS), which degrade organic pollutants [8,9].
Among AOPs, photoelectrocatalytic (PEC)-based AOP
has gained attention due to its enhanced charge sepa-
ration under applied voltage, which improves the ROS
generation and removal efficiency for organic pollut-
ants [10e13].

Bismuth vanadate (BiVO4) is a small band gap
(w2.4 eV) semiconducting photocatalyst, widely used

in PEC AOPs for removing organic pollutants from
aqueous solutions [14]. Figure 1 illustrates a typical
PEC cell for the removal of organic pollutants using a
BiVO4 photoanode. Electrons and holes are generated in
the BiVO4 photoanode upon its interaction with the
incoming photons. The photogenerated holes oxidize
the water molecules to produce $OH, whereas the
photogenerated electrons reduce oxygen to produce $

O�
2 [15]. An external voltage is applied to the photo-

anode to minimize electronehole recombination,
thereby enhancing charge separation [16]. Unlike con-

ventional photocatalysts such as titanium oxide (TiO2)
[17], zinc oxide (ZnO) [18], and tungsten oxide (WO3)
[19], which primarily absorb UV light (l < 400 nm),
BiVO4 can absorb both UV and visible light
(l � 520 nm), improving solar energy utilization [14].
BiVO4 has demonstrated superior photocatalytic effi-
ciency for water oxidation compared with TiO2, ZnO,
and WO3 [20]. This is attributed to its favorable con-
duction and valence band positions, which allow effec-
tive generation of reactive oxygen species (ROS) such as
hydroxyl ($OH) and superoxide ($O2

- ) radicals.
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Figure 1

Schematic of the photoelectrocatalytic removal of organic pollutants from
water using a BiVO4 photoanode. Solar photons (hv) interact with the
photoanode, generating electron (e−)–hole (h+) pairs. These charge car-
riers facilitate the formation of hydroxyl and superoxide radicals, which
oxidize the organic pollutants.
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Additionally, BiVO4 has a relatively positive valence
band potential (w2.5 V vs. standard hydrogen electrode
(SHE)), making it effective for oxidative degradation of
organic pollutants [20]. Compared with ZnO, which
undergoes photo-corrosion in aqueous solutions [21],
BiVO4 is more stable under visible light [22]. Addi-
tionally, it can be used effectively under neutral to

slightly acidic conditions (pH 5e6), making it suitable
for real wastewater treatment applications [23]. This
mini review provides an analysis of recent advancements
in the application of BiVO4-based photoanodes for the
removal of organic pollutants, with a particular emphasis
on pharmaceuticals. It highlights the role of hetero-
junction in enhancing BiVO4 removal efficiency by
improving charge separation. Additionally, this review
identifies critical knowledge gaps, particularly the
limited research on BiVO4-based photoanodes for the
simultaneous removal of multiple organic pollutants at

low concentrations (<1 mg L�1) in real wastewater.
Finally, it offers recommendations to guide future
research and advance the application of BiVO4 in PEC-
based water treatment.
Structural and optical properties of BiVO4
BiVO4 is a nontoxic, cost-effective n-type semi-
conductor with good chemical stability [14]. Its absor-
bance depends on its crystal structure, existing in three
polymorphs: pucherite (orthorhombic), dreyerite
(tetragonal zircon), and clinobisvanite (monoclinic
Current Opinion in Environmental Science & Health 2025, 45:100615
scheelite or tetragonal scheelite) [24]. The monoclinic
scheelite structure is favored for photoelectrocatalysis
due to its lower band gap energy (about 2.4 eV) [25] and
reduced recombination rate of photogenerated carriers
compared with the other crystal structures [26]. These
properties are linked to the unique local bonding envi-
ronment in monoclinic scheelite BiVO4, making it more
effective for PEC applications [27,28].
Photoelectrocatalytic removal of organic
pollutants using BiVO4 photoanodes
Monoclinic scheelite BiVO4 photoanodes have been
effectively utilized in laboratory-scale research for the

PEC removal of phenols, dyes, and pharmaceuticals.
Fluorine-doped tin oxide (FTO) is mostly used as a
substrate for the deposition of BiVO4 [14]. Bennani
et al. (2016) investigated the application of spray-coated
FTO/BiVO4 photoanodes for the PEC-based removal of
phenol (20 mg L�1) in demineralized water [29]. The
fabricated photoanodes achieved a removal efficiency of
70 % with an applied potential of 1.0 V (vs Ag/AgCl)
after 4 h reaction time. Under identical conditions, this
efficiency was 14 % higher than that observed with TiO2

photoanodes. The higher removal efficiency of BiVO4 is

attributed to the visible light absorption and improved
charge separation compared with TiO2. Bacha et al.
(2019) utilized BiVO4 photoanodes to remove methyl
orange (10 mg L�1) in demineralized water under
visible light, generated with a 300 W xenon lamp [30].
The fabricated photoanode removed only 11 % of the
methyl orange at an applied voltage of 2.0 V (vs Ag/
AgCl) after 2 h. However, after adding 16 mM of
Na2SO3 in the electrolyte, 97 % of methyl orange was
removed after 2 h with the same photoanode at 2.0 V (vs
Ag/AgCl). This increase was likely due to the generation
of sulfite radicals (SO$�

3 ) through the interaction of

sulphite anions (SO 2�
3 ) with the $OH radicals at the

BiVO4 surface. Similarly, in another study, the removal
efficiency of BiVO4 photoanode for bisphenol A
(10 mg L�1) was enhanced by the addition of perox-
ymonosulfhate (PMS) in the electrolyte [31]. PMS
acted as an electron acceptor for the photogenerated
electrons in BiVO4, facilitating the generation of $OH
radicals and enabling complete removal of bisphenol A at
an applied voltage of 0.25 V (vs saturated calomel
electrode (SCE)) within 2 h. Wang et al. (2020) inves-
tigated the use of BiVO4 photoanode and polydopamine-

modified carbon felt polydopamine-modified carbon felt
(PDA/CF) cathode for the removal of ofloxacin
(8 mg L�1) [32]. They found that addition of 2 mM
PMS in the electrolyte accelerates the removal reaction
rate by generating sulfate radicals (SO$�

4 ), leading to
complete ofloxacin removal within 2 h at 1.5 V (vs Ag/
AgCl). Based on the results of electron spin resonance,
$OH radicals and SO$�

4 radicals were identified as the
main oxidizing species responsible for the removal of
ofloxacin. Cheng et al. (2019) demonstrated effective
www.sciencedirect.com
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Table 1

Summary of recent studies using BiVO4 heterojunction photoanodes for the removal of organic pollutants.

Heterojunction photoanode Configuration of PEC cell Light intensity Pollutant Removal efficiency Rate coefficient (k) Ref

BiVO4/MnO2 Cathode: Pt sheet
Applied potential: 1.5 V (vs Ag/AgCl)

100 W xenon lamp with l� 420 nm Ciprofloxacin (C0 = 10 mg L−1) 76 %, 2 h 1.05 × 10−2 min−1 [35]

BiVO4/Ag2S Cathode: Pt sheet
Applied potential: 1.2 V (vs Ag/AgCl)

100 W xenon lamp with l� 420 nm Ciprofloxacin (C0 = 10 mg L−1)
Sulfamethoxazole (C0 = 10 mg L−1)

80 %, 2 h
86 %, 2 h

1.37 × 10−2 min−1

1.47 × 10−2 min−1
[36]

BiVO4/WO3 Cathode: Pt plate
Applied potential: 1.0 V (vs SCE)

300 W xenon lamp with l� 420 nm
and intensity of 1 mW cm−2

Norfloxacin (C0 = 10 mg L−1) 67 %, 3 h 2.68 × 10−3 min−1 [37]

BiVO4/g-C3N4 Cathode: Pt wire
Applied potential: 1.23 V (vs Ag/AgCl)

300 W xenon lamp with light
intensity of 100 mW cm−2

Methyl orange (C0 = 5 mg L−1) 90 %, 75 min 4.56 × 10−2 min−1 [22]

BiVO4/WO3 Cathode: Pt foil
Applied potential: 1.5 V (vs Ag/AgCl)

Solar simulator with light intensity of
100 mW cm−2

Ibuprofen (C0 = 100 mg L−1) 82 %, 150 min Not available [38]

TiO2/RuO2–BiVO4 Cathode: Pt foil
Applied potential: 2.0 V (vs SCE)

300 W xenon lamp with l� 420 nm Acetaminophen (C0 = 332 mg L−1) 100 %, 3 h 3.38 × 10−2 min−1 [39]

BiVO4/NiS Cathode: Pt wire
Applied potential: 1.8 V (vs Ag/AgCl)

100 W xenon lamp Rhodamine B (C0 = 10 mg L−1)
Sulfamethoxazole (C0 = 10 mg L−1)

73 %, 2 h
57 %, 2 h

0.108 min−1

7.4 × 10−3 min−1
[40]

TiO2/BiVO4–Bi2S3 Cathode: Pt sheet
Applied potential: 1.8 V (vs Ag/AgCl)

Xenon lamp with light intensity of
100 mW cm−2

Rhodamine B (C0 = 10 mg L−1) 64.3 %, 150 min 6.13 × 10−3 min−1 [41]

CoFe2O4–BiVO4 Cathode: Pt mesh
Applied potential: 0.6 V (vs Ag/AgCl)

300 W xenon lamp with l� 420 nm Tetracycline (C0 = 20 mg L−1) 89 %, 1 h 3.7 × 10−2 min−1 [42]

BiVO4/TiO2 Cathode: Pt wire
Applied potential: 4 V (vs Ag/AgCl)

300 W xenon lamp with l� 420 nm
with light intensity of 200 mW cm−2

Rhodamine B (C0 = 10 mg L−1) 93.9 %, 5 h Not available [43]

BiVO4/ZnO Cathode: Pt foil
Applied potential: 0.8 V (vs SCE)

300 W xenon lamp with l� 420 nm Tetracycline (C0 = 20 mg L−1) 66.1 %, 2 h 1.94 × 10−3 min−1 [44]

BiVO4/MoS2 Cathode: Pt wire
Applied potential: 1.5 V (vs Ag/AgCl)

300 W xenon lamp with l� 435 nm Bisphenol A (C0 = 10 mg L−1) 100 %, 75 min 5.12 × 10−2 min−1 [45]

BiVO4/Ag Cathode: Pt foil
Applied potential: 1.5 V (vs Ag/AgCl)

300 W xenon lamp with l > 420 nm b-naphthol (C0 = 10 mg L−1) 80 %, 8 h 3.33 × 10−3 min−1 [46]

BiVO4/ZnO Cathode: Pt wire
Applied potential: 1.6 V (vs Ag/AgCl)

300 W xenon lamp with l� 420 nm Tetracycline (C0 = 20 mg L−1) 95.4 %, 1 h 4.55 × 10−2 min−1 [47]

BiVO4/a-Fe2O3 Cathode: Pt foil
Applied potential: 2 V (vs Ag/AgCl)

350 W xenon lamp Bisphenol A (C0 = 20 mg L−1) 86.8 %, 2 h Not available [48]

BiVO4/g-C3N4 Cathode: Pt wire
Applied potential: 1 V (vs SCE)

Xenon lamp with l � 420 nm Diclofenac sodium (C0 = 10 mg L−1) 30.1 %, 2 h 3.23 × 10−3 min−1 [49]

BiVO4/CuO Cathode: Pt foil
Applied potential: 4.0 V (vs Ag/AgCl)

44 W LED with l � 420 nm 4-Nitrophenol (C0 = 30 mg L−1) 50.2 %, 8 h 1.86 × 10−2 min−1 [50]

BiVO4/ZnO (with exfoliated
graphite as substrate)

Reference electrode: Ag/AgCl
Cathode: Pt sheet
Applied current density: 10 mA cm−2

100 W xenon lamp with l� 420 nm Rhodamine B (C0 = 10 mg L−1) 91 %, 4 h 9.21 × 10−3 min−1 [51]

BiVO4/Cu2O Cathode: Pt foil
Applied potential: 0.6 V (vs Ag/AgCl)

300 W xenon lamp Ciprofloxacin (C0 = 30 mg L−1) 60 %, 150 min 6.5 × 10−3 min−1 [52]

WO3/BiVO4 Cathode: Pt wire
Applied potential: 1.2 V (vs Ag/AgCl)

320 W xenon lamp Sodium 2-napthalenesulfonate
(S2NS) (C0 = 50 mg L−1)
Benzyl alkyl dimethylammonium
(BAC-C12) (C0 = 50 mg L−1)

100 %, 150 min
100 %, 150 min

Not available [53]

BiVO4/MoS2–Co3O4 Cathode: platinum plate
Applied potential: 3.5 V

Xenon lamp with light intensity of
100 mW cm−2

Bisphenol A (C0 = 10 mg L−1) 80 %, 5 h 5.8 × 10−3 min−1 [54]

BiVO4, bismuth vanadate; PEC, photoelectrocatalytic.
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tetracycline (TC) removal using a BiVO4 photoanode
paired with a dual hemin/Cu-carbon cloth cathode [33].
The photogenerated holes in BiVO4 produced $OH
radicals and also directly oxidized the molecules of TC
while the photogenerated electrons were transferred to
the cathode for the production of H2O2. This combi-
nation of BiVO4 photoanode and dual hemin/Cu-carbon
cloth cathode removed 93.6 % of TC after 2 h reaction

time with an applied voltage of 0.8 V (vs Ag/AgCl) to
the photoanode.

BiVO4-based heterojunction photoanodes
To improve charge separation, BiVO4 is often combined
with other photocatalysts to form a heterojunction.
BiVO4-based heterojunction photoanodes show higher
removal efficiency for organic pollutants compared with
pristine BiVO4 photoanodes. Cao et al. (2018) investi-
gated a BiVO4/Ag3PO4 heterojunction photoanode for
the PEC-based removal of norfloxacin (5 mg L�1),
achieving complete removal within 90 min at 0.5 V (vs
SCE), compared with 61.4 % removal by pristine BiVO4

photoanode [34]. The enhanced performance is attrib-

uted to the enhanced charge separation in the hetero-
junction photoanode, which increases $OH radicals
production, significantly improving the removal ki-
netics. Table 1 summarizes recent studies that utilized
BiVO4 heterojunction photoanodes for the removal of
organic pollutants.
Conclusions and outlook
BiVO4-based photoanodes have demonstrated compa-
rable and even superior removal efficiency for a number
of organic pollutants compared with UV-driven photo-
anodes such as TiO2 (Table 1). In PEC based systems,
$OH radicals are the primary reactive species respon-
sible for oxidizing organic pollutants. Several studies
have also reported enhanced removal efficiency with the
addition of PMS, attributed to the oxidation of organic

pollutants by SO$�
4 generated through the visible light

activation of PMS in the bulk solution. Similarly,
heterojunction photoanodes have shown higher removal
efficiencies than pristine BiVO4 photoanodes due to
improved charge separation. The studies reviewed pre-
dominantly targeted synthetic dyes and pharmaceutical
compounds, using concentrations in demineralized
water ranging from 5 to 50 mg L�1.

There remains ample research potential in the field of
PEC-driven removal of organic pollutants using BiVO4

photoanodes. Further studies are particularly needed to
explore the effectiveness of BiVO4-based photoanodes
for the removal of organic pollutants at concentrations
below 1 mg L�1 as most organic pollutants detected in
surface water or groundwater range from low ng L�1

levels to higher mg L�1 levels [55], which can impact the
removal kinetics. Additionally, investigating the simulta-
neous removal of multiple organic pollutants in aqueous
Current Opinion in Environmental Science & Health 2025, 45:100615
solutions is essential, given that pollutants of emerging
concern typically occur in aquatic environments as mix-
tures rather than as isolated compounds [56,57].
Research should also focus on applying BiVO4-based
photoanodes to remove organic pollutants from real
wastewater or effluent from industrial processes and
wastewater treatment plants as this would provide valu-
able insights into the removal mechanism and the effect

of the overall water composition on the removal effi-
ciency. Moreover, employing process simulation tools
such as computational fluid dynamics (CFD) modeling
for BiVO4-based PEC removal in full-scale reactors could
be beneficial. Simulation results can be used for a techno-
economic analysis, helping to evaluate the feasibility of
reactor designs of scaled-up PEC reactors employing
BiVO4-based photoanodes.

In conclusion, BiVO4-based photoanodes have demon-
strated considerable potential in water treatment ap-

plications. Given the advancements achieved to date, it
is expected that BiVO4-based photoanodes will be
increasingly used for full-scale water treatment appli-
cations in the future.
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