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Preface

This master thesis will be done at VORtech under supervision of E.A.H. Vollebregt. Vollebregt, once a
student of Prof. J.J. Kalker, is an expert in the �eld of (rolling) contact mechanics and has done much
work on the software package CONTACT. Recently it has been discovered that for certain small values in
the discretized timestep non-physical 'wiggles' show up in the results. My master thesis will focus on
�nding out what causes these wiggles to arise and how we can prevent this.

VORtech is a scienti�c software engineering company that produces, maintains, and optimizes scienti�c
software. They have long-term contracts with big corporations like Shell, Rijkswaterstaat, Deltares, and
TNO as well as smaller projects with SMEs. The majority of its 27 employees has a mathematical or
physical background. In the �rst place VORtech works by letting clients hire VORtech's mathematicians
to be an addition to their team, backing them up with speci�c expertise. Secondly VORtech develops
and maintains software packages for clients that need certain software but do not develop software them
self. Lastly VORtech provides clients with mathematical consultancy.

The software package CONTACT is maintained by Vollebregt, co-founder of VORtech. CONTACT is mainly
used in railway simulation packages to calculate the forces and other physical parameters that occur
in the wheel-rail contact. My master thesis will revolve around the forces calculated by this software
package.

Delft, June 2016
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Introduction

Contact mechanics describes the way two (elastic) objects interact with each other when they touch,
make contact. As the two bodies are pressed against each other, at the point of contact the bodies want
to take up the same spot in space, resulting in each of them applying a repelling force on the other. This
force will deform the bodies so that a contact area appears where the resulting contact forces balance
the forces pressing the bodies together. In a wheel-rail system the two bodies (the wheel and the rail)
are not just pressed together, but the wheel will be rolling over the rail. This rolling adds a dynamical
component to the system, in the form of tangential friction.

J.J. Kalker [19] �rst developed the software package DUVOROL in 1978 [12, 13], this package assumed
an elliptic contact area, as described in the Hertz theory [9], and was limited to steady-state rolling
contact. In 1982 he �nished its successor CONTACT. This package could determine the actual contact
area, and could calculate for an instant frictional shift and transient rolling contact. Both programs
were written in FORTRAN IV. The underlying theory and the framework of the algorithms are described
in Kalker's most cited work [14]. The book describes the problem of rolling contact mechanics and gives
both analytic solutions for certain geometries and the numerical scheme for more complex geometries.
Altough the software version of 1990 is outdated, the core of the methodology has not changed.

In 1992-4 E.A.H. Vollebregt rewrote CONTACT in FORTRAN 77 [27], modernizing it in a way that is easier
adaptable. After the publishing of Kalker's book in 1990 there has been much development on CONTACT.
Adding more functionality, like extensions on the friction model [26, 29] and an extension towards con-
formal contact areas [30]. But also implementing faster numerical solvers, utilizing Conjugate Gradient
methods and Fast Fourier Transformations [22, 25, 34] to improve the performance.

This thesis will deal with problems arising when varying the timestep. The focus will be on the
occurrence of arti�cial numerical wiggles that arise when the timestep becomes small, see Figure 1.1
for an example. More speci�cally, the wiggles arise when the traversed distance per timestep δt · V is
small compared to the gridsize δx. For brevity this traversed distance per timestep will be simply called
the �timestep� δq although δq is actually a distance. Its size compared to the gridsize is controlled by
a parameter c given by δt·V

δx = δq
δx . In the numerical scheme that arises the most in�uential factor is a

matrix B. Without giving further details yet, there are a few things that happen to B when c � 1.
When c = 0 the matrix is singular and no solution exists. As c ↓ 0 the imaginary parts of the eigenvalues
of B become bigger, relative to the real parts. Also the condition number grows rapidly as c decreases,
meaning that the solution will be very sensitive to small deviations in the input, so little errors blow
up in the results.

In [23] it is shown that the ratio c = δq
δx is an important factor concerning the accuracy of the model.

Whereas in other applications it is typically found that a lower value of c results in better accuracy,
here it is found that for c < 0.55 the accuracy decreases again.

Another artifact that has been found is a form of smoothing of sharp peaks or kinks in the solution. This
numerical di�usion-like phenomenon will be explained in the second part of the thesis and solutions for

1



2 1. Introduction

(a) Case: c = 1 (b) Case: c = 0.1 (c) Case: c = 0.025

Figure 1.1: Computations of tractions in 2D in CONTACT choosing di�erent values of δq. This is the 2D Carter/Fromm
problem, see [27, section 5.2].

this problem are sought.

At last the convergence of the algorithm is investigated. Currently the algorithm only has �rst order
convergence whereas second order convergence is expected. The last part of the thesis will show that
the bottleneck for the convergence lies in the leading edge of the contact zone.

In Chapter 2 the necessary theoretical framework will be given. This includes the physical background
that lies at the basis of contact mechanics (Sections 2.1 and 2.2), techniques used to simplify the problem
(Sections 2.3 - 2.6), the discretization (Section 2.7), and implementation (Section 2.8). Also remarks
on the use of piece-wise functions (Section 2.9) and the use of iterative solvers (Section 2.10) is given.

Chapter 3 will give a more detailed insight in how exactly the discretized slip-equations are solved,
followed by a description of the problem of smoothing in Chapter 4.

Chapter 5 describes the problem that needs to be solved and the di�erent cases that can be considered.
In Section 5.1 a short description of the research done is given. Followed in Section 5.2 by the research
questions for my master thesis.

In Chapter 6 the wiggle phenomenon will be investigated. Smoothing of the solution will be further
discussed in Chapters 7.2-9. Chapter 10 will deal with the rate of convergence of the algorithm.

Finally a conclusion along with recommendations is given in Chapter 11.
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Theory

In the following sections more details will be given concerning the equations that need to be solved,
and the way they are currently solved. The basic theory of elasticity can be found in Love [17]. This
book includes theory on elasticity and the concepts of stress and strain. A good basis for the theory on
contact mechanics can be found in Johnson [10].

Elasticity

Deformation

In order to work with elastic contact problems we need to understand what elastic deformation is.
Deformation of a physical body is the transformation of the positions of particles in the reference state
to a their positions in the new state. When a particle had position x and after deformation has position
x + u, then the deformation is u.

Strain

Now introduce the strain ε. The strain consists of longitudinal strains εii = ∂ui

∂xi
corresponding to

stretching of the body, and shear strains εij =
∂uj

∂xi
+ ∂ui

∂xj
for i 6= j corresponding to bending of the

body. The strains describe the relative displacement of the particles in the body.

Stress

Strain in the body can be caused both by outside stress, forces like gravity or pressure acting on the
body, as well as by internal elastic stress, resulting from the material resisting change. The strains are
linked to (internal) stress σ, according to the generalized Hooke's Law through the elastic tensor C by
σij = Cijklεkl. We will use Einstein summation convention throughout this documents unless speci�ed
(as we just did with the elastic tensor), there will be no summation over the εii though in the previous
paragraph.

When the elastic behaviour of a material is independent on the direction of the stress- and strain-
components the material is said to be isotropic. For example in the case of metals. An example where
this is no longer valid is wood, because of the uniformly directed �brous structure the wood reacts
di�erent under stress perpendicular or parallel to the direction of the �bres. The elastic tensor Cijkl
for an isotropic material reduces to two material properties λ and µ. Here µ is the rigidity and λ+ 2

3µ
the modulus of compression. Furthermore, when the material is homogeneous the λ and µ are constant
through the material. For an isotropic material we can give the stresses as functions of the strains
through: σii = λ(ε11 + ε22 + ε33) + 2µεii and σij = µεij , i 6= j. Again do not use summation over σii
and εii.

3



4 2. Theory

Tractions and slip

The following scalar and vector quantities are important in the contact model. Before the bodies are
brought into contact we refer to them by their coordinates x in a right-handed coordinate system where
the x-axis points in the rolling direction and the z-axis points upwards into the upper body. When the
bodies are brought into contact stresses σ, strains ε and displacements u arise. We are particularly
interested in the surface quantities where we call the surface stresses of body 1 p(1)(x) and of body
2 p(2)(x). Because these surface stresses work against each other they have the same amplitude but
opposite sign: p(1)(x) = −p(2)(x), so in the model we will only consider the surface stress on body 1
and call this p(x) = p(1)(x). After the deformation the displacement of body 1 at a point x is given by
u(1)(x). Now let the displacement di�erence be given by the di�erence in the displacements of bodies
1 and 2 at a given position: u(x) = u(1)(x) − u(2)(x). Furthermore we split the stress vector into a
scalar value pn for the normal stress, and the 2-vector pτ for the tangential stresses, called tractions.
The normal distance between the undeformed surfaces is given by h. Now the normal distance between
the bodies in the deformed state is given by:

e := h+ un (2.1)

Finally we have a relative slip s (also a 2-vector as there is no slip in the normal direction) which
describes how fast the upper and lower body slide over each other compared to the rolling velocity
given by [14, equation 1.25]:

s = w +
u̇

V
(2.2)

V is the rolling velocity magnitude, because we choose the velocity to always be in the x-direction we
have that v = [V, 0, 0]T . Here w = [ξ − φy, η + φx]T is the relative rigid slip given as a function of the
longitudinal and lateral creepage ξ and η and the spin creepage φ. The relative slip and relative rigid
slip are relative compared to the magnitude of velocity. In rolling the build up of tractions is mostly
governed by the velocity of creeping relative to the overall rolling velocity. Therefore we de�ne the
relative slip velocity srelative = sabsolute/V as a dimensionless slip velocity and abbreviate s := srelative.
The quantity u̇ is the material derivative of the displacement given by: u̇ = ∂u

∂t − V ∂u
∂x . The minus in

front of the spatial derivative is because as the upper body moves in positive x-direction, this means
that the surface particles actually move in the negative x-direction through the contact area.

Now we can de�ne the contact conditions:
In the normal problem:

in exterior area E : e > 0, pn = 0 (2.3)

in contact area C : e = 0, pn ≥ 0 (2.4)

In the tangential problem:

in exterior area E : s free, pτ = 0 (2.5)

in adhesion area H : ||s|| = 0, ||pτ || ≤ g (2.6)

in slip area S : ||s|| > 0, pτ = −g s
||s|| (2.7)

This means that in the exterior area E the bodies do not touch each other so there is no stress and the
bodies move freely from each other so the slip can be anything. In the adhesion area H the bodies touch
each other without slipping, the stress between them is bound by an upper bound g, in the slip area S
the bodies slide over each other and the stress reaches its upper bound and is directed in the opposite
direction from the slip. This upper bound is called the traction bound and is given by Coulomb's
friction law [5] as

g = µpn (2.8)

where µ is the coe�cient of friction.

The displacements at x can now be determinted by integrating the product of the stress at the contact
area C with an in�uence function using:

ui(x) =

∫
C

Aij(x,y)pj(y)dS (2.9)
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This equation describes how u is a function of the tractions p at the contact surface C. The indices
i, j in the function Aij run over 1, 2, 3 and Aij(x,y) tells us how the traction pj(y) in�uences the the
displacement ui(x). Note that we use Einstein summation convention over the index j.

Boundary Element Methods

The Boundary Element Method (BEM) is a numerical approximation method for solving partial di�er-
ential equations (PDEs). The BEM is derived by rewriting the PDE into an integral equation de�ned
on a boundary. Discretizing this integral equation gives the BEM. An advantage of BEMs over �nite
element methods, �nite volume methods, and �nite di�erence methods is that the BEM only solves the
equations on the boundary of the domain of interest. Especially when Greens functions are known and
the in�uence can be calculated analytically it is interesting to solve the system on the boundary using a
BEM. Only calculating for the boundary means that we have one dimension less to work with, so with
the same grid coarseness as in other methods, less grid points need to be considered, beware though
that the system of equations coming from a BEM is dense while a FEM generally gives a sparse system
of equations. Another advantage is gained when the body of interest is unbounded but has a bounded
boundary, thus resulting in a �nite domain for the BEM.

The major drawback when using a BEM is of course the fact that you do not calculate anything that
happens below the boundary. When you are interested in internal parameters that can not be calculated
in a straightforward way from properties on the boundary (when there are no Greens functions or
comparable relations) you introduce extra errors, usually in the form of extrapolation errors.

Halfspace approximation

Although the full stress-strain equations are complex it is possible to make some assumptions to simplify
the model. In our model we make use of the half-space approach. This means that we assume that
the two contacting bodies are in�nite half spaces. This approach can be made if the bodies look like
the halfspaces in a zone where the elastic �eld is signi�cant and only begin to di�er signi�cantly from
the half spaces where the elastic �eld is very small. This means that the contact area must be small
compared to the typical dimension of the bodies such that the radius of curvature is large near the
contact area. See Figure 2.1. Results in Kalker [14, Figure 5.20] �support the statement that the half-
space approximation is justi�ed, when the diameter of contact is less than 1/3 of the diameter of the
contacting bodies�.

Figure 2.1: When the upper and lower body make contact the stresses and strains will only be `felt' inside the blue
circle because the in�uence of stresses and strains decreases as the distance increases away from the contact zone. So the
geometry of the bodies outside the blue circle is unimportant and for contact calculations we may assume that the bodies
are two half spaces.

The strenght of the halfspace approximation lies in the fact that the formula's for the in�uence functions
Aij used in equation (2.9) are derived by Boussinesq [3] and Cerruti [4] for the halfspace. So explicit
Greens functions can be used in the BEM.
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Quasi-identical behaviour

Another simpli�cation occurs when the two bodies of contact are quasi-identical. This is the case
when both the geometry and the elastic behaviour of the bodies are similar. The �rst is automatically
the case when we already have applied the half-space approach, both bodies are halfspaces, and thus
identical. The second condition is ful�lled when the Young's Modulus E and Poisson's Ratio ν are
equal. Stresses in one direction in�uence deformations in all three directions, when the two contacting
bodies are not quasi-identical the normal and tangential problem in�uence each other. When the bodies
are quasi-identical however the tangential displacements are the same for both bodies so there is no
relative tangential displacement and we can separate the normal and tangential problem.

Applying a BEM to solve the contact between two quasi-identical half spaces greatly simpli�es the model.
Because now the normal and tangential problems are separated we �st solve the normal problem on
the contact surface and use the solution for the normal problem when solving the tangential problem
on the contact surface.

Problem dependent simpli�cations

Based on which assumptions we make we can adjust the equations to make them easier to solve. We
will make distinctions between solving the system in 2D and 3D and between transient and steady-state
rolling.

2D vs 3D

When we make the half-space approximation and the objects of contact are quasi-identical the normal
and tangential problems are already separated. So in both the 2D and 3D case we will �rst solve the
normal problem. In the 3D case the tangential contact area is 2D and equation (2.7) is a quadratic
equation. In the 2D case however the tangential contact area becomes a 1D line and equation (2.7) is
linear, thus easy to solve. This means that the 2D case is much easier to solve. As the wiggles and
other discretization e�ects occur both in the 2D and 3D problem a solution is �rst sought for the 2D
case since this case is easier to study and a solution in 2D might be applicable in the 3D case as well.

Time-dependency

Equation (2.2) contains a time derivative. When we have a transient system we need an initial state.
Once this initial state is known the full solution has to be determinded by evolving the solution in time.

A steady-state solution can be found in two ways. The �rst is simply applying the algorithm to solve
the transient rolling case and stop once the solution of the current time instance is the same as the
solution of the previous time instance. This is also what was originally implemented in Kalker's DUVOROL
software.
A more sophisticated approach is going back to the equation for the stress (2.2) and set the time-
derivative to zero. Now pτ and thereby uτ can be calculated directly. This method will be called the
direct approach.

Discretization

Now that we have simpli�ed the physical model into a mathematical description we can discretize the
problem. As stated in [14, 23] in CONTACT the potential contact area is discretized using identical
rectangles I with size ∆x×∆y. The centre of rectangle I is denoted by (xI , yI), note that there is no
z-component because the contact area lies in the x-y plane so z = 0 is a constant on the whole contact
area. Equation (2.3) through (2.7) are discretized by using piecewise constant functions φI that are
1 on rectangle I and 0 everywhere else. The true solution p is then approximated by the piecewise
constant function

∑
i φi · pi.
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The slip will be discretized by rewriting the slip equation. When looking at steady-state the time
derivative in the material derivative in equation (2.2) drops out and we are left with:

s = w − ∂u

∂x
(2.10)

Before we can discretize this equation we need to approximate the spatial derivative. The slip equation
is an advection equation, these equations are generally solved using an upwind-scheme. What happened
upstream is known, so using data from upstream will generally give good results. Because the velocity is
in the negative direction this upwind-scheme gives us a forward di�erentiation for the spatial derivative.
A �rst order scheme is used because of its robustness. We may now approximate with a small enough

∆x the derivative to x by using: ∂u
∂x ≈

u(x+[∆x,0]T )−u(x)
∆x . This will give us the expression:

s = w − u(x + [∆x, 0]T )− u(x)

∆x
(2.11)

If we now use ∆x = V · dt = dq and write x + [dq, 0]T = x′ then a particle that has position x at time
t had position x′ at time t′ = t− dt. This turns the slip equation into:

s = w +
u(x)− u(x′)

dq
(2.12)

Now only looking at the values of s and w in the centres of the rectangles I we get the discretized form:

sI = wI +
u(xI)− u(x′I)

dq
(2.13)

The solution for the displacement do not need to be discretized, u(x) can be determined using equation
(2.9) for any x. Because p has been replaced by a piecewise constant function the integral in equation
(2.9), it can be solved analytically using the results by Boussinesq [3] and Cerruti [4]. The in�uence
functions are discretized by calculating the displacements felt in element I as a result of tractions in
element J . This means that in�uence coe�cient AIiJj indicates how the displacement in rectangle I in
the i direction is in�uenced by tractions in rectangle J in the j direction. So we can write:

AIiJj =

∫∫
S

Aij(z)dS (2.14)

Where S is the surface of a rectangle that has centre xJ − xI with width ∆x and height ∆y. The
integral can thus be written as:

AIiJj =

∫ xJ−xI+ ∆x
2

xJ−xI−∆x
2

∫ yJ−yI+ ∆y
2

yJ−yI−∆y
2

Aij(z)dz2dz1 (2.15)

Explicit expressions for the in�uence functions Aij and solutions to the integrals for AIiJj are given
in [14, section 4.3.2].

When the tractions pJ and in�uence functions AIiJj are know we can now determine the values of
u(xI) by using:

ui(xI) =
∑
Jj

AIiJjpJj (2.16)

Using this in equation (2.13) we �nd for the discretized slip equation in case of steady-state:

sIi = wIi +
(AIiJj −A′IiJj)pJj

dq
(2.17)

where A′IiJj is calculated similar to AIiJj but then with the centres of the rectangles I shifted a distance
dq to the right.
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Implementation of CONTACT

In CONTACT the equations arising from the contact mechanical theory are modi�ed into a minimization
problem. This is done through Kalker's variational theory [11], using the principals of minimizing
the virtual work and maximizing the virtual complementary energy [14, �4.1-4.2]. This minimization
problem turns out to be a strictly convex quadratic problem, opening it up to a rich theory around
Quadratic Programming on a convex objective function constrained to a convex feasible region [2, 6,
15, 18, 21].

Kalker used an algorithm that solves the convex minimization problem to solve the contact problem and
calculate the tractions. This algorithm, KOMBI, computes both the normal and tangential tractions. In
the case of quasi identical elastic bodies the KOMBI algorithm can be split into �rst solving the normal
stresses pIn using NORM and then using the normal solution to solve the tangential tractions pIτ using
TANG [14, �4.3].
These algorithms are active-set algorithms. Solving the equations for the tractions, either in adhesion
or slip, and restoring discretized elements of the contact area to the slip or the adhesion region when
the constraints (2.6) or (2.7) are exceeded.

Because of the convex quadratic programming approach, existence, uniqueness, and �nite determinabil-
ity of the active set algorithm are given.

Piecewise linear approximation

The use of a piecewise constant approximation for the tractions p might be a cause of the appearance
of wiggles. To prevent or reduce these wiggles we will look at using piecewise linear approximations.
One direct advantage these solutions will give is the fact that while the derivative at any location of
a piecewise constant function is either zero or does not exist (the derivative could be seen as a sum
of Dirac delta functions), the derivative of a piecewise linear function is a piecewise constant function.
In 1D the shape of a piecewise linear function is trivial, however, in 2D the function can increase in
the x-direction, y-direction or in both the x- and y-direction at the same time. The last case is called
bi-linear.

Multiple groups have published on Boussinesq-Cerruti solutions for (piecewise) linear functions instead
of using the (piecewise) constant function as applied in CONTACT. Svec and Gladwell [20] give solutions
of normal deformation due to polynomial normal pressure distributions on a triangular surface area. Li
and Berger [16] extend this by giving the full solutions for constant and (bi)linear pressure loads over
a triangular surface area.
The advantage of dividing the contact domain in triangles is its high adaptation level to curved edges
of the contact domain compared to rectangles. However, using rectangles simpli�es the computational
model. Also, when the edges of the contact area are unknown in advance a rectangular grid has the
advantage over a triangular grid. CONTACT also uses rectangles to describe the contact domain, so for
this thesis we will focus on rectangular domains. Dydo and Busby [7] give solutions to constant and
(bi)linear pressure loads over a rectangular surface area.

Iterative solvers

In the two dimensional case constraints (2.6) and (2.7) are linear, in the three dimensional case however
these are not linear anymore. This means that the system of equations to solve the discretized slip is
not linear either. In the early versions of CONTACT this system was solved using a Newton-Raphson
method [33].
In 1993 an improvement was made by implementing a variation on the Gauss-Seidel method, later
enhanced and stabilized by application of Successive Over Relaxation [22, 31].

Although these iterative solvers are used in the software, they are outside the area of interest of this
thesis.



3

Discretisation in detail

In this chapter the discretisation will be performed in more detail. In Section 3.3 details about the
implementation will be given.

From equation (2.2) we have:

s = w +
1

V

∂u

∂t
− ∂u

∂x
(3.1)

where w = [ξ − φy, η + φx]T is given.

2D steady state and quasi-identical

In 2D steady state, equation (3.1) becomes:

s = w − ∂u

∂x
(3.2)

Using �rst order upwind with a position step dq independent of the gridsize this becomes:

s = w − u(x+ dq)− u(x)

dq
(3.3)

Discretization gives us:

sI = wI +
u(xI)− u(xI + dq)

dq
(3.4)

Now use u(xI) =
∑
Jj AI1JjpJj and u(xI + dq) =

∑
Jj A

′
I1JjpJj , where A

′
I1JjpJj is calculated as

in equation (2.15) with in the limits xI replaced by xI + dq. Using Einstein summation we write∑
Jj AI1JjpJj = AI1JjpJj . Normally j would take values 1, 2, 3 representing the x, y, z directions.

However, in the 2D system there is no y-direction. Also when considering a quasi-identical system
the in�uence function A1,3 is zero. We are therefore left with just u(xI) = AI1J1pJ1. This turns the
equation into the system:

sI = wI +
(AI1J1 −A′I1J1)pJ1

dq
(3.5)

Active set algorithm

Equation (3.5) seems to be problematic because it contains both the unknowns sI and pJ1. To solve
this problem an active set algorithm is used. This process is described by Kalker [14, section 4.3.1] and
does the following:

� Fix the value of the slip.

9
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� For elements where the slip is zero, calculate the tractions pJ1.
For elements where the slip is nonzero, set the traction at the traction bound.

� Check if, with this solution, no constraints are violated. If there are, adjust the slip and adhesion
regions accordingly and calculate new slip values sI .

� Repeat from the �rst step untill a feasible solution is found.

So after choosing an initial condition (zero slip everywhere is a good candidate) we solve equation (3.5)
assuming sI = 0 to �nd the tractions in adhesion H, using these new found tractions we solve equation
(3.8) where the pJ1 are known to �nd the slip in S.

While doing this we have ignored the constraints in the slip-conditions (2.6) and (2.7). These constraints
are possibly violated.

First check if in H the traction has crossed the traction bound. If we �nd elements I where |pI1| > gI
these elements are taken out of H and moved to S. After this we solve (3.5) again, using the new division
in H and S.

When all calculated tractions are within the traction bound, we check the value of the slip. For any
element I where we �nd sI ·pI > 0 we remove this element from S and move it to H. After this we solve
(3.5) again, using the new division in H and S.

This process continues until a solution is found that solves the discretized equations and does not violate
the constraints.

Now we have to divide our contact domain into two sections, one where the upper and lower body
stick to each other, the adhesion area H, and one where the upper body slips over the lower body, the
slip area S. Let N be the total number of elements in the contact area, NH be the number of contact
elements in the adhesion area H, and NS be the number of contact elements in the slip area S.

Adhesion

In the adhesion area we use equation (2.6), so with zero slip we get:

0 = wI +
(AI1J1 −A′I1J1)pJ1

dq
(3.6)

Note that we are only solving the equation for the tractions pJ1 where element J lies in H, so this are
NH equations. As wI is known we can, in adhesion, directly calculate the pJ1 by:

pJ1 = −(AI1J1 −A′I1J1)−1wIdq (3.7)

Slip

While in the slip area we use (2.7) and solve the slip equation as:

sI = wI +
(AI1J1 −A′I1J1)pJ1

dq
(3.8)

These NS equations immediately give an expression for the slip sI in known terms.

2D transient and quasi-identical

When instead of looking at steady-state we look at the transient equations we can no longer ignore the
time derivative in equation (3.1), now using a Lagrangian approach gives us:

s = w +
1

V

Du

Dt
. (3.9)
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Because we are assuming a transient situation we need a solution at the starting time t = 0. Now we
can discretize the equation in time. We indicate a time-discretised solution at time dt · i by u(i). This

transforms the time-derivative, using Euler backwards, into: Du
Dt ≈

u(i)(x(t))−u(i−1)(x(t−dt))
dt .

s(i) = w +
1

V

u(i)(x(t))− u(i−1)(x(t− dt))
dt

. (3.10)

Discretization in space and using that V · dt = dq gives us:

s
(i)
I = wI +

u(i)(xI(t))− u(i−1)(xI(t− dt))
dq

. (3.11)

We write u′ for u at the previous timestep and drop the notation for the discretized time again. Also
note that if a particle is at position xI at time t, then it was at position xI + V · dt = xI + dq at time
t− dt. So write xI for x at the current time and x′I for x at the previous timestep.

sI = wI +
u(xI)− u′(x′I)

dq
. (3.12)

Now use uI = AI1JjpJj again. As we are still in the 2D quasi-identical system we are left with just
u(xI) = AI1J1pJ1. This turns the equation into the system:

sI = wI +
AI1J1pJ1 −A′I1J1p

′
J1

dq
. (3.13)

Here AI1J1 is de�ned in the same way as (3.5). Not only wI is known but also p′J1 is known. This is
the solution of the tractions calculated at the previous timestep (or the initial conditions during the
�rst step). Following the same element division into H and S we can further specify the equations we
use to solve the system in adhesion or slip.

Adhesion

In the adhesion area we use equation (2.6), with zero slip we get:

0 = wI +
AI1J1pJ1 −A′I1J1p

′
J1

dq
(3.14)

So we can in adhesion directly calculate the pJ1 by:

pJ1 = A−1
I1J1 (−dq wI +A′I1J1p

′
J1) (3.15)

Slip

In the slip area we use (2.7) and solve the slip equation as:

sI = wI +
AI1J1pJ1 −A′I1J1p

′
J1

dq
(3.16)

This immediately gives an expression for the slip sI in known terms.

Implementation in Matlab

As already mentioned in Section 3.1 we do not calculate the tractions and slip in the full domain. In
steady state equation (3.8) is valid in the full domain, however equations (3.6) and (3.2) are only valid
in the adhesion and slip region respectively. This is why we implement these equations only in their
respective areas. Let's take a closer look at the equations.
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In steady state we work with a matrix M = (AI1J1 − A′I1J1)/dq. Because we do not have the same
conditions in the adhesion and slip area we will make a division of the vectors p, s, w and matrix M
such that each subvector either contains elements corresponding to the adhesion or the slip area.

p =

[
pH

pS

]
, s =

[
sH
sS

]
, w =

[
wH

wS

]
, M =

[
MHH MHS

MSH MSS

]
. (3.17)

Note that sH = 0 because there is no slip in adhesion and pS is known because the traction has reached
the tractionbound in the slip area. This notation allows us to combine equations (3.6) and (3.8) to get:[

0
sS

]
=

[
wH

wS

]
+

[
MHH MHS

MSH MSS

] [
pH

pS

]
. (3.18)

From this we can again �nd separate equations for pH and sS:

0 = wH +MHHpH +MHSpS, (3.19)

which gives the result:
pH = −MHH

−1(wH +MHSpS). (3.20)

The second equation gives:
sS = wS +MSHpH +MSSpS, (3.21)

where we can use the solution of pH that we just found in the previous step and use this as a known
value giving us the solution immediately.

In the transient case we keep the matrices AI1J1/dq and A′I1J1/dq as separate entities. Again we make
the same subdivision into adhesion and slip areas. This notation allows us to combine equations (3.14)
and (3.16) to get:[

0
sS

]
=

[
wH

wS

]
+

[
AHH AHS
ASH ASS

] [
pH

pS

]
−
[
A′HH A′HS
A′SH A′SS

] [
p′H
p′S

]
. (3.22)

From this we can again �nd separate equations for pH and sS:

0 = wH +AHHpH +AHSpS −A′HHp′H −A′HSp′S, (3.23)

which gives the result:

pH = −AHH−1(wH +AHSpS −A′HHp′H −A′HSp′S). (3.24)

The second equation gives:

sS = wS +ASHpH +ASSpS −A′SHp′H −A′SSp′S, (3.25)

where we can use the solution of pH that we just found in the previous step and use this as a known
value giving us the solution immediately.
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Smoothing

A di�erent problem, apart from the wiggles, is the appearance of smoothing whenever c is not an
integer. At �rst this is unexpected as the analytic in�uence coe�cients should in theory result in a
correct solution. To investigate this subject we will go back to equation (3.24). This shows that the
newfound tractions p in adhesion depend on four matrix-vector products. When we eliminate the
brackets the equation becomes:

pH = −AHH−1wH −AHH−1AHSpS +AHH
−1A′HHp′H +AHH

−1A′HSp
′
S. (4.1)

For simplicity suppose that between two iterations the division between adhesion and slip elements
does not change. Then pS = p′S because in the slip area the traction is at the traction bound. We can
rewrite (4.1) to get:

pH = −AHH−1(wH + (AHS −A′HS)p′S) +AHH
−1A′HHp′H. (4.2)

Here the term AHH
−1A′HHp′H says how the old solution is deformed to a new position, the term

−AHH−1(wH + (AHS −A′HS)p′S) adds an extra contribution to the tractions that is caused by slipping
of the system, note that this contribution is independent of the tractions in the adhesion area and is
nothing more than a vertical shift. So let us take a look at what AHH

−1A′HH exactly does to p′H. This
is easiest done by looking at what happens to a traction that has the value one at one point and is
zero everywhere else. If we know what happens to such a traction we know what happens to a realistic
traction as that is just a linear combinatin of such single point tractions.

When looking at the matrix AHH
−1A′HH , multiplying this with a vector with a one at the ith position

and zeros everywhere else results in the ith column of the matrix. When using c = 1 this matrix has,
except for the �rst column, a one on the (i − 1)th position and zeros everywhere else. For c = 0 the
matrix is just the identity matrix because when c = 0 we have that A′ = A. For 0 < c < 1 however
the columns of AHH

−1A′HH have non-zero values in multiple rows, this means that the traction with a
nonzero value at a single point in space becomes smeared out after the �rst transformation. Repetitive
iterations only increase this e�ect.

Figure 4.1 shows how AHH
−1A′HH transforms a p′H that is one at xI = 0 and zero everywhere else after

one timestep. We see that in the case c = 1 this transformation is nothing but a horizonal translation
over one gridpoint. We would like this behaviour for all c, however for c < 1 it is impossible to have
this result as there are no gridpoints between 0 and −∆x. So we see a transformation that puts the
weight of the new pH in between 0 and −∆x. The columns of AHH

−1A′HH sum up to one for all c so
the total traction does stay constant in all cases.

Figure 4.2 shows how p′H is transformed after a traversed distance of 50∆x. From this we can see that
over time the information that should have moved from 0 to −50∆x has instead spred over a wide
area. And when c becomes small (the green line, for c = 0.05) it might even add to the appearance or
ampli�cation of wiggles.

13
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Figure 4.1: Solution of the traction px using di�erent values for c after one iteration.

Figure 4.2: Solution of the traction px using di�erent values for c after a traversed distance of 50∆x.

Results of this smoothing can be seen in Figure 4.3, where the 2D Cattaneo to Carter [28, example 5.8]
testcase has been used in order to see the e�ect of smoothing in a realistic situation. The behaviour of
the smoothing looks very similar to the graphs in Figure 4.2. In case 1 > c ≥ 1

2 smoothing will slightly
overestimate the forward motion of extrema (to the left, downstream) while when 1

2 > c > 0 smoothing
slightly underestimates the forward motion (to the right, upstream).

Figure 4.3: Solution of the traction px using di�erent values for c after a traversed distance of 50∆x.
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Problem statement and course of action

Problems arise when the factor c = dq
dx becomes small. Physically this means that the traversed distance

per timestep is small compared to the gridsize. Mathematically this means that the discretized in�uence
functions A(x) − A′(x + V · dt) have increasingly smaller eigenvalues. In [22] Vollebregt remarks that
the coe�cients in steady-state depend on the time-step, and below a certain point there will be either
slower convergence or no convergence at all, �the restriction on the time step is sometimes quite severe,
so that physically attractive values cannot be used�.

A simple solution to this is never choosing a too small factor c. This is a nice solution when only running
the program CONTACT by itself, however CONTACT has been integrated in larger train simulation packages,
in such cases the input parameters by CONTACT are no longer handpicked but fed to the software by the
overall package. Ideally it would be best if CONTACT can be adjusted so it converges properly for any
value of c. Finding out why the wiggles occur can also help solve this problem, because in that case
CONTACT can check it's input parameters and determine beforehand whether the parameters will result
in a converging solution and give feedback (and adjust the critical parameters) when this is not the
case.

Next to this problem a second phenomenom was observed. The solution of the tractions appears to
su�er from a form of numerical di�usion that smooths out any sharp extrema. There seemed to be
two di�erent causes for this smoothing (the numerical di�usion and an e�ect of under-relaxation). It
is shown that both are actually equivalent. This smoothing needs to be �xed to get detailed traction
pro�les in a transient system.

Work done in this research

A possible cause for the appearance of wiggles is that in the numerical scheme a piecewise constant
approximation is used. When taking the di�erence between two of such approximations, for example
when approximating a derivative or determining the in�uence coe�cients A − A′, the middle part
completely drops out and only the edges are left. When instead a piecewise linear approximation is
used there will be a net result over the full interval, see Figure 5.1. Moving to linear approximations
not only gives a `smoother' solution but might also increase accuracy or rate of convergence.

Although this might be a possible solution �rst it is important to determine what exactely causes the
wiggles to appear. From what values of he factor c do the wiggles appear and why?

2D steady-state rolling

Because the problems arise in both the 2D and the 3D case the work in this thesis will focus on 2D
rolling. The tangential slip-equation is much easier to solve in this case so it will be easier to focus on

15
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Figure 5.1: The magenta graph is the constant (left) or linear (right) basis function on (0, 1). The red graph is the same
basis function shifted slightly to the right, the black graph is the di�erence between them.

the real problem. In steady-state we do not have the sharp extrema that are subject to smoothing so
only the wiggles will be investigated. Therefore the �rst course of action will be:

� solving the wiggle-problem on 2D steady-state rolling.

2D transient rolling

When using the direct approach to determine the steady-state solution the matrix-operator used is
given by AIiJj −A′IiJj . We can calculate this matrix and use this to try and see what might cause the
wiggles. The matrix-operator used in the transient situation seems to be just the matrix AIiJj . But also
in this situation wiggles are detected. These wiggles do not appear in the initial states of the solution
but progress over time. This has to do with the fact that the solution at a later time is the result of
repeated application of these matrix-operatos. What makes this problem harder is that the problem is
not caused by a single matrix operation but by an accumulation of operations. It would be convenient if
a solution to the steady-state problem also solves the transient problem, this however has to be checked
and possibly an extra solution has to be found. Just like for steady-state, also in the transient case we
want a solution to hold when the traction bound is added to the equation. Additionally, in transient
rolling we have to �nd a solution for the smoothing problem so this testcase is suitable for multiple
problems:

� solving the wiggle-problem on 2D transient rolling.

� solving the smoothing-problem on 2D transient rolling.

Rate of convergence

Adittionally it was observed that an unexpectedly slow rate of convergence is acchieved by the system.
This will be investigated, with hopes that solving (one of) the other problems will also increase the
rate of convergence of the system. Also re�nements to the way the leading edge is treated are made to
improve the rate of convergence. So the last part of the thesis is devoted to:

� improving the rate of convergence.

Research Questions

As a �nal closure I will here state the research questions for my master thesis.

1. How can we solve the problem of wiggles in the solution?

- What causes the wiggles that arise when the factor c = dq
dx becomes small?

- Does replacing the piecewise constant basis functions by piecewise (bi)linear basis functions
solve this problem?
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- Are there other ways to prevent the appearance of unphysical wiggles?

2. How can we solve the problem of smoothing of the tractions?

- What causes the smoothing e�ect?

- How can we prevent this numerical smoothing to in�uence the tractions?

3. How do any of the adjustments made in�uence the rate of convergence of the algorithm?

- Are there other ways to improve the rate of convergence?
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Using higher order basis functions

In the original situation we determine the coe�cient matrix while using piecewise-constant basis func-
tions. We use an upwind discretization in equation (2.10). For appropriate c this is a robust method.
Altough central di�erence seemed like a good alternative this appears not to be the case. This is caused
by the way the in�uence matrices are constructed.

When we take c = 1 the matrix M∗IiJj = AIiJj − A′IiJj is a Toeplitz matrix. When assuming a 2D
quasi-identical setting we are only concerned with the AI1J1, we will for brevity write MIJ = M∗I1J1.
With the diagonal elements MII having the highest value, upper diagonal elements have positive value
but their magnitude rapidly drops as they are further away from the diagonal. The elements MI+1I

have the lowest values, lower diagonal elements all have negative value but the magnitude again rapidly
drops when we move away from the diagonal. See Figure 6.1. On the left we see the matrixM = A−A′
for c = 1 while on the right the inverse is plotted. Note that the main-diagonal holds the highest values.

Figure 6.1: Matrix A−A′ and its inverse for c = 1. The x and y axis represent the rows and columns of the matrix.

When we apply central di�erences the matrixM becomesMIJ = A′J1I1−A′I1J1. This again is a Toeplitz
matrix. However, now the highest value is attained by the elements MII+1 with the lowest values still
at elements MI+1I . Again the magnitude of elements away from the diagonal rapidly drops. For the
diagonal elements however we have MII = 0. Initially this does not seem to be that bad, nonetheless
when we look at the inverse of this M we see that the o�-diagonals of M−1 oscillate between positive
and negative values.

As we go back to upwind again but let c slowly decrease we notice that the value of the elementsMII+1

starts to rise while the value of the MII goes to zero. For very small values of c the matrix attained
from the upwind method is indistinguishable from the matrix attained from the central di�erence. This
can be seen in Figure 6.2. Note that the main-diagonal has now become almost zero and the highest
values are moved to the diagonal one above the main diagonal.

19



20 6. Using higher order basis functions

Figure 6.2: Matrix A−A′ and its inverse for c = 0.01.

Explicit expressions for the piecewise-constant case

To have a better understanding of what happens to the in�uence coe�cients we will look at the analytical
expression when using constant basisfunctions. Our main interest lies in what happens to the elements
MII , MI+1I , and MII+1. Because M is a Toeplitz matrix it does not matter which i we take, so we
will look at the expressions for M11, M21, and M12. Let x1 = (0, 0)T , x2 = (∆x, 0)T , and 0 < dq < dx.
The analytic deduction can be found in Appendix A, this will primarily be bookkeeping applied to the
solutions given in Kalker [14].

In Figure 6.3 we can see how the values of the main- and o�-diagonals are functions of c. From these
plots it becomes clear that although all values of the matrix go to zero as c goes to zero there is a clear
di�erence in how fast they do this. At c = 1 we have M12 = −M11 while M21 is more than half as
small. However around c = 0.3939 we �nd that M11 = M21. For lower values of c M21 gradually
takes on the same value as −M12 while the signi�cance of M11 falls of completely. Resulting in a case
similar as using a central di�erence scheme.

Figure 6.3: The left plot shows the values of the main- and o�-diagonals, the right plot shows the same values but scaled
so it becomes clear which values matter and which become unimportant. The horizontal axis is the value of c. Note that
M12 is negative.

Determining the in�uence coe�cients using linear basisfunctions

When determining the coe�cient matrix based on piecewise-linear basis functions a restrained approach
will be followed. We will not immediately calculate all the di�erent coe�cient matrices AIiJj using a
bi-linear form. Instead the simplest case is used and results from that case will be examined to see if
there was any gain.

For the 2D quasi-identical problem we are only interested in the relationship between u1 and p1, so the
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in�uence funcions AI1J1. For now we assume we are only interested in the displacements at the surface,
so we set z = 0.

Following Vollebregt's approach we get [24, equation 36a]:

ux(x, y, 0) =
Px
πG

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
. (6.1)

This is the displacement we get at (x, y, 0) from a point stress Px at (ξ, η). If we now want to know
the displacement we get at (x, y, 0) as a result of the whole contact area C we need to sum over all
point pressures px(ξ, η) times the surface δξ · δη of each point. Summing over these in�nitesimal points
results in the integral:

ux(x, y, 0) =
1

πG

∫∫
C

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
px(ξ, η) dξdη. (6.2)

This lets us de�ne the in�uence function:

Aux(x, y, 0, ξ, η) =
1

πG

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
. (6.3)

Now introduce the basisfunction on the origin:

ϕ(x′, y′) =


x

∆x + 1 when −∆x < x′ ≤ 0 ∧ |y| < ∆y
2

−x
∆x + 1 when 0 < x′ < ∆x ∧ |y| < ∆y

2

0 when |x′| ≥ ∆x ∨ |y| ≥ ∆y
2

. (6.4)

We can use this to de�ne a basisfunction for each element as:

ϕI(x, y) = ϕ(x− xI , y − yI). (6.5)

This basisfunction ϕI is now only nonzero when |x− xI | < ∆x. We can approximate the traction�eld
with a continuous, piece-wise linear, px given by:

px(x, y) =
∑
I

pIxϕI(x, y). (6.6)

The pIx are the coe�cients to be determined. We can substitude the discretized traction (B.7) into (6.2)
and �nd:

ux(x, y, 0) =

∫∫
C

Aux(x, y, 0, ξ, η)
∑
J

{pJxϕJ(ξ, η)} dξdη. (6.7)

The order of integration and summation may be reversed, and the constants pJx can be taken out of
the integral:

ux(x, y, 0) =
∑
J

{
pJx

∫∫
C

Aux(x, y, 0, ξ, η)ϕJ(ξ, η) dξdη

}
. (6.8)

We now de�ne the in�uence coe�cients AIuJx as the integrals in the last equation. So we have:

ux(xI , yI , 0) =
∑
J

AIuJxpJx, (6.9)

with

AIuJx =

∫∫
C

Aux(xI , yI , 0, ξ, η)ϕJ(ξ, η) dξdη. (6.10)

Use relation (B.6) and only integrate over the nonzero parts to get:

AIuJx =

∫∫
I(ϕJ )

Aux(xI , yI , 0, ξ, η)ϕJ(ξ, η) dξdη. (6.11)
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Here I(ϕJ) is the area where ϕJ is nonzero, so the area (xJ − ∆x, xJ + ∆x) × (yJ − ∆y
2 , yJ + ∆y

2 ).
Apply a transformation of variables, going from xI , yI , ξ, η to:

x′I = xI − xJ , y′I = yI − yJ , ξ′ = ξ − xJ , η′ = η − yJ . (6.12)

This translates the area of integration so that the orgin lies at the centre. Using equation (B.3) we
know that Aux is only a function of (xI − ξ) and (yI − η), which is equal to (x′I − ξ′) and (y′I − η′),
so Aux(xI , yJ , 0, ξ, η) = Aux(x′I , y

′
J , 0, ξ

′, η′). From (B.6) we have that ϕJ(ξ, η) = ϕ(ξ′, η′). So we can
write the equation as:

AIuJx =

∫∫
I(ϕ)

Aux(x′I , y
′
I , 0, ξ

′, η′)ϕ(ξ′, η′)δξ′δη′. (6.13)

From the de�nition given in (6.4) we have di�erent expressions for ϕ(ξ, η) when ξ ≤ 0 and ξ > 0. So
we split the integral into two parts and for convenience drop the primes on ξ and η.

AIuJx =

∫ ∆y
2

−∆y
2

∫ 0

−∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η)

(
ξ

∆x
+ 1

)
dξdη (6.14)

+

∫ ∆y
2

−∆y
2

∫ ∆x

0

Aux(xI − xJ , yI − yJ , 0, ξ, η)

(−ξ
∆x

+ 1

)
dξdη.

The next challenge is �nding explicit expressions for these integrals. Integrating the Aux · 1 term has
been done already in [14] as this is required for the piece-wise constant approximation. The di�culty
when �nding an antiderivative for Aux · ξ is that Aux contains terms (xI − xJ − ξ), which are then
multiplied by plain ξ's. Therefore note that:

ξ = (xI − xJ)− (xI − xJ) + ξ = (xI − xJ)− (xI − xJ − ξ). (6.15)

In the integral the term (xI − xJ) is just a constant so we can rewrite ξ
∆x + 1 and −ξ∆x + 1 into terms

with (xI − xJ − ξ) and a constant term as:

ξ

∆x
+ 1 =

(xI − xJ)− (xI − xJ − ξ)
∆x

+ 1 = − (xI − xJ − ξ)
∆x

+

(
xI − xJ

∆x
+ 1

)
, (6.16)

−ξ
∆x

+ 1 =
(xI − xJ − ξ)− (xI − xJ)

∆x
+ 1 =

(xI − xJ − ξ)
∆x

−
(
xI − xJ

∆x
− 1

)
. (6.17)

Recall from (B.3) that we have to �nd explicit expressions for:

∫∫
xI − xJ − ξ

ρ
dξdη, (6.18)∫∫

(xI − xJ − ξ)3

ρ3
dξdη, (6.19)

where ρ =
√

(xI − xJ − ξ)2 + (yI − yJ − η)2.
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Integration using Maxima

The integration is performed using the software package Maxima, a continuation of the package Macsyma.
This gives the following antiderivatives when setting the integration constant to zero:

F0(x, y, ξ, η) :=

∫∫
1√

(x− ξ)2 + (y − η)2
dξdη (6.20)

=(x− ξ) sinh−1

(
(y − η)

|(x− ξ)|

)
+ (y − η) sinh−1

(
(x− ξ)
|(y − η)|

)
,

F1(x, y, ξ, η) :=

∫∫
(x− ξ)√

(x− ξ)2 + (y − η)2
dξdη (6.21)

=
1

2

[
(x− ξ)2 sinh−1

(
(y − η)

|(x− ξ)|

)
+ (y − η)

√
(x− ξ)2 + (y − η)2

]
,

F2(x, y, ξ, η) :=

∫∫
(x− ξ)2√

(x− ξ)2 + (y − η)2
3 dξdη (6.22)

=(y − η) sinh−1

(
(x− ξ)
|(y − η)|

)
,

F3(x, y, ξ, η) :=

∫∫
(x− ξ)3√

(x− ξ)2 + (y − η)2
3 dξdη (6.23)

=(y − η)
√

(x− ξ)2 + (y − η)2.

Combining all results again into (6.14) gives:

AIuJx =

(
xI − xJ

∆x
+ 1

)∫ ∆y
2

−∆y
2

∫ 0

−∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη (6.24)

− 1

∆x

∫ ∆y
2

−∆y
2

∫ 0

−∆x

(xI − xJ − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

−
(
xI − xJ

∆x
− 1

)∫ ∆y
2

−∆y
2

∫ ∆x

0

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

+
1

∆x

∫ ∆y
2

−∆y
2

∫ ∆x

0

(xI − xJ − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη,

with:

Aux(xI − xJ , yI − yJ , 0, ξ, η) =
1

πG

(
1− ν
ρ

+ ν
(xI − xJ − ξ)2

ρ3

)
. (6.25)

In order to shorten the notation a bit we write (for n = 0..3):

F−(Fn, x, y) =Fn

(
x, y, 0,

∆y

2

)
− Fn

(
x, y,−∆x,

∆y

2

)
(6.26)

− Fn
(
x, y, 0,−∆y

2

)
+ Fn

(
x, y,−∆x,−∆y

2

)
,

F+(Fn, x, y) =Fn

(
x, y,∆x,

∆y

2

)
− Fn

(
x, y, 0,

∆y

2

)
(6.27)

− Fn
(
x, y,∆x,−∆y

2

)
+ Fn

(
x, y, 0,−∆y

2

)
.
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Now the explicit expression for AIuJx becomes:

πGAIuJx =

(
xI − xJ

∆x
+ 1

)(
(1− ν)F−(F0, xI − xJ , yI − yJ) + νF−(F2, xI − xJ , yI − yJ)

)
(6.28)

− 1

∆x

(
(1− ν)F−(F1, xI − xJ , yI − yJ) + νF−(F3, xI − xJ , yI − yJ)

)
−
(
xI − xJ

∆x
− 1

)(
(1− ν)F+(F0, xI − xJ , yI − yJ) + νF+(F2, xI − xJ , yI − yJ)

)
+

1

∆x

(
(1− ν)F+(F1, xI − xJ , yI − yJ) + νF+(F3, xI − xJ , yI − yJ)

)
,

Rearranging terms gives us the �nal result (dropping the terms xI −xJ , yI − yJ in the notation to keep
some briefness):

πGAIuJx =

(
xI − xJ

∆x

)(
(1− ν)

(
F−(F0)−F+(F0)

)
+ ν

(
F−(F2)−F+(F2)

))
(6.29)

+
(
(1− ν)

(
F−(F0) + F+(F0)

)
+ ν

(
F−(F2) + F+(F2)

))
− 1

∆x

(
(1− ν)

(
F−(F1)−F+(F1)

)
+ ν

(
F−(F3)−F+(F3)

))
,

Note that:

F−(Fn) + F+(Fn) =Fn

(
∆x,

∆y

2

)
− Fn

(
−∆x,

∆y

2

)
(6.30)

− Fn
(

∆x,−∆y

2

)
+ Fn

(
−∆x,−∆y

2

)
,

F−(Fn)−F+(Fn) =− Fn
(
−∆x,

∆y

2

)
+ 2Fn

(
0,

∆y

2

)
− Fn

(
∆x,

∆y

2

)
(6.31)

+ Fn

(
−∆x,−∆y

2

)
− 2Fn

(
0,−∆y

2

)
+ Fn

(
∆x,−∆y

2

)
.

Using these results we can compare the coe�cient matrix found when using constant or linear basis
functions. Figure 6.4 shows on the left the matrix M = A−A′ for c = 1 while on the right the inverse
is plotted. This result is very similar to the case using constant basis functions as found in Figure 6.1.

Figure 6.4: Matrix A−A′ and its inverse for c = 1 using piecewise-linear basis functions.

However, when taking small c we see similar e�ects as before. In Figure 6.5 the case for c = 0.01 is
shown. Comparing this with the result in Figure 6.2 shows that the wiggles are almost the same.
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Figure 6.5: Matrix A−A′ and its inverse for c = 0.01 using piecewise-linear basis functions.

Now we can perform the same analysis as in Figure 6.3, which is shown in Figure 6.6. From these results
we can conclude that in the case using linear basis functions the insigni�cance of the main diagonal for
small c is still present. The problem has been slightly reduced but this is not enough by far.

Figure 6.6: Left: values ofMIJ on a linear scale. Right: values ofMIJ scaled so the highest of the three values is exactely
1, on a logarithmic scale. The drawn lines show the matrix entry values when using basis functions linear in x, the dashed
lines show the old values when using constant basis functions.
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Fourier analysis

A way to analyse the results is by use of Fourier Transformations. Using results from Vollebregts
paper [25] we have a way to approximate the inverse of a Toeplitz matrix using a Fast Fourier Trans-
formation (FFT). Here we will not use this with the intent of �nding the inverse matrices but to gain
insight in the behaviour of the inverse matrix.

Use the following approach:

1. Take the column of the original su�ciently large (Toeplitz) matrix.

2. Remove all elements above the diagonal and place them at the end of the resulting vector, which
would be the same as a cyclic extension and placing the diagonal at the origin.

3. Apply a FFT on the transformed column.

4. Take the pointwise multiplicative inverse of all the Fourier coe�cients.

5. Apply an inverse FFT on the resultant Fourier coe�cients.

6. Reverse the transformation done in the second step to get a column of a (Toeplitz) matrix again.

The matrix column we get is what a column of the inverse would look like if we ignore boundary e�ects.

7. Use the single column to extend this to a Toeplitz matrix.

This results in an approximate inverse of a Toeplitz matrix that has some minor errors arising at the
boundary. See Figure 6.7 for two applications of this method.

The absolute value, or amplitude, of the Fourier coe�cients shows how important certain frequencies
are in the collumns. We see that in case c ≈ 1 all amplitudes are important and the inverse looks
smooth. In case c ↓ 0 the high frequencies (Fourier coe�cients around the 30th position) become very
unimportant. This means that when we take the multiplicative inverse of the Fourier coe�cients to �nd
the Fourier coe�cients for the approximate inverse these high frequencies become very important. This
behaviour is also seen in the resulting inverse matrix, where the high frequencies dominate the behavour
of the system. So the absence of high frequencies in the Fourier domain of the in�uence coe�cients
causes the high frequency dominance in the inverse matrices.

When abandoning the piecewise constant approximation for a piecewise linear approximation this prob-
lem is not solved because the Fourier Coe�cients look very similar and the high frequency dominance
for the inverse is still present, see Figure 6.8.
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(a) Fourier coe�cients.

(b) One divided by Fourier coe�cients.

(c) Inverse Fourier transformation.

Figure 6.7: Results from steps 3, 4 and 5 in the Fourier analysis process, left using c = 1, right using c = 0.01. Using
piecewise-constant basis functions.
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(a) Fourier coe�cients.

(b) One divided by Fourier coe�cients.

(c) Inverse Fourier transformation.

Figure 6.8: Results from steps 3, 4 and 5 in the Fourier analysis process, left using c = 1, right using c = 0.01. Using
piecewise-linear basis functions.
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Piecewise Quadratic Basisfunctions

When determining the coe�cient matrix based on piecewise-quadratic basis functions a restrained
approach will be followed. We will not immediately calculate all the di�erent coe�cient matrices AIiJj
using a bi-quadratic form. Instead the simplest case is used and results from that case will be examined
to see if there was any gain.

For the 2D quasi-identical problem we are only interested in the relationship between u1 and p1, so the
in�uence funcions AI1J1. For now we assume we are only interested in the displacements at the surface,
so we set z = 0.

The math, going from the continuous in�uence functions to discrete in�uence coe�cients based on
quadratic basis functions will be very similar to the steps taken in Section 6.2. This can be found in
Appendix B. We will now move on to results.

Rate of Convergence

Now that we have multiple basis functions it is interesting to see if using one of them results in a faster
rate of convergence than the others.

Before we talk about the rate of convergence, we �rst have to determine what quantity we are looking
at to converge. One quantity to look at would be the total traction over the contact surface. Another
would be the traction at a certain position in the contact surface. The advantage of the �rst option
is that it uses all the relevant information. The downside however is that when calculating the total
traction we have to be careful about how we do this. As the total traction is just the traction integrated
over the contact surface we could end up determining the rate of convergence of our Riemann integral.
The advantage of the second option is that you are looking at the pointwise convergence and are not
in�uenced by other convergence mechanisms.

Figure 6.9: Convergence of the total traction for increasingly �ne grids.

Figure 6.9 suggests that constant and linear basis functions perform equally well (linear basis functions
having a slightly lower error but no faster convergence). The quadratic basis functions however perform
not too well. At �rst convergence looks �ne, but after some re�nement of the grid no more improvement
is noticed. These results reject the use of quadratic basis functions as they actually make the convergence
worse.
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Time-stepping

We have concluded that even when using higher order approximations for the traction it is unfavourable
to directly calculate the in�uence coe�cients when using a small value of c. This brings us to the next
approach; under-relaxation. Assume that the in�uence coe�cients behave as a linear function of c
around the origin and write:

A′(c) ≈
(

1− c

c∗

)
A′(0) +

c

c∗
A′(c∗). (7.1)

Here A′(ξ) is the in�uence coe�cient matrix A calculated as in (2.15) with the rectangle of which we
integrate is shifted a distance ξ to the right. For clarity, note that A′(0) is what we previously just called
A. Instead of directly calculating the in�uence coe�cients A′(c) for the needed c we can now calculate
the in�uence coe�cients A′(c∗) for a su�cient large c∗ and approximate A′(c) using this alternative
A′(c∗).

Under-relaxation of A′

Now call the ratio of c over c∗ the relaxation parameter θ = c
c∗ . We will write for the coe�cient matrix

calculated with the larger timestep using c∗ the matrix A∗. The new matrix A′, calculated using the
relaxation parameter θ and the matrix A and A∗ now becomes A′ = (1− θ)A+ θA∗.

The problems arose when we started working with the inverse of A − A′ for a small value of c. Now
however A−A′ becomes A− ((1− θ)A+ θA∗) = θ(A−A∗). Where the quantity A−A∗ behaves nicely,
also inversed, because we chose c∗ large enough.

Figure 7.1 shows the e�ects of under-relaxation. From this plot we can see that the wiggles that were
caused by the alternating semi-diagonals of the inverse of A − A′ using the original time stepping for
small values of c are absent when using a scaled version A− A∗ instead. These results were generated
in Matlab for the 2D Cattaneo to Carter testcase [28, example 5.8].

Numerical di�usion

One big �aw of this method is the appearance of numerical di�usion. This happens whenever c 6= 1 or
c∗ 6= 1. When c∗ < 1 this is caused by the smoothing behaviour explained in Chapter 4. Here we will
discuss the e�ects we see when using c∗ = 1. The reason to see this as a separate problem is because
this kind of smoothing is much less dependent on the size of c, as the previous occurence shows very
distinct behaviour between for example c = 0.8 and c = 0.2. Also, this smoothing comes in the absence
of wiggles for small values of c.

When using c∗ = 1 we use a matrix A∗ where δq∗ = δx. In a 2D case we determine the tractions by
solving equation (3.14). When we take equation (3.14) and stick the timestep to the matrices, we �nd

31
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Figure 7.1: Solutions using increasingly smaller values of c after a traversed distance of 24∆x.

an alternative expression for (3.15) in the form of:

pJ1 = δqA−1
I1J1

(
−wI +

A′I1J1

δq
p′J1

)
, (7.2)

where the matrices, instead of the quantity wI , are scaled by the timesteap. Now we can plug in
equation (7.2) our approximation for A′ as given by (7.1) using the simpler notation: A′ = (1−θ)A+θA∗.
This results in the following equation for the traction, where δq = cδx and δq∗ = c∗δx:

p = δqA−1

(
−w +

A′

δq
p′
)

(7.3)

= δqA−1

(
−w +

(
(1− θ) A

δq
+ θ

A∗

δq

)
p′
)

(7.4)

= δqA−1

(
−w + (1− θ) A

δq
p′ + θ

A∗

δq
p′
)

(7.5)

= −δqA−1w + (1− θ)δqA−1 A

δq
p′ + θδqA−1A

∗

δq
p′ (7.6)

= −δqA−1w + (1− θ)p′ + θδqA−1A
∗

δq
p′ (7.7)

= (1− θ)p′ + δqA−1

(
−w + θ

A∗

δq
p′
)

(7.8)

= (1− θ)p′ + θδq∗A−1

(
−w +

A∗

δq∗
p′
)

(7.9)

= (1− θ)p′ + θp∗ (7.10)

In the last but one step we used that, as δq = cδx and θ = c
c∗ , we can write δq = c

c∗ c
∗δx = θδq∗ and

θ
δq = c

c∗cδx = 1
δq∗ . The p∗ we introduced in (7.10) is what the new solution of p would be if instead

of using c and a timestep δq we just used c∗ and timestep δq∗. Therefore solving p by approximating
the matrix A′ by taking a linear combination of the matrix A and A∗ gives the exact same solution as
taking a linear combination of the old tractions p′ and the traction p∗.

In practice however these two methods will not always give the exact same solution. When using
relaxation to adjust the matrix A′ as in (7.4) we are still working with the small timestep δq, however
when using relaxation on the solution p as in (7.10) we work with a larger timestep δq. This means



7.2. Numerical di�usion 33

that during the TANG [14, �4.3] algorithm process there can be a di�erent partition of adhesion and slip
elements. So (7.4) and (7.10) only give the same solution when using timesteps δq and δq∗ dictate the
same element partition as a di�erent partition means that a di�erent equation, either (3.15) or (3.16),
is used on the elements that are in adhesion in one case and in slip in the other.

When we now apply this new method in the algorithm the �rst observation is that indeed there appear
no arti�cial wiggles. The second observation however is that solutions obtained with a c < c∗ = 1 stay
near the solution found using c = c∗ = 1 in a big part of the domain, but deviate from the solution
around sharp edges. See Figure 7.2 for an example of this deviation.

Figure 7.2: Solution of the traction px using di�erent values for c after a traversed distance of 25∆x.

The appearance of this deviation from the original solution (c = 1), which looks like suppression of
extrema, has the characteristics of numerical di�usion. This can be explained best by looking at the
relaxation process in the way of equation (7.10). This says that the solution p is constructed as a
weighted average of the solution p′ at the previous timestep and the solution p∗ of a point ahead in
time (ahead by a factor θ−1). Because of the advective nature of the slip-equation (2.2) the tractions
gradually move from right to left in the contact area (because of the left to right motion of the rolling
object). The solution p∗ is close to the solution p translated a distance δq∗ to the left. This means
that at the sharp points in the solution, like the peak around 0.26 in Figure 7.2, this peak is replaced
by the average of two sharp solutions. This averaging will slightly �atten out the sharp point. The
transient character of the problem will make sure that as we progress in time the �attening accumulates,
smoothing out the sharp point completely. In Figure 7.2 we also see one sharp point in the solution that
stays intact. This is because here the solution moves into the traction bound, so altough averaging does
still occur the averaging happens beyond the traction bound, and is thus cut o� in the TANG algorithm.
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Fractional matrix powers

In Chapter 4 we see that unphysical smoothing of sharp corners is caused by the fact that the matrix
product AHH

−1A′HH is supposed to move the solution of the traction pH a distance dq to the left.
However this is only acchieved without error when that distance is a multiple of the gridspacing ∆x.
Let A∗HH be the matrix we �nd when we have c = 1 and A′HH the matrix when we use c < 1. Now for
example when c = 2

3 we have that 3dq = 2∆x. So after three timesteps the traction should have moved
two gridspacings to the left. This means that we want (AHH

−1A′HH)3p′H = (AHH
−1A∗HH)2p′H. This

would be achieved when we take A′HH to meet the following:

(AHH
−1A′HH)3 = (AHH

−1A∗HH)2 (8.1)

AHH
−1A′HH = (AHH

−1A∗HH)
2
3 (8.2)

A′HH = AHH(AHH
−1A∗HH)

2
3 . (8.3)

This example gives us a new way to approximate A′, now ensuring that we get an A′ that correctly
translates the tractions after a time n · dq when n · dq = m · ∆x for some n,m ∈ N>0. The used
approximation for A′ is:

A′ = A(A−1A∗)c, (8.4)

where A∗ is the in�uence matrix calculated using c = 1.

To see what this new A′ does to a traction p we will look at a number of di�erent cases. First look at
Figure 8.1a to see how A−1A′ works on a p consisting of a single one at the far right end. Now look at
Figures 8.1b and 8.1c to see what happens after 33 and 133 iterations. In this example c = 0.8 is used.

From Figure 8.1 we see that ahead of the position of where the spike should be there are huge wiggles.
There are a few small wiggles trailing behind, but at least these are damped. Next we will look at p
that have di�erent shapes and see how the wiggles behave around these shapes. Results are shown in
Figure 8.2, again using c = 0.8.

Judging from the results shown in Figure 8.2 it looks like using a relatively smooth p prevents wiggles
to arise in the proximity of the data. Now we will look at how well this approximation A′ behaves
in the same testcase as used in Figure 7.2. A similar plot is shown in Figure 8.3, this makes clear
that when looking after a traversed distance of 25∆x the solutions obtained using the approximate A′

with di�erent c are all on spot with the solution obtained using c = 1. Figure 8.4 shows the solutions
obtained when using the directly calculated A′ for c = 0.8 and the approximated A′ for c = 0.8. From
this plot we see that although the new approximation does keep the sharp edges that are smoothed out
in the old solution, a new type of wiggles arise when we have not traversed an integer multiple of ∆x.

Fractional power computation

Although this solution looks nice (especially after using a �lter to get rid of the wiggles in the interme-
diate results) the computational cost of determining non-integer powers of a matrix are unacceptably
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(a) A−1A′p for a traction with a single one.

(b) (A−1A′)33p for a traction with a single one.

(c) (A−1A′)133p for a traction with a single one.

Figure 8.1: Results after 1, 33, 133 iterations.

high. Therefore this solution is unacceptable due to the computational costs it brings.
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(a) Using a plateau as initial p.

(b) Using a ramp starting low and ending high as initial p.

(c) Using a ramp starting high and ending low as initial p.

(d) Using a pyramid as initial p.

Figure 8.2: Results after 33, iterations.
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Figure 8.3: Solution of the traction px using di�erent values for c after a traversed distance of 25∆x.

Figure 8.4: Solution of the traction px using di�erent values for c after a traversed distance of 38.4∆x.
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World Fixed implementation

Previously we looked at the contact problem in a contact �xed framework. The motivation for this
approach is that the grid only has to be as large as the contact area and moves along with the contact
area. For short simulations this is not a real issue, but when doing simulations where the total displace-
ment covers a (large) multiple of the contact area, the grid we need to use in a framework that is not
contact �xed needs to be that same multiple times as big as the grid used in a contact �xed framework.

Another approach is using a world �xed framework. Here the grid is �xed to the world and the contact
area moves over this grid. The motivation for using this approach is the appearance of the smoothing
e�ect for non-integer values of c as described in Chapter 4. The key di�erence is that in the contact-�xed
approach we have traction τi at position xi and want to move that traction to somewhere in between
position xi−1 and xi, while in a world-�xed approach we have traction τi at position xi and want to
�nd the traction in the next timestep, still at position xi.

CONTACT libraries for Matlab

During this process the actual CONTACT software is used. This is done by use of shared libraries that can
be called from Matlab (or another programming language like C++). From Matlab the input settings
are given, in the .dll �le the contact problem is solved, and afterwards the output can be retrieved in
Matlab to use the results. Now to use a contact �xed approach we have to set the CONTACT control
parameter [28, section 3.5] T to 2 while for a world �xed approach we have to set T to 1. One thing
to be carefull about is the fact that in the contact �xed situation we can de�ne the traction bound at
the start and keep it constant, while in the world �xed case the traction bound is di�erent in each step
because the contact area moves over the chosen grid.

Rolling cylinder

The situation we will investigate involves a solid cylinder on a hill. To make things easy the hill and
cylinder will be made of the same material so we can assume quasi-identical behaviour. The hill and
cylinder are in vacuum, so we do not concern ourselves with drag. As the cylinder is pulled down by
gravity the friction between the cylinder and the hill will cause slipping and a traction on the cylinder.
This traction will make the cylinder start to roll. As the rolling increases the traction will be reduced,
resulting in less slipping and less rolling-resistance. This on its turn slows down the process that
makes the cylinder roll faster while the cylinder does keep catching up velocity because of the constant
gravitational pull. Thus again returning to a situation where it will slip and starts to roll faster. This
process will cause an oscillating traction pro�le on the contact area until the system �nally �nds an
equilibrium state where the increase in velocity and increase in rolling match each other and a stable
traction pro�le is found. This system is interesting because of the constantly changing behaviour of the
tractions. The `peaks' in the traction pro�le as seen in Figure 8.3 keep forming in the contact area for
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a long time so any smoothing e�ects, see Chapter 4, are persistent and could signi�cantly in�uence the
results.

Evolution in time

Because the velocity and thus position of the system are not as straight-forward as in the much simpler
Cattaneo-to-Carter testcase [28, section 5.8] considered before, we must take care of the proper evolution
of the system in time. In order to do this both Velocity Verlet and the Leapfrog method [1] are
implemented and the results of these two methods compared. These methods assume that we have a
constant time-step, the change in position is the velocity, the change in velocity the acceleration, and
the acceleration a function of the position only. This means that the methods can not be used in their
original form, because we do not have a constant time-step and the acceleration is a function of both
position and velocity.

First let us de�ne the physical quantities that need to be calculated. Let t be the time, X the middle
of the contact area, v the velocity, and a the acceleration.

Groot and Warren [8, equation 9] used an adapted version of Velocity Verlet that introduces a factor
λ in the intermediate velocity calculation. Using λ = 1

2 produces the normal Velocity Verlet algorithm
in case the acceleration is only a function of position. In their experiments they primary choose λ = 1

2 .
In our case this coice of λ is also the right choice because of the backwards nature of the solver used
in CONTACT. From now on, when we talk about Velocity Verlet we refer to their adapted version that
allows for the acceleration to be a function of both position and velocity.

Velocity Verlet

Velocity Verlet actually is a variable time implementation of the Verlet method already. This means
that when using Velocity Verlet we do not have to worry about varying timesteps. What sets Velocity
Verlet apart from Leapfrog is that the position, velocity, and acceleration are all determined at the same
point in time. In pseudocode the method comes down to the following (note that Groot and Warren's
facotor λ has been replaced by 0.5 already):

initialize: x(0), v(0), a(0)

for i = 0:N-1 {

dt(i) = dt(v(i))

v'(i+1) = v(i) + dt(i)*a(i)*0.5

x(i+1) = x(i) + dt(i)*v'(i+1)

a(i+1) = Fa( x(i+1),v'(i+1) )

v(i+1) = v(i) + dt(i) * (a(i)+a(i+1))/2

}

This process can be visualised by the following scheme:

Figure 9.1: Visualisation of the Velocity Verlet scheme, the scheme is an edited version of the one found in [1].

Leapfrog

The Leapfrog method does not accept a varying timestep. Therefore we need to calculate a new timestep
within the loop. This is because the second half of the scheme will use the updated value of the timestep.
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What sets Leapfrog apart from Velocity Verlet is that the position and acceleration are determined at
one point in time, but the velocity at half a timestep later. The pseudocode is given by:

initialize: x(0), v(0), a(0)

dt(0) = dt(v(0))

v(0) = v(0) + dt(0)*a(0)/2

for i = 0:N-1 {

x(i+1) = x(i) + dt(i)*v(i)

a(i+1) = Fa( x(i+1),v(i) )

v'(i+1) = v(i) + dt(i)*a(i+1)/2

dt(i+1) = dt(v'(i+1))

v(i+1) = v'(i+1) + dt(i+1)*a(i+1)/2

}

This process can be visualised by the following scheme:

Figure 9.2: Visualisation of the Leapfrog scheme, the scheme is an edited version of the one found in [1]. The �rst step
in the pseudocode is actually the third step in the visualisation of the scheme.

From this visualisation it becomes clear where Leapfrog gets its name from. The moments in time on
which the most recent position and most recent velocity are know leap over each other.

Next to velocity and acceleration we also have to determine the angular velocity and angular accelera-
tion. This is done parallel to the normal velocity and acceleration calculations in a similar fashion.

Energy

For this situation no analytical or experimental results are known. This means that another method
of validation is needed. One of the physical values we can determine is the total energy in the system.
Because of the law of conservation of energy we know that the total energy of the system is a constant.
So we need to have that at any time the total di�erence in energy with the begin situation should be
zero. Conservation of energy holds in a closed system, in our case this system is not only the rolling
cylinder but also the hill, because energy that is lost by friction will be converted into heat and ends
up in both the cylinder and the hill. The total energy can be found by taking the sum over all forms of
energy in the system. This is given in the following formula:

Etotal = Epotential + Evelocity + Erotational + Eelastic + Ework (9.1)

Here the kinetic energy is split into kinetic energy due to velocity and angular velocity. The individual
forms of energy can be expressed by:

Epotential = (x0 − x) · sin(α) ·m · g (9.2)

Evelocity =
1

2
·m · v2 (9.3)

Erotational =
1

2
· I · ω2 (9.4)

Eelastic =
1

2
· k · u2 (9.5)

Ework =

∫ t

0

Ffric · (x0 − x) dτ (9.6)
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where α is the slope of the hill, m the mass of the cylinder, g the gravitational acceleration, I the
moment of inertia, and k the `spring constant' of the cylinder.

In the system we will not work with the term sin(α) ·m · g but simply use a given Fcm, the force due to
gravity. The moment of inertia I is also given. Using the output given by CONTACT the energy equations
can be rewritten as:

Epotential = −X · Fcm (9.7)

Evelocity =
1

2
·m · v2 (9.8)

Erotational =
1

2
· Iy · ω2 (9.9)

Eelastic =
1

2
·
∫∫
S
ux · px dxdy (9.10)

Ework = −
∫ t

0

∫∫
S

(v · sx) · px dxdy dτ (9.11)

where the surface integrals are taken over the contact area. The quantities given by CONTACT are: the
displacements ux, the tractions px, and the relative slip sx. We have to take care with the slip. When
we use a contact �xed approach we get as output the relative slip sx which we can immediately use
this. When we use a world �xed approach we get the absolute slip Sx = dq · sx.
Now that we can calculate the energy in the system at any moment we can check how much the
calculated energy change di�ers from the theoretical value of 0. This is not only useful for checking
whether a solution is physically possible, but also to analyse the convergence of a method. Results
indicate that doubling the number of gridpoints approximately divides the error in the energy by 1.7.
This suggests a slow convergence. There is no di�erence between the use of Velocity Verlet or Leapfrog,
so either method can be used.
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Leading edge adjustments

In order to improve the convergence of the overall scheme we will focus on the leading edge. The leading
edge is the �rst grid point that enters the contact area during rolling. So in the examples used in this
theses, where motion goes from left to right the leading edge is at the right side of the contact area. In
theory the numerical solver should have second order convergence. However, in practice we do not see
faster than �rst order convergence when re�ning the grid. We suspect that the reason for this is caused
by a �rst order error in the leading edge. Because of the upwind nature of the system, this �rst order
error is transported through the whole system resulting in an overall �rst order error.

Analytic solution in 2D steady state

An analytic solution for the Carter-Fromm problem [28, example 5.2] is given by Kalker [14, equation
2.12]. In our test case we have a contact area that is centered around the origin with a width of
1mm where 60% (a = 0.6) of the contact area is in adhesion. The normalized analytic solution for the
tractions p(x) is given as:

p(x) =


−
√

1− x2 when − 1 ≤ x < 1− 2a

−
√

1− x2 +
√
a2 − (x− 1 + a)2 when 1− 2a ≤ x ≤ 1

0 else
. (10.1)

Using this solution and the in�uence function A we can calculate the analytic solution for the displace-
ments u(x). This gives the following expression (write u(x) = u(x, 0, 0)):

u(x) =

∫ ∆y
2

−∆y
2

∫ 1

−1

A(x, 0, x′, y′)p(x′) dx′dy′ (10.2)

=
1

πG

∫ ∆y
2

−∆y
2

∫ 1

−1

(ν − 1)
√

1− x′2√
(x− x′)2 + y′2

− ν (x− x′)2
√

1− x′2√
(x− x′)2 + y′2

3 dx′

+

∫ 1

1−2a

(1− ν)
√
a2 − (x′ − 1 + a)2√

(x− x′)2 + y′2
+ ν

(x− x′)2
√
a2 − (x′ − 1 + a)2√

(x− x′)2 + y′2
3 dx′

 dy.

The integration over x′ can not be done analytically, the integration over y′ can be done analytically. So
we will �rst integrate over y′ analytically and then do the numerical integration over x′. The integrals
over y′ are all of the forms: ∫ ∆y

2

−∆y
2

r√
s2 + y′2

dy′ = 2r arcsinh

(
∆y

2|s|

)
(10.3)

43



44 10. Leading edge adjustments

and ∫ ∆y
2

−∆y
2

s2r√
s2 + y′2

3 dy′ = 2
r∆y√

4s2 + (∆y)2
. (10.4)

This turns equation (10.2) into:

πG

2
u(x) = (ν − 1)

∫ 1

−1

√
1− x′2 arcsinh

(
∆y

2|x− x′|

)
dx′ (10.5)

− ν
∫ 1

−1

√
1− x′2∆y√

4(x− x′)2 + (∆y)2
dx′

+ (1− ν)

∫ 1

1−2a

√
a2 − (x′ − 1 + a)2 arcsinh

(
∆y

2|x− x′|

)
dx′

+ ν

∫ 1

1−2a

√
a2 − (x′ − 1 + a)2∆y√
4(x− x′)2 + (∆y)2

dx′

Using numerical integration this gives us a (semi-) analytic value for u(x). In order to test how well the
CONTACT algorithm converges when u is known at the boundary we will use this to determine the value
at the leading edge. De�ne uLE = u(1), where the exact value of u is used.

Solution scheme using the leading edge displacement

When solving equation (2.10) we are interested in the interior elements of the contact area. Here we
replace u by the matrix-vector product Ap and u′ by the matrix-vector product A′p. The last entry in
the vector u′ however is the displacement one gridpoint upstream of the last gridpoint in the interior,
in other words, at the boundary. Tests are done in MATLAB and implementation will be similar to
Section 3.3.

We use that u′ = A′p. Here all but the last entry of the vector are unknowns, the last entry will be
uLE . This means that we can replace the matrix A′ by a submatrix that is equal to A′ in all but it's
last row (notate this part by A′m−1×m), and has a row with zeros as it's last row. Now we can write:

u′ =

 A′m−1×m

0 · · · 0

p +


0
...
0
uLE

 (10.6)

This means that we can use the same framework as in equation (3.18), where the vector with uLE will
be merged with the vector containing the rigid slip w and in the matrix M will use the adjusted A′

with one row of zeros instead of the full matrix A′.

E�ects on convergence

The �rst result we can look at is comparing how knowing the exact value of the displacement and using
this in�uences the solution of the steady-state 2D problem. In Figure 10.1 we can see that the solution
is much closer to the analytic Carter-Fromm solution when using the exact displacement at the leading
edge. This is also made quantitative when we look at the error in the 1-Norm.

The more interesting e�ect though is the e�ect on the convergence. When using the original scheme
going from 15 to 30, 60, 120, and 240 grid points reduces the error with a factor 1.83 on average, and
a factor 2.09 in optimal situations. But when the displacement at the leading edge is known, so the
traction at the leading edge can be calculated more accurately we see that the same grid re�nements
result in a reduction in the error with a factor of 2.89 on average, and a factor 4.96 in the optimal
situation.
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Figure 10.1: Di�erence between using the exact solution for the leading edge displacement or not in the 2D Carter-Fromm
problem.

Adjusting the Leading Edge basis function

The results from the previous section look great, but they are not usable in practice. We could only do
this because we started with the analytic solution in the �rst place. It does however indicate strongly
that when the fact that we only observe �rst order convergence in the normal case is primarily caused
by the error made at the leading edge. If the traction in this one gridpoint can be calculated more
accurately the total traction will be more accurate as well. How well the solution at the leading edge
can be calculated depends on how the gridpoints are located with respect to the edge. When using a
linear basis function this will give rise to a triangle function with the peak at the last gridpoint xN ,
and nonzero values up to the last gridpoint plus a distance ∆x. Let us assume that the contact area
runs from −1 to 1. De�ne a variable α = 1−xN

∆x . This means that 0 ≤ α < 1 because if α ≥ 1 there
would be another gridpoint in the contact area after xN . For values of α close to one there will only
be a small contribution of the last basis function beyond the contact area. But when α becomes small,
the greater part of the last basis function will lie outside the contact area. There the traction is zero,
so any contribution will be nonphysical. So we will adjust the leading edge basis function so that the
basis function will be zero outside the contact area, see Figure 10.2 for this adjustment.

Figure 10.2: On the left, the general basis function, on the right the adjusted version used at the leading edge.

This adjustment has been tested in the 2D steady-state Carter-Fromm testcase. The discrete traction
pN at the leading edge is overestimated using this method, however this new value, combined with its
adjusted basis function do lead to improved pn for all other tractions in the adhesion area. This gives
an overall improvement on the traction in 1-norm. Sadly though, except for a select range of values for
α the rate of convergence is not signi�cantly improved. An average factor of a 1.7146 smaller 1-norm
error is gained however. See Figure 10.3 for an example using α = 0.4.
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Figure 10.3: The Carter-Fromm testcase, using normal linear basisfunctions and a basis function adjusted for the leading
edge with α = 0.4.
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Conclusion and recommendations

In this thesis three problems have been investigated and several attempts have been made to solve them,
with varying degrees of success.

First of all, the appearance of wiggles arising for small time steps has been investigated. This was
caused by the ampli�cation of high frequencies by the operator dealing with the spatial derivative in
the slip-equation. An attempt to solve this problem was the use of higher order basis functions. This
however did not help against the wiggles at all. An adjustment to the time-stepping scheme, similar to
under-relaxation, did remove the wiggles, even at very small time steps.

Secondly, both the original scheme as the one improved by the new time-stepping su�ered from numerical
smoothing of extrema in the solution. A solution using fractional matrix powers was found, but due to
the high computational cost this was dropped in favour of the use of a world-�xed implementation of
the solution. This comes down to looking at the problem in an Eulerian frame of reference in stead of
the previously more used Lagrangian frame of reference. Both of these subjects have been presented in
a conference in Madeira [32].

Finally the order of convergence of the solver has been investigated. In theory we would expect second
order convergence, this however is not observed. The introduction of higher order basis functions was
also expected to increase the rate of convergence, but this seems not to be the case. Using analytic
solutions it was found that the primary cause of the low rate of convergence is the �rst order error made
when determining the leading edge traction. This error propagates through the whole contact area and
limits the overall rate of convergence. Therefore an adjustment for basis function used at the leading
edge was made. This did reduce the error made, compared to the analytic solution. Sadly there was no
signi�cant increase in the rate of convergence safe for a small range of input values.

So this means that the problem with wiggles is solved. It looks like the smoothing can be stopped as
well, however further tests show odd behaviour when using the world-�xed implementation in certain
cases. The cause for the low order of convergence has been found, a solution is still not presented
however.

Recommendations for further research

The use of higher order basisfunctions might improve the accuracy of the solution in the subsurface
of the material. So altough they were not useful in this thesis, they could be useful for the stress
calculation.

The problems arising in the world-�xed frame need to be investigated. It is still unknown why they
appear.

A way to improve the solution at the leading edge is valuable as it will likely improve the overall order
of convergence, thereby drastically decreasing computational time to reach a satisfying accuracy.
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A

Explicit expression for the in�uence

coe�cients using constant basis functions

A1111 =

∫ 1
2 ∆x

− 1
2 ∆x

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 A′1111 =

∫ 1
2 ∆x−dq

− 1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.1)

A2111 =

∫ − 1
2 ∆x

− 3
2 ∆x

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 A′2111 =

∫ − 1
2 ∆x−dq

− 3
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.2)

A1121 =

∫ 3
2 ∆x

1
2 ∆x

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 A′1121 =

∫ 3
2 ∆x−dq

1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.3)

Substracting A′I1J1 from AI1J1 to get MIJ gives us:

M11 = −
∫ − 1

2 ∆x

− 1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 +

∫ 1
2 ∆x

1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.4)

M21 = −
∫ − 3

2 ∆x

− 3
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 +

∫ − 1
2 ∆x

− 1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.5)

M12 = −
∫ 1

2 ∆x

1
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 +

∫ 3
2 ∆x

3
2 ∆x−dq

∫ 1
2 ∆y

− 1
2 ∆y

A11(z)dz2dz1 (A.6)

Where, using R =
√
z2

1 + z2
2 , we have [14, equation (4.39d)]:

A11 =
R−1 − νz2

2R
−3

πG
(A.7)

This can be reformulated as:

πGA11 =
1

R
− ν z

2
2

R3

=
z2

1 + z2
2

R3
− ν z

2
2

R3

=
z2

1

R3
+ (1− ν)

z2
2

R3

(A.8)

We can write [14, equation (4.41a,b)]:∫∫
z2

1

R3
dS = z2 log(z1 +R) (A.9)
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∫∫
z2

2

R3
dS = z1 log(z2 +R) (A.10)

Combining equations (A.8), (A.9), and (A.10) gives us:

πG

∫∫
A11dS = z2 log(z1 +R) + (1− ν)z1 log(z2 +R) (A.11)

Now we can use this to write down expressions for M11. In order make the expression more readable
we will substitude:

x′l = −1

2
∆x− dq x′u =

1

2
∆x− dq

xl = −1

2
∆x xu =

1

2
∆x

yl = −1

2
∆y yu =

1

2
∆y

Note that: ∫ xu

xl

∫ yu

yl

∂2f(z)

∂z1∂z2
dz2dz1 = f(xu, yu)− f(xu, yl)− f(xl, yu) + f(xl, yl) (A.12)

Using the substitution and equations (A.11) and (A.12) gives us the following expression for M11:

M11 = −
(
yu log

(
xl +

√
x2
l + y2

u

)
+ (1− ν)xl log

(
yu +

√
x2
l + y2

u

))
+

(
yl log

(
xl +

√
x2
l + y2

l

)
+ (1− ν)xl log

(
yl +

√
x2
l + y2

l

))
+

(
yu log

(
x′l +

√
x′2l + y2

u

)
+ (1− ν)x′l log

(
yu +

√
x′2l + y2

u

))
−
(
yl log

(
x′l +

√
x′2l + y2

l

)
+ (1− ν)x′l log

(
yl +

√
x′2l + y2

l

))
+
(
yu log

(
xu +

√
x2
u + y2

u

)
+ (1− ν)xu log

(
yu +

√
x2
u + y2

u

))
−
(
yl log

(
xu +

√
x2
u + y2

l

)
+ (1− ν)xu log

(
yl +

√
x2
u + y2

l

))
−
(
yu log

(
x′u +

√
x′2u + y2

u

)
+ (1− ν)x′u log

(
yu +

√
x′2u + y2

u

))
+

(
yl log

(
x′u +

√
x′2u + y2

l

)
+ (1− ν)x′u log

(
yl +

√
x′2u + y2

l

))
(A.13)

For M21 and M12 we have the same expression as formula (A.13) when using a di�erent substitution.
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In�uence coe�cients based on piecewise

quadratic basisfunctions

Following Vollebregt's approach we get [24, equation 36a]:

ux(x, y, 0) =
Px
πG

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
. (B.1)

This is the displacement we get at (x, y, 0) from a point stress Px at (ξ, η). If we now want to know
the displacement we get at (x, y, 0) as a result of the whole contact area C we need to sum over all
point pressures px(ξ, η) times the surface δξ · δη of each point. Summing over these in�nitesimal points
results in the integral:

ux(x, y, 0) =
1

πG

∫∫
C

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
px(ξ, η) dξdη. (B.2)

This lets us de�ne the in�uence function:

Aux(x, y, 0, ξ, η) =
1

πG

(
1− ν
ρ

+ ν
(x− ξ)2

ρ3

)
. (B.3)

Now introduce two sets of basisfunctions. One is a parabola contained within an element, the other is
a Lagrange polynomial spanning two elements and having the cetre of the basisfunction at the edge of
two elements. The basisfunctions de�ned on the origin are:

ϕo(x′, y′) =

{
1−

(
x′

∆x

)2

when |x′| ≤ ∆x ∧ |y| < ∆y
2

0 else
, (B.4)

ϕe(x′, y′) =


1
2

(
x′

∆x + 3
2

)2

− 1
8 when − 2∆x ≤ x′ < 0 ∧ |y| < ∆y

2

1
2

(
x′

∆x − 3
2

)2

− 1
8 when 0 ≤ x′ < 2∆x ∧ |y| < ∆y

2

0 else

. (B.5)

Note that we not only look at the centres (xj) of the elements but also at the edges of the elements
(xj + ∆x

2 ). From here on let the xj = (j − 1)∆x
2 denote both the centres and the edges of the elements.

We can use this to de�ne the basisfunctions for each element as:

ϕJ(x, y) =

{
ϕe(x− xJ , y − yJ) when J is odd
ϕo(x− xJ , y − yJ) when J is even

. (B.6)

The basisfunction ϕJ is now only nonzero when |x − xK | < ∆x
2 for J even, while ϕJ is only nonzero

when |x − xK | < ∆x for J odd. We can approximate the traction�eld with a continuous, piece-wise
quadratic, px given by:

px(x, y) =
∑
J

pJϕJ(x, y). (B.7)
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The pJ are the coe�cients to be determined. We can substitude the discretized traction (B.7) into (B.2)
and �nd:

ux(x, y, 0) =

∫∫
C

Aux(x, y, 0, ξ, η)
∑
J

pJϕJ(x, y) dξdη. (B.8)

The order of integration and summation may be reversed, and the constants pJ can be taken out of the
integral:

ux(x, y, 0) =
∑
J

pJ

∫∫
C

Aux(x, y, 0, ξ, η)ϕJ(ξ, η) dξdη. (B.9)

We now de�ne the in�uence coe�cients AIuJx as the integrals in the last equation. So we have:

ux(xI , yI , 0) =
∑
J

AIuJxpJ , (B.10)

with

AIuJx =

∫∫
C

Aux(xI , yI , 0, ξ, η)ϕJ(ξ, η) dξdη. (B.11)

Use relation (B.6) and only integrate over the nonzero parts to get:

AIuJx =

∫∫
I(ϕJ )

Aux(xI , yI , 0, ξ, η)ϕJ(ξ, η) dξdη. (B.12)

Here I(ϕJ) is the area where ϕJ is nonzero, so: I(ϕJ) = (xJ −∆x, xJ + ∆x)× (yJ − ∆y
2 , yJ + ∆y

2 ) for
J even and I(ϕJ) = (xJ − 2∆x, xJ + 2∆x)× (yJ − ∆y

2 , yJ + ∆y
2 ) for J odd. Apply a transformation of

variables, going from xI , yI , ξ, η to:

x′I = xI − xJ , y′I = yI − yJ , ξ′ = ξ − xJ , η′ = η − yJ . (B.13)

This translates the area of integration so that the orgin lies at the centre. Using equation (B.3) we
know that Aux is only a function of (xI − ξ) and (yI − η), which is equal to (x′I − ξ′) and (y′I − η′),
so Aux(xI , yJ , 0, ξ, η) = Aux(x′I , y

′
J , 0, ξ

′, η′). From (B.6) we have that ϕJ(ξ, η) = ϕ(ξ′, η′). So we can
write the equation as:

AIuJx =

∫∫
I(ϕ)

Aux(x′I , y
′
I , 0, ξ

′, η′)ϕ(ξ′, η′)δξ′δη′. (B.14)

From the de�nition given in (B.4) and (B.5) we have the expression for ϕo(ξ, η) and ϕe(ξ, η) and for
convenience drop the primes on ξ and η. This gives the expressions for the in�uence coe�cients for
even and odd J respectively:

AIuJx =

∫ ∆y
2

−∆y
2

∫ ∆x

−∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η)

(
1−

(
ξ

∆x

)2
)
dξdη, (B.15)

AIuJx =

∫ ∆y
2

−∆y
2

∫ 0

−2∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η)

(
1
2

(
ξ

∆x + 3
2

)2

− 1
8

)
dξdη (B.16)

+

∫ ∆y
2

−∆y
2

∫ 2∆x

0

Aux(xI − xJ , yI − yJ , 0, ξ, η)

(
1
2

(
ξ

∆x − 3
2

)2

− 1
8

)
dξdη.

The next challenge is �nding explicit expressions for these integrals. Integrating the Aux · 1 term has
been done already in [14] as this is required for the piece-wise constant approximation. The di�culty
when �nding an antiderivative for Aux · ξ and Aux · ξ2 is that Aux contains terms (xI − xJ − ξ), which
are then multiplied by plain ξ's. Therefore note that:

ξ2 = (xI − xJ − ξ)2 − 2(xI − xJ)(xI − xJ − ξ) + (xI − xJ)2. (B.17)

In the integral the term (xI − xJ) is just a constant so we can rewrite 1 −
(

ξ
∆x

)2

into terms with

(xI − xJ − ξ) and a constant term as:

1−
(

ξ
∆x

)2

= 1− (xI − xJ − ξ)2

(∆x)2
+

2(xI − xJ)

(∆x)2
(xI − xJ − ξ)−

(xI − xJ)2

(∆x)2
(B.18)

=
1

(∆x)2

(
(∆x)2 − (xI − xJ)2 + 2(xI − xJ)(xI − xJ − ξ)− (xI − xJ − ξ)2

)
.
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In a similar fashion we deal with the terms 1
2

(
ξ

∆x + 3
2

)2

− 1
8 and 1

2

(
ξ

∆x − 3
2

)2

− 1
8 in order to rewrite

them as:

1

2

(
ξ

∆x
+

3

2

)2

− 1

8
=

ξ2

2(∆x)2
+

3ξ

2∆x
+ 1 (B.19)

=
(xI − xJ − ξ)2 − 2(xI − xJ)(xI − xJ − ξ) + (xI − xJ)2

2(∆x)2
+

3(xI − xJ)− 3(xI − xJ − ξ)
2∆x

+ 1

=

(
2(∆x)2 + 3∆x(xI − xJ) + (xI − xJ)2 − (3∆x+ 2(xI − xJ)) (xI − xJ − ξ) + (xI − xJ − ξ)2

)
2(∆x)2

1

2

(
ξ

∆x
− 3

2

)2

− 1

8
=

ξ2

2(∆x)2
− 3ξ

2∆x
+ 1 (B.20)

=
(xI − xJ − ξ)2 − 2(xI − xJ)(xI − xJ − ξ) + (xI − xJ)2

2(∆x)2
− 3(xI − xJ)− 3(xI − xJ − ξ)

2∆x
+ 1

=

(
2(∆x)2 − 3∆x(xI − xJ) + (xI − xJ)2 + (3∆x− 2(xI − xJ)) (xI − xJ − ξ) + (xI − xJ − ξ)2

)
2(∆x)2

Recall from (B.3) that we have to �nd explicit expressions for:

∫∫
(xI − xJ − ξ)n

ρ
dξdη, (B.21)∫∫

(xI − xJ − ξ)n+2

ρ3
dξdη, (B.22)

for n = 0, 1, 2 where ρ =
√

(xI − xJ − ξ)2 + (yI − yJ − η)2.

The integration is performed using the software package Maxima, a continuation of the package Macsyma.
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This gives the following antiderivatives when setting the integration constant to zero:

F01(x, y, ξ, η) :=

∫∫
1√

(x− ξ)2 + (y − η)2
dξdη (B.23)

= (x− ξ) sinh−1

(
(y − η)

|(x− ξ)|

)
+ (y − η) sinh−1

(
(x− ξ)
|(y − η)|

)
,

F11(x, y, ξ, η) :=

∫∫
(x− ξ)√

(x− ξ)2 + (y − η)2
dξdη (B.24)

=
1

2

[
(x− ξ)2 sinh−1

(
(y − η)

|(x− ξ)|

)
+ (y − η)

√
(x− ξ)2 + (y − η)2

]
,

F21(x, y, ξ, η) :=

∫∫
(x− ξ)2√

(x− ξ)2 + (y − η)2
dξdη (B.25)

=
1

6

[(
η3 − 3yη2 + 3y2η − y3

)
sinh−1

(
x− ξ
|y − η|

)
+ 2 (x− ξ)3

sinh−1

(
y − η
|x− ξ|

)
+ (x− ξ) (y − η)

√
(x− ξ)2 + (y − η)2

]
,

F23(x, y, ξ, η) :=

∫∫
(x− ξ)2√

(x− ξ)2 + (y − η)2
3 dξdη (B.26)

= (y − η) sinh−1

(
(x− ξ)
|(y − η)|

)
,

F33(x, y, ξ, η) :=

∫∫
(x− ξ)3√

(x− ξ)2 + (y − η)2
3 dξdη (B.27)

= (y − η)
√

(x− ξ)2 + (y − η)2,

F43(x, y, ξ, η) :=

∫∫
(x− ξ)4√

(x− ξ)2 + (y − η)2
3 dξdη (B.28)

=
1

2

[(
η3 − 3yη2 + 3y2η − y3

)
sinh−1

(
x− ξ
|y − η|

)
+ (x− ξ) (y − η)

√
(x− ξ)2 + (y − η)2

]
.

Combining all results again into (B.15) gives for the even J :

(∆x)2A0
IuJx =

(
(∆x)2 − (xI − xJ)2

) ∫ ∆y
2

−∆y
2

∫ ∆x

−∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη (B.29)

+ 2(xI − xJ)

∫ ∆y
2

−∆y
2

∫ ∆x

−∆x

(xI − xJ − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

−
∫ ∆y

2

−∆y
2

∫ ∆x

−∆x

(xI − xJ − ξ)2Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη,
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and into (B.16) gives for the odd J :

2(∆x)2A+
IuJx =

(
2(∆x)2 + 3∆x(xI − xJ) + (xI − xJ)2

) ∫ ∆y
2

−∆y
2

∫ 0

−∆x

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

(B.30)

− (3∆x+ 2(xI − xJ))

∫ ∆y
2

−∆y
2

∫ 0

−∆x

(xI − xJ − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

+

∫ ∆y
2

−∆y
2

∫ 0

−∆x

(xI − xJ − ξ)2Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

+
(
2(∆x)2 − 3∆x(xI − xJ) + (xI − xJ)2

) ∫ ∆y
2

−∆y
2

∫ ∆x

0

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

+ (3∆x− 2(xI − xJ))

∫ ∆y
2

−∆y
2

∫ ∆x

0

(xI − xJ − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη

+

∫ ∆y
2

−∆y
2

∫ ∆x

0

(xI − xJ − ξ)2Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη,

with:

Aux(xI − xJ , yI − yJ , 0, ξ, η) =
1

πG

(
1− ν
ρ

+ ν
(xI − xJ − ξ)2

ρ3

)
. (B.31)

In order to shorten the notation a bit we write:

F(Fnm, x, y) = Fnm

(
x, y,∆x,

∆y

2

)
− Fnm

(
x, y,−∆x,

∆y

2

)
(B.32)

− Fnm
(
x, y,∆x,−∆y

2

)
+ Fnm

(
x, y,−∆x,−∆y

2

)
,

F−(Fnm, x, y) = Fnm

(
x, y, 0,

∆y

2

)
− Fnm

(
x, y,−2∆x,

∆y

2

)
(B.33)

− Fnm
(
x, y, 0,−∆y

2

)
+ Fnm

(
x, y,−2∆x,−∆y

2

)
,

F+(Fnm, x, y) = Fnm

(
x, y, 2∆x,

∆y

2

)
− Fnm

(
x, y, 0,

∆y

2

)
(B.34)

− Fnm
(
x, y, 2∆x,−∆y

2

)
+ Fnm

(
x, y, 0,−∆y

2

)
.
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Now the explicit expressions for the discretised in�uence functions become:

(∆x)2πGAIuJx =
(
(∆x)2 − (xI − xJ)2

)
· (B.35)

((1− ν)F(F01, xI − xJ , yI − yJ) + νF(F23, xI − xJ , yI − yJ))

+ 2(xI − xJ) ((1− ν)F(F11, xI − xJ , yI − yJ) + νF(F33, xI − xJ , yI − yJ))

− ((1− ν)F(F21, xI − xJ , yI − yJ) + νF(F43, xI − xJ , yI − yJ)) ,

2(∆x)2πGA+
IuJx =

(
2(∆x)2 + 3∆x(xI − xJ) + (xI − xJ)2

)
· (B.36)(

(1− ν)F−(F01, xI − xJ , yI − yJ) + νF−(F23, xI − xJ , yI − yJ)
)

− (3∆x+ 2(xI − xJ)) ·(
(1− ν)F−(F11, xI − xJ , yI − yJ) + νF−(F33, xI − xJ , yI − yJ)

)
+
(
(1− ν)F−(F21, xI − xJ , yI − yJ) + νF−(F43, xI − xJ , yI − yJ)

)
+
(
2(∆x)2 − 3∆x(xI − xJ) + (xI − xJ)2

)
·(

(1− ν)F+(F01, xI − xJ , yI − yJ) + νF+(F23, xI − xJ , yI − yJ)
)

+ (3∆x− 2(xI − xJ)) ·(
(1− ν)F+(F11, xI − xJ , yI − yJ) + νF+(F33, xI − xJ , yI − yJ)

)
+
(
(1− ν)F+(F21, xI − xJ , yI − yJ) + νF+(F43, xI − xJ , yI − yJ)

)
.



C

Leading Edge in�uence coe�cient

We have N constant basisfunctions for each element around the xI in the contact area, and the basis-
function:

ϕN+1(x) =

{
2xN−x

∆x : xN − ∆x
2 < x < xN + ∆x

2
0 : else

(C.1)

We now approximate the traction�eld with px given by:

px(x, y) =

N+1∑
I=1

pIxϕI(x, y). (C.2)

The pIx are the coe�cients to be determined. We can substitude the discretized traction (B.7) into (6.2)
and �nd:

ux(x, y, 0) =

∫∫
C

Aux(x, y, 0, ξ, η)
∑
J

{pJxϕJ(ξ, η)} dξdη. (C.3)

Following the same steps as in the previous appendix, this leads to the in�uence coe�cient equations:

AIuJx =

∫∫
C

Aux(xI , yI , 0, ξ, η)ϕJ(ξ, η) dξdη. (C.4)

These integrals have been calculated already for the constant basisfunctions. So only the case J = N+1
will be evaluated here. Knowing where ϕN+1 is nonzero we can write:

AIu(N+1)x =

∫ ∆y
2

−∆y
2

∫ xN+ ∆x
2

xN−∆x
2

Aux(xI , yI , 0, ξ, η)

(
2
xN − ξ

∆x

)
dξdη (C.5)

The next challenge is �nding explicit expressions for these integrals. Integrating the Aux · 1 term has
been done already in [14] as this is required for the piece-wise constant approximation. The di�culty
when �nding an antiderivative for Aux · ξ is that Aux contains terms (xI − ξ), which are then multiplied
by plain ξ's. Therefore note that:

ξ = xI − xI + ξ = xI − (xI − ξ). (C.6)

In the integral the term xI is just a constant so we can rewrite 2xN−ξ
∆x into terms with (xI − ξ) and a

constant term as:

2
xN − ξ

∆x
= 2

xN − (xI − (xI − ξ))
∆x

= 2
xN − xI

∆x
+ 2

xI − ξ
∆x

. (C.7)

Recall from (B.3) that we have to �nd explicit expressions for:∫∫
xI − ξ
ρ

dξdη, (C.8)∫∫
(xI − ξ)3

ρ3
dξdη, (C.9)
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where ρ =
√

(xI − ξ)2 + (yI − η)2.

The integration has already been performed in Section 6.2 and the same equations (6.20)-(6.23) are
used.

Combining all results again into (C.5) gives:

AIu(N+1)x = 2
xN − xI

∆x

∫ ∆y
2

−∆y
2

∫ xN+ ∆x
2

xN−∆x
2

Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη (C.10)

+
2

∆x

∫ ∆y
2

−∆y
2

∫ xN+ ∆x
2

xN−∆x
2

(xI − ξ)Aux(xI − xJ , yI − yJ , 0, ξ, η) dξdη,

with:

Aux(xI − xJ , yI − yJ , 0, ξ, η) =
1

πG

(
1− ν
ρ

+ ν
(xI − xJ − ξ)2

ρ3

)
. (C.11)

In order to shorten the notation a bit we write (for n = 0..3):

F(Fn, x, y) = Fn

(
x, y, xN +

∆x

2
,

∆y

2

)
− Fn

(
x, y, xN −

∆x

2
,

∆y

2

)
(C.12)

− Fn
(
x, y, xN +

∆x

2
,−∆y

2

)
+ Fn

(
x, y, xN −

∆x

2
,−∆y

2

)
.

Now the explicit expression for AIu(N+1)x becomes:

πGAIu(N+1)x = 2
xN − xI

∆x

(
(1− ν)F−(F0, xI , yI) + νF−(F2, xI , yI)

)
(C.13)

+
2

∆x

(
(1− ν)F−(F1, xI , yI) + νF−(F3, xI , yI)

)
,
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