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Abstract

The construction of cyclic railway timetables is an important task for Netherlands Rail-
ways (NS).This construction can be formulated as a Periodic Event Scheduling Prob-
lem (PESP). The most powerful technique for solving cyclic railway timetabling prob-
lems is constraint programming, especially via SAT solvers when PESP instances
are encoded as SAT instances. SAT solvers can determine the feasibility of problem
instances of NS quickly and reliably. However, in previous implementations the prob-
lem specification must explicitly indicate the track use within stations and on four-track
sections. As a result, the solver also reports infeasibility if a small adjustment of the
track allocation could lead to a feasible timetable. In this thesis, the Open Periodic
Event Scheduling Problem (OPESP) is introduced, which is used in a new method to
incorporate flexible track use in the SAT formulation. This method yields promising
results that could help improve the timetabling process at NS.

iii





Preface

This thesis marks the end of my graduation project, carried out at NS, which is the
final requirement to obtain my Master’s degree in Applied Mathematics. I would like
to thank some people for their contribution to this thesis.

First of all, I would like to thank my daily supervisor Pieter-Jan Fioole from NS
and my supervisor David de Laat from TU Delft. Pieter-Jan, our weekly meetings
helped me to stay focused and make continuous progress. David, your suggestions
and accurate proofreading were highly appreciated. It was great to work with both of
you. I also would like to thank Karen Aardal and Dennis Huisman, for taking place in
my graduation committee.

Being a graduation intern at NS was an insightful experience. I would like to thank
my colleagues for the interesting talks about the projects they are working on. Espe-
cially, I would like to thank the other interns. Our weekly online meetings, which always
ended up in playing games, were a welcome variety from working on my thesis.

As a large part of my thesis is written from my parents’ place, I would like to thank
my parents, my brother and my sister for the special time during our lockdown together
and for all the support. Working from home was hard sometimes, but you helped me
through. Last but not least, thank you Martijn, for encouraging me and knowing the
right things to say.

Maaike Vollebergh
Amsterdam, September 2020

v





Contents

1 Introduction 1
1.1 The Planning Process at Netherlands Railways . . . . . . . . . . . . . . . . 1
1.2 Complexity of the Dutch Railway Timetabling Problem. . . . . . . . . . . . 2

1.2.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Line planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Planning principles of NS . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Timetabling at Netherlands Railways . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Periodic Event Scheduling Problem 9
2.1 Formulation of the PESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Properties of PESP Constraints. . . . . . . . . . . . . . . . . . . . . . 10
2.2 Railway Timetabling as a PESP . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Constraints for stages from the same train. . . . . . . . . . . . . . . 12
2.2.2 Constraints for stages from different trains . . . . . . . . . . . . . . . 12

3 The SAT Problem 17
3.1 Formulation of SAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 PESP to SAT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Encoding Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Encoding Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Encoding PESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Incorporating Multiple Route Options 23
4.1 The idea of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Formulation of the Open-ended PESP . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Railway Timetabling as an OPESP . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Constraints for stage options from the same train . . . . . . . . . . 26
4.3.2 Constraints for stage options from different trains . . . . . . . . . . 27

4.4 Solving OPESP Railway Timetabling using SAT . . . . . . . . . . . . . . . . 32

5 Results 35
5.1 Description of the Test Instance . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Resulting Timetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Resulting timetable of the first experiment . . . . . . . . . . . . . . . 38
5.2.2 Resulting timetable of the second experiment. . . . . . . . . . . . . 39

5.3 Quantitative results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



viii Contents

6 Conclusions and Recommendations 43
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Recommendations for improving the method . . . . . . . . . . . . . 44
6.2.2 Recommendations for future research . . . . . . . . . . . . . . . . . 44
6.2.3 Recommendations for implementation . . . . . . . . . . . . . . . . . 44

A Proof of Lemma 2.1.1 47

B Using Decision Variables to Incorporate Multiple Route Options 49

C Abbreviations of Stage Points 53

Bibliography 55



1
Introduction

Netherlands Railways (Nederlandse Spoorwegen, NS) is the largest provider of mo-
bility services in the Netherlands. Approximately 62% of all people in the Netherlands
use the services of NS on a yearly basis, with 10.7 million unique passengers every
year [1]. In 2019, NS provided approximately 1.3 million train journeys every day.1

NS holds a franchise for the main rail network of the Netherlands. The franchise
authority, which is the Ministry of Infrastructure and Water Management, will evaluate
the performance of NS in midterm reviews. Aspects such as customer satisfaction,
punctuality, personal safety and seat availability are the focus of these reviews [1]. The
aim of NS is therefore to maintain a high level of performance and to achieve further
growth and quality improvements. The challenge is to offer higher frequencies, more
trains and longer trains, while the capacity limits of the infrastructure are approached
[1].

The challenge of meeting the needs of transport within the infrastructure capacity is
captured in the complicated process that precedes the transport of passengers. This
process consists of the construction of a timetable, the planning of rolling stock and
the planning of personnel on the trains. In this thesis, the problem of constructing
a timetable is discussed and a method to incorporate flexible track use in the SAT
model of this problem is presented and tested. In the upcoming sections the planning
process at NS and the reasons why this is complicated are discussed.

1.1. The Planning Process at Netherlands Railways
The planning process at NS consists of several stages. The first step of the process is
the line planning. In this stage train lines are specified by their routes and subsequent
stops, as well as by their hourly frequency [3]. This is a decision for about twenty years
and it is made five years in advance. The line planning is based on the infrastructure
and a trade-off between desirability for passengers and operational costs for NS, as
maximizing the number of direct travelers results in an inefficient use of rolling stock
[3].
1Because of COVID-19, passenger numbers have fallen to only 40% of the original number of pas-
sengers and expectations are that passenger numbers will be back at the level of 2019 after 2024
[2].
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2 1. Introduction

Based on the line plan a timetable is constructed. The timetable of NS is cyclic
with a cycle time of an hour, which means that the timetabling process starts with
the design of a basic hour pattern. The setting at the end of this pattern must agree
with the setting at the start of the pattern. In this way the basic hour pattern could be
repeated to create a timetable for a longer period. The design of a basic hour pattern
is done a year in advance. Around four weeks in advance this pattern is used to create
specific day patterns. Here, for example, maintenance on the infrastructure, for which
trains have to be rescheduled, or events, for which extra trains are needed, are taken
into account. In this thesis, the construction of a basic hour pattern is discussed.

The next stage consists of the rolling stock scheduling, after which the crew is
scheduled. In rolling stock scheduling, the length of the trains is determined. This is
done before crew scheduling, as the costs for rolling stock are much higher than crew
costs [1]. An extensive description of the planning process can be found in [4]. Crew
scheduling consists of assigning duties to the personnel. For this assignment, there
are labor rules to take into account. A detailed description of the crew planning at NS
can be found in [5].

For timetabling, as well as rolling stock and crew scheduling, changes in real-time
could be needed when, for example, accidents take place. We now discuss why the
construction of a basic hour pattern is a complex problem.

1.2. Complexity of the Dutch Railway Timetabling Prob-
lem

There are three main reasons why the Dutch railway timetabling problem is a complex
problem: the density of the infrastructure, the alternation of the line planning and the
planning principles of NS. In this section, we discuss these reasons in more detail.

1.2.1. Infrastructure
The infrastructure of a train network corresponds to a network structure. Figure 1.1
shows examples of different network structures. For a bus network, as in Figure 1.1a, it
is easy to construct a timetable, as all stations are connected in just one line. For a star
network, as in Figure 1.1b, it is also relatively easy to construct a timetable. All train
lines start or end at the central node, but apart from this node they are independent
from each other. Therefore the departure times of the trains have to match at this
central node and the rest of the timetable can be derived from these departure times.
The infrastructure in Denmark is an example of this.

The infrastructure in the Netherlands looks more like a hybrid network, of which
a small example is shown in Figure 1.1c. A hybrid network is a combination of two
or more other network types, in case of this example a star network and multiple bus
networks. The infrastructure in the Netherlands is and will be created to match the
demand of the passengers and to have travel times that are as low as possible. This
results in a dense network that contains a lot of cycles. These cycles break the in-
dependence of the different lines as in a star network, making the construction of a
timetable more difficult. This is because cycles in the infrastructure result in cycles of
constraints between departure times of trains. Suppose we traverse such a cycle be-
tween departure times and add up the difference between the departure times. Then,
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to prevent a conflict for these times, the sum of the differences should be a multiple
of the timetable’s period. As stated in [6], these cycles between constraints are the
challenging part in periodic scheduling.

(a) Example of a bus network (b) Example of a star network (c) Example of a hybrid network

Figure 1.1: Examples of networks

1.2.2. Line planning
Another aspect that makes the Dutch railway timetabling problem a complex problem
is the alternation of the line planning. This alternation emerges on two main points:
the types and the routes of trains.

First, the type of the trains in the line planning should be alternating. In the Nether-
lands, there are three types of trains: sprinter trains, intercity trains and freight trains.
Sprinter trains stop at each station on their route, while intercity trains only stop at
particular stations. Freight trains are slow compared to passenger trains. Figure 1.2
shows two time-space diagrams, where the horizontal axis represents space, with a
difference in track use for two types of trains with a different speed. In Figure 1.2a,
the trains are grouped by type. In this way, the follow-up time between trains of the
same type can be low, and therefore 15 trains can be scheduled. However, this does
not give the best service to the customers. If one needs a train from one of the types,
there is just a small period of time where trains go regularly and a risk of having to
wait for a long period of time.

In Figure 1.2b, the trains are alternately driven per type. On the one hand, this is
a more attractive timetable to customers as trains of the same type are now spread
over the hour. On the other hand, only six trains can be scheduled in this way. The
bigger the difference in speed between trains, the lower the capacity of a track. When
the capacity of the track is lower, it is more difficult to schedule trains in case of a high
frequency. Therefore, alternating the type of train lines contributes to the complexity
of the Dutch railway timetabling problem.

Second, the routes of the train lines should be alternating. An example is shown in
Figure 1.3. Figure 1.3a is an example of a homogeneous line planning. On each part
of the network, train lines have the same route: each train departing from node 1 is
going to node 4 via node 2, for example. In Figure 1.3b, two train lines with alternating
routes are shown. From node 1 to node 2, both lines have the same route, after which
they split up. In this way, direct connections are possible between node 1 and node 3
and between node 1 and node 4.

In both cases, we want an equal distribution of trains over the hour between each
pair of nodes. In the first case, the train between node 2 to node 3 is separately and
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the two trains between node 1 and node 4 can be scheduled 30 minutes apart. In the
second case, the three trains between node 1 and node 2 should be scheduled 20
minutes apart. However, the two of those trains between node 2 and node 4 should
be scheduled 30 minutes apart. Therefore it is not possible to schedule these trains
with the right frequencies. This example illustrates that alternating the routes of train
lines contributes to the complexity of the Dutch railway timetabling problem.
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(a) Example of a time-space diagram with grouped trains
by train speed

0

10

20

30

40

50

60

M
in

(b) Example of a time-space diagram with alternating
trains by train speed

Figure 1.2: Examples of track capacity
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(b) Example of alternating routes

Figure 1.3: Examples of line planning

1.2.3. Planning principles of NS
NS has certain planning principles that contribute to the complexity of the railway
timetabling problem: the resulting timetable should be completely free of conflicts and
should contain travel times that are as low as possible. In some other countries, for
example, it is allowed to ’bend’ trains (uitbuigen in Dutch). This means that a train
has a lower speed than its maximum speed on some part of its route. In this way,
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the speed difference between trains can be lowered, which results in a higher track
capacity (see Figure 1.2). However, as ’bending’ of trains results in longer travel times
in many cases, it is not allowed by NS in a conflict-free timetable.

1.3. Timetabling at Netherlands Railways
In 1969, NS introduced a new timetable to make the train more competitive [7]. The
timetable was cyclic with a fixed line planning, better connections and increased fre-
quencies. Until now, railway timetables in the Netherlands satisfy these properties,
although frequencies are still increasing.

A cyclic timetable has the advantage to be transparent to the customer, as there
is no need for passengers to remember complex timetables and there are no gaps in
the train service throughout the day [8]. This advantage makes a cyclic timetable also
relatively easy to handle within the different departments of NS.

Until 1992, timetabling was done by hand [7]. Automatic tools did not exist and
frequencies were still low. But as the requirements for the timetable were increasing
by creating more connections and increasing frequencies of train lines, the need for a
decision support system increased. Therefore, NS started to create DONS (’Designer
of Network Schedules) [9]. First, DONS was used in combination with the solver
CADANS [10]. Based on the infrastructure and the line planning, a model is built in
DONS, including the frequency constraints and connections. Here, the track that each
train uses between stations should be defined as well. In case a solution for this rail
network exists, CADANS can generate a timetable. A timetable generated by DONS
and CADANS is used to create the Dutch railway timetable of 2007. In subsequent
years, the Dutch railway timetable was based on this timetable.

The problem of constructing a timetable became more and more difficult in the
past years, as frequencies are rising up to 6 trains per hour and better connections
are sought. This results in an overdetermined problem, which CADANS reports as
unsatisfiable. However, human planners are able to solve this problem with only small
deviations such as changing track assignment, omitting some connection constraints
or shortening a follow-up time when this is allowed. Therefore, the construction of the
timetable is nowadays still mainly a human planning process, although it is supported
by computer aided design tools [8]. DONS is now used as a support system, mainly for
conflict signaling. Time-space diagrams can be drawn in DONS and these diagrams
show if conflicts occur.

1.4. Problem Description
Although human planners are able to solve the Dutch railway timetabling problem with
only small deviations, the solver CADANS reports unsatisfiability for this problem. As
described above, the track that each train uses should be predefined to use these
systems. This means a fixed detailed route for each train is used. The following
example illustrates that this implies a lot of restrictions and could easily result in an
unsatisfiable problem.

Example 1.4.1. Let us consider a railway network with three stations, station 1, 2 and
3 respectively. Station 1 has one platform, station 2 has two platforms and station 3
has one platform. Therefore there are two routes from station 1 to station 2, say route
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𝛼 and route 𝛽 and from station 2 to station 3 there are two routes as well, say route
𝛾 and route 𝛿. Say there is a train standing still at the second platform of station 2.
Figure 1.4 is a representation of this network and situation.

Say there is another train, which should be scheduled from station 1 to station 3 and
which has a fixed route going on route 𝛽 and 𝛿. In this case, a solver would consider
the problem unsatisfiable, while it is easy to see that we can choose an alternative
route for this train to make the problem satisfiable.

The example above shows that a timetabling problem that is considered unsat-
isfiable using fixed routes might be sastisfiable when using another combination of
detailed routes. This might be easy to see in a small example as above, but in an
extensive network as the Dutch railway network support is needed.

In this thesis, we want to develop an alternative method for constructing timeta-
bles that is able to incorporate multiple route options. We consider the problem of
constructing a cyclic railway timetables as a satisfiability problem. Therefore we don’t
use an objective function, but we try to find a feasible timetable rather than the best
timetable. When incorporating multiple route options for each train instead of using a
preferred route, a larger part of the solution space is considered and this might make
it possible to find a feasible timetable for the Dutch railway timetabling problem.

As the currently most efficient approach for solving timetabling problems is con-
ducted by using state-of-the-art SAT solvers [11], the goal of this thesis is to incorpo-
rate flexible track use in the SAT formulation of the cyclic railway timetabling
problem.

1

2A

3

ᎎ

ᎏ

᎐

᎑

Figure 1.4: Example of a railway network

1.5. Literature Review
The construction of a cyclic railway timetable is often modeled as a Periodic Event
Scheduling Problem (PESP), introduced in [12]. PESP will be described in Chapter
2. It is an NP-complete problem [12], for which currently the most efficient solving
approach is to encode a PESP as a SAT problem and to use state-of-the-art SAT
solvers [11]. SAT will be described in Chapter 3. It is an NP-complete problem as well
[13], however, very efficient solvers in practice exist [14].

The SAT approach is used in several articles to solve PESP instances, where
the track allocation is fixed. A polynomial reduction from PESP to SAT is presented
in [11]. In [14], the algorithms that are implemented in the modular timetabling soft-
ware system TAKT are described, where a SAT approach is combined with methods
for automatic resolving of conflicts. The problem of finding a periodic timetable and
the problem of finding optimal passengers’ paths are integrated in [15], to improve
the quality of the resulting timetables. In [16] a binary search procedure which uses a
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SAT solver is proposed. A linear objective function is used, which is modeled as a con-
straint where the total sum of the objective function is bounded by an integer constant.
In this way global minimal solutions with respect to travel time can be found. Finally,
promising results are presented in [17], using an approach based on reinforcement
learning, multi-agents and SAT.

Railway track allocation is a separate process and it is evident that this is an in-
tegral component in the problem of timetabling [18]. An extensive overview of the
problem of routing trains through railway junctions in more detail and the different so-
lution methods for this problem is given in [18]. The most widely used models for
this routing problem are conflict graph approaches, while there is potential in adopting
resource based constraint systems [18]. In [19], the complexity of the timetabling prob-
lem, solved by a SAT approach, is reduced by ignoring selected minimum headway
constraints. In a post-process, the optimised track allocation is determined. It turns
out that this approach is useful and fast, although it it not always possible to calculate
a feasible solution in the post-process [19].

The construction of the timetable and the railway track allocation are mostly per-
formed separately. It is suggested to integrate these two problems to investigate po-
tential additional benefits [18]. In [20], the literature’s first mixed-integer linear pro-
gramming model of a cyclic, combined train timetabling and platforming problem is
presented for a simple network. Here, a simple network is considered to consist of
a single-track main line with discrete stations that each contain one or more sidings
in parallel. According to [20] there are no papers that consider cyclic, combined train
timetabling and routing on a more complex network, which, to the best of our knowl-
edge, is still the case.

As is stated in [14], the improvements in SAT-based PESP solving permit additional
extensions to the PESP model, such as dynamic track allocation for passenger trains.
According to [16], “the potential of SAT approaches is not yet fully explored”.

1.6. Outline
In this thesis, an implementation for incorporating multiple route options in the cyclic
railway timetabling problem is proposed. First of all, the problem of constructing a
cyclic railway timetable while using fixed routes will be presented as a Periodic Event
Scheduling Problem (PESP) in Chapter 2. Next, the SAT Problem and the encoding
from PESP to SAT will be discussed in Chapter 3. In Chapter 4, the method for in-
corporating multiple route options is presented. The results of experiments with this
method are shown in Chapter 5. In Chapter 6, the results are discussed and recom-
mendations for further research are done.





2
The Periodic Event Scheduling Problem

In this chapter we first give a formal definition of the Periodic Event Scheduling Prob-
lem (PESP) and discuss some properties of PESP constraints. Second, we will ex-
plain the details of this problem in case of cyclic railway timetabling when using a fixed
route for each train.

2.1. Formulation of the PESP
The PESP is introduced by Serafinin and Ukovich in [12] as a method to formulate
periodic timetabling problems. We follow the definitions from [21].
Definition 2.1.1. Let 𝑎, 𝑏 ∈ ℝ and 𝑇 ∈ ℕዄ. With 𝑎 and 𝑏 being the lower and upper
bound, respectively,

[𝑎, 𝑏]ፓ ∶=⋃
፳∈ℤ
[𝑎 + 𝑧𝑇, 𝑏 + 𝑧𝑇] ⊆ ℤ

is called interval modulo 𝑇.
Let ℐፓ be the set of intervals modulo 𝑇.

Definition 2.1.2. A periodic event network (PEN) is a triple 𝒩 = (𝒱, 𝑇, 𝑎), with 𝒱 the
set of periodic events, 𝑇 ∈ ℕ the period and 𝑎 ∶ 𝒱 ×𝒱 → 2ℐᑋ a function, which assigns
to each pair of nodes (𝑖, 𝑖ᖣ) ∈ 𝒱×𝒱 a set of intervals modulo 𝑇. Then for each 𝑖, 𝑖ᖣ ∈ 𝒱,
𝑎(𝑖, 𝑖ᖣ) is their set of constraints.

A PEN can be visualized by a directed multigraph, where 𝒱 is the set of nodes and
every interval 𝑐 ∈ 𝑎(𝑖, 𝑖ᖣ), 𝑖, 𝑖ᖣ ∈ 𝒱, denotes the labeling of a directed edge (𝑖, 𝑖ᖣ).
Definition 2.1.3. A schedule is a function 𝑑 ∶ 𝒱 → {0,… , 𝑇 − 1}. A schedule 𝑑 is valid
with respect to 𝑎 if and only if

𝑑(𝑖ᖣ) − 𝑑(𝑖) ∈ ⋂
፜∈ፚ(።,።ᖤ)

𝑐

for all 𝑖, 𝑖ᖣ ∈ 𝒱.
The PESP can be formally defined as in the following definition.

Definition 2.1.4. Given a PEN 𝒩 = (𝒱, 𝑇, 𝑎), find a valid schedule 𝑑 ∶ 𝒱 → ℕ with
respect to 𝑎.

9



10 2. The Periodic Event Scheduling Problem

2.1.1. Properties of PESP Constraints
As defined above, the constraint function 𝑎 assigns to each pair of nodes (𝑖, 𝑖ᖣ) ∈ 𝒱×𝒱
a set of intervals modulo 𝑇. The set 𝑎(𝑖, 𝑖ᖣ) can be the empty set for some 𝑖, 𝑖ᖣ ∈ 𝒱,
which means there are no constraints between these periodic events. Note that we
can reverse a constraint [𝑙, 𝑢]ፓ for the pair (𝑖, 𝑖ᖣ) to a constraint for the pair (𝑖ᖣ, 𝑖) by
adding the interval [−𝑢,−𝑙]ፓ = [−𝑢 + 𝑇,−𝑙 + 𝑇]ፓ to 𝑎(𝑖ᖣ, 𝑖).

PESP constraints can also model a choice between multiple disjoint intervals for
a given event pair (𝑖, 𝑖ᖣ). Suppose we have a constraint between two events 𝑖, 𝑖ᖣ that
says that their event time difference should lie either in the interval [𝑙ኻ, 𝑢ኻ]ፓ, or in the
interval [𝑙ኼ, 𝑢ኼ]ፓ, for some 𝑙ኻ ≤ 𝑢ኻ < 𝑙ኼ ≤ 𝑢ኼ, then we want

𝑑(𝑖ᖣ) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢ኻ]ፓ ∪ [𝑙ኼ, 𝑢ኼ]ፓ .

As shown in Figure 2.1, this choice between two intervals is equivalent to the following
constraints

[𝑙ኻ, 𝑢ኼ]ፓ ∈ 𝑎(𝑖, 𝑖ᖣ),
[𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∈ 𝑎(𝑖, 𝑖ᖣ).

This idea is generalized in the following lemma from [8], adapted to our notation.
A proof of this lemma can be found in Appendix A.

Lemma 2.1.1. Suppose that for some edge (𝑖, 𝑖ᖣ) ∈ ℰ wewant to impose the constraint

𝑑(𝑖ᖣ) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢ኻ]ፓ ∪ [𝑙ኼ, 𝑢ኼ]ፓ ∪ … ∪ [𝑙፤ , 𝑢፤]ፓ ,

where the 𝑘 intervals are disjoint and ordered:

0 ≤ 𝑙ኻ ≤ 𝑢ኻ < 𝑙ኼ ≤ 𝑢ኼ < … < 𝑙፤ ≤ 𝑢፤ < 𝑙ኻ + 𝑇.

Then this union of 𝑘 intervals is equivalent to the intersection of 𝑘 intervals modulo 𝑇
given by the constraints

[𝑙ኻ, 𝑢፤]ፓ ∈ 𝑎(𝑖, 𝑖ᖣ),
[𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∈ 𝑎(𝑖, 𝑖ᖣ),

⋮
[𝑙፤ , 𝑢፤ዅኻ + 𝑇]ፓ ∈ 𝑎(𝑖, 𝑖ᖣ).

We will now discuss the details of PESP in case of cyclic railway timetabling.

፥Ꮃ

፮Ꮃ ⋃

፥Ꮄ

፮Ꮄ ዆

፥Ꮃ

፮Ꮄ ⋂

፥Ꮄ

፮Ꮃ ዄ ፓ

Figure 2.1: Equivalence of the union and intersection of periodic time windows
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2.2. Railway Timetabling as a PESP
The input for the railway timetabling problem consists of the infrastructure and the
line planning. These tell us the number of trains per hour and their detailed routes,
including the stations where the train stops. On these routes we define stage points
in such way that there is only one route option between the specified tracks at two
consecutive stage points and that there is no crossing with another track in between
two consecutive stage points. In this way the route of every train, specified in the line
planning, is split in small stages.

Each stage of each train is characterized by the stage point and the track it departs
from. Let 𝐼 ⊆ ℤ × ℤ be the set representing the infrastructure, where, for (𝑖ኻ𝑖ኼ) ∈ 𝐼, 𝑖ኻ
indicates the stage point and 𝑖ኼ indicates the track at that stage point. Let 𝑁 be the
number of trains and let 𝑟፭ ∈ 𝐼፬ᑥ be the route of train 𝑡 ∈ {1, … ,𝑁}, where 𝑠፭ ∈ ℕ is the
number of stage points the train passes, including its end point. So for train 𝑡, stage
𝑖 = 1,… , 𝑠፭ − 1 departs from (𝑟፭)። and arrives at (𝑟፭)።ዄኻ. Let 𝑦፭። ∈ ℕ be the technical
travel time of stage 𝑖 of train 𝑡. Lastly, each stage has a code 𝑧፭። ∈ {0,1}, where

𝑧፭። = {
1 if train 𝑡 has a stop between stage 𝑖 and stage 𝑖 + 1,
0 otherwise.

The periodic event network in the railway timetabling case has period 𝑇 = 60 when
determining the timetable in minutes. Each periodic event corresponds to the periodic
departure of a train 𝑡 from a point on its route, say at (𝑟፭)።. Therefore, from now on,
we will denote each periodic event as 𝜖፭። for some train 𝑡 and some route point (𝑟፭)።.
The set of periodic events then is 𝒱 = {𝜖፭። ∶ 𝑡 = 1,… ,𝑁; 𝑖 = 1,… , 𝑠፭ − 1}.

Example 2.2.1. Let us consider a railway network with three stations, station 1, 2
and 3 respectively. There is one track from station 1 to 2 and one track from station
2 to 3. Figure 2.2 is a representation of this network. Let 𝑇 = 60 and let the line
planning consist of two trains per hour going from station 1 to station 3, where one
train, say train 𝑡, has a stop at station 2 and one train, say train 𝑡ᖣ, is not stopping in
between. In this case the stations are the only stage points, so we have 𝑠፭ , 𝑠፭ᖤ = 3,
𝑟፭ , 𝑟፭ᖤ = (1 1; 2 1; 3 1), 𝑧፭ኻ = 1 and 𝑧፭ኼ, 𝑧፭

ᖤ
ኻ , 𝑧፭

ᖤ
ኼ = 0. Let the technical travel times be as

follows: 𝑦፭ኻ = 11, 𝑦፭
ᖤ
ኻ = 10, 𝑦፭ኼ = 22 and 𝑦፭

ᖤ
ኼ = 20, where the difference in travel times

between the trains is due to the fact that train 𝑡 has a stop at station 2. We have four
periodic events, 𝒱 = {𝜖፭ኻ, 𝜖፭ኼ, 𝜖፭

ᖤ
ኻ , 𝜖፭

ᖤ
ኼ }.

1

2

3

Figure 2.2: Example of a railway network

To define the constraint function 𝑎 we use our own, generic norms. We will explain
each type of constraint and its norms in the following sections.
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2.2.1. Constraints for stages from the same train
Stages from the same train only have to be connected when they are consecutive.
Two periodic events, say 𝜖፭። and 𝜖፭

ᖤ
።ᖤ , correspond to two consecutive stages of the

same train if and only if 𝑡 = 𝑡ᖣ and 𝑖ᖣ = 𝑖 + 1. There are two different constraints for
consecutive stages, which will be discussed below.

D-constraints When there is no stop in between, the difference between the depar-
ture times at route points (𝑟፭)። and (𝑟፭)።ዄኻ should be the technical travel time 𝑦፭። . This
is stated in a D-constraint (Drive constraint). A minimal and maximal slack time is
added to the technical travel time to create extra time to compensate for small delays.

So for all 𝑡 = 1,… ,𝑁 and 𝑖 = 1,… , 𝑠፭ − 2 we have

𝑧፭። = 0 ⇒ [𝑦፭። +𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒, 𝑦፭። +𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭።ዄኻ).

S-constraints When there is a stop in between consecutive stages, the difference
between the departure times should be the technical travel time 𝑦፭። plus a minimal and
maximal stop time. This is stated in an S-constraint (Stop constraint).

So for all 𝑡 = 1,… ,𝑁 and 𝑖 = 1,… , 𝑠፭ − 2 we have

𝑧፭። = 1 ⇒ [𝑦፭። +𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒, 𝑦፭። +𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭።ዄኻ).

2.2.2. Constraints for stages from different trains
We continue with infrastructure and frequency constraints for stages from different
trains. Apart from these constraints, operating constraints could be implemented to
create connections between trains.

Let 𝜖፭። and 𝜖፭
ᖤ
።ᖤ again be two periodic events, where 𝑡 ≠ 𝑡ᖣ. The routes of the

corresponding trains are used to determine whether the following constraints apply
between these events.

UU-constraints When two stages of different trains have the same stage point and
track as departure point, the departure times of the corresponding periodic events
should be at least three minutes apart. This is stated in an UU-constraint (Out-Out
constraint, Uit-Uit in Dutch).

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, if

(𝑟፭)። = (𝑟፭ᖤ)።ᖤ ,

we want

(𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3, 59]ዀኺ) ∧ (𝑑(𝜖፭። ) − 𝑑(𝜖፭
ᖤ
።ᖤ ) ∈ [3, 59]ዀኺ),

⇔ 𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3, 59]ዀኺ ∩ [−59,−3]ዀኺ,
⇔ 𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3, 57]ዀኺ,

as [−59,−3]ዀኺ ≡ [1, 57]ዀኺ. Therefore we have

(𝑟፭)። = (𝑟፭ᖤ)።ᖤ ⇒ [3, 57]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭
ᖤ
።ᖤ ).
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II-constraints When two stages of different trains arrive at the same stage point
and track, the arrival times at this point should be at least three minutes apart. This is
stated in an II-constraint (In-In constraint).

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, if

(𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤዄኻ,

we want

(𝑑(𝜖፭ᖤ።ᖤ ) + 𝑦፭
ᖤ
።ᖤ ) − (𝑑(𝜖፭። ) + 𝑦፭። ) ∈ [3, 57]ዀኺ,
⇔ 𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3 + 𝑦፭። − 𝑦፭

ᖤ
።ᖤ , 57 + 𝑦፭። − 𝑦፭

ᖤ
።ᖤ ]ዀኺ.

Therefore we have

(𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤዄኻ ⇒ [3 + 𝑦፭። − 𝑦፭
ᖤ
።ᖤ , 57 + 𝑦፭። − 𝑦፭

ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭

ᖤ
።ᖤ ).

UI-constraints An UI-constraint (Out-In constraint, Uit-In in Dutch) connects the pe-
riodic events corresponding to two stages of different trains where the first stage de-
parts from the same stage point and track as where the second stage arrives. The
arrival time of the second stage should be at least three minutes after the departure
time of the first stage.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, if

(𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ,

we want

(𝑑(𝜖፭ᖤ።ᖤ ) + 𝑦፭
ᖤ
።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3, 59]ዀኺ,

⇔ 𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [3 − 𝑦፭
ᖤ
።ᖤ , 59 − 𝑦፭

ᖤ
።ᖤ ]ዀኺ.

Therefore we have

(𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ ⇒ [3 − 𝑦፭ᖤ።ᖤ , 59 − 𝑦፭
ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭

ᖤ
።ᖤ ).

IU-constraints An IU-constraint (In-Out constraint, In-Uit in Dutch) is used for the
periodic events corresponding to two stages of different trains where the first stage
arrives at the same stage point and track as where the second stage departs. The
arrival time of the first stage should be at least three minutes after the departure time
of the second stage.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ , if

(𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ ,

we want

𝑑(𝜖፭። ) − 𝑑(𝜖፭
ᖤ
።ᖤ ) ∈ [3 − 𝑦፭። , 59 − 𝑦፭። ]ዀኺ,

⇔ 𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [1 + 𝑦፭። , 57 + 𝑦፭። ]ዀኺ.

Therefore we have

(𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ ⇒ [1 + 𝑦፭። , 57 + 𝑦፭። ]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭
ᖤ
።ᖤ ).



14 2. The Periodic Event Scheduling Problem

FB-constraints Two periodic events that correspond to stages of different trains
that take the same single track part in opposite direction, are connected by an FB-
constraint (Frontal Crash constraint, Frontaal Botsen in Dutch). The departure time of
the first stage should be later than the arrival time of the second stage and the other
way around.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, if

(𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ ∧ (𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ ,

we want

𝑑(𝜖፭ᖤ።ᖤ ) ∈ [𝑑(𝜖፭። ) + 𝑦፭። , 60𝑎]ዀኺ, 𝑎 ∈ ℤ s.t. 𝑑(𝜖፭። ) + 𝑦፭። ∈ [60(𝑎 − 1), 60𝑎 − 1],
𝑑(𝜖፭። ) ∈ [𝑑(𝜖፭

ᖤ
።ᖤ ) + 𝑦፭

ᖤ
።ᖤ , 60𝑏]ዀኺ, 𝑏 ∈ ℤ s.t. 𝑑(𝜖፭ᖤ።ᖤ ) + 𝑦፭

ᖤ
።ᖤ ∈ [60(𝑏 − 1), 60𝑏 − 1].

Combining these restrictions gives

𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈ [𝑦፭። , 60 − 𝑦፭
ᖤ
።ᖤ ]ዀኺ.

Therefore we have

((𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ ∧ (𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ) ⇒ [𝑦፭። , 60 − 𝑦፭
ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭። , 𝜖፭

ᖤ
።ᖤ ).

F-constraints Two different trains take the same route when the stage points they
leave from are the same. We would like these trains to be (almost) equally distributed
over the period of the timetable, say with a margin 𝑚. Let 𝑛 be the number of trains
taking this same route. An F-constraint (Frequency constraint) connects the periodic
events corresponding to the first stages of these trains to get the right distribution.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, if

𝑠፭ = 𝑠፭ᖤ ∧ ((𝑟፭)።)ኻ = ((𝑟፭ᖤ)።)ኻ ∀𝑖 = 1,… , 𝑠፭ ,

we want

𝑑(𝜖፭ᖤ።ᖤ ) − 𝑑(𝜖፭። ) ∈
፧ዅኻ

⋃
፤዆ኻ

[𝑘𝑛60 −𝑚,
𝑘
𝑛60 +𝑚]ዀኺ.

This requirement consists of 𝑛 − 1 disjunct intervals, if and only if

𝑘
𝑛60 +𝑚 < 𝑘 + 1

𝑛 60 −𝑚 ⇔ 2𝑚 < 60
𝑛 .

Using Lemma 2.1.1 to model this choice between multiple intervals, we get

𝑠፭ = 𝑠፭ᖤ ∧ ((𝑟፭)።)ኻ = ((𝑟፭ᖤ)።)ኻ ∀𝑖 = 1,… , 𝑠፭

⇒ {
[1𝑛60 −𝑚,

𝑛 − 1
𝑛 60 +𝑚]

ዀኺ
∈ 𝑎(𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ),

[𝑘𝑛60 −𝑚,
𝑘 + 𝑛 − 1

𝑛 60 +𝑚]
ዀኺ
∈ 𝑎(𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ) ∀𝑘 = 2,… , 𝑛 − 1.
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Example 2.2.2. Let 𝒱 = {𝜖፭ኻ, 𝜖፭ኼ, 𝜖፭
ᖤ
ኻ , 𝜖፭

ᖤ
ኼ } be the set of periodic events corresponding to

the network of Example 2.2.1, where 𝑟፭ , 𝑟፭ᖤ = (1 1; 2 1; 3 1), 𝑧፭ኻ = 1, 𝑧፭
ᖤ
ኻ = 0, 𝑦፭ኻ = 11,

𝑦፭ᖤኻ = 10, 𝑦፭ኼ = 22 and 𝑦፭
ᖤ
ኼ = 20. Moreover, let 𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 = 0, 𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 =

1, 𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 1 and 𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 4.
As 𝑧፭ኻ = 1, there is an S-constraint between the events 𝜖፭ኻ and 𝜖፭ኼ. As 𝑧፭

ᖤ
ኻ = 0, there

is a D-constraint between the events 𝜖፭ᖤኻ and 𝜖፭ᖤኼ .
There are departures from the same station as (𝑟፭)። = (𝑟፭ᖤ)። for 𝑖 = 1, 2. Therefore

we have UU-constraints between the events 𝜖፭ኻ and 𝜖፭
ᖤ
ኻ and between the events 𝜖፭ኼ

and 𝜖፭ᖤኼ . Furthermore there are arrivals at the same station as (𝑟፭)። = (𝑟፭ᖤ)። for 𝑖 = 2, 3.
This means we have II-constraints between the events 𝜖፭ኻ and 𝜖፭

ᖤ
ኻ and between the

events 𝜖፭ኼ and 𝜖፭
ᖤ
ኼ .

Summarizing, the constraint function 𝑎 ∶ 𝒱 × 𝒱 → 2ℐᑋ is defined as follows

𝑎(𝜖፭ኻ, 𝜖፭ኼ) = [𝑦፭ኻ +𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒, 𝑦፭ኻ +𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒]ዀኺ = [12, 16]ዀኺ
𝑎(𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ) = {[3, 57]ዀኺ, [3 + 𝑦፭ኻ − 𝑦፭

ᖤ
ኻ , 57 + 𝑦፭ኻ − 𝑦፭

ᖤ
ኻ ]ዀኺ} = {[3, 57]ዀኺ, [4, 58]ዀኺ}

𝑎(𝜖፭ኼ, 𝜖፭
ᖤ
ኼ ) = {[3, 57]ዀኺ, [3 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ , 57 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ ]ዀኺ} = {[3, 57]ዀኺ, [5, 59]ዀኺ}

𝑎(𝜖፭ᖤኻ , 𝜖፭
ᖤ
ኼ ) = [𝑦፭

ᖤ
ኻ +𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒, 𝑦፭

ᖤ
ኻ +𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒]ዀኺ = [10, 11]ዀኺ

𝑎(𝜁, 𝜂) = ∅ for (𝜁, 𝜂) ∉ {(𝜖፭ኻ, 𝜖፭ኼ), (𝜖፭ኻ, 𝜖፭
ᖤ
ኻ ), (𝜖፭ኼ, 𝜖፭

ᖤ
ኼ ), (𝜖፭

ᖤ
ኻ , 𝜖፭

ᖤ
ኼ )}.

This periodic event network𝒩 = (𝒱, 𝑇, 𝑎) is visualized in Figure 2.3.

ᎨᑥᎳ ᎨᑥᖤᎳ

ᎨᑥᎴ ᎨᑥᖤᎴ

[ኾ, ኿ዂ]ᎸᎲ

[ኽ, ኿዁]ᎸᎲ

[኿, ኿ዃ]ᎸᎲ

[ኽ, ኿዁]ᎸᎲ

[ኻኼ, ኻዀ]ᎸᎲ [ኻኺ, ኻኻ]ᎸᎲ

Figure 2.3: Periodic event network of Example 2.2.1





3
The SAT Problem

At the crossroads of logic, graph theory, computer science, computer engineering, and
operations research stands Satisfiability. There are often multiple translations from
problems in one of these fields to Satisfiability, and many problems are being solved
faster by SAT solvers than other means [22]. Interesting SAT instances nowadays
arise from areas such as AI planning and model checking [23], circuit testing and
software verification [24], automatic test generation, logic synthesis and automatic
theorem proving [25]. These applications in many areas have motivated the research
in practically efficient SAT solvers [24].

In this chapter we first give a formal definition of the SAT Problem. Second, we
explain how to reduce a PESP to a SAT problem in case of cyclic railway timetabling
when using a preferred route for each train.

3.1. Formulation of SAT
The SAT problem can be classified in several ways, but we focus on SAT being a
decision problem. Before we give the definition of the SAT problem, we first introduce
the essential propositional logic. In this section we follow the definitions from [11].

Definition 3.1.1. The alphabet of propositional logic Σፒፀፓ consists of a countably infi-
nite set of propositional variables ℛ = {𝑝ኻ, 𝑝ኼ, … , }, the brackets ”(” and ”)”, as well as
the binary connectives ”∧” and ”∨” and the unary connective ”¬”.

The connectives {∧, ∨, ¬} are called conjunction (”and”), disjunction (”or”) and nega-
tion (”not”), respectively.

Definition 3.1.2. A string 𝐹, that consists only of letters of the alphabet Σፒፀፓ is called
a propositional formula, if and only if it fulfills one of the properties

1. 𝐹 = 𝑝 for some 𝑝 ∈ ℛ,

2. 𝐹 = ¬𝐺 for some propositional formula 𝐺,

3. 𝐹 = (𝐺 ∘ 𝐻) for some binary connective ∘ and propositional formulas 𝐺 and 𝐻.
Let ℒ(Σፒፀፓ) be the smallest set that contains each propositional formula under the

alphabet Σፒፀፓ.
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Definition 3.1.3. A propositional formula 𝐿 ∈ ℒ(Σፒፀፓ) is called a literal, if and only if
𝐿 = 𝑝 or 𝐿 = ¬𝑝, with 𝑝 ∈ ℛ.

Definition 3.1.4. A propositional formula 𝐶 ∈ ℒ(Σፒፀፓ) is called a clause, if it is a
disjunction of literals. Hence, with 𝑛 ≥ 0

𝐶 = (… (𝐿ኻ ∨ 𝐿ኼ) ∨ …) ∨ 𝐿፧),

where 𝐿። (𝑖 ∈ {1, … , 𝑛}) are literals.

Definition 3.1.5. A propositional formula 𝐹 ∈ ℒ(Σፒፀፓ) is in conjunctive normal form
(denoted as CNF), if it is a conjunction of clauses. Thus, with 𝑚 ≥ 0

𝐹 = (… (𝐶ኻ ∧ 𝐶ኼ) ∧ …) ∧ 𝐶፦),

where 𝐶። (𝑖 ∈ {1, … ,𝑚}) are clauses.

Definition 3.1.6. A propositional formula 𝐹 ∈ ℒ(Σፒፀፓ) is in disjunctive normal form
(denoted as DNF), if it is a disjunction of conjunctions of literals. Thus, with 𝑚 ≥ 0

𝐹 = (… (𝐶ኻ ∨ 𝐶ኼ) ∨ …) ∨ 𝐶፦),

where, for 𝑖 ∈ {1, … ,𝑚} and some 𝑛። ≥ 0

𝐶። = (… (𝐿ኻ ∧ 𝐿ኼ) ∧ …) ∧ 𝐿፧ᑚ),

where 𝐿፣ (𝑗 ∈ {1, … , 𝑛}) are literals.

We use the following definition from [26], adapted to our notation, to get an inter-
pretation of the variables.

Definition 3.1.7. An assignment is a map 𝛽 ∶ ℛ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} of the set of variables
into the domain {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

Now we can define the following mapping to evaluate each formula.

Definition 3.1.8. Let 𝐹 ∈ ℒ(Σፒፀፓ) be a propositional formula. Then the mapping

𝐼 ∶ ℒ(Σፒፀፓ) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

𝐹ፈ = {
𝛽(𝑝) if 𝐹 = 𝑝 for some 𝑝 ∈ ℛ
¬(𝐺ፈ) if 𝐹 = ¬𝐺 for some 𝐺 ∈ ℒ(Σፒፀፓ), ∘ ∈ {∧, ∨}
𝐺ፈ ∘ 𝐻ፈ if 𝐹 = 𝐺 ∘ 𝐻 for some 𝐺,𝐻 ∈ ℒ(Σፒፀፓ), ∘ ∈ {∧, ∨}

is called an Interpretation.

Using these definitions the SAT Problem can be defined as follows.

Definition 3.1.9. Let 𝐹 ∈ ℒ(Σፒፀፓ) be a propositional formula. The SAT Problem is the
problem of deciding whether

1. 𝐹 is unsatisfiable or
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2. 𝐹 is satisfiable, if there exists an interpretation 𝐼 such that 𝐹ፈ = 𝑡𝑟𝑢𝑒.

The interpretation 𝐼 is the interpretation sought.

The SAT problem is trivial when the propositional formula 𝐹 is in DNF. A formula
in DNF is satisfiable unless each of its conjunctions contains both 𝐿 and ¬𝐿 for some
literal 𝐿. However, conversion from a general propositional formula to DNF can lead
to an exponentially sized formula.

The standard input format for most current SAT solvers is CNF [27]. This is not
a limitation, as there exist polynomial algorithms to convert any propositional formula
to a formula in CNF that has the same satisfiability [24]. Moreover, the CNF has
advantages in terms of efficiency of the solver. For a formula in CNF to be satisfiable,
each individual clause must be satisfiable, which helps prune the search space and
speed up the search process [24]. It makes is easier to detect a conflict and in case
of a partial assignment that did not work, a ’conflict’ clause can easily be added to the
formula [23].

To use modern, efficient SAT solvers, we create SAT problem instances in CNF. In
the next section the encoding from PESP instances to SAT instances in CNF will be
discussed.

3.2. PESP to SAT Encoding
There are several ways to reduce a PESP to a SAT Problem. We use order encoding
as introduced in [28] for constraint satisfaction problems. The order encoding from
PESP to SAT is described in [11], where this method is shown to be an efficient en-
coding for this reduction. First, we will discuss the encoding of the variables of the
PESP in the cyclic railway timetabling case. Second, we will discuss the encoding of
the constraints of this problem. Last, we conclude with the complete encoding of the
PESP.

3.2.1. Encoding Variables
As the decision variables 𝑑(𝜖፭። ) ∈ Φ = {0,… , 𝑇 − 1} are in a finite ordered domain, we
can use the following order encoding function as defined in [11].

Definition 3.2.1 (Order Encoding Function for Variables of Finite Domains). Let 𝑥 ∈ 𝒳
be a variable with 𝑑𝑜𝑚(𝑥) = [𝑙, 𝑢] ⊂ ℕ and 𝒳 the variable space. Then the function

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ∶ 𝒳 → ℒ(Σፒፀፓ)

is the order encoding function for a variable of the variable space 𝒳 with

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ∶ 𝑥 ↦ ⋀
።ᖤ∈[፥ዄኻ,፮ዅኻ]

(¬𝑞፱,።ᖤዅኻ ∨ 𝑞፱,።ᖤ)

with 𝑞፱,።ᖤ ∈ ℛ for 𝑥 ∈ 𝒳 and 𝑖ᖣ ∈ [𝑙, 𝑢 − 1].

Here 𝑞፱,።ᖤ has the meaning

𝑞፱,።ᖤ ⇔ 𝑥 ≤ 𝑖ᖣ,
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and for a given interpretation 𝐼 we have the following two cases

𝑞ፈ፱,።ᖤ ⇔ 𝑥 ≤ 𝑖ᖣ,
¬𝑞ፈ፱,።ᖤ ⇔ 𝑥 ≰ 𝑖ᖣ.

If 𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑥)ፈ is true, there is a unique 𝑘 ∈ 𝑑𝑜𝑚(𝑥) = [𝑙, 𝑢] such that

∀𝑖 ∈ [𝑙, 𝑘 − 1] ∶ ¬𝑞ፈ፱,። ,
∀𝑖ᖣ ∈ [𝑘, 𝑢 − 1] ∶ 𝑞ፈ፱,።ᖤ .

If 𝑘 ∈ [𝑙, 𝑢 −1], this means 𝑥 ≰ 𝑘−1 and 𝑥 ≤ 𝑘, so 𝑥 = 𝑘. If 𝑘 = 𝑢, we have 𝑥 ≰ 𝑢−1
and thus, as 𝑥 ∈ [𝑙, 𝑢], 𝑥 = 𝑢. In this way we can extract the value of a variable.

Given a railway timetabling periodic event network 𝒩 = (𝒱, 𝑇, 𝑎), we have the
variables 𝑑(𝜖፭። ) for 𝑡 = 1,… ,𝑁 and 𝑖 = 1,… , 𝑠፭ − 1. The propositional formula which
encodes all variables is

Ω𝒩፨፫፝፞፫፞፝ ∶= ⋀
፭዆ኻ,…,ፍ,።዆ኻ,…,፬ᑥዅኻ

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑑(𝜖፭። )).

This formula is in CNF, so it can be used as input for SAT.

3.2.2. Encoding Constraints
The idea of encoding PESP constraints in SAT is to describe the infeasible regions of
every PESP constraint in propositional formulas in CNF. Here we follow the method
of [11], but for practical coding reasons we use vertical line segments instead of rect-
angles to describe the infeasible regions. We start off with an example to show the
base idea.

Example 3.2.1. Let 𝒩 = (𝒱, 𝑇, 𝑎) be the periodic event network from Example 2.2.2.
We have 𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ∈ 𝒱 with departure times 𝑑(𝜖፭ኻ), 𝑑(𝜖፭

ᖤ
ኻ ), respectively, and we have

PESP constraint [3, 57]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭
ᖤ
ኻ ). In Figure 3.1 one can see the feasible and

infeasible regions for this PESP constraint.
The idea is to encode this constraint by describing the vertical line segments in the

infeasible region. An example of a vertical line segment in the infeasible region of this
particular constraint is (𝑑(𝜖፭ኻ), 𝑑(𝜖፭

ᖤ
ኻ )) ∈ {10} × [7, 13], which is highlighted in Figure

3.1. In fact, what we want to say is

∄(𝑑(𝜖፭ኻ), 𝑑(𝜖፭
ᖤ
ኻ )) ∶ 𝑑(𝜖፭ኻ) ≤ 10, 𝑑(𝜖፭ኻ) ≥ 10, 𝑑(𝜖፭

ᖤ
ኻ ) ≤ 13, 𝑑(𝜖፭

ᖤ
ኻ ) ≥ 7,

which is equivalent to

¬((𝑑(𝜖፭ኻ) ≤ 10) ∧ (𝑑(𝜖፭ኻ) ≥ 10) ∧ (𝑑(𝜖፭
ᖤ
ኻ ) ≤ 13) ∧ (𝑑(𝜖፭

ᖤ
ኻ ) ≥ 7))

⇔¬((𝑑(𝜖፭ኻ) ≤ 10) ∧ ¬(𝑑(𝜖፭ኻ) ≤ 9) ∧ (𝑑(𝜖፭
ᖤ
ኻ ) ≤ 13) ∧ ¬(𝑑(𝜖፭

ᖤ
ኻ ) ≤ 6))

⇔¬(𝑞፝(ᎨᑥᎳ),ኻኺ ∧ ¬𝑞፝(ᎨᑥᎳ),ዃ ∧ 𝑞፝(ᎨᑥᖤᎳ ),ኻኽ ∧ ¬𝑞፝(ᎨᑥᖤᎳ ),ዀ)
⇔(¬𝑞፝(ᎨᑥᎳ),ኻኺ ∨ 𝑞፝(ᎨᑥᎳ),ዃ ∨ ¬𝑞፝(ᎨᑥᖤᎳ ),ኻኽ ∨ 𝑞፝(ᎨᑥᖤᎳ ),ዀ).

As this formula is a clause, the resulting formula for multiple line segments will be in
CNF.
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ኻኺ ኼኺ ኽኺ ኾኺ ኿ኺ ዀኺ

ኻኺ

ኼኺ

ኽኺ

ኾኺ

኿ኺ

ዀኺ

፝(ᎨᑥᎳ)

፝(ᎨᑥᎴ)

ኺ

Figure 3.1: Feasible (in blue) and infeasible regions (in red) for the PESP constraint of Example 3.2.1

The following example shows the method of [11] using rectangles and the differ-
ence in number of clauses.

Example 3.2.2. Let again𝒩 = (𝒱, 𝑇, 𝑎) be the periodic event network from Example
2.2.2 where 𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ∈ 𝒱. We have departure times 𝑑(𝜖፭ኻ), 𝑑(𝜖፭

ᖤ
ኻ ), respectively, and

PESP constraint [3, 57]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭
ᖤ
ኻ ).

In order to describe the middle infeasible region of Figure 3.1 by rectangles, we
need the lower bound of the upper feasible region and the upper bound of the lower
feasible region with respect to 𝑑(𝜖፭ᖤኻ ). For the middle infeasible region of Figure 3.1,
we would have an upper bound 𝑢 = −3 and a lower bound 𝑙 = 3. According to the
definitions in [11], the set of rectangles between the upper and lower bound is

{([𝑥ኻ, 𝑥ኻ + 𝛿𝑥(𝑙, 𝑢)] × [𝑥ኼ, 𝑥ኼ + 𝛿𝑦(𝑙, 𝑢)]) | ∀𝑥ኼ ∈ {−𝛿𝑦(𝑙, 𝑢), … , 59} ∶
𝑥ኻ + 𝛿𝑥(𝑙, 𝑢) ≥ 0 ∧ 𝑥ኻ ≤ 59 ∶
𝑥ኻ = 𝑥ኼ − 𝑢 − 1 − 𝛿𝑥(𝑙, 𝑢)},

where

𝛿𝑥(𝑙, 𝑢) = ⌈𝑙 − 𝑢 − 12 ⌉ − 1,

𝛿𝑦(𝑙, 𝑢) = ⌊𝑙 − 𝑢 − 12 ⌋.

The set of rectangles to describe the middle infeasible region of Figure 3.1 then is

{([𝑥, 𝑥 + 2] × [𝑦, 𝑦 + 2]) | ∀𝑦 ∈ {−2,… , 59} ∶ 𝑥 + 2 ≥ 0 ∧ 𝑥 ≤ 59 ∶ 𝑥 = 𝑦}.

In this way we get 62 rectangles to describe this region, instead of 60 vertical line
segments.
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We now generalize the strategy in Example 3.2.1. For every PESP constraint the
infeasible region is described by the following set of vertical line segments.

Definition 3.2.2. Let 𝜖ኻ, 𝜖ኼ be periodic events and let 𝑐 ∈ 𝑎(𝜖ኻ, 𝜖ኼ) be a PESP con-
straint. Then

𝜁(𝜖ኻ, 𝜖ኼ, 𝑐) = {{𝑥} × [𝑦ኻ, 𝑦ኼ] | 𝑥 ∈ 𝑑𝑜𝑚(𝑑(𝜖ኻ)); 𝑦ኻ, 𝑦ኼ ∈ 𝑑𝑜𝑚(𝑑(𝜖ኼ));
𝑦 − 𝑥 ∈ 𝑐 ∀𝑦 ∈ [𝑦ኻ, 𝑦ኼ]; 𝑦 − 𝑥 ∉ 𝑐 for 𝑦 = 𝑦ኻ − 1, 𝑦ኼ + 1},

is the set of all infeasible vertical line segments imposed by constraint 𝑐 between the
events 𝜖ኻ and 𝜖ኼ.

Then the following formula, adapted from [11], shows the encoding of a PESP
constraint.

Definition 3.2.3. Let 𝜖ኻ, 𝜖ኼ be periodic events and let 𝑐 ∈ 𝑎(𝜖ኻ, 𝜖ኼ) be a PESP con-
straint. Then

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛 ∶ 𝒱 × 𝒱 × ℐፓ → ℒ(Σፒፀፓ)
(𝜖ኻ, 𝜖ኼ, 𝑐) ↦ ⋀

{፱}×[፲Ꮃ,፲Ꮄ]∈᎓(ᎨᎳ,ᎨᎴ,፜)
(¬𝑞፝(ᎨᎳ),፱ ∨ 𝑞፝(ᎨᎳ),፱ዅኻ ∨ ¬𝑞፝(ᎨᎴ),፲Ꮄ ∨ 𝑞፝(ᎨᎴ),፲Ꮃዅኻ)

is the order encoding function of a PESP constraint.

Given a railway timetabling periodic event network𝒩 = (𝒱, 𝑇, 𝑎), the propositional
formula which encodes all PESP constraints is

Ψ𝒩፨፫፝፞፫፞፝ ∶= ⋀
፭,፭ᖤ,።,።ᖤ

⋀
፜∈ፚ(Ꭸᑥᑚ ,Ꭸᑥ

ᖤ
ᑚᖤ )

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛(𝜖፭። , 𝜖፭
ᖤ
።ᖤ , 𝑐),

where 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1. This formula is in CNF.

3.2.3. Encoding PESP
Taking together the formulas for variables and constraints, the encoding of the PESP
is given as follows.

Definition 3.2.4. Let𝒩 = (𝒱, 𝑇, 𝑎) be the periodic event network. Then

Ω𝒩፨፫፝፞፫፞፝ ∧ Ψ𝒩፨፫፝፞፫፞፝

is the order encoding of𝒩.
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Incorporating Multiple Route Options

The PESP model presented in Section 2.2 assumes the tracks each train takes on its
route as fixed. Now we create an extension to the SAT reduction of the PESP model
explained in Chapter 3, where we incorporate multiple route options. By considering
a larger part of the solution space in this way, we hope to make it easier to find a
feasible timetable. In this chapter we first explain the idea of our method to incorporate
multiple route options for each train in the railway timetabling problem. Then we give
the formal definition of our method, by defining the concept of an Open-ended PESP
and thereafter explaining the details of the Open-ended PESP in case of cyclic railway
timetabling.

4.1. The idea of the method
We start off with an example to show the base idea of our method.

Example 4.1.1. Let us reconsider the railway network from Example 1.4.1 with three
stations, station 1, 2 and 3 respectively. There are two routes from station 1 to station
2, say route 𝛼 and route 𝛽 and from station 2 to station 3 there are two routes as well,
say route 𝛾 and route 𝛿. A train is standing still at the second platform of station 2.
Figure 1.4 is a representation of this network and situation. The problem of scheduling
the second train, which is supposed to go from station 1 to station 3 via route 𝛽 and 𝛿,
is unsatisfiable. In fact, there is no feasible departure time for this train in the domain
{0, … , 59}.

Now let us say there are two route options for this second train, where the first
route option corresponds to taking route 𝛽 and 𝛿 and the second option corresponds
to taking route 𝛼 and 𝛾. We extend the domain of the departure time of this train
to {0, … , 119}, instead of {0, … , 59}, where a departure time in the set {0, … , 59} cor-
responds to taking the first route option and a departure time in the set {60,… , 119}
corresponds to taking the second route option.

Generalizing this example, we extend the domain of each departure time from
{0, … , 59} to {0, … , 60𝑛−1}, where 𝑛 is the number of route options for the stage corre-
sponding to this departure. A departure time in the set {60(𝑘−1), 60𝑘−1} corresponds
to choosing the 𝑘th route option. Constraints are defined per route option, where each

23
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constraint between two departures is a restriction between two sets in the domains
of their departure times. When route options of successive stages are not connected,
we can make sure only feasible routes are created by excluding the combination of
two sets in domains in a constraint.

Hence, by extending the domain of the departure corresponding to the number
of route options for this stage, we model the geographical decision of incorporating
multiple route options on the time axis. Another method that one could think of is the
use of decision variables to indicate the route choice. Appendix B discusses why the
use of decision variables is less efficient when using SAT.

In the next sections, the idea of our method to incorporate flexible track use is
formalized.

4.2. Formulation of the Open-ended PESP
We introduce a generalization of the PESP, namely the Open-ended Periodic Event
Scheduling Problem (OPESP). In this case all periodic events are open-ended, they
could take place in several ways. There are multiple options for each periodic event,
with each corresponding to different constraints, and there is a choice for each periodic
event to meet the properties of one of the options. To formulate OPESP, we introduce
the notion of an open-ended periodic event network (OPEN).

Definition 4.2.1. A open-ended periodic event network (OPEN) is a quadruple
𝒩 = (𝒱, 𝑇, ℎ, 𝑎), with 𝒱 the set of periodic events, 𝑇 ∈ ℕ the period, ℎ ∶ 𝒱 → ℕ
a function, which assigns to each periodic event 𝑖 ∈ 𝒱 the number of options, and
𝑎((𝑖, 𝑘), (𝑖ᖣ, 𝑘ᖣ)) ⊆ ℐፓ a set of intervals modulo 𝑇 for each 𝑖, 𝑖ᖣ ∈ 𝒱, which is the set of
constraints corresponding to option 𝑘 for event 𝑖 and option 𝑘ᖣ for event 𝑖ᖣ.

An OPEN can be visualized by a |𝒱|-partite directed multigraph, where {(𝑖, 𝑘) ∶
𝑖 ∈ 𝒱, 𝑘 ∈ {1,… , ℎ(𝑖)}} is the set of nodes, the sets {(𝑖, 𝑘) ∶ 𝑘 ∈ {1, … , ℎ(𝑖)}} for 𝑖 ∈ 𝒱
form a partition of the node set, and every interval 𝑐 ∈ 𝑎((𝑖, 𝑘), (𝑖ᖣ, 𝑘ᖣ)), 𝑖, 𝑖ᖣ ∈ 𝒱, 𝑘 ∈
{1,… , ℎ(𝑖)}, 𝑘ᖣ ∈ {1,… , ℎ(𝑖ᖣ)}, denotes the labeling of a directed edge ((𝑖, 𝑘), (𝑖ᖣ, 𝑘ᖣ)).

Definition 4.2.2. A schedule is a function 𝑑 ∶ 𝒱 → ℕ. A schedule 𝑑 is valid with
respect to 𝑎 if and only if 𝑑(𝑖) ∈ {0, … , ℎ(𝑖)𝑇 − 1} for all 𝑖 ∈ 𝒱 and

𝑑(𝑖) ∈ [(𝑘 − 1)𝑇, 𝑘𝑇 − 1]
𝑑(𝑖ᖣ) ∈ [(𝑘ᖣ − 1)𝑇, 𝑘ᖣ𝑇 − 1]} ⇒ 𝑑(𝑖ᖣ) − 𝑑(𝑖) ∈ ⋂

፜∈ፚ((።,፤),(።ᖤ,፤ᖤ))
𝑐

for all 𝑖, 𝑖ᖣ ∈ 𝒱, 𝑘 ∈ {0,… , ℎ(𝑖)} and 𝑘ᖣ ∈ {0,… , ℎ(𝑖ᖣ)}.

We define OPESP as follows.

Definition 4.2.3. Given an OPEN 𝒩 = (𝒱, 𝑇, ℎ, 𝑎), find a valid schedule 𝑑 ∶ 𝒱 → ℕ
with respect to 𝑎.

Note that a PESP with PEN𝒩 = (𝒱, 𝑇, 𝑎) is equal to an OPESP with OPEN𝒩ᖣ =
(𝒱, 𝑇, ℎ, 𝑎ᖣ), where ℎ(𝑖) = 1 for all 𝑖 ∈ 𝒱 and 𝑎ᖣ((𝑖, 1), (𝑖ᖣ, 1)) = 𝑎(𝑖, 𝑖ᖣ).
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4.3. Railway Timetabling as an OPESP
The input for the railway timetabling problem as an OPESP consists, just as for the
PESP, of the infrastructure and the line planning. However, the line planning now only
consists of the general route for each train. We define stage points in the same way
as for the PESP, which are used to split the route of each train in small stages.

Each stage of each train is now only characterized by the stage point it departs
from. Let 𝒫 ⊆ ℤ be the set of stage points and let 𝑁 be the number of trains. Let
𝑟፭ ∈ 𝒫፬ᑥ be the route of train 𝑡 ∈ {1, … , 𝑁}, where 𝑠፭ ∈ ℕ is the number of stage
points the train passes, including its end point. We assume that the technical travel
time does not depend substantially on the choice of the track, so let 𝑦፭። ∈ ℕ be the
technical travel time of stage 𝑖 of train 𝑡. As for the PESP formulation, let 𝑧፭። ∈ {0, 1}
be the code of stage 𝑖 of train 𝑡, where

𝑧፭። = {
1 if train 𝑡 has a stop between stage 𝑖 and stage 𝑖 + 1,
0 otherwise.

For each stage there are multiple stage options, which are characterized by the
stage point it departs from, as well as the track it is leaving from and the track it is
arriving at. The infrastructure is used to decide on the track options at each stage point
and the route options for each direction between these tracks. Some route options
are always taken into account, some are not feasible when for example a train has
a stop at a particular station and there is a track without an adjacent platform. Let
𝒯(𝑝) ⊆ ℤ be the set of tracks at stage point 𝑝 ∈ 𝒫. Let 𝑜(𝑝, 𝑝ᖣ, 𝑞) be the number of
route options for a stage from stage point 𝑝 to stage point 𝑝ᖣ, where 𝑞 = 1 if a stop
should be possible at the arrival track, and 𝑞 = 0 if this is not needed. The possible
combinations of departure and arrival tracks for a stage from stage point 𝑝 to stage
point 𝑝ᖣ with 𝑞 ∈ {0, 1} are then given by

𝒪(𝑝, 𝑝ᖣ, 𝑞) ∈ (𝒯(𝑝) × 𝒯(𝑝ᖣ))፨(፩,፩
ᖤ,፪).

For stage 𝑖 of train 𝑡, let 𝑜፭። ∶= 𝑜((𝑟፭)። , (𝑟፭)።ዄኻ, 𝑧፭። ) be the number of route options and let
𝒪፭። ∶= 𝒪((𝑟፭)። , (𝑟፭)።ዄኻ, 𝑧፭። ) be the possible combinations of departure and arrival tracks.

The OPEN in the railway timetabling case, just as the PEN, has period 𝑇 = 60
when determining the timetable in minutes. Each periodic event corresponds to the
periodic departure of a train 𝑡 from a stage point on its route, say at (𝑟፭)።, which gives
us the set 𝒱 = {𝜖፭። ∶ 𝑡 = 1,… ,𝑁; 𝑖 = 1,… , 𝑠፭ − 1}. Each option for each departure
𝜖፭። corresponds to taking a certain route option, so the number of options is given by
ℎ(𝜖፭። ) = 𝑜፭። . Let 𝜖፭።፣ ∶= (𝜖፭። , 𝑗) ∈ 𝒱 × {1,… , 𝑜፭። } be the departure of train 𝑡 from stage
point (𝑟፭)።, taking route option 𝑗 for this stage.

The definition of the constraint function 𝑎 will we discussed in the following sections.
For a more extensive description of the types of constraints we refer to Section 2.2.1
and Section 2.2.2, as the same types are used here.

Example 4.3.1. Let us consider a similar railway network to Example 2.2.1 with three
stations, station 1, 2 and 3 respectively. Instead of one platform at station 2, there
are now two platforms with corresponding routes. So from station 1 to 2 there are two
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routes, say route 𝛼 and route 𝛽, and from station 2 to station 3 there are two routes
as well, say route 𝛾 and route 𝛿. Figure 4.1 is a representation of this network.

Let 𝑇 = 60 and let the line planning again consist of two trains per hour going from
station 1 to station 3, where one train, say train 𝑡, has a stop at station 2 and one train,
say train 𝑡ᖣ, is not stopping in between. In this case the stations are the only stage
points, but the track at station 2 is unknown. So we have 𝑠፭ , 𝑠፭ᖤ = 3, 𝑟፭ = 𝑟፭ᖤ = (1, 2, 3),
𝑧፭ኻ = 1 and 𝑧፭ኼ, 𝑧፭

ᖤ
ኻ , 𝑧፭

ᖤ
ኼ = 0. Let the technical travel times be as in Example 2.2.1:

𝑦፭ኻ = 11, 𝑦፭ᖤኻ = 10, 𝑦፭ኼ = 22 and 𝑦፭ᖤኼ = 20. We have 𝑜፭። = 𝑜፭ᖤ። = 2 for 𝑖 = 1, 2,
𝒪፭ኻ = 𝒪፭

ᖤ
ኻ = (1 1; 1 2) and 𝒪፭ኼ = 𝒪፭

ᖤ
ኼ = (1 1; 2 1).

We have four periodic events, 𝒱 = {𝜖፭ኻ, 𝜖፭ኼ, 𝜖፭
ᖤ
ኻ , 𝜖፭

ᖤ
ኼ }. Here, 𝜖፭ኻኻ and 𝜖፭

ᖤ
ኻኻ correspond

to taking route 𝛼, 𝜖፭ኻኼ and 𝜖፭
ᖤ
ኻኼ correspond to taking route 𝛽, 𝜖፭ኼኻ and 𝜖፭

ᖤ
ኼኻ correspond to

taking route 𝛾 and 𝜖፭ኼኼ and 𝜖፭
ᖤ
ኼኼ correspond to taking route 𝛿.

1

2A

2B

3

ᎎ

ᎏ

᎐

᎑

Figure 4.1: Example of a railway network

4.3.1. Constraints for stage options from the same train
Stage options from the same train only have to be connected when they correspond
to consecutive stages. Two options of periodic events, say 𝜖፭።፣ and 𝜖፭

ᖤ
።ᖤ፣ᖤ , correspond

to two consecutive stages of the same train if and only if 𝑡 = 𝑡ᖣ and, without loss of
generality, 𝑖ᖣ = 𝑖 + 1. There are three different constraints for consecutive stages,
which will be discussed below.

D-constraints When the options of periodic events correspond to consecutive route
options and there is no stop in between the corresponding stages, a D-constraint is
added. Then the arrival track of the first stage option should be the same as the
departure track of the second stage option.

So for all 𝑡 = 1,… ,𝑁, 𝑖 = 1,… , 𝑠፭ − 2 and 𝑗 = 1,… , 𝑜፭። we have

(𝑧፭። = 0 ∧ ((𝒪፭። )፣)ኼ = ((𝒪፭።ዄኻ)፣ᖤ)ኻ)
⇒ [𝑦፭። +𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒, 𝑦፭። +𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭(።ዄኻ)፣ᖤ).

S-constraints When the options of periodic events correspond to consecutive route
options and there is a stop in between the corresponding stages, an S-constraint is
added. Again the arrival track of the first stage option should be the same as the
departure track of the second stage option.

So for all 𝑡 = 1,… ,𝑁, 𝑖 = 1,… , 𝑠፭ − 2 and 𝑗 = 1,… , 𝑜፭። we have

(𝑧፭። = 1 ∧ ((𝒪፭። )፣)ኼ = ((𝒪፭።ዄኻ)፣ᖤ)ኻ)
⇒ [𝑦፭። +𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒, 𝑦፭። +𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭(።ዄኻ)፣ᖤ).
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I-constraints Two stage options, corresponding to consecutive stages of the same
train, of which the arrival track of the first stage option is different then the departure
track of the second stage option, cannot be chosen at the same time as this would give
an infeasible route. For these incompatible stages every combination is infeasible,
which is stated in an I-constraint.
So for all 𝑡 = 1,… ,𝑁, 𝑖 = 1,… , 𝑠፭ − 2 and 𝑗 = 1,… , 𝑜፭። we have

((𝒪፭። )፣)ኼ ≠ ((𝒪፭።ዄኻ)፣ᖤ)ኻ ⇒ {∅} ∈ 𝑎(𝜖፭።፣ , 𝜖፭(።ዄኻ)፣ᖤ).

4.3.2. Constraints for stage options from different trains
Let 𝜖፭።፣ and 𝜖፭

ᖤ
።ᖤ፣ᖤ again be two options of periodic events, where 𝑡 ≠ 𝑡ᖣ.

UU-constraints When two stage options of different trains have the same stage
point and track as departure point, an UU-constraint is added.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1, 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, 𝑗 = 1,… , 𝑜፭። and
𝑗ᖣ = 1,… , 𝑜፭ᖤ።ᖤ , we have

((𝑟፭)። = (𝑟፭ᖤ)።ᖤ ∧ ((𝒪፭። )፣)ኻ = ((𝒪፭
ᖤ
።ᖤ )፣ᖤ)ኻ) ⇒ [3, 57]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭

ᖤ
።ᖤ፣ᖤ).

II-constraints When two stage options of different trains arrive at the same stage
point and track, an II-constraint is added.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, 𝑗 = 1,… , 𝑜፭።
and 𝑗ᖣ = 1,… , 𝑜፭ᖤ።ᖤ , we have

((𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤዄኻ ∧ ((𝒪፭። )፣)ኼ = ((𝒪፭
ᖤ
።ᖤ )፣ᖤ)ኼ)

⇒ [3 + 𝑦፭። − 𝑦፭
ᖤ
።ᖤ , 57 + 𝑦፭። − 𝑦፭

ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭

ᖤ
።ᖤ፣ᖤ).

UI-constraints AnUI-constraint connects the options of periodic events correspond-
ing to two stage options of different trains where the first stage option departs from
the same stage point and track as where the second stage option arrives.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, 𝑗 = 1,… , 𝑜፭። and
𝑗ᖣ = 1,… , 𝑜፭ᖤ።ᖤ , we have

((𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ ∧ ((𝒪፭። )፣)ኻ = ((𝒪፭
ᖤ
።ᖤ )፣ᖤ)ኼ) ⇒ [3 − 𝑦፭ᖤ።ᖤ , 59 − 𝑦፭

ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭

ᖤ
።ᖤ፣ᖤ).

IU-constraints An IU-constraint is used for the options of periodic events corre-
sponding to two stage options of different trains where the first stage option arrives at
the same stage point and track as where the second stage option departs.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ , 𝑗 = 1,… , 𝑜፭። and
𝑗ᖣ = 1,… , 𝑜፭ᖤ።ᖤ , we have

((𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ ∧ ((𝒪፭። )፣)ኼ = ((𝒪፭
ᖤ
።ᖤ )፣ᖤ)ኻ) ⇒ [1 + 𝑦፭። , 57 + 𝑦፭። ]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭

ᖤ
።ᖤ፣ᖤ).
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FB-constraints Two options of periodic events that correspond to stage options of
different trains that take the same single track part in opposite direction, are connected
by an FB-constraint.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, 𝑖 = 1,… , 𝑠፭ − 1 and 𝑖ᖣ = 1,… , 𝑠፭ᖤ − 1, 𝑗 = 1,… , 𝑜፭።
and 𝑗ᖣ = 1,… , 𝑜፭ᖤ።ᖤ , we have
((𝑟፭)። = (𝑟፭ᖤ)።ᖤዄኻ ∧ (𝑟፭)።ዄኻ = (𝑟፭ᖤ)።ᖤ ∧
((𝒪፭። )፣)ኻ = ((𝒪፭

ᖤ
።ᖤ )፣ᖤ)ኼ ∧ ((𝒪፭። )፣)ኼ = ((𝒪፭

ᖤ
።ᖤ )፣ᖤ)ኻ)

} ⇒ [𝑦፭። , 60 − 𝑦፭
ᖤ
።ᖤ ]ዀኺ ∈ 𝑎(𝜖፭።፣ , 𝜖፭

ᖤ
።ᖤ፣ᖤ).

F-constraints Two different trains taking the same route should be (almost) equally
distributed over the period of the timetable, say with a margin 𝑚. Let 𝑛 be the num-
ber of trains taking this same route. An F-constraint connects the options of periodic
events corresponding to the first stage options of these trains to get the right distribu-
tion.

So for all 𝑡, 𝑡ᖣ = 1,… ,𝑁, 𝑡 ≠ 𝑡ᖣ, if
𝑘
𝑛60 +𝑚 < 𝑘 + 1

𝑛 60 −𝑚 ⇔ 2𝑚 < 60
𝑛 ,

the requirement consists of 𝑛 − 1 disjunct intervals and we have
𝑠፭ = 𝑠፭ᖤ ∧ (𝑟፭)። = (𝑟፭ᖤ)። ∀𝑖 = 1,… , 𝑠፭

⇒ {
[1𝑛60 −𝑚,

𝑛 − 1
𝑛 60 +𝑚]

ዀኺ
∈ 𝑎(𝜖፭ኻ፣ , 𝜖፭

ᖤ
ኻ፣ᖤ),

[𝑘𝑛60 −𝑚,
𝑘 + 𝑛 − 1

𝑛 60 +𝑚]
ዀኺ
∈ 𝑎(𝜖፭ኻ፣ , 𝜖፭

ᖤ
ኻ፣ᖤ) ∀𝑘 = 2,… , 𝑛 − 1,

for all 𝑗 = 1,… , 𝑜፭። and 𝑗ᖣ = 1,… , 𝑜፭
ᖤ
።ᖤ .

Example 4.3.2. Let 𝒱 = {𝜖፭ኻ, 𝜖፭ኼ, 𝜖፭
ᖤ
ኻ , 𝜖፭

ᖤ
ኼ } be the set of periodic events corresponding

to the network of Example 4.3.1, where 𝑟፭ , 𝑟፭ᖤ = (1, 2, 3), 𝑧፭ኻ = 1, 𝑧፭ᖤኻ = 0, 𝑦፭ኻ = 11,
𝑦፭ᖤኻ = 10, 𝑦፭ኼ = 22, 𝑦፭ᖤኼ = 20, 𝒪፭ኻ = 𝒪፭ᖤኻ = (1 1; 1 2) and 𝒪፭ኼ = 𝒪፭ᖤኼ = (1 1; 2 1). Let
𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 = 0, 𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 = 1, 𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 1 and 𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 5.

As 𝑧፭ኻ = 1, ((𝒪፭ኻ)ኻ)ኼ = ((𝒪፭ኼ)ኻ)ኻ and ((𝒪፭ኻ)ኼ)ኼ = ((𝒪፭ኼ)ኼ)ኻ, there are S-constraints
between the options 𝜖፭ኻኻ and 𝜖፭ኼኻ and between 𝜖፭ኻኼ and 𝜖፭ኼኼ. As 𝑧፭

ᖤ
ኻ = 0, ((𝒪፭ᖤኻ )ኻ)ኼ =

((𝒪፭ᖤኼ )ኻ)ኻ and ((𝒪፭
ᖤ
ኻ )ኼ)ኼ = ((𝒪፭

ᖤ
ኼ )ኼ)ኻ, there are D-constraints between the options 𝜖፭ᖤኻኻ

and 𝜖፭ᖤኼኻ and between 𝜖፭
ᖤ
ኻኼ and 𝜖፭

ᖤ
ኼኼ.

There are also options that cannot be chosen at the same time, as

((𝒪፭ኻ)ኻ)ኼ ≠ ((𝒪፭ኼ)ኼ)ኻ, ((𝒪፭ኻ)ኼ)ኼ ≠ ((𝒪፭ኼ)ኻ)ኻ,
((𝒪፭ᖤኻ )ኻ)ኼ ≠ ((𝒪፭

ᖤ
ኼ )ኼ)ኻ and ((𝒪፭ᖤኻ )ኼ)ኼ ≠ ((𝒪፭

ᖤ
ኼ )ኻ)ኻ.

Therefore we have I-constraints between the options 𝜖፭ኻኻ and 𝜖፭ኼኼ, between 𝜖፭ኻኼ and
𝜖፭ኼኻ, between 𝜖፭

ᖤ
ኻኻ and 𝜖፭

ᖤ
ኼኼ and between 𝜖፭

ᖤ
ኻኼ and 𝜖፭

ᖤ
ኼኻ.

There are departures from the same station as (𝑟፭)። = (𝑟፭ᖤ)። for 𝑖 = 1, 2. We have

((𝒪፭ኻ)ኻ)ኻ = ((𝒪፭
ᖤ
ኻ )ኻ)ኻ, ((𝒪፭ኻ)ኻ)ኻ = ((𝒪፭

ᖤ
ኻ )ኼ)ኻ,

((𝒪፭ኻ)ኼ)ኻ = ((𝒪፭
ᖤ
ኻ )ኻ)ኻ, ((𝒪፭ኻ)ኼ)ኻ = ((𝒪፭

ᖤ
ኻ )ኼ)ኻ,

((𝒪፭ኼ)ኻ)ኻ = ((𝒪፭
ᖤ
ኼ )ኻ)ኻ and ((𝒪፭ኼ)ኼ)ኻ = ((𝒪፭

ᖤ
ኼ )ኼ)ኻ.
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Therefore there are UU-constraints between the options 𝜖፭ኻኻ and 𝜖፭
ᖤ
ኻኻ, between 𝜖፭ኻኻ and

𝜖፭ᖤኻኼ, between 𝜖፭ኻኼ and 𝜖፭
ᖤ
ኻኻ, between 𝜖፭ኻኼ and 𝜖፭

ᖤ
ኻኼ, between 𝜖፭ኼኻ and 𝜖፭

ᖤ
ኼኻ and between 𝜖፭ኼኼ

and 𝜖፭ᖤኼኼ.
Furthermore there are arrivals at the same station as (𝑟፭)። = (𝑟፭ᖤ)። for 𝑖 = 2, 3. We

have

((𝒪፭ኻ)ኻ)ኼ = ((𝒪፭
ᖤ
ኻ )ኻ)ኼ, ((𝒪፭ኻ)ኼ)ኼ = ((𝒪፭

ᖤ
ኻ )ኼ)ኻ,

((𝒪፭ኼ)ኻ)ኼ = ((𝒪፭
ᖤ
ኼ )ኻ)ኼ, ((𝒪፭ኼ)ኻ)ኼ = ((𝒪፭

ᖤ
ኼ )ኼ)ኼ,

((𝒪፭ኼ)ኼ)ኼ = ((𝒪፭
ᖤ
ኼ )ኻ)ኼ and ((𝒪፭ኼ)ኼ)ኼ = ((𝒪፭

ᖤ
ኼ )ኼ)ኼ.

Therefore there are II-constraints between the options 𝜖፭ኻኻ and 𝜖፭
ᖤ
ኻኻ, between 𝜖፭ኻኼ and

𝜖፭ᖤኻኼ, between 𝜖፭ኼኻ and 𝜖፭
ᖤ
ኼኻ, between 𝜖፭ኼኻ and 𝜖፭

ᖤ
ኼኼ, between 𝜖፭ኼኼ and 𝜖፭

ᖤ
ኼኻ and between 𝜖፭ኼኼ

and 𝜖፭ᖤኼኼ.
Summarizing, the constraint function 𝑎 is defined as follows

𝑎(𝜖፭ኻኻ, 𝜖፭ኼኻ) = 𝑎(𝜖፭ኻኼ, 𝜖፭ኼኼ) = {[𝑦፭ኻ +𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒, 𝑦፭ኻ +𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒]ዀኺ}
= {[12, 16]ዀኺ}

𝑎(𝜖፭ኻኻ, 𝜖፭ኼኼ) = 𝑎(𝜖፭ኻኼ, 𝜖፭ኼኻ) = {∅}
𝑎(𝜖፭ኻኻ, 𝜖፭

ᖤ
ኻኻ) = 𝑎(𝜖፭ኻኼ, 𝜖፭

ᖤ
ኻኼ) = {[3, 57]ዀኺ, [3 + 𝑦፭ኻ − 𝑦፭

ᖤ
ኻ , 57 + 𝑦፭ኻ − 𝑦፭

ᖤ
ኻ ]ዀኺ}

= {[3, 57]ዀኺ, [4, 58]ዀኺ}
𝑎(𝜖፭ኻኻ, 𝜖፭

ᖤ
ኻኼ) = 𝑎(𝜖፭ኻኼ, 𝜖፭

ᖤ
ኻኻ) = {[3, 57]ዀኺ}

𝑎(𝜖፭ኼኻ, 𝜖፭
ᖤ
ኼኻ) = 𝑎(𝜖፭ኼኼ, 𝜖፭

ᖤ
ኼኼ) = {[3, 57]ዀኺ, [3 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ , 57 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ ]ዀኺ}

= {[3, 57]ዀኺ, [5, 59]ዀኺ}
𝑎(𝜖፭ኼኻ, 𝜖፭

ᖤ
ኼኼ) = 𝑎(𝜖፭ኼኼ, 𝜖፭

ᖤ
ኼኻ) = {[3 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ , 57 + 𝑦፭ኼ − 𝑦፭

ᖤ
ኼ ]ዀኺ} = {[5, 59]ዀኺ}

𝑎(𝜖፭ᖤኻኻ, 𝜖፭
ᖤ
ኼኻ) = 𝑎(𝜖፭

ᖤ
ኻኼ, 𝜖፭

ᖤ
ኼኼ) = {[𝑦፭

ᖤ
ኻ +𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒, 𝑦፭

ᖤ
ኻ +𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒]ዀኺ}

= {[10, 11]ዀኺ}
𝑎(𝜖፭ᖤኻኻ, 𝜖፭

ᖤ
ኼኼ) = 𝑎(𝜖፭

ᖤ
ኻኼ, 𝜖፭

ᖤ
ኼኻ) = {∅}

𝑎(𝜁, 𝜂) = ∅ for (𝜁, 𝜂) ∉ {(𝜖፭ኻኻ, 𝜖፭ኼኻ), (𝜖፭ኻኼ, 𝜖፭ኼኼ), (𝜖፭ኻኻ, 𝜖፭ኼኼ), (𝜖፭ኻኼ, 𝜖፭ኼኻ),
(𝜖፭ኻኻ, 𝜖፭

ᖤ
ኻኻ), (𝜖፭ኻኼ, 𝜖፭

ᖤ
ኻኼ), (𝜖፭ኻኻ, 𝜖፭

ᖤ
ኻኼ), (𝜖፭ኻኼ, 𝜖፭

ᖤ
ኻኻ), (𝜖፭ኼኻ, 𝜖፭

ᖤ
ኼኻ), (𝜖፭ኼኼ, 𝜖፭

ᖤ
ኼኼ),

(𝜖፭ኼኻ, 𝜖፭
ᖤ
ኼኼ), (𝜖፭ኼኼ, 𝜖፭

ᖤ
ኼኻ), (𝜖፭

ᖤ
ኻኻ, 𝜖፭

ᖤ
ኼኻ), (𝜖፭

ᖤ
ኻኼ, 𝜖፭

ᖤ
ኼኼ), (𝜖፭

ᖤ
ኻኻ, 𝜖፭

ᖤ
ኼኼ), (𝜖፭

ᖤ
ኻኼ, 𝜖፭

ᖤ
ኼኻ)}.

This flexible periodic event network 𝒩 = (𝒱, 𝑇, ℎ, 𝑎) is visualized in Figure 4.2. In
Figure 4.3, one can see the feasible and infeasible regions for the constraints between
the options of the periodic events 𝜖፭ኻ and 𝜖፭ኼ. In Figure 4.4, one can see the feasible
and infeasible regions for the constraints between the options of the periodic events
𝜖፭ኻ and 𝜖፭

ᖤ
ኻ .
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Figure 4.2: Flexible Periodic Event Network of Example 4.3.2

ኻኺ ኼኺ ኽኺ ኾኺ ኿ኺ ዀኺ ዁ኺ ዂኺ ዃኺ ኻኺኺ ኻኻኺ ኻኼኺ

ኻኺ

ኼኺ

ኽኺ

ኾኺ

኿ኺ

ዀኺ

዁ኺ

ዂኺ

ዃኺ

ኻኺኺ

ኻኻኺ
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ኺ

Figure 4.3: Feasible (in blue) and infeasible regions (in red) for the constraints between the options of
the periodic events ᎨᑥᎳ and ᎨᑥᎴ from Example 4.3.2. Dividing the chart into four squares, the square in
the lower left corner corresponds to the constraints between ᎨᑥᎳᎳ and ᎨᑥᎴᎳ. There the difference should
be between 12 and 16 minutes. The square in the upper left corner corresponds to the constraints

between ᎨᑥᎳᎳ and ᎨᑥᎴᎴ, an infeasible combination. The square in the lower right corner also
corresponds to an infeasible combination, between ᎨᑥᎳᎴ and ᎨᑥᎴᎳ. The square in the upper right corner
corresponds to the constraints between ᎨᑥᎳᎴ and ᎨᑥᎴᎴ, where the difference should again be between

12 and 16 minutes.
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ኻኺ ኼኺ ኽኺ ኾኺ ኿ኺ ዀኺ ዁ኺ ዂኺ ዃኺ ኻኺኺ ኻኻኺ ኻኼኺ

ኻኺ

ኼኺ

ኽኺ
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኿ኺ

ዀኺ

዁ኺ
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Figure 4.4: Feasible (in blue) and infeasible regions (in red) for the constraints between the options of
the periodic events ᎨᑥᎴ and Ꭸᑥ

ᖤ
Ꮄ from Example 4.3.2. Dividing the chart into four squares, the square in

the lower left corner corresponds to the constraints between ᎨᑥᎴᎳ and Ꭸᑥ
ᖤ
ᎴᎳ. There the difference should

be between 5 and 57 minutes. The square in the upper left corner corresponds to the constraints
between ᎨᑥᎴᎳ and Ꭸᑥ

ᖤ
ᎴᎴ, where the difference should be between 5 and 59 minutes. The square in the

lower right corner also corresponds to a difference between 5 and 59 minutes, between ᎨᑥᎴᎴ and Ꭸᑥ
ᖤ
ᎴᎳ.

The square in the upper right corner corresponds to the constraints between ᎨᑥᎴᎴ and Ꭸᑥ
ᖤ
ᎴᎴ, where the

difference should again be between 5 and 57 minutes.



32 4. Incorporating Multiple Route Options

4.4. Solving OPESP Railway Timetabling using SAT
To solve the OPESP in the railway timetabling case, we extend the SAT encoding
from Chapter 3. The pseudocode of the algorithm is given in Algorithm 1. We will now
discuss the algorithm in more detail.

Setup First the infrastructure is defined, where the stage points, the possible stages
between them and possible routes for trains are given as input. Next, based on the
routes of the trains that have to be scheduled in this specific case, the stage options
for each train are created. For each stage, the number of stage options is known and
the options are indexed. Based on these options and the stages that they correspond
to, the constraints for every pair of stage options are determined as described in the
previous section.

Adding options Next, an iterative phase is started where in each iteration, new
options are added by 𝑎𝑑𝑑𝑁𝑒𝑤𝑂𝑝𝑡𝑖𝑜𝑛𝑠 to the set 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠, which is used in the
solving phase. In the first iteration, we try to solve a PESP version of the problem,
where the route is fixed. This could be a random route or a preferred route for each
train.

There are multiple ways to decide which new options are added. One option for
the function 𝑎𝑑𝑑𝑁𝑒𝑤𝑂𝑝𝑡𝑖𝑜𝑛𝑠 is to add the next stage option for each stage in each
iteration. The pseudocode of this function is given in Algorithm 2. In fact, then we
start with 𝑥 = 1 and then iteratively we try to solve OPESP with OPEN𝒩 = (𝑉, 𝑇, 𝑥, 𝑎)
and do 𝑥 = 𝑥 + 1, until all options are added.

The function 𝑎𝑑𝑑𝑁𝑒𝑤𝑂𝑝𝑡𝑖𝑜𝑛𝑠 could also be more specific. In case of an unsatis-
fiable set of stage options, the SAT solver could give us information about where the
unsatisfiability could come from. This information could be used to choose promosing
new options to add.

Solving phase Then the solving phase can start. We try to solve the problem with
the stage options in the set 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠. It is determined how many stage options
for each stage there are in this set, say 𝑛, and then a SAT variable with a domain of
60𝑛 values is created, as in Subsection 3.2.1. For each constraint, we check if this
is a constraint between two stage options that are both in the set 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠. If
this is the case, we have to take this constraint into account and SAT constraints are
created to describe the infeasible region imposed by this constraint, as in Subsection
3.2.2.

When the SAT problem with these variables and constraints is unsatisfiable, new
options are added and we try again, until a solution is found or until the maximum of
iterations is reached.
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Algorithm 1: Railway Timetabling
defineInfrastructure;
createStageOptions;
createConstraints;
Set 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 = 1;
Set 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐹𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒;
while 𝑁𝑜𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐹𝑜𝑢𝑛𝑑 & 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 ≤ 𝑚𝑎𝑥𝑂𝑝𝑡𝑖𝑜𝑛𝑠 do

addNewOptions(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠) to 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠;
for departure 𝜖፭። do

Set 𝑛 = number of options for 𝜖፭። in 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠;
add SAT constraints for variable with a domain of 60𝑛 values;

end
for constraint 𝑐 ∈ 𝑎(𝜖፭።፤ , 𝜖፭

ᖤ
።ᖤ፤ᖤ) do

if both 𝜖፭።፤ and 𝜖፭
ᖤ
።ᖤ፤ᖤ in 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠 then

add SAT constraints for infeasible region imposed by constraint 𝑐;
end

end
tryToSolve;
if 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆𝐴𝑇𝐼𝑆𝐹𝐼𝐴𝐵𝐿𝐸 then

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐹𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒;
giveSolution;

else
𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 = 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 + 1;

end
end

Algorithm 2: addNewOptions(𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠)
for departure 𝜖፭። do

for departure option 𝜖፭።፣ do
if 𝑗 <= 𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠 & Not(𝜖፭።፣ in 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠) then

add 𝜖፭።፣ to 𝑠𝑡𝑎𝑔𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠;
end

end
end





5
Results

In this chapter, we show the results obtained from experiments with our method to
incorporate multiple route options. First, we introduce the test instance for which we
conduct the experiments. Second, we present resulting timetables of the experiments.
Lastly, we analyse the results quantitatively.

For the following experiments, we have used Algorithm 1 in Section 4.4, with Algorithm
2 for the function addNewOptions. These algorithms are coded in Java 8 Update 171
and the model is implemented in Eclipse IDE for Java Developers 2019-12 (4.14).
Problem instances are solvedwith the open-source SAT solverMiniSAT 1.14. MiniSAT
is a small, complete, and efficient SAT solver in the style of conflict-driven learning [29].
A laptop with Intel®Core™i7-4510U CPU @ 2.00 GHz Processor with 8,0 GB RAM
memory is used to run the experiments.

5.1. Description of the Test Instance
As a test instance, a network based on a part of the Dutch railway network is used.
This network is visualized in Figure 5.1. The list of abbreviations used is given in Ap-
pendix C. The network is a slightly simplified version of the part of the railway network
between Amsterdam Sloterdijk, Enkhuizen and Den Helder, in the province Noord-
Holland. There are connections to the rest of the Dutch railway network from Haarlem
(Hlm), Amsterdam Erasmusgracht aansluiting (Aeg) and Overbrakerpolder aansluit-
ing (Obpa). Most of the stage points in 5.1 are also stage points in the Dutch railway
network, although some stage points are added to make it possible to create the con-
straints automatically. This is, for example, the case for Hn1, Utg1 and Ut2, but does
not have influence on the resulting timetable.

The line planning in Table 5.1 is used to create a timetable. There are six different
train routes, three intercity trains and three sprinter trains, which all have a frequency of
2. When taking all six train routes into account, there are 408 departures to schedule.

For each stage, only the options that correspond to ”driving on the right” are taken
into account, where in case of an odd number of tracks, the middle track is taken into
account for both ways. This largely corresponds to reality and keeps the number of
options, and therefore the size of the problem, limited. In this network, this results in
a maximum of four route options per departure. The order in which the route options
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are added is the same for each train at each stage point. In every iteration, an extra
route option is added for each stage, until all options are added.

To create the constraints as in Section 4.3, the following values are used:

𝑚𝑖𝑛𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 = 0,
𝑚𝑎𝑥𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 = 1,
𝑚𝑖𝑛𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 1,
𝑚𝑎𝑥𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 = 3.

Trains of the same line as specified in Table 5.1 must be in frequency with a margin
of 𝑚 = 2, attained by F-constraints as described in Section 4.3.

Index Train type Departure Arrival Stops Frequency
1 IC Obpa Amr Ass, Zd, Cas, Amr 2
2 IC Amr Obpa Amr, Cas, Zd, Ass 2
3 IC Obpa Hdr Ass, Zd, Cas, Hlo,

Amr, Amrn, Hwd,
Sgn, Ana, Hdrz, Hdr

2

4 IC Hdr Obpa Hdr, Hdrz, Ana, Sgn,
Hwd, Amrn, Amr, Hlo,
Cas, Zd, Ass

2

5 IC Obpa Ekz Ass, Hn, Hnk, Bkg,
Bkf, Ekz

2

6 IC Ekz Obpa Ekz, Bkf, Bkg, Hnk,
Hn, Ass

2

7 SP Obpa Utg Ass, Zd, Kz, Zzs, Wm,
Kma, Utg

2

8 SP Utg Obpa Utg, Kma, Wm, Zzs,
Kz, Zd, Ass

2

9 SP Obpa Hn Ass, Hw, Hlms, Hlm,
Bll, Sptz, Sptn, Drh,
Bv, Hk, Utg, Cas,Hlo,
Amr, Amrn, Hwd,
Obd, Hn

2

10 SP Hn Obpa Hn, Obd, Hwd, Amrn,
Amr, Hlo, Cas, Utg,
Hk, Bv, Drh, Sptn,
Sptz, Bll, Hlm, Hlms,
Hw, Ass

2

11 SP Aeg Hnk Ass, Zd, Zdk, Pmw,
Pmr, Pmo, Hn, Hnk

2

12 SP Hnk Aeg Hnk, Hn, Pmo, Pmr,
Pmw, Zdk, Zd, Ass

2

Table 5.1: Line planning of the first experiment
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Figure 5.1: Overview of the network
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5.2. Resulting Timetables
In this section, we will discuss the resulting timetables of the experiments. First, as
the main experiment, the network and line planning from Section 5.1 are used as input.
We will discuss the time space diagram of the resulting timetable between Amsterdam
Sloterdijk and Alkmaar and the platform occupation chart for Amsterdam Sloterdijk.
Second, another experiment is done by taking only lines 1 to 8 from Table 5.1 as input.
The resulting timetable of the first experiment is compared to the resulting timetable of
the second experiment by comparing the platform occupation charts for Amsterdam
Sloterdijk.

5.2.1. Resulting timetable of the first experiment
For the first and main experiment, where the network and line planning from Section
5.1 are used as input, three iterations were needed to get the resulting timetable. The
network with only one or two route options per stage, in the order that we defined
them, is unsatisfiable. A feasible timetable with three route options per stage is found.
The third route option is used around the stage points Amr, Utg and Hdr, and between
the stage points Ass and Zd.

Figure 5.2 shows the time space diagram of the resulting timetable between Amster-
dam Sloterdijk and Alkmaar. Trains 1H and 2H follow line 1 from Table 5.1, trains 1T
and 2T line 2, trains 3H and 4H line 3, etcetera. Indeed, we see that train 1H, leaving
Ass just after minute 10, is in frequency with train 2H, leaving Ass just before minute
40. Figure 5.2 also shows that trains in the same direction are mainly crossing at sta-
tions, where there are often more tracks. This is, for example, the case at stage point
Wm between minutes 0 and 5. Trains that run in different directions tend to have the
opportunity to cross between stations as well, since they typically use different tracks.

Admittedly, we see that between minute 5 and 25 mainly trains are scheduled to
arrive at Ass, while between minute 25 and minute 45 mainly trains are scheduled to
leave Ass. This uneven distribution may lead to long waiting times, which is unattrac-
tive to passengers. This example shows that timetables found by this algorithm are
not necessarily attractive, as it finds some feasible timetable.

To get more insight in the use of the different tracks, the platform occupation chart
for Amsterdam Sloterdijk is shown in Figure 5.3. Here, platforms 1 and 2 are used
for connections from Obpa to Rdwa, platforms 3 and 4 are used for connections from
Rdwa to Obpa, platform 5 for connections from Obpa to Hw, platform 6 for connec-
tions from Hw to Obpa, platform 7 for connections from Aeg to Rdwa and platform 8
for connections from Rdwa to Aeg. We see that platform 3 and 4 are both needed as
train 8T is scheduled at the same time as trains 3T and 5T. Moreover, trains 6T and
1T are scheduled at the same time as well. Platform 1 and 2 need to be used both
too, as train 5H on platform 1 is scheduled too close to train 3H on platform 2 to be
scheduled on the same platform.
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5.2.2. Resulting timetable of the second experiment
To investigate the difference compared to a problem for which less route options are
needed, a second experiment is done. In this experiment only lines 1 to 8 from Table
5.1 are taken as input. Now, a feasible timetable is found using only two route options
for each stage. The resulting platform occupation chart for Amsterdam Sloterdijk for
this experiment is shown in Figure 5.4. In this case, platform 5, 6, 7 and 8 are not
needed as the connections they provide are not used. It is possible to schedule all
trains with a connection from/to Obpa to/from Rdwa on platform 2 and 3, instead of
using platform 1 and 4 as well. On these tracks, the same number of trains are sched-
uled as on platform 1, 2, 3 and 4 in Figure 5.3. There could be two reasons why these
trains are not scheduled on just two platforms, as we add extra options for each stage
in every iteration and create some feasible timetable. First, trains might have to be
scheduled on the same time at this stage point to make a feasible timetable possible
for the whole network. Second, this extra option might just be used because it was
possible, although it might not have been needed to add it here.

Ass Rdwa Hmt2 Hmt1 Zd Kz Zzs Wm Kma Utg2 Utg1 Utg Cas Hlo Amr
0

10

20

30

40

50

60

M
in

1H
1T
2H
2T
3H
3T
4H
4T
5H
5T
6H
6T
7H
7T
8H
8T
9H
9T
10H
10T
11H
11T
12H
12T

Figure 5.2: Time space diagram of the resulting timetable between Amsterdam Sloterdijk and Alkmaar
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5.3. Quantitative results
We also used the network and line planning from Section 5.1 to analyse the number
of SAT clauses needed and the CPU time to solve the problem. To solve this problem,
three iterations were needed. By analysing these iterations separately, we get some
insight in how this method would perform for bigger instances.

In Figure 5.5, the number of route options is plotted versus the number of SAT clauses.
One can see that the number of clauses increases linearly with respect to the number
of route options taken into account. When adding another route option, the domain of
each variable is extended and more constraints are added, which results in a higher
number of clauses. The reason why the number of clauses is not increasing faster is
that I-constraints can be added in just one SAT clause. For the other constraint types,
the number of constraints needed when an extra option is added, is about the same as
the number of constraints when having just one route option. Therefore the number
of clauses increases linearly with respect to the number of route options taken into
account.

In total, less than forty seconds were needed to run the algorithm, including the setup
and running the SAT solver three times. In Figure 5.6, the number of route options
is plotted versus the CPU time the SAT solver needs to solve this specific problem.
One can see the CPU solve time increases more than exponentially with respect to
the number of route options taken into account. When taking only one route option
into account, the solve time is almost 0 seconds. The problem is designated as trivial
by SAT, because at some points no feasible routes can be created. This is due to the
fact that the order in which the route options are added is the same for each train at
each stage point. For a train going from Obd to Hn via Hna, for example, this is a
problem. The first option for a stage between Hna and Hn is via the bottom track in
Figure 5.1. But in our network, it is not possible to reach the starting point of this track
at Hna from Obd. A second option is needed here to create a feasible route.

The CPU solve time increases more than exponentially, as extra options are added
for each stage for which an extra option exists. The combination of route options there-
fore increases very fast, which results in a longer solve time. However, computation
times are still relatively low, as taking three route options into account for every stage
is nonetheless solved by the SAT solver in less than 30 seconds.
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6
Conclusions and Recommendations

In this chapter, we present the conclusions of our research and discuss the results by
giving recommendations for future work and implementation.

6.1. Conclusions
As stated in Chapter 1, the solver CADANS reports unsatisfiability for the Dutch railway
timetabling problem, although human planners are able to create a timetable with only
small deviations to the original problem. CADANS is based on a PESP model with
fixed detailed routes for each train. Incorporating multiple route options for each train
in this model results in the consideration of a larger part of the solution space, which
might make it possible to find a feasible timetable for the Dutch railway timetabling
problem. Additional extensions to the PESP model are permitted by improvements
in SAT-based PESP solving, which is currently the most efficient approach. The goal
of this thesis was to incorporate flexible track use in the SAT formulation of the
cyclic railway timetabling problem.

By introducing the Open-ended Periodic Event Scheduling Problem (OPESP), a
method to incorporate flexible track use in the SATmodel of the cyclic railway timetabling
problem is presented. This method uses the time axis to model a geographical deci-
sion, by extending the domain of the departure for each stage of each train corre-
sponding to the number of route options for this particular stage.

Using generic norms to create constraints automatically, this method is tested on
a test instance based on a substantial part of the Dutch railway network, namely all
train lines in the area between Amsterdam Sloterdijk, Enkhuizen and Den Helder. Our
method can solve the cyclic railway timetabling problem for this network within rea-
sonable calculation time. We have therefore shown that it is possible to incorporate
flexible track use in the SAT formulation of the cyclic railway timetabling problem.

6.2. Recommendations
As this thesis presents the first method to incorporate flexible track use in the SAT for-
mulation of the cyclic railway timetabling problem, there is much more to explore. We
will first give some suggestions for improvements on the method itself. Afterwards, we
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present our suggestions for future work using this method and our recommendations
for the implementation thereof.

6.2.1. Recommendations for improving the method
In this thesis our own, more generic norms are used to create constraints. These
norms could be extended to create a situation that is closer to reality. For the Dutch
infrastructure there exist detailed norms which could be used. Furthermore, only F-
constraints are added now when trains have completely the same route. These con-
straints could be added for each part of the route that is the same. Lastly, connection
constraints could be added. These extra constraints will make the problem slightly
more difficult, but no substantial challenges are expected in integrating these features
into our model.

The process of adding more route options can also be improved. First, currently in
every iteration an extra route option is added wherever that is possible. This may lead
to consideration of too many options that are not needed to create a feasible timetable.
In case of unsatisfiability, SAT can indicate stage points where this unsatisfiability may
originate. Around these stage points, extra route options could be added. Second,
some commonsensical or other decision rules could be used to make better guesses
for the first route option, instead of using the same order for every train. For example,
differentiating between intercity trains and sprinter trains might already make a big
difference. This would result in less iterations to find a feasible timetable, which might
be preferable when considering a larger network as, for example, the entire Dutch
railway network.

6.2.2. Recommendations for future research
The method presented in this thesis is tested on a substantial part of the Dutch rail-
way network. However, it would be interesting to test the method on bigger parts of
the network. It is recommended to create bigger test instances to verify whether the
method still performs well.

Currently an open-source SAT solver is used to solve problem instances. As stated
in [24], custom implementation of a SAT solver may be helpful for a particular appli-
cation. It could be interesting to investigate the use of a specific SAT solver for the
cyclic railway timetabling problem. In [29], the authors aim to give sufficient details
to allow users of SAT-solvers “to make domain specific extensions of adaptions of
current state-of-the-art SAT-techniques, to meet the needs of a particular application
area” [p. 1].

The method presented in this thesis is used to solve the cyclic railway timetabling
problem considered as a satisfiability problem. The SAT model is previously also
used to find an optimal timetable. For example in [17], where an approach based on
reinforcement learning, multi-agents and SAT is used. In future research, an attempt
could be made to integrate the presented method in methods as discussed in [17] to
create an optimal timetable.

6.2.3. Recommendations for implementation
Apart from these theoretical possibilities, the opportunities for NS are important. Our
recommendation is to integrate this new method with the system DONS, that is cur-
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rently used by NS, and the solver CADANS. The method presented in this thesis could
be used to find the combination of routes of the trains that lead to a feasible timetable.
These routes could then be used as input to the existing solver CADANS to create
a timetable. As DONS, the system in which CADANS is used, is integrated with all
current planning systems, the created timetable is immediately in the right format. In
this case, all existing software could still be used. This is an advantage to the plan-
ning department, as they already know how these systems work. Moreover, existing
optimisation tools could be used on a feasible timetable to create a better timetable.





A
Proof of Lemma 2.1.1

Lemma 2.1.1 is repeated here, after which the proof is given.

LemmaA.0.1. Suppose that for some edge (𝑖, 𝑗) ∈ ℰ we want to impose the constraint

𝑑(𝑗) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢ኻ]ፓ ∪ [𝑙ኼ, 𝑢ኼ]ፓ ∪ … ∪ [𝑙፤ , 𝑢፤]ፓ ,

where the 𝑘 intervals are disjoint and ordered:

0 ≤ 𝑙ኻ ≤ 𝑢ኻ < 𝑙ኼ ≤ 𝑢ኼ < … < 𝑙፤ ≤ 𝑢፤ < 𝑙ኻ + 𝑇.

Then this union of 𝑘 intervals is equivalent to the intersection of 𝑘 intervals modulo 𝑇
given by the constraints

[𝑙ኻ, 𝑢፤]ፓ ∈ 𝑎(𝑖, 𝑗),
[𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∈ 𝑎(𝑖, 𝑗),

⋮
[𝑙፤ , 𝑢፤ዅኻ + 𝑇]ፓ ∈ 𝑎(𝑖, 𝑗).

Proof. We proof this lemma by induction. It is easy to see that the statement is true
for 𝑘 = 2, see Figure 2.1. Assume the statement is true for 𝑘 − 1, so we have

𝑑(𝑗) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢ኻ]ፓ ∪ [𝑙ኼ, 𝑢ኼ]ፓ ∪ … ∪ [𝑙፤ዅኻ, 𝑢፤ዅኻ]ፓ
⇔ 𝑑(𝑗) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢፤ዅኻ]ፓ ∩ [𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∩ … ∩ [𝑙፤ዅኻ, 𝑢፤ዅኼ + 𝑇]ፓ

for 0 ≤ 𝑙ኻ ≤ 𝑢ኻ < 𝑙ኼ ≤ 𝑢ኼ < … < 𝑙፤ዅኻ ≤ 𝑢፤ዅኻ < 𝑙ኻ + 𝑇.
Then for 𝑘, we have

𝑑(𝑗) − 𝑑(𝑖) ∈[𝑙ኻ, 𝑢ኻ]ፓ ∪ [𝑙ኼ, 𝑢ኼ]ፓ ∪ … ∪ [𝑙፤ , 𝑢፤]ፓ
⇔ 𝑑(𝑗) − 𝑑(𝑖) ∈([𝑙ኻ, 𝑢፤ዅኻ]ፓ ∩ [𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∩ … ∩ [𝑙፤ዅኻ, 𝑢፤ዅኼ + 𝑇]ፓ) ∪ [𝑙፤ , 𝑢፤]ፓ
⇔ 𝑑(𝑗) − 𝑑(𝑖) ∈([𝑙ኻ, 𝑢፤ዅኻ]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ) ∩ ([𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ) ∩ …

∩ ([𝑙፤ዅኻ, 𝑢፤ዅኼ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ),

for 0 ≤ 𝑙ኻ ≤ 𝑢ኻ < 𝑙ኼ ≤ 𝑢ኼ < … < 𝑙፤ ≤ 𝑢፤ < 𝑙ኻ + 𝑇, where the second equality follows
from the induction hypothesis. We now have 𝑘 − 1 unions of two intervals. For the
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first union, we have 𝑙ኻ ≤ 𝑢፤ዅኻ < 𝑙፤ ≤ 𝑢፤. Therefore we can apply the base case of
this lemma, so

[𝑙ኻ, 𝑢፤ዅኻ]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ = [𝑙ኻ, 𝑢፤]ፓ ∩ [𝑙፤ , 𝑢፤ዅኻ + 𝑇]ፓ .

The remaining 𝑘 − 2 unions are in the following form

[𝑙። , 𝑢።ዅኻ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ for some 𝑖 = 2,… , 𝑘 − 1.

As 𝑙። < 𝑙፤ ≤ 𝑢፤ < 𝑢።ዅኻ + 𝑇 for all 𝑖 = 2,… , 𝑘 − 1, we have

[𝑙። , 𝑢።ዅኻ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ = [𝑙። , 𝑢።ዅኻ + 𝑇]ፓ for all 𝑖 = 2,… , 𝑘 − 1.

Therefore we have

𝑑(𝑗) − 𝑑(𝑖) ∈([𝑙ኻ, 𝑢፤ዅኻ]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ) ∩ ([𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ) ∩ …
∩ ([𝑙፤ዅኻ, 𝑢፤ዅኼ + 𝑇]ፓ ∪ [𝑙፤ , 𝑢፤]ፓ)

⇔ 𝑑(𝑗) − 𝑑(𝑖) ∈ [𝑙ኻ, 𝑢፤]ፓ ∩ [𝑙ኼ, 𝑢ኻ + 𝑇]ፓ ∩ … ∩ [𝑙፤ , 𝑢፤ዅኻ + 𝑇]ፓ . ■



B
Using Decision Variables to Incorporate

Multiple Route Options

In this thesis, a method is presented to incorporate multiple route options in the SAT
formulation of the cyclic railway timetabling problem. This method consists of extend-
ing the domain of the departure times. Another method that might come up is the use
of decision variables that indicate the route choice for a departure. In this appendix,
we show the difference in number of clauses for these two methods. Therefore we
consider a small example.

Problem description
There are two stations, station 𝐴 and station 𝐵. From station 𝐴 to station 𝐵 there
are two different single-track-routes, 𝛼 and 𝛽, with different lengths. Route 𝛼 gives a
travel time of 31 minutes and route 𝛽 a travel time of 32 minutes. Train 𝑡 has to go
from station 1 to station 2, train 𝑡ᖣ from station 2 to station 1. A representation of this
example can be seen in Figure B.1. In this case there are four different options: both
trains take route 𝛼, both trains take route 𝛽, train 𝑡 takes route 𝛼 and train 𝑡ᖣ route 𝛽,
or the other way around. As we consider a cyclic timetable for 60 minutes and both
routes only have one track, it is not possible for both trains to take the same route.
Therefore only the last two options are feasible.

1 2
ᎎ: 31 min

ᎏ: 32 min

Figure B.1: Example of a railway network

Problem formulation
There are two ways to tackle this problem of choosing routes. The first way is to
have a decision variable indicating the chosen route. The second way is to extend
the domain of the departure time, according to the number of route options. We will
elaborate on both ways by considering the UI-constraint that is needed as train 𝑡 is
leaving station 1 and train 𝑡ᖣ is arriving at this station.
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Using a decision variable
In this case, when using a decision variable, the notation of Section 2.2 is used. We
would have the following variables:

𝑑(𝜖፭) departure time of train 𝑡, 𝑑(𝜖፭) ∈ {0, 59},
𝑟፭ route choice of train 𝑡, 𝑟፭ ∈ {0, 1},

𝑑(𝜖፭ᖤ) departure time of train 𝑡ᖣ, 𝑑(𝜖፭ᖤ) ∈ {0, 59},
𝑟፭ᖤ route choice of train 𝑡ᖣ, 𝑟፭ᖤ ∈ {0, 1}.

Let 𝑟። = 0 correspond to taking route 𝛼 and 𝑟። = 1 to taking route 𝛽, for 𝑖 = 𝑡, 𝑡ᖣ. In SAT
all these variables will separately be encoded to a propositional formula using order
encoding.

The UI-constraint is

[3 − 𝑦፭ᖤኻ , 59 − 𝑦፭
ᖤ
ኻ ]ዀኺ ∈ 𝑎(𝜖፭ , 𝜖፭

ᖤ),

where 𝑦፭ᖤኻ is the travel time of train 𝑡ᖣ. So we have
[32, 88]ዀኺ ∈ 𝑎(𝜖፭ , 𝜖፭

ᖤ) if 𝑟፭ᖤ = 0,
[31, 87]ዀኺ ∈ 𝑎(𝜖፭ , 𝜖፭

ᖤ) if 𝑟፭ᖤ = 1.
In SAT we will have the following, where 𝑞፱,። ⇔ 𝑥 ≤ 𝑖:

(𝑞፫ᑥᖤ ,ኺ ∧ 𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛((𝑑(𝜖
፭), 𝑑(𝜖፭ᖤ)), [32, 88]ዀኺ))

∨ (¬𝑞፫ᑥᖤ ,ኺ ∧ 𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛((𝑑(𝜖
፭), 𝑑(𝜖፭ᖤ)), [31, 87]ዀኺ)).

To use these constraints in SAT, they have to be in CNF (Conjunctive Normal Form).
Let 𝜁 be as in Definition 3.2.2. We have

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛((𝑑(𝜖፭), 𝑑(𝜖፭ᖤ)), [32, 88]ዀኺ) =
⋀

{፱}×[፲Ꮃ,፲Ꮄ]∈᎓((፝(Ꭸᑥ),፝(Ꭸᑥᖤ)),[ኽኼ,ዂዂ]ᎸᎲ)

(¬𝑞፝(Ꭸᑥ),፱ ∨ 𝑞፝(Ꭸᑥ),፱ዅኻ ∨ ¬𝑞፝(Ꭸᑥᖤ),፲Ꮄ ∨ 𝑞፝(Ꭸᑥᖤ),፲Ꮃዅኻ)

and

𝑒𝑛𝑐𝑜𝑑𝑒_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑐𝑜𝑛((𝑑(𝜖፭), 𝑑(𝜖፭ᖤ)), [31, 87]ዀኺ) =
⋀

{፱}×[፲Ꮃ,፲Ꮄ]∈᎓((፝(Ꭸᑥ),፝(Ꭸᑥᖤ)),[ኽኻ,ዂ዁]ᎸᎲ)

(¬𝑞፝(Ꭸᑥ),፱ ∨ 𝑞፝(Ꭸᑥ),፱ዅኻ ∨ ¬𝑞፝(Ꭸᑥᖤ),፲Ꮄ ∨ 𝑞፝(Ꭸᑥᖤ),፲Ꮃዅኻ).

Say both constraints consist of 𝑛 clauses. If we look at the whole formula again, we
get something like

(𝑞፫ᑥ,ኺ ∧ 𝐵ኻ ∧ … ∧ 𝐵ዀኼ) ∨ (¬𝑞፫ᑥ,ኺ ∧ 𝐶ኻ ∧ … ∧ 𝐶ዀኼ),
where ∀𝑖 𝐵። , 𝐶። = (¬𝑞፝(Ꭸᑥ),፱ ∨ 𝑞፝(Ꭸᑥ),፱ዅኻ ∨ ¬𝑞፝(Ꭸᑥᖤ),፲Ꮄ ∨ 𝑞፝(Ꭸᑥᖤ),፲Ꮃዅኻ), for some 𝑥, 𝑦ኻ, 𝑦ኼ.
This formula in CNF is

(𝑞፫ᑥ,ኺ ∨ ¬𝑞፫ᑥ,ኺ) ∧ ( ⋀
።዆ኻ,…,፧

𝑞፫ᑥ,ኺ ∨ 𝐶።) ∧ ( ⋀
።዆ኻ,…,፧

¬𝑞፫ᑥ,ኺ ∨ 𝐵።) ∧ ( ⋀
።,፣዆ኻ,…,፧

𝐵። ∨ 𝐶፣).

This is a formula with 1 + 2𝑛 + 𝑛ኼ clauses.
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Extend the domain
In this case, we extend the domain of the departure time, according to the number of
route options. Here the notation of Section 4.3. We have the following variables:

𝑑(𝜖፭) departure time of train 𝑡, 𝑑(𝜖፭) ∈ {0, 119},
𝑑(𝜖፭ᖤ) departure time of train 𝑡ᖣ, 𝑑(𝜖፭ᖤ) ∈ {0, 119}.

In SAT all these variables will separately be encoded to a propositional formula using
order encoding. Let 𝜖፭ኻ correspond to train 𝑡 taking route 𝛼, 𝜖፭ኼ to train 𝑡 taking route 𝛽,
𝜖፭ᖤኻ to train 𝑡ᖣ taking route 𝛼 and 𝜖፭ᖤኼ to train 𝑡ᖣ taking route 𝛽.

Now there will be two separate UI-constraints:

[3 − 𝑦፭ᖤኻ , 59 − 𝑦፭
ᖤ
ኻ ]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭

ᖤ
ኻ ),

[3 − 𝑦፭ᖤኻ , 59 − 𝑦፭
ᖤ
ኻ ]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭

ᖤ
ኼ ),

[3 − 𝑦፭ᖤኻ , 59 − 𝑦፭
ᖤ
ኻ ]ዀኺ ∈ 𝑎(𝜖፭ኼ, 𝜖፭

ᖤ
ኻ ),

[3 − 𝑦፭ᖤኻ , 59 − 𝑦፭
ᖤ
ኻ ]ዀኺ ∈ 𝑎(𝜖፭ኼ, 𝜖፭

ᖤ
ኼ ),

where 𝑦፭ᖤኻ is the travel time of train 𝑡ᖣ. So we have

[32, 88]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭
ᖤ
ኻ ),

[31, 87]ዀኺ ∈ 𝑎(𝜖፭ኻ, 𝜖፭
ᖤ
ኼ ),

[32, 88]ዀኺ ∈ 𝑎(𝜖፭ኼ, 𝜖፭
ᖤ
ኻ ),

[31, 87]ዀኺ ∈ 𝑎(𝜖፭ኼ, 𝜖፭
ᖤ
ኼ ).

In SAT we will encode all these constraints separately and take them together in one
conjunction. The encoding per constraint will be the same as for the method using
decision variables, so each of the constraints consist of 𝑛 clauses. Therefore we will
have 4𝑛 clauses using the method presented in this thesis, instead of the 1+ 2𝑛 +𝑛ኼ
clauses in the first method. This difference will even be bigger when there are stages
with three or more route options.
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Abbreviations of Stage Points

Table C.1 contains the abbreviations of the stage points that are used in this thesis.

Abbreviation Stage point Abbreviation Stage point
Aeg Amsterdam Erasmus- Hnk Hoorn-Kersenboogerd

gracht aansluiting Hw Halfweg
Amr Alkmaar Hwd Heerhugowaard
Amrn Alkmaar Noord Hwd1 Heerhugowaard 1
Ana Anna Paulowna Kma Krommenie-Assendelft
Ass Amsterdam Sloterdijk Kz Koog aan de Zaan
Bkf Bovenkarspel Flora Nhk Noordhollandse
Bkg Bovenkarspel- kanaalbrug

Grootebroek Obd Obdam
Bll Bloemendaal Obpa Overbrakerpolder
Bv Beverwijk aansluiting
Cas Castricum Pmo Purmerend Overwhere
Drh Driehuis Pmr Purmerend
Ekz Enkhuizen Pmw Purmerend Weidevenne
Hdr Den Helder Rdwa Rdwa
Hdrz Den Helder Zuid Sgn Schagen
Hk Heemskerk Sgn1 Schagen 1
Hks Hoogkarspel Sptn Santpoort Noord
Hlm Haarlem Sptz Santpoort Zuid
Hlms Haarlem Spaarnwoude Utg Uitgeest
Hlo Heiloo Utg1 Uitgeest 1
Hmt1 Hemtunnel 1 Utg2 Uitgeest 2
Hmt2 Hemtunnel 2 Wm Wormerveer
Hn Hoorn Zd Zaandam
Hn1 Hoorn 1 Zdk Zaandam Kogerveld
Hna Hoorn aansluiting Zzs Zaandijk Zaanse Schans

Table C.1: Abbreviations of stage points
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