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Summary

Shell structures are widely favored due to their ability to bear substantial loads with
minimal thickness, aligning with contemporary aesthetic sensibilities. This thesis
investigates the buckling behavior of thin-shell structures with the aim to refine a
knockdown factor formula. Authored by Yuanxi Zhao under the guidance of Dr.ir. P.C.J.
Hoogenboom, Ir. A.C.B. Schuurman, and Dr.ir. F.P. van der Meer, this research
addresses the critical issue of load-carrying capacity reduction due to shape
imperfections leading to buckling.

A complete range of shell shapes and loading has been studied. The shells buckle in
ring mode (1-3, 3-3, 2-1, 2-3), column mode (2-2), mixed column-ring mode (1-1) and
in-extensional mode (3-2, 3-1, 1-2) (page 19).

Linear buckling analyses were conducted to explore how parameters such as height,
boundary conditions and model size influence the buckling load factor. Geometrical
nonlinear analyses were conducted using SCIA Engineer, introducing different
imperfection amplitudes to simulate real-world conditions. The knockdown factor was
calculated as nonlinear buckling load over linear buckling load. This knockdown factor

was compared to a knockdown factor obtained from a formula.

The knockdown factor does not depend on the curvature ratio ky,/k.x or the membrane
force ratio nxu/nyy. It only depends on the imperfection amplitude and d/f (page 65) and
the slenderness a/f (page 6). The knockdown factor formula produces reasonable values.
However, the formula is not accurate (page 62). It is recommended to derive a new
knockdown factor formula.
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1 Introduction

1.1 Research objective

Shell structures are very popular in engineering because of their free forms. They have
remarkable properties, which is that shells’ curvature enables them to carry distributed
load as membrane forces. Therefore, they inherently have excellent strength to weight
ratio, which makes thinner and more aesthetic designs possible.

Clearly, all possible modes of failure need to be excluded in the design process, such as
large deformations, disturbing vibrations (serviceability load combinations) yielding,
crushing, fatigue and buckling (ultimate limit state load combinations). In thin shell
structures, the buckling failure mode often governs the design[1]. The most serious flaw
in applying shell structures is that shell buckling is a sudden event and it does not occur
gradually, which means that shells often do not show enough deformation as a warning
before collapsing. Therefore, it’s necessary to study the buckling condition and
behavior of thin-shell structures.

Experimental buckling results show a wide scatter and the obtained ultimate loads are
much smaller than the critical loads of the established linear buckling theory (See
Figure 1.1.1). Previous research shows that this is caused by initial geometric

imperfections[2].
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Figure 1.1.1 Experimental ultimate loads of 172 axially loaded aluminum cylinders [3]

In designing shell structures, finite element analyses are made to check shell designs.
There are two ways to predict the buckling load, 1) linear buckling analysis corrected
by a knockdown factor, or 2) geometrical nonlinear analysis including shape
imperfections[4]. The first method is quick but not accurate. The second method is
accurate but time consuming.

The knockdown factor can vary between 1/10 and 1. Often, 1/6 is used, which is based
on the lower bound of many aluminum cylinder experiments performed after 1930. This
kind of lower bound limit is conservative but not accurate, which restricts the
development of thin shell structures.

A possibly better estimate of the knockdown factor is provided by a formula that was
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derived in 2019[4].

2
P =
kyy, t _y3(1-v) (1.1)

C= n=

) v
wo e »y

where

Coriiii knockdown factor

Fxxs Myp «oveennennannnnnn membrane forces (7x, = 0)

b, Ky oo curvatures (kx, = 0)

7 A amplitude of the shape imperfection

Lot shell thickness

Vo Poisson’s ratio

The formula shows that the knockdown factor depends on the amplitude d of the
imperfection. The formula applies to local buckling, therefore, it does not apply to
global buckling (in-extensional deformation), for which the knockdown factor is just 1.
The objective of this research is to verify the knockdown factor formula (1.1) by
geometrical nonlinear analysis considering initial shape imperfections. Physical

nonlinearities are not considered in this research.

1.2 Research procedure

Nine thin shell structures of various shapes and sizes have been designed and modelled.
The specific parameters of these models can be found in subsection 3.1. The software
SCIA Engineer was used. Supports were designed such that global buckling (in-
extensional deformation) and edge buckling were prevented as much as possible. The
local buckling loads were predicted by 1) linear elastic analyses with the formula
knockdown factor and 2) geometrically nonlinear analysis including shape
imperfections. The two predictions were compared for the nine designs to verify the
results of the knockdown factor formula.
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2 Existing Knowledge

2.1 Shell structures

The term "shell" refers to structures that have strength and stiffness owing to their
thin, natural, and curved form, such as an egg shell, a nut, a human skull, and a
tortoise shell. The related parameters of a shell, the radius a, the span / and the sagitta
s, are defined as the figure below.

Figure 2.1.1 Geometry of a shell [4]

Generally, shells can be classified based on their radius-to-thickness ratio[4]:

e Very thick shell (a/t < 5) : needs to be modelled three-dimensionally;
structurally it is not a shell

e Thick shell (5 < a/t < 30) : membrane forces, out of plane moments and out of
plane shear forces occur; all associated deformations need to be included in
modelling its structural behavior

e Thin shell (30 < a/t < 4000): membrane forces and out of plane bending
moments occur; out of plane shear forces occur, however, shear deformation is
negligible; bending stresses vary linearly over the shell thickness

e Membrane (4000 < a/f): membrane forces carry all loading; out of plane
bending moments and compressive forces are negligible; for example a tent

Shells can carry the distributed surface load by their membrane forces instead of
bending moments, allowing for much thinner designs compared with plate structures
[5][6][7]. Thin-shell structures are lightweight shell-based structures. These curving
components are put together to form huge constructions. Aircraft fuselages, boat hulls,
and the roofs of large building are all examples of typical uses.

Thin-shell structures are preferred by architects and structural designers due to their
good appearance and excellent strength to weight ratio, especially for large span
structures. An example of thin-shell structures, the Sydney Opera House (Australia), is
shown below.



Figure 2.1.2 Sydney Opera House (Australia)
2.2 Coordinate systems and curvatures

2.2.1 Coordinate systems

In shell analysis three coordinate systems are used (Figure 2.2.1); 1) a global coordinate
system to describe the shape of the shell, 2) a local coordinate system to define
curvature, displacements, membrane forces, moments and loading, 3) a curvilinear

coordinate system to derive and solve the shell equations[4].

Figure 2.2.1.1 Global, local and curvilinear coordinate systems [1]

2.2.2 Surface curvature

The curvatures for surfaces can be defined. Draw a plane through a normal vector z of
a surface, and this normal plane will intersect the surface in a curved line. The curvature
of this line is referred to as normal section curvature k. If the circle lies at the positive
side of the z axis the normal section curvature is positive. If the circle lies at the negative
side of the z axis the normal section curvature is negative. The direction of the z axis
can be chosen freely (pointing inward or outward)[4].

The z axis is part of a local coordinate system. When the normal plane includes the x
direction vector the curvature is k. When the plane includes the y direction vector the
curvature is k. These curvatures can be calculated by

0%z 0%z
kox =

ﬁ’ yy:a_yz (21)

10



The twist of the surface £y, 1s defined as

k

0%z

xy = dx dy (2'2)

2.2.3 Principal curvature

In a point of a surface many normal planes are possible. If we consider all of them and
compute the normal section curvatures then there will be a minimum value 4> and a
maximum value k;. These minimum and maximum values are the principal curvatures
at this point[4].

1 1 2
ky =7 (kxx + kyy) + \/Z (kxx — kyy)” + k%, (2.3)
1 1 2 )
ky =3 (kxx + kyy) — : (kax — kyy)” + k2, (2.4)
The directions in the tangent plane in which the minimum and maximum occur are
perpendicular.
_1 2kxy 1 1 2kyy
a = -arctan ety 2 T + S arctan P (2.5)

2.2.4 Gaussian curvature

The Gaussian curvature of a surface in a point is the product of the principal curvatures
in this point kg = kqk,. It can be shown that also ks = kyyk,,, — k,%y. The Gaussian
curvature is independent of how we choose the directions of the local coordinate system.
A positive value means the surface is bowl-like. A negative value means the surface is
saddle-like. A zero value means the surface is flat in at least one direction (plates,
cylinders, and cones have zero Gaussian curvature)[4].

positive negative zero

Figure 2.2.4.1 Gaussian curvature (contour plot)
2.3 Membrane forces, moments and shear forces

In thin shells the membrane forces, the moments and the shear forces are defined in the

same way as in plates.
1
>t
Nyx = f_zlt OxxdZ (2.6)

2
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ny, = [ _%tayydz (2.7)
1 St
> (nxy + nyx) = f_zltaxydz (2.8)
2
2t
Myy = | %, Oxezdz (2.9)
) 2
Et
my, = f_%toyyzdz (2.10)
1
Et
Myy = f_%toxyzdz (2.11)
e
v, = [ 1,0 dz (2.12)
i
vy, = ff%tayzdz (2.13)

Figure 2.3.1 Positive internal forces of shell parts [4]

2.4 Shell buckling theory

Because of their curvature, shells are thin and may carry distributed surface loads as
membrane forces. The ability of shells to retain membrane strain energy without
significant deformation gives them their thinness. Shells may become statically
unstable and fail severely if this energy is transferred into bending energy|8].

2.4.1 Static Instability

Static instability, often known as buckling, occurs when a structural member or system
loses its load-carrying capability[7]. Buckling may be classified into two types: 1)
equilibrium bifurcation (Figure 2.4.1.1, point B) and 2) collapse at the limit load
without prior bifurcation (point A). A rapid transition in the load-carrying route, such
as from axial (or membrane) forces to bending moments, and accompanying
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deformations, is an example of bifurcation. This form of instability may be seen in
columns, plates, and cylindrical shells. Shallow arches and spherical caps experience
the second kind of instability, commonly known as nonlinear buckling or "snap-
through" [1][7]. Nevertheless, even arches and spherical caps, given initial geometric
imperfections, are prone to fail in an asymmetric mode owing to bifurcation prior to
their limit load, i.e. curve 0-B-D in Fig. 2.4.1.1 [1][7][9].

LOAD, A Limit Load of

‘ Perfect Shell
A A ;/—/)

Bifurca-
tion

Knock-down
factor

Y B e S Post-

/,’ \\k_ Buckting
[/ N )
’ Limit Load of

7 tmperfect Shell
/ (Computer Analysis)

Y

TOTAL DISPLACEMENT
CORRES PONDING TO LOAD

Figure 2.4.1.1 Load-deflection curves showing limit and bifurcation points: path 0AC presents
axisymmetric deformation, 0BD non axisymmetric deformation, OEF for a real structure (or GNLA

with imperfection). Snap through occurs at point E. [1]

The loads of Figure 2.4.1.1 can be obtained by multiplying the load factors A with a
reference load. Ac is the critical buckling load factor at the bifurcation point. AL, the
limit load factor, is related to the maximum load that can be achieved without prior
bifurcation. As is related to the maximum load that can be achieved by a structure with
initial geometric imperfections before static instability is reached [9]. As is calculated
by a geometrically nonlinear analysis (GNA). However, obtaining As need detailed
finite element analysis including initial geometric imperfections. An analysis that
includes such imperfections is referred to as a geometrically nonlinear analysis with

initial geometric imperfections (GNIA).
2.4.2 Bifurcation buckling
The theoretical buckling membrane force of an axially loaded thin-shell cylinder can

be obtained by the formula below[4].

2 2
-1 Et Et
Ny = ~—0.6 (2.14)

<« /3(1_\}2) a a

Equation (2.14) is also valid for axially loaded hyperboloids and for externally
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pressurized closed cylinders, spherical shells, domes, and hyperbolic paraboloids[4].
The fact that Eq. (2.14) makes no reference to the number of waves found in the
buckling pattern helps to explain its broad applicability [1].

2.4.3 Imperfection sensitivity

ANA A A AN
her Acr \ Aer
&?b ult
I 11 I A,
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o o W
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- > " > B
“Wo'Wo “Wo'Wo -“Wo'Wo

Figure 2.4.3.1 Buckling behavior, left: stable, unstable, asymmetric [4]

Koiter [10] identified three post-buckling behaviors: stable, unstable and asymmetric.
He also noticed that for structures with unstable post-buckling behavior, small initial
geometric imperfections may have a significant influence, causing the ultimate loads
smaller than the critical loads. This kind of structures can be considered as

imperfection-sensitive.
2.4.4 Implementation of imperfection

Shell structures are subjected to loose quality control and large construction tolerances
due to their size and manufacturing scale (often unique). Because it is difficult to
entirely remove all imperfections, different approaches for accounting for the influence
of imperfections in finite element calculations of shell load capacity have been
developed.

For shell structures with constant curvature, it’s possible to develop an analytical
solution. However, for complex shell structures, finite element analysis is usually the
most realistic method. To apply some imperfection on the model, that imperfection must
be identified. With unknown imperfection, the worst situation should be considered (i.e.
the ‘worst’ imperfection should be applied).

Several methods of applying imperfection have been used in previous researches.
Koiter imposes imperfection only in the shape of buckling modes in his initial theory.
The argument was that any imperfection shape may be decomposed into a series of
periodic pattern with Fourier series. He then extended his approach to a more localized,
but still periodic, imperfection and found the same sort of imperfection-sensitivity.
Cederbaum and Arbocz constructed a reliability design theory by taking a probabilistic
approach to Koiter’s theory by varying two critical parameters, initial imperfection
amplitude and the allowable load [11].

Tian Chen[12] used 4 different methods to apply imperfections, one single modal shape
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with variations, combination of multiple modal shapes, Gaussian random imperfection
shape and periodic buckling wave imperfection. He found that for a moderately
sensitive structure such as the hyperbolic cooling tower, all the above imperfection
shapes are similarly applied. However, after many attempts, the first mode still governs
the buckling behavior of the structure. And for a structure with closely spaced
eigenvalues, imperfection sensitivity is severe in general. For such a structure,
imperfection in the shape of the first mode may not govern the capacity. Cylinder is an
extreme example of such a structure, where imperfection in the shape of higher modes,
combinations of mode, or sinusoidal waves may govern. Besides geometrical
imperfections, he has also applied boundary layer imperfection and
stress/strain/displacement imperfection, but it’s shown that geometrical imperfection
has a far larger impact on the buckling capacity of a thin-shell than other types of

imperfections.
2.5 Finite element analysis

2.5.1 Linear buckling analysis

Finite element programs can compute critical load factors and the associated normal
modes. This is called a linear buckling analysis. A finite element model has as many
critical load factors as the number of degrees of freedom. We can specify how many of
the smallest critical load factors the software will compute. If the second smallest
buckling load is very close (say within 2%) to the smallest buckling load we can expect
the structure to be highly sensitive to imperfections.

The critical load factors need to be multiplied by the knockdown factor. The results
need to be larger than 1. Consequently, if all critical load factors are larger than 6, the
structure is safe for buckling.

Linear buckling analyses are performed on shell models without imperfections. We
could add shape imperfections, however, this would not solve anything. The shape
imperfections grow slowly during loading and this is not included in a linear buckling
analyses. For imperfections to grow we need to perform a nonlinear finite element
analysis[13].

2.5.2 Nonlinear finite element analysis

When a shell design is ready it is sensible to check its performance by nonlinear finite
element analyses. In these analyses the loading is applied in small increments for which
the displacements are computed. Figure 2.5.2.1 shows the results of different finite
element analyses of a simply supported shallow dome[14].

The ultimate load is mainly affected by shape imperfections, support stiffness
imperfections and inelastic effects. When these are measured and included in the finite
element model then the predicted ultimate load has a deviation less than 10% of the
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experimental ultimate load[15].

/ linear elastic analysis

A linear buckling analysis

| / Er:;)g;trical nonlinear analysis, \’E/,\f’ L,L\ /

buckling mode

— geometrical nonlinear analysis,
s imperfections

R physical and geometrical nonlinear
analysis, imperfections

displacement

e buckling  «snap through o collapse
Figure 2.5.2.1 Shell finite element analyses of a steel spherical dome [14]
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3 Models and analysis methods

3.1 Model Generation

Nine typical shell models are generated for the verification of the knockdown factor
formula.

Model 1-1: perfect cylinder under axial compression

Model 1-2: perfect cylinder under axial compression and radial compression

Model 1-3: perfect cylinder under axial compression and radial tension

Model 2-1: nearly cylinder with positive Gaussian curvature under axial compression
Model 2-2: nearly cylinder with positive Gaussian curvature under axial compression
and radial compression

Model 2-3: nearly cylinder with positive Gaussian curvature under axial compression
and radial tension

Model 3-1: nearly cylinder with negative Gaussian curvature under axial compression
Model 3-2: nearly cylinder with negative Gaussian curvature under axial compression
and radial compression

Model 3-3: nearly cylinder with negative Gaussian curvature under axial compression
and radial tension

3.1.1 Shape of Shell Structures

This research focus on thin-shell structures, so the radius-to-thickness ratio of the shell

structures is set at 500. The dimensions of the models are as follows.

Table 3.1.1 Dimensions of the models

Models Thickness | Radius a [m] Height
¢ [mm] [m]
Perfect cylinder 1-1; 1-2; 1-3 | 200 100 100
Nearly cylinder with 2-1;2-2;2-3 | 200 100 (top and bottom) | 100

positive Gaussian curvature

105 (middle)
252.5 m (vertical)

Nearly cylinder with

negative Gaussian curvature

3-1; 3-2;3-3

200

100 (top and bottom)
95 (middle)
252.5 m (vertical)

100

S235 steel is used for these shells. Young’s modulus is 210 000 MPa and Poisson’s ratio
is 0.3. To focus on the buckling in the middle of the shell, the bottom support is
completely fixed, and the translations in x and y directions and the rotations of all three
directions of the top support are fixed. The top support is free in the z direction only.
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The axial compression is applied as a vertical line load (2000 kN/m) on the top edge of
the shell. The radial loads are applied as uniform out-of-plane pressure on the shell
surface and their values are determined to make the membrane forces in axial and
circumferential directions to be similar. The radial load values are shown in table 3.1.2
below. The determination of these radial load values involves calculations conducted
using Maple (Appendix 1), followed by validation through linear elastic analysis in
SCIA Engineer. Should the calculated values not meet the aforementioned condition of
similarity in membrane forces, minor adjustments are made iteratively until the required

condition is fulfilled.
Table 3.1.2 Radial Loads

Model 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

Radial
Load 0 -20 20 0 =27 10 0 -12 32.5
[kN/m?]

3.1.2 Elements

The standard shell element in SCIA Engineer is used. The influence length of a cylinder
shell is 2.4\(a f), where a is the radius and ¢ is the thickness[4]. The element size is set
as 1/6 of the influence length. Using this formula, the element size should be 1.79 m

for our model dimension.

3.2 Buckling analysis process

Firstly, a linear elastic analysis is performed to obtain the membrane force of the model.
Then we need to do the linear buckling analysis to observe the buckling modes of the
structure and obtain the buckling load factor. The critical membrane force can thus be
calculated by the membrane force obtained above multiplied with the buckling load
factor. Finally we can estimate the ultimate load by multiplying the critical buckling
load with the knockdown factor.

This estimation of the ultimate load can be verified by the geometrical nonlinear
analysis of the structure, during which the initial imperfection is set as the first buckling
mode and the amplitude is chosen as the thickness of shell.

Comparing the results of these two method, we can verify the knockdown factor

formula.
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4 Linear buckling analysis

In this chapter, the radial loads of the models (model 1-2, 1-3, 2-2, 2-3, 3-2 and 3-3) are
set to make the membrane forces of the axial and circumferential directions similar in
the area where buckling occurs. Linear buckling analyses of the 9 shell models are
performed and the first buckling mode is shown in Figure 4.1.1. The membrane forces
in the table occur near the middle height of the shells, where the points buckles most.

p, <0 p,>0

kG <0
1, =-6987 My =-6926 yy =-4497 My =-11958 1y, =56639 Ny, =-55659
Model 3-2 Model 3-1 Model 3-3
kG = 0
Ny =-4415 ny, =-4280 Ty =0 My =-52140 Ny, =56795 Ny, =-53640
Model 1-2 Model 1-1 Model 1-3
kG >0

Ny, =-21258 nyy=-21541 ny, =23212 nyy=-50554 Ny, =52885 nyy:-50467

Model 2-2 Model 2-1 Model 2-3
Figure 4.1.1 The 1% buckling mode of the 9 shell structures (element size 1.79 m)
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From the figures above we can notice that the ring and column pattern occurs in model
1-1, model 3-1 and model 3-2. The column buckling mode develops in models 1-2 and
2-2. A special half ring buckling mode occur in model 1-3, which will be analyzed in
detail in Chapter 5. In the other models, the ring buckling pattern develops.

In Figure 4.1.1, the membrane forces labeled under the buckling mode images refer to
the critical membrane forces. They are calculated by multiplying the membrane forces
obtained from the linear elastic analyses with the buckling load factors acquired from
the linear buckling analyses. Taking the calculation of the critical membrane force in
the axial direction, nyy, for model 1-1 as an example, the membrane force in the axial
direction obtained from the linear elastic analysis for model 1-1 is -2000 kN/m. The
buckling load factor derived from the linear buckling analysis is 26.07. Therefore, the
critical membrane force, nery, in the axial direction for model 1-1 is -2000 x 26.07 = -
52140 kN/m. The distributions of membrane forces in the axial and circumferential
directions for the 9 models, obtained from the linear elastic analysis, are shown below.

p, <0 p,=0 p,>0
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-2026.12
-2060.00
+2080.00
-2100.00
-2120.00
-2140.00
-2160.00
-2180.00
~2200.00
~2220.00
-2240.00
-2271.90

ny [ki/m ]

kGZO

kG>0

Model 2-2 Model 2-1 Model 2-3

Figure 4.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis
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Figure 4.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic
analysis

With the membrane forces that we obtain from linear elastic analysis and the buckling
load factor from the linear buckling analysis, we can get the critical membrane force.

With the shell buckling formula (4.1) [1], we can also get the critical membrane force,
with which we can better understand the buckling phenomenon of the 9 shell structures

and we can verify the critical membrane force we obtain above.
Er?

Neyp z—067 (41)
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Table 4.1.1 Critical membrane force in the axial direction from buckling formula and FEM analysis.

This analysis is valid for models 1-1, 1-3, 2-1, 2-3 and 3-3 only. (element size 1.79m)

radius ay Nery [KN/m] Nery [KN/m]

[m] (Buckling formula) | ny (FEM) | A, (FEM) (FEM)
model 1-1 100.00 -50400.00 | -2000.00 26.07 -52140.00
model 1-3 100.00 -50400.00 | -2000.00 26.82 -53640.00
model 2-1 105.00 -48000.00 | -1904.84 26.54 -50554.45
model 2-3 105.00 -48000.00 | -1856.07 27.19 -50466.54
model 3-3 95.00 -53052.63 | -2271.91 24.93 -56638.72

Table 4.1.2 Critical membrane force in the circumferential direction from buckling formula and FEM

analysis. This analysis is valid for models 1-1 and 2-2 only. (element size 1.79m)

radius ay Ner [KN/m]

[m] (Buckling formula) | ny (FEM) | A (FEM) | nex [kKN/m] (FEM)
model 1-1 o0 0.00 0.00 26.07 0.00
model 2-2 252.50 -19960.40 | -2009.29 10.58 -21258.29

From Table 4.1.1, it is clear that for models 1-1 (ring and column buckling pattern), 1-
3 (ring buckling pattern), 2-1 (ring buckling pattern), 2-3 (ring buckling pattern) and 3-
3 (ring buckling pattern), the critical membrane forces in the axial direction that we
obtain from linear buckling analysis and linear elastic analysis are similar to those we
obtain from the buckling formula. From Table 4.1.2, it can be noticed that for models
1-1 (ring and column buckling pattern), 2-2 (column buckling pattern), the critical
membrane forces in the circumferential direction that we obtain from linear buckling
analysis and linear elastic analysis are similar to those we obtain from the buckling
formula.

For models 1-2 (perfect cylinder: axial and radial compression), 2-2 (positive Gaussian
curvature cylinder: axial and radial compression), 3-1 (negative Gaussian curvature
cylinder: axial compression) and 3-2 (negative Gaussian curvature cylinder: axial and
radial compression), it’s obvious that the buckling load factor is much lower than others.
The buckling behavior of shell structures is complex and influenced by multiple factors
such as geometry, boundary conditions, and material properties. In the given models,
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different characteristics lead to variations in the buckling load factor.

For model 2-2, the low buckling load factor is due to the occurrence of the column
buckling pattern. In a cylinder with positive Gaussian curvature (model 2-2) under axial
and radial compression, the column buckling pattern can dominate. This is because the
geometry and loading conditions may be such that the structure behaves more like a
column in terms of buckling. Column buckling typically has a lower critical load
compared to shell buckling in some cases. When the structure buckles in a column-like
manner, the load-carrying capacity is reduced, resulting in a lower buckling load factor.
For models 1-2, 3-1 and 3-2, the low buckling load factor means that the third mode for
in-extensional buckling is occurring [1]. In a perfect cylinder (model 1-2 under axial
and radial compression) or negative Gaussian curvature cylinders (model 3-1 under
axial compression and model 3-2 under axial and radial compression), in-extensional
buckling can occur. In this type of buckling, the loads are carried mostly by bending
instead of membrane forces. Since membrane forces usually contribute significantly to
the load-carrying capacity of shells, when the load is carried mainly by bending, the
overall load-carrying capacity is reduced, leading to a lower buckling load factor. Also,
the critical membrane forces obtained from linear buckling analysis and linear elastic
analysis being smaller than those from the buckling formula further supports the
occurrence of in-extensional buckling and its impact on reducing the load-carrying
capacity.

We can conclude that:

1) When ring buckling pattern occurs (models 1-3, 2-1, 2-3 and 3-3), the critical
membrane forces in the axial direction that we obtain from the linear elastic
analysis and the linear buckling analysis are similar to those we obtain from the
buckling formula.

2) When the column buckling pattern occurs (2-2), the critical membrane forces in
the circumferential direction that we obtain from linear buckling analysis and
linear elastic analysis are similar to those we obtain from the buckling formula.

3) When the ring and column buckling pattern is observed (model 1-1), the critical
membrane forces in both the axial and circumferential directions that we obtain
from the FEM analysis will be similar to those we obtain from the buckling
formula.

4) When the in-extensional buckling pattern occurs (models 1-2, 3-1 and 3-2), the
critical membrane forces in both the axial and circumferential directions that we
obtain from the FEM analysis is much smaller than those we obtain from the
buckling formula.

And the similarity between the FEM results and the results obtained from the buckling
formula further proves that the FEM models are reliable.
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5 Parameter study of linear analysis

5.1 Element size study

The influence length (the distance from one point of zero deflection to the next point of
zero deflection) can be used to choose a finite element mesh. The influence length of a
cylinder shell is 2.4V(a ), where a is the radius and ¢ is the thickness. We need at least
6 elements in the influence length in order to do the analysis with some accuracy.
According to Table 3.1.1, the radius of our initial model is 100 m and the thickness is
0.2 m. Then the elements size should be 1.79 m.

However, when the element size 0.4\/(a 1) =1.79 m is used, for some models (1-3, 2-1,
2-3, 3-3) there are less than 6 elements in the buckling length, which might lead to an
inaccurate result. So the parameter study of element size is carried out and models with
an element size of 0.2V(a 7) = 0.895 m and 0.15V(a 7) = 0.671 m are analyzed.

5.1.1 Element size: 0.895 m

The first buckling modes of the 9 models with the element size of 0.895 m are shown
in Figure 5.1.1.1. As before, the membrane forces shown in the figure are near the
middle height of the shells, where the shells buckle most.

Comparing Figure 5.1.1.1 with Figure 4.1.1, it can be noticed that for most models, the
1* buckling mode shapes just have some slight changes with a smaller element size.
The only one that has a remarkable change is model 1-3, which has a so-called half ring
buckling pattern in the previous analysis with an element size of 1.790 m. However,
when the element size is 0.895 m, its buckling pattern will become a complete ring
buckling pattern. As mentioned before, the model 1-3 has less than 6 elements in the
buckling length with an element size of 1.79 m, thus we can conclude that a smaller
element size can indeed improve the accuracy of model 1-3 and the requirement of at
least 6 elements in the buckling length is necessary.
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ny, =-20956 Ny, =-21241 Ny, =22566 Ny, =-49220 Ny, =51238 nyy, =-48998

Model 2-2 Model 2-1 Model 2-3
Figure 5.1.1.1 The 1* buckling mode of the 9 shell structures (element size 0.895m)

The distributions of membrane forces in the axial and circumferential directions for the
9 models, obtained from the linear elastic analysis, are shown below.
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Figure 5.1.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis
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Figure 5.1.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic

analysis

The critical membrane forces of the axial directions and the circumferential directions
from the buckling formula and the FEM analysis with the element size of 0.895 m are

as follows.
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Table 5.1.1.1 Critical membrane force in the axial direction from buckling formula and FEM analysis

(element size 0.895m)

radius ax Nery [KN/m] Nery [KN/m] % Difference

[m] (Buckling formula) | ny (FEM) | A (FEM) (FEM) from Chapter 4
model 1-1 100.00 -50400.00 | -2000.00 25.55 -51100.00 -1.99%
model 1-3 100.00 -50400.00 | -2000.00 26.01 -52020.00 -3.02%
model 2-1 105.00 -48000.00 | -1904.78 25.84 -49219.52 -2.64%
model 2-3 105.00 -48000.00 | -1855.98 26.40 -48997.87 -2.91%
model 3-3 95.00 -53052.63 | -2272.01 24.19 -54959.92 -2.96%

Table 5.1.1.2 Critical membrane force in the circumferential direction from buckling formula and FEM

analysis (element size 0.895m)

radius ay Nerx [KN/m] Nerx [KN/m] % Difference

[m] (Buckling formula) | ny (FEM) | A« (FEM) | (FEM) from Chapter 4
model 1-1 © 0.00 0.00 25.55 0.00 0.00%
model 2-2 252.50 -19960.40 | -2009.24 10.43 -20956.37 -1.42%

Compared Table 5.1.1.1 and 5.1.1.2 with Table 4.1.1 and 4.1.2, it can be noticed that
critical membrane forces and the buckling load factors that we obtained from the
models of a element size of 0.895 m are similar to those we obtained from the models
of a element size of 1.79 m, with a difference of less than 5%.

Therefore, we can conclude that the formula 2.4V(a 7) for the influence length is useful
for most cases, although an extra check is needed to ensure there are at least 6 elements
in an influence length, and a smaller element size may be required when there are less

than 6 elements in the influence length.
5.1.2 Element size: 0.671 m

There are slight differences between the buckling modes with an element size of 0.4(a
7) and those with an element size of 0.2V(a #). For example, according to Figure 4.1.1,
the model 1-1 has 4 rows of ‘chess’ when the element size is 0.4V(a ?), but it has 5 rows
of ‘chess’ with an element size of 0.2\(a 7) in Figure 5.1.1.1. Another example is the
model 2-2, the buckles of which in Figure 5.1.1.1 are mostly identical, while in Figure
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4.1.1, it can be noticed that some buckles of model 2-2 are deep and others are light.
Based on these differences, the analysis with an even smaller element size, 0.15V(a ?)
=0.671 m is carried out to check whether the results from the element size of 0.2V(a #)
are accurate or not.

The first buckling modes of the 9 models with the element size 0of 0.671 m are as follows.
The membrane forces below are near the middle heigh of the shells, where the points
buckles most.
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Model 2-2 Model 2-1 Model 2-3
Figure 5.1.2.1 The 1% buckling mode of the 9 shell structures (element size 0.67 lm)

It is obvious that the buckling modes in Figure 5.1.2.1 are very similar to those in Figure
5.1.1.1.

The distributions of membrane forces in the axial and circumferential directions for the
9 models, obtained from the linear elastic analysis, are shown below.
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Figure 5.1.2.2 Membrane force distribution in the axial direction obtained from linear elastic analysis
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Figure 5.1.2.3 Membrane force distribution in the circumferential direction obtained from linear elastic

analysis

The critical membrane forces of the axial directions and the circumferential directions

from the buckling formula and the FEM analysis with the element size of 0.671 m are

as follows.
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Table 5.1.2.1 Critical membrane force in the axial direction from buckling formula and FEM analysis

(element size 0.671m)

radius ax Nery [KN/m] Nery [KN/m] % Difference from

[m] (Buckling formula) | ny (FEM) | A, (FEM) (FEM) subsection 5.1.1
model 1-1 100.00 -50400.00 -2000.00 25.47 -50940.00 -0.31%
model 1-3 100.00 -50400.00 -2000.00 25.88 -51760.00 -0.50%
model 2-1 105.00 -48000.00 -1904.77 25.72 -48990.68 -0.46%
model 2-3 105.00 -48000.00 -1855.97 26.28 -48774.89 -0.46%
model 3-3 95.00 -53052.63 -2272.02 24.07 -54687.52 -0.50%

Table 5.1.2.2 Critical membrane force in the circumferential direction from buckling formula and FEM

analysis (element size 0.671m)

radius ay Nerx [KN/m] Nerx [KN/m] % Difference from

[m] (Buckling formula) | ny (FEM) | A, (FEM) (FEM) subsection 5.1.1
model 1-1 o 0.00 0.00 25.47 0.00 0.00%
model 2-2 252.50 -19960.40 -1988.11 10.41 -20696.23 -1.24%

Compared Table 5.1.2.1 and 5.1.2.2 with Table 5.1.1.1 and 5.1.1.2, it can be noticed
that the membrane forces obtained from the FEM analyses with an element size of
0.671m are similar to those with an element size of 0.895m. Based on the fact that the
buckling patterns and the critical membrane forces are extremely similar to those in
subsection 5.1.1, we can conclude that an element size of 0.2\(a £) is accurate for our

analysis and there is no need to use smaller elements.
5.2 Model scale study
5.2.1 Half-scale model with unchanged load

Our initial model has a radius of 100 m and a thickness of 0.2 m. The element size,
O.4\/(a f), is only related to the radius and thickness of the model. If the radius-to-
thickness ratio is not changed, it was expected that scaling the model dimensions will
not affect the result of our investigation. To demonstrate this, 9 models with the
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following dimension were analyzed.

Table 5.2.1.1 Dimensions of the models

Models Thickness | Radius a [m] Height
t [mm] [m]
Perfect cylinder 1-1; 1-2; 1-3 | 100 50 50
nearly cylinder with 2-1;2-2;2-3 | 100 50 (top and bottom) | 50
positive Gaussian curvature 52.5 (middle)
nearly cylinder with 3-1;3-2;3-3 | 100 50 (top and bottom) | 50
negative Gaussian curvature 47.5 (middle)

The element size for this model is still 0.4\(a ), which is 0.895 m. The radial and axial
loads are the same as the loads in Chapter 4. The first buckling modes of the 9 models
with the element size of 0.895 m are shown in figure 5.2.1.1. The membrane forces
shown in the figure are near the middle height of the shells, where the points buckles
most.

Comparing Figure 5.2.1.1 with Figure 4.1.1, the buckling patterns have changed in
Figure 5.2.1.1. This is due to the fact that the scaling of the dimension makes the
membrane forces of the axial and circumferential directions not similar anymore.
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Figure 5.2.1.1 The 1* buckling mode of the 9 shell structures

The distributions of membrane forces in the axial and circumferential directions for the
9 models, obtained from the linear elastic analysis, are shown below.
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Figure 5.2.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis
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Figure 5.2.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic

analysis

The critical membrane forces of the axial directions and the circumferential directions

from the buckling formula and the FEM analysis are as follows

Table 5.2.1.2 Critical membrane force in the axial direction from buckling formula and FEM analysis

radius ax Nery [KN/m] Nery [KN/m] % Difference

[m] (Buckling formula) | ny (FEM) | A« (FEM) | (FEM) from Chapter 4
model 1-1 50.00 -25200.00 | -2000.00 13.04 -26080.00 -49.98%
model 1-3 50.00 -25200.00 | -2000.00 13.41 -26820.00 -50.00%
model 2-1 52.50 -24000.00 | -1904.85 13.31 -25353.55 -49.85%
model 2-3 52.50 -24000.00 | -1880.46 13.45 -25292.19 -49.88%
model 3-3 47.50 26526.32 | -2188.55 11.89 -26021.86 -54.06%
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Table 5.2.1.3 Critical membrane force in the circumferential direction from buckling formula and FEM

analysis
radius ay Nerx [KN/m] Nerx [KN/m] % Difference
[m] (Buckling formula) | ny (FEM) | A (FEM) | (FEM) from Chapter 4
model 1-1 o 0.00 0.00 13.04 0.00 0.00%
model 2-2 126.25 -9980.20 | -598.50 12.93 -7738.61 -63.60%

It can be noticed that most buckling load factors of Table 5.2.1.2 and 5.2.1.3 are about
half of those of Table 4.1.1 and 4.1.2, which is logical based on the formula (4.1) since
both the radius and the thickness have become half of the ones before.

5.2.2 Half-scale model with twice radial load and twice Young’s modulus

In subsection 5.2.1, the buckling modes in Figure 5.2.1.1 are different with those in
Figure 4.1.1, which is caused by the fact that the scaling of the dimension makes the
membrane forces of the axial and circumferential directions not similar any more. Thus
in this subsection the radial load is doubled to make the ratio of the axial and
circumferential membrane forces to be the same as that in chapter 4.

The buckling load factors of Table 5.2.1.2 and Table 5.2.1.3 are about half of those of
Table 4.1.1 and 4.1.2. This is logical since in formula (4.1) both the radius and the
thickness are half of before. To obtain the same critical membrane force, the Young’s
modulus is also doubled in this subsection.

The dimension in this subsection is the same as that in subsection 5.2.1 and half of that
in chapter 4. The axial load in this subsection is the same as that in subsection 5.2.1 and
chapter 4. The element size is 0.4\(a t), which is 0.895m. The first buckling modes of
the 9 models with the element size of 0.895m are as follows. Again, the membrane
forces below are near the middle height of the shells, where the points buckles most.
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Figure 5.2.2.1 The 1* buckling mode of the 9 shell structures

Compared with Figure 4.1.1, the buckling patterns almost have not changed at all. Thus
it can be concluded that the scale of the dimension will not affect the buckling patterns.

The distributions of membrane forces in the axial and circumferential directions for the
9 models, obtained from the linear elastic analysis, are shown below.
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Figure 5.2.2.2 Membrane force distribution in the axial direction obtained form linear elastic analysis

40




kG<0

-1850.00
-1880.00
+1900.00
-1920.00
-1940.00
-1960.00
-1980.00

56146

nx [kiWm ]

kGZO

Model 1-3

kG>0

i [km ]

B0.0
A | s
70.00
750.00

.0
70.00
5760

1946.01
1890.00
1860.00
1830.00
1800.00
1770.00
1740.00
1710.00
1650.00
1650.00
1600.00

-639.83

N [km ]

Model 2-2

Model 2-1

Model 2-3

Figure 5.2.2.3 Membrane force distribution in the circumferential direction obtained form linear elastic

analysis

The critical membrane forces of the axial directions and the circumferential directions

from the buckling formula and the FEM analysis are as follows

Table 5.2.2.1 Critical membrane force in the axial direction from buckling formula and FEM analysis

radius ax Nery [KN/m] Nery [KN/m] % Difference

[m] (Buckling formula) | ny (FEM) | A« (FEM) | (FEM) from Chapter 4
model 1-1 50.00 -50400.00 | -2000.00 26.07 -52140.00 0.00%
model 1-3 50.00 -50400.00 | -2000.00 26.82 -53640.00 0.00%
model 2-1 52.50 -48000.00 | -1904.85 26.62 -50707.11 0.00%
model 2-3 52.50 -48000.00 | -1856.07 27.19 -50466.54 0.00%
model 3-3 47.50 -53052.63 | -2271.90 25.00 -56797.50 0.00%
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Table 5.2.2.2 Critical membrane force in the circumferential direction from buckling formula and FEM

analysis
radius ay Nerx [KN/m] Nerx [KN/m] % Difference
[m] (Buckling formula) | ny (FEM) | A (FEM) | (FEM) from Chapter 4
model 1-1 o 0.00 0.00 26.07 0.00 0.00%
model 2-2 126.25 -19960.40 | -2011.32 10.59 -21299.88 0.00%

The values in Table 5.2.2.1 and 5.2.2.2 are very close to those in Table 4.1.1 and 4.1.2.
Thus it can be concluded that the scale of the dimension will not affect the critical

membrane forces of the 9 models.

The analysis above points to the conclusion that the scale of dimension will not affect

the result of our investigation.

5.3 Development of buckling modes

From Table 4.1.1, it can be noticed that a half ring buckling pattern occurs for model 1-
3 (perfect cylinder under axial compression and radial tension). In fact, this half ring
buckling pattern could be regarded as a transition state between the ring and column
buckling pattern and ring buckling pattern. To find out how the buckling pattern
develops, a cylinder under axial compression (2000 kN/m) and different radial loads
(from compression to tension) is analyzed. The element size is 0.895m. The first
buckling modes of this cylinder under different loads are as follows.
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Figure 5.3.1 Buckling modes of a cylinder shell under an axial compression of 2000 kN/m and various

radial loads
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In Figure 5.3.1, it can be noticed that when the radial load is 0 and the cylinder shell is
under pure compression, the ring and column buckling pattern occurs, which means
buckling is occurring in both axial and circumferential directions.

With the increase of the radial compression, the buckling in the axial direction becomes
less and less and finally there is just buckling in the circumferential direction, which
called the column buckling pattern.

When the radial tension is applied to the cylinder shell, there will be more buckling in
the axial direction and less buckling in the circumferential direction. In the end, with
the increase of the radial tension, the buckling in the circumferential direction

disappears and the ring buckling pattern occurs.

Below is a figure showing the buckling load factor as a function of the radial tension.

25 A

20 A

15 -+

Buckling laod factor

-20 -15 -10 -5 0 5 10 15 20
Radial tension [kN/m?]

Figure 5.3.2 Line graph of the buckling load factor as a function of the radial tension

From Figure 5.3.2, it can be observed that when the radial tension is less than 0 kN/m?
(i.e., in the compression range), the buckling load factor decreases rapidly with the
increase of the radial compression magnitude. For example, as the radial compression
increases from 0.5 kN/m? to 20 kN/m?, the buckling load factor drops from 23.82 to
2.13. This shows that radial compression has a significant negative impact on the
buckling load factor of the cylinder shell, greatly reducing its ability to resist buckling.

When the radial tension is greater than 0 kN/m?, the buckling load factor initially
increases rapidly. As the radial tension increases from 0 kN/m? to around 1 kN/m?, the
buckling load factor rises from 25.55 to approximately 26.00. However, as the radial
tension continues to increase further (beyond 1 kN/m?), the growth rate of the buckling
load factor slows down and gradually approaches a relatively stable value around 26.
This indicates that while radial tension can enhance the buckling load factor, the
strengthening effect becomes less pronounced as the radial tension reaches a certain
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level.

Overall, the buckling load factor is highly sensitive to the change of radial load,
especially in the compression range where the negative impact is substantial, and in the
tension range, it shows a trend of first increasing rapidly and then approaching a stable

value.
5.4 Buckling Behavior Analysis of Model 2 - 1 when nxx =0

In this subsection, we explore the buckling behavior of Model 2 - 1 under a special
loading condition. While keeping other conditions unchanged, a radial compressive
load of -7.68 kN/m? is added to Model 2 - 1. This particular load is applied to result in
the circumferential membrane force (nxx) in the middle of the positively curved shell
being zero. The membrane force distributions in the axial and circumferential directions,
obtained from the linear elastic analysis, are as follows. Additionally, the buckling mode
and the associated buckling load factor, obtained from the linear buckling analysis, are
presented below.

Buckling mode Membrane force in the axial Membrane force in the

direction circumferential direction

m [kNm])

Buckling load factor: 25.56 n,,, =-1942 Ny =0

Figure 5.4.1 Membrane force distributions, buckling mode and buckling load factor of positively
curved shell when ng =0

The buckling pattern observed is a ring buckling pattern. We may now conclude that
the curvature in the y-direction is not important up to nxx = 0. The hoop force nxx does
not change the buckling mode or buckling load factor. This also confirms the shell
buckling Formula (4.1).

5.5 Boundary conditions study

In the precious research, the bottom support is completely fixed. The top support is
restricted in the x and y directions and is prevented from rotating, allowing movement
only in the z direction. In this subsection, how the shells behave with hinged supports
will be researched. The bottom of the shell will be supported by a hinge, while the top
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support is designed to restrict the movement in x and y directions and be free to translate
in the z direction and rotate in all three directions. The first buckling modes of the 9

models with hinged supports are as follows.
pZ < 0 = 0 pz > 0

Buckling load factor: 2.92 Buckling load factor: 4.93 Buckling load factor: 24.06
Model 3-2 Model 3-1 Model 3-3

Buckling load factor: 2.07 Buckling load factor: 25.47 Buckling load factor: 25.72
Model 1-2 Model 1-1 Model 1-3

Buckling load factor: 10.42 Buckling load factor: 25.31 Buckling load factor: 25.63
Model 2-2 Model 2-1 Model 2-3
Figure 5.4.1 The 1% buckling mode of the 9 shell structures (hinged support)

It’s obvious that the buckling patterns of the shells with hinged supports are similar to
those with fixed supports in subsection 5.1.1, except in the regions near the support
edges. Shells with hinged supports undergo more intense buckling in the vicinity of the
supports, which is attributable to the fact that hinged supports do not restrict rotations,
thereby contributing to the buckling phenomenon. Another point to note is that the
buckling load factors obtained from the analysis using hinged supports are nearly
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identical to those with fixed supports, although the buckling load factors for shells with
hinged supports are marginally lower than those for shells with fixed supports.

In summary, the support conditions have a limited impact on the shell’s buckling
patterns and buckling load factors. The difference is that shells with hinged supports
are more likely to buckle near the support areas compared to those with fixed supports,
and they tend to have slightly lower buckling load factors.

5.6 Model height study

In this subsection, the impact of model height on the buckling behavior of shell
structures is investigated. Three representative models of three different buckling
patterns, model 1-1 (exhibiting the ring and column buckling pattern), model 1-2
(displaying the column buckling pattern), and model 1-3 (showing the ring buckling
pattern), are selected for analysis. The heights of these models are varied as 50m, 75m,
100m, 125m, and 150m. The buckling modes and buckling load factors obtained from
the linear buckling analyses are as follows.
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Figure 5.5.1 The 1* buckling modes of model 1-1 with different model heights
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Buckling load factor: 27.00
Height: 50m

Buckling load factor: 26.37
Height: 75m

Buckling load factor: 26.14
Height: 100m

Buckling load factor: 26.03
Height: 125m

Buckling load factor: 25.97
Height: 150m

Figure 5.5.3 The 1% buckling modes of model 1-3 with different model heights

For model 1-1 with the ring and column buckling pattern, as the height increases from
50m to 150m, the buckling load factor only shows a slight decrease from 25.76 to 25.51.
The change in the buckling load factor is relatively small, with a decrease of
approximately (25.76 - 25.51) / 25.76 x 100% = 0.97%. The buckling mode remains
relatively consistent, maintaining the characteristic of the ring and column pattern
throughout the height variations, although the number of "rows" in the ring and column
pattern seems to increase with height. This indicates that the height has a limited impact
on the overall buckling behavior and load-carrying capacity of this type of model.
Theoretically, in the ring and column buckling pattern, the load is distributed relatively
evenly in both the axial and circumferential directions. The increase in height does not
significantly alter the stress distribution and the interaction between different parts of
the shell, resulting in only a minor change in the buckling load factor.

Model 1-2, which has the column buckling pattern, experiences a more significant
change in the buckling load factor. It decreases from 4.25 at a height of 50m to 1.44 at
150m. The decrease percentage is (4.25 - 1.44) / 4.25 x 100% = 66.12%, which is a
relatively large change. Theoretically, as the height increases, the slenderness ratio of
the columns in the axial direction effectively increases. According to the Euler buckling
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theory, the critical buckling load is inversely proportional to the square of the
slenderness ratio. Therefore, the buckling load factor decreases significantly with the
increase in height. Regarding the column buckles, it is observed that as the overall
height of the model increases, the height of each individual column buckle becomes
relatively less prominent or shorter compared to the overall height increase. This might
be because the increased height allows for more distribution of the buckling behavior,
resulting in relatively shorter column buckles. At a height of 50m, a certain number of
columns are present, and as the height increases to 150m, the number of visually
distinguishable columns is approximately half of that at 50m. This change in the number
of columns is a direct visual observation and may have implications for the structural
behavior and load-carrying capacity of the model.

In the case of model 1-3 with the ring buckling pattern, the buckling load factor
decreases gradually from 27.00 at 50m to 25.97 at 150m. The decrease is about (27.00
-25.97) / 27.00 x 100% = 3.81%. The number of ring buckles appears to increase
with the increase in height. Theoretically, in the ring buckling pattern, the axial
deformation is the dominant factor that drives the formation of the ring pattern. Axial
compression causes the shell to buckle in the axial direction, which in turn leads to
circumferential deformation and the appearance of the ring buckling pattern. This type
of buckling involves a circumferential wave pattern around the shell, making it a more
global deformation mode that is primarily influenced by the overall axial behavior and
geometry of the shell, rather than local variations. The increase in height may affect the
distribution of axial stress and the interaction between different axial segments of the
shell, resulting in a relatively small decrease in the buckling load factor. However,
compared to the column buckling pattern, where individual columns or segments are
more susceptible to changes in height due to increased slenderness, the impact of height
on the ring buckling pattern is relatively small. This is because ring buckling is a more
global deformation mode, dependent on the entire shell's response, rather than localized
instabilities.

In general, The buckling load factor decreases with the increase of the model height.
The height of the shell structure has different degrees of influence on the buckling
behavior and load-carrying capacity of the shell structure depending on the buckling
pattern. For the ring and column buckling pattern, the influence is relatively small; for
the column buckling pattern, the influence is significant; and for the ring buckling
pattern, the influence is moderate. When designing shell structures, the height factor
needs to be considered comprehensively according to the specific buckling
characteristics to ensure the structural safety and stability.
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6 Geometrical nonlinear analysis

In this chapter, geometrical nonlinear analyses are conducted. The first buckling modes
obtained from the linear stability analyses are chosen as the initial geometrical
imperfections with imperfection amplitudes of £200 mm (shell thickness). These two
imperfection amplitudes correspond to two distinct nonlinear combinations, labeled as
NC1 (200mm) and NC2 (-200mm), respectively. The element size is 0.2V(a f), which
1s 0.895 m. The Newton-Raphson method is used. The initial load factor in the nonlinear
combination is set as 50. The load is applied in 80 steps. The ultimate load is defined
as the product of the applied load and 50 (n - 0.5)/80, where 7 is the load step at which
divergence of the iterations occurs. And 50 (n - 0.5)/80 is the buckling load factor for
the geometrical nonlinear analysis. The nonlinear buckling patterns of the 9 models
obtained from geometrical nonlinear analyses with imperfection amplitudes of 200 mm
(NC1) are shown in Figure 6.1.

In Figure 6.1, the membrane forces labeled under the buckling patterns are calculated
using the Sanders-Koiter equations[4], and the calculation details are shown in
Appendix 2.
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Ny, =-5740 My =-5352 Ny =5196 My =-12495 Ny =13245 My =-13695
Buckling load factor: 2.81 Buckling load factor: 6.56 Buckling load factor: 7.19

Figure 6.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear
buckling load factors included

The buckling patterns of NC2 (imperfection amplitude : -200 mm) are identical to those
of NC1 (imperfection amplitude : 200 mm), with the exception of being rotated by a
certain angle, and thus they are not included here. The specific images can be referred
to in Appendix 3. Additionally, NC2 and NCI1 share the same buckling load factor.



7 Parameter study of the nonlinear analysis

7.1 Imperfection amplitude study

In Chapter 6, the imperfection amplitudes used for the geometrical nonlinear analyses
are 200mm (NCI1) and -200mm (NC2), the absolute values of which are equal to the
shell thickness t. In this section, different imperfection amplitudes are applied.

7.1.1 Imperfection amplitude: 100mm (0.5t)

In this subsection, the first buckling modes obtained from the linear stability analyses
are still chosen as the initial geometrical imperfections with the imperfection
amplitudes of £100 mm (half of the shell thickness). These amplitudes correspond to
two separate nonlinear analyses, identified as NC1 (with +100 mm) and NC2 (with -
100 mm). The element size remains at 0.895m (0.2\(a f)). The Newton-Raphson
method is used. The nonlinear buckling patterns of the 9 models obtained from
geometrical nonlinear analyses with imperfection amplitudes of 100 mm (NC1) are as
follows and the buckling patterns of NC2 can be referred to in Appendix 3.

In Figure 7.1.1.1, the membrane forces labeled under the buckling patterns are
calculated using the Sanders-Koiter equations[4], and the calculation details are shown
in Appendix 2.
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Figure 7.1.1.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear

buckling load factors included

7.1.2 Imperfection amplitude: 400mm (2t)

In this subsection, the first buckling modes obtained from the linear stability analyses

are still chosen as the initial geometrical imperfections with the imperfection
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amplitudes of £+400 mm (twice shell thickness). These amplitudes correspond to two
separate nonlinear analyses, identified as NC1 (with +400 mm) and NC2 (with -400
mm). The element size remains at 0.895m (0.2V(a #)). The Newton-Raphson method is
used. The nonlinear buckling patterns of the 9 models obtained from geometrical
nonlinear analyses with imperfection amplitudes of 400 mm (NC1) are as follows and
the buckling patterns of NC2 can be referred to in Appendix 3. In Figure 7.1.2.1, the
membrane forces labeled under the buckling patterns are calculated using the Sanders-
Koiter equations[4], and the calculation details are shown in Appendix 2.

p:<0 D= p:>0

kG<0

Model 3-2 Model 3-1 Model 3-3
ny, =-7844 My =-8547 My =-5196 My =-13811 ny,, =10766 nyy, =-9874
Buckling load factor: 4.06 Buckling load factor: 6.56 Buckling load factor: 4.69

Model 1-2 Model 1-1 Model 1-3
Ry, =-5620 My =-5620 =0 My =-23120 Ny, =9380 nyy, =-9380
Buckling load factor: 2.81 Buckling load factor: 11.56 Buckling load factor: 4.69

kG>0

Model 2-1 Model 2-3
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Ny =-4473 p, =-4171 Ny =3216 ny,=-7733 Ny =8639 n,=-8933

n
Wy
Buckling load factor: 2.19 Buckling load factor: 4.06 Buckling load factor: 4.69

Figure 7.1.2.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear
buckling load factors included

7.1.3 Imperfection amplitude: 800mm (4t)

In this subsection, the first buckling modes obtained from the linear stability analyses
are still chosen as the initial geometrical imperfections with the imperfection
amplitudes of £800 mm (four times shell thickness). These amplitudes correspond to
two separate nonlinear analyses, identified as NC1 (with +800 mm) and NC2 (with -
800 mm). The element size remains at 0.895m (0.2V(a 7)). The Newton-Raphson
method is used. The nonlinear buckling patterns of the 9 models obtained from
geometrical nonlinear analyses with imperfection amplitudes of 800 mm (NC1) are as
follows and the buckling patterns of NC2 can be referred to in Appendix 3.

In Figure 7.1.3.1, the membrane forces labeled under the buckling patterns are
calculated using the Sanders-Koiter equations[4], and the calculation details are shown
in Appendix 2.
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Figure 7.1.3.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear
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buckling load factors included

7.1.4 Conclusion

In the parameter analysis of the nonlinear study, it is observed that the amplitude of
imperfections significantly influences the buckling behavior of the structure.
Regarding the buckling pattern, a notable shift is identified when compared to the
results from the geometric nonlinear analysis presented in Section 6.2. As the
imperfection amplitude intensifies, the buckling pattern undergoes substantial changes
in certain models. For instance, in some models, as the imperfection amplitude
increases from 0.5t to 4t, there is a distinct alteration in the location and severity of local
buckling. Take model 1-2 for example, at higher imperfection amplitudes, certain areas
of the structure, particularly near the boundaries, experience more pronounced buckling.
This may be attributed to the sensitivity of the boundary conditions to imperfections
and the localized stress concentrations within the structure. In other models, such as
model 2-2, while the overall buckling pattern varies with different imperfection
amplitudes, the degree of buckling in some key regions (e.g., the central area of the
structure) changes relatively little. This may be because the middle of the structure is
relatively uniform and the response to imperfections is relatively stable.

As for the buckling load factor, it is evident that the buckling load factor diminishes
with the increase in imperfection amplitude. This trend was suggested in the geometric
nonlinear analysis in Section 6.2, but it is more pronounced in the parameter analysis.
As the imperfection amplitude increases, the structural capacity to bear loads is reduced,
leading to a lower buckling load factor. This is because a larger imperfection amplitude
makes the structure more prone to buckling and reaches the critical buckling state at a
lower load.

Overall, the imperfection amplitude has a significant impact on the bearing capacity
and buckling behavior of the shell. As the imperfection amplitude increases, the bearing
capacity of the shell decreases, as indicated by the decrease of the buckling load factor.
At the same time, the buckling pattern also changes, and the buckling degree of local
areas may change to different extents due to factors such as structural characteristics
and boundary conditions.
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8 Knockdown factor calculation

Using formula (1.1), we can calculate the knockdown factor values in axial and
circumferential directions for the nine shell models by Maple. The calculation details
are attached in the Appendix 4. In Section 5.1, it is proved that the element size 0.2V(a
t) is accurate for our analyses, so the membrane forces we use are from Table 5.1.1.1
and Table 5.1.1.2.

8.1 Imperfection amplitude: 200mm (t)

When the amplitude of imperfection is equal to the shell thickness, the knockdown
factor calculated by Maple using equation (1.1) yields two or three values, among which
only one falls within the range of 0 to 1, and this is the only reasonable value, as follows

Table 8.1.1 The knockdown factor values in circumferential and axial direction and the knockdown
factors (imperfection amplitude: t)

Cx Cy C Buckling Pattern
(Circumferential) | (Axial)

Model 1-1 0.25 0.25 ring and column
Model 1-2 in-extensional
Model 1-3 0.29 0.29 ring
Model 2-1 0.27 0.27 ring
Model 2-2 0.22 0.22 column
Model 2-3 0.29 0.29 ring
Model 3-1 in-extensional
Model 3-2 in-extensional
Model 3-3 0.28 0.28 ring

8.2 Imperfection amplitude: 100mm (0.5t)

When all other conditions are kept constant, and the imperfection amplitude is set to
half the shell thickness, the knockdown factor computed by Maple using equation (1.1)
yields two or three values, some of which are too close to zero, some are negative, and
some are excessively large. We select only the most reasonable value among them, as
follows
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Table 8.2.1 The knockdown factor values in circumferential and axial direction and the knockdown
factors (imperfection amplitude: 0.5t)

Cx Cy C Buckling Pattern
(Circumferential) | (Axial)

Model 1-1 0.33 0.33 ring and column
Model 1-2 in-extensional
Model 1-3 0.41 0.41 ring
Model 2-1 0.38 0.38 ring
Model 2-2 0.43 0.43 column
Model 2-3 0.43 0.43 ring
Model 3-1 in-extensional
Model 3-2 in-extensional
Model 3-3 0.39 0.39 ring

8.3 Imperfection amplitude: 400mm (2t)

Increasing the imperfection amplitude to double the shell thickness, the calculation of
the knockdown factor again produces several potential values. We identify and use the
single value that lies between 0 and 1, ensuring the validity and practicality of the
knockdown factor. The detailed outcomes for this scenario can be found in Table 8.3.1.

Table 8.3.1 The knockdown factor values in circumferential and axial direction and the knockdown
factors (imperfection amplitude: 2t)

Cx Cy C Buckling Pattern
(Circumferential) | (Axial)

Model 1-1 0.21 0.21 ring and column
Model 1-2 in-extensional
Model 1-3 0.23 0.23 ring
Model 2-1 0.22 0.22 ring
Model 2-2 0.18 0.18 column
Model 2-3 0.23 0.23 ring
Model 3-1 in-extensional
Model 3-2 in-extensional
Model 3-3 0.23 0.23 ring

8.4 Imperfection amplitude: 800mm (4t)

Further increasing the imperfection amplitude to four times the shell thickness, the
computation of the knockdown factor using equation (1.1) in Maple once more provides
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a set of values. From this set, we choose the only value that is within the acceptable
range of 0 to 1, which is the most physically meaningful. The results for this condition
are summarized in Table 8.4.1.

Table 8.4.1 The knockdown factor values in circumferential and axial direction and the knockdown
factors (imperfection amplitude: 4t)

Cx Cy C Buckling Pattern
(Circumferential) | (Axial)

Model 1-1 0.19 0.19 ring and column
Model 1-2 in-extensional
Model 1-3 0.20 0.20 ring
Model 2-1 0.19 0.19 ring
Model 2-2 0.17 0.17 column
Model 2-3 0.19 0.19 ring
Model 3-1 in-extensional
Model 3-2 in-extensional
Model 3-3 0.20 0.20 ring

It can be noticed that in the above 4 tables of chapter 8, the knockdown factor values in
the circumferential direction (Cx) for models 1-1, 1-2 and 1-3 are 0. In fact, these three
models are perfect cylinders, which means their curvatures in the circumferential
direction (kyy) are 0. However, the term kyy should be in the denominator in the
knockdown factor formula (1.1) when calculating Cx. This makes the knockdown factor
formula invalid for these three models when calculating Cx. The value 0 here describes
an infinitely large flat plate which will buckle at any compressive load.

Considering the knockdown factor values in the circumferential (Cx) and axial (Cy)
directions obtained from formula (1.1), we can determine the knockdown factor (C) for
each model as shown in the last column of Table 8.4.1. For model 1-1, the ring and
column buckling pattern occurs. It can be consider as an infinitely large flat plate in the
circumferential direction and the knockdown factor (C) is determined by its knockdown
factor value in the axial direction (Cy). For models 1-3, 2-1, 2-3 and 3-3, the ring
buckling pattern occurs, so their knockdown factors (C) can be determined by their
knockdown factor values in the axial direction (Cy). For model 2-2, the column buckling
pattern occurs, and the knockdown factor (C) is determined by its knockdown factor
value in the circumferential direction (Cx). For other models (models 1-2, 3-1 and 3-2),
in-extensional deformation occurs and equation (1.1) is not applicable to in-extensional
buckling.

61



9 Comparison and discussion

The 4 tables below show load factors obtained from linear stability analyses (LBA) and

geometrical nonlinear analyses including initial geometrical imperfections (GNIA) for

4 different imperfection amplitudes. The load factor (formula) is determined by the ratio

of the critical membrane forces derived from the shell buckling formula (4.1) to the

membrane forces obtained through linear elastic analysis, with the value being selected

based on the dominant direction according to the buckling mode. And the knockdown

factor C based on finite element analyses should be equal to the ratio of the load factors

obtained from geometrical nonlinear analysis (GNIA) and linear stability analysis

(LBA). The knockdown factors calculated using this method are compared with those

obtained from the knockdown factor formula in the tables below

Table 9.1 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor

formula) — Imperfection Amplitude: t

Load Load Load C C Buckling
factor factor factor (FEM) | (formula) Pattern
(formula) (LBA) (GNIA)

model 1-1 25.20 26.07 10.94 0.42 0.25 ring and column
model 1-2 in-extensional
model 1-3 25.20 26.82 7.19 0.27 0.29 ring
model 2-1 25.20 26.54 6.56 0.25 0.27 ring
model 2-2 9.93 10.58 2.81 0.27 0.22 column
model 2-3 25.86 27.19 7.19 0.26 0.29 ring
model 3-1 in-extensional
model 3-2 in-extensional
model 3-3 23.35 24.93 6.56 0.26 0.28 ring

Table 9.2 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor
formula) — Imperfection Amplitude: 0.5t

Load Load Load C C Buckling
factor factor factor (FEM) | (formula) Pattern
(formula) (LBA) (GNIA)

model 1-1 25.20 26.07 10.94 0.42 0.33 ring and column
model 1-2 in-extensional
model 1-3 25.20 26.82 11.56 0.43 0.41 ring
model 2-1 25.20 26.54 9.69 0.37 0.38 ring
model 2-2 9.93 10.58 4.69 0.44 0.43 column
model 2-3 25.86 27.19 12.19 0.45 0.43 ring
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model 3-1 in-extensional
model 3-2 in-extensional
model 3-3 23.35 24.93 10.31 0.41 0.39 ring

Table 9.3 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor

formula) — Imperfection Amplitude: 2t

Load Load Load C C Buckling
factor factor factor (FEM) | (formula) Pattern
(formula) (LBA) (GNIA)

model 1-1 25.20 26.07 11.56 0.44 0.21 ring and column
model 1-2 in-extensional
model 1-3 25.20 26.82 4.69 0.17 0.23 ring
model 2-1 25.20 26.54 4.06 0.15 0.22 ring
model 2-2 9.93 10.58 2.19 0.21 0.18 column
model 2-3 25.86 27.19 4.69 0.17 0.23 ring
model 3-1 in-extensional
model 3-2 in-extensional
model 3-3 23.35 24.93 4.69 0.19 0.23 ring

Table 9.4 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor

formula) — Imperfection Amplitude: 4t

Load Load Load C C Buckling
factor factor factor (FEM) | (formula) Pattern
(formula) (LBA) (GNIA)

model 1-1 25.20 26.07 6.56 0.25 0.19 ring and column
model 1-2 in-extensional
model 1-3 25.20 26.82 4.06 0.15 0.20 ring
model 2-1 25.20 26.54 3.44 0.13 0.19 ring
model 2-2 9.93 10.58 2.81 0.27 0.17 column
model 2-3 25.86 27.19 4.06 0.15 0.19 ring
model 3-1 in-extensional
model 3-2 in-extensional
model 3-3 23.35 24.93 3.44 0.14 0.20 ring

By observing the data in the first and second columns of these tables, it can be seen that

for most models, the load factor (formula) and the load factor (LBA) are relatively close.

This indicates that the shell buckling formula used to calculate the load factor (formula)

is generally consistent with the results of the linear stability analysis (LBA) in

predicting the buckling behavior of the models. However, for models 1-2,3 -1 and 3 -
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2, there are significant differences between the two. In these models, the in-extensional
buckling pattern occurs, which may lead to a different buckling mechanism compared
to other models. This difference in buckling behavior may cause the load factor
(formula) calculated based on the shell buckling formula to deviate from the load factor
(LBA) obtained from the linear stability analysis.

It can be noticed that models 1-2, 3-1 and 3-2 have knockdown factors C (FEM) larger
than 1. This is due to in-extensional deformation. The buckling shapes are constrained
by the edges. The critical loads are small, much smaller than the values predicted by
the critical load formula. After buckling, the shell can still carry more load, as shown
by the non-linear analyses. Shape imperfections give small reductions in the ultimate
loads. These shells buckle like flat plates.

The overall error of the knockdown factors derived from the knockdown factor formula,
relative to the knockdown factors obtained from finite element analyses (FEM), is
assessed using the mean square error metric. The detailed code is provided in the

Appendix 5, where it can be observed that the mean square error is 0.0056.

Overall, for most models, the knockdown factor formula gives a reasonable prediction
of the buckling load. Under different imperfection amplitudes, there is a certain degree
of agreement between the knockdown factor calculated by the formula and the ratio of
the load factors obtained by finite element analysis (FEM) (i.e., the comparison between
theory and practice), but there are also some differences. For some special models (such
as models 1 -2, 3 -1 and 3 - 2), due to their special buckling modes (in-extensional
deformation), there are challenges to the predictive precision of the knockdown factor

formula.

When the knockdown factor is greater than 1 (such as models 1-2, 3-1 and 3-2), from
the traditional perspective of judging structural safety based on the knockdown factor,
the structure seems to be "safe", but this is because these models have a buckling
behavior similar to that of a plate under certain conditions, and the actual load-carrying
mechanism and safety need more in-depth analysis.

For most models with knockdown factors within a reasonable range, the safety of the
structure is related to the predicted buckling load. If the actual load is less than the
critical buckling load considering the knockdown factor, the structure is safe in terms
of buckling, but it is also necessary to consider other failure modes (such as yielding,
fatigue, etc.) to comprehensively evaluate the safety of the structure.
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10 Curve fitted knockdown factor formula

In Chapter 9, it was found that although the knockdown factor formula gives a
reasonable prediction of the buckling load for most models, there are still some
differences and challenges. Therefore, it is necessary to further improve the accuracy
of the knockdown factor formula.

In this chapter, we use the data of model 1-1, 1-3, 2-1, 2-2, 2-3 and 3-3 for fitting (24
data points). The independent variables are k;,/k.. (the ratio of curvatures in different
directions), n./ny, (the ratio of membrane forces in different directions), and d/f (the
ratio of imperfection amplitude to the thickness of the shell structure). However, model
2-2 is an exception. Since it exhibits a column buckling pattern with buckling in the
circumferential direction, the fitting is performed using the independent variables kxv/k,y,
nyy/nxe, and d/t. The dependent variable is the knockdown factor C based on finite
element analyses. Maple is used for nonlinear fitting, and the specific code is shown in
Appendix 6. The obtained knockdown factor Formula (10.1) is as follows

kyy 9.63x10~ 2%

kyy | _2d
C=-014xe"*?Tx + 113 x ¢ my — 0,54 x 821077 (10.1)

The comparison of the knockdown factor obtained by the finite element analyses C
(FEM) and the knockdown factor C (formula) obtained by formula (10.1) is shown in
the table below.

Table 10.1 Knockdown Factor C (FEM and fitted knockdown factor formula)

Model | Model | Model | Model | Model | Model
1-1 1-3 2-1 2-2 2-3 3-3
Imperfection | C (FEM) | 0.42 0.43 0.37 0.44 0.45 0.41
amplitude:0.5t | C (fitted) | 0.43 0.32 0.36 0.37 0.30 0.34
Imperfection | C (FEM) | 0.42 0.27 0.25 0.27 0.26 0.26
amplitude: t C (fitted) | 0.40 0.29 0.34 0.35 0.28 0.32
Imperfection | C (FEM) | 0.44 0.17 0.15 0.21 0.17 0.19
amplitude: 2t | C (fitted) | 0.35 0.24 0.28 0.29 0.23 0.27
Imperfection | C (FEM) | 0.25 0.15 0.13 0.27 0.15 0.14
amplitude: 4t | C (fitted) | 0.24 0.13 0.17 0.18 0.11 0.15

By observing the data in the table, it can be seen that the values of the knockdown factor
calculated by the new formula are relatively close to the values obtained from the finite
element analysis (FEM). For most models and imperfection amplitudes, the differences
between the two are within a certain range. The overall error of the knockdown factors
derived from the curve fitted formula, relative to the knockdown factors obtained from
finite element analyses (FEM), is assessed using the mean square error metric. The
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detailed code is provided in the Appendix 5, where it can be observed that the mean
square error is 0.0051, smaller than that of the original knockdown factor formula. This
indicates that the new formula has a certain degree of accuracy in predicting the
knockdown factor. The residual errors that exist might be attributed to the current
limitation in data quantity. As such, it would be beneficial to collect and analyze a more
extensive dataset in future studies to refine the fitting process.

It is worth noting that the current formula is used to calculate the knockdown factor for
buckling in the axial (y) direction. When the structure has a column buckling mode,
which buckles in the circumferential (x) direction, it is necessary to swap the positions
of x and y in the formula. In cases similar to model 1-1, where the ring and column
buckling mode occurs, meaning that buckling happens in both the circumferential and
axial directions, it is essential to verify the formulas for both directions.
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11 Conclusions and recommendations

11.1 Linear Analysis Conclusions

Linear Buckling analysis: The buckling modes of the 9 shell models were observed.
Ring buckling patterns, which are characterized by the buckling in the axial direction,
occurred in:

Model 1-3 (a perfect cylinder under axial compression and radial tension).

Model 2-1 (anearly cylinder with positive Gaussian curvature under axial compression).
Model 2-3 (a nearly cylinder with positive Gaussian curvature under axial compression
and radial tension).

Model 3-3 (a nearly cylinder with negative Gaussian curvature under axial compression
and radial tension).

Column buckling pattern, which involves buckling in the circumferential direction, was
observed in:

Model 2-2 (a nearly cylinder with positive Gaussian curvature under axial compression
and radial compression).

A combination of ring and column buckling, indicating both circumferential and axial
deformation, was noted in:

Model 1-1 (a perfect cylinder under axial compression).

And in-extensional buckling patterns, where the load is carried primarily by bending
rather than membrane forces, occurred in:

Model 1-2 (a perfect cylinder under axial compression and radial compression).
Model 3-1 (a nearly cylinder with negative Gaussian curvature under axial
compression).

Model 3-2 (a nearly cylinder with negative Gaussian curvature under axial compression
and radial compression).

For models with ring buckling patterns (1-3, 2-1, 2-3, 3-3), the critical membrane forces
in the axial direction obtained from linear buckling and elastic analyses were similar to
those from the buckling formula. For the model with a column buckling pattern (2-2),
the critical membrane forces in the circumferential direction had a similar relationship.
In the model with a ring and column pattern (1-1), the critical membrane forces in both
directions were similar to the formula. In the models with in-extensional buckling (1-2,
3-1, 3-2), the buckling load factors were small.

Element Size Study: The influence length formula for choosing a finite element mesh
is useful in most cases. It is essential to ensure there are at least 6 elements in an
influence length. However, sometimes a smaller element size is required. For example,
in some models like 1-3, 2-1, 2-3, 3-3, a smaller element size improved the accuracy as
seen when comparing different element sizes such as 1.79m and 0.895m.
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Model Scale Study: Changing the model scale while keeping the radius-to-thickness
ratio constant generally doesn't affect the buckling patterns and critical membrane
forces significantly. For example, when analyzing half-scale models with the same load,
the buckling patterns changed as the scaling affected the similarity of membrane forces
in the axial and circumferential directions. However, when the radial load was doubled
and the Young's modulus was also doubled in the half-scale models to maintain the ratio
of axial and circumferential membrane forces, the buckling patterns remained almost
unchanged, and the critical membrane forces were very close to those of the original
models. This further demonstrated that the scale of the model doesn't have a major

impact on the critical membrane forces when the relevant factors are properly adjusted.

Buckling Modes Development: The buckling pattern of a cylinder under axial
compression and different radial loads evolves from a ring and column pattern (under
pure compression with no radial load) to a column buckling pattern (with increasing
radial compression) and finally to a ring buckling pattern (with increasing radial
tension). The buckling load factor increases with the increase in radial tension and
decreases with the increase in radial compression. The buckling load factor is highly
sensitive to the change of radial load, especially in the compression range where the
negative impact is substantial, and in the tension range, it shows a trend of first
increasing rapidly and then approaching a stable value.

Buckling Behavior Analysis of Model 2-1 when 7. = 0: For Model 2-1, when the radial
load is set to make the circumferential membrane force (7)) in the middle of the
positively curved shell to be zero, the buckling mode was observed to be a ring buckling
pattern and the buckling load factor doesn’t change much. This indicates that up to 7.
= 0, the curvature in the axial direction has little influence. The hoop force 7. does not
change the buckling mode or buckling load factor, which confirms the shell buckling
formula (4.1).

Boundary Conditions Study: The support conditions (hinged vs. fixed) have a limited
impact on the shell's buckling patterns and buckling load factors. Shells with hinged
supports are more likely to buckle near the support areas and tend to have slightly lower
buckling load factors compared to those with fixed supports.

Model Height Study: For the ring and column buckling pattern (e.g., model 1-1), as the
height increases, the buckling load factor shows a slight decrease, and the buckling
mode remains relatively consistent with the characteristic ring and column pattern,
although the number of "rows" may increase. For the column buckling pattern (e.g.,
model 1-2), the buckling load factor decreases significantly with the increase in height.
For the ring buckling pattern (e.g., model 1-3), the buckling load factor also decreases
gradually with height, and the number of ring buckles appears to increase. Overall,
when designing shell structures, the height factor needs to be considered
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comprehensively according to the specific buckling characteristics to ensure the
structural safety and stability.

11.2 Nonlinear Analysis Conclusions

Imperfection Amplitude Study: The amplitude of imperfections significantly influences
the buckling behavior of the structure. As the imperfection amplitude increases, the
buckling pattern undergoes substantial changes in certain models, and the buckling load
factor diminishes. Larger imperfection amplitudes make the structure more prone to

buckling and reduce its load - bearing capacity.

Knockdown Factor Calculation: The knockdown factors depend on the curvatures, the
imperfection amplitude and membrane forces. For some models, the knockdown factor
formula may not be applicable in calculating the circumferential direction when the
model has a perfect cylinder geometry (e.g., models 1-1, 1-2, 1-3). The knockdown
factor for each model is determined based on the values in the circumferential and axial
directions, considering the buckling pattern.

11.3 Overall Conclusions and Recommendations

Formula Verification: The knockdown factor formula gives a reasonable prediction of
the buckling load for most models. There is a certain degree of agreement between the
knockdown factor calculated by the formula and the ratio of the load factors obtained
by finite element analysis. However, the dependence on a/f is substantial and does not
occur in the formula. Clearly, the formula does not apply to in-extensional buckling.

Curve Fitted Knockdown Factor Formula: The fitted knockdown factor formula shows
relatively close values for most models and imperfection amplitudes, indicating a
certain degree of accuracy. The current formula still exhibits some degree of error,
which may be due to insufficient data quantity. And the dependence on a/t is substantial
and does not occur in the formula.

Future Research: For subsequent research, it will be imperative to enhance the fitting
process by incorporating data from a more extensive array of models. Furthermore, the
impact of the a/f ratio must be taken into account in future investigations. Future studies
could focus on further improving the accuracy of the knockdown factor formula for
special models and exploring more complex shell geometries and loading conditions.
Moreover, investigating the interaction between different types of imperfections and
their combined effect on the buckling behavior could provide more comprehensive
understanding of thin - shell structures' behavior.
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Appendix 2
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13695, 23910 N

13044, 54950 kN
e e

0
13244 54950
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[> &1

[> restare;

> losdfactor — 6.58: Pr=—2000 ¥ . 4 ¢ rap = 100 ddle = 95 m: o_yom 252 Sm: prom 050 ¢ dex middlem - L
$P==2000 T ax top : axm = 25w prem 0 s rnm Frrrr

i middle m— -

1
e —— k= Oy
Ky dxy n

Er
003980596040 o
 —
o loudfector b SEI®_ L fnrm
> = loadfactor P LR lf[ — ]
13810, 5262 kw
e —
— 13m0, 52832 [E)
s v ko 3ty k- It o i, s ]
(@)
[ ez
[> restart:
> loadfactor = 4.08: Pim o= 100m: midile = 95 m: arim 352 5 prim—12 5 K middle = — o
ke xx midilem— g
_ D.003960396040 (22)
=
R axty a
> nrim losdfactor P i mu[ -
= 8547, 368421 (23)
> equm kv middle nxs+ 2 I xy nLxy + KLy rLry + loadfacter ps=0: n_xx = solve{eq n_tx): emu[";""]
T844. 241585 kN
- 224008
T4 241568 @0
D w35
[> restare;
> loadfactar m .56 : Pr==2000 2 ; o 1 top = 100: ddle = 851 oy 252.5m: prem 32558+ ks middle m =t iy =
. 58 1 2000 : axiop + a_xmi ¢ Ay 2826w psem 325 77 ¢ ksl Camiddle <7
formiddle = = g
P @
[ - a_x_top nya
> nrye Toadfactor p 22K, mu[ Z2);
13010, 52032 @8
> sqim k_rtmiddle nLrr+ 2k xy L+ k_yy Ly + losdfactor pzm0:narim selveleq mxx): mu(’“"
15057. 56039 kY
o 12090030 1Y
15057, 96039 @n
Fi=1
> restart:
> loadfacter = 10.94: Pom—2000 2 ; top = 100m: ddlem 100m: aymo: prim 050 ; o rx middlem - — 2k
P00 B a gt : i farmei om0 B ko et
PP S
kyromo w
axtp
> nyy = loadfacear P S ".u[
@
aszn
> eqrm ks middle s+ 2h.ar A+ Ky iy + Joadfuctor pee0:ncr = solveleq ns): erald] S5
nrrm0
0 @
212
> restart;
> loadfactor = 2.81: Pr=—2000 2 ; - 100m: ddlem 100m: o_ymw: prim =120 55 : K remiddlem = o pyim s Ky = 00
cadfactar = 2. 2000 22 o rop = 100m: amidtte = 100 m: arm s prm 20 B omatem - L Lo - i -0
1
I aiddle == T
kremo ®
> n_yre= loadfacter P
5620. 000000 kN
e 2020000000 10
=
— 5620. 000000 (4]
> eqm kremiddle nrx+ 2R sy ey + Ky mer + loadfactor pre0:a st solve(es. mm.mu[“;“].
3620 N
e 3020 W
—s620. ®
-3
> restart.
5 feadfaceerim 11361 Pom—2000 - o ¢ ropem 100m: armiddlem 100 m: arim i prom 200 i ne midle - e
= - r a_zmiddl
'
e midle = — T
kpre=0 @
> nr loadtactar P T et TR0
o 23120. 00000 kN
gy o - 22120 00000 1
= 23120. 00000 (L]
> eqim l_rx_middle n_rx+ 2 J_xr s + I_yy _s7 + loadfactor ps=0 1 n_ex m solve(eq. n_rx) ev-lf["ﬁ
©
a1
> restart,
> loadfactor = 9,695 Pr= = 2000 S . 5 3 top = 100 m: asmiddle = 105 m: a_yom 2525 ms paim 0N ¢ fwmiddle = = ——— ey m = 0o 0
: O - parm 7 TR e :
'
e middle =~
0. 003360396040
iy om — 2003000596040 an
=
- _arwp nrw
> nre dondtacrar P T evatt] T
an
> eqim k_ry_middle n_rx+ 2J_xr sy + i_yy s + loadfactor ps=0 i n_rx = solve(eq. n_rx) mlf[’”"]
an
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> restart
> loadfactar = 4.69: 2000 2 . 2 o tope= 100 ddle = 105 S prm—27 N ddlem L kL -0 -0
cadfactar : 2000 - A top m: a_rmiddle w:ar S prom =2 e = = gy = g =
i idile =~
0.003350396040
P a3z
»
- p_Artm
> nrie losttacrar P LT ente 12T
o 093333 kN
gy SERENI M
—18933. 333333 (e
> eq = ity middle rLxs + 2 Ky n_xy + kLyy iy + loadfactor pe=0: n_xx = sol ve(eq n_sx); emr( "-;']
9581, 298514 kN
s vm - S8 208510 Y
4581, 290514 an
i N e ) L
20008+ 4 tep = 100.8: wnmiddlem 105w ayim 2500 prm 10 5 Kanmidllem - Lk oy =0ty 0
) L
K smidlie m - b
J_yy v - 200SOTHD 1o
A
rem Jondfacs AR g TR
> s Jondfacrar PR et M)
_ zms oaen i
—
- 2319, 047E2 an
> o= ko midile m_sa+ 2y Ly + by Ly + ladiactar =0 = solvton a_an); erald| S
a8
> a3
> restart,
> leadfacter w= 6. iﬁ'P——DOWH‘ top = 100 m: ddle == 95 m: a_yw= 252.5m: :‘—ﬂm‘ lm ﬂle——; I gy - Ky 0:nxyi=0:
.50 o aww + i darm 25w prm 07 1 kca e o 05y = O
L
b_xz_mi ddl e = T
0.003350396040
ey vm 200005600 as
=
axtm e
> nre londtacrar P T evate] ET
13010, 5262 e
> sqim kv middle nvs+ 2 by aLar + iLyr Ly + loadfactor pre0:Lor = solve(eq nLz): mxf[ nrn
5196, 039606 kY
nax i — 212613900 kY
—5196. (35606 (21)
> 23-2
> restart;
> loadfacter = 4.08: 7= =200 2 ;4 4 top = 100m: o xmiddle = 5 m: 4y 29250 prim—12 S ke midilem - Lk y e Lk 0inrm 0
L . e Camiddls M :
Eormiddle m - g
ey i 00000000 @
= losdfactor IR AT E)
> g loadfactar b 220 u[ ),
@
> eqi= k_rxmiddle n_xx+ 2 xr Ly k_yy sy + loadfactor pze0:n s solvefeq nzx); evalf| S
TB44. 241585 kN
P
a
—T8u4. 201585 @0
]
> restart
i
> loadfactar = 10.31: P iz 5w pa = E-W?: i il = xmiads I_yy = Jay = 0cn_xy =0
1
Ko siddlem— o
. (25
=
~ arem
> nryes loadfactor P “Jf[
21705, 26316 kN
L — 2005 616 0
21706, 26316 @8
> eqim kmmiddle nm+ 2 ko ALrr+ krr s+ Joadfacter pe=0: s = solve{e rLaw): evalf] T
@n
1ot
> restart:
"4 1 1
> - 11.58: Pum -100m: 100w armm: prom 0 A JUS SR SO p -
Toadfacter m 11.56: P A top i 100 m: A middlerm 100m: rem s prom 05 ¢ b rmidlem— ok e e 0ty
1
e rx midile m — ol
=0 )
> nrm toadtacrar P L .rm[“{;’]
@
nan
> eq = i_mmiddle n_rx+ 2 xrrLxr + k_yyn_yr + loadfactor ps=0: n_rxs= solve(eq n_xx); evalf| :
mevm 0
o @
w12
> restart.
i ) '
> acterim 2.81: Pim -100m: 100w o romm: prm—20 P SN SO -
loadfactor m 2.81: P A top 200 m: A micllesm 100w arim = prom =20 B e midlerm — o Sk 0inrem 0
'
e midile m — ol
k=0 )
e tonatonerp S e 7))
__ 5620.000000 iff
— 5620, 000000 (6]
> eqm i mLmiddle Lz + Ik xy L+ n_sy+ loadfactar pe=0: n_rx = solve(eq n_ﬂ],rvalf[n'w J
®
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e

> restare;
[ o I 1
> loadfuctor = 4691 Pim =200 L a_ top = 10031 & xmidlle = 10081 ayomw: prrm 20 7 ¢ ko middle= e =00
K middle
@
= Joadfactor P—SE_ B
>y losdfoctor P ST if[
9350, 000900 oV
Ly v — 2080000000 k¥
a
— 4300, 0000 ®
> g ks midlenLre + 3hoay L+ J oy sy + dosdfactor pesrse = soireeq ) evate]
_ e kN
e
3380 @
i1
[ restare;
> loadfactor = 4.06: Pm=—2000- 0. 5 xtop = 100@: a_zmiddle = 105 pa=0 B e midilem—— & Fpm——l; k iy = 0r =0
wi = oF e FEr s e w
L
Kor e = - o
0003060396040 .
- —
aztw o
= Josdfsctor P So00 emalt]
7733, 338933 K
- CREEEH
—7733.333333 (1)
> eqm k xx_niddle nxx+ 2 k_xy Ly + Ky sy + loadfactar pa=0:n_sx = salveleg n_sz), ev
3215, 841585 kN
e 1205 K
3215, 841585 a2
=
[ restart;
> londfactor m 218 pam—2000 ¥ . = 100 m: 2 x middle = 105 =225 m: prm— 27 O
oadfactor = 219 :Pam —2000 1 : % topom 100 m: n x micile m 105 o yim 2525 m: prom T g krw midilem— o
1
e il m—
oy o 00T -
ae
473, 990535 kY
L - 4T3 90335 Y
— 4473, 598535 s)
top =100 m: ddle = 105 m: =252 5m: \—lﬂm'k_r d'diev—flik_ '!—7‘ kgm0 oy v 0
axep : i oy 25m: prm 10 Koremi o - ik = i
1
Ko middle =~
_ 0.003900396040 e
=
2= laadfactor pAtE_ Ly fnTrE
>y loadfacter P EAtE - avald] ]
_ _ EE s
T
g9z, 33mm an
> eqmm ks middle nLrx + 2 k.3y L3y + kyr Ly + londfactor p=0:nax vm salveleq nLrw): evalf| on
_ e 35049 kY
o BT
8639, 351485 a8
s a5
> restart;
> losdfactar im 6.56: Pm=2000-20 ot topm 1001 a_xmiddle = $5m: a_yem 252,501 paom 05F : ks middle m— ik ryom Kty om Oiniyom 0
o 0 ‘ : e ra asmddle ST ' )
. ——
K_xx_middle o
.ousmazeosy an
> losdfactor p EIE mu[
Txmiddle
— 13810, 52632 (200
> sqm ks middle rrx+ 2l ry Ly + Kyr sy + loadfactar pz=0:rzrm solve(eg nLsz); ..,n( -
96, 039508 ¥
sy v - 2126 135008 1Y
a
—3196. 039606 (21
> #3-2
> restart;
> loadfactar = 4.06:Pi==2000 0 ; o 1 topem 1008: L middle - $Sm: arim 25250 prm 128 Kmmmidle - - — L k= ik 0:n - 0
T ] N ° - T wrmiddle T AT N °
1
e middle—— i
0. 003960396040
kyp— = —— (22
=
. arew o new
> s losdfacsor P enats IR
54T 365401 kY
—8547, 368421 (23
> eqm= i mmiddle n_rx+ 2 k_xy mxy + K_yrnLyy + loadfactor pz=0 : nsx = solveleq nrx); evl!f[ ==
-
- To44. 241565 @
D s
5 restart;
> Jondfactor m 4,68 :pam—2000 s o o ropem 100 s wxmicle m 950 arem 2505 ms prem 325 0 i memidite m - b e L b 0
- - 7 T 7
1
B
0. 003860398040
- Et)
a
i axrp o fnrrm
> e doadfactor PR crats HZE)
8873 68a11 Y
™
—9m73. 6421t e
> sqem k_remiddlen o+ 2 kzrry+ krr rLrr + loadfactor pz=0:nLxrm solve(eq nxx); mu("‘,‘;’,
1
A
10765, 5232 @n

Imperfection amplitude: 4t
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a1-1

> restart;
> loadfacter = 6,56 Pom—2000 2 ; 2 ¢ topem 1004 ddlem 100 m: a_yom =: prom 050 dilem oy [
acter = 6,56 Pom 2000 - o s top = 100m: o midlle 100m: arm = prm 0 ko miae T ke ke = G
.
ke xxmidllo m— o
k-0

> nyr= loadfactor P

RN evgll[”"‘]

emiade o
—13120. 00000
> eqim It middle nrr+ 2 J ar Ly + iy Ly + loadfactor pre0: nLrr o= solve(eq, rLxn): mu[ s “J
J—
0.
-2
> restart;

> loadfactar = 3.44: Pom iy = Dy =0

> nr e losdtactar PR cvart{ IR

> eq= i mumiddle nxx+ 2o Ly + K vy nyy + loadfactor pr=0: nxx = solve(eq Lx): m:t‘[ e

s
[ restare;
> londs 0: L 00 m: a1 : : u e s ! o: :
ctor s 4,06 Pom—2000 [+ aLx top = 100m: n_smicllevm 100 m: aLrom = prim 20 B¢ i sx midtlem— Jrom 0y m O
e xmi ]

> n_yri= loadfactor P

e 252)

a_xmiddle

__ 5120, 000000 &V
B

nyy=
— 8120, 600000

> eqem e xx_middle rsx+ 2 k_xy r_ry + by Ly + loadfacter ps=0: n_xs = sol ve(eq mer); -nh’(%

2
[ researe;
> losdfactor == 3.44:Prm—2000 2 o 1 tapim 100 a_xmiddle = 105 m: arem 252 Sm: prom 050 s b e midtlem—— Lk prem— Lk arem Ot 0:
o : R R T ke O o
'
e midite =~
Ky e QL0040
I
- ractor p—=X1B_ arra
> ny = loadfactor P T ERE ..u[ 2=

> g k xxmiddlen se+ 2k sy aar+ ko vy + losdfactor pre0: sz = 2ol ve{eq asx): mu‘[“;:,

-2
> sestary,

a0ty

> leadfactor = 2.61: Fim = 2000 g: ax ropim 100m: a_tmiddlem 105m: &y 25250 paim 5-': ki ddl e —

L
ke xx midite = — ko

0. 003360396040
o ]

> nyre loadfactor P —=StE ev.)t‘("‘”' E

Az middle W

. _ 5352, 380952 kW

=
— 5352, 380052
> eqim k_rxmiddle r_ss+ 2k gy iy + vy vy + loadfactor pr=0: sz o= solve(ea nLxs): eulf[ ’L;‘,'J
5740, 607425 kN
g - ST
— 5740, 607425
23
> restart

> loadfactor m 406 : P — 2000 %; Ax topo= 100m: a_xmiddlem 1058: &y 252.58: prem 10 %‘,’; ke ramiddle = — oy =—hikr - viam -0

1
Lamiddls

ke xemiddle —— e

o Tordfacror Pt oy f I
> e Joadtactor P MR ot LEE),

> eqe= i wrmiddle n_sx+ 2k_xrnsr + by sy + loadfactor pr=0: n_sz == solve{ eq max): mu{ ’*-; J
4T BA158S kY
e
m
TATE. 841585
> %31
> restart;

> loadfactar m 5,311 Prm=2000 2 oy topom 100 m0 Lk =m0

> nsye= losdfector P %‘ mu[ "-:;"‘]

— 11178, 94737

> sqm i mrmiddle nLzr+ 2 k_xr rLxy + Ky Ly + losdfactor pr=0:nxr = solve(sq nrx), a-—m'{ s

4205. 940596 i
Ly - SR

— 4205 540596
> 832
> restart

> loadfactar = 3.44: Pom —2000

- - o 1 1
Axtop= 1000: &% middle = S5a: ayem 325a: prem—12 o ke aiddlem— ek ryom kom0 0

kmiddle ==
0.003960356040
[

arrm

> e lodfactor PR etz LR,

242. 105263 kN

=
7242, 108263

> eq= i zymiddle n xe+ 2k sy n sy + kyrnyy+ loadfactar pr=0:rxei= solve{eq n_rx), g.—.u{’L;;
e om  BEA.354T5 KN
e £l
—e64E. 2475

71

w

10y

an
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a9
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> 233

> restary;

e Tondfactarp 1B (7
> gy loadfactar P u[ — J

> eqim krxmiddle nrs+ 2k arnar+ kry Ly + Joadfactor pre0: sz = solve{eq, rLrr); lui![

78

o . o 1
> loadfactor 1= 3.48:Pr= = 2000 1t &t top = 100 m: a_xmiddle = 95m: 4y = 2525 prim 325 3 ¢ kv middlem = ot ko= Sk = O = 0

femmddle ==
P 0.0019:)@900!0

. T42.105003 b
s =

— 7242 108283

. TBI6.24725
o= o

7895, 247523



Appendix 3

2

kG <0 NC

NC2
ke =0 NC

Model 1-1

NC2 _

kG >0 \ /
Model 2-2 Model 2-1 Model 2-3

Figure 2.1 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: t

p; <0 p;=0 p:>0
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NC2

kG <0
Model 3-3
NC2 ~ei——-
kG = 0
Model 1-3
NC2
kG >0
Model 2-2 Model 2-1 Model 2-3
Figure 2.2 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 0.5t
p,>0
NC2 h 4
kg <0 @

~—

Model 3-2

Model 3-1

Model 3-3
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NC2

kg =0
NC2
kG >0
Model 2-2 Model 2-1 Model 2-3
Figure 2.3 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 2t
NC2
kG <0
Model 3-3
NC2
kg =0 a"
Model 1-2 Model 1-1 Model 1-3
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kG>0

NC2

Model 2-2

Model 2-1

Model 2-3

Figure 2.4 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 4t
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Appendix 4

Knockdown factor calculation by Maple when the imperfection amplitude equals to the
shell thickness t:

| > restart;
| > #1-1

> a x:=100: kxx:= L kv =0:kxy=0:1t=0.2:d:=0.2:v:=0.3: nxx:=-657.5: nyy:=-2000 : eta:=
X

sqrt(S- (1 - \)2)537 :-

L 1-C
2
(B, _2n)
> # eqli=C— kyy z =0: 0= solve(eql, (),
g[fxx oy 3Md) (kxx  2med
| kyy  nxx t kyy t
[Aﬂ 1 2-eta-d)2
kxx t
> 2= (C— =0: C:= solv 2 C);
4 4 kyy nxx  3-etad) (hkyy _ 2-etad solve(eq )
kxx  nyy t kxx t
€= 14. 44052272, 0.2400407074 (1)
> #1-2
| > restart;
> a x= 100 : kxx:= L chkyy =0 kxy=0:¢=02:d=0.2:0:=0.3: nxx:=-2012 : npy:=-2000: eta =
ax
sqrt(S-(l —UZ)) .
L 1-C '
2
[Ayiyi 1- Z-eta-d)
kxx t
> 2= C— =0: C:= solve 2, C);
4 4 kyy _ nxx _ 3-etad) (kyy _ 2-etad solve(eq )
kxx  nyy t kxx t
C = 5.894981233, 0.2198427215 )
> #13
| > restart;

> ax=100: kxx:= € thyyi=0 kxy=0:7:=0.2:d:=0.2:v:=0.3: nxx:= 2000 : nyvy:=-2000: eta:=

sqrt(S-(l 7\)2))7

L 1-c
[}\}7}7 1— 2-eta-d]2
kxx t
> eq?=C— =0: C:= soln 2, C);
ea 4 kyy nxx  3etad) (kry  2-etad solve(eq )
kxx  nyy t kxx t
C:= 0.2876072813, —5.272880752 3)
> #2-1
| > restart;
1 . 1 F 1
> ax=100m: kxx==-——1:s5:=5m: [=100m: a y=0.0s+ = — :kyy==-— 1 kxy==0:¢t=0.2:d=0.2:
ax 8§ s ay
2
V:=20.3: nxx:=791.81 : nyy:=-1905: eta:= w :
I 2
(i _2ne)
> eql:=C— kyy z =0: C:= solveleql, C);
o fxx _myy  3Med) fkxx  Zm0d
kyy  nxx t kyy t
€= 0.3995985530, —0.3334450134 + 0. 2189578413 I, —0.3334450134 — 0. 2189578413 I (4)
| > restart;
1 . 1 F 1
>ax=100m: kxx=-——1s=56m: [=100m: ay=0.5s+——ithkyy=-—— 1 kxy=0:¢t=0.2:d=0.2:
ax 8§ s ay
2
V:=20.3: nxx:=791.81 : nyy:=-1905: eta:= % :
(ﬂ, 1— Z-eta-djz
kxx t
> eq2:= C— =0: C:= solw 2, C);
o 4 kyy  nxx  3-etad) (kyy  2-etad solve(eaZ C)
kxx  nyy t kxx t
C:=0.2670021253, —6.217044247 + 2. 417457642 I, —6.217044247 — 2. 417457642 T (5)
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> 822
| > restart;
1 s 1
> a x:=100-m: kxx:=- rs=5wm: 1=1000m: a y:=0.5-5+ =~ kyy=- kxy=0:¢t=0.2:d=0.2:
ax 8 s ay
2
V:=0.3:eta:= w ; nxx = -1966 : nyy =-2036 :
i 2
[zm i Z-n-d}
> eql=C— kyy 4 =0: C:= solve(eql, C);
o B vy 3Md) [kxx 2med
kyy  nxx t kyy t
C:=0.2206158087, —0.4175537214, —2.285264516 (6)
| > restart;
1 1 F 1
> ax=100m: kxx:=-——"15:=5m: I=1000m: ay:=0.5s+_——1hkyyw=-——1kxy=0:71=02:d:=0.2:
ax 8 s ay
2
V:i=0.3:eta:= w 1 nxxy == -1966 : nyy =-2036
(M7 1— 2-eta-d)2
kxx t
> 2= C— =0: C:= solv 2, C);
o 4. kyy  nxx  3-eta-d) (hyy  2-etad solve(eqZ, )
kxx  nyy t kxx t
C:=0.2202482198, 9.677363703, —7.943256638 (7)
> 223
| > restart;
1 1 P 1
>ax=100:kxx=-—:15:=5: I=10:ay=056s+—— 1 hkyy=-—1kiy=0:71=02:d=02:v:=0.3:
ax 8 s ay
2
t(3-(1—
eta == w :nxx = 1821.3 : nyy:=-1856.42 :
N 2
[, 2mo)
> eqli=C— kyy z =0: C:= solve(eql, C);
4- kex  ppy 3Md) (kex 2M0d
kyy  nxx t kyy t
C:=0.3186475309, —0.4804741759 + 0.2162594130 I, —0.4804741759 — 0. 2162594130 I (8)
| > restart;
1 1 P 1
>ax=100: bkxx=-—:5:=5: /=100:a y:=0.5s+—— 1 hkyy=-—1hkxy=0:1=02:d=0.2:v:=0.3:
ax 8 s ay
2
t{3-(1—
eta == w :nxx = 1821.3 : nyy:=-1856.42 :
(A’yy L 2-eta-d]2
kxx t
> 2= C— =0: C:= solve 2 C);
eq kyy _ nxx _ 3-eta-d) (kyy 2-etad solve(eq )
kxx  nyy t kxx t
C==0.2897135383, —3.955797411, —6.110083529 9)
| > #3-1
| > restart,
1 1 P 1
>ax=100: kxx:=-——15=5: /=100:ay:=05s+——:1hkyw=—1hkxyy=0:7r=02:d=02:0:=0.3:
ax 8 s ay
2
eta == w cnxx =-791.85 : nyy:=-2104:
i 2
(-1 20)
> eql=C— kyy z =0: C:= solve(eql, C);
4 [ Exx ey 3nd) (kxx 2md
kyy  nxx t kyy t
C:=0.1936168083, 1.956408089, 2.352643592 (10)
| > restart;
1 1 P 1
> ax=100: kxx=-——1s5=5: /=100:ay:=05s+=— :kyy==—1hkxyy=0:¢t=02:d=02:0:=0.3:
ax 8 s ay
2
eta == sqrt(Sl(fl;\))) s nxx i=-791.85 : nyy:=-2104:
(ﬂ L 2-eta-d)2
hxx t
> eq2=C— =0: C= solve(eqs, €);
e 4 kyy _ nxx _ 3-eta-d) (hyy  2-eta-d solve(eq )
kxx  nyy t kxx t
C:= 0.2385003794, 6.541756272, 11. 57396664 (11)



v

#3-2
restart;
1 1 P 1
ax=100:kxx=-——:15:=5: 1=100:a y=0.0s+——:hyy=— ' 1hkay:==0:1t=0.2:d:=02:0v:=0.3:
ax 8 s ay
2
eta == sqrt(Sl(fl;\))) s nxx :==-2072.61 : nyy==-2072 :
2
[y _20e)
eql == C— kyy t 0: C:= solve(eql, C);
g (Bxex _my 3Md) (kxx  2med
kyy  nxx t kyy t
€= 0.2251842539, 2.231430598, 2.607459468 (12)
restart;
1 1 F 1
ax=100:kxx:==-——15:=5: /1:=100:ayp=05s+——:1hyw=—1kxy=0:1t=02:d=02:v:=023:
ax 8 s ay
2
eta == w cnxx :=-2072.61 : nyy=-2072 :
(U_}_ 1— 2-eta-d]2
kxx t
2= C— =0: = solv 2, C);
4 4 kyy nxx  3-eta-d) (kyy 2-eta-d solve(eq )
kxx vy t kxx t
C:=0.2208301584, 4. 498164385, 10.05591569 (13)
#3—-3
restart;
1 1 P 1
ax=100: kxx=-——:15:=5: [=10:a y=05s+——:hkyyi=— 1 hkxy=0:1=02:d=02:0v:=0.3:
ax 8 s ay
2
eta == w :nxx = 2232.40 : nyy:=-2271.5:
2
(e, _2n)
eql = (C— Ary £ =0: (= solve(eql, C);
g i oy 3N d) (ks 2M0d
kyy  nxx t kyy t
C:=0.2762022878, 2.286949022, 4.849813192 (14)
restart;
1 1 P 1
ax=100: fxx=-——15:=5: 1=100:ay:=05s+>—:hyy=——1kxy=0:7t=02:d=02:0v:=0.3:
ax 8 s ay
2
eta == M tnxx = 2232.40 : nypy:==-2271.5:
(}\}7}7 1— 2-eta-d]2
kxx t
2= C— =0: (= solve(eqs C);
o4 4. kyy nxx  3-eta-d) (kyy 2-eta-d solve(eq )
kxx  nyy t kxx t
C = 0.2844301747, 8.902590015, —9. 387752925 (15)

Knockdown factor calculation by Maple when the imperfection amplitude equals to
half the shell thickness 0.5t:

B

restart,
#1-1
1 t(3(1 -0
a x:= 100 : kxx = o kyy=0:kxy:=0:¢t=0.2:d=0.1:0v:=0.3: nxx:=0: nyy:=—2000: eta = sqr(l(fcu)) :
[A:Y.Y L 2‘1’]-(:/}:
tegl:=C— kyy £ =0: = solve(eql, C):
ax oy 3Med kxx 2nd
4. - L] == =
kyy  nxx t kyy t
kyy 2-eta-d\’
(@ —l-— ]
7= (— =0: = 2 0):
eq?:=C T _ax 3ewmd) (ky  2etad 0: C:= solve(eqs C);
(kxx nyy z ] (k}rx t ]

= 21, 35513479, 0.3294075357
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> 812
> restart:

2
1 t(3-(1—

> ax'=100: kxx = e ky=0:kxyr=0:¢t:=0.2:d=0.1:v:=0.3: nxx'=—2060.97 : nyy:=—2000: eta:= w :
[ kyy 2.eta-dy’

(E —l-— ]
> eq?:=(C— N kﬂ’_ﬁ ~ Totad ‘ ﬂ_ Tetad =0: C:= solve(eg C):

(k){x ayy t ] (/f}(x t J
€= 3.381970458, 0.2663076976

[> si-3
> restart;

1 t(3:(1 =+
> ax=100:bkxy=— :kyy=0:kxy:=0:1t:=0.2:d=0.1:v:=0.3: nxx:= 2113.25: nyy:==—2000: eta ::M:

| ax 1-¢C
kyy 2.eta-d)”
B T T
> = O e Fewd) (R Zemdy O O seleeas O
kxx  nyy t kxx t
C:=0.4100635492, —2.867095471
[> 22
> restart;

T

r=0:7r=02:d=0.1:v:=0.3: nry:=873.28 : nyy:=—1904. 78 : eta =

1
> ax=100m: kxy:=——:5:=05-p: I:=
ax

sart(a-(1=v))
L 1=C °
| circumferectiaal direction:

=0: C:= solve(eql, ():

€= 0,002219672849, 0. 2489017612, 0.6168126574
:> resrart,
_axial direction

1 1
> axi=100m: kyxi=—— D kyyi=— chyyi=0:t:=0.2:d=0.1:v:=03: pxx=873.28: nyy:=—1904 78 : eta =

ax

sqrt(:}-(l —Ul)) X
1=-C :

=0: €= solve(eq 0);

¢ 3etad) (hpy  2eetad
t kxx t
C:= 0. 3764020041, —2. 589657228 + 1.812317177 I, —2. 589657228 — 1. 812317177 I

[> #22
|> resrart.

1 1P 1 (2 (1-v
> axi=100em: kryi= ——— 5= 5ep: = 100m:a yi=0.55+ 2= kypi=m——— kyri=0: = 0,2 d=0.1:v:=0.3: eta == sart(3-1-v]) prx = —2009, 24 ;
ax Ca Py T—¢

nyy==2036. 55 :

> eqli=C—

=0: = solve(sql, O):

4_[ kv nmvy

&y
€= 0.4331194913, —0. 004293234118, —0. 5706432705
:) restart;

1 P 1 3.(1—v
= 100m: & yi= 0.5 5+ 50— kypim———  kxy =0 1= 0.2:d=0 1ivim 0.3 etaee SO0 =VD) g 5.
8 s ay 1=C

=0: C:= solve(eq2 C):

€= 0.2752155140, 5. 178014636, —3. 818348215
> 82-3
| restart;

sqrt(S-(l 7\1"))
1=¢C

El®

v =100 :
—1855.98 :

1:=100: a_y:= 0.E~s+%‘

=0.1:v:=0.3:eta:= D ax

1940. 83 : n

=0: C:= solve(eql, ():

€= 0.005435443725, 0. 1580019518, 0. 5364164028
:) restart;

1 1P 1 t(3(1=v"
>axr=100:krxi=———:5:=5: ]==100:a 5:=055+ 7~ kyyi=— chxy=0:¢:=02:d=0,1:v:=0.3:eta:= M oy = 1940. 83 1 pyy =
ax 8 5 ay 1=-C
| —1855.98:
- Q-Et{a-d]"
> eq?i=C— Wz Jetad) (ki _ Zetad =0: €= solve(eaZ ()
[ ]'{k.r.\' t

C:=0.4252312437, —2.078263389 + 0. 9603504517 1, —2. 078263389 — 0. 9603504517 1
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> #3-1
> restart;

e 2 aym 00 m 0.2 dim 01w e 0.3 ea o 23 (I=0))
ar T-¢

s nxx ==790: nyy:=

=0: (= solve(eql, ():

C:= 0. 2052509656, 1. 477477

5, 1.686233341

> restart;

> a_x:=100

>
I

L:.F\,rv‘:(J:zE:O.Q d=0.1:v:=0.3:eta=
ay

—2105.2

> egl=C— =0: O:= solve(eq? ():

2-eta-d
t
€= 0.2972922143, 3. 623683810, 7. 059391081

[ a3-2

|> restart;

1P 1 t(3(1 ="
> a_x =100 krr T e k=00 0= 0.2 di= 0.1 0= 0.3 eta = “‘r(l(f")) = —2058. 13 : nyy =
—2043, -

> restart;

> a x=100 : 1=100:a y=0.5-5+ : nxy = —2058. 13 : nyy:=

—2043.
- 2-9(a—dj3
[3
= = 2 0):
’ Tetad) [k _ Zemd) O ¢ solvelead O
r ] [A’,!',\‘ t J
€= 0.2631378504, 2. 727576730, 5. 824629939
D =s-3
| > restart;
> a_x= 100 by = 5]‘_: oy = 0 £= 0.2: d'=0.1: 1= 0.3: eta = &(3]_(_(_11  nx = 223265 ¢ myy =
—2272
> eql:=C— 7 =0: C= solve(eql, C);
n
H)
€= 0. 3427854891, 1.639853297, 3. 132080731
:) restart;
> ax=100: =0.1:0=0.3: eta = w nxx = 2232, 85 ¢ nyy =
—2272.01:
o 2-era-dJ3
t
=0: C= e eql C);
’ Jetad) (kv _ 2etad 0: ¢ solve(eq? C):
t kexx t

€= 0.3901824363, 4.799367561, —b. 339480952

Knockdown factor calculation by Maple when the imperfection amplitude equals to
twice the shell thickness 2t:

> restart;
> #1-1

sqrt(3-(1 —Dz)) .
1-C

> a x:=100: kxx = hkyy=0:kxy=0:¢t=02:d=0.4:0v:=0.3: nxx:=0: nyy:=—2000: eta =

X
[kﬁf 1 Z*H'd]‘

k. t

> B eql=C— 14 =0: (= solve(eql, C);
offxx _myy  3md) (kxx  Znd

L kyy  nxx 3 kyy t

kyy 2.eta-dy

(a —l-—

— e =0: C:= 2, H
> egl:=0C ; kﬂ’ i Teiad @ Tetad 0: C:= solve(eq? C);
(/{XX nyy r ] (k}(x 4 ]

C:= 277.0892178, 0. 2089513615
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D #r-2

| > restart;

2
1 (31—
> ax=100hkxx=— :kyy=0kxy=0:1t:=0.2:d=0.4:v:=0.3: nxx:==—2060.97 : nyy:=—2000: eta = M:

L ax 1-C
kyy 2.eta d)?
R T T
> eqZ = C—4 Ty o detad) (kry  etad =0: C:= solve(eqd ()
( kxx  nyy t ] (kXX t ]
= 10.589565777, 0.1935921347
D #1-3

:) restart;

1 t(3:(1 =+
>ax=100:kxx = — :kyy=0:kxy:=0:¢t:=0.2:d=0.4:v:=0.3: pxx:= 2113.25: nyy:=—2000: eta := M

L ax 1-¢C
kyy 2-eta-d\~
(m —1-—
> eq2'=(C— . kﬂ’_ﬁ_ Tetad . kﬂ’_ etad =0: C:= solve(eqs ():
kxx  nyy t kxx t
C:=0.2266349045, —9. 485244404
[ #2-1

_> restart;
> a_x:= 100-w: kxx

sqrt(S—(l —u:)) X B
L 1-C :
[circumferectiaal direction:

=05 I:=100m: a y:=0.5s+ %Ls- ckyy ‘:—ﬁ kypi=0:r:=02:d=0.4:v:=0.3: pxy:= 872,28 . nyy:=—1904. 78 : eta:=

_ Zetad 2
t

dreta-d) (K
3 3

=0: C:= solve(eqs 0):

y _ Zeetad
t
€= 0.2154345474, —13. 11773986 + 2. 515975061 I, —13. 11773986 — 2. 515973061 I

> %22
> restart;
1 1 t(3-(1— 3
> axi= 100 k= ——— 5= Srs 1= 100w ay = 0.5:54 3 e k= 0 = 0.2 4= 040 = 0.3 eta :=5‘”(1(%f“)):nn==-2009.24:

L Ayy = —2036.55 :

[ 2m-dY

t

> egl=C— =0: = solve(egl, ();

.'u'_v_s-'r]-d . E_Znn’ { )

XY t cyy t

= 0.1822751305, —1.681272382, —5. 525314695
:) restart:
> axi=1002: kx rm 0.2 04w m 0.2 era e SHEZV)) g oy
L ayy = —2036. 55 :
- 2-etra‘d]:

> eg?=C— =0: €= solve(eq? C):

3eta-dy)
L

C:=0.1926693519, 17. 76485705, —16. 24827695
[> 22-3
|> restart.
1 . 1 £ 1
>ax=100:fxx=———:5=5: I:==10:ay=00s+g —:hpy=—— kiy=0:1=02:d:=0.4:v:=0.3:eta= =
a_x 8 s ay
L —1855.98 :
(o zne)
> eql=C— kry =0: = solve(eql, ();
_mr_3nd
XX t
€= 0.2198826945, —1.809447170 + 0. 2630405316 I, —1.809447170 — 0. 2630405316
:) restart;
1 F 1
1:=100:a y=0.5s5+ e Ajw:=7; thyyr=0:1=0.2:d=0.4:v:= ¢ := 1940. 83 : ayy =
2-eta-d

=0: (= solve(eql C):

_ 3etad)
t

€= 0.2258037884, —6. 804694155, —14.82541540
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> #3-1

|> restart;
5 = 100 hvyim ——— = 5 Fim 100 yim 0.5 54 S hyyim ——  kap = 0 2= 0.2 dim 0.4: v = 0.3 : eta = sure(3-(1-v)) s nxwi=—T90: nyyi=

a_x 8 s ay 1=
L —2105
> eql = C— =0: (= solve(eql, ();

“amd of )
t
= 0.1833901388, 2. 910044578, 3. 671261294

:> restart;

1 . 1P 1 (3 (1= v
>ax=100:kxxi=———:5:=5: I =100:a =055+ —:hbw=— 1 hryr=0:1:=02:d=0.4:v:=0.3:eta:= M snxx==T90: nyy:=

ax 85 as 1-¢

—2105.25:

ﬂ‘eta-dJ:
t
- =0: = ? 2 .
7 ea?=C _ 3eetard) (kyy _ 2etad 0: C= solve(eqs O):
kxx t

C:=0.2043931121, 12.65415749, 20. 27772629
i) #3-2
> restart:

rt{3:(1— v
> ax=100 1= 100 a5 = =0 ti=0.2: di= 0.4: 0= 0.3 eta = w  prx = —2088. 13 : ay 1=
L —2043.
kxx 2m-d)”
BT
> eqli=C— = =0: (= solve(eql, €):
_aw_dnd) (ko Znd
nEx t vy t

= 0.2022894044, 3. 496923622, 4. 085845620

:) restart;
1 . L1 F

> a_x= 100: kxx ‘:—: s=0: 1=100:4y:=05s5+ 5 L kyy = r=0.2:d=0.4:v:=03:e1a
| —2043.9: -
> eq2=C— =0: C:= solve(eqs ():

= 0.1953908464, 8. 007547417, 18. 42788910
D #3-23
|> restarr
> a_x:=100: 2232. 65 : ayy =

v

: Ci= solveeql, C);

€= 0.2294599472, 3.588427074, 8. 192502667

_> restart;
s 1 3(1—v’
> a_x=100 1= 1008 yi= 0.5+ g = hrim o k= 05 1= 0.2 di= 0.4:0 = 0.3 eta = w  px o= 2232, 65 : ayy =
| -—o7zoL: n
0. -z -0 = 5 .
> eq? . detad 0: C:= solve(eqd €):

i

t
= 0.2259705799, 17.20351462, —17. 73778405

Knockdown factor calculation by Maple when the imperfection amplitude equals to
four times the shell thickness 4t:

:) restart;
L> #1-1
B 2
1 t(3(1—v
> a x:=100: kxx = = ckyyr=0:kxy=0:1t=0.2:d=0.8:0v:=0.3: nxy:=0: nyy:=—2000: eta = w :
hxx 2m-d :
oy T e
> # eqgl:i=C— 244 =0: C:= solve(eql, ();
g Fx v 3med) (ke 2m0d
L kyy  nxx r kyy t
kyy 2.etady)
(m e
= (= =0: = 2 :
> eq2:=7C ; Ty nex detad Ty detad 0: C:= solve(eg2, ();
kxx  nyy £ kxx t
C:= 1076. 568559, 0. 1877784158
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D> 812

| > restart;

[ 2

1 t(3-(1—
> a x:=100: kxx:= E hkyyi=0:kxy:=0:1t:=0.2:d=0.8:v:=0.3: nxx:=—2060.97 : nyy:=—2000: eta:= w :
[ kyy 2.eta-d)"
(E -l ]
> egli=C— ; @ i Tetad @ Tetad =0: C:= solve(eg ():
kxx  nyy t kxx r
C:= 20, 20811400, 0. 1802975797
[ #1-3
| > restart:
1 sqrt(3~(l —D‘))
> g x=100: kxx = T chkyy=0:kxyr=0:t:=0.2:d=0.8:v'=0.3: nxy:= 2113.25: ayyr:==—2000: eta = — 1 :
| (kﬂf 1 2-eta-d)>
kxx t
> egl:= ['—4 @ i Tetad @ Tetad =0: C:= solve(eqs ();
kxx  nyy r kxx r
C:=0.1959560564, —18.80272016

[ #21
_) restart;

> a x:=100:m: kl’,\'i=—ﬁ rs=D5m: [J:=100m:a y:=05s+ é‘; : kyy 1=—ﬁ thkypi=0:1:=10.2:d=0.8:v'=0.3: nxy:=873.28: nyy:=—1904. 78 : eta:=

sqrt(3~(1 —U’)] .
L 1-¢ ‘
[circunferectiaal direction:

> eql = =0: C= solve(eql, C);

C:=0.2000809045, —3.535523242, —4.043574941

:axial direction
F 1 -
e kyy=———hkxy=0:1:=0.2:d=0.8:v:=0.3: pxx:=873. 28 : nyy:=—1904. 78 : eta =

> a_x=100-m: !{.\'.\':27; cs=0m: I==1000m:ay=0.5s+ s

L
. ax 8
sqrt(S-(J - u')) .

L 1=-c
hyy 2eta-d)’
x T T o
= C— = =0: (= 2 0):
el e Ty o dewmdy [k femdy | ¢ selvelead o
i t kxx t
€= 0.1903239867, —26.24670561, —28. 25317385
[ 202
> restart;
1 L E 1 t(3:(1—v
»ax=100np: kxx=——: :s5:=5m: I'=100m: ay'=05s+ c-—: kyy'= s kxy = 2:d=10.8:v:= 0,3‘eta=:M:nn'z—%ﬁ&%:
ax 8 s a_y 1=-C

ayy =—2036.55:

kxx
T
> egql=C— — =0: C:= solve(eql, ():
ayy
C:=0.1728658288, —4. 286787664, —12. 08705002
:> restart;
3 awm 100 krrm— s S = 100w 2 rm 05054 S L — k=0 r=0.2:d=0,8:0= 0.3 cta = surt(B-(=v)) o0
ax 8 s ay 1=-C
nyy r==2036.55:
2-e(a-d]:
=0: €= o ea? O):
d][ o :_eta_d) 0: €:= solve(eql C):
t

= 0. 1795310218, 34. 55124545, —32. 92237032

[ a2-2
> restart;

= 0: = 0.2:d=0.8:0=0.3:eta = sart(3-{ ) : nxr o= 1940.83: myy =

1=0

> a_x=100: kxx ‘=—L' HECE
—1835.98:

oL

> eql = C—

:> restart;

> a_xi=100: ker D 1=100:a_yi=0.554 é% f(_i's":-ﬁ Chryi=0::=0.2:d=0.8:0:=0.3:eta = w s nryi= 1940.83: myy =

—1855.98 ¢
2-eta-d)’
- _]

t
> eql=C— Teta d 7 Tetad =0: (= solve(eqs ©):
-
X t t

€= 0.1949950383, —13.58429708, —31. 57901737
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>

v
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#3-1
restart;

1 1 g (10
axr= 100:/{.:',1:::—? ts=5: J=100:ay:=0.55s5+ —-?:k}'y: kxypi=0:71:=0.2:d=0.8:v:=0.3:eta:= M:H«H::—Wﬂi nyy =

r X 8
—2105.25:
2n-d)
1- %]
eql == C— = =0: (= solve(eql, :
" koy _pyy  3Med) (ko 2ned “ 9
vy nIx 3 kyy T
C:= 0. 1762273401, 4.820201204, 6. 295913397
restart;
sqrt(3-(
a_x=100: kxx = c5=5:1=100:4y=0.5s54 z-—: kp chyp=0:¢=02:d=0.8:0:=0.3 eta':l—:n.\'.v:—‘.'gl]: nyy =
—2105.25:
2-eta-dy’
Loy ot
2= =0: Ci= el eql C);
eq2 [a Teiad Ty Setad 0: C:= solve(eqd C):
4 ] [Ifx.r 4 ]
= 0. 1859868206, 23. 20727316, 37. 28422995
8732
restart;
1 L F 1 sare(3-(1
a_xi= 100:5{.\'.1’1=—;:5==5: 1= 100:a__t'1=0.5~5+§~?:£{y}'1=;J{.\'j'¢=0;t==0‘2:d==0.8:\1==0,3:eta== 1(—0 ) : pxx==—2058. 13 : myy =
—2043.9:
kxx 2n-d)”
BT
J= = L =0: (:= sol 1, B
“ [ox _ayy_ 3med) (ker 2o ol 9
kyy  mxx t kyy t
C:= 0. 1866771706, 6. 061884985, 6.971859329
restart;
=100 hxxm——:s=5: 1= 100:a y=0.5 12, k=0 8 : v = —2058. 13 :
ax:= : kxy = aﬁx's'_ B = tay=0. »s+s—s, ay T—¢ I XX = . 1
—2043.9:
_ 2etad :
t
eql = oy Tetad =0: (:= solve(eqd ();
) (8 - =)
C:= 0. 1815039069, 15.06824892, 35. 13502295
#3—3
restart:

=0.2:d=0.8:0:=0.3:eta = M—l:mﬁ!= 2232.65: nyy ==

1=

a_x:= 100 : kxx = —L B
a_

x
—2272.01:
2 n-d]
eql = C— =0: C:= solve(egl, ().
Axx _2m-d { 9
kyr t
= 0.2006128054, 6.200107093, 14. 80389668
restart;
a_x = 100: kyx:= —ﬁ: 5:=5: I:=100: 4 y=0.5-s+ %g L kyy = ﬁ chkyy=0:1=02:d=0.8:v:=0.3:eta:= ﬂt(l—(‘—)—)— s axx:= 2232.60: ayy =
—2272.01 B -
kry 2-eta-d)’
R lT T
== E =0: C:= solve(eqd ();
ea?="C Ay _ pxx _ 3-etad) (hpy _ Zetad 0: €= solve(eaZ O):
kxx  nyy T kxx T

= 0.1962182866, 33.86732032, —34. 58299464
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Appendix 5

|> restart:

[» # Standard values

> €= [0.42, 0.43, 0.37, 0.44, 0.45, 0.41, 0.42, 0.27, 0.25, 0.27, 0.26, 0.26, 0.44, 0.17, 0.15, 0.21, 0.17. 0.19, 0.25, 0.15. 0.13, 0.27, 0.15 0.14];
Ci=[0.42, 0.43, 0.37, 0.44, 0.45, 0.41, 0.42, 0.27, 0.25, 0.27, 0.26, 0.26, 0.44, 0.17, 0.15, 0.21, 0.17, 0.19, 0.25, 0.15, 0.13, 0.27, 0.15, 0.14]

[> # Fitted values
> C_fireed = [0.427146636, 0.317822118, 0358426053, 0.368928935, 0.299978937, 0.341780891, 0403326064, 0.264001576, 0.33560551, 0.345108393, 0.276158395, 0.317960348, 0.352618014,
0.243293496, 0.284897431, 0204400314, 0.225450315, 0.267252269, 0.237674452, 0.128349934, 0.169953869, 0.179456752, 0.110506753, 0.152308707]:
€ firred:— [0.427146636, 0. 317822118, 0.359426053, 0. 368928935, 0. 299978937, 0. 341780891, 0. 403326094, 0. 294001576, 0. 33560551, 0. 345108393, 0. 2761568395, 0. 317960349, 0. 352618014,
0.243293496, 0. 284897431, 0. 294400314, 0. 225450315, 0. 267252269, 0. 237674452, 0. 128349934, 0. 169953869, 0. 179456752, 0. 110506753, 0. 152308707]
[> # Formula values
> ¢ formula = [0.33, 0.41, 0.38, 0.43, 0.43, 0.39, 0.25, 0.29, 0.27, 0.22, 0.29, 0.28, 0.2, 0.23, 0.22, 0.18, 0.23, 0.23, 0.19, 0.2, 0.19, 0.17, 0.19, 0.2];
C_forgula = [0.33, 0.41, 0.3, 0.43, 0.43, 0.39, 0.25, 0.29, 0. 0.29, 0.28, 0.21, 0.23, 0.22, 0.18, 0.23, 0.23, 0.19, 0.2, 0.19, 0.17, 0.19, 0.2]

[> # Mumber of data points
> 1= nops(C);
ni= 24
[> # Mean Squared Error (USE) for formula values
> MSE_formula = (1/a) % add((€]4]—C_formula[£]) 2. §=1..n);

MSE. foruula v= 0. 005641666667
[> # Mean Squared Error (MSE) for fitted values
> MSE_fitted i= (1/n)*add((€1i]—C fitted]5]) 2 & = 1..n);

MSE_£itted = 0. 005079140512
> print{ MSE formula, MSE firted )
prirsE a ! 0. 005641666667, 0. 005079140512

>
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Appendix 6

Nonlinear fitting of the knockdown factor formula:

> restart

> with{Statisties) :

> # Define the data directly

> kyy Jixx = [0, 0, 0.396039604, 2,325, 0. 396039004,
nEcary = [0, —1.0566. 5,

— 0. 458467645, 1013592204,
d:-[u&u&uiuinini|1 .
Com [0.42, 0.43, 0.37, 0.4, 0.45, 0.41, 0.42 0.27, 0

Kz [0, 0, 0. 396039604, 2,525, 0 Jeéas%u
—0. 458497645, 1. 013592204, — 1. 04571708
—0.982676133)

0398039604, 0, 0, 0. 396039604, 2535, 0. 396039604, —0.396039604, O, 0, 0.39603%604, 2.
04517067, —0.962676133, 0. —1.030625, — 0. 436467643, 101336 ~ 1045717087

0.15, 0.13, 0
39603904, 0, 0,
08

0.26, 0.26. 0.4, 0.17, 0.15, 0.21, .17, 0.18, 0. 0.15,
0396039604, 0, 0, 0. 396039604, 2. 525, 0. 396039604,

—0.962676133, 0, —1, 056625, — 0. 438467645, 1013592204, — 1. O

nex_ vy = [0, — 1. 0366
~ 0. 458467845, 1, 013592204, — 1. 0487

At (0505050505058 LLLLLL
[0.42, 0.43, 057, 0.4, 0.45, 0.41, 0.42, 0.27, 0.75, 0.27, 0.76, 0.26, 0.44, .17,

0.15,

> # Nonlinear fitving part
> % Dafine the form of the nenlinear function to be fitred
> nenlinear_f = (x1, x2 x3 A & B b D, dj — Avesplatal] + Brew(bre?) + Dbesp(dbad):
nonlinsar_fo= (x], ¥3, 3, A 2, 5 b D, dy = Ae 44

> data_points = [seqf[kry_kaali], mvLapil, dilil, qall nops{kyy_kn)) |

data_points = [[0, 0, 0.5, 0.42], [0. — 1. 056635, 0.5, 0.43], [Muemm —0, 430467645, 0.5, 0.37]
[0, 396039604, — 0. 455487645, 1, 0. 23], 1013992204, 1, 0. 27), [0. 396035604 — 1. D45
[0. 395039604, — 1. 045TLTOBT, 2, 0.17], [—0. 396039604, —0. 982676133, 2, 0.13], [0, O, 4, 0.23
—0.982076133, 4, 0.14]]

> & Separate independent variables

> :mmpus = (esaliobeta], mmtantal, delill £ 1. mopstholan) )

vars =
mdepmdml rnsw-||u 0.0.5], [0, -
1.013592204, 1), [0. 396039604, —1. 0 1), [—0. 395039604, —0. 9EITBITS, 1], [0, O
—1.056625, 4], [0. 396035604, — 0. 458467645, 4], 2 525, 1. 013592204, 4], [D. 356099604, — 1. 0
dependent_vars = [0.42, 0.43, 0.37, 0.44, 0.45, 0,41, 0.42, 0.

. 396039604 —

[0, —1.056625, 2], [0. 39603904, — 0. 458457645,
4], [~ 0.396039004, — 0, 962676133, 4]

[> = Choose the {nm:slel}vd. hers we use the default ‘Levenberg-Marquardt’ methed You can also try other methods like ‘Levenbers—Narquardt’

[> method = * e
sethod = Newton

[> # Set the mavimur mmber of iteratians, Adjust it according to the actual situstion.

> maxiter w= 500,
maziter = 500

[> = Set the canvergence tolerance. You can change it as needed

> telerance = le—20
rolerance = 1. % 1075

[> # Perfom nonlinear fitting wing MoalinearFit fuction

>Tm1uw_m = Mon inearFi t{non ineas_ £, independent_vars, dependent_vars)
—0.1371333650355270
0.323520479461950
1. 130509760R2658
0. 096265727 0049035
= 0. 542 0709835
0. 0828896325353421

nonlinear_fit =

[> estimated 4 1= nanlinear_fir[1];
sstimsted a = nolinear £i1[2
estimated B = nonlinear_fit[3];
sstimated b 1= nonlinear £it[4]:
estimated D = nonlinear_fit[5];
sstimated d 1= nonlinear £i1[6]:

estimated_4 = —0.137133365035220
estimated_a = 0, 323520475461950
estimated B = 1.13030976082858
estimated bim 0. 09620657270045030

estimated D= — 0, 542607750709833
estimated d'm 0. 0826950323353421

[» fitted expression = unapply(monlinear £(x1, ¥ x5, estimated A estimateds, estimated § estimated b estimted D, estimtedd), 31, 3% ¥
fiteed expressian = (xl, ¥2 ¥3) v —0.13713336503522000] o* DEMBEIIE L 4 | ) 3550976082857835
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—0. 382676133, 0, — 1. 03¢

2] [2.525, 10135

0356039604 0395039604, 0, 0, 0.396039604, 2.325, 0. 396039604,

— 0982676133, 0, —1.056625, Q. 450467045, 1.013502204 — 1045717087,

o.14]
395039604, 2. 525, 0. 396039604, —0. 396039604, 0, 0. 0. 396039604, 2. 55,
—0. 436467645, 1, 013592204, — 1,04

DR

Betypet

592204, 0.5, 0.44], [0. 396035604, — 1. 045717087, 0.5, 0.45], [—0. 396039604, —0. 982676133 0.5, .41, [0, 0, 1, 0. 42, [0
962676133, 1, 0.28], [0 0 2 0. 44), [0, —1. 096625,
1056635, 4, 0. 15], [0. 396039604, — 0. 456467645, 4, 0.13], [2.525, 1.013592204 4, 0.27], [0. 396039604, —1. 045717

056625, 0.5}, (0. 390039004, = 0. 459467645 0.5, (2,525, L. 013592204, 0.5], (0. 300039604, — 1. O45TLIORT, 0.5] |~ 0. 396039004, — 0. 902676133, 0. 5] [0, 0 1] [0 ~1.050635, 1], [0. 396035604, =0. $56487045, 1], (2
[—D. 396039804, — 0. 9B267E133, 2], [0, 0, 4], [u

25, 0.27, 0.26, 0.28, 0.4, 0.17, 0.15, 0. 21, 0.17, D.18, 0.25, 0.15, 0.13,

ete.

(e N -

7,019, 0.25, 0.15, 0.13, 0.7, .15, 0.14]

0.17), [0 396035004, — 0. 458467645,

204, 2], [0. 396039604, —1.0

)

®

L0

(o]

(@)

o)



