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Summary 

Shell structures are widely favored due to their ability to bear substantial loads with 

minimal thickness, aligning with contemporary aesthetic sensibilities. This thesis 

investigates the buckling behavior of thin-shell structures with the aim to refine a 

knockdown factor formula. Authored by Yuanxi Zhao under the guidance of Dr.ir. P.C.J. 

Hoogenboom, Ir. A.C.B. Schuurman, and Dr.ir. F.P. van der Meer, this research 

addresses the critical issue of load-carrying capacity reduction due to shape 

imperfections leading to buckling. 

 

A complete range of shell shapes and loading has been studied. The shells buckle in 

ring mode (1-3, 3-3, 2-1, 2-3), column mode (2-2), mixed column-ring mode (1-1) and 

in-extensional mode (3-2, 3-1, 1-2) (page 19). 

 

Linear buckling analyses were conducted to explore how parameters such as height, 

boundary conditions and model size influence the buckling load factor. Geometrical 

nonlinear analyses were conducted using SCIA Engineer, introducing different 

imperfection amplitudes to simulate real-world conditions. The knockdown factor was 

calculated as nonlinear buckling load over linear buckling load. This knockdown factor 

was compared to a knockdown factor obtained from a formula. 

 

The knockdown factor does not depend on the curvature ratio kyy/kxx or the membrane 

force ratio nxx/nyy. It only depends on the imperfection amplitude and d/t (page 65) and 

the slenderness a/t (page 6). The knockdown factor formula produces reasonable values. 

However, the formula is not accurate (page 62). It is recommended to derive a new 

knockdown factor formula. 
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1 Introduction 

1.1 Research objective 

Shell structures are very popular in engineering because of their free forms. They have 

remarkable properties, which is that shells’ curvature enables them to carry distributed 

load as membrane forces. Therefore, they inherently have excellent strength to weight 

ratio, which makes thinner and more aesthetic designs possible. 

Clearly, all possible modes of failure need to be excluded in the design process, such as 

large deformations, disturbing vibrations (serviceability load combinations) yielding, 

crushing, fatigue and buckling (ultimate limit state load combinations). In thin shell 

structures, the buckling failure mode often governs the design[1]. The most serious flaw 

in applying shell structures is that shell buckling is a sudden event and it does not occur 

gradually, which means that shells often do not show enough deformation as a warning 

before collapsing. Therefore, it’s necessary to study the buckling condition and 

behavior of thin-shell structures. 

Experimental buckling results show a wide scatter and the obtained ultimate loads are 

much smaller than the critical loads of the established linear buckling theory (See 

Figure 1.1.1). Previous research shows that this is caused by initial geometric 

imperfections[2]. 

 
Figure 1.1.1 Experimental ultimate loads of 172 axially loaded aluminum cylinders [3] 

 

In designing shell structures, finite element analyses are made to check shell designs. 

There are two ways to predict the buckling load, 1) linear buckling analysis corrected 

by a knockdown factor, or 2) geometrical nonlinear analysis including shape 

imperfections[4]. The first method is quick but not accurate. The second method is 

accurate but time consuming. 

The knockdown factor can vary between 1/10 and 1. Often, 1/6 is used, which is based 

on the lower bound of many aluminum cylinder experiments performed after 1930. This 

kind of lower bound limit is conservative but not accurate, which restricts the 

development of thin shell structures.  

A possibly better estimate of the knockdown factor is provided by a formula that was 
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derived in 2019[4]. 
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where 

C ……………………knockdown factor 

nxx, nyy ……………...membrane forces (nxy = 0) 

kxx, kyy ……………...curvatures (kxy = 0) 

d ……………………amplitude of the shape imperfection 

t …………………… shell thickness 

ν …………………... Poisson’s ratio 

 

The formula shows that the knockdown factor depends on the amplitude d of the 

imperfection. The formula applies to local buckling, therefore, it does not apply to 

global buckling (in-extensional deformation), for which the knockdown factor is just 1. 

The objective of this research is to verify the knockdown factor formula (1.1) by 

geometrical nonlinear analysis considering initial shape imperfections. Physical 

nonlinearities are not considered in this research. 

1.2 Research procedure 

Nine thin shell structures of various shapes and sizes have been designed and modelled. 

The specific parameters of these models can be found in subsection 3.1. The software 

SCIA Engineer was used. Supports were designed such that global buckling (in-

extensional deformation) and edge buckling were prevented as much as possible. The 

local buckling loads were predicted by 1) linear elastic analyses with the formula 

knockdown factor and 2) geometrically nonlinear analysis including shape 

imperfections. The two predictions were compared for the nine designs to verify the 

results of the knockdown factor formula. 
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Figure 1.3.1 Research process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

2 Existing Knowledge 

2.1 Shell structures 

The term "shell" refers to structures that have strength and stiffness owing to their 

thin, natural, and curved form, such as an egg shell, a nut, a human skull, and a 

tortoise shell. The related parameters of a shell, the radius a, the span l and the sagitta 

s, are defined as the figure below. 

 
 Figure 2.1.1  Geometry of a shell [4] 

 

Generally, shells can be classified based on their radius-to-thickness ratio[4]: 

• Very thick shell (a/t < 5) : needs to be modelled three-dimensionally; 

structurally it is not a shell 

• Thick shell (5 < a/t < 30) : membrane forces, out of plane moments and out of 

plane shear forces occur; all associated deformations need to be included in 

modelling its structural behavior 

• Thin shell (30 < a/t < 4000): membrane forces and out of plane bending 

moments occur; out of plane shear forces occur, however, shear deformation is 

negligible; bending stresses vary linearly over the shell thickness 

• Membrane (4000 < a/t): membrane forces carry all loading; out of plane 

bending moments and compressive forces are negligible; for example a tent 

 

Shells can carry the distributed surface load by their membrane forces instead of 

bending moments, allowing for much thinner designs compared with plate structures 

[5][6][7]. Thin-shell structures are lightweight shell-based structures. These curving 

components are put together to form huge constructions. Aircraft fuselages, boat hulls, 

and the roofs of large building are all examples of typical uses. 

Thin-shell structures are preferred by architects and structural designers due to their 

good appearance and excellent strength to weight ratio, especially for large span 

structures. An example of thin-shell structures, the Sydney Opera House (Australia), is 

shown below.  
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Figure 2.1.2 Sydney Opera House (Australia) 

2.2 Coordinate systems and curvatures 

2.2.1 Coordinate systems 

In shell analysis three coordinate systems are used (Figure 2.2.1); 1) a global coordinate 

system to describe the shape of the shell, 2) a local coordinate system to define 

curvature, displacements, membrane forces, moments and loading, 3) a curvilinear 

coordinate system to derive and solve the shell equations[4]. 

 
Figure 2.2.1.1 Global, local and curvilinear coordinate systems [1] 

2.2.2 Surface curvature  

The curvatures for surfaces can be defined. Draw a plane through a normal vector z of 

a surface, and this normal plane will intersect the surface in a curved line. The curvature 

of this line is referred to as normal section curvature k. If the circle lies at the positive 

side of the z axis the normal section curvature is positive. If the circle lies at the negative 

side of the z axis the normal section curvature is negative. The direction of the z axis 

can be chosen freely (pointing inward or outward)[4]. 

The z axis is part of a local coordinate system. When the normal plane includes the x 

direction vector the curvature is kxx. When the plane includes the y direction vector the 

curvature is kyy. These curvatures can be calculated by 

𝑘𝑥𝑥 =
∂2𝑧

∂𝑥2 ,  𝑘𝑦𝑦 =
∂2𝑧

∂𝑦2                      (2.1) 
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The twist of the surface kxy is defined as 

𝑘𝑥𝑦 =
∂2𝑧

∂𝑥 ∂𝑦
                          (2.2) 

2.2.3 Principal curvature 

In a point of a surface many normal planes are possible. If we consider all of them and 

compute the normal section curvatures then there will be a minimum value k2 and a 

maximum value k1. These minimum and maximum values are the principal curvatures 

at this point[4]. 

𝑘1 =
1

2
(𝑘𝑥𝑥 + 𝑘𝑦𝑦) + √

1

4
(𝑘𝑥𝑥 − 𝑘𝑦𝑦)

2
+ 𝑘𝑥𝑦

2              (2.3) 

𝑘2 =
1

2
(𝑘𝑥𝑥 + 𝑘𝑦𝑦) − √

1

4
(𝑘𝑥𝑥 − 𝑘𝑦𝑦)

2
+ 𝑘𝑥𝑦

2              (2.4) 

The directions in the tangent plane in which the minimum and maximum occur are 

perpendicular. 

𝛼 =
1

2
arctan 

2𝑘𝑥𝑦

𝑘𝑥𝑥−𝑘𝑦𝑦
,  

1

2
𝜋 +

1

2
arctan 

2𝑘𝑥𝑦

𝑘𝑥𝑥−𝑘𝑦𝑦
             (2.5) 

2.2.4 Gaussian curvature 

The Gaussian curvature of a surface in a point is the product of the principal curvatures 

in this point 𝑘𝐺 = 𝑘1𝑘2. It can be shown that also 𝑘𝐺 = 𝑘𝑥𝑥𝑘𝑦𝑦 − 𝑘𝑥𝑦
2 . The Gaussian 

curvature is independent of how we choose the directions of the local coordinate system. 

A positive value means the surface is bowl-like. A negative value means the surface is 

saddle-like. A zero value means the surface is flat in at least one direction (plates, 

cylinders, and cones have zero Gaussian curvature)[4]. 

 
 Figure 2.2.4.1 Gaussian curvature (contour plot) 

2.3 Membrane forces, moments and shear forces 

In thin shells the membrane forces, the moments and the shear forces are defined in the 

same way as in plates. 

𝑛𝑥𝑥 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑥𝑥𝑑𝑧                                                       (2.6) 
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𝑛𝑦𝑦 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑦𝑦𝑑𝑧                        (2.7) 

1

2
(𝑛𝑥𝑦 + 𝑛𝑦𝑥) = ∫

−
1

2
𝑡

1

2
𝑡

 𝜎𝑥𝑦𝑑𝑧                   (2.8) 

𝑚𝑥𝑥 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑥𝑥𝑧𝑑𝑧                               (2.9) 

       𝑚𝑦𝑦 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑦𝑦𝑧𝑑𝑧                      (2.10) 

𝑚𝑥𝑦 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑥𝑦𝑧𝑑𝑧                      (2.11) 

𝑣𝑥 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑥𝑧𝑑𝑧                            (2.12) 

  𝑣𝑦 = ∫
−

1

2
𝑡

1

2
𝑡

 𝜎𝑦𝑧𝑑𝑧                      (2.13) 

The positive directions of these internal forces are defined as follows. 

 
Figure 2.3.1 Positive internal forces of shell parts [4]  

 

2.4 Shell buckling theory 

Because of their curvature, shells are thin and may carry distributed surface loads as 

membrane forces. The ability of shells to retain membrane strain energy without 

significant deformation gives them their thinness. Shells may become statically 

unstable and fail severely if this energy is transferred into bending energy[8]. 

2.4.1 Static Instability 

Static instability, often known as buckling, occurs when a structural member or system 

loses its load-carrying capability[7]. Buckling may be classified into two types: 1) 

equilibrium bifurcation (Figure 2.4.1.1, point B) and 2) collapse at the limit load 

without prior bifurcation (point A). A rapid transition in the load-carrying route, such 

as from axial (or membrane) forces to bending moments, and accompanying 
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deformations, is an example of bifurcation. This form of instability may be seen in 

columns, plates, and cylindrical shells. Shallow arches and spherical caps experience 

the second kind of instability, commonly known as nonlinear buckling or "snap-

through" [1][7]. Nevertheless, even arches and spherical caps, given initial geometric 

imperfections, are prone to fail in an asymmetric mode owing to bifurcation prior to 

their limit load, i.e. curve 0-B-D in Fig. 2.4.1.1 [1][7][9]. 

 
Figure 2.4.1.1 Load-deflection curves showing limit and bifurcation points: path 0AC presents 

axisymmetric deformation, 0BD non axisymmetric deformation, 0EF for a real structure (or GNLA 

with imperfection). Snap through occurs at point E. [1] 

 

The loads of Figure 2.4.1.1 can be obtained by multiplying the load factors λ with a 

reference load. λC is the critical buckling load factor at the bifurcation point. λL, the 

limit load factor, is related to the maximum load that can be achieved without prior 

bifurcation. λS is related to the maximum load that can be achieved by a structure with 

initial geometric imperfections before static instability is reached [9]. λS is calculated 

by a geometrically nonlinear analysis (GNA). However, obtaining λS need detailed 

finite element analysis including initial geometric imperfections. An analysis that 

includes such imperfections is referred to as a geometrically nonlinear analysis with 

initial geometric imperfections (GNIA). 

2.4.2 Bifurcation buckling 

The theoretical buckling membrane force of an axially loaded thin-shell cylinder can 

be obtained by the formula below[4]. 

 

2 2

2

1
0.6

3(1 )
cr

Et Et
n

a a

−
=  −

− 
                (2.14) 

Equation (2.14) is also valid for axially loaded hyperboloids and for externally 
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pressurized closed cylinders, spherical shells, domes, and hyperbolic paraboloids[4]. 

The fact that Eq. (2.14) makes no reference to the number of waves found in the 

buckling pattern helps to explain its broad applicability [1]. 

2.4.3 Imperfection sensitivity 

 
Figure 2.4.3.1 Buckling behavior, left: stable, unstable, asymmetric [4] 

 

Koiter [10] identified three post-buckling behaviors: stable, unstable and asymmetric. 

He also noticed that for structures with unstable post-buckling behavior, small initial 

geometric imperfections may have a significant influence, causing the ultimate loads 

smaller than the critical loads. This kind of structures can be considered as 

imperfection-sensitive. 

2.4.4 Implementation of imperfection 

Shell structures are subjected to loose quality control and large construction tolerances 

due to their size and manufacturing scale (often unique). Because it is difficult to 

entirely remove all imperfections, different approaches for accounting for the influence 

of imperfections in finite element calculations of shell load capacity have been 

developed.  

For shell structures with constant curvature, it’s possible to develop an analytical 

solution. However, for complex shell structures, finite element analysis is usually the 

most realistic method. To apply some imperfection on the model, that imperfection must 

be identified. With unknown imperfection, the worst situation should be considered (i.e. 

the ‘worst’ imperfection should be applied).  

Several methods of applying imperfection have been used in previous researches. 

Koiter imposes imperfection only in the shape of buckling modes in his initial theory. 

The argument was that any imperfection shape may be decomposed into a series of 

periodic pattern with Fourier series. He then extended his approach to a more localized, 

but still periodic, imperfection and found the same sort of imperfection-sensitivity. 

Cederbaum and Arbocz constructed a reliability design theory by taking a probabilistic 

approach to Koiter’s theory by varying two critical parameters, initial imperfection 

amplitude and the allowable load [11].  

Tian Chen[12] used 4 different methods to apply imperfections, one single modal shape 
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with variations, combination of multiple modal shapes, Gaussian random imperfection 

shape and periodic buckling wave imperfection. He found that for a moderately 

sensitive structure such as the hyperbolic cooling tower, all the above imperfection 

shapes are similarly applied. However, after many attempts, the first mode still governs 

the buckling behavior of the structure. And for a structure with closely spaced 

eigenvalues, imperfection sensitivity is severe in general. For such a structure, 

imperfection in the shape of the first mode may not govern the capacity. Cylinder is an 

extreme example of such a structure, where imperfection in the shape of higher modes, 

combinations of mode, or sinusoidal waves may govern. Besides geometrical 

imperfections, he has also applied boundary layer imperfection and 

stress/strain/displacement imperfection, but it’s shown that geometrical imperfection 

has a far larger impact on the buckling capacity of a thin-shell than other types of 

imperfections. 

2.5 Finite element analysis 

2.5.1 Linear buckling analysis 

Finite element programs can compute critical load factors and the associated normal 

modes. This is called a linear buckling analysis. A finite element model has as many 

critical load factors as the number of degrees of freedom. We can specify how many of 

the smallest critical load factors the software will compute. If the second smallest 

buckling load is very close (say within 2%) to the smallest buckling load we can expect 

the structure to be highly sensitive to imperfections. 

The critical load factors need to be multiplied by the knockdown factor. The results 

need to be larger than 1. Consequently, if all critical load factors are larger than 6, the 

structure is safe for buckling. 

Linear buckling analyses are performed on shell models without imperfections. We 

could add shape imperfections, however, this would not solve anything. The shape 

imperfections grow slowly during loading and this is not included in a linear buckling 

analyses. For imperfections to grow we need to perform a nonlinear finite element 

analysis[13]. 

2.5.2 Nonlinear finite element analysis 

When a shell design is ready it is sensible to check its performance by nonlinear finite 

element analyses. In these analyses the loading is applied in small increments for which 

the displacements are computed. Figure 2.5.2.1 shows the results of different finite 

element analyses of a simply supported shallow dome[14]. 

The ultimate load is mainly affected by shape imperfections, support stiffness 

imperfections and inelastic effects. When these are measured and included in the finite 

element model then the predicted ultimate load has a deviation less than 10% of the 
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experimental ultimate load[15]. 

 

 
Figure 2.5.2.1 Shell finite element analyses of a steel spherical dome [14] 
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3 Models and analysis methods 

3.1 Model Generation 

Nine typical shell models are generated for the verification of the knockdown factor 

formula. 

Model 1-1: perfect cylinder under axial compression 

Model 1-2: perfect cylinder under axial compression and radial compression 

Model 1-3: perfect cylinder under axial compression and radial tension 

Model 2-1: nearly cylinder with positive Gaussian curvature under axial compression 

Model 2-2: nearly cylinder with positive Gaussian curvature under axial compression 

and radial compression 

Model 2-3: nearly cylinder with positive Gaussian curvature under axial compression 

and radial tension 

Model 3-1: nearly cylinder with negative Gaussian curvature under axial compression 

Model 3-2: nearly cylinder with negative Gaussian curvature under axial compression 

and radial compression 

Model 3-3: nearly cylinder with negative Gaussian curvature under axial compression 

and radial tension 

3.1.1 Shape of Shell Structures 

This research focus on thin-shell structures, so the radius-to-thickness ratio of the shell 

structures is set at 500. The dimensions of the models are as follows. 

 

Table 3.1.1 Dimensions of the models 

 Models  Thickness 

t [mm] 

Radius a [m] Height 

[m] 

Perfect cylinder 1-1; 1-2; 1-3 200 100 100 

Nearly cylinder with 

positive Gaussian curvature 

2-1; 2-2; 2-3 200 100 (top and bottom) 

105 (middle) 

252.5 m (vertical) 

100 

Nearly cylinder with 

negative Gaussian curvature 

3-1; 3-2;3-3 200 100 (top and bottom) 

95 (middle) 

252.5 m (vertical) 

100 

 

S235 steel is used for these shells. Young’s modulus is 210 000 MPa and Poisson’s ratio 

is 0.3. To focus on the buckling in the middle of the shell, the bottom support is 

completely fixed, and the translations in x and y directions and the rotations of all three 

directions of the top support are fixed. The top support is free in the z direction only. 
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The axial compression is applied as a vertical line load (2000 kN/m) on the top edge of 

the shell. The radial loads are applied as uniform out-of-plane pressure on the shell 

surface and their values are determined to make the membrane forces in axial and 

circumferential directions to be similar. The radial load values are shown in table 3.1.2 

below. The determination of these radial load values involves calculations conducted 

using Maple (Appendix 1), followed by validation through linear elastic analysis in 

SCIA Engineer. Should the calculated values not meet the aforementioned condition of 

similarity in membrane forces, minor adjustments are made iteratively until the required 

condition is fulfilled. 

Table 3.1.2 Radial Loads 

Model 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 

Radial 

Load 

[kN/m2] 

0 -20 20 0 -27 10 0 -12 32.5 

 

3.1.2 Elements 

The standard shell element in SCIA Engineer is used. The influence length of a cylinder 

shell is 2.4√(a t), where a is the radius and t is the thickness[4]. The element size is set 

as 1/6 of the influence length. Using this formula, the element size should be 1.79 m 

for our model dimension. 

3.2 Buckling analysis process 

Firstly, a linear elastic analysis is performed to obtain the membrane force of the model. 

Then we need to do the linear buckling analysis to observe the buckling modes of the 

structure and obtain the buckling load factor. The critical membrane force can thus be 

calculated by the membrane force obtained above multiplied with the buckling load 

factor. Finally we can estimate the ultimate load by multiplying the critical buckling 

load with the knockdown factor. 

This estimation of the ultimate load can be verified by the geometrical nonlinear 

analysis of the structure, during which the initial imperfection is set as the first buckling 

mode and the amplitude is chosen as the thickness of shell.  

Comparing the results of these two method, we can verify the knockdown factor 

formula. 
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4 Linear buckling analysis  

In this chapter, the radial loads of the models (model 1-2, 1-3, 2-2, 2-3, 3-2 and 3-3) are 

set to make the membrane forces of the axial and circumferential directions similar in 

the area where buckling occurs. Linear buckling analyses of the 9 shell models are 

performed and the first buckling mode is shown in Figure 4.1.1. The membrane forces 

in the table occur near the middle height of the shells, where the points buckles most. 
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Figure 4.1.1 The 1st buckling mode of the 9 shell structures (element size 1.79 m) 
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From the figures above we can notice that the ring and column pattern occurs in model 

1-1, model 3-1 and model 3-2. The column buckling mode develops in models 1-2 and 

2-2. A special half ring buckling mode occur in model 1-3, which will be analyzed in 

detail in Chapter 5. In the other models, the ring buckling pattern develops. 

In Figure 4.1.1, the membrane forces labeled under the buckling mode images refer to 

the critical membrane forces. They are calculated by multiplying the membrane forces 

obtained from the linear elastic analyses with the buckling load factors acquired from 

the linear buckling analyses. Taking the calculation of the critical membrane force in 

the axial direction, nyy, for model 1-1 as an example, the membrane force in the axial 

direction obtained from the linear elastic analysis for model 1-1 is -2000 kN/m. The 

buckling load factor derived from the linear buckling analysis is 26.07. Therefore, the 

critical membrane force, ncry, in the axial direction for model 1-1 is -2000 x 26.07 = -

52140 kN/m. The distributions of membrane forces in the axial and circumferential 

directions for the 9 models, obtained from the linear elastic analysis, are shown below. 
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Figure 4.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis 
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Figure 4.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic 

analysis 

 

With the membrane forces that we obtain from linear elastic analysis and the buckling 

load factor from the linear buckling analysis, we can get the critical membrane force. 

With the shell buckling formula (4.1) [1], we can also get the critical membrane force, 

with which we can better understand the buckling phenomenon of the 9 shell structures 

and we can verify the critical membrane force we obtain above. 

 
2

0.6cr
Et

n
a

 −                          (4.1) 

 

 

 

 

 



22 

 

Table 4.1.1 Critical membrane force in the axial direction from buckling formula and FEM analysis. 

This analysis is valid for models 1-1, 1-3, 2-1, 2-3 and 3-3 only. (element size 1.79m)  

 

radius ax 

[m] 

ncry [kN/m]  

(Buckling formula) ny (FEM) λcr (FEM) 

ncry [kN/m] 

(FEM) 

model 1-1 100.00 -50400.00 -2000.00 26.07 -52140.00 

model 1-2 100.00 -50400.00 -2000.00 2.14 -4280.00 

model 1-3 100.00 -50400.00 -2000.00 26.82 -53640.00 

model 2-1 105.00 -48000.00 -1904.84 26.54 -50554.45 

model 2-2 105.00 -48000.00 -2036.00 10.58 -21540.88 

model 2-3 105.00 -48000.00 -1856.07 27.19 -50466.54 

model 3-1 95.00 -53052.63 -2105.20 5.68 -11957.54 

model 3-2 95.00 -53052.63 -2043.00 3.39 -6925.77 

model 3-3 95.00 -53052.63 -2271.91 24.93 -56638.72 

 

Table 4.1.2 Critical membrane force in the circumferential direction from buckling formula and FEM 

analysis. This analysis is valid for models 1-1 and 2-2 only. (element size 1.79m) 

 

radius ay 

[m] 

ncrx [kN/m] 

(Buckling formula) nx (FEM) λcr (FEM) ncrx [kN/m] (FEM) 

model 1-1 ∞ 0.00 0.00 26.07 0.00 

model 1-2 ∞ 0.00 -2063.00 2.14 -4414.82 

model 1-3 ∞ 0.00 2117.65 26.82 56795.37 

model 2-1 252.50 -19960.40 874.60 26.54 23211.88 

model 2-2 252.50 -19960.40 -2009.29 10.58 -21258.29 

model 2-3 252.50 -19960.40 1945.01 27.19 52884.82 

model 3-1 252.50 -19960.40 -791.85 5.68 -4497.71 

model 3-2 252.50 -19960.40 -2061.19 3.39 -6987.43 

model 3-3 252.50 -19960.40 2232.60 24.93 55658.72 

 

From Table 4.1.1, it is clear that for models 1-1 (ring and column buckling pattern), 1-

3 (ring buckling pattern), 2-1 (ring buckling pattern), 2-3 (ring buckling pattern) and 3-

3 (ring buckling pattern), the critical membrane forces in the axial direction that we 

obtain from linear buckling analysis and linear elastic analysis are similar to those we 

obtain from the buckling formula. From Table 4.1.2, it can be noticed that for models 

1-1 (ring and column buckling pattern), 2-2 (column buckling pattern), the critical 

membrane forces in the circumferential direction that we obtain from linear buckling 

analysis and linear elastic analysis are similar to those we obtain from the buckling 

formula. 

For models 1-2 (perfect cylinder: axial and radial compression), 2-2 (positive Gaussian 

curvature cylinder: axial and radial compression), 3-1 (negative Gaussian curvature 

cylinder: axial compression) and 3-2 (negative Gaussian curvature cylinder: axial and 

radial compression), it’s obvious that the buckling load factor is much lower than others. 

The buckling behavior of shell structures is complex and influenced by multiple factors 

such as geometry, boundary conditions, and material properties. In the given models, 
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different characteristics lead to variations in the buckling load factor.  

For model 2-2, the low buckling load factor is due to the occurrence of the column 

buckling pattern. In a cylinder with positive Gaussian curvature (model 2-2) under axial 

and radial compression, the column buckling pattern can dominate. This is because the 

geometry and loading conditions may be such that the structure behaves more like a 

column in terms of buckling. Column buckling typically has a lower critical load 

compared to shell buckling in some cases. When the structure buckles in a column-like 

manner, the load-carrying capacity is reduced, resulting in a lower buckling load factor. 

For models 1-2, 3-1 and 3-2, the low buckling load factor means that the third mode for 

in-extensional buckling is occurring [1]. In a perfect cylinder (model 1-2 under axial 

and radial compression) or negative Gaussian curvature cylinders (model 3-1 under 

axial compression and model 3-2 under axial and radial compression), in-extensional 

buckling can occur. In this type of buckling, the loads are carried mostly by bending 

instead of membrane forces. Since membrane forces usually contribute significantly to 

the load-carrying capacity of shells, when the load is carried mainly by bending, the 

overall load-carrying capacity is reduced, leading to a lower buckling load factor. Also, 

the critical membrane forces obtained from linear buckling analysis and linear elastic 

analysis being smaller than those from the buckling formula further supports the 

occurrence of in-extensional buckling and its impact on reducing the load-carrying 

capacity. 

We can conclude that: 

1) When ring buckling pattern occurs (models 1-3, 2-1, 2-3 and 3-3), the critical 

membrane forces in the axial direction that we obtain from the linear elastic 

analysis and the linear buckling analysis are similar to those we obtain from the 

buckling formula.  

2) When the column buckling pattern occurs (2-2), the critical membrane forces in 

the circumferential direction that we obtain from linear buckling analysis and 

linear elastic analysis are similar to those we obtain from the buckling formula.  

3) When the ring and column buckling pattern is observed (model 1-1), the critical 

membrane forces in both the axial and circumferential directions that we obtain 

from the FEM analysis will be similar to those we obtain from the buckling 

formula. 

4) When the in-extensional buckling pattern occurs (models 1-2, 3-1 and 3-2), the 

critical membrane forces in both the axial and circumferential directions that we 

obtain from the FEM analysis is much smaller than those we obtain from the 

buckling formula.  

 

And the similarity between the FEM results and the results obtained from the buckling 

formula further proves that the FEM models are reliable. 
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5 Parameter study of linear analysis 

5.1 Element size study 

The influence length (the distance from one point of zero deflection to the next point of 

zero deflection) can be used to choose a finite element mesh. The influence length of a 

cylinder shell is 2.4√(a t), where a is the radius and t is the thickness. We need at least 

6 elements in the influence length in order to do the analysis with some accuracy. 

According to Table 3.1.1, the radius of our initial model is 100 m and the thickness is 

0.2 m. Then the elements size should be 1.79 m. 

However, when the element size 0.4√(a t) = 1.79 m is used, for some models (1-3, 2-1, 

2-3, 3-3) there are less than 6 elements in the buckling length, which might lead to an 

inaccurate result. So the parameter study of element size is carried out and models with 

an element size of 0.2√(a t) = 0.895 m and 0.15√(a t) = 0.671 m are analyzed.  

5.1.1 Element size: 0.895 m 

The first buckling modes of the 9 models with the element size of 0.895 m are shown 

in Figure 5.1.1.1. As before, the membrane forces shown in the figure are near the 

middle height of the shells, where the shells buckle most. 

Comparing Figure 5.1.1.1 with Figure 4.1.1, it can be noticed that for most models, the 

1st buckling mode shapes just have some slight changes with a smaller element size. 

The only one that has a remarkable change is model 1-3, which has a so-called half ring 

buckling pattern in the previous analysis with an element size of 1.790 m. However, 

when the element size is 0.895 m, its buckling pattern will become a complete ring 

buckling pattern. As mentioned before, the model 1-3 has less than 6 elements in the 

buckling length with an element size of 1.79 m, thus we can conclude that a smaller 

element size can indeed improve the accuracy of model 1-3 and the requirement of at 

least 6 elements in the buckling length is necessary. 
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Figure 5.1.1.1 The 1st buckling mode of the 9 shell structures (element size 0.895m) 

 

The distributions of membrane forces in the axial and circumferential directions for the 

9 models, obtained from the linear elastic analysis, are shown below. 
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Figure 5.1.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis 
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Figure 5.1.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic 

analysis 

 

The critical membrane forces of the axial directions and the circumferential directions 

from the buckling formula and the FEM analysis with the element size of 0.895 m are 

as follows. 
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Table 5.1.1.1 Critical membrane force in the axial direction from buckling formula and FEM analysis 

(element size 0.895m) 

 

radius ax 

[m] 

ncry [kN/m]  

(Buckling formula) ny (FEM) λcr (FEM) 

ncry [kN/m] 

(FEM) 

% Difference 

from Chapter 4 

model 1-1 100.00 -50400.00 -2000.00 25.55 -51100.00 -1.99% 

model 1-2 100.00 -50400.00 -2000.00 2.13 -4260.00 -0.47% 

model 1-3 100.00 -50400.00 -2000.00 26.01 -52020.00 -3.02% 

model 2-1 105.00 -48000.00 -1904.78 25.84 -49219.52 -2.64% 

model 2-2 105.00 -48000.00 -2036.55 10.43 -21241.22 -1.39% 

model 2-3 105.00 -48000.00 -1855.98 26.40 -48997.87 -2.91% 

model 3-1 95.00 -53052.63 -2105.25 5.62 -11831.51 -1.05% 

model 3-2 95.00 -53052.63 -2043.90 3.35 -6847.07 -1.14% 

model 3-3 95.00 -53052.63 -2272.01 24.19 -54959.92 -2.96% 

 

Table 5.1.1.2 Critical membrane force in the circumferential direction from buckling formula and FEM 

analysis (element size 0.895m) 

 

radius ay 

[m] 

ncrx [kN/m] 

(Buckling formula) nx (FEM) λcr (FEM) 

ncrx [kN/m]  

(FEM) 

% Difference 

from Chapter 4 

model 1-1 ∞ 0.00 0.00 25.55 0.00 0.00% 

model 1-2 ∞ 0.00 -2060.97 2.13 -4389.87 -0.57% 

model 1-3 ∞ 0.00 2113.25 26.01 54965.63 -3.22% 

model 2-1 252.50 -19960.40 873.28 25.84 22565.56 -2.78% 

model 2-2 252.50 -19960.40 -2009.24 10.43 -20956.37 -1.42% 

model 2-3 252.50 -19960.40 1940.83 26.40 51237.91 -3.11% 

model 3-1 252.50 -19960.40 -790.00 5.62 -4439.80 -1.29% 

model 3-2 252.50 -19960.40 -2058.13 3.35 -6894.74 -1.33% 

model 3-3 252.50 -19960.40 2232.65 24.19 54007.80 -2.97% 

 

Compared Table 5.1.1.1 and 5.1.1.2 with Table 4.1.1 and 4.1.2, it can be noticed that 

critical membrane forces and the buckling load factors that we obtained from the 

models of a element size of 0.895 m are similar to those we obtained from the models 

of a element size of 1.79 m, with a difference of less than 5%.  

Therefore, we can conclude that the formula 2.4√(a t) for the influence length is useful 

for most cases, although an extra check is needed to ensure there are at least 6 elements 

in an influence length, and a smaller element size may be required when there are less 

than 6 elements in the influence length.  

5.1.2 Element size: 0.671 m 

There are slight differences between the buckling modes with an element size of 0.4√(a 

t) and those with an element size of 0.2√(a t). For example, according to Figure 4.1.1, 

the model 1-1 has 4 rows of ‘chess’ when the element size is 0.4√(a t), but it has 5 rows 

of ‘chess’ with an element size of 0.2√(a t) in Figure 5.1.1.1. Another example is the 

model 2-2, the buckles of which in Figure 5.1.1.1 are mostly identical, while in Figure 
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4.1.1, it can be noticed that some buckles of model 2-2 are deep and others are light. 

Based on these differences, the analysis with an even smaller element size, 0.15√(a t) 

= 0.671 m is carried out to check whether the results from the element size of 0.2√(a t) 

are accurate or not.  

The first buckling modes of the 9 models with the element size of 0.671 m are as follows. 

The membrane forces below are near the middle heigh of the shells, where the points 

buckles most. 
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Figure 5.1.2.1 The 1st buckling mode of the 9 shell structures (element size 0.671m) 

 

It is obvious that the buckling modes in Figure 5.1.2.1 are very similar to those in Figure 

5.1.1.1.  

The distributions of membrane forces in the axial and circumferential directions for the 

9 models, obtained from the linear elastic analysis, are shown below. 
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Figure 5.1.2.2 Membrane force distribution in the axial direction obtained from linear elastic analysis 
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Figure 5.1.2.3 Membrane force distribution in the circumferential direction obtained from linear elastic 

analysis 

 

The critical membrane forces of the axial directions and the circumferential directions 

from the buckling formula and the FEM analysis with the element size of 0.671 m are 

as follows. 
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Table 5.1.2.1 Critical membrane force in the axial direction from buckling formula and FEM analysis 

(element size 0.671m) 

 

radius ax 

[m] 

ncry [kN/m]  

(Buckling formula) ny (FEM) λcr (FEM) 

ncry [kN/m] 

(FEM) 

% Difference from 

subsection 5.1.1 

model 1-1 100.00 -50400.00 -2000.00 25.47 -50940.00 -0.31% 

model 1-2 100.00 -50400.00 -2000.00 2.13 -4260.00 0.00% 

model 1-3 100.00 -50400.00 -2000.00 25.88 -51760.00 -0.50% 

model 2-1 105.00 -48000.00 -1904.77 25.72 -48990.68 -0.46% 

model 2-2 105.00 -48000.00 -2036.55 10.41 -21200.49 -0.19% 

model 2-3 105.00 -48000.00 -1855.97 26.28 -48774.89 -0.46% 

model 3-1 95.00 -53052.63 -2105.26 5.61 -11810.51 -0.18% 

model 3-2 95.00 -53052.63 -2043.68 3.35 -6846.33 -0.01% 

model 3-3 95.00 -53052.63 -2272.02 24.07 -54687.52 -0.50% 

 

Table 5.1.2.2 Critical membrane force in the circumferential direction from buckling formula and FEM 

analysis (element size 0.671m) 

 

radius ay 

[m] 

ncrx [kN/m] 

(Buckling formula) nx (FEM) λcr (FEM) 

ncrx [kN/m] 

 (FEM) 

% Difference from 

subsection 5.1.1 

model 1-1 ∞ 0.00 0.00 25.47 0.00 0.00% 

model 1-2 ∞ 0.00 -2000.00 2.13 -4260.00 -2.96% 

model 1-3 ∞ 0.00 2000.00 25.88 51760.00 -5.83% 

model 2-1 252.50 -19960.40 792.07 25.72 20372.04 -9.72% 

model 2-2 252.50 -19960.40 -1988.11 10.41 -20696.23 -1.24% 

model 2-3 252.50 -19960.40 1821.76 26.28 47875.85 -6.56% 

model 3-1 252.50 -19960.40 -792.07 5.61 -4443.51 0.08% 

model 3-2 252.50 -19960.40 -1908.89 3.35 -6394.78 -7.25% 

model 3-3 252.50 -19960.40 2232.66 24.07 53740.13 -0.50% 

 

Compared Table 5.1.2.1 and 5.1.2.2 with Table 5.1.1.1 and 5.1.1.2, it can be noticed 

that the membrane forces obtained from the FEM analyses with an element size of 

0.671m are similar to those with an element size of 0.895m. Based on the fact that the 

buckling patterns and the critical membrane forces are extremely similar to those in 

subsection 5.1.1, we can conclude that an element size of 0.2√(a t) is accurate for our 

analysis and there is no need to use smaller elements.  

5.2 Model scale study 

5.2.1 Half-scale model with unchanged load 

Our initial model has a radius of 100 m and a thickness of 0.2 m. The element size, 

0.4√(a t), is only related to the radius and thickness of the model. If the radius-to-

thickness ratio is not changed, it was expected that scaling the model dimensions will 

not affect the result of our investigation. To demonstrate this, 9 models with the 
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following dimension were analyzed. 

 

Table 5.2.1.1 Dimensions of the models 

 Models  Thickness 

t [mm] 

Radius a [m] Height 

[m] 

Perfect cylinder 1-1; 1-2; 1-3 100 50 50 

nearly cylinder with 

positive Gaussian curvature 

2-1; 2-2; 2-3 100 50 (top and bottom) 

52.5 (middle) 

50 

nearly cylinder with 

negative Gaussian curvature 

3-1; 3-2; 3-3 100 50 (top and bottom) 

47.5 (middle) 

50 

 

The element size for this model is still 0.4√(a t), which is 0.895 m. The radial and axial 

loads are the same as the loads in Chapter 4. The first buckling modes of the 9 models 

with the element size of 0.895 m are shown in figure 5.2.1.1. The membrane forces 

shown in the figure are near the middle height of the shells, where the points buckles 

most. 

Comparing Figure 5.2.1.1 with Figure 4.1.1, the buckling patterns have changed in 

Figure 5.2.1.1. This is due to the fact that the scaling of the dimension makes the 

membrane forces of the axial and circumferential directions not similar anymore. 
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Figure 5.2.1.1 The 1st buckling mode of the 9 shell structures 

The distributions of membrane forces in the axial and circumferential directions for the 

9 models, obtained from the linear elastic analysis, are shown below. 

 

 

 



36 

 0zp  0=zp  0zp  

 

 

 

0Gk  

   

 Model 3-2 Model 3-1 Model 3-3 

 

 

 

0=Gk  

   

 Model 1-2 Model 1-1 Model 1-3 

 

 

 

0Gk  

 

 

 

 

 

 Model 2-2 Model 2-1 Model 2-3 

Figure 5.2.1.2 Membrane force distribution in the axial direction obtained from linear elastic analysis 
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Figure 5.2.1.3 Membrane force distribution in the circumferential direction obtained from linear elastic 

analysis 

 

The critical membrane forces of the axial directions and the circumferential directions 

from the buckling formula and the FEM analysis are as follows 

 

Table 5.2.1.2 Critical membrane force in the axial direction from buckling formula and FEM analysis 

 

radius ax 

[m] 

ncry [kN/m]  

(Buckling formula) ny (FEM) λcr (FEM) 

ncry [kN/m] 

(FEM) 

% Difference 

from Chapter 4 

model 1-1 50.00 -25200.00 -2000.00 13.04 -26080.00 -49.98% 

model 1-2 50.00 -25200.00 -2000.00 2.04 -4080.00 -4.67% 

model 1-3 50.00 -25200.00 -2000.00 13.41 -26820.00 -50.00% 

model 2-1 52.50 -24000.00 -1904.85 13.31 -25353.55 -49.85% 

model 2-2 52.50 -24000.00 -1970.70 12.93 -25481.15 18.29% 

model 2-3 52.50 -24000.00 -1880.46 13.45 -25292.19 -49.88% 

model 3-1 47.50 -26526.32 -2105.20 2.84 -5978.77 -50.00% 

model 3-2 47.50 -26526.32 -2074.42 2.13 -4418.51 -36.20% 

model 3-3 47.50 -26526.32 -2188.55 11.89 -26021.86 -54.06% 
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Table 5.2.1.3 Critical membrane force in the circumferential direction from buckling formula and FEM 

analysis  

 

radius ay 

[m] 

ncrx [kN/m] 

(Buckling formula) nx (FEM) λcr (FEM) 

ncrx [kN/m] 

(FEM) 

% Difference 

from Chapter 4 

model 1-1 ∞ 0.00 0.00 13.04 0.00 0.00% 

model 1-2 ∞ 0.00 -1018.07 2.04 -2076.86 -52.96% 

model 1-3 ∞ 0.00 1072.40 13.41 14380.88 -74.68% 

model 2-1 126.25 -9980.20 875.73 13.31 11655.97 -49.78% 

model 2-2 126.25 -9980.20 -598.50 12.93 -7738.61 -63.60% 

model 2-3 126.25 -9980.20 1410.37 13.45 18969.48 -64.13% 

model 3-1 126.25 -9980.20 -790.00 2.84 -2243.60 -50.12% 

model 3-2 126.25 -9980.20 -1350.00 2.13 -2875.50 -58.85% 

model 3-3 126.25 -9980.20 856.16 11.89 10179.74 -81.71% 

 

It can be noticed that most buckling load factors of Table 5.2.1.2 and 5.2.1.3 are about 

half of those of Table 4.1.1 and 4.1.2, which is logical based on the formula (4.1) since 

both the radius and the thickness have become half of the ones before. 

 

5.2.2 Half-scale model with twice radial load and twice Young’s modulus 

In subsection 5.2.1, the buckling modes in Figure 5.2.1.1 are different with those in 

Figure 4.1.1, which is caused by the fact that the scaling of the dimension makes the 

membrane forces of the axial and circumferential directions not similar any more. Thus 

in this subsection the radial load is doubled to make the ratio of the axial and 

circumferential membrane forces to be the same as that in chapter 4.  

The buckling load factors of Table 5.2.1.2 and Table 5.2.1.3 are about half of those of 

Table 4.1.1 and 4.1.2. This is logical since in formula (4.1) both the radius and the 

thickness are half of before. To obtain the same critical membrane force, the Young’s 

modulus is also doubled in this subsection.   

The dimension in this subsection is the same as that in subsection 5.2.1 and half of that 

in chapter 4. The axial load in this subsection is the same as that in subsection 5.2.1 and 

chapter 4. The element size is 0.4√(a t), which is 0.895m. The first buckling modes of 

the 9 models with the element size of 0.895m are as follows. Again, the membrane 

forces below are near the middle height of the shells, where the points buckles most. 
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Figure 5.2.2.1 The 1st buckling mode of the 9 shell structures 

 

Compared with Figure 4.1.1, the buckling patterns almost have not changed at all. Thus 

it can be concluded that the scale of the dimension will not affect the buckling patterns. 

The distributions of membrane forces in the axial and circumferential directions for the 

9 models, obtained from the linear elastic analysis, are shown below. 
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Figure 5.2.2.2 Membrane force distribution in the axial direction obtained form linear elastic analysis 
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Figure 5.2.2.3 Membrane force distribution in the circumferential direction obtained form linear elastic 

analysis 

 

The critical membrane forces of the axial directions and the circumferential directions 

from the buckling formula and the FEM analysis are as follows 

 

Table 5.2.2.1 Critical membrane force in the axial direction from buckling formula and FEM analysis 

 

radius ax 

[m] 

ncry [kN/m]  

(Buckling formula) ny (FEM) λcr (FEM) 

ncry [kN/m] 

(FEM) 

% Difference 

from Chapter 4 

model 1-1 50.00 -50400.00 -2000.00 26.07 -52140.00 0.00% 

model 1-2 50.00 -50400.00 -2000.00 2.14 -4280.00 0.00% 

model 1-3 50.00 -50400.00 -2000.00 26.82 -53640.00 0.00% 

model 2-1 52.50 -48000.00 -1904.85 26.62 -50707.11 0.00% 

model 2-2 52.50 -48000.00 -2037.00 10.59 -21571.83 0.00% 

model 2-3 52.50 -48000.00 -1856.07 27.19 -50466.54 0.00% 

model 3-1 47.50 -53052.63 -2105.20 5.68 -11957.54 0.00% 

model 3-2 47.50 -53052.63 -2043.00 3.39 -6925.77 0.00% 

model 3-3 47.50 -53052.63 -2271.90 25.00 -56797.50 0.00% 
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Table 5.2.2.2 Critical membrane force in the circumferential direction from buckling formula and FEM 

analysis  

 

radius ay 

[m] 

ncrx [kN/m] 

(Buckling formula) nx (FEM) λcr (FEM) 

ncrx [kN/m] 

(FEM) 

% Difference 

from Chapter 4 

model 1-1 ∞ 0.00 0.00 26.07 0.00 0.00% 

model 1-2 ∞ 0.00 -2063.30 2.14 -4415.46 0.00% 

model 1-3 ∞ 0.00 2117.63 26.82 56794.84 0.00% 

model 2-1 126.25 -19960.40 875.73 26.62 23311.93 0.00% 

model 2-2 126.25 -19960.40 -2011.32 10.59 -21299.88 0.00% 

model 2-3 126.25 -19960.40 1945.01 27.19 52884.82 0.00% 

model 3-1 126.25 -19960.40 -792.02 5.68 -4498.67 0.00% 

model 3-2 126.25 -19960.40 -2060.52 3.39 -6985.16 0.00% 

model 3-3 126.25 -19960.40 2232.60 25.00 55815.00 0.00% 

 

The values in Table 5.2.2.1 and 5.2.2.2 are very close to those in Table 4.1.1 and 4.1.2. 

Thus it can be concluded that the scale of the dimension will not affect the critical 

membrane forces of the 9 models. 

The analysis above points to the conclusion that the scale of dimension will not affect 

the result of our investigation. 

5.3 Development of buckling modes 

From Table 4.1.1, it can be noticed that a half ring buckling pattern occurs for model 1-

3 (perfect cylinder under axial compression and radial tension). In fact, this half ring 

buckling pattern could be regarded as a transition state between the ring and column 

buckling pattern and ring buckling pattern. To find out how the buckling pattern 

develops, a cylinder under axial compression (2000 kN/m) and different radial loads 

(from compression to tension) is analyzed. The element size is 0.895m. The first 

buckling modes of this cylinder under different loads are as follows.  
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Radial compression: 20 kN/m2 

Buckling load factor: 2.13 

Radial compression: 0.5 kN/m2 

Buckling load factor: 23.82 

Radial compression: 0.45 kN/m2 

Buckling load factor: 24.10 

   

Radial compression: 0.23 kN/m2 

Buckling load factor: 25.09 

Radial compression: 0.15 kN/m2 

Buckling load factor: 25.29 

Radial load: 0 kN/m2 

Buckling load factor: 25.55 

   

Radial tension: 0.3 kN/m2 

Buckling load factor: 25.89 

Radial tension: 0.5 kN/m2 

Buckling load factor: 25.98 

Radial tension: 0.75 kN/m2 

Buckling load factor: 26.00 

   

Radial tension: 1.0 kN/m2 

Buckling load factor: 26.00 

Radial tension: 1.5 kN/m2 

Buckling load factor: 26.00 

Radial tension: 15 kN/m2 

Buckling load factor: 26.01 

Figure 5.3.1 Buckling modes of a cylinder shell under an axial compression of 2000 kN/m and various 

radial loads 
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In Figure 5.3.1, it can be noticed that when the radial load is 0 and the cylinder shell is 

under pure compression, the ring and column buckling pattern occurs, which means 

buckling is occurring in both axial and circumferential directions.  

With the increase of the radial compression, the buckling in the axial direction becomes 

less and less and finally there is just buckling in the circumferential direction, which 

called the column buckling pattern. 

When the radial tension is applied to the cylinder shell, there will be more buckling in 

the axial direction and less buckling in the circumferential direction. In the end, with 

the increase of the radial tension, the buckling in the circumferential direction 

disappears and the ring buckling pattern occurs. 

Below is a figure showing the buckling load factor as a function of the radial tension. 

 
Figure 5.3.2 Line graph of the buckling load factor as a function of the radial tension 

 

From Figure 5.3.2, it can be observed that when the radial tension is less than 0 kN/m² 

(i.e., in the compression range), the buckling load factor decreases rapidly with the 

increase of the radial compression magnitude. For example, as the radial compression 

increases from 0.5 kN/m² to 20 kN/m², the buckling load factor drops from 23.82 to 

2.13. This shows that radial compression has a significant negative impact on the 

buckling load factor of the cylinder shell, greatly reducing its ability to resist buckling. 

When the radial tension is greater than 0 kN/m², the buckling load factor initially 

increases rapidly. As the radial tension increases from 0 kN/m² to around 1 kN/m², the 

buckling load factor rises from 25.55 to approximately 26.00. However, as the radial 

tension continues to increase further (beyond 1 kN/m²), the growth rate of the buckling 

load factor slows down and gradually approaches a relatively stable value around 26. 

This indicates that while radial tension can enhance the buckling load factor, the 

strengthening effect becomes less pronounced as the radial tension reaches a certain 
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level. 

Overall, the buckling load factor is highly sensitive to the change of radial load, 

especially in the compression range where the negative impact is substantial, and in the 

tension range, it shows a trend of first increasing rapidly and then approaching a stable 

value. 

5.4 Buckling Behavior Analysis of Model 2 - 1 when nxx = 0 

In this subsection, we explore the buckling behavior of Model 2 - 1 under a special 

loading condition. While keeping other conditions unchanged, a radial compressive 

load of -7.68 kN/m² is added to Model 2 - 1. This particular load is applied to result in 

the circumferential membrane force (nxx) in the middle of the positively curved shell 

being zero. The membrane force distributions in the axial and circumferential directions, 

obtained from the linear elastic analysis, are as follows. Additionally, the buckling mode 

and the associated buckling load factor, obtained from the linear buckling analysis, are 

presented below. 

 

Buckling mode Membrane force in the axial 

direction 

Membrane force in the 

circumferential direction 

 
  

Buckling load factor: 25.56   yyn =-1942 
xxn =0   

Figure 5.4.1 Membrane force distributions, buckling mode and buckling load factor of positively 

curved shell when nxx = 0   

 

The buckling pattern observed is a ring buckling pattern. We may now conclude that 

the curvature in the y-direction is not important up to nxx = 0. The hoop force nxx does 

not change the buckling mode or buckling load factor. This also confirms the shell 

buckling Formula (4.1). 

5.5 Boundary conditions study 

In the precious research, the bottom support is completely fixed. The top support is 

restricted in the x and y directions and is prevented from rotating, allowing movement 

only in the z direction. In this subsection, how the shells behave with hinged supports 

will be researched. The bottom of the shell will be supported by a hinge, while the top 
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support is designed to restrict the movement in x and y directions and be free to translate 

in the z direction and rotate in all three directions. The first buckling modes of the 9 

models with hinged supports are as follows.  
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Figure 5.4.1 The 1st buckling mode of the 9 shell structures (hinged support) 

 

It’s obvious that the buckling patterns of the shells with hinged supports are similar to 

those with fixed supports in subsection 5.1.1, except in the regions near the support 

edges. Shells with hinged supports undergo more intense buckling in the vicinity of the 

supports, which is attributable to the fact that hinged supports do not restrict rotations, 

thereby contributing to the buckling phenomenon. Another point to note is that the 

buckling load factors obtained from the analysis using hinged supports are nearly 
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identical to those with fixed supports, although the buckling load factors for shells with 

hinged supports are marginally lower than those for shells with fixed supports. 

In summary, the support conditions have a limited impact on the shell’s buckling 

patterns and buckling load factors. The difference is that shells with hinged supports 

are more likely to buckle near the support areas compared to those with fixed supports, 

and they tend to have slightly lower buckling load factors. 

5.6 Model height study 

In this subsection, the impact of model height on the buckling behavior of shell 

structures is investigated. Three representative models of three different buckling 

patterns, model 1-1 (exhibiting the ring and column buckling pattern), model 1-2 

(displaying the column buckling pattern), and model 1-3 (showing the ring buckling 

pattern), are selected for analysis. The heights of these models are varied as 50m, 75m, 

100m, 125m, and 150m. The buckling modes and buckling load factors obtained from 

the linear buckling analyses are as follows. 

 

 

 
 

 
Buckling load factor: 25.76   

Height: 50m 

Buckling load factor: 25.59  

Height: 75m 

Buckling load factor: 25.55   

Height: 100m 

 
 

Buckling load factor: 25.52    

Height: 125m 

Buckling load factor: 25.51 

Height: 150m 

Figure 5.5.1 The 1st buckling modes of model 1-1 with different model heights 
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Buckling load factor: 4.25  

Height: 50m 

Buckling load factor: 2.84  

Height: 75m 

Buckling load factor: 2.13   

Height: 100m 

 

 

Buckling load factor: 1.72   

Height: 125m 

Buckling load factor: 1.44  

Height: 150m 

Figure 5.5.2 The 1st buckling modes of model 1-2 with different model heights 
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Buckling load factor: 27.00  

Height: 50m 

Buckling load factor: 26.37  

Height: 75m 

Buckling load factor: 26.14   

Height: 100m 

 
 

Buckling load factor: 26.03    

Height: 125m 

Buckling load factor: 25.97 

Height: 150m 

Figure 5.5.3 The 1st buckling modes of model 1-3 with different model heights 

 

For model 1-1 with the ring and column buckling pattern, as the height increases from 

50m to 150m, the buckling load factor only shows a slight decrease from 25.76 to 25.51. 

The change in the buckling load factor is relatively small, with a decrease of 

approximately (25.76 - 25.51) / 25.76 x 100% ≈ 0.97%. The buckling mode remains 

relatively consistent, maintaining the characteristic of the ring and column pattern 

throughout the height variations, although the number of "rows" in the ring and column 

pattern seems to increase with height. This indicates that the height has a limited impact 

on the overall buckling behavior and load-carrying capacity of this type of model. 

Theoretically, in the ring and column buckling pattern, the load is distributed relatively 

evenly in both the axial and circumferential directions. The increase in height does not 

significantly alter the stress distribution and the interaction between different parts of 

the shell, resulting in only a minor change in the buckling load factor. 

Model 1-2, which has the column buckling pattern, experiences a more significant 

change in the buckling load factor. It decreases from 4.25 at a height of 50m to 1.44 at 

150m. The decrease percentage is (4.25 - 1.44) / 4.25 x 100% ≈ 66.12%, which is a 

relatively large change. Theoretically, as the height increases, the slenderness ratio of 

the columns in the axial direction effectively increases. According to the Euler buckling 
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theory, the critical buckling load is inversely proportional to the square of the 

slenderness ratio. Therefore, the buckling load factor decreases significantly with the 

increase in height. Regarding the column buckles, it is observed that as the overall 

height of the model increases, the height of each individual column buckle becomes 

relatively less prominent or shorter compared to the overall height increase. This might 

be because the increased height allows for more distribution of the buckling behavior, 

resulting in relatively shorter column buckles. At a height of 50m, a certain number of 

columns are present, and as the height increases to 150m, the number of visually 

distinguishable columns is approximately half of that at 50m. This change in the number 

of columns is a direct visual observation and may have implications for the structural 

behavior and load-carrying capacity of the model. 

In the case of model 1-3 with the ring buckling pattern, the buckling load factor 

decreases gradually from 27.00 at 50m to 25.97 at 150m. The decrease is about (27.00 

- 25.97) / 27.00 x 100% ≈ 3.81%. The number of ring buckles appears to increase 

with the increase in height. Theoretically, in the ring buckling pattern, the axial 

deformation is the dominant factor that drives the formation of the ring pattern. Axial 

compression causes the shell to buckle in the axial direction, which in turn leads to 

circumferential deformation and the appearance of the ring buckling pattern. This type 

of buckling involves a circumferential wave pattern around the shell, making it a more 

global deformation mode that is primarily influenced by the overall axial behavior and 

geometry of the shell, rather than local variations. The increase in height may affect the 

distribution of axial stress and the interaction between different axial segments of the 

shell, resulting in a relatively small decrease in the buckling load factor. However, 

compared to the column buckling pattern, where individual columns or segments are 

more susceptible to changes in height due to increased slenderness, the impact of height 

on the ring buckling pattern is relatively small. This is because ring buckling is a more 

global deformation mode, dependent on the entire shell's response, rather than localized 

instabilities. 

In general, The buckling load factor decreases with the increase of the model height. 

The height of the shell structure has different degrees of influence on the buckling 

behavior and load-carrying capacity of the shell structure depending on the buckling 

pattern. For the ring and column buckling pattern, the influence is relatively small; for 

the column buckling pattern, the influence is significant; and for the ring buckling 

pattern, the influence is moderate. When designing shell structures, the height factor 

needs to be considered comprehensively according to the specific buckling 

characteristics to ensure the structural safety and stability. 
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6 Geometrical nonlinear analysis 

In this chapter, geometrical nonlinear analyses are conducted. The first buckling modes 

obtained from the linear stability analyses are chosen as the initial geometrical 

imperfections with imperfection amplitudes of ±200 mm (shell thickness). These two 

imperfection amplitudes correspond to two distinct nonlinear combinations, labeled as 

NC1 (200mm) and NC2 (-200mm), respectively. The element size is 0.2√(a t), which 

is 0.895 m. The Newton-Raphson method is used. The initial load factor in the nonlinear 

combination is set as 50. The load is applied in 80 steps. The ultimate load is defined 

as the product of the applied load and 50 (n - 0.5)/80, where n is the load step at which 

divergence of the iterations occurs. And 50 (n - 0.5)/80 is the buckling load factor for 

the geometrical nonlinear analysis. The nonlinear buckling patterns of the 9 models 

obtained from geometrical nonlinear analyses with imperfection amplitudes of 200 mm 

(NC1) are shown in Figure 6.1. 

In Figure 6.1, the membrane forces labeled under the buckling patterns are calculated 

using the Sanders-Koiter equations[4], and the calculation details are shown in 

Appendix 2. 
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Model 2-2 
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Buckling load factor: 7.19 

Figure 6.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear 

buckling load factors included 

 

The buckling patterns of NC2 (imperfection amplitude : -200 mm) are identical to those 

of NC1 (imperfection amplitude : 200 mm), with the exception of being rotated by a 

certain angle, and thus they are not included here. The specific images can be referred 

to in Appendix 3. Additionally, NC2 and NC1 share the same buckling load factor. 
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7 Parameter study of the nonlinear analysis 

7.1 Imperfection amplitude study 

In Chapter 6, the imperfection amplitudes used for the geometrical nonlinear analyses 

are 200mm (NC1) and -200mm (NC2), the absolute values of which are equal to the 

shell thickness t. In this section, different imperfection amplitudes are applied. 

7.1.1 Imperfection amplitude: 100mm (0.5t) 

In this subsection, the first buckling modes obtained from the linear stability analyses 

are still chosen as the initial geometrical imperfections with the imperfection 

amplitudes of ±100 mm (half of the shell thickness). These amplitudes correspond to 

two separate nonlinear analyses, identified as NC1 (with +100 mm) and NC2 (with -

100 mm). The element size remains at 0.895m (0.2√(a t)). The Newton-Raphson 

method is used. The nonlinear buckling patterns of the 9 models obtained from 

geometrical nonlinear analyses with imperfection amplitudes of 100 mm (NC1) are as 

follows and the buckling patterns of NC2 can be referred to in Appendix 3. 

In Figure 7.1.1.1, the membrane forces labeled under the buckling patterns are 

calculated using the Sanders-Koiter equations[4], and the calculation details are shown 

in Appendix 2. 
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Figure 7.1.1.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear 

buckling load factors included 

 

7.1.2 Imperfection amplitude: 400mm (2t) 

In this subsection, the first buckling modes obtained from the linear stability analyses 

are still chosen as the initial geometrical imperfections with the imperfection 
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amplitudes of ±400 mm (twice shell thickness). These amplitudes correspond to two 

separate nonlinear analyses, identified as NC1 (with +400 mm) and NC2 (with -400 

mm). The element size remains at 0.895m (0.2√(a t)). The Newton-Raphson method is 

used. The nonlinear buckling patterns of the 9 models obtained from geometrical 

nonlinear analyses with imperfection amplitudes of 400 mm (NC1) are as follows and 

the buckling patterns of NC2 can be referred to in Appendix 3. In Figure 7.1.2.1, the 

membrane forces labeled under the buckling patterns are calculated using the Sanders-

Koiter equations[4], and the calculation details are shown in Appendix 2. 
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Buckling load factor: 4.69   

0=Gk  

   

Model 1-2 

xxn =-5620 yyn =-5620 

Buckling load factor: 2.81  

Model 1-1 

xxn =0 yyn =-23120 

Buckling load factor: 11.56  

Model 1-3 

xxn =9380 yyn =-9380 

Buckling load factor: 4.69  

 

0Gk  

   

Model 2-2 Model 2-1 Model 2-3 
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xxn =-4473 yyn =-4171 

Buckling load factor: 2.19  

xxn =3216 yyn =-7733 

Buckling load factor: 4.06  

xxn =8639 yyn =-8933 

Buckling load factor: 4.69  

Figure 7.1.2.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear 

buckling load factors included 

 

7.1.3 Imperfection amplitude: 800mm (4t) 

In this subsection, the first buckling modes obtained from the linear stability analyses 

are still chosen as the initial geometrical imperfections with the imperfection 

amplitudes of ±800 mm (four times shell thickness). These amplitudes correspond to 

two separate nonlinear analyses, identified as NC1 (with +800 mm) and NC2 (with -

800 mm). The element size remains at 0.895m (0.2√(a t)). The Newton-Raphson 

method is used. The nonlinear buckling patterns of the 9 models obtained from 

geometrical nonlinear analyses with imperfection amplitudes of 800 mm (NC1) are as 

follows and the buckling patterns of NC2 can be referred to in Appendix 3.  

In Figure 7.1.3.1, the membrane forces labeled under the buckling patterns are 

calculated using the Sanders-Koiter equations[4], and the calculation details are shown 

in Appendix 2. 
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 0zp  0=zp  0zp  

0Gk  

   

Model 3-2 

xxn =-6646 yyn =-7242 

Buckling load factor: 3.44  

Model 3-1 

xxn =-4206 yyn =-11179 

Buckling load factor: 5.31  

Model 3-3 

xxn =7896 yyn =-7242 

Buckling load factor: 3.44  

0=Gk  

   

Model 1-2 

xxn =-6880 yyn =-6880 

Buckling load factor: 3.44  

Model 1-1 

xxn =0 yyn =-13120 

Buckling load factor: 6.56  

Model 1-3 

xxn =8120 yyn =-8120 

Buckling load factor: 4.06  

 

0Gk  

   

Model 2-2 

xxn =-5740 yyn =-5352 

Buckling load factor: 2.81  

Model 2-1 

xxn =2725 yyn =-6552 

Buckling load factor: 3.44  

Model 2-3 

xxn =7479 yyn =-7733 

Buckling load factor: 4.06   

Figure 7.1.3.1 The buckling patterns of the 9 shell structures (NC1), membrane forces and nonlinear 
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buckling load factors included 

 

7.1.4 Conclusion 

In the parameter analysis of the nonlinear study, it is observed that the amplitude of 

imperfections significantly influences the buckling behavior of the structure. 

Regarding the buckling pattern, a notable shift is identified when compared to the 

results from the geometric nonlinear analysis presented in Section 6.2. As the 

imperfection amplitude intensifies, the buckling pattern undergoes substantial changes 

in certain models. For instance, in some models, as the imperfection amplitude 

increases from 0.5t to 4t, there is a distinct alteration in the location and severity of local 

buckling. Take model 1-2 for example, at higher imperfection amplitudes, certain areas 

of the structure, particularly near the boundaries, experience more pronounced buckling. 

This may be attributed to the sensitivity of the boundary conditions to imperfections 

and the localized stress concentrations within the structure. In other models, such as 

model 2-2, while the overall buckling pattern varies with different imperfection 

amplitudes, the degree of buckling in some key regions (e.g., the central area of the 

structure) changes relatively little. This may be because the middle of the structure is 

relatively uniform and the response to imperfections is relatively stable. 

As for the buckling load factor, it is evident that the buckling load factor diminishes 

with the increase in imperfection amplitude. This trend was suggested in the geometric 

nonlinear analysis in Section 6.2, but it is more pronounced in the parameter analysis. 

As the imperfection amplitude increases, the structural capacity to bear loads is reduced, 

leading to a lower buckling load factor. This is because a larger imperfection amplitude 

makes the structure more prone to buckling and reaches the critical buckling state at a 

lower load. 

Overall, the imperfection amplitude has a significant impact on the bearing capacity 

and buckling behavior of the shell. As the imperfection amplitude increases, the bearing 

capacity of the shell decreases, as indicated by the decrease of the buckling load factor. 

At the same time, the buckling pattern also changes, and the buckling degree of local 

areas may change to different extents due to factors such as structural characteristics 

and boundary conditions. 
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8 Knockdown factor calculation 

Using formula (1.1), we can calculate the knockdown factor values in axial and 

circumferential directions for the nine shell models by Maple. The calculation details 

are attached in the Appendix 4. In Section 5.1, it is proved that the element size 0.2√(a 

t) is accurate for our analyses, so the membrane forces we use are from Table 5.1.1.1 

and Table 5.1.1.2.  

8.1 Imperfection amplitude: 200mm (t) 

When the amplitude of imperfection is equal to the shell thickness, the knockdown 

factor calculated by Maple using equation (1.1) yields two or three values, among which 

only one falls within the range of 0 to 1, and this is the only reasonable value, as follows 

 

 Table 8.1.1 The knockdown factor values in circumferential and axial direction and the knockdown 

factors (imperfection amplitude: t) 

 Cx 

(Circumferential)  

Cy 

(Axial)  

C Buckling Pattern 

Model 1-1 0.00 0.25 0.25 ring and column  

Model 1-2 0.00 0.22  in-extensional 

Model 1-3 0.00 0.29 0.29 ring  

Model 2-1 0.39 0.27 0.27 ring  

Model 2-2 0.22 0.22 0.22 column  

Model 2-3 0.32 0.29 0.29 ring  

Model 3-1 0.19 0.24  in-extensional  

Model 3-2 0.23 0.22  in-extensional  

Model 3-3 0.28 0.28 0.28 ring  

 

8.2 Imperfection amplitude: 100mm (0.5t) 

When all other conditions are kept constant, and the imperfection amplitude is set to 

half the shell thickness, the knockdown factor computed by Maple using equation (1.1) 

yields two or three values, some of which are too close to zero, some are negative, and 

some are excessively large. We select only the most reasonable value among them, as 

follows 
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Table 8.2.1 The knockdown factor values in circumferential and axial direction and the knockdown 

factors (imperfection amplitude: 0.5t) 

 Cx 

(Circumferential)  

Cy 

(Axial)  

C Buckling Pattern 

Model 1-1 0.00 0.33 0.33 ring and column  

Model 1-2 0.00 0.27  in-extensional 

Model 1-3 0.00 0.41 0.41 ring  

Model 2-1 0.62 0.38 0.38 ring  

Model 2-2 0.43 0.28 0.43 column  

Model 2-3 0.54 0.43 0.43 ring  

Model 3-1 0.21 0.30  in-extensional  

Model 3-2 0.25 0.26  in-extensional  

Model 3-3 0.34 0.39 0.39 ring  

 

8.3 Imperfection amplitude: 400mm (2t) 

Increasing the imperfection amplitude to double the shell thickness, the calculation of 

the knockdown factor again produces several potential values. We identify and use the 

single value that lies between 0 and 1, ensuring the validity and practicality of the 

knockdown factor. The detailed outcomes for this scenario can be found in Table 8.3.1. 

 

Table 8.3.1 The knockdown factor values in circumferential and axial direction and the knockdown 

factors (imperfection amplitude: 2t) 

 Cx 

(Circumferential)  

Cy 

(Axial)  

C Buckling Pattern 

Model 1-1 0.00 0.21 0.21 ring and column  

Model 1-2 0.00 0.19  in-extensional 

Model 1-3 0.00 0.23 0.23 ring  

Model 2-1 0.25 0.22 0.22 ring  

Model 2-2 0.18 0.19 0.18 column  

Model 2-3 0.22 0.23 0.23 ring  

Model 3-1 0.18 0.20  in-extensional  

Model 3-2 0.20 0.20  in-extensional  

Model 3-3 0.23 0.23 0.23 ring  

 

8.4 Imperfection amplitude: 800mm (4t) 

Further increasing the imperfection amplitude to four times the shell thickness, the 

computation of the knockdown factor using equation (1.1) in Maple once more provides 
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a set of values. From this set, we choose the only value that is within the acceptable 

range of 0 to 1, which is the most physically meaningful. The results for this condition 

are summarized in Table 8.4.1. 

 

Table 8.4.1 The knockdown factor values in circumferential and axial direction and the knockdown 

factors (imperfection amplitude: 4t) 

 Cx 

(Circumferential)  

Cy 

(Axial)  

C Buckling Pattern 

Model 1-1 0.00 0.19 0.19 ring and column  

Model 1-2 0.00 0.18  in-extensional 

Model 1-3 0.00 0.20 0.20 ring  

Model 2-1 0.20 0.19 0.19 ring  

Model 2-2 0.17 0.18 0.17 column  

Model 2-3 0.19 0.19 0.19 ring  

Model 3-1 0.18 0.19  in-extensional  

Model 3-2 0.19 0.18  in-extensional  

Model 3-3 0.20 0.20 0.20 ring  

 

It can be noticed that in the above 4 tables of chapter 8, the knockdown factor values in 

the circumferential direction (Cx) for models 1-1, 1-2 and 1-3 are 0. In fact, these three 

models are perfect cylinders, which means their curvatures in the circumferential 

direction (kyy) are 0. However, the term kyy should be in the denominator in the 

knockdown factor formula (1.1) when calculating Cx. This makes the knockdown factor 

formula invalid for these three models when calculating Cx. The value 0 here describes 

an infinitely large flat plate which will buckle at any compressive load.  

Considering the knockdown factor values in the circumferential (Cx) and axial (Cy) 

directions obtained from formula (1.1), we can determine the knockdown factor (C) for 

each model as shown in the last column of Table 8.4.1. For model 1-1, the ring and 

column buckling pattern occurs. It can be consider as an infinitely large flat plate in the 

circumferential direction and the knockdown factor (C) is determined by its knockdown 

factor value in the axial direction (Cy). For models 1-3, 2-1, 2-3 and 3-3, the ring 

buckling pattern occurs, so their knockdown factors (C) can be determined by their 

knockdown factor values in the axial direction (Cy). For model 2-2, the column buckling 

pattern occurs, and the knockdown factor (C) is determined by its knockdown factor 

value in the circumferential direction (Cx). For other models (models 1-2, 3-1 and 3-2), 

in-extensional deformation occurs and equation (1.1) is not applicable to in-extensional 

buckling.     
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9 Comparison and discussion 

The 4 tables below show load factors obtained from linear stability analyses (LBA) and 

geometrical nonlinear analyses including initial geometrical imperfections (GNIA) for 

4 different imperfection amplitudes. The load factor (formula) is determined by the ratio 

of the critical membrane forces derived from the shell buckling formula (4.1) to the 

membrane forces obtained through linear elastic analysis, with the value being selected 

based on the dominant direction according to the buckling mode. And the knockdown 

factor C based on finite element analyses should be equal to the ratio of the load factors 

obtained from geometrical nonlinear analysis (GNIA) and linear stability analysis 

(LBA). The knockdown factors calculated using this method are compared with those 

obtained from the knockdown factor formula in the tables below 

 

Table 9.1 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor 

formula) – Imperfection Amplitude: t  

 Load 

factor 

(formula) 

Load 

factor 

(LBA) 

Load 

factor 

(GNIA) 

C 

(FEM) 

C 

(formula) 

Buckling 

Pattern 

model 1-1 25.20 26.07 10.94 0.42 0.25 ring and column  

model 1-2 0.00 2.14 2.81 1.31  in-extensional 

model 1-3 25.20 26.82 7.19 0.27 0.29 ring  

model 2-1 25.20 26.54 6.56 0.25 0.27 ring  

model 2-2 9.93 10.58 2.81 0.27 0.22 column  

model 2-3 25.86 27.19 7.19 0.26 0.29 ring  

model 3-1 25.20 5.68 6.56 1.16  in-extensional  

model 3-2 9.70 3.39 4.06 1.20  in-extensional  

model 3-3 23.35 24.93 6.56 0.26 0.28 ring  

 

Table 9.2 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor 

formula) – Imperfection Amplitude: 0.5t  

 Load 

factor 

(formula) 

Load 

factor 

(LBA) 

Load 

factor 

(GNIA) 

C 

(FEM) 

C 

(formula) 

Buckling 

Pattern 

model 1-1 25.20 26.07 10.94 0.42 0.33 ring and column  

model 1-2 0.00 2.14 2.81 1.31  in-extensional 

model 1-3 25.20 26.82 11.56 0.43 0.41 ring  

model 2-1 25.20 26.54 9.69 0.37 0.38 ring  

model 2-2 9.93 10.58 4.69 0.44 0.43 column  

model 2-3 25.86 27.19 12.19 0.45 0.43 ring  
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model 3-1 25.20 5.68 6.56 1.16  in-extensional  

model 3-2 9.70 3.39 4.06 1.20  in-extensional  

model 3-3 23.35 24.93 10.31 0.41 0.39 ring  

 

Table 9.3 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor 

formula) – Imperfection Amplitude: 2t  

 Load 

factor 

(formula) 

Load 

factor 

(LBA) 

Load 

factor 

(GNIA) 

C 

(FEM) 

C 

(formula) 

Buckling 

Pattern 

model 1-1 25.20 26.07 11.56 0.44 0.21 ring and column  

model 1-2 0.00 2.14 2.81 1.31  in-extensional 

model 1-3 25.20 26.82 4.69 0.17 0.23 ring  

model 2-1 25.20 26.54 4.06 0.15 0.22 ring  

model 2-2 9.93 10.58 2.19 0.21 0.18 column  

model 2-3 25.86 27.19 4.69 0.17 0.23 ring  

model 3-1 25.20 5.68 6.56 1.16  in-extensional  

model 3-2 9.70 3.39 4.06 1.20  in-extensional  

model 3-3 23.35 24.93 4.69 0.19 0.23 ring  

 

Table 9.4 Load Factors (LBA and GNIA) and Knockdown Factor C (FEM and knockdown factor 

formula) – Imperfection Amplitude: 4t  

 Load 

factor 

(formula) 

Load 

factor 

(LBA) 

Load 

factor 

(GNIA) 

C 

(FEM) 

C 

(formula) 

Buckling 

Pattern 

model 1-1 25.20 26.07 6.56 0.25 0.19 ring and column  

model 1-2 0.00 2.14 3.44 1.61  in-extensional 

model 1-3 25.20 26.82 4.06 0.15 0.20 ring  

model 2-1 25.20 26.54 3.44 0.13 0.19 ring  

model 2-2 9.93 10.58 2.81 0.27 0.17 column  

model 2-3 25.86 27.19 4.06 0.15 0.19 ring  

model 3-1 25.20 5.68 5.31 0.94  in-extensional  

model 3-2 9.70 3.39 3.44 1.01  in-extensional  

model 3-3 23.35 24.93 3.44 0.14 0.20 ring  

 

By observing the data in the first and second columns of these tables, it can be seen that 

for most models, the load factor (formula) and the load factor (LBA) are relatively close. 

This indicates that the shell buckling formula used to calculate the load factor (formula) 

is generally consistent with the results of the linear stability analysis (LBA) in 

predicting the buckling behavior of the models. However, for models 1-2, 3 - 1 and 3 - 
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2, there are significant differences between the two. In these models, the in-extensional 

buckling pattern occurs, which may lead to a different buckling mechanism compared 

to other models. This difference in buckling behavior may cause the load factor 

(formula) calculated based on the shell buckling formula to deviate from the load factor 

(LBA) obtained from the linear stability analysis. 

It can be noticed that models 1-2, 3-1 and 3-2 have knockdown factors C (FEM) larger 

than 1. This is due to in-extensional deformation. The buckling shapes are constrained 

by the edges. The critical loads are small, much smaller than the values predicted by 

the critical load formula. After buckling, the shell can still carry more load, as shown 

by the non-linear analyses. Shape imperfections give small reductions in the ultimate 

loads. These shells buckle like flat plates. 

The overall error of the knockdown factors derived from the knockdown factor formula, 

relative to the knockdown factors obtained from finite element analyses (FEM), is 

assessed using the mean square error metric. The detailed code is provided in the 

Appendix 5, where it can be observed that the mean square error is 0.0056. 

Overall, for most models, the knockdown factor formula gives a reasonable prediction 

of the buckling load. Under different imperfection amplitudes, there is a certain degree 

of agreement between the knockdown factor calculated by the formula and the ratio of 

the load factors obtained by finite element analysis (FEM) (i.e., the comparison between 

theory and practice), but there are also some differences. For some special models (such 

as models 1 - 2, 3 - 1 and 3 - 2), due to their special buckling modes (in-extensional 

deformation), there are challenges to the predictive precision of the knockdown factor 

formula. 

When the knockdown factor is greater than 1 (such as models 1-2, 3-1 and 3-2), from 

the traditional perspective of judging structural safety based on the knockdown factor, 

the structure seems to be "safe", but this is because these models have a buckling 

behavior similar to that of a plate under certain conditions, and the actual load-carrying 

mechanism and safety need more in-depth analysis. 

For most models with knockdown factors within a reasonable range, the safety of the 

structure is related to the predicted buckling load. If the actual load is less than the 

critical buckling load considering the knockdown factor, the structure is safe in terms 

of buckling, but it is also necessary to consider other failure modes (such as yielding, 

fatigue, etc.) to comprehensively evaluate the safety of the structure. 
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10 Curve fitted knockdown factor formula 

In Chapter 9, it was found that although the knockdown factor formula gives a 

reasonable prediction of the buckling load for most models, there are still some 

differences and challenges. Therefore, it is necessary to further improve the accuracy 

of the knockdown factor formula. 

In this chapter, we use the data of model 1-1, 1-3, 2-1, 2-2, 2-3 and 3-3 for fitting (24 

data points). The independent variables are kyy/kxx (the ratio of curvatures in different 

directions), nxx/nyy (the ratio of membrane forces in different directions), and d/t (the 

ratio of imperfection amplitude to the thickness of the shell structure). However, model 

2-2 is an exception. Since it exhibits a column buckling pattern with buckling in the 

circumferential direction, the fitting is performed using the independent variables kxx/kyy, 

nyy/nxx, and d/t. The dependent variable is the knockdown factor C based on finite 

element analyses. Maple is used for nonlinear fitting, and the specific code is shown in 

Appendix 6. The obtained knockdown factor Formula (10.1) is as follows 

𝐶 = −0.14 × 𝑒
0.32∙

𝑘𝑦𝑦

𝑘𝑥𝑥 + 1.13 × 𝑒
9.63×10−2∙

𝑛𝑥𝑥
𝑛𝑦𝑦 − 0.54 × 𝑒8.29×10−2∙

𝑑

𝑡     (10.1) 

The comparison of the knockdown factor obtained by the finite element analyses C 

(FEM) and the knockdown factor C (formula) obtained by formula (10.1) is shown in 

the table below. 

Table 10.1 Knockdown Factor C (FEM and fitted knockdown factor formula) 

  Model 

1-1 

Model 

1-3 

Model 

2-1 

Model 

2-2 

Model 

2-3 

Model 

3-3 

Imperfection 

amplitude:0.5t 

C (FEM) 0.42 0.43 0.37 0.44 0.45 0.41 

C (fitted) 0.43 0.32 0.36 0.37 0.30 0.34 

Imperfection 

amplitude: t 

C (FEM) 0.42 0.27 0.25 0.27 0.26 0.26 

C (fitted) 0.40 0.29 0.34 0.35 0.28 0.32 

Imperfection 

amplitude: 2t 

C (FEM) 0.44 0.17 0.15 0.21 0.17 0.19 

C (fitted) 0.35 0.24 0.28 0.29 0.23 0.27 

Imperfection 

amplitude: 4t 

C (FEM) 0.25 0.15 0.13 0.27 0.15 0.14 

C (fitted) 0.24 0.13 0.17 0.18 0.11 0.15 

 

By observing the data in the table, it can be seen that the values of the knockdown factor  

calculated by the new formula are relatively close to the values obtained from the finite 

element analysis (FEM). For most models and imperfection amplitudes, the differences 

between the two are within a certain range. The overall error of the knockdown factors 

derived from the curve fitted formula, relative to the knockdown factors obtained from 

finite element analyses (FEM), is assessed using the mean square error metric. The 
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detailed code is provided in the Appendix 5, where it can be observed that the mean 

square error is 0.0051, smaller than that of the original knockdown factor formula. This 

indicates that the new formula has a certain degree of accuracy in predicting the 

knockdown factor. The residual errors that exist might be attributed to the current 

limitation in data quantity. As such, it would be beneficial to collect and analyze a more 

extensive dataset in future studies to refine the fitting process.   

It is worth noting that the current formula is used to calculate the knockdown factor for 

buckling in the axial (y) direction. When the structure has a column buckling mode, 

which buckles in the circumferential (x) direction, it is necessary to swap the positions 

of x and y in the formula. In cases similar to model 1-1, where the ring and column 

buckling mode occurs, meaning that buckling happens in both the circumferential and 

axial directions, it is essential to verify the formulas for both directions. 
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11 Conclusions and recommendations 

11.1 Linear Analysis Conclusions 

Linear Buckling analysis: The buckling modes of the 9 shell models were observed. 

Ring buckling patterns, which are characterized by the buckling in the axial direction, 

occurred in: 

Model 1-3 (a perfect cylinder under axial compression and radial tension).  

Model 2-1 (a nearly cylinder with positive Gaussian curvature under axial compression). 

Model 2-3 (a nearly cylinder with positive Gaussian curvature under axial compression 

and radial tension). 

Model 3-3 (a nearly cylinder with negative Gaussian curvature under axial compression 

and radial tension). 

Column buckling pattern, which involves buckling in the circumferential direction, was 

observed in:  

Model 2-2 (a nearly cylinder with positive Gaussian curvature under axial compression 

and radial compression).  

A combination of ring and column buckling, indicating both circumferential and axial 

deformation, was noted in:  

Model 1-1 (a perfect cylinder under axial compression).  

And in-extensional buckling patterns, where the load is carried primarily by bending 

rather than membrane forces, occurred in: 

Model 1-2 (a perfect cylinder under axial compression and radial compression).  

Model 3-1 (a nearly cylinder with negative Gaussian curvature under axial 

compression). 

Model 3-2 (a nearly cylinder with negative Gaussian curvature under axial compression 

and radial compression). 

For models with ring buckling patterns (1-3, 2-1, 2-3, 3-3), the critical membrane forces 

in the axial direction obtained from linear buckling and elastic analyses were similar to 

those from the buckling formula. For the model with a column buckling pattern (2-2), 

the critical membrane forces in the circumferential direction had a similar relationship. 

In the model with a ring and column pattern (1-1), the critical membrane forces in both 

directions were similar to the formula. In the models with in-extensional buckling (1-2, 

3-1, 3-2), the buckling load factors were small.  

Element Size Study: The influence length formula for choosing a finite element mesh 

is useful in most cases. It is essential to ensure there are at least 6 elements in an 

influence length. However, sometimes a smaller element size is required. For example, 

in some models like 1-3, 2-1, 2-3, 3-3, a smaller element size improved the accuracy as 

seen when comparing different element sizes such as 1.79m and 0.895m. 
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Model Scale Study: Changing the model scale while keeping the radius-to-thickness 

ratio constant generally doesn't affect the buckling patterns and critical membrane 

forces significantly. For example, when analyzing half-scale models with the same load, 

the buckling patterns changed as the scaling affected the similarity of membrane forces 

in the axial and circumferential directions. However, when the radial load was doubled 

and the Young's modulus was also doubled in the half-scale models to maintain the ratio 

of axial and circumferential membrane forces, the buckling patterns remained almost 

unchanged, and the critical membrane forces were very close to those of the original 

models. This further demonstrated that the scale of the model doesn't have a major 

impact on the critical membrane forces when the relevant factors are properly adjusted. 

Buckling Modes Development: The buckling pattern of a cylinder under axial 

compression and different radial loads evolves from a ring and column pattern (under 

pure compression with no radial load) to a column buckling pattern (with increasing 

radial compression) and finally to a ring buckling pattern (with increasing radial 

tension). The buckling load factor increases with the increase in radial tension and 

decreases with the increase in radial compression. The buckling load factor is highly 

sensitive to the change of radial load, especially in the compression range where the 

negative impact is substantial, and in the tension range, it shows a trend of first 

increasing rapidly and then approaching a stable value. 

Buckling Behavior Analysis of Model 2-1 when nxx = 0: For Model 2-1, when the radial 

load is set to make the circumferential membrane force (nxx) in the middle of the 

positively curved shell to be zero, the buckling mode was observed to be a ring buckling 

pattern and the buckling load factor doesn’t change much. This indicates that up to nxx 

= 0, the curvature in the axial direction has little influence. The hoop force nxx does not 

change the buckling mode or buckling load factor, which confirms the shell buckling 

formula (4.1).  

Boundary Conditions Study: The support conditions (hinged vs. fixed) have a limited 

impact on the shell's buckling patterns and buckling load factors. Shells with hinged 

supports are more likely to buckle near the support areas and tend to have slightly lower 

buckling load factors compared to those with fixed supports. 

Model Height Study: For the ring and column buckling pattern (e.g., model 1-1), as the 

height increases, the buckling load factor shows a slight decrease, and the buckling 

mode remains relatively consistent with the characteristic ring and column pattern, 

although the number of "rows" may increase. For the column buckling pattern (e.g., 

model 1-2), the buckling load factor decreases significantly with the increase in height. 

For the ring buckling pattern (e.g., model 1-3), the buckling load factor also decreases 

gradually with height, and the number of ring buckles appears to increase. Overall, 

when designing shell structures, the height factor needs to be considered 
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comprehensively according to the specific buckling characteristics to ensure the 

structural safety and stability. 

11.2 Nonlinear Analysis Conclusions 

Imperfection Amplitude Study: The amplitude of imperfections significantly influences 

the buckling behavior of the structure. As the imperfection amplitude increases, the 

buckling pattern undergoes substantial changes in certain models, and the buckling load 

factor diminishes. Larger imperfection amplitudes make the structure more prone to 

buckling and reduce its load - bearing capacity. 

Knockdown Factor Calculation: The knockdown factors depend on the curvatures, the 

imperfection amplitude and membrane forces. For some models, the knockdown factor 

formula may not be applicable in calculating the circumferential direction when the 

model has a perfect cylinder geometry (e.g., models 1-1, 1-2, 1-3). The knockdown 

factor for each model is determined based on the values in the circumferential and axial 

directions, considering the buckling pattern. 

11.3 Overall Conclusions and Recommendations 

Formula Verification: The knockdown factor formula gives a reasonable prediction of 

the buckling load for most models. There is a certain degree of agreement between the 

knockdown factor calculated by the formula and the ratio of the load factors obtained 

by finite element analysis. However, the dependence on a/t is substantial and does not 

occur in the formula. Clearly, the formula does not apply to in-extensional buckling.  

 

Curve Fitted Knockdown Factor Formula: The fitted knockdown factor formula shows 

relatively close values for most models and imperfection amplitudes, indicating a 

certain degree of accuracy. The current formula still exhibits some degree of error, 

which may be due to insufficient data quantity. And the dependence on a/t is substantial 

and does not occur in the formula. 

 

Future Research: For subsequent research, it will be imperative to enhance the fitting 

process by incorporating data from a more extensive array of models. Furthermore, the 

impact of the a/t ratio must be taken into account in future investigations. Future studies 

could focus on further improving the accuracy of the knockdown factor formula for 

special models and exploring more complex shell geometries and loading conditions. 

Moreover, investigating the interaction between different types of imperfections and 

their combined effect on the buckling behavior could provide more comprehensive 

understanding of thin - shell structures' behavior. 

 

 



70 

Literature 

[1] David Bushnell. Buckling of Shells-Pitfall for Designers. AIAA Journal, 

19(9):1183-1226, September 1981. 

[2] J. Arbocz. Past, present and future of shell stability analysis. Technical report, 

Department of Aerospace Engineering, Delft University of Technology, Delft, 

1981. 

[3] V.I. Weingarten, E.J. Morgan, P. Seide, “Elastic Stability of Thin-Walled 

Cylindrical and Conical Shells under combined Internal Pressure and Axial 

Compression”, AIAA Journal, Vol. 3, 1965, pp. 500-505. 

[4] P.C.J. Hoogenboom, Notes on shells, reader Delft University of Technology, 

online (Sept 2020) https://phoogenboom.nl/b17_schedule.html. 

[5] E.J. Giesen Loo, Quantifying the influence of membrane forces, curvature, and 

imperfections on the nonlinear buckling load of thin-shells, Additional 

Graduation Work Delft University of Technology, 2017, online (retrieved 

September 2020) https://phoogenboom.nl/b17_schedule.html. 

[6] J. Blaauwendraad and J.H. Hoefakker. Structural Shell Analysis: 

Understanding and Application (Solid Mechanics and Its Application, v.200). 

Dordrecht, the Netherlands: Springer, 2013. 

[7] R.D. Ziemian. Guide to Stability Design Criteria for Metal Structures. 

Structural Research Council, Hoboken, N.J., U.S.: John Wiley and Sons, 2010. 

[8] Fan Ye, Local buckling analysis of thin-wall shell structures, Master’s report 

Delft University of Technology, 2015, online (retrieved September 2020) 

https://phoogenboom.nl/MSc_projects/reportFanYe.pdf  

[9] Hutchinson& Koiter W.T.J.W.,. “ Postbuckling Theory.” Applied 

Mechanics Reviews, 23(12), 1970: 1353-1363. 

[10] Koiter, Warner Tjardus. Stability of Elastic Equilibrium. Air Force Flight 

Dynamics Laboratory, 1970. 

[11] G. Cederbaum and J. Arbocz. Reliability of shells via Koiter formulas. Thin-

Walled Structures, 24(2):173–187, January 1996. 

[12] Tian Chen, On introducing imperfection in the non-linear analysis of 

buckling of thin shell structures, Master’s report Delft University of 

Technology, 2014, online (retrieved September 2020) 

https://phoogenboom.nl/MSc_projects/reportTimChen.pdf  

[13] Xu Jie, Verification and optimisation of nonlinear shell buckling formula of 

thin-shell structures, Additional Graduation Work Delft University of 

Technology, 2018, online (retrieved September 2020) 

http://homepage.tudelft.nl/p3r3s/MSc_projects/reportJieXu.pdf 

[14] L.A. Samuelson, S. Eggwertz, “Shell Stability Handbook”, Elsevier Science 

Publishers LTD, Essex, 1992. 

[15] J. Arbocz, “Shell Buckling Research at Delft 1976-1996”, Report TU Delft, 



71 

1996. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

Appendix 1 
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Appendix 2 

Imperfection amplitude: t 
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Imperfection amplitude: 0.5t 
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Imperfection amplitude: 2t 
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Imperfection amplitude: 4t 
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Appendix 3 
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Figure 2.1 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: t 
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Figure 2.2 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 0.5t 
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Figure 2.3 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 2t 
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Figure 2.4 The nonlinear buckling patterns of the 9 shell structures (NC2), imperfection amplitude: 4t 
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Appendix 4 

Knockdown factor calculation by Maple when the imperfection amplitude equals to the 

shell thickness t: 
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Knockdown factor calculation by Maple when the imperfection amplitude equals to 

half the shell thickness 0.5t: 
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Knockdown factor calculation by Maple when the imperfection amplitude equals to 

twice the shell thickness 2t: 
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Knockdown factor calculation by Maple when the imperfection amplitude equals to 

four times the shell thickness 4t: 
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Appendix 5 
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Appendix 6 

Nonlinear fitting of the knockdown factor formula: 

 

 

 

 

 

 

 

 

 

 


