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ETH Zürich, Switzerland
RWTH Aachen, Germany

Dated: August 9, 2018

Committee Members:
Florian Wellmann

Cédric Schmelzbach

Supervisor(s): Prof. Florian Wellmann

Miguel de la Varga

Dr. Hui Wang





Eidesstattliche Versicherung 

 

___________________________   ___________________________ 

Name, Vorname     Matrikelnummer (freiwillige Angabe) 

 

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ 

Masterarbeit* mit dem Titel 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als 

die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf 

einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische 

Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner 

Prüfungsbehörde vorgelegen. 

 

___________________________    ___________________________ 

Ort, Datum       Unterschrift 

        *Nichtzutreffendes bitte streichen 

 

 

 

 

 

Belehrung: 

§ 156 StGB: Falsche Versicherung an Eides Statt 

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung 

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei 

Jahren oder mit Geldstrafe bestraft. 

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt 

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so 

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein. 

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 

Abs. 2 und 3 gelten entsprechend.  

 
Die vorstehende Belehrung habe ich zur Kenntnis genommen: 
 

___________________________    ___________________________ 

Ort, Datum       Unterschrift 

Giesgen, Tobias 318054

Coupling unsupervised segmentation in wells 

with automatic implicit modeling in a Bayesian framework

Aachen, 

Aachen, 





Abstract

The automatic interpretation of well logs has been the focus of research, especially in oil and
gas industry, for more than 50 years and, aside from that, benefits from the fast developments
of machine learning algorithms during the recent decades. Moreover, Bayesian inference is
increasingly utilized to model geological data, enabling the consideration of all available infor-
mation and a quantification of uncertainties. In order to combine unsupervised segmentation
of well data with 3D geological modeling, a fully automated approach to directly create three-
dimensional structural models from raw well data is intended and, further, tested on synthetic
data with different standard deviations.
For this purpose, unsupervised segmentation, which considers the statistical nature as well
as the spatial correlation of the data, is combined with a zonation method that extracts in-
terface information from clustered data by maximizing probabilities within continuous zones.
This data is then screened to automatically obtain geological information and, furthermore,
is inserted into the structural modeling algorithm, which is based on implicit potential-field
interpolation while at the same time honoring the geological spatial continuity.
It is shown that unsupervised segmentation is capable of segmenting raw well logs and that
the zonation appropriately determines boundaries between stratigraphic units. Model recon-
struction demonstrates that the fully automated process is proficient at recovering several
common subsurface structures. Moreover, the implementation of a three-dimensional model
in the segmentation process, filling the empty space between boreholes, reduces uncertainties
in the geological modeling routine. The combination of unsupervised segmentation and 3D
geological modeling, resulting in a fully automated process, taking all available information
into consideration, is found to be a suitable method in order to build structural geological
modeling directly from raw well logs.
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Chapter 1

Introduction

Information about physical properties of layers in the subsurface and especially structural
geologic 3D models based on or supported by geophysical measurements in boreholes are
essential for many industries (e.g. geothermics, oil & gas, reservoir engineering). The inter-
pretation of these well log data is a complex process. It has engaged researchers as well as the
industry equally for nearly a century. Since the Schlumberger brothers and Henri Doll have
performed the first measurements in boreholes to characterize layers in the subsurface (1927),
in terms of their mineral composition, texture and physical properties (Serra, 1983; Hilchie,
1990), the interpretation of well log data transformed from a knowledge- and men-intensive
to a computational-intensive discipline (Hall, 2016; Shi et al., 2017). Recently, it benefits
greatly from developments in data science.
One-dimensional data provided by the recordings in boreholes are often heterogeneous and/or
noisy. Their interpretation via 3D modeling involves (i) a segmentation or the so called facies-
classification of each data point, (ii) a zonation of each borehole and (iii) the actual geological
modeling. Although, the definition and description of these processes varies in literature, in
this work they are referred to as follows:

(i) Segmentation or facies-classification: assigning a label l = 1, 2, 3, ..., L to each data point
of the raw well logs

(ii) Zonation: division of data, raw or segmented, into as homogeneous as possible contin-
uous intervals or zones also referred to as layers in a geological context

(iii) Geological modeling: creating a three-dimensional structural geologic model from zone-
representative data

Considering well logs only from a few spatially distributed boreholes makes the interpreta-
tion straight-forward and can easily be performed by geo-scientists manually. Although the
human brain is a good pattern recognizer, it is unable to take all the available information
into consideration if the complexity and volume of the data are increased (Testerman et al.,
1962; Hoyle, 1986; Hall, 2016). Thus, nowadays, efficient and powerful algorithms are widely
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2 Introduction

used to extract meaning from large well log data sets obtained from enormous projects.
The first automated statistical interpretation of univariate well log data goes back to Beghtol
(1958), who introduced a zonation approach using variance maximization between layers in
a borehole. This ansatz is later expanded considering additionally the variance minimum
within zones (Testerman et al., 1962). Automatic search for changepoints in the data via
window shifting and mean differences, which aims to find zone boundaries was introduced
by Webster and Wong (1969). Afterwards it was extended based on the data’s derivative to
multivariate data by Webster (1973). The maximum-likelihood method by Hawkins (1976)
uses a global optimizer to maximize the likelihood function of homogeneity within a layer
by dynamic processing. It were Hawkins and Ten Krooden (1979) who stated that in case
of huge data volume, global optimizer need to be approximated. Another zonation method
based on changepoints was introduced by Lanning and Johnson (1983), who used low pass
filtering via Walsh functions to discretize significant changes and determine zone boundaries.
A comprehensive overview about the beginnings of automatic interpretation of well logs based
on statistical criteria is given in Hoyle (1986).
The first approach using ”Artificial intelligence”-techniques for (i) contact recognition and
(ii) interval identification is provided by Wu and Nyland (1987). In 1989 Moghaddamjoo
released a generalized segmentation system combining the prior knowledge (number of layer-
s/zones) with a user-defined segmentation criterion (e.g. variance or means). To overcome
the problem of revealing the multiscale behaviour of well logs, Vermeer and Alkemade (1992)
constructed multiscale representations of the borehole measurements, where high frequencies
unveil small scale behaviour and low frequency representations disclose global changes. Their
approach was widely used in combination with changepoint search via extrema of the first
derivative. Further methods were based on multivariate cluster analysis Gill et al. (1993) or
wavelet transform of well data extracting extrema as layer boundaries (Hui et al., 2000).
The ability to segment well data by utilizing neural networks was stated by Rogers et al.
(1992), who introduced such a network of nodes and their connections being able to learn
from examples. This approach can be combined with the multiscale representation of well
logs (Ouadfeul et al., 2011). Based on that, Ouadfeul and Aliouane (2012) combined self-
organizing map neural network models and the multilayer perceptron for classification of
borehole recordings. Another segmentation by Saucier and Muller (2002) extracts the log-
generating function and refines it by several basis functions. Based on the analysis of the
spectrum of time series by Dahlhaus et al. (1997), stationary intervals in well log data can
be identified (Ligges et al., 2002). Combing several of the aforementioned segmentation and
zonation techniques, Velis (2005) published a work identifying changepoints by probability
density function analysis considering not only mean and variance, but also skewness and kur-
tosis in a window, that is moving along the signal. Ouadfeul (2006) introduced segmentation
based on the sensitivity of wavelet transform modulus maxima (WTMM). Moreover, Ofuyah
et al. (2014) adopted short time Fourier transformation converting the data from time to
frequency domain for spectral analysis and zonation in spectral domain.
More recent approaches are using Markov Chain Monte Carlo (MCMC) methods in a Bayesian
network to quantify uncertainties related to rock type recognition (Xu et al., 2016) or Hilbert-
Huang transformation to measure the degree of heterogeneity within layers (Gaci, 2017), etc.
Realizing that segmentation is an essential and widely discussed point of automatic well log
interpretation, this work is based on recent developments in the field of unsupervised segmen-
tation of n-dimensional soft data sets (Wang et al., 2017). The stochastic modeling approach
is based on Hidden Markov Random Field (HMRF), which represents the ”hidden link” in

August 9, 2018



3

spatially sparse geophysical data sets and can be considered as the heterogeneity of the sub-
surface. Furthermore, Finite Gaussian Mixture (FGM) models are utilized to characterize
statistical parameters and Gibbs sampling enables the quantification of uncertainties in a
Bayesian framework (Wang et al., 2017).
Additionally, De la Varga and Wellmann (2016) introduced a structural geologic modeling
approach combining prior information with geologically motivated likelihood functions in a
Bayesian framework. Their one-step forward modeling method based on implicit potential-
field interpolation using cokriging (after Lajaunie et al., 1997; Calcagno et al., 2008) enables
a direct recalculation of the model, when changing input parameters. Recently, de la Varga
et al. (2018) presented GemPy, a fully open-source geomodeling package for the programming
language Python, which uses these techniques to construct complex full 3D structural geologic
models (de la Varga et al., 2018).
The main objective of this work is the coupling of the modeling approaches developed by Wang
et al. (2017) and de la Varga et al. (2018) in one framework to benefit the interpretation of
one-dimensional well log data in multiple fields of applications. Therefore, the 3D structural
geologic modeling method is implemented into unsupervised segmentation of well-logs using
Hidden Markov Random Field (HMRF) in one Bayesian network to create a 3D geological
model directly from the raw well log data. The multi-dimensional segmentation approach
(Wang et al., 2017) is therefore applied to a single well first and then to several wells indepen-
dently in a second step. The spatial correlations between the resulting segmented boreholes
are investigated and used to create a 3D structural geologic model (de la Varga et al., 2018).
In the final step, the geological geometry of the geological model is considered during the
segmentation process. This is achieved by performing the segmentation of all boreholes si-
multaneously, followed by a zonation of each borehole separately, based on different criteria.
Using these zoned data as input for the structural modeling creates a 3D model containing
additional information about the spatial correlation of the data. By extracting plains with
constant depth and comparing each data point of the boreholes with its neighbouring ones
(expanding neighborhood system of FGM model), an uncertainty about the layer affiliation
can be extracted, assuming general geological continuity.
The main hypothesis of this work is that considering all available information resulting from
different modeling approaches in one Bayesian framework will reduce uncertainties in the seg-
mentation and, thus, interpretation of data provided by one-dimensional borehole measure-
ments. The approach enables the consideration of several wells and keeps logical continuation
in terms of geology over the entire model space. It has the potential to be the starting point of
creating 3D structural geologic models from raw 1D well log data automatically and, further-
more, considering spatial 3D information in the segmentation and, thus, the interpretation of
1D well log data. The principal part of this thesis is divided into four sections. The first deals
with the theoretical background of Bayesian networks, while the second section describes the
methods utilized in this work. Moreover, it expounds the way of combining the modeling ap-
proaches. Third section shows the results of the segmentation and modeling processes, while
the fourth and final section discusses the method of combination, the resulting segmentations
and the geological models. It also reports on further advancements and potential fields of
further research.
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Chapter 2

Theory

In this chapter the theory that forms the basis of this work is presented. In Section 2-1 the
basic concept of Bayesian statistics and inference in Bayesian networks is described. This in-
cludes the determination of the posterior from the prior, the likelihood and the evidence. How
the posterior distribution can be obtained for complex problems, where a simple calculation is
not directly possible is outlined in section 2-2. The Maximum a posteriori estimation (MAP)
and the MCMC method are also introduced in the same.

2-1 Inference in Bayesian networks

The beginning of Bayesian statistics reaches back to more than 250 years to Thomas Bayes (†
1761) and his interpretation of statistics gained a lot of attention in the last decades (Jaynes,
1986; Bolstad and Curran, 2016). Its basics are discussed in literature comprehensively (see
Jaynes (1986); Congdon (2007); Berger (2013); Davidson-Pilon et al. (2015); Bolstad and
Curran (2016) and Martin (2016)). But, probability does not always equal probability. A
frequentist interprets probability as the long-run frequency of an event, which results from an
often repeatable experiment. He always starts at zero without considering prior information.
The Bayesian interpretation assumes probability as a quantity that measures the uncertainty
level of an event or statement, taking prior knowledge into account, which can also result from
a large number of repeatable experiments. The prior is then updated by new information
about that event (Davidson-Pilon et al., 2015; Martin, 2016). This is an intuitive approach,
since most situations in our everyday life are unpredictable. We deal with this uncertainty
by plausible reasoning and base our decisions on the occurrence or non-occurrence of other
events (Bolstad and Curran, 2016).
An example is making the decision of taking an umbrella with us in the morning or not. Even
taking the weather forecast, the weather in the morning and the weather from yesterday into
account, we can never be certain whether it will rain or not and, thus, if we will need an
umbrella. But we can reduce the uncertainty about that event or statement by updating our
belief (prior) by considering all possible information or data (Martin, 2016). The concept of
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such a model that describes all events and their relationships is called Bayesian network. The
following section depicts how to make decisions (reduce uncertainty) within such a network.

2-1-1 Fundamentals

Probabilities p(θ) are numbers between 0 and 1 including both extremes, which describe
how likely an event or statement is. The probabilities of several different possible events
are collected in a probability distribution (Martin, 2016). In a Bayesian network, inferences
are made on an uncertain parameter set θ = (θ1, ..., θd) of dimension d, which includes fixed
and random effects, hierarchical parameters, unobserved indicator variables, and missing data
(Gelman and Rubin, 1996).
The prior knowledge about the parameters are expressed through the prior distribution p(θ).
The likelihood of parameters is called likelihood p(y|θ) and the probability of observing the
data averaged over all values which can be taken by the parameter is named the evidence
or marginal likelihood p(y) (MacKay, 2003; Congdon, 2007; Martin, 2016). The probability
distribution containing all knowledge about the parameters is the posterior distribution p(θ|y).
It is also the result of the Bayesian analysis (Martin, 2016) and the next subsection states
how it is obtained.

2-1-2 Bayes’ theorem

The relationship between prior and posterior distribution is formulated in the well-known
Bayes’ theorem (Jaynes, 1986; MacKay, 2003; Congdon, 2007; Berger, 2013; Davidson-Pilon
et al., 2015; Martin, 2016; Bolstad and Curran, 2016):

p(θ|y) =
p(y|θ)p(θ)
p(y)

. (2-1)

Assuming that the evidence or marginal likelihood p(y) is constant and simply a normalization
factor, Bayes’ theorem can be written as a proportionality (MacKay, 2003; Congdon, 2007;
Martin, 2016):

p(θ|y) ∝ p(y|θ)p(θ). (2-2)

Equation 2-1 exhibits that the posterior distribution p(θ|y) is a balance of the prior distribu-
tion and the likelihood, or in other words the updated prior considering the given data y. It
is worth to mention, that the likelihood p(y|θ) is not a probability distribution and depends
on both, the data y and the parameters θ. In case of sequential available data, the posterior
of one analysis can be the prior of a following, which is one of the advantages of Bayesian
statistics. Also keeping in mind, that the posterior is not a single value, but a probability
distribution of the parameters θ (MacKay, 2003; Martin, 2016). Due to the complexity of
almost all practical cases, the calculation of the posterior is not as simple as equation 2-1
suggests and need to be approximated, which is explained in the next section.
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2-2 Sampling the posterior

As mentioned above, the calculation of the posterior distribution p(θ|y) is possible for simple
optimized Bayesian inference problems only, thus must be obtained via numerical methods
in more complex cases, like structural geologic modeling. Depending on the purpose of the
posterior model, different approaches can be used to estimate it: The MAP method, in case
one is interested in the ”best” model (e.g. to visualize the result) and the MCMC method
resulting in ”all” possible models and their corresponding uncertainties (De la Varga and
Wellmann, 2016). The concepts of both approaches are presented in the following subsections.

2-2-1 MAP - Maximum a posteriori estimation

The Maximum a posteriori estimation (MAP) method uses the proportionality of the uncer-
tainty space to likelihood p(θ|y) and prior p(θ) (see equation 2-2) and obtains only the global
maximum of the uncertainty space instead of considering the whole space (Gauvain and Lee,
1994):

θ̂MAP (y) = arg max
θ

[ p(θ|y) ] = arg max
θ

[ p(y|θ)p(θ) ] (2-3)

De la Varga and Wellmann (2016) point out that due to the normalization factor’s neglect,
the method is computationally cheap compared to other posterior sampler, but results in one
possible solution only. This solution does not necessarily match best the likelihood functions
and the prior, depending on the posterior’s shape.

2-2-2 MCMC - Markov Chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) method is an iterative algorithm to sample prob-
ability distributions, whose calculation is infeasible (Liang et al., 2011) or in other words, it
approximates the posterior distribution of an unknown parameter. Gilks (2005) underlined
its ability to evaluate the posterior distribution of complex models in Bayesian frameworks. It
is based on the 2-step algorithm introduced by Metropolis et al. (1953), starting at any point
x0 and (1) propose a random perturbation of the current state xt generated from a symmet-
ric proposal distribution and (2) decide about acceptance or rejection of the new state xt+1,
based on comparison of how likely the states xt and xt+1 are to describe the data, given the
prior distribution (Liang et al., 2011).
Hastings (1970) improved the algorithm (to the so-called Metropolis-Hastings algorithm) to
enable the usage of asymmetric proposal distributions for the generation of the new state,
whose location is still random but in the ”neighbourhood” of the current state. That on the
other hand increases the propability of the algorithm getting trapped in local extrema. During
the last decades, intense researches were made in the field of MCMC algorithms to overcome
the local-trap problem and improve the algorithm in term of computational efficiency and
posterior approximation (Liang et al., 2011).
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2-3 Uncertainty quantification

Three-dimensional structural geologic modeling never recovers the true geological image of the
subsurface and, thus, is always tied to uncertainties. Especially in a probabilistic programming
framework are the quantification, analysis and visualization of these uncertainties essential.
This enables in a logical next step to interpret and reduce the uncertainties to improve the
modeling results (Wellmann et al., 2010; Wellmann and Regenauer-Lieb, 2012; Wellmann,
2013; de la Varga et al., 2018).
To measure the variation of the results and, thus, the variation in the posterior distribution, a
common approach in uncertainty quantification is the concept of information entropy, which
is also utilized in this work. Therefore, the probability P`(i) of assigning a class, layer or
label ` ∈ L = {1, 2, 3, ...,K} to a voxel i ∈ V = {1, 2, 3, ..., N}, where K is the number of
labels and N the number of voxels, is calculated with (Cover and Thomas, 2012; Wellmann
and Regenauer-Lieb, 2012; Wellmann, 2013):

P`(Xi) =
1

n

n∑
k=1

~I`(x
k
i ) (2-4)

where n is the number of realizations and ~I`(x
k
i ) is an indicator function for the certain label `,

which is either one for xi = ` or zero for xi = `. This probability could be visualized for each
label ` individually, but in this work the concept of information entropy based on Shannon
(1948) is utilized, which enables uncertainty evaluation via a single parameter (Cover and
Thomas, 2012):

H(Xi) = −
∑
`∈L

P`(Xi) log(P`(Xi)) (2-5)

Here, H(Xi) is the information entropy, which in other words represents the number of results
and their relative probability at each voxel. This concept is common in research to visualize
and analyse uncertainties. It can be visualized over the whole model and low values indicates
sufficient information and a reliable modeling result (Cover and Thomas, 2012; Wellmann and
Regenauer-Lieb, 2012; Wellmann, 2013).
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Chapter 3

Methods

As described in the introduction, the interpretation of one-dimensional well log data through
3D models includes a segmentation, zonation and structural modeling of the raw data. The
following chapter describes the methods used and applied to the data for executing these tasks.
Preliminary to the segmentation, the well logs need to be standardized and the number of
segments is estimated. This is ensured by a preprocessing described in section 3-1. Section 3-2
presents BaySeg, an unsupervised segmentation approach for n-dimensional data (introduced
by Wang et al., 2017),which is used for the segmentation. Subsequently, section 3-3 outlines
two methods for the zonation of the segmented well log data, one minimizing the variance
within zones and another considering the extrema of the segmentation uncertainty. In the
next section 3-4 the concepts and methods of GemPy (introduced by de la Varga et al., 2018)
are presented, which is used for the 3D structural geologic modeling. Finally, the combination
approaches of all these methods and, thus, how to create 3D geological models directly and
automatically from one-dimensional well logs is explained in the last section of this chapter.

3-1 Preprocessing

The raw data preprocessing is suggested to ensure equally weighted well logs from different
measurement devices during the segmentation process. It is also applied to estimate the
number of segments or classes if it is unknown prior to the analysis.

3-1-1 Standardization

Well log data from different measurement techniques (e.g. gamma ray, electric induction or
resistivity, photoelectric effect) can differ in absolute values by factors of up to 10 or even 102

(Ellis and Singer, 2007). Thus, the raw well data xi are standardized before being segmented
to ensure an equal weighting of each method. This preprocessing step is not imperative, but
improves the performance of the segmentation process in terms of robustness. Therefore, the
standardized score or so-called Z-score of each value is calculated by (Yamane, 1973):
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Z =
x− µ
σ

with Z ∈ [−3, 3]. (3-1)

In equation 3-1, Z is the Z-score of a single data point x, µ represents the mean of xi and
σ its standard deviation. Assuming normally distributed original data xi, the Z-score ranges
from -3 to 3 and measures how many standard deviation a value x differs from the mean.

3-1-2 Bayesian information criterion

An important step and major problem of unsupervised data segmentation is the determina-
tion of the number of segments/clusters, if this information is unknown beforehand, which is
often the case for geophysical data provided by borehole measurements. A reasonable choice
of the segment number ensures low variations within segments and minimizes the similarities
between them (Guo et al., 2002). Beside using geoscientist’s expertise, there are several ap-
proaches to determine the number based on the data. One of them is the Bayesian information
criterion (BIC), which is utilized in this work and it is given by (Findley, 1991):

BIC = 2 ln(L̂)− k ln(n) with L̂ = p(x|θ̂,M) (3-2)

where L̂ is the maximized likelihood of the model M given the observed data x and the
parameters θ̂ that maximizes the likelihood function. Furthermore, k represents the number
of unknown parameters and n of data points in the observed data x. To perform the segment
number analysis, the BIC is calculated for all values up to a reasonable user-defined bound,
where the global minimum of the BIC defines the number of segments. Due to the fact
that the upper boundary of the BIC affects its result, the analysis is made several times
with increasing upper boundaries and the most common outcome defines the final number of
segments. How the BIC performs for normally distributed synthetic well data is investigated
in section 4-1-1. Nevertheless, the crucial factor of an effective segment number analysis is
the data itself and its diversity.
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3-2 BaySeg - Stochastic geological modeling via unsupervised seg-
mentation

In computational geoscience, stochastic modeling of multiple geophysical data is a widely-
used method to extract the subsurface’s heterogeneity and provide insights into its structure
(Wang et al., 2017). In this subject Wang et al. (2017) introduced BaySeg, a segmentation
approach of n-dimensional geophysical data, which utilizes Hidden Markov Random Field
models and Finite Gaussian Mixture models to ”learn” the underlying spatial correlation be-
tween the spatial data. Additionally, an MCMC algorithm is applied to explore the posterior
distribution via Gibbs sampling.
The FGM model is a common segmentation method, but it suffers with noisy and hardly-
separable data due to its assumption of spatially independent data points in feature space.
This is often the case for geophysical data, for example well logs from borehole measurements,
which exhibit a high noise level and, thus, classification with FGM is not sufficient. To take
the spatial correlation into consideration, HMRF models are developed, which make use of a
neighborhood system allocating an additional likelihood to data points belonging to the same
class as their neighboring ones (Wang et al., 2017). The following section outlines the basic
concepts, the FGM model, the HMRF method as well as the segmentation process.

Stochastic modeling methods and uncertainty quantification are important tools for gaining
insight into the geological variability of subsurface structures.

3-2-1 Fundamental concepts

Discretization

The three-dimensional physical space in the concept of Wang et al. (2017) is represented
by a feature space, which is then investigated via unsupervised segmentation to discover its
intrinsic statistical structure. This feature space is spanned by data points, of which each
represents a voxel of the discretized ”real” space with corresponding voxel features. Here, the
voxel size depends on the resolution of the geophysical data, i.e. the density of measurement
locations in a plain for 2D data or in a volume for 3D data.

Finite Gaussian Mixture model

To understand and apply the concept of Finite Gaussian Mixture (FGM) models lets as-
sume that p(~y) is a random field in d-dimensional feature space Rd, where the vector
~y = (y1, y2, y3, ..., yN ) represents the properties to realize this particular field. Furthermore,
L = {1, 2, 3, ...,K} is a set of labels and all voxels j are assigned to one of these labels `, then
the conditional probability of the local properties yj being observed at the point xj , which
belongs to label ` is given by (Wang et al., 2017):

p(yj |xj = `) = f(yj ; θ`) with ` ∈ L. (3-3)
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Here, f(yj ; θ`) is the distribution function of the data points in feature space, while θ` rep-
resents a set of distribution parameters corresponding to label `. Assuming a voxel-location
independent probability P (xj = `) = α` of a voxel j falling into a certain label `, the marginal
distribution p(yj) can be calculated by

p(yj) =
∑
`∈L

P (xj = `) p(yj |xj = `) =
∑
`∈L

α` f(yj ; θ`)
∗
=
∑
`∈L

α` f(yj ; (µ`,Σ`))︸ ︷︷ ︸
FGM model

. (3-4)

The last step in equation 3-4 (marked by ∗) is due to the distribution function f(yj ; θ`) being
a multivariate Gaussian distribution with θ` = (µ`,Σ`), where µ` is a vector containing the
mean of every feature and Σ` represents the covariance structure of all the features belonging
to class ` (Wang et al., 2017). For a definition of the covariance structure see Celeux and
Govaert (1995). While an FGM model describes data only statistically in feature space
without taking their physical location or position to each other into consideration, Markov
Random Field (MRF) models and in particular, HMRF models are able to do both, correlate
observed data in physical space and evaluate them in feature space. These concepts are
described in the following sections.

Graph structure and neighborhood system

For the representation of the discretized three-dimensional physical space’s topology, Wang
et al. (2017) adopt a graph modeling approach. The graph G = (V,E) is characterized by a
set of vertices V {i|i = 1, 2, 3, ..., N} and a set of edges E{i, j} satisfying i, j ∈ V and i 6= j.
Each vertex stands for a corresponding voxel and its label `i, while the edges donate the
relation between each voxel and all other voxels given the labels of its neighbors. Each edge
{i, j} holds one orientation vector pair (Ψi,j ,Ψj,i), which indicates the opposed orientations
of the edge-connected vertices (Vij ←→ Vji) (Wang et al., 2017).
If two voxels are connected about one of their eight nodes in the three-dimensional grid, their
corresponding vertices are neighbors and linked with an edge in the graph G. All neighbors
of a voxel i build a local neighborhood system {∂i|i ∈ V }:

∂i = {j | {i, j} ∈ E, j ∈ V } . (3-5)

An MRF model is constructed on the graph G (Wang et al., 2017) and its concept is presented
in the next section.

3-2-2 Markov Random Field and Gibbs distribution

A Markov Random Field (MRF) is a statistical model that describes undirected relations
in a system of random variables. One can image a field consisting of cells that contain
random variables that interact with each other in a limited space. A simple example is
displayed in figure 3-1 (Kindermann and Snell, 1980). In a graphical representation of the
Markov Random Field (MRF) like the graph form described in the last section, the set of all
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random fields Ω = {~x = {xi}, i ∈ V, xi ∈ L} contains all possible segmentation configurations
~x = {xi}, i ∈ V, xi ∈ L, wherein xi indicates the segmentation result at vertex i. Any random
field ~x = {xi}, i ∈ V, xi ∈ L is an MRF with respect to the neighborhood system iff

P (~x) > 0 for all ~x ∈ Ω , (3-6)

where P (~x) represents the probability of the random field ~x and its local characteristics are
given by (Wang et al., 2017):

P (xs|xr, r 6= s) = P (xs|xr, r ∈ ∂s) . (3-7)

The Hammersley-Clifford theorem introduced by Hammersley and Clifford (1971) and re-
stated in chapter 3 of Besag (1974) establishes MRF-Gibbs equivalence, which provides the
Gibbs random field equivalent π(~x) to the Markov Random Field (MRF). This includes an
explicit formulation for the probability P (~x) in equation 3-7 depending on the energy function
U(~x). The Gibbs distribution in relation to the neighborhood system {∂i|i ∈ V } reads (Wang
et al., 2017):

π(~x) =
1

Z
exp(−U(~x)) with Z =

∑
~x∈Ω

exp(−U(~x)) . (3-8)

In equation 3-8, π(~x) is the probability of segmentation result ~x and Z is referred to as the
partition function. The energy function U(~x) takes the form of:

U(~x) =
∑
c∈C

Vc(~x) (3-9)

where C is a set of c, while c denotes a so called clique (subset of all vertices V within which
all vertices are neighbors) and Vc(~x) its corresponding potential function depending on the
labels of the neighborhood system (Wang et al., 2017).
Due to the complexity of the partition function’s Z computation, an expression of the con-
ditional probability P (xj |~x∂j ) provided by the aforementioned Hammersley-Clifford theorem
(Besag, 1986) is adopted:

P (xj |~x∂j ) =
P (xj , ~x∂j )∑
x′j∈L

P (x′j , ~x∂j )
=

exp[−U(xj , ~x∂j )]∑
x′j∈L

exp[−U(x′j , ~x∂j )]
(3-10)

The formulation of P (xj |~x∂j ) in equation 3-10 is the crucial element of the MRF simulation
via Gibbs sampler, but the local energy function U(xj , ~x∂j ), including the potential func-
tion Vi,j(xi, xj) within a neighborhood system, still remains undefined. Wang et al. (2017)
overcomes that by utilizing the Potts model (Koller and Friedman, 2009):

U(xj , ~x∂j ) = Vj(xj)︸ ︷︷ ︸
allows for preferred

label by voxel j

+
∑
i∈∂j

Vi,j(xi, xj)︸ ︷︷ ︸
allows for neigh-

boring labels

(3-11)
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with the isotropic potential function containing the granularity coefficient β:

Vi,j(xi, xj) =

{
0 if xi = xj
β if xi 6= xj

(3-12)

Equation 3-12 shows that two neighbored voxels with the same label have zero potential, while
different-labelled voxels have the potential β, which leads to a higher local energy U(xj , ~x∂j )
and, thus, a lower probability to assign this certain label to the voxel in question. This is
an intuitive approach in geological modeling since a data point in the subsurface is more
likely equal to his neighboring ones due to geological continuity. Additionally, Wang et al.
(2017) introduced an anisotropic potential function V aniso

i,j (xi, xj), which takes the orientation
and distances between voxel in a local neighborhood system into consideration. It is worth
to say that the choice of the granularity coefficient β influences the resulting MRF model
significantly. Its effect on the segmentation of one-dimensional well data is investigated in
section 4-1-2.

Figure 3-1: A simple example of a Markov Random Field (MRF) model with five random variables
xi connected omnidirectionally representing their relationship (from Liu et al., 2013)

3-2-3 Hidden Markov Random Field model

A Hidden Markov Random Field (HMRF) model is a statistical process with an underlying
MRF and it is characterized by the following: (i) the label configuration ~x of the MRF is unob-
servable or ”hidden” and (ii) the data’s origin is assumed to be one certain label configuration
~x and a so-called emission probability function f(yi; θxi). Furthermore, (iii) the assumption
of pairwise independence is made (Chatzis and Tsechpenakis, 2010; Zhang et al., 2001):

P (~y|~x) =

s∏
j=1

P (yi|xi) (3-13)

where s are all voxel locations and P (~y|~x) is the emitted field. Additionally, Wang et al.
(2017) define the pairwise probability P (xjyj |~x∂j ) of a pair (xj , ~yj) with label xj at voxel
location j, given the data ~yj and the neighborhood system ~x∂j :

P (xjyj |~x∂j ) = P (xj |~x∂j )P (yj |xj). (3-14)
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As mentioned before, the overall label configuration in the HMRF model is hidden, but the
marginal probability of one data feature yj reads:

P (yj |~x∂j ) =
∑
`∈L

P (`|~x∂j ) f(yj |θj) , (3-15)

where ` is a label of all labels L and θj = (µ`,Σ`) are the parameters defining the multivariate
Gaussian distribution as introduced in equation 3-4.

Equation 3-8, 3-9, 3-13 and 3-15 define the Gaussian Hidden Markov Random Field (GHMRF)
model. The probability of the data ~y within this model is given by (Wang et al., 2017):

P (~y|~µ, ~Σ, β) =
∑
~x

P (~y|~x, ~µ, ~Σ) π(~x|β) (3-16)

where π(~x|β) is the Gibbs probability, which is intractable and needs to be approximated
with:

π̃(~x|β) =
∏
j∈V

P (xj |~̃x∂j , β) . (3-17)

Equation 3-17 is derived from the mean field-like approximation principle, which estimates
many small components of complex stochastic models via a single averaged process, given a
suitable choice of segmentation ~̃x and its local neighborhood system ~̃x∂j (Celeux et al., 2003).
Hence, the GHMRF model’s probability can be rewritten as:

P (~y|~µ, ~Σ, β) ≈
∏
j∈V

∑
~x

P (~y|~x, θxj ) P (xj |~̃x∂j , β) =
∏
j∈V

P (yj |~̃x∂j , ~µ, ~Σ, β) (3-18)

The starting point of the segmentation as well as the numerical implementation of 3-18 re-
sulting in the actual segmentation process is outlined in the next section.

3-2-4 Starting point: The initial configuration and the priors

The final results of the unsupervised segmentation approach is theoretically independent of
the initial configuration ~x0 and the distribution parameters θ0 = (µ0,Σ0). Nevertheless,
using a good estimation of the result as initial setting can reduce the burn-in period of the
sampling significantly. Therefore, Wang et al. (2017) investigated the data sets ~y in an initial
preprocessing step with an expectation - maximization (EM) algorithm coupled with a FGM
model to obtain a rough estimation of ~x and θ. This is computationally efficient and robust
as long as the EM algorithm converges. Furthermore, prior distributions of the parameters θ
and β are initialized utilizing multivariate normal distributions. The Gibbs sampling in the
actual segmentation process (illuminated in the next section) ensures a global search for the
energy minimum in the parameter space even though the EM algorithm gets trapped in a
local minimum (Wang et al., 2017).
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3-2-5 Segmentation and parameter estimation

To perform the actual segmentation process, Wang et al. (2017) utilized a Bayesian method as
described in section 2-1 and similar to equation 2-2 they stated the following relation between
the posterior, prior and likelihood function L:

p(~x, φ|~y) ∝ p(~x, φ) L(~y|~x, φ) . (3-19)

where ~y are the observed data, ~x the segmentation result (label configuration), which is un-
known and to be determined just as the distribution parameter φ = (µ,Σ, β). Given equation
3-19, the unknowns can be iteratively sampled in two steps using a Markov Chain Monte
Carlo (MCMC) method (see 2-2-2) via two posterior distributions, p(~x|~y, φ) and p(φ|~y, ~x),
respectively (Wang et al., 2017).

Step 1: Sample configurations ~x from posterior p(~x|~y, φ)

The posterior p(~x|~y, φ) can be interpreted as the probability distribution of segmentation
result ~x given the data ~y and the distribution parameters φ; and furthermore, it is a
Gibbs distribution, whose calculation depends on the evaluation of the energy function
U ′(~x) = U(~x) + U(~y|~x, φ) and its local equivalent U ′j(xj , ~x∂j ) given by (Wang et al.,
2017):

U ′j(xj , ~x∂j ) = U(xj , ~x∂j )︸ ︷︷ ︸
MRF energy

+ U(yj |xj , θxj )︸ ︷︷ ︸
likelihood energy

(3-20)

The MRF energy is nothing but the number of unequally-labelled neighbors (for 1D
well data either 0, 1 or 2) multiplied by the granularity coefficient β and assigned to
each label ` at each data point (see equation 3-12). The likelihood energy on the right
hand side of equation 3-20 can be determined using the local Bayes’ Theorem for the
conditional distribution:

p(xj |yj , ~x∂j , θxj ) ∝ exp
(
−U(xj , ~x∂j )− U(yj |xj , θ∂j )

)
=

= exp
(
−U(xj , ~x∂j )−

1

2
(xj − µxj )T Σ−1

xj (xj − µxj ) +
1

2
log|Σxj |

) (3-21)

Now, that the total energy function can be evaluated, equation 3-10 is applied to de-
termine the probability of each label ` being assigned to each data point (voxel j).
The sampling process is performed using a chromatic parallel Gibbs sampler, which uti-
lizes a graph structure splitting all voxel in equally coloured subsets enabling a parallel
sampling. In the case of one-dimensional well data, this results in parallel sampling
of two voxels. The MRF and total energy as well as the probability distribution is
then recalculated for the randomly drawn new candidates and compared to the pre-
vious probability distribution of these voxels to decide about acceptance or rejection.
Afterwards, the next two voxels are drawn and compared to be rejected or not until the
updated segmentation result ~xt+1 is found (Wang et al., 2017).
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3-2 BaySeg - Stochastic geological modeling via unsupervised segmentation 17

Step 2: Sample distribution parameters φ = ~µ, ~Σ, β from posterior p(φ|~y, ~x)

Simply put, this sampling step proposes new parameters φ, compares them to the previ-
ous ones in term of their likelihood and evaluates the acceptance of the new parameters.
Therefore, the previously described Gibbs sampler is utilized again. For this purpose,
Bayes’ Theorem (see equation 2-2) is established for each parameter separately:

p(~µ|~y, ~x, ~Σ, β) ∝ p(~µ) L(~y|~x, ~µ, ~Σ, β), (3-22)

p(~Σ|~y, ~x, ~µ, β) ∝ p(~Σ) L(~y|~x, ~µ, ~Σ, β), (3-23)

p(β|~y, ~x, ~µ, ~Σ) ∝ p(β) L(~y|~x, ~µ, ~Σ, β). (3-24)

In the above equations, the likelihood function L(~y|~x, ~µ, ~Σ, β) =
∏
j∈V P (yj |~̃x∂j , ~µ, ~Σ, β)

is calculated using equation 3-18, in which the segmentation result ~xt+1 is utilized as
mean field-like approximation ~̃x (Wang et al., 2017).
The procedure starts with calculating the component coefficient for each voxel, which
is its probability distribution based on the neighborhood system only. Afterwards,
a new βprop and µprop are proposed, which are randomly disturbed versions of their
predecessors, but user-defined length apart from them, referred in this work to as
jump − parameters. For the sampling of Σ, it is represented by a label-wise eigen-
value decomposition:

Σ` = λ`D`A`D
T
` ; (3-25)

where Σ` is the covariance matrix of label `, λ` its volume and A` its shape, while D` is
its orientation (Wang et al., 2017). The proposal of σprop is then nothing but an update
of all these covariance matrix characteristics for each layer or label `, using user-defined
distance of the new shape and volume as well as a predefined angle for the rotation
matrix. Now, that the new parameters φprop are drawn, they are to be compared to
their present versions φprev.
Therefore, the log prior density (LPD), which allows for the prior probability distri-
bution and the log mixture density (LMD), which takes the probability distribution of
the segmentation based on the parameters φ and the neighborhood system into consid-
eration, is calculated for both, the previous and the proposed parameters. Combining
the LPD and LMD results in the target log likelihood for the proposed and previous
parameter log(pt)prev/prop, which are evaluated using the ratio r:

r = exp
(
log(pt)prop − log(pt)prev

)
(3-26)

If r is greater than one (in other words, log(pt)prop is greater than log(pt)prev) or r
is greater than a random uniform distributed variable, the new samples of φprop are
accepted, otherwise the next iteration is run with the previous parameters. It is to
be noted that µ is updated first, then Σ and eventually β and each parameter update
utilizes all previously updated parameters.
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Once the updated parameters are obtained, they are stored and the procedure restarts with
step 1. The above outlined algorithm runs user-defined times and yields in a probability
distribution for each voxel j, which describes how likely each label ` is assigned to that voxel
(fourth column in table 3-1). Moreover, a vector is extracted containing the most likely label
for each data point (see MAP method in section 2-2-1), which can be used for further analysis
or visualization (third column in table 3-1). Furthermore, once the final label configuration
is obtained, uncertainties can be quantified and visualized using the concept of information
entropy by Wellmann and Regenauer-Lieb (2012) as explained in section 2-3. The next section
describes which zonation concepts are applied to the segmentation results to find continuous
and maximal homogeneous layers.

Table 3-1: A simple example of the outcome of the segmentation algorithm BaySeg applied
to 15 data points from two different boreholes with the assumption of three labels
(first & second column: input data; third column: most likely label; fourth column:
probabilities of each label)

Borehole Data # Label Probabilites
0 1 2

1 0 2 [0.10 0.10 0.80]

1 1 2 [0.06 0.02 0.92]

1 2 2 [0.00 0.11 0.89]

1 3 2 [0.00 0.00 1.00]

1 4 0 [0.77 0.02 0.21]

1 5 0 [0.89 0.01 0.10]

1 6 1 [0.09 0.91 0.00]

1 7 1 [0.11 0.86 0.03]

2 0 2 [0.11 0.06 0.83]

2 1 2 [0.01 0.01 0.98]

2 2 0 [0.65 0.06 0.29]

2 3 0 [0.73 0.09 0.18]

2 4 1 [0.08 0.85 0.07]

2 5 1 [0.13 0.84 0.03]

2 6 1 [0.03 0.97 0.00]

A parameter test and an accuracy estimation of the segmentation algorithm are performed in
section 4-1-2 and 4-2-1. Furthermore, the results are compared to an support-vector network
(SVN) segmentation approach suggested by Hall (2016). The basic principles of this method
are outlined in appendix A-1.
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3-3 Zonation of well data 19

3-3 Zonation of well data

The purpose of well log zonation is identifying homogeneous zones within a borehole and
moreover, to characterize these with the aim to detect a correlation between data from dif-
ferent wells (Beghtol, 1958). As long as the amount of data is clearly arranged, the zonation
is straight-forward and can be conducted manually by well data experts, but with increas-
ing volume and complexity of the data the human brain becomes less able to handle all
available information and, thus, statistical approaches are utilized to perform the zonation
computationally (Testerman et al., 1962). Automatic statistical methods furthermore ensure
an objective investigation of the data and the reproducibility of the outcome. Modern algo-
rithms are capable of assigning a rock type automatically to each data point, but their purpose
is a manual interpretation and correlation of several boreholes. Since the zonation applied in
this work aims automatic 3D modelling afterwards, zonation approaches are utilized, which
create continuous zones.
Zonation can be applied on the raw well log data itself or as in this work on the segmented
data (BaySeg outcome), meaning that each data point is already assigned to a label or layer
and the zonation aims to find the most likely way to split the data into a fixed number of
zones. The number of zones equals the number of labels utilized for the segmentation, which
is predefined or estimated via BIC (see section 3-1-2). In the following section, different ap-
proaches are explained to perform the zonation. It is worth to say that a statistical correlation
between wells is never a guarantee for continuous geological layers (zones) in the subsurface
(Testerman et al., 1962).

3-3-1 Minimizing the variance within zones

The first zonation approach applied in this work is based on the minimization of variances
within zones introduced by Beghtol (1958) and generalised by Testerman et al. (1962). This
method was initiated to be applied on a single set of raw data, but due to multiple data sets
in this work the label of each data point resulting from the segmentation algorithm (third
column in table 3-1) is treated as a characteristic value, whose variation can be statistically
analysed, although it has no physical meaning. The variance var` of a zone ` has the following
form (Agarwal, 2006):

var`(~x) =
1

n`

n∑̀
i=1

(xi − ~̄x)2 , (3-27)

where n` is the total number of data xi within a zone or layer ` ∈ {1, 2, 3, ..., L} and ~̄x its mean
value. Due to the minimal effect on the result and the implementation in the python package
numpy, the Bessel’s correction is neglected. While the algorithm introduced by Testerman
et al. (1962) first divides the data into two zones and then these zones into several zones
until the number of user-defined layers is achieved, the algorithm applied in this work, does
not fix any zone boundary, but considers all possible combinations. It is a function directly
dependent on the number if layers L, where the total variance of all zone combinations is
calculated. Therefore, the variances of all zones within one zone configuration are summed
up and the minimum of all total variances vart is determined for each borehole separately:
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bconfig = min (vart =
L∑
`=1

var`). (3-28)

where bconfig is is the zonation result with the lowest summed variances in all layer and zones,
respectively. One weaknesses of this approach is its exponential increasing computation time
with growing data volume and additionally, in case of very noisy data it divides the boreholes
close to top and bottom. This results in a few very small zones with low variances and a
huge zone in the middle with an extremely high variance. Being aware of the algorithm’s
weak points, it is still applied first in this work, as a solid starting point for the zonation
and a comparison to further approaches. Moreover, this straightforward method is used to
make the whole process of automatically 3D modeling from one-dimensional well log data
running. Besides the aforementioned flaws, this approach does neither consider nor conserve
uncertainties provided by the segmentation using BaySeg, thus a second approach described
in the next section is utilized. The results and a short comparison of the zonation approaches
are presented in section 4-2-2.

3-3-2 Probability maximization within zones

With the aim to take the probability distribution resulting from BaySeg into consideration,
the second zonation approach applied in this work is based on the optimization of probability
sums. Therefore, the label probabilities (fourth column in table 3-1) are separated borehole-
wise and cumulatively summed up from top (surface) to borehole bottom. To compensate for
the number of occurrences in the segmentation process of each layer these probabilities are
normalized. The cumulative normalized probability Pcn(xj |~x∂j ) ∈ [0, 1] is then given by:

Pcnm(xj |~x∂j ) =

cumulative probability Pc(xj |~x∂j )︷ ︸︸ ︷
m∑
i=0

Pm(xj |~x∂j ) − Pc0(xj |~x∂j )

PcM (xj |~x∂j )− Pc0(xj |~x∂j )
(3-29)

where m ∈ (1, 2, 3, ...,M) is the location inside the borehole (data vector) and M the last
location. Pc0(xj |~x∂j ) is the cumulative probability of the first borehole location (minimum),
while PcM (xj |~x∂j ) the one of the last location (maximum). The most likely position of the
lower boundary b` of a layer ` is then the location where Pcn`

(xj |~x∂j ) of layer ` ∈ (1, 2, 3, ..., L)
is maximal, while the cumulative normalized probabilities Pcnk

(xj |~x∂j ) of all other layers
k ∈ (1, 2, 3, ..., L) with k 6= ` is minimal:

b` = max [(L− 1) Pcn`
(xj |~x∂j )−

L−1∑
i=0

Pcnk,i(xj |~x∂j )]. (3-30)

The determination of the lower boundary is then performed for all layers ` to find the best layer
configuration and zonation, respectively. The zonation results of this method are outlined
in section 4-2-2, where it is also compared to the previously described approach. The major

August 9, 2018



3-3 Zonation of well data 21

limitation of this zonation is the constraint to single occurrence of each layer. Although, the
existence of two layers with similar properties is common in the subsurface, this simplification
is kept for this work because it is one of the requirements of the geological modeling with
GemPy, whose concepts and methods are presented in the next section. GemPy utilizes the
estimated lower boundaries as interface data points. Further investigations on zonation and
how to extract interface location data from the borehole segmentation are outlined in the
discussion of this work.
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3-4 GemPy - Geologic modeling as an inference problem

Reliable structural geological modeling based on local samples (”hard data”) is a key aspect of
several geoscientific questions and applications (e.g. geofluid movement or raw material inves-
tigations). While most powerful methods are highly cost intensive and obscure, de la Varga
et al. (2018) introduced GemPy, a fully open-source geomodeling method implemented in the
programming language Python. GemPy’s accessibility of the source-code reveals the inner
processes of the modeling and enables an extension of the code itself and/or coupling with
other libraries and packages. It is based on an implicit potential-field approach making use of a
CoKriging interpolation and combines prior information with likelihood functions (containing
geological knowledge) in a Bayesian inference framework (De la Varga and Wellmann, 2016;
de la Varga et al., 2018). GemPy’s numerical implementation is based on Theano and utilizes
several more efficient packages (e.g. NumPy, PyMC3, pandas). Furthermore, GemPy allows
an uncertainty quantification and visualization as described in section 2-3 compressed in a sin-
gle parameter using the concept of information entropy after Wellmann and Regenauer-Lieb
(2012). In the following section the theory of structural geological modeling as an inference
problem, the underlying potential-field approach and the numerical implementation in Python
are described.

3-4-1 Bayes’ theorem in the context of geological modeling

De la Varga and Wellmann (2016) consider geological modeling as a Bayesian inference prob-
lem. Bayes’ theorem and the basics of Bayesian statistics are introduced in section 2-1, whose
components need to be specified in the context of geological modeling:

Mathematical forward model M : The link between parameters and observed data is de-
scribed by a mathematical model, which is a direct function of the input parameters in
case of structural geologic models (De la Varga and Wellmann, 2016; Wellmann et al.,
2017):

M = f(~x, φi, kj , αk, β`), (3-31)

where φi represents the mathematical forward model, based on interpolation functions
and depending on the position ~x. Primary information or data such as surface contact
point and orientation information are considered as kj and additional parameters of the
interpolation function as αk. Moreover, the topological description is referred to as β`.
Considering the geological model as a direct function of the input parameters ensures
complete automation of the modelling step and therefore, the model can be computed
instantaneously when changing input parameters (Wellmann et al., 2017).

Model parameter θ: These are either deterministic (exact value) or stochastic (probability
distribution) parameters define the mathematical model φi. In the context of geological
modeling these can be ~x, kj , αk or β` (see equation 3-31).

Observed data y: These are any kind of further information, which can be linked or compared
to the geological model. These auxiliary data can be derived from measurements (e.g.
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seismic data) or from geological expertise (e.g. geometrical constrains) (De la Varga
and Wellmann, 2016; Wellmann et al., 2017).

Likelihood functions p(y|θ,M): These are the likelihood of the model parameter given the
data, or in other words, they describe the relation between the parameter and the
data (Martin, 2016). Except the fact that they depend on the data y and not on the
parameters θ, they are mathematically equivalent to probability density functions (Patil
et al., 2010).

3-4-2 Inference process

Gelman et al. (2013) presented a work flow for solving complex Bayesian inference problems
with large uncertainty spaces, which is not as simple as Bayes’ theorem may suggest. This
sequence is adapted by De la Varga and Wellmann (2016) for the propose of structural geologic
modeling:

1. Probability model setup (prior): All model parameters θ define a multidimensional
environment, a kind of joint probability space. A 2D example of such an environment
defined by two random parameter is displayed in figure 3-2.

Figure 3-2: Two-dimensional joint probability space created by two random parameters θ result-
ing from probability density function describing the location of Sediment 1 (distri-
bution on left backplane) and Sediment 2 (right backplane) (from De la Varga and
Wellmann, 2016)

2. Consideration of observed data y: Next, all conditional probabilities need to be set to
apply equation 2-1 and calculate the posterior distribution given the likelihood of the
parameters in light of the data p(y|θ,M). Therefore, the parameters of the probability
model must be related to the likelihood functions of the data y by deterministic functions
of the model M introduced in equation 3-31. De la Varga and Wellmann (2016) alluded
to the fact, that there is not necessarily a relation between all parameters and all data,
while any combination is possible.

3. Posterior sampling: Due to the complexity of almost all practical cases, the calculation
posterior is not as simple as Bayes’ theorem (equation 2-1) suggests. There exist a
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variety of numerical sampling methods to obtain the posterior, of which two are used
in this work and explained previously in section 2-2.

4. Postprocessing posterior analysis: For the evaluation of the posterior model, De la
Varga and Wellmann (2016) included two approaches: (1) the analysis of the parameters
θ via Gaussian kernel density estimation and (2) a information entropy measurement
on all obtained models within the posterior to illustrate uncertainties (Shannon, 1948;
Wellmann, 2013).

3-4-3 The GemPy basis - potential field method

The crucial process of the 3D model generation in GemPy as described in equation 3-31
is a potential field approach developed by Lajaunie et al. (1997). Its concept is built on a
global interpolation function Z(x0) with x0(x, y, z) ∈ R3. The continuous space (x, y, z)
is characterized by a scalar field, while the scalar field value is dimensionless and has no
physical or chronological meaning. Isovalue surfaces of the field represent synchronously
deposited sediments of one layer and the scalar field’s gradient is directed parallel to the
change in physical properties of the subsurface, thus, perpendicular to the isovalue surfaces.
Figure 3-3 shows an example of such a global interpolated scalar field.
Interpolating the whole space instead of each surface of interest (here: geological layer) comes
with two advantages: On the one hand, the entire interpolated scalar field, including parts
between layers of interest can be evaluated and used for further analysis or the interpolation.
On the other hand, the approach ensures geological continuity, meaning that two layers can
never cross (de la Varga et al., 2018). To obtain a geological 3D model from the given sparse
data, a suitable choice of the interpolation method resulting in the continuous scalar field is
essential, which is explained in the next section.

Figure 3-3: Scalar field interpolated from six interface data points of two different layers (layer 1
= blue dots: x1αi and layer 2 = red dots: x2αi), which are connected by isovalue sur-
faces and two orientation information xβi representing the gradient of the potential
field (black arrows). (from de la Varga et al., 2018)
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3-4-4 Structural geological forward modeling

CoKriging - from data to scalar field

The forward modeling, described in equation 3-31 is the central component of structural ge-
ologic modeling. In GemPy, the application of a suitable interpolation method φi to obtain
the global scalar field is of particular importance because it enables a direct and automatic
model update when changing sensitive input parameter (De la Varga and Wellmann, 2016).
Therefore, de la Varga et al. (2018) achieve the interpolation function Z(x0) via Universal
CoKriging (after Chilès and Delfiner, 2009). Kriging is closely related to regression analysis
and results in a unbiased linear predictor (random function) for the scalar value by mini-
mizing the covariance function. The advantage of CoKriging in geological applications is the
consideration of data from multiple locations and the preface ”Universal” comes from the
usage of polynomial drift functions, which take the linear behaviour of layer thickness into
account.
In the following, the procedure of Universal CoKriging to obtain the global interpolation
function Z(x0) for the scalar field from the data is expounded. Keep in mind, that the scalar
field value does not has any physical meaning, but simply represents the layer affiliation.
Therefore, the exact value is irrelevant, but constant within each layer and instead of the
value itself, the difference of each point relative to a reference point is considered. According
to de la Varga et al. (2018) this yields:

Z(xkαi)− Z(xkα0) = 0 (3-32)

where k describes the layer affiliation. The Kriging input data can either be (i) layer interface
points (xα in figure 3-3), which describe the isovalue interfaces or (ii) orientation data (xβ in
figure 3-3) representing the gradients of the scalar field. Latter ones are perpendicular to the
isovalue surfaces and mathematically normal vectors to the dip plane. Each of the input data
is interpolated with its own random function, Zα and ∂Z

∂u , respectively. Their relationship is
given by (de la Varga et al., 2018):

∂Z

∂u
(x) = lim

ρ→0

Z(x+ ρu)− Z(x)

ρ
, (3-33)

which is used to relate the scalar field and its gradient in the cross-covariance matrices.
Given the information above, the potential field estimator depends on a term allowing for the
potential field difference and one representing the orientation information and is evaluated
via (De la Varga and Wellmann, 2016):

Z(~x)− Z(~x0) =

α=1∑
M

µα(Z(~xα)− Z(~x
′
α))︸ ︷︷ ︸

potential difference
(interface data)

+

β=1∑
N

νβ
∂Z

∂uβ
(~xβ)︸ ︷︷ ︸

potential gradient
(orientation data)

, (3-34)

where M and N are the total number of interface points and orientation data, respectively.
µα and νβ represent weighting factors. As mentioned earlier, Kriging aims to minimize the
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covariance function resulting in the best unbiased interpolator. Therefore, de la Varga et al.
(2018) propose a Universal CoKriging system in the following form:

C ∂Z
∂u
, ∂Z
∂v

C ∂Z
∂u
,Z U ∂Z

∂u

CZ, ∂Z
∂u

CZ,Z UZ

U ′∂Z
∂u

U ′Z 0


λ ∂Z

∂u
, ∂Z
∂v

λ ∂Z
∂u
,Z

λZ, ∂Z
∂u

λZ,Z

µ∂u µu


︸ ︷︷ ︸

weights vector

=

c ∂Z
∂u
, ∂Z
∂v

c ∂Z
∂u
,Z

cZ, ∂Z
∂u

cZ,Z

f10 f20

 . (3-35)

where C ∂Z
∂u

in the left hand side vector is the gradient covariance-matrix, CZ,Z the covariance-

matrix and CZ, ∂Z
∂u

the cross-covariance function. The drift functions and their gradients are

represented by UZ and U ∂Z
∂u

, respectively, which are indicated in the vector on the right hand

side by f10 and f20. Furthermore, c ∂Z
∂u
, ∂Z
∂v

is the covariance function’s gradient; c ∂Z
∂u
,Z and

cZ, ∂Z
∂u

are the cross-covariance functions and cZ,Z the general covariance function. Finally,

the unknown vectors are encapsulated in the weight vectors by weights λ and constants of
the drift functions µ. Due to its dependence on the gradient at least one scalar field gradient
(geological orientation data) is required to solve the system of equations.
Equation 3-35 can be solved for both, the scalar value field Z and its gradient ∂Z

∂u . While Z

is used for the segmentation described in the next section, the gradient of the scalar field ∂Z
∂u

can be utilized for further analysis (de la Varga et al., 2018). It is worth to say, that GemPy
is able to model unconformities and fault systems by combining their scalar fields, but due
to missing fault and unconformity information provided by one-dimensional well data these
features are not used in this work (for more details see chapter 2.2.2 in de la Varga et al.
(2018)).

Segmentation - from scalar field to 3D geological model

The previous section captured how to obtain the interpolation function Z(x), which allows the
calculation of the potential or scalar field value at any point in space (x, y, z). Now, GemPy
utilizes two different approaches to segment the space and create a structural geologic 3D
model. The simplest way is discretizing the space and calculating the scalar field vector for
each point of the mesh grid. Then, by comparison points with equal or similar values can
be assigned to a layer of interest (de la Varga et al., 2018). A two-dimensional section of a
generic example is shown in figure 3-4.
A further segmentation method in GemPy based on layer’s isosurface location utilizes the
marching cube algorithm after Lorensen and Cline (1987), where the space is discretized in
3D voxels. By interpolating the values at corners of the voxels, in which the value of the
isosurface of interest appears, the intersections between voxel edges and isovalue surfaces can
be obtained. Finally, these intersections are used as vertices to build simplices, which can be
used in the 3D visualization.
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Figure 3-4: Generic example of a single stratigraphic group extracted from a structural geological
3D model containing 3 layers (yellow, green, orange) created with GemPy; interface
data are represented by dots, while orientation data are represented by black arrows
(modified after de la Varga et al., 2018)

3-4-5 Numerical implementation into probabilistic programming framework

The numerical implementation of GemPy is based on symbolic automatic differentiation using
the Python package Theano and its code structure or design aims a maximum re-usability and
modularity. Therefore, the code is divided in independent functions and modules, containing
a single logical step or calculation and a whole concept (like datamangement) including sev-
eral functions, respectively, which avoids duplications, simplifies modifications and increases
readability.
The automatic differentiation requires symbolic coding handled here by Theano, which is an
efficient and fast solver of algebraic equations and particularly its derivatives. It creates an
acyclic graph, similar to the MRF model outlined in section 3-2-2, where notches represent
parameters and their connection (edges) describe the relation between the parameters (math-
ematical operations). Each method applied to the data is related to a specific part of the
graph, which is finally analysed and evaluated to perform tasks like optimization and deriva-
tive computation (more details about Theano can be found in Bergstra et al., 2010). Note
that Theano not only takes over and fastens calculations and optimizations by code compiling
into more quickly programming languages like C, but particularly performs the interpolation
of the scalar field (geological modeling).
Additionally, the data management in GemPy, which needs to be done before the graph con-
struction, makes use of the Python package pandas for data manipulation and analysis (for
more details see McKinney (2011)). This enables an efficient data storage and preparation
before the symbolic graph construction and, thus, the data import in Theano, which safes
computation time in the actual modeling part. The results of the geological modeling are
displayed and discussed in section 4-2-3. The next section describes the methods used to
combine the concepts outlined in the previous sections.
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3-5 Concatenation and merger of BaySeg and GemPy

The importance of a reliable segmentation and zonation of well log data to interpret and
extract meaning from them is expounded comprehensively in the Introduction. The main
objective of this work is the coupling of the concepts of GemPy and BaySeg to create 3D
structural models directly from one-dimensional raw well data and furthermore, to implement
that geological model into the segmentation process. This aims for an uncertainty reduction
and a faster convergence of the segmentation algorithm. Based on that, the next section
describes the data management used to transform the output data of BaySeg into a suitable
input file for GemPy. Moreover, it is outlined how the 3D geological model is used to benefit
the segmentation process by expanding the neighborhood system of the FGM model.

3-5-1 Coupling of segmentation, zonation and geological modeling

The crucial task of concatenating the segmentation results of BaySeg and the structural
modeling of GemPy is neither the application of the zonation approaches nor the creation
of the GemPy input file, but the automatic extraction of information about the input data,
which are necessary for the geological modeling. When utilizing GemPy only, this essential
information is user-defined and inserted to the modeling process manually. Nevertheless, a
few parameters need to be set before starting the fully automatic segmentation, zonation and
modeling process:

- Number of layers: The number of layers, zones or formations (these words are equiva-
lent) is either determined by the BIC (explained in section 3-1-2) or known and user-
defined.

- Considered borehole: The titles of the boreholes, which should be considered in the
segmentation, need to be specified beforehand.

- Considered measurement: The measurement types to be included in the segmentation
process need to be named in advance.

- Resolution of GemPy model: The voxel length in x-, y- and z-direction is set by a single
parameter called Gempy-resolution.

- Plotting type: The plotting routine allows the visualization of (i) a two-dimensional
section, either in x- or in y-direction or (ii) the whole 3D model. In both cases the input
data are displayed in the model.

The first step to achieve the automatic input parameter extraction, is by splitting the output
of BaySeg (table 3-1) either according the labels or probability distributions borehole-wise
and applying one of the zonation algorithms, which are explained in section 3-3 to identify
boundaries separating layers based on an optimization criterion.
Subsequently, the modeling input file is created as a pandas-dataframe by considering the
data points right above the determined boundaries as lowest points of the corresponding zone,
which contain information about X, Y, Z and borehole. The spatial and borehole affiliation
information are extracted from the raw data directly and additionally these data points are
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Table 3-2: Example of a GemPy input dataframe to reconstruct a horizontal layer model re-
sulting from the synthetic raw data and the applied zonation approach; contains the
coordinates of each data point (column 1, 2, 3) as well as its borehole and layer
affiliation (column 4 & 5)

X Y Z borehole formation

100 50 -50 BH1 Layer 1

150 150 -50 BH2 Layer 1

200 100 -50 BH3 Layer 1

100 50 -125 BH1 Layer 2

150 150 -125 BH2 Layer 2

200 100 -125 BH3 Layer 2

100 50 -175 BH1 Layer 3
. . . . .
. . . . .
. . . . .

assigned to the layer or zone, which is either most common inside itself or whose probability
is maximum. An example of a GemPy input dataframe is given in table 3-2.

The dataframe is then stored as a csv-file, which is automatically loaded into GemPy via
it’s input data import routine. This enables the import of interface as well as orientation
data, but as long as expensive borehole imaging data are unavailable, one-dimensional well
logs do not provide orientation information. Nevertheless, as described in section 3-4-4, one
orientation data (gradient of scalar field) per layer is necessary to solve the CoKriging system
of equations. Therefore, the dips are calculated from three interface data points of each layer
by spanning a plane between them and calculating the centre as well as the normal of the
plain. The choice of these data points is essential for the success of the 3D modeling because
the resulting layer will be perpendicular to the orientation vector and also cross it. Therefore,
not only the dip but also the location of the dipping data needs to be as accurate as possible.
Assuming that geological heterogeneity is lower within a smaller area, the orientation data is
created from the three interface data points, which are closest to each other. An alternative
approach that puts the orientation data far away from the area of interest, is outlined in the
discussion of this work.
As a next step, the sequential order of the geological formations or in other words, the
age-related layer order is set automatically, wherefore the layer affiliation data is sorted by
depth and duplications are removed. Once the input data is prepared and the sequential
pile is defined, the input data for the interpolation is generated. That includes (i) setting
the interpolation parameters for the CoKriging, (ii) rescaling the input data extent according
to the minimal and maximal extend of the data and the pre-defined resolution, and (iii)
numbering the layer from young to old along with creating a default basement formation.
These steps also compile the Theano graph function. This is computationally expensive,
but needs to be done only once because the interpolation data can be updated only in the
following iterations, instead of recreating it (De la Varga, 2018). After the aforementioned
preparation tasks, the geological 3D model is computed, which results in a lithological block
model containing information about the layer or formation at each voxel and its gradient.
Eventually, this is displayed as specified previously in 2D or 3D. The results of the automatic
coupling of segmentation, zonation and geological modeling are displayed and analysed in
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section 4-2, while the next section outlines an implementation approach of GemPy into the
segmentation.

3-5-2 Implementation of 3D geological model into the segmentation

The main innovation of Wang et al.’s geological segmentation approach is its consideration
of the neighborhood system via the calculation of the MRF energy. But the neighborhood
system of one-dimensional well data is limited to a voxel above and below the considered
one. With the aim to extend this system, the three-dimensional structural model created
by GemPy is utilized to fill the empty space between the boreholes. This principle in two
dimensions is visualized in figure 3-5. The borehole is located at X = 90m and its data
points are represented by stars. Around the borehole a XZ-section of the 3D geological model
is displayed, whose data points are symbolized by black dots.

Figure 3-5: Visualization of the neighborhood system extension; where the stars represent data
points in the borehole and the black dots data points of the 3D geological model.
The red star denotes the considered point, whose neighborhood system is regarded.
The blue circle marks the neighborhood system considered by BaySeg, while the
green circle represents its extension. The X-Y-sections at the bottom right visualize
the 4 and 8 point stencil neighborhood systems.
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Considering the neighborhood system of the red star, BaySeg includes the data points right
above and below in the segmentation process (marked by blue circle). The approach developed
in this work additionally considers four or eight neighbored points resulting from the GemPy
model. In 2D these are only two points, which are tagged by the green circle in figure 3-
5. The XY-section below the legend in figure 3-5 visualize the four and eight point stencil
neighborhood system, respectively, where the red star represents again the considered borehole
data point. It is worth to mention, that the resolution of the well logs (measurement points
per distance) does not automatically equal the resolution of the geological 3D model and,
thus, the well data voxels do not overlap with the points of the GemPy grid. Therefore,
the closest point ~xc of the GemPy model to each borehole data ~xBHi is considered, which is
determined by calculating their minimum distance:

~xci = min[~xGemPy − ~xBHi ] with i ∈ [1, 2, 3, ..., n], (3-36)

where ~xGemPy are all coordinates in the GemPy grid and n is the number of borehole data
points. Numerically, the expansion of the neighborhood system is implemented by extracting
XY-plains of the lithological block model for all depth levels and the MRF energy at each
point depending on their direct neighbors (4 or 8 stencil) is calculated (see equation 3-12).
This energy is referred to as GemPy energy, which is finally added to the total energy in the
segmentation process (after equation 3-20):

U ′j(xj , ~x∂j ) = U(xj , ~x∂j )︸ ︷︷ ︸
MRF energy

+ U(yj |xj , θxj )︸ ︷︷ ︸
likelihood energy

+ U(xj , ~x
GemPy
∂j

)︸ ︷︷ ︸
GemPy energy

(3-37)

This principle might seems to be simple, but by implementing a completely new two-
dimensional neighborhood system, the granularity coefficient becomes two-dimensional as
well and needs to be sampled and updated in each iteration. This is achieved by introducing
an additional βgp and expending the parameter estimation by Bayes’ Theorem for βgp (see
equations 3-22, 3-23 and 3-24):

p(βgp|~y, ~x, ~µ, ~Σ) ∝ p(βgp) L(~y|~x, ~µ, ~Σ, βgp). (3-38)

Numerically, this implies the creation of an additionally prior distribution for βgp in the initial
configuration of BaySeg. Furthermore, the update of the segmentation itself (step 1 in section
3-2-5) remains independent of the GemPy neighborhood system, due to the computational
costs. Recalculating the 3D model during the sampling in case of ten boreholes with 190 data
points each would require the creation of 950 GemPy models in each iteration. The results
of this method and an analysis if it reduces uncertainties or causes a steeper convergence in
the segmentation process is detailed in section 4-3.
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3-6 Creation of synthetic well log data

An important factor, when testing the performance of segmentation algorithms, is the cre-
ation of synthetic data, where the model to recover is known as a reference and the data
deviation can be controlled. There exist several distributions with different advantages and
disadvantages, but in this work the synthetic data are created using normally distributed
data. This enables the control of the standard deviation σ or variance σ2 defining the scat-
tering of the data points from the mean. The normal or Gaussian distribution is defined by
(Bulmer, 1979):

f(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
, (3-39)

where x is the data and µ its mean. In case, one also wants to control the covariance matrix,
a multivariate normal distribution can be used to create the synthetic data.
To ensure a simple comparison of the segmentation result and the desired model, the synthetic
data are created from GemPy-models directly. Therefore, the borehole length, the layer no-
tation, and the number of layers are extracted automatically from the input data (lithological
model). Afterwards, the basement values are removed and randomly located boreholes are
extracted from the model, assigned with their coordinates as well as the corresponding lay-
ers at each depth point. Finally, Gaussian distributed random variables are created with a
user-defined standard deviation σ as well as number of features and boreholes. Thereby, the
number of data centres equals the number of different layers and the data is then assigned to
each data point corresponding to its labeling. Several examples are displayed in figure 3-6,
where synthetic well logs are created directly from a GemPy model with 4 horizontal layers.
All of them vary in standard deviation increasing from σ = 3 in a) to σ = 7.5 in e). A detailed
inspection and the performance of BaySeg’s segmentation of the data displayed in figure 3-6
is presented in section 4-1. In the next chapter, the results of all the methods outlined in
this chapter are described and discussed. Moreover, the optimal parameter setting for the
modeling approaches is investigated.
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Figure 3-6: Synthetic well log data for increasing standard deviations from left (a : σ = 3) to
right (e : σ = 7.5), created directly from a four-layer horizontal GemPy model and
including four features (measurements) at each data variation level; layer boundaries
are represented by dashed black lines.
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Chapter 4

Results

This chapter visualizes and analyses the results of the methods utilized in this work. This
includes statistical performance investigations of different parts of the automatic geological
3D modeling algorithm to determine appropriate parameter settings; and furthermore, the
comparison of outcome models with their origin to expose limitations of this approach.
In section 4-1 the segmentation is applied to different distributed single wells to check its
performance and optimize the segmentation parameters. During the next section 4-2, the
zonation approaches are tested on several segmented wells. The outcome is used to create
3D geological models automatically. The effect on the uncertainties within the process after
implementing the structural modeling into Wang et al.’s method is investigated in section 4-3.

4-1 Segmentation of single well logs - Parameter testing

Originally, Wang et al. (2017) developed their work to model geophysical data in n-dimensions.
In this work their method is applied to one-dimensional well data, which is tested in this
section. Therefore, the performance of the BIC on synthetic well data with varying standard
deviation is investigated first. Then, the segmentation process is applied to the same data
with different granularity coefficients. Moreover, the influence of the jump − parameters is
examined, which control the proposal of new candidates in the MCMC sampling.

4-1-1 Bayesian information criterion performance

The Bayesian information criterion (BIC) can be used to investigate the statistical nature of
the data to find the optimal number of clusters or labels before the actual clustering process.
This number is a necessary input parameter and influences the results of the segmentation
process significantly. Table 4-1 displays the estimated label number for synthetic well logs
with different standard deviations, using the BIC as described in section 3-1-2. The data are
created as outlined in section 3-6 and plotted in figure 3-6. The results demonstrate that up
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to a standard deviation σ = 3 the BIC is able to reconstruct the original number of layers (4
layers in this case).

Table 4-1: BIC estimation of the number of layers on synthetic well data with 4 different layers
and varying standard deviation σ, which is given in the first line, while the second
line displays the estimated number of layers.

σ 2 3 4 4.75 5.5 7.5

number of layers 4 4 3 3 1 1

However, for standard deviations σ ≥ 4 the BIC’s finding is incorrect. This result is of
significance for the following analysis in this work because well logs can vary strongly in their
statistical nature due to the huge amouns of influencing factors. Therefore, when working
with real data sets, where the number of labels is unknown beforehand, a manual double
checking is advised to ensure data correctness. This information can be extracted by either
an investigation by experts of a tiny part of the data itself or from other measurements, e.g.
seismic or geo-electric.

4-1-2 Segmentation performance on a single well

In this section, the performance of Wang et al.’s segmentation approach is tested on synthetic
well data with different standard deviations σ. This aims to investigate the effect of the
granularity coefficient β on the segmentation result and to find appropriate parameter settings.
Moreover, the jump − parameters are tested, which control the drawing of new samples in
the MCMC algorithm for µ, Σ and β (see section 3-2-5). As a reminder, each data set
has its own distribution parameter setting (Φ = β, µ,Σ) that needs to be estimated. In
case the ”true” model is unknown, the optimal parameter setting is impossible to determine,
but the results of this section serve as a clue for the segmentation of one-dimensional well
data. The performance of the segmentation process is quantified by the normalized number
of misclassified voxels δlast in the last iteration and the mean of all δ after a user-defined
number of iterations δ (equals the percentage of incorrect segmented voxels):

δ =
number of missed voxels

total number of voxels
. (4-1)

As visible in figure 3-6, the separation between the 4 layers is straight forward while looking
at it just until the standard deviation of σ = 3. As for σ =≥ 4.75, the data is widely
distributed and a visual separation becomes much more difficult. This separation is nearly
impossible for σ = 7.5. It is also visible that the different features add different amounts of
information to each label boundary. For example, in figure 3-6 b), with a standard deviation
σ = 4, the separation of layer 3 and 4 is impossible by just considering feature 2 (red) and
3 (purple). Nevertheless, taking all four features into consideration ensures a visual and
statistical difference at the layer boundary. This also holds true for real well data because the
measurement techniques (e.g. resistivity, gamma-ray etc.) are sensitive to different physical
properties in the subsurface (e.g. water content, density, mineral composition etc.).
Table 4-2 lists the determined δlast and δ for five different synthetic well data with a constant
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granularity coefficient β after 1000 iterations, while table 4-3 recites these parameters with
varying β (mostly increasing). This means that for the latter case the βinit is user-defined
and β is updated in each iteration or, in other words, that the neighborhood system is taken
into consideration to a greater extend. The data proves that in general the segmentation
process labels more voxels correctly with varying β, which is obvious for one-dimensional
well data from a 4-layer horizontal model. Furthermore, it indicates that δlast as well as δ are
smaller for high granularity coefficients and for a model where only 3% of the voxels differ
from at least one of their neighbors.

Table 4-2: Segmentation error in the last iteration δlast and its mean δ over all iterations for
synthetic well logs with different standard deviations σ and different β values over
1000 iterations (other parameters: beta jump length = 0.02, mu jump length =
0.0005, cov volume jump length = 0.00005, theta jump length = 0.0000005).

HH
HHHHβ

σ
3 4 4.75 5.5 7.5

0.2
δ 0.070 0.063 0.153 0.318 0.484
δlast 0 0.068 0.179 0.305 0.468

0.4
δ 0.001 0.055 0.133 0.215 0.486
δlast 0 0.074 0.142 0.205 0.468

0.6
δ 0 0.050 0.131 0.310 0.373
δlast 0 0.047 0.126 0.314 0.353

0.8
δ 0 0.044 0.112 0.314 0.391
δlast 0 0.047 0.111 0.295 0.411

1
δ 0 0.037 0.103 0.184 0.456
δlast 0 0.047 0.095 0.211 0.437

Furthermore, the difference between δ and δ is an indicator of the segmentation algorithm’s
convergence towards the desired model during all iterations. For fixed β the differentiation
of data points depends mostly on their statistical nature and, thus, the error σ does not
converge. Alternatively, when the granularity coefficient is updated in each iteration the
spatial correlation of the data is more strongly taken into consideration and the segmentation
results converge. This behaviour is visualized exemplary for σ = 4.75 and βinit = 0.6 in figure
B-1. For constant granularity coefficients the difference is very small (e.g. β = 0.4; σ = 5.5)
and for some scattered cases the mean is even lower than the δ of the last iteration (e.g.
β = 0.4; σ = 4.75). This suggests a small or even no improvement of the segmentation
results. When updating β in each iteration, this behaviour is also obtained occasionally,
but for other parameter settings the difference and, thus, the improvement is large (e.g.
βinit = 0.4; σ = 4.75). This indicator is found useless for data with small standard deviations
(σ = 3, 4) because the correct labelling is just found in the first few iterations. The data also
clarifies that there is no ”best” parameter setting for the data. Due to the above findings, an
updating granularity coefficient β is applied for all segmentations in this work with different
initial granularity coefficients βinit ∈ [0.6, 1]. An investigation of the granularity coefficient’s
convergence for this data is unusable as the original model of the synthetic well logs consists
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of large blocks and, thus, several β will result in the same model. This is different for data
with many small intervals, which are to be distinguished.

Table 4-3: Segmentation error in the last iteration δlast and its mean δ over all it-
erations for synthetic well logs with different standard deviations and up-
dated β over 1000 iterations with different initial granularity coefficients βinit
(other parameters: beta jump length = 0.02, mu jump length = 0.0005,
cov volume jump length = 0.00005, theta jump length = 0.0000005).

H
HHH

HHβinit

σ
3 4 4.75 5.5 7.5

0.2
δ 0 0.010 0.047 0.216 0.335
δlast 0 0.005 0.053 0.211 0.211

0.4
δ 0 0.011 0.044 0.231 0.478
δlast 0 0.016 0.005 0.232 0.468

0.6
δ 0 0.009 0.015 0.231 0.297
δlast 0 0.005 0.005 0.221 0.216

0.8
δ 0 0.010 0.043 0.073 0.260
δlast 0 0.016 0.021 0.074 0.247

1
δ 0 0.008 0.037 0.310 0.262
δlast 0 0.005 0.021 0.221 0.205

To finetune the parameter setting different β jump length values with one of the afore esti-
mated β-settings are tested (updating β with βinit = 0.6). Figure 4-1 displays the normalized
number of missed voxels δlast in the last iteration and the mean of all δ after 100 iterations
δ. The results of the first run (blue & red graphs) suggest that the β jump length does not
influence the segmentation of one-dimensional well data significantly and, thus, δlast as well
as δ are varying only slightly. Therefore, a second and third test is run, which substantiate
the hypothesis partly.

Figure 4-1: Segmentation error in the last iteration δlast (red) and its mean δ (blue) for synthetic
well logs with different β jump lengths and updated β over 100 iterations (other
parameters: βinit = 0.6, mu jump length = 0.0005, cov volume jump length =
0.00005, theta jump length = 0.0000005).
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It can be concluded that the βjumplength negatively affects the results only if β is excessively
high, while it is has minimal influence for β jump lenght ∈ [0.02, 4]. Similar observations are
made for the other jump parameters, which control the drawing of new µ, β and Σ samples
in the MCMC algorithm.
Therefore, the default jump parameter setting is kept, which yields a final parameter setting
for the BaySeg segmentation as listed in table 4-4. An important point to consider is that
the estimated parameter setting is optimal only for the utilized synthetic data and the ”hid-
den” pattern behind it or, in other words, the shape of the posterior distribution. It might
completely or partly different for real data, where the ”reality” is unknown and, thus, the
optimal parameter setting is hard to determine. Nevertheless, this setting is utilized for the
zonation approach performance test because it is applied on the same synthetic data. This is
explained in the next section. A comparison to the support-vector network (SVN) approach
by Hall (2016), as described in appendix A-1 for a single well is impossible because it requires
one interpreted well to train the algorithm. Thus this comparison is also drawn in the next
section.

Table 4-4: Final parameter setting determined by several parameters tests.

Final parameter setting

update β True

βinit ∈ [0.6, 1]

β jump length 0.02

µ jump length 0.0005

Σ volume jump length 0.00005

θ jump length 0.0000005

4-2 Segmentation of several wells and geological model creation

In this section the segmentation algorithm BaySeg is first applied to several well logs from
different boreholes to analyse its accuracy depending on the data volume and the number
of boreholes, respectively. Moreover, the zonation approaches are tested for synthetic data
with differing standard deviations. Eventually, the ability of model reconstruction of the
whole process of automatic structural geological modeling from raw data is evaluated trying
to reproduce 3D models with different features (e.g. tilted layers, faults, folds).

4-2-1 Segmentation of well logs from different boreholes

In general, the segmentation of a single well or data from several wells utilizing BaySeg
is identically because the data is not split borehole-wise, but rather segmented globally.
Nevertheless, the amount of data points influences the unsupervised segmentation outcome.
To investigate this effect, the method is tested on synthetic data with standard deviation
σ ∈ {4, 5.5}, while the number of boreholes # differs. A first observation is made while
applying the BIC on the data. In fact, the estimation of the number of labels or segments
does not improve (remains constant) with increasing number of data points (190 data points
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per borehole, thus 4750 data points maximum).
Figure 4-2 exhibits δlast and δ; thus, the last and the mean segmentation error rate for differ-
ent numbers of boreholes # ∈ {1, 4, 10, 25}. The graphs indicate that an increasing number
of boreholes/data points yields to a more accurate segmentation process. Nevertheless, the
enhancement between ten and 25 boreholes is minimal. This finding becomes important when
applying the whole process of automatic 3D geological modeling from raw well logs to a data
set with a huge amount of boreholes, while the geology is expected to differ only slightly
between two boreholes.

Figure 4-2: Segmentation error in the last iteration δlast (continuous lines) and its mean δ
(dashed lines) for synthetic well logs with standard deviation σ = 4 (red), 5.5 (black)
and different number of boreholes # and updated β over 500 iterations (other
parameters: βinit = 0.6, beta jump length = 0.02, mu jump length = 0.0005,
cov volume jump length = 0.00005, theta jump length = 0.0000005).

Eventually, the segmentation of several boreholes enables a splitting in training data and data
to predict and, thus, a comparison to the support-vector network (SVN) approach, described
in appendix A-1. Therefore, each synthetic dataset of the 4-layer horizontal model with dif-
ferent standard deviations is segmented with varying C and gamma values to estimate the
optimal parameter setting. The results are listed in appendix A-2.
Table A-1 displays the segmentation error δSV N for C (smoothness of decision surface) varying
from 0.1 to 1000000. The results demonstrate that the accuracy of the supervised segmenta-
tion increases with increasing C and that data with high standard deviations require higher
C values to obtain the best results. To keep the computational costs under control, C is set to
10000 for the following comparison. In table A-2, the accuracy depending on gamma (inverse
radius of the influence of a single training data point) is investigated. It is observable that
gamma = 10 yields the most precise labelling of all voxels for data with σ = 4, 4.75, 5.5, 7.5.
Comparing these results with the unsupervised segmentation leads to the information given
in table 4-3, revealing that the accuracy is similar for slightly varying data (sigma = 3, 4),
while the SVN based method never performs a perfect segmentation. However, it is more
precise for data with σ ≥ 4.75. Considering that the method suggested by Hall (2016) is
supervised and requires a training from interpreted well logs, this approach does not fit in
the fully automated process developed in this work.
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4-2-2 Zonation of the segmented data

This section investigates the performance of the zonation methods on synthetic data with
varying standard deviation σ. The principles of these zonation approaches are outlined in
section 3-3. As a reminder, the first method is based on the minimization of the variance
within zones, referred to as zonation 1, which is applied on the labelling. Zonation 2 processes
the label probabilities directly by maximizing the ones according to layer l, while minimizing
the probability of all other labels k 6= l within a zone.
The reconstructed boundaries of both zonations are visualized in figure 4-3, the true bound-
aries being represented by black lines, the ones resulting from zonation 1 by red lines and the
green lines representing the outcome of zonation 2.

Figure 4-3: Reconstructed boundaries of zonation approaches 1 (minimization of variation within
zones) represented by red lines and 2 (maximization of probabilities within zones)
represented by green lines; the true boundaries, which are to be reconstructed, are
represented by black lines. The standard deviation of the synthetic well data increases
from left (a: sigma = 3) to right (e: sigma = 7.5).

It is observable that zonation 1 perfectly re-establishes the zone boundaries for low standard
deviation (σ = 3, 4). But with decreasing data separability the approach fails. This is
caused by the transformation of the segmentation results from four large intervals with
homogeneous labelling to a mixed up segmentation with plenty small intervals. This can
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either lead to very small zones (figure 4-3d) or to very large zones, in which the deviations
cancel out (figure 4-3e: boundaries 1.2 & 1.3).
Examining the boundaries determined by zonation 2 reveals a more accurate boundary
estimation. In detail, it is discernible that the method misses some boundaries by one data
point (e.g. boundary 2.2 with σ = 3, 4, 4.75, 5.5), which is caused by the uncertainties
introduced at transitions from one zone to another. But, apart from boundary 2.2 in figure
4-3e, it reconstructs all boundaries at an acceptable position for the ensuing 3D modeling.
Besides their zonation performance, zonation 2 is computationally much faster
(1.39 ms ± 17.4 µs per loop), compared to the minimum-variance approach (3 min ± 4.43 s
per loop). This is due to the fact that it uses the probabilities directly as an optimization
criterion instead of calculating an extra quantity (variance) to determine boundaries. It
has been shown that zonation 2 is more capable of reconstructing the true boundaries.
Thus, it is utilized for the automatic structural model creation investigated in the next section.

4-2-3 Automatic 3D geological modeling from raw well logs

In the following the algorithm’s capability to reproduce initial models mrc with different fea-
tures is examined. Instead of investigating the results of the stepwise applied segmentation,
zonation and modelling first, the results of the fully automated process are considered directly
because their outcomes are equal. Therefore, several structural 3D models are utilized as an
origin to create synthetic well logs as described in section 3-6. Moreover, this data is inserted
into the algorithm and the reconstructed model, resulting from the automatic segmentation
(BaySeg), zonation and geological modeling (GemPy) is compared to its origin. It is im-
portant to keep in mind that the segmentation as well as the structural modeling are global
processes applied to all data simultaneously, while the zonation is applied to each borehole
individually.
The first column in table 4-5 displays a Y-Z-section of the original models, while the other
columns contain the same section of the reconstructed models for increasing standard devi-
ation from left to right. Within each line the dimensions in Y- and Z-direction are constant
and, thus, the axis labels are neglected. Additionally, the error δ of each reconstructed model
compared to its origin is given, which results from the model differences normalized by the
number of data points. One may observe that several data points lie outside their correspond-
ing layer, which is a visualization issue, since each figure shows a two-dimensional section only,
while the interface points are projected from 3D onto the Z-Y-sphere. This issue is illustrated
in figure B-3, where the left-hand side shows a X-Z section. The blue interface data at Z =
-1100 and X = 2800 seems to lie outside the corresponding layer. However, the 3D model on
the right-hand side of the figure demonstrate that these points are indeed part of the blue
layer. Moreover, the bottom layer (basement) in each model can be ignored because GemPy
models the bottom of each interface and tacks the basement automatically below the oldest
one.
In table 4-5 line a) the results are displayed for a horizontal 4-layer model. They demonstrate
that for standard deviations up to σ = 4.75 the simple subsurface model can be reconstructed
almost perfectly. This finding is underlined by small errors (< 3%), which are due to min-
imal dipping of layers. This is visible in the Z-Y-section for σ = 3, where the layers dip
slightly to the right. Furthermore, it is observable that scattered boundary points are mis-
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placed throughout the zonation, which coincides with the finding in section 4-2-2, where the
zonation approach is examined in detail. A massive misplacement through zonation can be
observed in the last model (σ = 7.5) of line a), where the locations of the red and yellow
interface points are distinctly wrong, which yields an overestimated extension in Z-direction
of the red layer and a compression of the layers below.

Table 4-5: Reconstructed models mrc utilizing the full automatic coupling of segmentation
(BaySeg), zonation and modeling (GemPy) for synthetic data after 500 iterations.
Each row displays the model, which is to be reconstructed, at the left-hand side
and the reconstructed models for increasing standard deviation σ from the left to the
right. The segmentation error δ above each reconstructed section lists the percentage
of misclassified voxels.

HH
HHHHmrc

σ
3 4 4.75 5.5 7.5

a) δ 0.022 0.010 0.003 0.349 0.507

b) δ 0.065 0.289 0.041 0.043 0.105

c) δ 0.076 0.052 0.048 0.219 0.583

d) δ 0.188 0.129 0.591 0.321 0.407

e) δ 0.105 0.164 0.094 0.089 0.821
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An interesting outcome is discovered for the modeling with a standard deviation of 5.5. The
layers form an anticline, although the single data points of each layer are located at around
the right depth level. This example clarifies the importance of the point selection for the ori-
entation vector creation. As is visible here, even slight mislocation of the yellow points leads
to a dipping into the image plane and ruins the entire model. A closer look at the orientation
data creation and the corresponding points selection is given in the discussion section.
A model with three layers dipping from left to right and the corresponding reconstructions
is displayed in line b). The sections indicate that the algorithm recovers the origin properly
for all standard deviations, even for σ = 7.5. But, when considering the error δ = 0.289 of
the second model (σ = 4) and its strongly tilted orientation data, it becomes clear that only
a part of the model, including the displayed section, matches the original model, while the
other parts mismatch. Table 4-5 line c) demonstrates the results for reconstructing a 4-layer
fold model, where the interfaces form an anticline. Once again, the models for low standard
deviations depict the initial one. The model for σ = 5.5 is another proof for the importance
of a suitable point selection for the orientation data preparation. The last model in line c)
exemplifies a total failure of the reconstruction in the right part of the section, while the rest
differs only slightly from the origin.
One-dimensional well logs do not provide direct information on faults (perhaps indicate ex-
istence of faults) and, thus, cannot be insert to the modeling algorithm, although GemPy
is capable of processing this information. Therefore, subsurface patterns including fault net-
works or even a single fault is expected not to be reconstructible through well data only. This
is underlined by the results exhibited in line d) of table 4-5. None of the models reconstruct
the fault and, thus, the differences δ are large for slightly varying data. As expected, the fault
is modeled as a continuous interface for all standard deviations. A special case that needs to
be discussed is the reconstruction for σ = 4.75. While the algorithm recovers all other original
sections with this standard deviation, this model is totally misconstrued and indicates that
the algorithm got either trapped in a local minimum or did not reach the global minimum
within the 500 iterations. This results from the ”randomness” of the segmentation approach
(BaySeg), which is introduced through the initial model on one hand and the MCMC al-
gorithm with random sampling on the other hand. A discussion on that and the associated
reproducibility of the models is provided in the discussion part of this work.
Assuming a correct zonation, one could claim that an infinite number of boreholes could
reconstruct the fault because each data point would be known. Although this is not econom-
ical in practise, figure B-2 confirms this hypothesis. It shows the reconstructed model for 50
randomly placed boreholes and indeed one could interpret a fault, especially considering the
red layer’s jump at X = 650.
A common situation in the subsurface is erosion of a layer, which is then overlaid by a younger
sediment. Such an unconformity model is reproduced in line e) of table 4-5, where the red
layer is eroded and overlaid by the blue one. Considering the models for σ ≤ 5.5, the original
model is reconstructed with a maximum error of δ = 16.4 % and the unconformity is recog-
nizable in all sections. As seen before, small deviations due to minimal zonation errors and
the resulting dip calculation can be observed in the lower right of the second reconstructed
model. The model estimation from the most varying data failed completely. At the first
glance, one could conclude that the incorrect zonation of the red layer causes the surprising
modeling result. But, on closer inspection, the yellow orientation data pointing horizontally
in the image plain, destroys the model.
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It has been demonstrated that except for fault structures all common features in the subsurface
can be reconstructed for standard deviations up to 4.75. Considering only borehole data, more
complex models with several features like a Graben or dome structure are not recoverable.
Possible combination with other geophysical measurements is discussed in the last chapter of
this work.

4-3 Uncertainty reduction in segmentation process

As mentioned in the introduction, the main hypothesis of this work is that considering the
geological model created with GemPy in the segmentation of one-dimensional well logs will
reduce uncertainties in the segmentation itself. This approach is implemented by introducing
a neighborhood system based on the geological 3D model. As described in section 3-5-2,
this additional neighborhood system is not considered in the model ~x sampling and, thus, a
significant improvement of the segmentation itself is not expected. Figure 4-4 displays the
segmentation error δ at each iteration resulting from the 4-layer horizontal model in four
different runs. The red plots represent the error considering the GemPy model, while the
blue plots display the segmentation course without including the geological 3D model. It
is observable that the graphs’ behaviour is similar for all runs and the segmentation results
remain unimproved due to the consideration of the additional neighborhood system. This is
underlined by the number of misclassified voxels, displayed in the table on the right hand side
of figure 4-4, where the first and second run are taking GemPy into consideration and the
latter runs do not.

Figure 4-4: Segmentation error δ over all iterations in the unsupervised segmentation with
BaySeg applied on synthetic well data from a 4-layer horizontal model with a stan-
dard deviation of 5.5; modeled twice including the GemPy neighborhood system
(red) and twice excluding it (blue); the table lists the total number of misclassified
voxels in the last iteration.

It has to be kept in mind that the results presented above are based on the most likely result
only, without taking a closer look at the uncertainties. To further investigate the voxels’
probability of being assigned to a specific label or layer, an uncertainty quantification based
on the concept of information entropy is performed (see section 2-3). As a reminder, low
information entropy values indicate low uncertainty areas, while values around one represent
high uncertainties in layer assigning. Figure 4-5 visualizes the development of the information
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entropy during the segmentation of the 4-layer horizontal model (line a in table 4-5).
Row A displays the information entropy taking the 3D model into consideration, while row B
displays the same excluding the additional neighborhood system. The information entropy is
shown at the start of the segmentation as well as at iteration 50, 100, 150, and 200. Consider-
ing the image after 200 iterations (right-hand side) in row B, large information entropies can
be observed at layer boundaries because the one-dimensional neighborhood system considers
the data points above and below each voxel, which are different at the boundaries. Taking
the geological model from GemPy into account (right-hand side of row A), leads not only to
reduced uncertainties at layer transitions, but in the entire model. Especially the transition
at Z = -150 is to be assigned more clearly. This is caused by the additional consideration of
the horizontal neighborhood system of the GemPy model.

Figure 4-5: Development of information entropy in the segmentation of synthetic well data with
standard deviation σ = 5.5 from a 4-layer horizontal model displayed for ten bore-
holes; A: including the GemPy neighborhood system and B: excluding it for itera-
tions 0, 50, 100, 150 & 200 from left to right.

As a reminder the zonation approach utilized in the automated process is based on the
uncertainties resulting from the segmentation. That means reducing the uncertainties will
also enhance the zonation and, thus, the whole 3D modeling in each iteration. To prove this
hypothesis, the development of the information entropy in figure 4-5 is investigated. While
the entropies differ only slightly for the last 100 iterations, the uncertainty reduction becomes
evident at the starting point. The usual segmentation (part B) reveals high uncertainties over
the entire model at iteration 0; however, the first picture in part A shows strongly reduced
uncertainties and gives already an idea of the upper two boundaries. The above findings have
shown that introducing an additional neighborhood system, which considers the horizontally
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neighbored labels at each well data location, reduces uncertainties. This in turn enhances
the whole process of automatic geological 3D modeling from raw data provided by borehole
measurements.
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Chapter 5

Discussion

The purpose of this work was to apply recent developments by Wang et al. (2017) in unsuper-
vised segmentation of n-dimensional geophysical measurements, taking the spatial correlation
of the data into consideration, on one-dimensional well logs and, furthermore, to couple this
clustering with structural geologic 3D modeling (de la Varga et al., 2018) in one Bayesian
framework. Moreover, the main hypothesis was that taking information from both modeling
approaches into consideration, reduces uncertainties in the segmentation. The automatic in-
terpretation of raw well data has been a subject of research for more than 50 years and is of
great importance not only in hydrocarbon exploration, but also in other fields, like reservoir
engineering and geothermics.
The results of this work revealed that Wang et al.’s approach is capable of segmenting raw well
logs in an unsupervised manner, although algorithms trained on the data itself are slightly
more accurate. Based on the clustering results, it was shown that the zonation, which max-
imizes probabilities within zones, determines layer boundaries in an appropriate way, but
is also limited in terms of borehole correlation. The constraint that comes along with the
zonation to force the stratigraphic pile to be constant over all boreholes might seem strong,
but is a requirement of the geological modeling with GemPy. Eventually, after coupling
segmentation, zonation and 3D modeling in a fully automated process, the modeling recon-
structions demonstrated that the algorithm is capable of recovering models including tilted
layers, folds and nonconformities even if the data are comparatively noisy. Nevertheless, the
approach has limited capability in recovering complex subsurface structures due to the infor-
mation provided from borehole measurements and the limitations of GemPy. Finally, it was
demonstrated that an additional neighborhood system, which takes the 3D structural model
into consideration decreases uncertainties in the segmentation process.
Realizing that the whole process of automatic 3D structural modeling from raw well logs
consists of several complex steps, which are coupled through intensive data management
and certain assumptions, further work is required to make this approach applicable to real
datasets and enhance its performance and accuracy. Some promising approaches and ideas
are discussed in the following chapter.
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5-1 Randomness and reproducibility

As stated in section 3-2-4, the segmentation result is theoretically independent of the initial
configuration ~x0 and θ0 = (µ0, Σ0) and influences only the number of iterations to sample
the posterior distribution and find the global optimum. This statement is underlined by the
findings visualized in figure 5-1, where the segmentation is repeated three times for synthetic
well data with different standard variations and the segmentation error δ is plotted over 500
iterations. It is observable that for standard deviations σ = 3, 4.75 (blue and red plots) the
course of the graphs differs, while the segmentation results after 500 iterations are very much
the same. The differences of the green plots (σ = 7.5) are larger, but it can be expected that
the upper two plots converge to the lower one, if the segmentation would have run for more
iterations.

Figure 5-1: Segmentation error δ of synthetic well data over 500 iterations repeated three times
with different standard deviations σ (red: 3; blue: 4.75; green: 7.5).

Moreover, the zonation based on maximizing likelihoods within zones can be seen as a filter for
tiny variations in the segmentation, meaning that small anomalies are eliminated and, thus,
neglected in the 3D modeling. Therefore, several similar segmentation outcomes can result in
the same geological model. It has to be kept in mind that MCMC algorithms can be trapped
in local optimums and, thus, lead to a strongly incorrect layering and ensuing modeling as
seen in table 4-5 d) column four (σ = 4.75). Nevertheless, it has been demonstrated that the
results of the segmentation and, hence, the geological models are reproducible.

5-2 Orientation data: potential and peril

As seen in section 4-2-3, the point selection for the creation of orientation data is essential
if gradient information from expensive borehole imaging measurements are unavailable. The
modeling results in table 4-5 (e.g. line a) with σ = 5.5) revealed that even small errors in the
interface point determination (zonation) can influence the outcome strongly if these points
are considered in the orientation data preparation. Furthermore, it has been demonstrated
that assuming less geological changes in a smaller area, the consideration of the three closest
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boreholes to each other decreases the likelihood of model destruction by orientation data.
One possible solution to overcome the influence of incorrect potential field gradients on the
modeling process is the usage of synthetic orientation data numerically located far away from
the model part of interest. This concept was tested on the model mentioned above, which
results from synthetic well data of the 4-layer horizontal model with a standard deviation
of σ = 5.5. The outcome is visualized in figure 5-2. Part a) displays the geological model
including the orientation data (black arrows), which are calculated from the three nearest
boreholes. In part b) the gradient data are manually set to X,Y = −1000 with a dip of
45◦ (the dip is chosen to demonstrate the independence on the angle). Thus, the model area
of interest depends mainly on the interface data points, which increases the accuracy of the
recovered model significantly.

Figure 5-2: Reconstructed models from synthetic well data (σ = 5.5) created from the original
model [first model in line a) at table 4-5] with (a) orientation data calculated from
three nearest interface points and (b) synthetic orientation data far away from the
area of interest (X, Y = -1000; dip = 45; Z = average depths of all interface data);
orientation data are represented by black arrows, while the coloured dots represent
interface data points.

It remains to implement this concept into the automatic 3D modeling from raw well logs
and to determine a criterion, determining when to move the orientation data outside the
model and when to keep the calculated potential field gradients, respectively. Besides the
risk of errors, that comes with the orientation data creation from several interface points, the
gradients of the potential field reveal high potential to couple well logs with other geophysical
measurements. One promising principle is discussed in the next section.

Gradients as coupling

Geophysical measurements from boreholes are often considered as hard data in geological
modeling methods because they are taken directly from the subsurface structures. However,
seismic data are often inserted as soft data because it is obtained from qualitative observations
(Stright et al., 2009). Assuming that dips of migrated seismic data are good approximations
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of the real layer dipping, GemPy enables a simple coupling of interface points from well logs
and dipping data extracted from seismic sections or models.
Dip estimator algorithms, investigating seismic models and automatically extracting dip in-
formation, are widely used in practise. For example, Marfurt (2006) developed a robust
method based on volumetric estimates of reflector curvature and angular unconformities in
overlapping windows to analyse dip and azimuth information. Showing that his algorithm
can analyse dips across faults, unconformities, and other discontinuities, this information can
be inserted in GemPy as hard data, while the required interface points are extracted from
well logs, as shown in this work.
Furthermore, Hale (2013) proposed methods to compute fault images including strikes and
dips, extract fault surfaces and estimate fault throws from seismic images, but these methods
are limited in handling intersecting faults. Nevertheless, additionally utilizing this informa-
tion in the structural geologic modeling with GemPy has the potential to overcome the fault
imaging problem seen in table 4-5 d). However, further research is required to implement the
above mentioned algorithms in the fully automated process developed in this work.

5-3 Implementation of stratigraphic well correlation

The major limitation of this work is the occurrence of two layers with similar properties in
one borehole. This does not imply that tiny beds inside a huge section lead to a miscon-
struction of the model, but, for example, two sandstone layers with similar fluid content at
different depth locations are not mappable. These two sandstones would be equally labelled
in the segmentation with BaySeg, but need to be separated to get inserted in GemPy. If
the stratigraphic pile would be identical in each borehole, meaning that the number of occur-
rences of each layer is constant over all boreholes, a simple zonation approach could overcome
this problem. One example is numerical bed-discrimination, which analyses inflection points
along well logs or methods utilizing a moving window along the data and detecting changes
in mean value (Hawkins and Ten Krooden, 1979). Nonetheless, the likelihood of a constant
stratigraphic pile is low and converges to zero with increasing structural complexity and an
increasing number of considered boreholes.
Instead of utilizing a zonation approach to identify homogeneous zones, a stratigraphic cor-
relation between all boreholes can be applied on the segmented data to determine the strati-
graphic column over the area of interest. This approach requires a smoothing after the
segmentation to ensure that outliers are precluded and, thus, not interpreted as individual
layers. Recent developments in the field of stratigraphic well correlation allow the creation of
stochastic models, while considering all possible realizations and their probabilities (Edwards
et al., 2018).
The principle of Edwards et al.’s method is visualized in figure 5-3, where the numbers in A,
B and C represent four boreholes, while D displays all possible stratigraphic realizations. In
part A, the boreholes 1 to 3 are the only ones considered and, therefore, the stratigraphic
model 1 in D is the only possible realization. Image B and C demonstrate possible results
after the correlation with borehole 4. The middle layer in well 4 has the same properties as
the green layer in borehole 1 and, thus, can be interpreted as the same stratigraphy (B) or an
extra one (C), which yields the three realizations of the stratigraphic column shown in image
part D.
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Figure 5-3: Potential stratigraphic columns while correlating wells; A: Correlation of well 1,2 &
3; B and C: Scenarios after correlating well 4; D: Possible stratigraphic columns after
correlation all four wells; (from Edwards et al., 2018)

The method of creating a global stratigraphic column during the correlation of well logs from
Edwards et al. (2018) is not jet well-engineered and requires further work to be applicable on
real data. But so far, it represents one option to replace zonation in the automated process
developed in this work and, thus, to overcome the limitation of similar layers occurring at
different depth levels.

5-4 Numerical analysis of the automated process

From a numerical point of view, the automatic 3D modeling process from raw well logs, which
considers the additional neighborhood system provided by GemPy in each segmentation
iteration, is embryonic. The computational costs are much higher compared to the pure
segmentation utilizing BaySeg. However, the interpolation of the potential field utilized in
GemPy is simply a function, whose computation time depends mainly on the number of
evaluated points and, thus, the resolution of the geological model. This is illustrated in table
5-1, where the running time is compared to the model resolution and the resulting number
of points, which are to be evaluated. The computation time increases with an increase in
locations at which the potential field is calculated, while the evaluated points per second
remain around 5000-6000.
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Table 5-1: Computational time of the fully automated 3D modelling process depended on the
resolution of the GemPy model and the resulting number of points, which are to be
evaluated. Furthermore, the evaluated points per seconds.

Computation time vs evaluated points

Resolution Points to evaluate Computation time Evaluated points

25 15625 2.97/it 5260/s

50 125000 20.99/it 5952/s

100 1000000 159.21/it 6281/s

The above findings reveal that decreasing the number of evaluated points enhances the running
time significantly. This can be achieved by evaluating only those points, which are considered
in the additional neighborhood system. For the synthetic data utilized in this work (10
boreholes with 190 data points each), it yields 7600 points considering the 4-point stencil and
15200 points taking the 8-point stencil into account. Both scenarios are solvable in less than
3 s.
Moreover, this resolves the issue of discrepancy between the well log resolution and the grid
of the GemPy model because it enables to evaluate the potential field at the exact well data
locations. Furthermore, implementing a parameter d, that defines the distance between the
well logs and the points considered in the GemPy neighborhood system, allows a weighting
of the two neighborhood systems by their physical distance. This ensures more weight on
closer data and vice versa.

Due to the complexity of the whole process of automatic 3D geological modeling from one-
dimensional raw data observed in boreholes, several other things could be discussed here for
further research; for example, an alternative approach for the BIC to enhance the determi-
nation of the number of layers or a weighting factor for the different borehole measurements
depending on the modeling target. Nevertheless, the process developed in this work, which
couples unsupervised segmentation in wells with automatic implicit modeling in a Bayesian
framework, might form the basis for automated geological interpretation of well logs for ex-
ploration and research purposes.
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Appendix A

Supervised segmentation using
Scikit-learn

A-1 Basic principle

Scikit-learn is a Python package that provides state-of-the-art machine learning algorithms
implemented in the computational language Python and was introduced by Pedregosa et al.
(2011). It aims to bring machine learning tools to non-specialists. In 2016, Hall stated that
geoscientists could benefit from Scikit-learn greatly, since the volume of data sets in geoscience
become larger and larger. Furthermore, Hall (2016) demonstrated that one of Scikit-learn’s
supervised clustering algorithms is capable to segment well data sufficiently. Its methodology
is explained in the following and used as a comparison for the unsupervised segmentation
results achieved in this work.
The method is based on an SVN or so called support-vector machine, which maps the input
data non-linearly to high-dimensional feature space and separates it by a linear decision
surface. The construction of the decision surface is implemented by means of a training
data set, whose labelling is known (Cortes and Vapnik, 1995). Therefore, while applying the
approach to well logs from several boreholes, one borehole with known segmentation is split
from the data and utilized to train the algorithm and later on, to evaluate the algorithm’s
accuracy. As described in the preprocessing section, the data are also standardized to ensure
Gaussian distribution. To train the algorithm or in other words to select a model, different
parameters, which affect the accuracy of the segmentation need to be set. Therefore, when
comparing the segmentation approach utilized in this work with the one suggested by Hall
(2016), suitable values for the C and gamma parameters are estimated. Gamma controls the
influence radius of a single training example, where low values correspond to a large radius
and vice versa, while the smoothness of the decision surface is steered by the parameter C.
Its value handles the trade-off between misclassification of training data points and simplicity
of the decision surface, where a low C value forces a high smoothness. A more detailed
description of the theory can be found in Cortes and Vapnik (1995).
Once a suitable model is selected, the classifier is trained using the separated borehole with
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known labels. Eventually, the algorithm is able to predict the segmentation for all well logs
(Hall, 2016). The next section lists the segmentation results for synthetic well data with
varying standard deviation σ. In chapter 4, the results of the SVN method are compared to
the segmentation utilized and refined in this work.

A-2 Segmentation results

Table A-1: Error of segmentation δSV N for testing different C values for synthetic wells data
with varying standard deviation, while gamma = 1. Segmentation utilizing the SVN
approach suggested by Hall (2016).

HH
HHHHC

σ
3 4 4.75 5.5 7.5

0.1 δSV N : 0.038 0.075 0.128 0.196 0.302

1 δSV N : 0.033 0.067 0.112 0.181 0.269

10 δSV N : 0.024 0.048 0.087 0.150 0.207

100 δSV N : 0.016 0.021 0.055 0.090 0.113

1000 δSV N : 0.007 0.011 0.031 0.043 0.057

10000 δSV N : 0.007 0.007 0.015 0.022 0.030

100000 δSV N : 0.007 0.007 0.011 0.018 0.023

1000000 δSV N : 0.007 0.007 0.011 0.018 0.022

Table A-2: Error of segmentation δSV N for testing different gamma values for synthetic wells
data with varying standard deviation, while C = 10000. Segmentation utilizing the
SVN approach suggested by Hall (2016).

PPPPPPPPPgamma
σ

3 4 4.75 5.5 7.5

0.01 δSV N : 0.036 0.068 0.127 0.204 0.307

0.1 δSV N : 0.027 0.047 0.095 0.175 0.255

1 δSV N : 0.007 0.007 0.015 0.022 0.030

10 δSV N : 0.004 0.009 0.012 0.019 0.023

100 δSV N : 0.025 0.035 0.033 0.037 0.036

1000 δSV N : 0.037 0.039 0.039 0.039 0.039
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Appendix B

Figures, tables and code availability

B-1 Additional figures and tables

Figure B-1: Segmentation error δ for synthetic well data with a standard variation σ = 4 over
1000 iterations and its mean (dashed red line) for a fixed β during the segmentation
in the upper image and a updated β in the lower one.
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Table B-1: Segmentation error in the last iteration δlast and its mean δ for synthetic well
logs from different number of boreholes # and standard deviations σ = 4, 5.5
with updated β over 100 iterations (other parameters: beta jump length =
0.02, mu jump length = 0.0005, cov volume jump length = 0.00005,
theta jump length = 0.0000005)

HHH
HHHσ

#
1 4 10 25

4
δ 0.114 0.045 0.019 0.017
δlast 0.098 0.039 0.014 0.010

5.5
δ 0.214 0.065 0.049 0.037
δlast 0.222 0.071 0.033 0.029

Figure B-2: Reconstruction of the fault model in table 4-5 d) with 50 randomly placed boreholes
utilizing the fully automated 3D modeling process based on raw well logs.

Figure B-3: Structural geologic model of a 3-layer anticline structure resulting from synthetic
well data with standard deviation 4.75. Left-hand side: X-Z section; Right-hand
side: 3D model.
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B-2 Code availability

All numerical tools utilized in this work are open-source and implemented in the com-
putational language Python. The structural geologic modeling tool GemPy intro-
duced by de la Varga et al. (2018) can be downloaded from https://github.com/cgre-
aachen/gempy. The unsupervised segmentation approach BaySeg by Wang et al.
(2017) is available at https://github.com/cgre-aachen/bayseg. Moreover, the data anal-
ysis package pandas developed by McKinney (2011), utilized mainly for the data man-
agement in this work, can be found at https://github.com/pandas-dev/pandas. The
machine learning library Scikit-learn introduced by Pedregosa et al. (2011) and used
for the supervised segmentation as a comparison is ready for more geophysical appli-
cation at https://github.com/scikit-learn/scikit-learn. Eventually, the developments of
this work, including code, data and notebooks are accessible at https://github.com/cgre-
aachen/MSc theses/tree/master/Well analysis BaySeg GemPy coupled.
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