Designing a privacy aware infrastructure
for an Inclusive Enterprise at IBM

Master’s Thesis

C.T. Steenstra

Designing a privacy aware infrastructure
for an Inclusive Enterprise at IBM

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

C.T. Steenstra
born in Heemskerk, the Netherlands

]
TUDelft

Software Engineering Research Group IBM
Department of Software Technology Center for Advanced Studies (CAS)
Faculty EEMCS, Delft University of Technology Johan Huizingalaan 765
Delft, the Netherlands Amsterdam, the Netherlands

www.ewl.tudelft.nl www.ibm.nl

www.ewi.tudelft.nl
www.ibm.nl

(©2016 C.T. Steenstra. All rights reserved.

Designing a privacy aware infrastructure
for an Inclusive Enterprise at IBM

Author: C.T. Steenstra
Student id: 4089081
Email: C.T.Steenstra@student.tudelft.nl

Abstract

The widespread adoption of computer technologies fundamentally re-shaped the way
companies operate. A deluge of systems and applications now support the daily activities
of employees and managers alike, thus increasing the amount, value, and sensibleness of
available data. This abundance of data provides new opportunities for applications devel-
opment, where more and more data is shared and reused to enable new functionalities, to
unlock novel insights about the enterprise or its personnel, or to improve on aspects such as
employee engagement, productivity or sociability. At the same time, data sharing poses new
challenges. Data is often used for purposes that are different from the original design, and
there is a pervasive need to ensure compliance with the relevant laws and third party poli-
cies. What is more, employees might find the increased use of personal data undesirable,
and therefore demand proper transparency and control over their personal data.

This works tackles the technical challenges that come with the sharing and usage of
personal data by enterprise-class applications, and provides a framework for privacy aware
data sharing. In a literature survey we investigate several disciplines related to privacy,
access control management, and provenance in computer systems, to determine the current
state of the art and practice. The study provides the conceptual underpinning for a novel data
model that facilitates a privacy aware way for applications to share data while still provid-
ing transparency, simplicity and control to users. The model is then implemented in a new
enterprise-class platform, a multi-tenant Software-as-a-Service (SaaS) provider that cen-
tralises privacy and consent management related functionalities. The model and framework
are then validated through interviews with IBM employees having different roles within
the organisation. The quality of the resulting implementation is validated by means of a
set of scalability tests, with the goal of demonstrating the actual suitability of the proposed
solution in a realistic enterprise context.

C.T.Steenstra@student.tudelft.nl

Thesis Committee:

Chair:

University supervisor:

Company supervisor:
Committee Member:

il

Prof. Dr. Ir. Geert-Jan Houben, Faculty EEMCS, TUDelft

Dr. Ir. Alessandro Bozzon, Faculty EEMCS, TUDelft

Drs. Robert-Jan Sips, Center for Advanced Studies, IBM Benelux
Dr. Guido Wachsmuth, Faculty EEMCS, TU Delft

Preface

This report is the end product of a master thesis project in partial fulfillment of the Computer
Science master program at the Delft University of Technology. This project has been conducted
at the Web Information Systems (WIS) group in collaboration with the Center for Advanced
Studies (CAS) at IBM Amsterdam.

Writing this preface marks an end to my journey as a student. The last few months have
been a tremendous learning experience during which my perseverance, discipline and technical
knowledge have been put to the test. During my studies I developed a passion and curiosity
for technology and engineering which made this project a perfect fit. Through my internship
I also got a glimpse of working in a large enterprise, something that I will not soon forget. I
am therefore very grateful to Geert-Jan Houben, Alessandro Bozzon and Robert-Jan Sips for
providing me with the opportunity to conduct this research at the WIS group and at IBM.

The completion of this thesis would not have been possible without external help, for which
I would like to pay my gratitude. Foremost I would like to thank Alessandro Bozzon for his
support, dedication and patience as my immediate supervisor. During the countless meetings
Alessandro provided excellent guidance by giving pointers and critique while helping me stay
focused on the right parts of my work. Robert-Jan Sips, my main supervisor at IBM, for his help
in determining the requirements of my work, his enthusiasm in building an Inclusive Enterprise
and his interests in the technical side of my project. Geert-Jan Houben and Guido Wachsmuth
for their time and interest in my work as part of my thesis committee.

I would also like to thank all IBM employees, who have provided a welcoming environment
for conducting my project. In particular I would like to thank Gert Geudens for his continued
support and interest in my work, who always made time for guidance during implementations.
Aldo Eisma for his interest in my solution and his technical input, which has given me new in-
sights, something that I always appreciate in my endless efforts to become a better programmer.
Zoltan Szlavik for his availability as a supervisor and for his helpful suggestions. My parents for
their continued support during my years as a student. My older brother for setting the example
as a Delft University of Technology student. My younger brother for his enthusiasm and interest
in the Computer Science field and my work. Finally, my friends for providing distractions when
needed.

iii

PREFACE

C.T. Steenstra
Delft, the Netherlands
April 21, 2016

iv

Contents

[Preface] iii
v
vii
(I Introduction| 1
|{1.1 Example: Enterprise chat application|. 2
M27CONEEXT - -+ o o ot e e e e 3
|1.3 Current and envisioned data sharing scenarios| 3
|1.4 Challenges and contributions| 6
[1.5 Methodology| 7
2__Problem statement] 9
DI USECaSES - v v v o 9
2.2 System stakeholders|. 11
2.3 Highlevelgoals|. 11
[2.4 Non-functional requirements| 12
[2.5 Functional requirements| 12
3 Related workl 19
...................................... 19
3.2 Authentication|. e 20
3.3 Privacypolicies| 24
3.4 Accesscontroll. e 28
[3.5 Access control policy specification languages| 32
3.6 Authorizationl 33
3.7 Provenancel 35
3.8 Conclusions| 35
|4 A privacy aware model for data sharing| 39

CONTENTS

4.1 Graphmodel] 39
4.2 Applicationmodel| L 43
4.3 Permissionmodell 51
4.4 Combining themodels| 58
|5 A privacy aware platform for data sharing 59
[5.1 Systemarchitecture| L 59
[5.2 High level architecture| 60
[5.3 Requestprocessing| 62
5.4 Implementation| 68
[5.5 Third party application responsibilities|o o000 L 80
[5.6 System CONSIStENCY| e e e e e e 80
5.7 Reflection on scalability| 0 0oL 81
{6 Design validation and reflection| 83
[6.1 Highlevel goalsandresults|. 83
|6.2 Discussion of the implementation| 85
[6.3 Scalability| 88
|6.4 Fulfillment of the requirements| 108
[7__Conclusions| 113
[Z1 Futureworkl 113
Bibliography 117
|A"~ Implementing an image sharing service| 121
|IA.1 Application definition (mainly for constants)|. 121
IA.2 NodelType definitions| 121
IA.3 REST service descriptions| 123
|A.4 JAX-RS endpoint used in a web.xml in combination with the servlet 3.1 spec| . 124
|A.5 Deployement and platform benefits|. 124
[B~ Managing applications| 125
IB.1 Conclusions| 130

vi

List of Figures

L1 Current SCENArIOl. « » « « v v v v v e 4
[.2 Desiredscenariof. oo 4
(1.3 Facebookmodell. 5
[1.4 System vision| e e e e e e 6
4.1 Graphmodell 40

2 mification modell 42
|4.3 Gamification graph model instantiation|. 43
4.4 Applicaionmodel] oo 44
4.5 Policy specificationmodel| oo 0oL 48
4.6 Example purpose hierarchy| oo o oo 49
BT Authenticationmodell 52
4.8 Permissionmodell L 53
49 Combinedmodels|. 58
BI Platform architecturel 61

2 Tokenvalidationl. 64
[5.3 Application resolution| L 65
[5.4 Permission lookups|. 66
5.5 Permission evaluation| 67
[5.6 Core component architecture| 70
5.7 Proxyrequeststeps| e 79
|6.1 Network topology single component (lowend)| 92
|6.2 Network topology replicated components (lowend)[. 92
|6.3 Network topology combined (lowend)[. 93
|6.4 Network topology combined with replicated Central APl (lowend)|. 93
|6.5 Network topology combined (highend) 94
|6.6 Creating JW'T tokens, increasing transactions per second| 95
|6.7 Retrieving applications, max transactions per second| 96

vii

LIST OF FIGURES

|6.8 Creating nodes, max transactions persecond|. 97
6.9 Creating nodes, max created persecond| 98
[6.10 Querying relations, max transactions persecond| 99
|6.11 Querying relations, max relations queried persecond| 99
|6.12 Instantiating default permissions, max transactions per second| 100
|6.13 Instantiating default permissions, max created permissions per second| 101
|6.14 Querying permissions, max transactions per second| 101
[6.15 Central API retrieval test, max transactions persecond| 103
|6.16 Central API create test, max transactions per second|. 103
|6.17 Central API retrieval test, max transactions per second (highend)[. 104
|6.18 Central API retrieval test, average response latency (highend) 105
[B.1 Creating the application|. 125
[B.2 Created application| 126
IB.3 Creating the imagenode type| 126
B4 Creatednode type| 127
[B.S Creating @ ServiCe| v v v i v e e e e e e e e e e e e e e e e 127
B.6 Created servicel e 128
B.7 Uploadingapolicy| 129
[B.8 Uploaded policy|. 130

viii

Chapter 1

Introduction

The abundance of data made available by various (Web) sources offers a lot of opportunities for
novel applications and systems, or to improve existing functionalities. For instance, an applica-
tion can use external social networks such as Facebookﬂ to provide personalisation capabilities,
or to introduce new social engagements such as content sharing. Similarly, applications that al-
ready gather data for some purpose might find additional purposes for this data, either by using
it directly or by sharing it with other applications.

The use of various data sources has equal value in enterprise environments. Through the
use of various computer systems different aspects of an enterprise such as employee engage-
ment, productivity or sociability can be improved upon. For instance, external services such as
LinkedIrE] can provide insights into employee talents and experience which in turn can be used
for employee project assignments. Data gathered by existing systems within an enterprise can
also be leveraged for other purposes than for what the data was initially gathered for.

However, data usage is often paired with restrictions, imposed by either laws or external
data providers. Furthermore, consent for data usage can be required. Thus, data usage imposes
several challenges for application developers. For employees the use of their personal data can
also become troublesome, especially when there is a lack of control and transparency. Consider
for example an application within an enterprise that allows employees to chat with a counsel-
lor about their well-being. An employee might be reluctant to use this application when they
know their conversations are shared with the human resources department. Not disclosing such
data sharing introduces ethical concerns which additionally might harm public perception of the
enterprise when such usage eventually comes out.

Applications can often provide users with trade-offs in regards to the use of personal data: an
application asks for additional personal data from a user, thus potentially invading their privacy,
but in return the application can provide some added value. The worth of this added value could
vary per individual and thus the trade-off will most likely be made differently per user. Trade-
offs between privacy and disclosure are discussed by works such as [[1]], in which both preserving
privacy and disclosure of private data are viewed as having a certain economic value. In order
for users of an application to be able to make an appropriate privacy trade-off there should be

Ihttps://www.facebook . com
Znttps://www.linkedin.com

https://www.facebook.com
https://www.linkedin.com

1. INTRODUCTION

adequate functionality to do so. This work mainly focuses on the technical implications of the
necessity for privacy trade-offs.

1.1 Example: Enterprise chat application

Consider a simple chat application for employees within an enterprise. Such a system, although
simple, provides a rich source of information that could possible be used for various purposes.
For example:

1. Chat meta data can be used to get insights into communication flows between departments.
These insights can be used to improve collaboration efficiency by relocating certain de-
partments within an office building.

2. Anonymised chat messages can be used for a machine learning experiment.

3. Chat logs can be used to profile users in order to determine expertise within an enterprise.
This information can in turn be used to approach employees with challenges based on
their expertise.

These use cases all have different purposes and vary in terms of personal data disclosure.
Some users might be willing to share their data for every use case while others rather not share
their data at all. In most cases a user agrees upon a middle-ground between functionality and
privacy. The added value for data disclosure in these use cases could respectively be: increased
productivity, contributions to scientific research and the possibility for more challenging and
engaging work. The worth of these improvements could vary per individual and thus the trade-
off will most likely be made differently per user.

In the example chat application privacy trade-offs can be included in various ways. One way
is to let the details of data sharing up to the application administrators. In this situation the users
have little say in privacy trade-offs; they can either use the application or find an alternative.
Ideally however the application would contain an overview of data usages together with an opt-
in system. This way, each user of the application can decide for which purposes they would like
to share their data.

Although the second approach would be a desirable solution, it does provide the chat appli-
cation with the extra burden of bookkeeping. For one application the development overhead of
such a solution could be manageable, but the same functionality could be useful in various other
applications that require data sharing. This overhead would become even more complex when
several applications would like to share data with each other.

Such a solution could be equally cumbersome for users, considering that every applica-
tion will have their own privacy settings implementation. This means that privacy settings are
distributed over different applications without a common interface, both in terms of GUI and
vocabulary. This work tackles these challenges by designing a framework for centralised data
sharing in which privacy, transparency and opt-ins are main concerns. By providing these func-
tionalities as a single separate service developers can focus on the core functionalities of their
applications while users benefit from transparent, familiar and concise privacy management.

2

1.2. Context

1.2 Context

This work is conducted as part of an internship at IBM. The main use case for this work is
the vision of an Inclusive Enterprise [33]. In this vision various computer systems within an
enterprise work together to improve employee job satisfaction through increased engagement
and overall well-being. These computer systems could benefit immensely from data sharing, but
data usage should be transparent and users should remain in control over their personal data.

The framework designed in this work is a multi-tenant Software-as-a-Service (SaaS) provider
that centralises privacy and consent management related functionalities. Multi-tenancy is de-
fined as an architecture in which separate computer systems are unaware of the existence of
other computer systems. However, in this work computer systems can still communicate with
each other indirectly through the framework, thus allowing data sharing in a privacy aware man-
ner.

1.3 Current and envisioned data sharing scenarios

To further illustrate the complications that are introduced by more sophisticated data sharing two
data sharing scenarios can be described; the current scenarios and the scenario as envisioned in
this work. In both scenarios there is a cloud in which server applications operate. These server
applications store some data and subsequently make this data available to others through an API.
There are two types of server applications; internal and external applications. Internal server
applications operate within the context of the framework while external services are not. These
external services can range from third party services such as Facebook, Twitter or LinkedIn to
existing systems within an enterprise such as IBM Connections, an enterprise social network.
Additionally there are client applications which are operated by users. These client applications
communicate with server applications to interact with data.

1.3.1 Current data sharing scenario

In the current scenario, as depicted in several applications communicate with each
other directly. Within an enterprise there might be protocols for such data sharing between
applications, but enforcement of these protocols is tedious due to the lack of overview. This
situation leads to applications that interact with different data sources freely, thus increasing the
risks of privacy violations.

Data flows between applications in an enterprise have been possible for a long time. How-
ever, due to the increased presence of the Internet in our society there are new ways in which
personal data of employees can be obtained. Specifically, external data services can be utilised
and because of this data flows can possibly break through enterprise barriers. This means that
data flows are harder to control, which introduces additional risks in terms of privacy violations,
international privacy law violations or external service policy violations.

Besides the risks there are additional undesired characteristics of this scenario. For appli-
cation developers implementation of data sharing can become tedious, considering the various
different APIs that need to be invoked independently. This is especially cumbersome when each

1. INTRODUCTION

server application behaves differently in terms of technological details such as authentication
or communication medium. Furthermore, application developers must take proper actions to
ensure compliance with the established protocols with regard to data sharing. When external
services are invoked directly, these protocols can be hard to enforce.

For employees this scenario is also undesirable since there is little overview of how personal
data is moving between various applications. Applications could keep track of this information
flow, but transparency is not enforced.

Application Application
2 3

| /

Privacy platform]

Ppllca
VN

“r £

o] [

o
255
H
o
%22
sEg
5
H

=

Figure 1.2: Desired scenario

Figure 1.1: Current scenario

1.3.2 Envisioned data sharing scenario

In contrast to the current scenario, this work envisions a scenario as depicted in
where personal data management is centralised. By providing a layer between applications
the enforcement of transparency and compliance with the various restrictions by applications
becomes much easier. Additionally, application developers are relieved of the burden of consent
management and hence developers can stay focused on building core application functionalities.

The envisioned scenario shows resemblance the Facebook graph APIEL This API allows third
party applications to interact with the Facebook social graph. Applications can ask Facebook
users for certain permissions which in turn allow these applications to access this data. An
overview of this is illustrated in In this model Facebook maintains personal data
about users. This model can be seen as a personal data management system similar to what
is envisioned in this work. In this model, access to personal data is always validated by the
personal data management system, thus ensuring consent.

3nttps://developers. facebook.com/docs/graph-api

https://developers.facebook.com/docs/graph-api

1.3. Current and envisioned data sharing scenarios

Third party application Third party application

[N
Personal data ||

.
/
'
'
Persanal data .

'

'

'

.

|
Parsonal data ||

Third party application Third party application

\
v
Parsonal data +
q
f

Third party application

Third party application

Figure 1.3: Facebook model

There is a substantial difference however between the Facebook approach and the one envi-
sioned in this work. Specifically, in the Facebook model each application interacts with personal
data maintained by Facebook. However, in a multi-tenant application environment within enter-
prises there is no central source of data. Rather, the innovations envisioned in this work focus
on sharing of data maintained by different applications. An illustration of this concept is given
in Here, each third party application maintains a custom set of personal data about
users. This data should then be made available to others. Nevertheless the users can still benefit
from a permission system similar to the one provided by Facebook. As can be seen in this illus-
tration, this work envisions a system in which multiple applications can provide personal data
yet data interactions still use a single privacy management layer.

1. INTRODUCTION

Parsonal data Parsonal data

Third party application Third party application

i . W N

1‘ .‘

f
|’ B

Third party application / . Third party application
B .
! 1
! '
.‘ J
\
Personal data “ - Personal data

Third party application
B
Parsonal data Personal data ||

Figure 1.4: System vision

Third party application

1.4 Challenges and contributions

In this work a framework is proposed for centralized privacy and access control management.
This framework consists of two parts; a model that describes privacy related data within a multi
tenant application environment and a platform implementation that uses this model.

Through this framework this work addresses two problems: 1) existing models relating to
privacy and consent management do not incorporate all aspects desired in a centralized privacy
management framework as described in the previous section. Consequently, 2) no platform
implementation is available that directly implements these requirements.

There are several challenges that have been tackled. The framework requires enough expres-
siveness for supporting a wide variety of use cases for employee centric applications within an
enterprise. Despite this expressiveness the framework is still required to be easily understand-
able by end-users and thus a trade-off has to be made between expressiveness and simplicity.
The main implementation challenges are scalability and security.

The contributions of this work are:

e A new model extending the current state of the art in access control models in a multi-
tenant enterprise application environment.

e An implementation demonstrating the approach and showing the feasibility of the system
in terms of performance as required in an enterprise environment.

1.5. Methodology

o A demonstration of the flexibility of the system, showing how the model supports the
integration of various domain specific use cases.

e A validation of the design through interviews with IBM employees with different roles
within the organization.

1.5 Methodology

The thesis starts with an analysis of the privacy and data access control requirements as stated by
IBM. In this analysis the high level goals of the framework are used to define the requirements
of the framework from two perspectives; 1) that of users, and 2) that of developers working with
the system. These requirements are defined through use cases and system stakeholders under
guidance of IBM supervisors. The results of this analysis are given in Chapter 2]

After determining the scope of this work in terms of framework requirements a literature
survey is conducted to gain insights in the current state of affairs. This survey, as given in
Chapter 3] provides a basis on which the framework can be built. This survey also provided
additional insights in possible system requirements.

After requirement refinements the related work is re-evaluated to determine compatibility
with framework requirements. Through this applicability analysis missing properties of existing
work are identified. This analysis subsequently results in insights into where existing models
lack and by using these insights a new model is constructed, which can be found in Chapter 4]

Using the newly constructed model the next part of this work is the platform implementation,
which is described in Chapter [5] This implementation is then validated in Chapter [6] through
interviews an discussions with IBM employees with different roles within the organisation as
well as qualitative analysis.

Chapter 2

Problem statement

As outlined in the introduction, this work focuses on the technical implications of the require-
ment for personal data management functionality within applications in an enterprise environ-
ment. This chapter clarifies and states the exact requirements for a framework in which these
technical implications are tackled. First, various use cases are discussed for employee centric
applications within an enterprise. Secondly, system stakeholders are discussed. Then the high
level goals and non-functional requirements of the framework are outlined. This is followed by
a discussion of the functional requirements. Finally, multiple core concepts are discussed.

2.1 Use cases

In order to clarify the needs for some of the requirements several use cases will be discussed.
Each use case entails a hypothetical computer system present in an enterprise that handles some
personal employee data.

2.1.1 Office environment monitoring

A pleasant climate in the workplace can have a positive impact on employee satisfaction. The
first steps in investigating the effects of office climate is setting up a monitoring infrastruc-
ture. Certain characteristics of the climate can be measured using physical sensors. Metrics
can include temperature and background noise levels, which can be measured by respectively a
thermometer and a microphone. For other metrics physical sensors are not sufficient, such as for
example the perceived temperature. The perceived temperature can efficiently be determined by
asking employees directly. The office environment monitoring computer system is responsible
for collecting metrics about office climate from these different sources.

Considering the upcoming trend of wearable technologies, a more advanced monitoring
approach could make use of these technologies to collect even more useful and accurate data.
For instance, wearable technologies can be used to collect heart rate and core temperature data
from employees. Large scale analysis of this data could provide valuable insights into office
climate as well as employee well being. For individual employees these measurements can

9

2. PROBLEM STATEMENT

possibly be used to automatically adjust heating in their proximity. However, employees could
be reluctant to provide others free access to this arguably sensitive personal data.

2.1.2 Analytics

After data has been gathered it is often not directly insightful without proper means to identify
patterns and anomalies. An analytics system can be created that provides useful aggregation
functionality for a wide variety of data sources. One example could be the aggregation of sensor
measurements produced by the office environment monitoring system. Another example is pro-
viding a visual overview of communication flows between departments based on chat message
logs, as mentioned in In summary, this system is responsible for converting bulk data
into usable metrics and visualizations.

In order for analysis to be applicable there must be a collection of data on which to apply it.
This again brings with it questions of consent and responsibility. Specifically, employees must
agree with their data being used in an analytical aggregation of data. For employees this decision
might be dependent on the perceived benefits offered by disclosure of personal data such as for
instance a more pleasant working environment.

2.1.3 Gamification

It is desirable for enterprises to keep employees engaged. One way to achieve this is by incor-
porating gamification strategies into everyday tasks within the enterprise. For example, every
employee that uses this application can have a score based on the number of achievements they
have completed [11]. This score is subsequently used to generate a ranking of all employees. In
this situation an achievement states that a specific criteria has been met.

One example of an achievement is one that will be rewarded when a healthy lunch is ordered
every day of the week. In this situation the gamification system will need access to data produced
by other parties, which in this example would be the restaurant’s payment system. In order for an
employee to be eligible to this achievement, they must first approve of the data sharing between
the two parties.

Another insight that can be found in this use case involves data accessibility. Until now,
only direct access to data by applications has been considered. However, in an application such
as this use case it is possible that some data about an employee is also interesting to other
employees. For instance, the gamification progress of a certain employee might be of interest to
their colleagues. Thus, the questions in terms of consent management not only revolves around
direct access to data by applications, but also access to data by different employees.

2.1.4 Social network proxies

Social networks are useful in multiple situations. There are several very popular public social
networks such as LinkedIn, Facebook or Twitter, as well as internal enterprise social networks
such as IBM Connections.

Within an enterprise the profile of employees on such networks can be very useful for differ-
ent purposes. For example, some application might be able to make use of an employee’s twitter

10

2.2. System stakeholders

feed for experimental purposes. Another example is the use of LinkedIn connections to deter-
mine expertise within the enterprise. In this context one system could analyze these connections
and determine that a certain employee has connections with an important potential client. This
employee could then be approached for a discussion about this client. By utilizing the hidden
talents of employees their feeling of importance can be increased while simultaneously helping
the enterprise as a whole.

Social networks can already be accessed directly by individual systems. The downside of
this is that it is difficult to ensure that various systems respect the use policies of third party ser-
vices. Especially in an enterprise setting such as within IBM regulations are in place that impose
requirements on how data is handled. Additionally, when various systems all ask employees to
link their social networks separately this might decrease participation. Rather, a single proxy
between third party services would provide a lot of benefits in terms personal data management.

2.2 System stakeholders

Several stake holders can be identified that are concerned with the management of personal
data. Most importantly there are application developers and application users. Applications are
stand-alone computer systems that provide some functionality. These applications can consume
data and produce data. Applications can provide employees or other applications access to data,
possibly under certain restrictions.

For application developers the role of the system is twofold; On one hand the system should
make it easier to integrate existing data sources into applications. On the other hand the sys-
tem should make it easier for application developers to share their data with other application
developers without overhead of a custom opt-in system.

Application users, as the name suggests, use these applications to ideally receive some direct
or indirect benefits. Within an enterprise these users are employees. For these stakeholders there
should be granular access control over personal data. A system providing these functionalities
should convey trustworthiness and reliability so that employees feel secure in using the system
to protect their personal data.

2.3 High level goals

The main goal of the framework is to make it easier for applications within an enterprise to share
data in a way that respects the restrictions and obligations tied to usage of this data.

The framework aims to tackle two sides of the challenges associated with data sharing.
First there is the user side, which brings challenges regarding the willingness of users to share
data. Secondly the development side brings challenges regarding the overhead of development
associated with data sharing functionality. The user centric challenge is tackled by providing
transparency and requiring explicit opt-in before any data sharing takes place. Furthermore,
a clear and familiar user interface across multiple applications is envisioned which could help
building trust among users. The developer side of the problem is tackled by providing a familiar,
simple and efficient interface to data sharing. By using a familiar interface for data sharing

11

2. PROBLEM STATEMENT

developers do not have to reinvent the wheel for every application that requires data sharing
functionality.

As stated earlier the framework consists of two parts. The first part is a model that describes
all data needed in a privacy aware data sharing platform. The second part is an implementation
that uses this model to implement a privacy aware data sharing solution. This implementation
by itself can be subdivided into an architecture and a proof of concept implementation.

2.4 Non-functional requirements

Through analysis of the discussions in the previous sections some non-functional requirements
can be identified. These requirements state some points that are of high importance during
system design. The following non-functional requirements are identified:

NFR.]1 Secure
A core part of the framework designed in this work is the management of personal data.
When handling this personal data it is important that personal data is only disclosed to
those who are properly authorized. Thus, adequate security is core non-functional re-
quirement.

NFR.2 Modular
A key characteristic of the multi-tenant application environment as present in an enterprise
is the inherit modularity of these applications. The framework should therefore provide a
solid base in which modularity and extensibility are key.

NFR.3 Scalable
The framework should account for the vast amount of applications that could possibly
benefit from centralized personal data management within an enterprise. This means that
the framework must be designed to be scalable.

NFR.4 User centric
The vision behind this work is a situation in which various applications work together to
improve some aspect of a user’s work experience. In this vision, the goal of these appli-
cations is mainly to provide some functionality to a user. For this reason the framework
should be user centric from the start.

NFR.5 Implemented using tools compliant with IBM guidelines
This work is conducted as part of an internship at IBM, therefore the implementation
should comply with the IBM guidelines in terms of third party tools such as open source
software.

2.5 Functional requirements

The framework designed in this work can be seen as an access control framework. The authors of
[[18]] provide a definition for the core concepts in access control frameworks. The authors define

12

2.5. Functional requirements

access control to be the model which guides the access control process. The policy language is
defined as the syntax and semantics of the access control rules. Finally the framework is defined
as the combination of the model, the policy language and the enforcement of the two. The
authors also provide some basic access control concepts; Subjects are entities requesting access,
resources are entities that require protection and access rights are the rights of a subject towards a
specific resource. Finally, the authors define authentication and authorization. Authentication is
defined as the verification of credentials and authorization is defined as the process of granting
or denying access to resources based on credentials. All of these concepts translate roughly
directly to the framework proposed in this work.

The functional requirements of the framework specify the exact needs that should be taken
into account during framework design. The functional requirements can be grouped according
to several core concepts: authentication, privacy policies, access control, authorization and
provenance. These core concepts describe general subjects that are of importance within a pri-
vacy aware data sharing framework. The rest of this section provides an explanation, motivation
and list of requirements for each core concept.

2.5.1 Authentication

The first core concept is authentication. Authentication is defined as the verification of creden-
tials. Within the context of this work this has multiple use cases. First of all applications should
be able to request data on behalf of a user. For example, a certain mobile application can request
the Facebook profile of a user who is currently using the application. In this situation two proofs
have to be given, one for the identity of the user and one for the identity of the application.
Secondly, applications can request data themselves, such as would be the case in an analytics
application where data requests can occur without a single user explicitly invoking it. In this
situation the application has to proof that it is in fact the application it claims to be.

Generally, within the framework an actor will make a request to the system over some
transportation medium. There are two situations in which an identity should be proven. In the
first situation a non authenticated actor must proof its identity to become authenticated. This
situation will be referred to as obtaining an identity. In the second situation the identity of an
authenticated actor must be confirmed.

The following functional requirements regarding the concept of authentication have been
identified:

AU.I Identifying users in different contexts
The framework is targeted against a scenario in which multiple applications are present.
In this situation users can log in through different applications. Thus, the authentication
should be prepared to deal with this scenario by providing the ability to identify users in
different contexts.

AU.2 Revoking previously successful authentication attempts
In a multi-tenant application environment there is less control for system administrators
due to some of the functionality being provided by third parties. This brings additional
challenges regarding privacy as these third parties can misuse data after it has been ob-
tained. Due to this challenge it should always be possible for users to revoke previous

13

2. PROBLEM STATEMENT

authentication attempts. This functionality is essential for keeping users in control of their
own data.

2.5.2 Privacy policies

Privacy policies specify how data is used within an application. The main goal of a privacy
policy is to exactly specify both the actual usage of data as done by an application as well
as the restrictions on data usage by other applications. This concept is of importance within
the framework as it provides a basis for applications to specify their data usage. For users the
privacy policies are of equal importance as they provide insights into the data handling practices
of applications. Through these policies users can make an informed decision on whether they
want to use a certain application.
Below the exact requirements for the privacy policies as applied to this work can be found:

PP.1 Extensible specifications of data handling practices

Applications should be able to specify their data handling practices through privacy poli-
cies. Clearly stating data handling practices is a first step in increasing transparency to-
wards users. This transparency consequently allows users to make a more informed de-
cision when providing consent for data usage. These practices include information such
as what kind of data is stored, how long data is stored, where it is stored and how it is
stored. As apparent from these examples, a lot can be said about these practices and thus
the specification language should be extensible.

PP.2 Specification of data usage restrictions
A goal of the framework is to facilitate data sharing among enterprise applications. A
common occurrence with applications that provide data services is that restrictions are
imposed on data usage. Specification of such restrictions are an additional important re-
quirement of privacy policies. These specifications must be usable to indicate the required
data handling practices. Through these restriction specifications data providers can guard
against misuse of their data.

PP.3 Describing different purposes of data usage
A key part of the framework proposed in this work is that management of personal data
should be fine-grained. This means that users should be able to exactly specify who can
access their data. Besides granting specific applications access to certain data, it should
also be possible to specify access to data for different purposes. This facilitates a situation
in which data usage can be categorized, thus providing more transparency to users.

PP4 Infrastructure for dealing with policy changes
Within a multi-tenant application environment it is highly likely that requirements change
regularly. For this reason the privacy policy specifications are also likely to often change.
The privacy policy infrastructure should therefore be prepared to deal with these changes
in a structured manner.

PP.5 Infrastructure for dealing with policy changes by external data sources
When dealing with external data sources it is likely that at some point in time policies of

14

2.5. Functional requirements

these sources will be updated. The resulting privacy policy specifications should therefore
be able to deal with such changes in a consistent manner.

2.5.3 Access control

A key part of the framework proposed in this work is the concept of access control. Access
control is defined by [18]] as the model that guides the access control process. Within this work
this concept is of great importance. The access control model describes the basic way in which
access rights are determined.

The following requirements for the access control in the framework have been identified:

AC.1 User centric access control
In line with [item NFR.4] access control should always be user centric. Due to applications
being aimed towards users the access control needs to be targeted towards a scenario in
which each user will have individual preferences in terms of access control.

AC.2 Fine-grained access control
Access control should be fined-grained, meaning that access should be controlled on the
level of individual pieces of data and also in different contexts. For instance, data to a
single piece of data could be accessed with different purposes. By providing such a fine
grained access control basis it is possible for users to have complete control over their
data. Using this principle a solid basis can be build needed for a trustworthy privacy
management framework.

2.5.4 Authorization

Authorization is concerned with the delegation of access rights. For the framework proposed in
this work this concept forms a key part. Before any data is actually shared between applications
there should be an explicit opt-in by the users involved. The process of providing applications
with opt-ins is described by the authorization strategy.

The requirements of the authorization within the framework are as follows:

AO.1 Opt-ins for data usage per application
Users should be able to grant a specific application access to specific data. Data should
not be available to this application without explicit consent from the user involved.

AO.2 Opt-ins for different purposes of data usage per application
It should be possible for applications to ask for consent for the same data for different
purposes and subsequently it should be possible for employees to accept or deny consent
for a subset of these purposes.

AO.3 Revoking opt-ins at any time
Users should be able to revoke a previously given consent at any time, and thereafter be
sure that the data in question is not released under justification of the revoked consent.

15

2. PROBLEM STATEMENT

AO.4 Configuring scope of data usage
Users should be able to configure the scope of data usage in which they are a subject. This
means that they should not only be able to grant opt-ins to certain data usages, they should
also be able to specify who else can access the data through these channels.

2.5.5 Provenance

Provenance is defined as the history of data. This history describes how certain data has reached
its current form. This concept is useful in various contexts within the framework. First of all, the
history of data can provide transparency to users. In this situation usage of data can be tracked,
thereby providing users with insights into how their data is used by various applications. Another
situation in which provenance can be useful is during access control. For this the main concern is
that when personal data is used, additional manipulation and redistribution of this data makes the
ownership question more complex. Specifically, when personal data is gathered about several
individuals the main challenges becomes determining who has the right to grant access to this
data. Provenance can potentially be used for solving these challenges.
The following requirements regarding provenance have been identified:

PR.1 Viewing data usage of applications after opt-ins have been granted
After a user has opted-in to some data usage the actual usage should be transparent. Trans-
parency should be realized through the ability to gain insights in how applications actually
use personal data.

2.5.6 Platform requirements

The concepts discussed in the previous sections define a high level grouping of the requirements.

These concepts are mainly concerned with the model part of the framework. However, as previ-

ously stated another important part of the framework is the platform. This platform makes use

of the model to provide the required functionalities in a multi-tenant application environment.
The following additional functional requirements of this platform have been identified:

PR.1 Authentication via existing infrastructure

Considering this project being part of the Inclusive Enterprise vision within IBM it should
be easy for employees to work with this system. Therefore, employees should be able
to authenticate with the system using their existing IBM Connections credentials. This
requirement however can be abstracted for enterprise environments in general. Most en-
terprises already have an identity management infrastructure in place and therefore the
system should not provide yet another one. Instead, existing infrastructure should be
leveraged for identity management.

PR.2 Extending available data services with application level data services
Applications within the system should not only be able to obtain data from the system,
they should also be able to provide data to other applications through a single privacy
managed interface. This way, the available data to every application can be extended over
time.

16

2.5. Functional requirements

PR3

PR.4

PR.5

Platform provided privacy management

The resulting platform should provide application developers with a full privacy and con-
sent management solution, thereby reducing the needs for duplicate development of opt-in
systems across various applications within an Inclusive Enterprise.

Infrastructure for gradually upgrading various platform components and providing
dependent applications with sufficient means to handle version bumps

As previously stated the requirements of applications are likely to change regularly. This
has implications on privacy policies as discussed in but this also has implica-
tions on application inter dependencies. Due to the platform facilitating data sharing there
will naturally arise dependencies between applications. Combined with evolving require-
ments this introduces challenges with regard to dependency management and versioning
for which the platform should provide a sufficient infrastructure.

Receiving real time data events within the system

Applications targeted by the framework focus on employee well being and job satisfaction.
In some cases these applications might need to incorporate real time data in order for their
functionalities to be useful. This is especially useful in systems such as office environment
monitoring and gamification. For this reason, the resulting platform architecture should
make it possible to deal with real time data flows.

2.5.7 Trust

The core responsibility of the framework is to provide data sharing transparency and control to

users.

It must be noted however that there is always a risk of malicious use of data by a third

party application after data is released. When a user approves the use of certain data for a specific
purpose by an application the platform will provide this data. What the application continues to
do with the data is out of the system’s control.

Although misuse of data remains a risk in the rest of this work it is assumed that applications
interacting with the platform are trustworthy and act in good faith. The reason for this mainly is
the fact that in an enterprise scenario these applications are developed within the same enterprise.
Nevertheless there must be an accountability system in place, and future work might include a
reporting system for malicious data usage.

17

Chapter 3

Related work

A key concept in this work is privacy. As stated in the previous chapter the framework described
in this work is also concerned with the following concepts; authentication, privacy policies,
access control, provenance and authorization. Each of these concepts has received a lot of sci-
entific attention and in this chapter this related work will be discussed. This chapter is structured
as follows; First, several basic principles regarding privacy are discussed that are applicable to
systems that manage personal information. Then, for each of the concepts given above related
work is discussed in which both the functional and non-functional requirements are also taken
into account. This results in a conclusion for each concept indicating the applicability of existing
work in the context of this work.

3.1 Privacy

An important part of a personal data management platform is privacy. One reason behind this is
that users should feel comfortable with sharing their data, knowing that they remain in control
of their data. Another reason is that there are various laws in place that impact how data can be
used. Before describing how these privacy concerns can be respected this section will briefly
summarize common principles of systems dealing with private information.

Within the platform a wide variety of data could potentially be exchanged. Some of this data
can be more sensitive than others. Sensitive data about users is often referred to as Personal Data
or Personally Identifiable Information (PII) [26]. When dealing with sensitive information there
can be requirements from different sources to handle this data with extra care. Most importantly,
several laws exist in different regions regarding the handling of PII. In other situations a company
can have certain ethical guidelines with regards to data storage. Finally users of the system can
demand certain privacy guarantees before they feel comfortable in using a system.

In [[12] basic principles are described for systems that handle personal information. In these
principles the data subject is the subject of some stored data. The principles are shortly summa-
rized below, a complete explanation of these principles can be found in [12]:

PRIVACY.1 Collection limitation principle
Collection of personal data should be limited and collection of personal data should only

19

3. RELATED WORK

be done if it respects the law, is done fairly and is done with the knowledge and consent
of the data subject.

PRIVACY.2 Data Quality Principle
Data should be relevant for their use, accurate and up to date.

PRIVACY.3 Purpose Specification Principle
The purpose of data collection should be stated before collection happens and further use
must be limited to this purpose.

PRIVACY.4 Use Limitation Principle
Personal data is not disclosed or used for other purposes as stated beforehand, except when
the data subject has given consent or when it is required by law.

PRIVACY.5 Security Safeguards Principle
Personal data should be protected by reasonable security safeguards to prevent malicious
access to it.

PRIVACY.6 Openness Principle
There should be openness in how personal data is handled behind the scenes and it should
be possible to obtain details regarding data storage and access.

PRIVACY.7 Individual Participation Principle
Data subjects should be able to obtain information about what data is stored about them
and they should potentially be able to have additional control over their personal data.

PRIVACY.8 Accountability Principle
There should be a party accountable for respecting these principles.

These principles are the basis of various laws regarding privacy and thus form a basis to take
into account when designing systems in which privacy is a core aspect. Although these prin-
ciples are mostly applicable to how existing technologies are used as opposed to what existing
technologies provide in terms of functionality, they are still useful for evaluating the resulting
system.

3.2 Authentication

Within enterprises there is often an existing infrastructure for management of employee identi-
ties. This is equally true for IBM where employees have access to an account for IBM Connec-
tionsﬂ an enterprise social network platform. By using this existing infrastructure for employee
identities there is less management overhead, as well as a lower entry barrier for employees to
make use of the platform. IBM Connections provides an oAuth 2.0 [[14] endpoint, which can be
used to let employees obtain an identity on the platform.

Ihttps://www-03.ibm.com/software/products/en/conn

20

https://www-03.ibm.com/software/products/en/conn

3.2. Authentication

For applications multiple authentication solutions exist. A common approach used in proto-
cols such as oAuth2.0 [14] is to provide applications with credentials that can later be used to
identify the application in the system. Another approach is to make use of asymmetric encryp-
tion algorithms. For instance, a public key infrastructure (PKI) can be set up between applica-
tions, such as illustrated in [[6]. In this infrastructure each application would have a public key
and a private key. Communication will then be done using verification of certificates using some
asymmetrical encryption scheme. For such a PKI additional certificate management is needed
in the form of Certificate Authorities (CA). These CAs maintain a trusted repository of public
keys which can be used to obtain application identities.

After identities have been obtained it should be possible for actors to reuse their identity for
additional queries to the platform. In this situation an identity must be confirmed. Confirming
identities is a common requirement in web based systems and several different techniques are
available for use with the HTTP protocol. The authentication requirements as listed in
[section 2.5.1] are mostly concerned with this aspect of the authentication technology. The next
sections discuss several alternative authentication strategies. For each of these strategies the non-
functional requirements of modularity and user centrality are not discussed, as
for every strategy handling of authentication can be modularized and authentication is inherently
user centric.

3.2.1 Basic and Digest Authentication

A simple scheme is the Basic Authentication scheme, and similarly the Digest Authentication
scheme[20]. The basic authentication scheme requires every request to be accompanied with
credentials included in the request headers. This way, the identity of the requester is verified
directly at every request. Digest authentication uses a slightly different scheme in which the
server provides a nonce that must be used by the client to hash the password. This hash must
subsequently be sent by the client in the request and only if the server obtains the same hash
using the same process on the stored password is the authentication accepted.

Functional requirements

There are several flaws with these schemes when applied to this work. First off, requirement
can not be directly fulfilled by these strategies. These schemes require system wide cre-
dentials to be included in each request. These credentials do not include any additional informa-
tion besides verifying the existence of a user. Thus, when requests are made through a certain
application there is no direct way to verify the validity of the request context. This could lead
to misuse of user credentials by unauthorized applications. Secondly, revoking previous authen-
tication attempts as required by is very inconvenient. Since each application would use
the same system wide credentials revoking access for specific applications requires changing the
credentials, impacting every other application. Thus, revoking access from a single application
is not directly possible.

21

3. RELATED WORK

Non-functional requirements

Both the basic and digest authentication strategies impose some concerns with regard to secu-
rity as required by The main issue here is the disclosure of system wide credentials to
multiple applications. This means there is no direct way to impose strict limits to access per ap-
plication. Additionally, scalability, as discussed in [NFR.3] is also impacted by these strategies.
For every request the authentication information included in the request will have to be com-
pared to the user’s credentials. This imposes a challenge for scalability as this adds a latency
overhead to every request. Additionally each system entry point will need to communicate with
the credentials store, making horizontal scaling more challenging. In light of the ba-
sic authentication scheme is supported by IBM Connections, however, production use of this
scheme is discouraged. This does however not restrict the use of these technologies directly.

3.2.2 Session Authentication

A second scheme is called Session Authentication. Although not directly standardized an exam-
ple can be found in [13]]. In session authentication, as the title suggests, the requests of an actor
are executed within a session. A session starts by obtaining an identity. Subsequent requests
belong to the same session. Sessions often work by storing a session ID in a cookie. When a re-
quest is made the session ID is used to look up information stored in the session. Thus, a session
ID can be seen as temporary credentials. A key point with this scheme is that the server stores
information related to a session. In the context of this work information such as the requesting
application and the employee ID can be stored in a session.

Functional requirements

The session authentication strategy is mostly in line with the requirements. After starting a
session a session ID acts as temporary credentials. Within the session details about the context
can be stored safely, as required by Since session data is stored on the server sessions can
easily be closed afterwards, thereby fulfilling

Non-functional requirements

Session authentication provides a secure way to manage authentication in different contexts.
However, this strategy imposes some challenges in terms of scalability. Due to session data
being stored on the server, each subsequent request in a session must interact with this session
data for verification purposes. This can become challenging when entry points to the system
are horizontally scaled. In this situation a solution must be provided to ensure every entry point
has access to the same shared data. Multiple solutions for this problem exist, such as the use of
shared session storage or the use of sticky sessions. In the first approach each entry point has
access to the same data storage over the network. In the second approach requests in a certain
session will always be routed the the same entry point by a load balancer. Although possible,
these solutions add some complexity.

22

3.2. Authentication

3.2.3 Token Based Authentication: JSON Web Tokens

A common authentication scheme which is also used in 0Auth2.0 and similar protocols[14]
is Token Based Authentication. In this scheme a token is issued to an actor after an identity
has been obtained. This scheme is similar to session authentication in that a token is used to
confirm an identity. For this scheme the same problems exist in terms of scalability. However, a
solution to this problem is the use of the JSON Web Token (JWT) standard[[17]]. This standard
describes a way to construct authentication tokens. These tokens consist of a number of claims
and a certificate. The certificate is constructed using a server side private key. When the JWT
is then used for confirming an identity the server can simply validate the certificate. When the
certificate is valid, the claims will also be valid. Thus, an actor can be identified by its token
using the certificate without storing any additional information on the server, simplifying the
server architecture.

Functional requirements

As with the session authentication strategy the token based authentication strategy allows for
keeping track of contextual information. However, due to the use of signed tokens for identity
verification fulfilling requirement becomes somewhat more complicated. Since a token
is signed using a secret key, it is impossible to revoke a token afterwards, besides by changing
the secret key used to verify tokens. However, when this key is changed, this means that every
other token is also considered invalid. To combat this issue a similar approach as used in the
0Auth2.0 protocol[14] can be used. Instead of signing tokens that are valid for an infinite time,
signed tokens are only valid for a short duration. These short lived tokens are called access
tokens and these tokens are used to verify identities during requests. Besides these short lived
tokens there are long lived tokens called refresh tokens. These tokens can only be used to obtain
new temporary access tokens. The difference between these tokens is that refresh tokens are not
signed, instead they are persisted on the server. By revoking refresh tokens requirement
can be fulfilled.

Non-functional requirements

Both the session authentication strategy and the token based authentication strategy have some
advantages in terms of security in[NFR.1] Since session based authentication only stores data on
the server it provides a quicker way to revoke authentication. With token based authentication
access tokens can be misused without being revocable for a short time. On the other hand, token
based authentication provides some advantages in terms of scalability in Stored refresh
tokens only need to be accessed when access tokens are expired. For every other request the
access token can be verified simply by verifying the signature. This signature can be cached
in every system entry point, thus greatly reducing the required network round trips for every
request.

23

3. RELATED WORK

3.2.4 Authentication summary

A summary of the authentication schemes discussed in the previous chapters is given in
Although session authentication is arguably also an option, the token based authentica-
tion provides some implementation benefits and will therefore be used.

g [g] |E
~ § 5
E E ;
= =
4 1S 12 B
R 9 =
e — gl) Iy
a] =
AU. 1 X1 X |V |V
AU.2 X| X |V |/
NFRI| | X | X |/ |V
NFR2| |V |V |V |V
NFR3| | X | X | X | V/
NFRA| |V |V |V |V
NFRS| | X | X |V |/

Table 3.1: Summary of authentication schemes and their compliance with relevant requirements.

3.3 Privacy policies

There are several ways in which a policy can be specified. At its most basic form a policy
specification is an informal text based policy description. Although useful for end users such
a specification system is rather limited in terms of additional processing. Without a formal
specification method it is hard to make systems that process policies. Another approach thus
is to specify policies in a machine readable format. By using a machine readable format it is
possible to build systems that provide additional functionality with regard to privacy policies. In
order to improve compatibility between privacy systems it is desirable to make use of existing
policy standards. The next sections will discuss some policy specification standards. Due to the
similarity of the various standards in terms of the non-functional requirements the applicability
in this context is discussed in a single section.

3.3.1 Platform for privacy preferences (P3P)

An example of a machine readable privacy policy specification is the Platform for Privacy Pref-
erences (P3P)[28]][10]. This platform describes a markup language in the XML format that
can be used to describe privacy statements and practices in machine readable format. Within a

24

3.3. Privacy policies

P3P privacy specification information such as purposes, data retention or access control can be
described.

The authors of [28] describe the situation in which web servers expose a P3P policy reference
file that can be obtained by a P3P user agent. The machine readable policy can then be converted
to a human readable format for a user to inspect. Additionally the user agent can inspect the
policy to determine potential privacy flaws in which the user might be interested in and give
warnings accordingly.

Functional requirements

The main goal of the P3P standard matches the requirements as stated in [subsection 2.5.2] The
standard provides a vocabulary to encode privacy policies into a machine readable XML format.
Through this vocabulary data handling practices and purposes can directly be de-
scribed. This standard is mostly focused on specification of privacy as performed by a particular
party with the goal of transferring this information to end users. However, states the re-
quirement of imposing additional restrictions on data usage by other applications. Because of the
HTTP based approach of the P3P standard, versioning of policies can be handled easily through
cache control headers. This does however not directly provide a solution to the challenges im-
posed by versioning of policies when dealing with explicit opt-ins by users. When users opt-in to
certain data usage, modification of policies should be handled properly with additional explicit
consent of users. The same issues arise for[PP.5] which requires sufficient infrastructure for deal-
ing with external policy changes. Concluding, the ideas from P3P are valuable but additional
efforts have to be made before all requirements can be fulfilled.

3.3.2 Global Enforcement of Data Assurance Controls (GEODAC)

In [21] a framework is proposed for describing policies regarding data assurance in the context
of outsourced services. This policy specification framework shows many similarities with the
requirements of the policies in this work. In this framework several categories of requirements
are distinguished; privacy, data migration, data retention, data confidentiality, data availability,
data integrity and usage appropriateness.

Privacy requirements are used to ensure that laws regarding privacy are met. An example
given in [21]] is the requirement for some data about EU citizens to be physically stored in the
EU, or that data breaches are disclosed.

Data migration requirements specify conditions for data migration. The authors of [21]
discuss the propagation of policies. Propagation of policies is important for ensuring that re-
strictions are met in the entire data life cycle. A similar concept is discussed in [26] using the
term sticky policies. Sticky policies describe policies that are linked to data. When data is cre-
ated within a system this is usually done under agreement of some policy. By keeping track of
the link between the data and the policies that apply to it, additional processing can be done to
enforce policy compliance. Related to this concept is provenance which will described in more

detail in

25

3. RELATED WORK

Data retention requirements impose restrictions on how long data is stored. More specif-
ically [21]] describes the requirement to delete data at a certain point in time, as well as the
requirement to notify involved parties of deletion of data.

Data confidentiality requirements are concerned with access control requirements, as well
as actual storage and transmission of data in terms of encryption.

The next two categories described by [21]] are data availability and data integrity. These
two categories are concerned with service uptime and fault tolerance.

The final category described by [21] is appropriateness of use. In order to control appropri-
ateness of use the authors of [21]] introduce an approval process for certain actions within the
platform.

Functional requirements

The GEODAC framework introduces an extensive vocabulary that can be used to describe both
data handling practices and purposes (PP.3). Additionally, in contrary to the P3P speci-
fications, the GEODAC framework provides additional vocabulary to deal with restrictions over
data usage by third party applications. This falls in line with The same challenges apply
in terms of and namely the management of different policy versions after users have
granted explicit opt-ins.

3.3.3 Privacy policy extensions: Platform for Enterprise Privacy Practices
(E-P3P)

Besides specifying actual policies several works focus on additional processing of privacy poli-
cies. These extensions make use of the machine readable format in which policies are specified
in order to provide some additional functionality.

After a policy is specified it is not worth much if it is not enforced. The Platform for En-
terprise Privacy Practices [5] aims to extend P3P by providing additional policy enforcement
measures. Through E-P3P enterprises can internally monitor and enforce compliance with P3P
policies as presented to customers. E-P3P introduces a terminology to describe in more detail
how data can be shared between different parties. Useful concepts used in this platform are
actions, obligations and conditions. Actions describe different ways in which data can be inter-
acted with. Obligations describe additional duties that are paired with the access to some data.
Conditions are rules that can be evaluated in order to determine if access to some data is allowed.

Another example of automated enforcement of policies is the framework given in [32][31][30].
This framework aims to provide a framework that can be used to assure compliance with various
laws. These works are however more focused on the legal side of compliance with the several
existing privacy laws and less on the user side of the disclosure of data handling practices.

Functional requirements

The additional features offered by the E-P3P extensions to P3P provide a more complete ful-
fillment of the privacy policy requirements. With these additional features, both data handling

practices (PP.I)), data usage restrictions (PP.2)) and details about data usage purposes can

26

3.3. Privacy policies

be described accurately. As with the previous policy specification standards, the additional re-
quirements of dealing with policy changes remain an issue.

3.3.4 Non-functional requirements

All of the specification standards discussed in the previous sections share common aspects in
terms of the non-functional requirements. The requirement of security is not applica-
ble to this concept. Secondly, each of the specifications discussed provide sufficient means to
specify policies on a fined grained level. This is in line with the non-functional requirement of
modularity (NFR.2). Scalability is not directly applicable, but when dealing with vari-
ous policy versions this might become an issue. In this context scalability is mostly concerned
with the maintainability of various policy versions available.

All policy specifications are constructed by service providers, this means that users have
little input on the policies besides having the choice to either use a certain service or not after
inspecting the privacy policy specification. Thus, in light of users are not directly cen-
trally involved in the policy process. Nevertheless, when policies are fine grained users can also
decide on a fine grained level whether they accept or reject a certain policy simply by either
using or not using a certain service. Finally, the [NFR.5|requirement is not directly applicable.

3.3.5 Privacy policies summary

The specifications discussed in the previous sections are fairly sufficient in terms of the func-
tional requirements. However, none of these standards directly provide a standard solution for
dealing with policy versioning in context of explicit opt-ins. Summarizing, the specification
standards provide a lot of useful vocabularies that are directly applicable to this work. Arguably
the versioning requirements do not fall under the responsibilities of these standards. For this
reason, the rest of this work will focus less on reinventing a policy specification language but
rather on how policies can be combined in a multi-tenant application environment.

27

3. RELATED WORK

\PP.1
\PP.2
\PP.3
\PP4
\PP.5|
INFR.1
INFR.2
INFR.3
INFR.4
NFR.5

SIS XSS %[N S| [GEODAC

S xA S x] xS S S E-P3P

NSNS %] xS x| [[P3P]

Table 3.2: Summary of privacy policies and their compliance with relevant requirements.

3.4 Access control

The literature provides a broad spectrum of work regarding access control. These existing access
control frameworks and standards deal with challenges similar to those tackled in this work
and therefore related work provides a wealth of useful information. As previously stated the
authors of [[18]] define access control frameworks as the enforcement of an access control model
in combination with an access control policy language. In this section the different access control
models are discussed in order to determine whether any of these models fit the requirements as
given in

For each model the applicability in terms of the functional requirements are discussed. Ad-
ditionally some of the non-functional requirements are discussed, namely the requirement of
scalability and user centrality (NFR.4). Security, modularity and compliance with IBM
guidelines are not discussed because these requirements are largely irrelevant to the access con-
trol model.

3.4.1 Discretionary Access Control (DAC)

In the DAC model access rights are determined on an individual basis [29]][18]. Furthermore,
each individual requester can delegate privileges to other requesters. The DAC model can be
represented by an access control matrix in which each column indicates a resource and each row
a requester. Every position in this matrix states the privileges of a requester on a resource. A
typical application of this access control model is in the context of operating systems [[19][29].

The model revolves around three terms; objects, subjects and actions. Objects are the re-
sources, subjects are the entities requesting access to resources and actions are the activities that
can be executed upon objects. The matrix is defined as a set of tuples of the form (s,0,A), where
s is a subject, o an object and A a set of actions.

28

3.4. Access control

Functional requirements

The core concept of the DAC model is in line with the system requirements. A desired attribute
of this model is that access control is handled on an individual level which is in line with[AC. I
Furthermore, the notion of actions being performed on objects is a useful abstraction. However,
the model lacks slightly with regard to Access control can be granularly specified on
individual pieces of data, but more than this is not directly accounted for. The situation where
one subject requires the same access privileges to one resource but for two different purposes is
not accounted for. Secondly there is no notion of meta data such as obligations regarding the use
of data. Concluded, this model provides some basic useful concepts for the system design, but
the model requires some additions before it can be used in this work.

Non-functional requirements

The DAC model provides a fairly basic access control model. An upside of this is that it can
be fairly well scaled in terms of determining access rights; When access rights need to be de-
termined there should simply be an entry in the access control matrix. However, there can be
a substantial administrative overhead, especially when data is shared among many individual
users. Because every combination of a specific piece of data in combination with a certain user
has an entry in the access control matrix, a lot of entries are required for public data. Thus, some
considerations have to be made when looking at[NFR.3| The requirement of users being centric
fits this model naturally given that access rights are determined on an individual basis.

3.4.2 Mandatory Access Control (MAC)

In the MAC model a central authority is responsible for enforcing access control based on a
certain set of regulations [29]. One example of a regulation policy is the multilevel security
policy. In this example each requester is assigned a certain security level which indicates to
what resources the requester is granted access. A higher security level grants access to more
resources. A situation where such a regulation policy is used is in the military where a rank
indicates what information a person can access [18]].

Functional requirements

The applicability of this model to this work is rather limited as requires access control to
be determined on an individual level. In the MAC model however access control is centralized.
Because of the user centric approach in this work there are generally no hierarchical strict subsets
of access rights and thus a multilevel model is not sufficient. The second requirement (AC.2))
requires fine grained access control over every piece of data. Although in the MAC model access
to every piece of data available can be determined separately, it is not possible to specify access
rights on an individual user basis.

29

3. RELATED WORK

Non-functional requirements

The MAC model provides some scalability in terms of access right lookups, although this also
depends on the regulation scheme used. For the multilevel security policy such lookups only
require the verification of the correct security clearance level of the requester. However, this
model is contradictory to the user centrality required by

3.4.3 Role Based Access Control (RBAC)

In the RBAC model access control is enforced via roles. Within this model each user has a role
which determines the exact access privileges of the user[29]. The RBAC model has received a
lot of research attention, especially in enterprise environments. The reasoning behind this is that
within an enterprise access control often depends on the job title of a requester. For instance,
an administrative employee requires access to certain administrative systems, while a developer
needs access to code repositories. This maps intuitively to the RBAC model in which a job title
can be modeled by a role. Another argument for the use of RBAC as given by [235]] is efficiency.
The authors of this work state that identity based access control mechanisms would be severely
inefficient and too complicated while RBAC requires a lesser administrative burden.

Functional requirements

The requirement of states that access control should be user centric. This requirement does
not match naturally with the RBAC model. The same can be said about Due to access
rights being strictly bound to certain roles there is less focus on individual users.

Non-functional requirements

Although it is true that an identity based model does introduce a heavier administrative burden,
use of a role based access control model will not solve this issue for this work. The system
designed in this work requires a fine grained access control mechanism on a user level as stated
by This means that access to resources for a specific application vary heavily on the
users who are involved with the resources. Mapping this to the role based model will result in
a large number of roles, thus eliminating the efficiency advantage. Furthermore, the use case in
[25] states that users often switch roles which means that their privileges are drastically altered.
In contrast, when dealing with personal data, access to this data does not directly depend on
a user’s roles. Besides providing no additional efficiency advantages this model does not map
naturally to the identity based nature of a personal data management system. For these reasons
the RBAC model does not provide many advantages in terms of scalability (NFR.3).

3.4.4 Attribute Based Access Control/Rule based access control (ABAC)

A more expressive model compared to RBAC is ABAC. In this model the decision to accept
or deny access to a resource is based on rules over attributes of the resource or the requester
[18]. Example attributes could be a requesters birth date. Rules can be in the form of boolean
expression over these attributes. Note that RBAC can be modeled by ABAC by storing a role

30

3.4. Access control

in a requester attribute and by adding rules regarding this role. Other work concerning ABAC
is often focused on distributed systems. In a distributed setting identities of requesters are often
unknown to resource providers. The ABAC model can encapsulate a lot of different access
control models, and while access to personal data could be modeled using ABAC, scalability of
the model has to be taken into account.

Functional requirements

ABAC provides a broad model in terms of access control. Using attributes both user centric

(AC.1) and fine-grained (AC./)) access control can be realized. This model therefore provides a
sufficient basis for this work in terms of functional requirements.

Non-functional requirements

The ABAC model provides a lot of freedom in terms of actual access control. Using the ABAC
model almost any other model can be replicated through the use of different rules. This provides
enough flexibility to fulfill the requirement of user centrality (NFR.4). The model does introduce
a heavy administrative burden depending on the expressiveness allowed in rule specifications. In
contrary to the DAC model the administrative burden is mostly caused by the fact that rules have
to be evaluated in order to determine access rights. It could be possible to efficiently evaluate
certain rules the model, but performance needs to be taken into account in this model.

3.4.5 Access control models summary

Due to the fact that both the MAC model and the RBAC model are less focused towards in-
dividual users these models are less useful in this work. In contrary both the DAC model and
the ABAC model provide a basis for the functional requirements as given in [subsection 2.5.3|
For both models some considerations are necessary before being directly usable. Due to the
limited freedom in the basic DAC model some additions are required to deal with more fine
grained access control. Although the ABAC model provides a lot more freedom, there are some
restrictions that must be imposed in order to preserve scalability.

AC.1 v 4
AC.2 X 4
NFR.3| | X X

*| | x| | RBAC]
[ABACI

IDACI
> N\| x| x| MAC]

NFRA4| | X

Table 3.3: Summary of access control models and their compliance with relevant requirements.

31

3. RELATED WORK

3.5 Access control policy specification languages

As previously mentioned part of a full access control solution is an access control policy lan-
guage. The policy language describes the syntax and the semantics of an access control model.
Several works suggest a custom policy language together with their access control solution. In
this section examples of general access control languages are discussed.

3.5.1 eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) [35] is an XML based general
purpose access control policy specification language. The language can be used to describe a
wide variety of access control models. The specification provides the policy language as well as
an implementation architecture.

In XACML a policy consists of three main parts; the rarget, rules and obligations. The
policy target can be used to specify the applicability of a policy to a request. Using XACML
different logic can be applied to different parts of the request, such as the subject performing
the request, the resources that are being accessed, the actions that are being performed or the
environment. When a policy is applicable to a request the policy rules can be evaluated on it. A
rule consists of a target, a condition and an effect. A rule’s target determines the applicability
of a rule to a request and thus is similar to the target of a policy. The condition of a rule states
a boolean condition that must apply for the rule to be approved. The effect of a rule states the
outcome of when the rule is approved, which is either permit or deny. Additionally a policy
can specify a rule combining algorithm. This algorithm determines how outcomes of several
rules are combined into a final outcome. A combining algorithm can similarly be applied to
multiple policies. Finally, obligations can be specified that indicate certain actions that need to
be performed after access is granted.

The architecture suggested for XACML consists of multiple parts. The Policy Adminis-
tration Point (PAP) maintains the access control policies. The Policy Decision Point (PDP)
processes policies an requests in order to determine whether access should be granted. The Pol-
icy Enforcement Point (PEP) serves as a central point to which requests are made. The PEP
uses the PDP to determine whether a certain requests is allowed according to the policies and if
so proceeds to make this request possible. Finally, the Policy Information Point (PIP) manages
information about users within the system. This information is used by the PEP to determine
whether a user should be granted access to a resource.

XACML and the suggested architecture provide a lot of functionality that can be used to en-
force almost any access control model. This flexibility however does come with some downsides
in the context of this work. As mentioned in [[16]], the complexity of security policies determines
the performance of policy evaluation. Secondly, XACML has less direct focus on privacy and
consent. These factors can be taken into account when designing security policies, but this leaves
a lot of the overall system requirements unsatisfied initially. Finally, as also mentioned in [16]],
security policy updates are not directly accounted for. This is especially troublesome consider-
ing that in the system designed in this work users should be able to modify policies regarding
their own data. For these reasons, this work therefore this work will instead extend on XACML.

32

3.6. Authorization

3.5.2 Data handling policies

In [4]], [3] and [2] a privacy-aware access control system is suggested. In this system access
control is handled through data handling policies described in a custom policy language. The
language can be used to specify who has access to what data. The model in this work steers
towards an open distributed setting in which different service providers can exist. Other involved
parties are service users and external parties. Both of these parties communicate with the service
providers exclusively through a negation process in which disclosure needs of information can
be determined. The setting is open in the sense that identities are not strictly needed in every
situation, in contrast to the Inclusive Enterprise system in which identity is always required. The
following paragraphs discuss useful insights found in this work.

First of all several privacy requirements are discussed that are considered key features that
a privacy aware access control model should provide. The following requirements are listed:
openness, individual control, collection limitation, purpose specification, consent, data quality
and data security. All of these requirements are also desired in this work.

Secondly this work provides a useful terminology. The policy language distinguishes ac-
tions, privacy profiles, restrictions and conditions. Actions specify privacy-relevant operations.
Privacy profiles is a stored set of personal information. Restrictions are divided into several
different concepts: Purposes specify the reason why a certain access is needed. Provisions in-
dicate actions that need to be performed before data is handled. Obligations indicate actions
that need to be performed after data is handled. Finally, conditions indicate boolean expressions
over resource or requester attributes resulting in a positive or negative access approval. All of
these concepts are useful in the Inclusive Enterprise, although details regarding their use differs
slightly.

3.5.3 Access control policy specification languages summary

Existing access control policy specification languages provide the means to describe and enforce
various access control models. Although the specification languages discussed in the previous
sections provide useful terminologies and similar implementation requirements this work fo-
cuses on designing a scalable user centric access control model. Future work could focus on
testing the applicability and performance of existing tools at enforcing this model.

3.6 Authorization

Authorization is concerned with the delegation of access rights. This concept is closely related
to access control but introduces some significant implications into access control models and is
therefore discussed separately. In this section several key observations found in related works
are discussed.

3.6.1 Administrative policies

In [29] authorization is described in the form of administrative policies. These policies dictate
who can modify access control privileges. Several policies are distinguished. In a centralized

33

3. RELATED WORK

authorization policy there is a single authority that modifies access rights. In an hierarchical
policy administrative privileges can be delegated. In a cooperative policy authorizations need to
be approved by several parties. In an ownership policy data subjects are owned and owners have
administrative privileges over their own data. The decentralized policy combines features of all
of the above policies.

In this work the goal is to provide users control over their data. Out of the several adminis-
trative policies given above only one policy fits this goal: the ownership model. When dealing
with personal data the ownership policy is a natural fit. In this case, personal data is owned by
the subject of data.

3.6.2 oAuth 2.0

A commonly used authorization framework is oAuth 2.0 [14]. This framework is described as
follows:

“ The OAuth 2.0 authorization framework enables a third-party application to
obtain limited access to an HTTP service, either on behalf of a resource owner by
orchestrating an approval interaction between the resource owner and the HITP
service, or by allowing the third-party application to obtain access on its own be-
half. 7 [14]

In this model an HTTP service provides some functionality. A third party application can use
oAuth 2.0 to obtain limited access to this functionality. This functionality is not strictly defined,
examples include invoking actions on the HTTP service or retrieving some data. A third party
application can specify what functionality they would like to obtain through the scope of an au-
thorization request. The scope is usually presented as a comma delimited string with keys where
each key specifies a certain functionality. Upon making the authorization request the scope can
be provided by the requester, the server consequently responds with a scope indicating which
functionalities have been obtained. The scope model provides the basics of opt-in authorization
to third party applications.

This model is a useful basis for a personal data management system, but lacks in some
significant aspects. First of all, the scope model is very basic and does not formalize all aspects
of the offered functionality. For instance, the reasoning behind the need for usage of a certain
functionality is not directly defined in the model while this is a very desirable feature. Another
key difference is the fact that within an enterprise there is no central HTTP service that provides
functionalities, but rather there are multiple applications providing functionality. Setting up an
oAuth 2.0 endpoint for every application would be cumbersome and against the goals of the
Inclusive Enterprise system.

3.6.3 Authorization summary

There are several aspects of authorization that are needed in this work. On one hand autho-
rization must be administered correctly. As stated earlier a natural fit for this work in terms of
administration is the ownership administration policy. This means that data is owned and an

34

3.7. Provenance

owner of data has full rights to determine further decisions on authorization regarding this data.
Although this provides a basis for authorization, it does not provide a full solution. In order to
fulfill the requirements as given in [subsection 2.5.4|additional efforts are needed.

3.7 Provenance

There are different levels to which provenance can be tracked. For instance, the Open Prove-
nance Model (OPM)[22] can be used to describe the entire history of data within a system. At
the core of this model there are artifacts which represent some immutable piece of data. New
artifacts can be created due to actions and a series of actions is termed a process. Agents are
entities that perform processes. The model itself is a directed graph in which artifacts, processes
and agents are all included as nodes. The edges between nodes represent different information
about provenance. The different edges are; used, wasGeneratedBy, wasControlledBy, wasCon-
trolledBy, wasTriggeredBy and wasDerivedFrom. By looking at the edges between nodes the
entire history of a piece of data can be analyzed.

When provenance is stored analysis can be executed upon it for various means. For example,
the provenance data can be used for access control[23]][[7]][24/][36]. In these use cases the history
of some data is analyzed to determine whether access should be granted. In some of these
models originators of data can specify their preferences regarding further disclosure of the data.
However, this work will not use provenance to such extent. Instead, data usage can be tracked
for transparency reasons as required by

3.8 Conclusions

The related work discussed in this chapter combined with the requirements lead to some con-
clusions regarding the use of existing models, frameworks and standards. An important obser-
vation that impacts these conclusions is that the system designed in this work is mainly focused
on handling personal data. It is important that users remain in control over their data and that
transparency in data usage is present. For this reason a core part of the platform will focus on
these aspects. This focus is realized by a number of design decisions regarding existing work.

Foremost all the privacy principles as given in will be used as a guideline as to
what the framework designed in this work should offer and how this functionality is realized.
Secondly token based authentication is used as an authentication technology.

As previously stated transparency is an important part of the platform and therefore privacy
and data usage are important components to take into account. The main requirement for privacy
policies within the system is that they provide enough freedom to express a variety of privacy
aspects and that they can efficiently be used to show users relevant information. This means
that within the core model of the platform privacy policies should be included. For this, existing
privacy policy languages provide a sufficient basis and therefore can be used either directly or
as an inspiration. Although these specification standards are mostly complete in terms of vocab-
ulary a challenge will be the management of policies in a multi-tenant application environment.
In such an environment a lot of dependencies between applications can exist which becomes
especially difficult in combination with user consent management. For these reasons the rest of

35

3. RELATED WORK

this work will mostly focus on the model surrounding privacy policies instead of on the policies
themselves, as sufficient means for describing these already exist.

As an access control model a natural fit for the system is the DAC model. In this model
explicit consent has to be present before data can be accessed. In contrary, other models such as
MAC, RBAC and ABAC can provide access to certain parties in less direct manners. Although
such an approach can provide benefits in situations in which access to data is less standardized,
in a personal data management platform data will mostly revolve around users. In this situation
it would make less sense for users to indirectly grant access to resources to other users. A
downside with this model is that it provides a substantial administrative overhead for data that
should be accessible by a lot of users. Alternatively the ABAC model can be used to combat this
issue, but as previously stated scalability needs to be taken into account.

In terms of authorization users should always be in control of their own data, the ownership
administration model therefore provides a convenient basis. In this approach a user can always
be the owner of their data. Through the ownership administration model the user then is in
charge of granting others access to this data. Additional details are needed regarding the exact
functionalities in terms of authorization.

Existing access control policy languages provide insights in opportunities and requirements
for such systems. However, these systems mostly focus on different use cases in which access
control can be more complex than is required for this work. For instance, XACML provides
the freedom to define almost any access control scheme. The framework designed in this work
however aims to provide a standardized way to create user centric applications with the aim of
improving some aspect of the work environment. In this scenario complex access control rules
are less relevant opposed to a scenario in which sensitive business data is involved. However,
future work could attempt to model the multi-tenant application environment into existing policy
specification languages.

Provenance can be used for various aspects of a personal data management system. Using a
provenance based access control model however makes less sense in a platform in which data is
mostly focused on specific users. Using this data for access control adds a lot of complexity and
thus makes the access control process in the system less transparent for users. Still provenance
can play a role in creating an overall more transparent system. Keeping track of historic data
might provide additional opportunities for making users aware of how their data is managed.
Thus, ideas from provenance can be taken into account when designing the system, but in this
work the focus is less on using provenance for actual access control.

Concluding, existing models capture a lot of different features which are all desired or re-
quired in a model that encapsulates privacy and consent management concerns. However, these
models lack in terms of a unified way to couple identity management, privacy policies, consent
and additional access control demands. For these models it is mostly unclear or purposefully
unspecified how they can be deployed in a multi-tenant application environment such as is tar-
geted in this work. Most of these models are also aimed towards developers instead of end
users, thus providing a very broad set of functionalities that increase complications as perceived
by end users. Although some of these more complicated functionalities can be of use in certain
situations, they are mostly out of scope for systems as targeted in this work. For these reasons,
the aim is to define a complete solution in the form of an encapsulating model that incorporates

36

3.8. Conclusions

both privacy policies, application data dependencies and user consent. This encapsulating model
should provide an easy to use and directly applicable solution for applications that aim to benefit
employees in a large enterprise while providing transparency and control over personal data.

37

Chapter 4

A privacy aware model for data
sharing

At the core of a personal data management system there is a data model. In this chapter the
constructed data model will be explained using relevant literature as discussed in the previous
chapter as well as a running example.

A basic concept in this work is the notion of data subjects. One obvious example of a data
subject is an employee, but things such as physical sensors can also be seen as data subjects.
More generally data subjects can be anything that can be described in the system.

Data subjects can interact with the platform through applications, which is the second core
concept. Applications can for instance be mobile apps that only use the platform to retrieve
data from other applications. Applications can also be data centric and not directly usable by
platform users but rather by other applications. Such a data centric application would generally
be an API of some sorts.

Finally the last core notion is that of permissions. Privacy is an important part of this work
and thus users of the designed platform should have fine grained control over data access. This
fine grained control is achieved through permissions which control the access to data.

From the concepts given above three sub models can be identified. First of all there is the
graph model that describes the instantiation of and relations between data subjects. Secondly
there is the application model. This model describes applications and the data they provide and
use. Finally there is the permission model that describes information related to privacy and its
management. Together these models describe all relevant information needed for the envisioned
platform. The upcoming sections will discuss each of these subcomponents individually.

The models in this chapter are displayed in the form of UML class diagrams. This model
description framework has been chosen because it provides sufficient capabilities to describe the
entities within the system together with their relationships.

4.1 Graph model

The graph model broadly describes how data exists within the system. Note that a goal of this
model is to provide a basis for future extensions. Thus, its aim is to provide a bare minimum set

39

4. A PRIVACY AWARE MODEL FOR DATA SHARING

of restrictions while still providing enough information to keep track of permissions.

Data within the system can essentially be seen as an object graph. A formal description of
this model is given in Data subjects are modeled by Nodes. Edges between nodes
are modeled by Relations. Furthermore, each node and each relation has a type, modeled by
respectively NodeTypes and RelationTypes.

RelationType
+ application: Application — + targetNodeType ——»
+ name: String

+ targetNodeType: NodeType

NodeType
+ application: Application
+ name : String

+ edgeNodsType: NodeTye + edgeNodeType »| + conteniDescription : JSON/XML
Iy '
+ hasType
Relation . |
+ relationType: RelationType + subject1 > +nnd_ald_'rgnde
+ targetNede: Node nmﬂme_j;;ﬂdﬂ
+ edgeNode: Node + subject? =" e

Figure 4.1: Graph model

4.1.1 Running example: Gamification platform

Although this model is rather small it can be used to model other components of the platform,
namely applications and permissions. Before continuing with the model definitions a small
example instantiation of this graph model is given in order to clarify the model’s meaning.

As previously mentioned the running example in this report is the gamification platform.
This example is used to show how the model can be instantiated to describe an application
making use of the system. The gamification platform can be separated into two applications,
the data component and the front end. In this separation the data component is an API exposing
some functionality related to gamification while the front end provides an interface to this API
for end users.

The main goal of this gamification platform is to provide gamification functionality that can
easily be incorporated into other applications, thus providing a unified gamification experience
that can be included into various applications with little effort. Before showing an instantiation
of the graph model the gamification data model is briefly discussed.

Gamification data model

In the data model for the gamification platform is given. The components and ideas
behind this model are now briefly explained before going into the graph model instantiation.

In this model users can participate through profiles. Every user making use of the platform
has a single GameProfile describing the progress across various applications. Each user can
have an additional profile per application, the ApplicationGameProfile, describing the progress
on an application level. Each application that wants to make use of gamification can define sev-
eral things, namely achievements, stats and actions. These definitions are modeled respectively
by AchievementDescriptions, StatTypes and ActionTypes. The goal of these definitions is to

40

4.1. Graph model

provide a way for applications to keep track of subjects. Every user can have several stats as
defined by an application. Users can subsequently perform Actions within the system that result
in a modification of some stat values. Modifications of stats are modeled by Effects. As can be
seen, each action type states what effects are triggered by it.

Besides meta data about progress applications can also define AchievementDescriptions.
These descriptions specify the details of a single achievement within the system. This includes
some general meta data, but also a list of conditions that must be satisfied in order for the
achievement to be obtained. Finally subjects can obtain Achievements if all of their stats satisfy
the conditions as described by the AchievementDescription.

An observation about this model is that not all entities in the gamification data model are
managed by the gamification application. The user entity and the application entity are both
managed by different applications. This shows a valuable insight into the graph model, namely
that it imposes no restrictions on cross referencing between application specific data models in
different applications.

Mapping of gamification model to graph model

The model given in the previous section highlights a useful feature of the graph model. The
graph model itself is very broad, the reason for this being that it should not impose much re-
strictions on the actual structure of application specific data. For the gamification example this
means that a model can be defined that is sufficient to describe application logic without any
impairments of the graph model. The graph model can then be used to describe this application
specific model on a higher level of abstraction.

The resulting graph meta data is shown in[Table 4.1 and [Table 4.2] This mapping highlights
that relations in the graph model are always directional. It should also be noted that the graph
model instantiation does not have to be completely representative of the internal application
model state. This means that applications can maintain additional relations within the system
without incorporating this information in the graph model. The goal of the graph model is not
to provide a complete picture of application data state, but rather to provide sufficient means to
reason about access to data in a unified manner.

Instantiation of the graph model

Using the graph model within the gamification context results in a graph as depicted in
In this graph every instance from the gamification data model is described by nodes
while relations between instances are described by edges. For instance, Employee #1 is a node,
as well as all of its profiles. Although this graph model by itself is not spectacular, it provides a
very expressive model in terms of data and relations that is a good fit for the platform designed
in this work considering the required extensibility. The next sections will make use of this graph
model to define application meta data and permissions.

41

4. A PRIVACY AWARE MODEL FOR DATA SHARING

42

+ D Any

AchievementDescription
+ ID: Infeger
+ application: Application
+ name: String
+ descriplion: String
+icon: Image

+ paintsGiven: Integer

Achievement

+ achievemeniDescription: AchievemeniDescription

GameProfile
Fuser User |

user: User
+ paints: Integer + obtained

ApplicationGameProfile
+ gameProfile: GameProfile
+ application: Application
+ points: Integer

1GameProfile; applicationGameProfile

+4
+ obtainedAt: Date

+ requires

Condition

+ D¢ Integer

+ achievementDescription: AchievementDescription
+ statType: StatType

+ value: Integer

+ comparator: Enum[LT, LTE, E, GTE, GT, NE]

+ defines

StatType
~+Teniiier: St

+ identifier : String

+ stats: Map<String. Integer>

+ name : String

Application

identifier; String
+ defines | +defaultvalue: Integer
+minValue: Integer
+maxValue: Integer

Eftect

+I &0
+ staiType: StaiType
+ delta: Integer

+ defines

!

+ hasEffects

| ActionType

Action
+ 1D Integer

Name

GameProfile

ApplicationGameProfile

AchievementDescription

Achievment

Action

StatType

Effect

ActionType

Condition

Table 4.1: Node types

+ date: Date

+ actionType: ActionType

n

+name: String

I

Figure 4.2: Gamification data model

Name Target node type Edge node type
references | GameProfile User

partOf ApplicationGameProfile | GameProfile

obtained ApplicationGameProfile | Achievement

performed | ApplicationGameProfile | Action

references | ApplicationGameProfile | Application

references | Achievement AchievementDescription
defines Application StatType

defines Application ActionType

defines Application AchievementDescription
references | Action ActionType

hasEffect | ActionType Effect

references | Effect StatType

references | Condition StatType

requires AchievementDescription | Condition

Table 4.2: Relation types

4.2. Application model

Employae #1

GameProfile #1

Achieyvemant #1
Achiavamant #2

Achiavement #3
Achiavemeant #4

ApplicationGameProfile #1

ApplicationGameProfile #2

Figure 4.3: Gamification graph model instantiation

4.2 Application model

In this section the model describing applications is discussed. The model given in the previous
section allows for representing data within the platform as a graph. In contrary, the model
discussed in this section, as given in describes how applications interact with this
graph.

43

4. A PRIVACY AWARE MODEL FOR DATA SHARING

Service

+ targetNodeType: NodeType

+ edgeNodeType: NodeType

+ actionType: ActionType

+ version : Long

+ application: Application

+ policy : PolicySpecification

+ consumerPolicyBoundary: PolicySpecification
+ deprecated: Boolean

NodeType

+ name : String

+ application: Application

+ contentDescription : JSON/XML

+ defines
ServiceCi ti
- + application: Application
AM" . + service: Service
— + defines — + apiUn - URL — + defines + version: Long
: + policy: PolicySpecification
+ manages
Node

+ nodeld : Any
+ nodeType : NodeType

Figure 4.4: Application model

4.2.1 Applications

As previously mentioned the platform consist of several Applications. An application is a stan-
dalone piece of software that interacts with the graph model. Applications can define node
types. When an application defines a node type this means that the application declares that it
will manage nodes with this type.

4.2.2 Services and ServiceConsumptions

Interaction with the graph is done through Services. A service can be used to interact with
a subset of the graph model. A service is provided by an application. Services are uniquely
identifiable by the targetNodeType, edgeNodeType, actionType and version.

One of the node type specifications in a service can both be omitted, although a service
without any node types is invalid. This leads to three valid service types:

targetNodeType | edgeNodeType | Description

Present Omitted Targets an instance of the target node type

Omitted Present Targets a public listing of the edge node type

Present Present Targets a subset of nodes of the edge node type which

are connected to an instance of the target node type
through some relation

The ActionType of a service describes what kind of interaction with the graph model is
offered. Four action types are available: create, read, update and delete. Finally, the version

44

4.2. Application model

property allows for versioning of services. Versioning will be discussed in more detail in the
upcoming sections.

An important observation about services is that the application is not part of the unique iden-
tifier of a service. Rather, the application allowed to provide a service is implicitly determined
by the target node type and the edge node type. This limitation is added so that applications can
only provide services that interact with node types which they are managing. More simply put
this means that an application can only create, read, update and delete nodes that the application
manages. For the three different service types this means the following:

targetNodeType | edgeNodeType | restriction

Present Omitted Service can only be offered by the application that de-
fined targetNodeType

Omitted Present Service can only be offered by the application that de-
fined edgeNodeType

Present Present Service can only be offered by the application that de-
fined edgeNodeType

Besides providing services an application can also consume services of other applications.
The desire to consume a service is modeled by a ServiceConsumption. Specifying service
consumptions allows for conveying data needs of applications to platform users.

4.2.3 Policy specification

An important part of the application model is the specification of policies. Policies are important
for both developers and users. For developers these policies form guidelines that must be adhered
to when using services provided by other applications. For users these policies give insights in
how applications use their data. Several works focus on formally describing policies. In these
works several useful aspects can be found that apply directly to the requirements of this work.
In this section these relevant aspects, as also discussed in will be recapped.

Policy goals

As previously mentioned there are two main ways in which policies are used. Before detailing
the policy specification scheme the main goals of these different uses are discussed. Within
the application model these two different uses are identified by service policies and service
consumption policies.

For services the policies describe two things. First of all they describe details about how data
is handled by the service provider. This includes information such as how data is stored, for how
long data is retained or whether any encryption or anonymization scheme is used. Secondly, the
policy describes restrictions on how the service can be used by other applications. For instance,
a service can require applications to not store any data retrieved from the service permanently.
Additionally the service can impose limitations that are less technical, such as limitations on the
purpose of using the service. For instance, a service can specify that it should not be used for
any other purpose than scientific research.

For service consumptions the policy describes roughly identical information. However, in-
stead of imposing limits on service usage, service consumption policies describe how data is

45

4. A PRIVACY AWARE MODEL FOR DATA SHARING

actually used. Note that these policies should at least adhere to the restrictions imposed by the
service being consumed. Secondly, for service consumptions these policies also describe the
purpose of the service usage.

Concluding, three different components of the policy specifications can be identified:

e Data handling descriptions
e Service usage restrictions

e Purpose descriptions

For developers the most important components are the restrictions on service usage. For
users the most important part is the purpose description, while the data handling description
can also be of value. The next section will discuss these different components of the policy
specification and similar ideas found in the literature.

Data handling descriptions and service usage restrictions

The data handling description component of the policy specification model must be able to ex-
press how data is handled within systems on a concrete level. As discussed in [subsection 3.3.2|
[21]] proposes a framework for describing policies regarding data assurance. This policy spec-
ification framework shows many similarities with the requirements of the policies in this work.
In the framework several categories of requirements are distinguished; privacy, data migration,
data retention, data confidentiality, data availability, data integrity and usage appropriateness.
Most of these categories can be applied to both data handling descriptions and service usage
restrictions. On one hand a policy can describe what is minimally needed to adhere to it, on the
other hand a policy can specify what is actually done. The requirements found in this framework
are outlined below to show their relevance to this work in the application model context.

Privacy requirements are used to ensure that laws regarding privacy are met. An example
given in [21]] is the requirement for some data about EU citizens to be physically stored in the
EU, or that data breaches are disclosed.

Data migration requirements specify conditions for data migration. This concept is less
useful in this work, considering that data migration between applications can only occur through
service consumptions with explicit consent from those involved. However, some useful insights
can be obtained from [21] regarding data migration. Namely, the authors discuss the propagation
of policies. Propagation of policies is important for ensuring that restrictions are met in the entire
data life cycle. This concept is similar to provenance in that when data is propagated through
the system, each actor over this data should adhere to the policies applied to it. For example,
if one service restricts where its data is stored, then other services that consume this data and
subsequently make this data available in some other form should also take into consideration
these initial restrictions.

Data retention requirements impose restrictions on how long data is stored. More specif-
ically [21] describes the requirement to delete data at a certain point in time, as well as the
requirement to notify involved parties of deletion of data.

46

4.2. Application model

Data confidentiality requirements are concerned with access control requirements, as well as
actual storage and transmission of data in terms of encryption. Within this work access control
is already a core part of the permission model. Encryption requirements however are a useful
addition to the capabilities of the policy specification framework. Furthermore, an additional
part of the policy specification can be concerned with anonimization of data, specifying in what
manner data can be linked to the original data subject.

The next two categories described by [21] are data availability and data integrity. These
two categories are concerned with service uptime and fault tolerance. This is especially relevant
in this work because it is concerned with outsourced services. When multiple external parties
depend on each other it is desirable to have agreements in place regarding these categories. A
similar situation can be found in this work, since multiple separate applications can depend on
each other. Therefore agreements about data availability and integrity can also be of value.

The final category described by [21] is appropriateness of use. In order to control appropri-
ateness of use the authors of [21]] introduce an approval process for certain actions. A similar
concept has been introduced into the application model, in which the use of services targeting
only an edge node type require explicit permission of the owners of the application providing
the service. This additional boundary on service usage, in addition to the default consent bound-
ary imposed by the permission model, allows for limiting use of certain services to approved
applications.

Conclusions

When looking at the examples given in the previous section it becomes apparent that there are
different properties that are specified by a service policy. Instead of providing an exhaustive list
of these properties it will be more useful to provide a policy framework that can be extended in
the future with new properties. Some example properties, as found in the previous section, are:

e Geographical storage location
e Disclosure of data breaches
e Policy propagation

e Data retention

An observation about these properties is that each property can have a value to describe part
of a policy. Furthermore, each property can be described as having an ordering towards another
value for that property, namely as being stricter or as being less strict. In this ordering the less
strict value will be called the boundary value. A value is contained by a boundary if it is equal
or less than the boundary.

This observation is useful because it allows for one policy to be defined as the boundary
version of a policy. In the application model context this means that a service can specify a
boundary policy to which consumers must adhere. Thus, each consumer has a policy describing
the use of the service and this policy is always contained by the boundary policy of the service.

47

4. A PRIVACY AWARE MODEL FOR DATA SHARING

To illustrate this concept further, consider the property data retention with a value of 30 days.
A policy in which the data retention is 30 days or lower is a valid stricter version of the boundary
policy. When defining new properties in the policy framework there should be an accompanying
process to determine whether one value fits within the bounds of another value.

For the example properties given above this would mean the following;

e A geographical storage location is within the bounds of another if it is contained by it.
For instance, if the storage location boundary value is “The EU”, then the value "The
Netherlands™ would be contained by the boundary.

o A value for disclosure of data breaches is a boolean, thus if the boundary is true, than the
value must also be true. If the boundary is false, the value can be either false or true. The
same holds for policy propagation.

e The data retention property is a numeric value indicating a duration. Given a boundary
value for this duration, the property value must be equal or less than this value in order to
satisfy the containment property.

A formal description of such a policy specification model is depicted in

Policy

+ version: Long
+ values: PolicyPropertyValue[0..N]

PolicyPropertyValue
+ policy: Policy
+ policyProperty: PolicyProperty
+ value: Value

PolicyProperty
+ name: String
+ withinBoundary: Function
+ valuelsValid: Function

Figure 4.5: Policy specification model

Purposes hierarchy

Purposes are an important part of the policy specification as they provide end users with insights
into why service access is desired. Before going further into how purposes can be described
it should be noted that the purpose is essentially the same as any other property in the policy
specification. Nevertheless it is discussed separately because of its importance.

A purpose describes why access to a service is desired. A purpose can be described in
numerous ways, first of all it can be a simple textual and human readable description. Although

48

4.2. Application model

a human readable description is useful, a more formal approach is desired. Using a formal
approach allows for reasoning about purposes in a more concise way while also allowing for
automatic processing in the same manner as other policy properties. In the literature a common
approach to modeling purposes is to describe them in a hierarchy. In this hierarchy the parent
relation means an abstraction of a purpose. Using this model the containment property equates
to a node being in the subtree of the hierarchy where the boundary node is the root. An example
purpose hierarchy is given in

A final note on the purpose hierarchy model is that this model also allows for reuse of
service consumptions for multiple purposes. Consider the case where an application requests
access to a service on behalf of a certain user with the purpose of scientific research. If this user
gives consent to the service consumption, then the application can use the service consumption
consent for any scientific purpose. Access to a service under such a general abstraction requires
less consent in the future, but provides less insights to the user about how the service is used. It
should therefore be a best practice for applications to provide concrete purposes when requesting
service access through service consumptions.

Research
Marketing research Scientific research

| LT

Test panel Brand name testing Social scientific research Formal scientific research

Figure 4.6: Example purpose hierarchy

4.2.4 Versioning

Within the application model multiple standalone applications exist, each of which can be de-
veloped separately. Before going into the versioning itself an important restriction is that both
services and service consumptions within the application model are immutable. This means
that they can not be modified after they have been declared. This immutability is essential for
keeping track of permissions, since the immutability prevents policies from being modified after
they have been declared. Thus, when a user agrees to a policy, this policy can not be modified
afterwards.

When services are updated they can either behave differently or specify different policies.
This introduces problems when it comes to dependencies between applications. To allow for a
concise and maintainable system versioning is included in the application model; both services
and service consumptions can specify a version. For services a version bump can be done

49

4. A PRIVACY AWARE MODEL FOR DATA SHARING

to either indicate an updated policy or to indicate an updated service interface. For service
consumptions a version bump only indicates an updated policy. Services can also be deprecated,
which indicates that the specific version will no longer be available in the future. Future work
might introduce more elaborate versioning such as Semantic Versioning

4.2.5 Running example: Gamification platform

In the previous section the gamification model has been discussed. In order to allow applica-
tions to make use of this gamification framework it has to be exposed through services. These
services each have a policy description as identified in the previous section. In the next sections
a description of these services will be given to demonstrate how the application model can be
instantiated.

In the gamification framework a separation can be made between two types of services. On
one hand there are services that will be used by applications in order to interact with the platform.
The main point of these services is to expose information about achievements and to handle
user data. On the other hand there are services that allow for managing achievements. These
management services can be used by application owners to set up the gamification experience
within their application.

The services focused on interaction have multiple goals; First they should expose relevant
information about achievements to inform users about what achievements they can possibly
obtain. Secondly the services should expose user progress. Finally the services should allow for
storing user progress. The following interaction services are identified:

e Retrieving all achievement descriptions for an application.
e Retrieving a user’s game profile, or creating one if it does not exist yet.

e Retrieving a user’s application game profile for a specific application, or creating one if it
does not exist yet.

e Publishing actions as executed by a specific user.

This leads to the following service description instantiations:

Action | Target Edge Description

Retrieve | Application | Achievement description | All achievement descriptions for an ap-
plication

Retrieve | User Game profile Retrieve a user’s game profile (or cre-
ate one if it does not exist)

Retrieve | User Application game profile | Retrieve a user’s application game pro-
file (or create one if it does not exist)

Create User Action Create an action of a specific type as

performed by a user

The following management services are identified:

Ihttp://semver.org/

50

http://semver.org/

4.3. Permission model

e Creating and deleting stat types, achievement descriptions and action types for an appli-

cation.

e Creating and deleting conditions for an achievement description.

e Creating and deleting effects for an action type.

This leads to the following service description instantiations:

Action | Target Edge Description

Create | Application Stat type Create a new stat type for
an application

Delete | Stat type None Delete an existing stat type

Create | Application Achievement description | Create a new achievement
description for an applica-
tion

Delete | Achievement description | None Delete an existing achieve-
ment description

Create | Application Action type Create a new action type
for an application

Delete | Action type None Delete an existing action
type

Create | Achievement description | Condition Create a condition for an
achievement description

Delete | Condition None Delete an existing condi-
tion

Create | Action type Effect Create an effect for an ac-
tion type

Delete | Effect None Delete an existing effect

The service descriptions given above provide the interface for interacting with the gamifi-

cation framework. These services can in turn be used by various applications in order to make
use of gamification functionality. This will especially be useful for the general purpose inter-
action services. On the other hand, the management services should minimally be used by a
gamification management application.

4.3 Permission model

The purpose of the system designed in this work is to allow easy data reuse between different
applications within an enterprise. The previous models allow for describing data present in the
system together with their relations, as well as the ways in which applications interact with this
data. The permission model, built on top of these two previous models, is subsequently used
to keep track of consent of data usage. The next sections describe the details of the permission
model.

51

4. A PRIVACY AWARE MODEL FOR DATA SHARING

4.3.1 Target nodes

As was mentioned in the previous section a service can specify a target node type. When such
a node type is specified this means that any invocation of the service targets a specific node,
referred to from now on as the target node.

4.3.2 Authentication context

Before going into the permission model itself some details about authentication are necessary.
The main point of interaction with the platform is an API. This API lets applications access
services of other applications. When another service is invoked, this is done by a certain appli-
cation. Furthermore, the invocation is executed by some actor. In other words, an application
can invoke a service on behalf of an actor. The actor is described by a Node. Together these two
values form an AuthenticationContext, as shown in

The authentication context model bears resemblance to oAuth2.0 in that for oAuth2.0 a
service can be invoked by a user on behalf of an application or by the application itself. The first
case can be modeled by a context in which the node is the user and the application is as specified.
The second case can be modeled by a context in which the node is the node describing the
application and the application is as specified. This model thus provides a more general model
of the oAuth2.0 authentication context.

Finally, during requests the authentication context also implicitly describes a service con-
sumption in which the application corresponds to the application of the authentication context
and the service corresponds to the service being targeted.

AuthenticationContext
+ application: Application
+ node: Node

Figure 4.7: Authentication model

4.3.3 Permissions

A permission states that a target node within the platform has agreed with a certain policy. The
permission model is outlined in There are two types of permissions, ServicePer-
missions and ServiceConsumptionPermissions. Whenever a service invocation is performed
there must be an explicit valid permission for either the service itself (ServicePermission) or for
the service consumption (ServiceConsumptionPermission). Properties of permissions and the
distinction between these two types are discussed in the next sections.

52

4.3. Permission model

ServiceConsumptionPermission ServicePermission
+ node: Node + node: Node
+ serviceConsumption: ServiceConsumption + service: Service
+ canDelete: Boolean + canDelete: Boolean
+ permissionRules: List=PermissionRule> + permissionRules: List<=PermissionRule>
l—

PermissionRule
+ node: Node
+ relationType: RelationType
+ isTarget: Boolean

DefaultServiceConsumptionPermission DefaultServicePermission
+ serviceConsumption: ServiceConsumption + service: Service
+ canDelete: Boolean + canDelete: Boolean
+ permissionRules: Lisi<PermissionRule= + permissionRules: List<PermissionRule=

DefaultPermissions
+ farget: ServiceConsumption | Service
+ defaultServicePermissions: List<DefaultServicePermission=
+ defaultServiceConsumptionPermissions: List<DefaultServiceConsumptionPermission=

Figure 4.8: Permission model

PermissionRule

A permission has a list of PermissionRules. A PermissionRule describes a condition. This
condition can be applied to a service invocation and will yield either true or false. As previously
mentioned each invocation has a certain authentication context, the node within this context is
referred to as the authenticated node. A permission rule yields true if the authenticated node has
a relation of the specified type to the specified node.

The purpose of permission rules is the following; Whenever a service is invoked there is an
actor which triggered the invocation; the node as specified by the authentication context. The
permission rules can be used to grant multiple actors access to the service for a certain target
node.

To clarify this further consider this example; Suppose there is a service that has the Game-
Profile as defined by the gamification application as its target node type. Now consider the game
profile of a certain user. Several different nodes should be able to access this game profile, the
most important one being the user that is being described by the game profile. Additionally the
game profile could also be made available to friends of the user. Using rules a permission can
be constructed that grants these two types of access.

53

4. A PRIVACY AWARE MODEL FOR DATA SHARING

ServicePermissions and ServiceConsumptionPermissions

The two types of permissions, as their names suggest, target respectively services and service
consumptions. The distinction between these types of permissions is that a service permission
grants any consumer of the service access to the service. A service consumption permission on
the other hand only grants access to a specific service consumption. Thus, a ServicePermission
is a much broader permission than a ServiceConsumptionPermission.

The reason for this distinction is that it should be possible to grant permission for any invoca-
tion of a service without specifying a service consumption. For instance, consider an application
that allows users to upload images. Public images should be accessible by any application. Thus,
it would be impractical to only allow service consumption permissions to be specified, because
in that case a new permission must be granted for each application. Using service permissions
this can be avoided. In other situations, such as the GameProfile service from the previous sec-
tion, a service permission is not desirable because a user most likely wants to limit access to the
service to gamification related purposes.

4.3.4 Permission deletion

A permission’s canDelete property indicates whether the permission can be deleted. Permissions
that cannot be deleted can be used to require certain permissions to always be available so that
the system can function properly. Without such permissions it could become possible for nodes
to exist that can not be interacted with at all.

4.3.5 Administrative policy: Ownership

The permission model provides the ability to describe permissions being granted by nodes. An-
other important part of the permission model is the administrative policy as discussed in
To recap, the administrative policy dictates who can modify or access privileges. In
the permission model this means that the policy dictates who can modify permissions. As was
previously stated the ownership policy is used as an administrative policy.

The ownership policy implies that every node has an owner, and every node can modify
permissions of itself or of the nodes it owns. This ownership relation is one-to-many, meaning
that every node has exactly one owner, but it can also be an owner of multiple other nodes itself.
Ownership can not be circular, meaning that it is impossible for a node to be recursively owned
by itself. Some nodes inherently do not have an owner, which is represented by a node that is an
owner of itself, referred to as self owned nodes. An example of self owned nodes are users.

Ownership can be described using the graph model, more specifically by a core relation
type; the ownerOf relation type. Although the ownership model is rather simple compared to
alternatives, it greatly simplifies the administrative policy management.

4.3.6 Edge node type

The previous sections mostly described services where there is only a target node type. For these
services the permission requirements are obvious; the permission should be granted by the target
node. For services with an edge node type this decision is less obvious.

54

4.3. Permission model

These other types of services should return a collection of nodes of the edge node type.
A problem for these services is that there might not be a single owner involved. Thus, for
permission checking, several alternative solutions exist:

1. Do not check any permission.

2. Check the permission of every node returned by the service and filter out any node for
which no valid permission exists.

3. Let applications also keep track of permissions.
These alternatives are all undesirable for the following reasons.

1. Not checking any permission at all is obviously not desired since it defeats the purpose of
the platform.

2. First of all checking multiple permissions can put a huge burden on the platform, since sig-
nificantly more permissions have to be evaluated for single service invocations. Secondly
and more importantly, this means that the platform should do deep packet inspections in
order to determine which nodes are queried. This is highly undesirable since this imposes
restrictions on the data format. Rather, the platform should only be concerned with man-
aging nodes and permissions and allow services to specify the data format without being
restricted by the platform.

3. This alternative moves the burden of permission checking to applications, which is highly
undesirable as well for various reasons, the main one being that it also defeats the purpose
of the platform.

Service restrictions and conventions

In order to combat this issue the following restriction is introduced to services: A service that
has both a target node type and an edge node type can only exist if there exists an ownerOf
relationType between these node types.

Furthermore, services with both a target node type and an edge node type should adhere to
the following conventions:

o When the service is invoked with the create action type, this indicates that the target node
is an owner of the newly created node of the edge node type.

e When the service is invoked with any other action type, only nodes for which the target
node is the owner are targeted.

Letting these services adhere to these conventions allows for making the following assump-
tion: when a service is targeted that has both a target node type and an edge node type the result
only contains nodes for which the target node is the owner. Thus, only one permission has to be
checked, namely the permission as granted by the target node. Note that this would still respect
the ownership model since the target node has the authority over all the returned results.

55

4. A PRIVACY AWARE MODEL FOR DATA SHARING

For services without a target node type there is no single node to get permissions for. Instead,
the following convention is used for services without a target node type:

e When the service is invoked with the create action type, this indicates that the newly
created node is self owned.

o When the service is invoked with the read action type, a public listing of the nodes with
the edge node type is returned. The fact that these nodes are publicly available should be
included in the policy for the service that created the nodes.

e The update and delete action types for these services do not make sense and should be
avoided.

Furthermore, instead of a target node being required to grant permission, for these services
a permission should be available from the application providing the service. The reason for
this requirement is that some services should not be available for every other application. For
instance, consider an application that is concerned with users and which provides a service with
the create action type that has no target node type and the User node type as its edge node type.
Thus, this service allows for creating nodes of the User node type. It should not be possible for
any other application to create new users other than the one provided by the users application.
Thus the users application should be able to restrict the service usage.

Service restrictions and conventions consequences

The restrictions and conventions given above are not without consequences. The model with
these restrictions does not allow for services with both a target node type and an edge types to
provide overlapping result sets for different target nodes, the reason for this being that there can
be only one owner. This also means that there can not exist many-to-many relations directly.
However, this restriction is easily avoided by using denormalization.

4.3.7 Default permissions

Another important part of the permission model are DefaultPermissions. Default permissions
specify various permissions that are created by default when a node is created. There is a slight
overlap between policies and default permissions in that a service has both a single immutable
policy as well as a single immutable DefaultPermissions instance. However, not every service
can specify DefaultPermissions, this is only available and logical for services with the create
action type.

The reason default permissions are specified as part of a service is that it is part of the terms
as accepted through permissions. Whenever a permission is created this permission states that
the policies are accepted as well as the default permissions being created.

56

4.3. Permission model

4.3.8 Running example: Gamification platform

There are several situations in which correct permissions must be in place in order for the gam-
ification platform to be usable. Through the permission model access to different parts of the
data model can be regulated in a structured manner.

The permission model imposes restrictions on data access through granular permissions. For
the gamification platform this has the implication that some data must be properly initialized
before anyone can make use of the system. When describing the permissions it is assumed that
there are three parts of the gamification platform. First there is the Gamification API that exposes
services for interacting with the gamifcation data model. Secondly there is a client application
that provides an interface for application owners to manage gamification meta data, which will
be referred to as the Gamification management application. Finally there is a user centric client
application that allows end users to interact with the platform. This final application will be
referred to as the Gamification dashboard and provides functionality such as an overview of
achievement progress, public user profiles and leaderboards.

Below is a list of permissions that should be taken into consideration when implementing
the applications given above. The permissions are mostly applicable to the client applications
since they make use of services provided by the gamification API.

e Reading gamification meta data

— Permission desired by:

* Application owners using the gamification management application
* BEveryone using the gamification dashboard
* Third party applications providing gamification integration

— Permissions granted by:

* Application owner
e Creating and modifying gamification meta data

— Permission desired by:

* Application owner using the gamification management application
— Permissions granted by:

* Application owner
— Newly created permissions:

*x Access to newly created data by gamification management application
* Exposing gamification meta data publicly on gamification dashboard

e Updating achievement progress

— Permission desired by:
* Third party applications providing gamification integration
— Permissions granted by:

*x Owner of an ApplicationGameProfile

57

4. A PRIVACY AWARE MODEL FOR DATA SHARING

4.4 Combining the models

The three models given in the previous sections are all focused on specific responsibilities. To-
gether these models provide an almost complete picture of the resulting platform. However,
another important part is how these smaller models are combined into a single high-level model.

The three models given in the previous sections map to the different layers that are present
in the resulting framework. First of all the graph model describes available data in the system;
the data layer. Secondly the application model describes how the data layer is manipulated; the
application layer. Finally, the permission model puts restrictions on the interactions between the
application layer and the data layer. In this layered framework the permission model acts as a

barrier between applications and the graph. An overview of the combined models is given in
A O

:_:_ — — ----- —|— -~ | Appucation
:_:_ . — —-— 4| Appiication
:_:_ . — ----- —~ -~ | Appiication
L _ -.— - | Appiication
Pcr;msl_on madel Appilication model

Figure 4.9: Combined models

58

Chapter 5

A privacy aware platform for data
sharing

In this chapter the implementation strategy is outlined. First the overall system architecture
is discussed including the core technology stack. Secondly the core system components are
discussed together with a motivation behind the technologies used for each implementation.

5.1 System architecture

The model given in the previous chapter allows for describing data interactions between appli-
cations. Using this single model for multiple applications has several advantages, the main one
being that it will be easy to reuse services. An example of a reusable service is the main motiva-
tion for this system, namely a privacy service that grants users fine grained control over the use
of their data. Additionally, things like analytics can also be implemented at a single point and
subsequently be integrated in various applications.

Using the application model the system can essentially be seen as an aggregator for various
APIs. This results in an architecture in line with the Service Orientated Architecture (SOA)
pattern. Although a SOA can rapidly become more complex than a traditional monolithic ap-
plication it provides a lot of benefits that fit the requirements of the system designed in this
work.

Because of the modularity inherit to this architecture applications can easily be developed
separately. These applications are only coupled through the platform, which they use as a gate-
way through which they communicate. Separate applications can be upgraded individually with-
out causing direct issues with other applications. Because applications are standalone systems
they can use the tools best suited for their purpose. A SOA also makes it easy to reason about
scalability, since each application has a single purpose that must keep working exactly the same
when system load increases.

Although the SOA provides several benefits it also introduces some complexities. Because
of the distributed nature of the system it will be more difficult to ensure consistency. This means
that most likely some sort of eventual consistency scheme will have to be used in certain situa-
tions. Additionally, it will be more difficult to execute transactional operations. These challenges

59

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

will have to tackled on an application level, since the alternative monolithic application is not a
valid alternative.

5.2 High level architecture

The platform consists of a number of core applications/components. These applications are
essential for management and enforcement of the model as described in the previous chapter.
The entry point for communication with the platform is a single component that makes use of
these core applications. The goal of this entry point is protecting resources from unauthorized
access. The next sections will discuss the goals of these core applications and how they fit
together.

5.2.1 Core applications

The core applications map almost directly to the separate models as described in the previous
chapter. This means that for every model there is a separate application which focuses on man-
agement of the model.

e Node repository: Provides an interface to interact with the graph model.

e Application repository: Provides an interface to interact with the application model.

e Policy repository: Provides an interface to interact with the policy specification model.
e Permission repository: Provides an interface to interact with the permission model.

e Authentication: Provides an interface to handle authentication related logic, which mainly
entails converting authentication tokens to an authentication context and back.

e IBM Connections: The main data subjects in the system are employees. In order to
interact with employees the platform uses the existing infrastructure of IBM Connections,
a business social network platform. IBM Connections is integrated in the platform through
a separate core application in order to have access to this data in the same manner as other
data in the platform can be accessed.

These core components are similar to any other application that can be defined within the
platform. However, without these core applications the platform can not function properly. Ac-
companying these core applications there are two client application for management purposes.

e Application manager: Provides a client interface that can be used by system administra-
tors to define applications and their meta data, including policies.

e Permission dashboard: Provides a client interface that can be used by employees to
manage permissions over their data.

60

5.2. High level architecture

ﬂ Policy Repository ‘

IBM Connections

::l MNode Repository ‘

i i
] i
] i
i i
i i
i i
i 1
' Permission enforcement i
i i
] i
] i
i i
i i
i 1
i 1

Authentication ‘

i
i
i
1
1
i
i
|
i
—*| Permission Repository ‘ |
1
1
i
i
i
i
i
i
i
1
i
i

&
S

o o o e e e e e e e e e e e e e e e e e . e e, e e, e e e e e e e s o o o o o o ek

Figure 5.1: Platform architecture

5.2.2 Central API proxy

The entry point of the platform is a central API that processes API requests. In this central
component requests are processed to determine whether access to certain resources should be
granted. An overview of the architecture can be seen in This architecture shows
resemblance to the XACML architecture as described in [subsection 3.5.1l There are several
other observations that can be made about this architecture.

Inter-application communication

First of all, every application within the platform only communicates directly with the central
API proxy. Through this model, every request that is made within the platform can be controlled
in order to ensure that access to resources is in compliance with user opt-ins.

Central API Proxy components

Within the central API proxy there are additional subcomponents, namely permission enforce-
ment, data distribution and node registration. The main task of this platform is determining
access rights to resources. This responsibility is handled by the permission enforcement sub-
component. The node registration subcomponent is used by applications to register nodes within
the system. When a node is registered, its existence is documented in the node repository and

61

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

default permissions are created in the permission repository. Finally, the data distribution sub-
component distributes data events to other applications.

5.2.3 1IBM Connections integration

Interaction with IBM Connections is handled by the IBM Connections proxy application. The
same principle can be used to create proxies to other services, such as for instance LinkedIn or
Facebook. The use of this approach offers the benefit that access to third party services can be
easily controlled throughout different applications in order to ensure that usage is in compliance
with third party API policies and usage agreements.

5.2.4 Third party applications

Any application within the platform that is not a core application is considered to be a third party
application. As can be seen in there are two types of third party applications, client
applications and service providers. The difference between these applications is that service
providers define additional services that can be invoked by other applications. Client applica-
tions on the other hand only interact with existing services.

5.3 Request processing

In order to elaborate on the goal of the core applications as given in the previous section the
procedure for handling requests will be discussed. As previously mentioned the platform is
accessible through a central APL. Applications within the platform can make requests to this
API, thereby getting the benefits of a privacy management layer. During these requests several
decision points are used to determine the validity of a request. After verification of a request
using the access control model requests are proxied to the targeted third party servers. After
proxying additional meta data management is applied. The next sections will outline the various
decision points used during API request processing.

For the proxying process some constraints have to be kept in mind. The privacy platform
acts as an intermediary between actors making API requests to third party services. These API
request will most likely be invoked through the use of client applications or by scheduled pro-
cesses on servers. The downside with this approach is that the platform will introduce additional
latency for these services. Performance of the platform is therefore important and latency should
be as low as possible.

5.3.1 Authentication

As discussed in [subsection 4.3.2|a request is made with a certain authentication context. In or-
der to make requests possible a user of the platform first needs to authenticate. When a user has
successfully authenticated through an external oAuth2.0 provider the API constructs a JWT as
discussed in [subsection 3.2.3] This construction is done by invoking the Authentication com-
ponent. This component is in charge of authentication within the system. Specifically, this

62

5.3. Request processing

component exposes an API that allows for constructing new JWT tokens, but also for convert-
ing tokens to authentication contexts. After the JWT as been constructed it is passed to the
application from which the login was requested. Using this token the application can now make
requests on behalf of the user.

5.3.2 Token validation

After a token has been obtained an application can make an authenticated request to the API by
including the token into each request using the HTTP authorization header. After a request is
received by the central API the first step is determining the authentication context. There are
two approaches for determining the authentication context.

The first approach requires the API server to make an HTTP request to the authentication
component’s token validation service. This however will negatively impact the overall latency
of the platform. Since the authentication context is required before any access control decisions
can be made, this first approach immediately introduces some latency.

Instead of invoking the authentication component another approach is to use the JWT stan-
dard for determining the validity of tokens directly. As previously mentioned each access token
contains a signature. The authentication component uses an asymmetric signing algorithm to
sign these access tokens. By using the authentication component’s public key tokens can di-
rectly be validated by the API server. To allows this approach the authentication component
exposes the public key through a service. This public key is cached by the API server. This
approach allows for fast verification of access tokens and thus authentication contexts.

After the token is validated a final decisions can be made regarding the authentication con-
text. When the token is invalid, the request is aborted. It is also possible to exclude a token in
a request, in that case a default anonymous authentication context is used. An overview of the

token validation process is given in

63

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

HTTF Authorization header set?

Yes No

Us@ anonymous user
authentication context

Is the authentication
COMPONENt's pubiic Key
cached and not expired?

No

Retrigve putlic key from
authentication service

Is the token vald?

No Yes

Usa authentication
Unathorizad cantext trom token

Figure 5.2: Token validation

5.3.3 Application resolution

A request to the central API always targets a single service and a single service consumption.
When a request is initially received all identifying features of the targeted service are available.
Namely, the path of the request identifies both the target node type and the edge node type.
From these properties the application offering the service can be deduced; When an edge node
type is specified the service must be offered by the application that defined the edge node type,
otherwise the service must be offered by the application that defined the target node type.
Using this information a query is made to the application repository to retrieve additional
application meta data required for proxying the request. Namely, the API URL of the targeted
service is needed for proxying requests. An additional performance improvement is introduced
here to keep overall latency low. For this improvement the assumption is made that applications
registered in the system are there for long term and that application meta data does not change
too often. Using this assumption applications can be cached in memory for a short duration.

64

5.3. Request processing

Assuming API URLs of around 100 bytes, this allows for storing a substantial number of API
URLSs in memory. This technique reduces the number of HTTP request needed for requests

significantly. The application resolution process is outlined in [Figure 5.3

Edge node ype
avallable?

No Yes

LOCK Up 12rget noge
type application
meta data

Look up edge node
type application
mela data

Is the apphication
cached and not
expired?

No

Reireve application
from application senvice

Does the
application
exist?

No Yes

Use application
for proxying

Mot tound

Figure 5.3: Application resolution

5.3.4 Service resolution and service consumption resolution

As mentioned above, when a request is initially received all identifying features of the targeted
service and service consumption are available. For services these features are the target node
type, the edge node type and the service version. For service consumptions these features are the
targeted service, the service consumption version and the service consumption identifier. The

65

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

service consumption identifier is optional and if omitted a default identifier will be used. By
using this approach no additional lookups are needed regarding service and service consump-
tion details. Although this provides low latency overhead it should be noted that at this point
in request processing there is no verification of whether the service and service consumption
actually exist. This verification is done implicitly through permission look ups in further steps.

5.3.5 Permission lookups

After the service and service consumption being targeted are determined the next step is to de-
termine whether there is an applicable permission available. There are two permissions that
could potentially be available; a service permission and a service consumption permission. Us-
ing the information from the previous steps these permissions can be uniquely identified; When
the request targets a specific node, the farget node, the permission must be provided by this tar-
get node. Otherwise, permission of the application providing the service is needed. Using this
information two queries can be made to the permission component to retrieve permission meta
data. If no permissions are found the request is aborted, otherwise the next step is executed. An

overview of this step is given in

LOOK up service LooK up sarvice
permission CONSUMPTioN parmission

Does a service
CONsSUMption penmission
axist?

Does a service
permission axist?

No No

Yes Yes
Does a senice \ /
Does a service
CDHSUI‘“DTL:)D{LD’CW" ission permission exist?
) Use avallable
Yes permissions || +———— Yes
In next step
No Mo

Unauthorized

Figure 5.4: Permission look ups

66

5.3. Request processing

5.3.6 Permission evaluation

After possible permissions have been found they must be evaluated. As was discussed in
a permission has a list of permission rules. Each of these rules states a relation with
some arbitrary node. A permission is accepted if the node from the authentication context satis-
fies the relation to the node from any permission rule. The list of permission rules together with
the node from the authentication context can thus be transformed into a list of relations. This list
of relations is send in bulk to the nodes component, which then evaluates whether any of these
relations exists. If the nodes component successfully identifies an existing relation the request is
accepted. When both the service permission and service consumption permission are evaluated
successfully the service consumption permission takes priority in order to keep access logs as
specific as possible. Since there are potentially a lot of permissions caching is not yet used for
this component. An overview of this process is given in

Look up relations as defined
by parmission rules

|

Any relation from the
SEMICE Consumpion
permission rules exists?

No Yes

S

Use sarvice
consumption permissicn

Any redation from the
samvice parmission rules
axiss?

No Yes

Use service
Unauthorized
pcrmlssmn

Figure 5.5: Permission evaluation

5.3.7 Request proxying

After determining that a request is valid the central API proxies the request to the application
that has defined the service in question. The proxy request can be streamed from the application

67

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

offering the service to the client making the request to reduce the memory footprint on the central
API. Note that the central API is not concerned with the actual contents of the proxy request,
thus applications are free to choose how they represent data.

5.3.8 Node administration

An additional step in the request processing pipeline is the administration of nodes. In this
step, HTTP headers of the resulting proxied request are inspected to determine whether any
changes to the underlying graph model have occurred. By looking at the request HTTP method,
the resulting HTTP status code and additional response headers the exact changes to the graph
model can be determined.

An additional observation here is that this system can be used to introduce an eventual con-
sistency model. Such a model is needed due to the fact that during request proxying there are
several things that can go wrong. When a request is partially executed it is possible that the
graph model as stored in the node repository is not consistent with the graph model as stored
by a particular application. In order to gradually improve the consistency of the node reposi-
tory future responses can be used to determine undocumented changes to the graph model. For
instance, when an application responds with the Not Found status code on a request targeting a
specific node, this means that the targeted node does not exist anymore. This information can
thus be included in the node repository.

HTTP Method | HTTP Status Additional headers Action
POST Created (201) Location, request path | Create new node, trig-
ger distribution event
PUT Accepted (200) Request path Trigger distribution
event
DELETE Accepted (200), No | Request path Delete node
Content (204)
GET Not Found (404) Request path Delete node if it still
existed
GET Accepted (200) Request path, owner- | Create node if it did
ship meta data not exist
PUT Accepted (200) Request path, owner- | Create node if it did
ship meta data not exist

5.4 Implementation

The core components all have a similar setup. Each component exposes an API according to
the application model as given in This means that each component is deployed
as a separate web application. Because of the shared structure of core components a similar
technology stack is used for all components.

68

5.4. Implementation

54.1 Java

The core components are all written using the Java programming languageﬂ The choice for this
language, although partially subjective, is that it provides a solid basis for building enterprise
applications. There are various useful standards and high quality libraries that can be used
during implementation to construct an efficient and scalable platform.

5.4.2 Platform: IBM WebSphere Liberty

Considering this project is conducted at IBM there are some restrictions on third party technol-
ogy usage. In order to reduce the need for external dependencies the implementation makes use
of IBM WebSphere Libertyﬂ WebSphere Liberty is a lightweight Java EE application server
providing direct access to open source implementations of several standards.

5.4.3 Project structure

The main structure for each project is as follows. First of all, each core component generally
defines some node types. Thus, each core component also has a single module containing classes
describing node types. Secondly, each application implements services targeting these node
types in a separate module. The implementation of these services is itself structured in three
main sub modules. First of all there are several interfaces that describe the REST services
using JAX-RS annotations. Secondly there is a submodule that implements these interfaces
using a specific persistence technology. Finally, there is an application module that combines
these implementations into a single servlet. The result of this project structure is illustrated in

Whereas the node type modules only describe classes without any additional logic attached
to it, the service implementation bundles contain actual component specific logic. Thus, as a
general rule the only interdependencies between core components are that of components using
node type definition bundles of other components. Other component related logic should be
hidden from other components. This way, each component knows about data stored in other
components and how this data can be manipulated through services specified in the application
model, but the actual logic of how this manipulation works is hidden.

Ihttps://docs.oracle.com/javase/specs/jls/se8/html/index.html
Znttps://developer.ibm.com/wasdev/websphere-liberty/

69

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://developer.ibm.com/wasdev/websphere-liberty/

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

L T
P T
[R,
[R,

JAX-RS Application

\J

POJO data

JAX-RS Annotated interfaces describing REST resources | —", classes

'y

Cassandra interface implementations

Server

Cassandra node

Cassandra node

Cassandra node Gassandra node

Cassandra cluster

Figure 5.6: Core component architecture

5.4.4 Persistent storage strategy

An important part of the platform is the persistence storage of the various models. An important
consideration when choosing a persistent storage strategy for the core components is the way
in which the components will query data. The main choice between technologies is the choice
between SQL or NoSQL. SQL products tend to expose a more complicated model, whereas
NoSQL solutions provide a less extensive model but instead provide more focus on other features
such as horizontal scalability. In an enterprise environment scalability is a major concern. The
way in which data is queried within the system is also more focused on determining existence
rather than providing some relational result sets. Functionalities such as complicated joins are
therefore less important. For this reason, NoSQL is used for core components.
There are several different types of NoSQL data models. A brief overview is given in [8]]:

e Key-value stores are systems that simply provide a scalable way to a bind keys to values.

70

5.4. Implementation

A common use case for such models is caching. Examples of key-value stores are Redisﬂ
Memcached| or Oracle NoSQL Databasef’}

e Document stores provide the functionality to store document based models. The term
document is very broad but common document stores offer functionality to store data
in some structured form such as XML or JSON. Example document stores are Apache
CouchDBlﬂ or MongoD

e FExtensible Record Stores are systems that use a model in which regular database tables
exist, but rather than providing relations between multiple tables such as is done in SQL
through joins, these models rather focus on simple row based access only. Additionally,
rows can grow horizontally over time, meaning that new columns can be introduced. Ex-
tensible record stores can be seen as a form of a key value store. Examples of such systems
are Google BigTable[9], Apache HBasﬂ or Apache Cassandreﬂ

o Linearly scaled relational databases are standard SQL databases that provide some way
in which linear clustering can be achieved. For such systems there can be two approaches
in realizing this; the existing database can be adjusted to directly offer clustering func-
tionality or an additional system can be built on top of existing SQL solutions that handles
clustering by itself. An example of such a use of traditional SQL database is for MySQL

Clustel™]

e Finally, other models include Graph databases or Object Orientated databases. Graph
database provide scalable ways to analyze graphs while object orientated databases focus
on storing and querying models in an object orientated format.

When choosing a technology for persistent storage in the core platform components some
additional features have to be taken into account. Each of these models provides advantages in
different situations and each one differs in terms of functionalities such as fault tolerance. As
mentioned earlier an important part of the platform is determining existence of data, mainly per-
missions and relations between nodes. For this reason, efficient lookups are desired. The data
stored is also rather simple in terms of structure. Thus, as a basis for implementation the exten-
sible record store model is chosen. The main argument for this storage model is that plain key-
value stores are rather limited in terms of functionality and document stores are more focused
towards storage and manipulation of larger documents rather than small updates to existing doc-
uments. Linearly scaled relation databases do not provide any additional required functionality
over extensible record stores. Finally, graph databases are also less applicable to the existence
queries that will be used.

3nttp://redis.io/

4https://memcached.org/
Shttp://www.oracle.com/us/products/database/nosql/overview/index.html
Shttp://couchdb.apache.org/

"https://www.mongodb.org/

8https://hbase.apache.org/

9nttp://cassandra.apache.org/
Onttps://www.mysql.com/products/cluster/

71

http://redis.io/
https://memcached.org/
http://www.oracle.com/us/products/database/nosql/overview/index.html
http://couchdb.apache.org/
https://www.mongodb.org/
https://hbase.apache.org/
http://cassandra.apache.org/
https://www.mysql.com/products/cluster/

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

The remaining choice is between technologies. Although arguments can be made for dif-
ferent extensible record stores the choice has been made to use Apache Cassandra. Apache
Cassandra provides useful functionality such as bloom filters[34] for efficient existence check-
ing, or functionality such as secondary indexing. The choice for this technology partly remains
a matter of preference. For future extensions more specialized storage models for different core
components could be more useful, such as for instance a distributed graph database for storing
the node graph. Currently however there is no need for complex analysis or querying of the node
graph and thus use of such a system is avoided.

5.4.5 Node model implementations

In order to describe nodes within core components a convention has been developed that allows
for describing the graph model within code. This convention is enforced using annotations and
custom annotations parsers. By using these technologies there is a consistent way of describing
node type classes. Implementation of these classes is specific to the Cassandra storage technol-
ogy. The main reason behind this is that this way Cassandra annotations can be utilized to define
storage requirements. Nevertheless the main structure of this node type description convention
can be reused for other storage engines.

As an example, consider the RelationType node type. This node type describes relation types
within the graph model. Note that the graph model applies on components of the model itself.
The code below shows the definition of this node type. Some code has been omitted for brevity.

@Table (
keyspace = RelationType .NODE_TYPE_APPLICATION_ID,
name = RelationType .NODE TYPE NAME)
@NodeModel
public class RelationType extends AbstractCassandraModel {

@NodeTypeApplicationld
public static final String NODE_TYPE_APPLICATION_ID =
ApplicationsApplicationDescription . APPLICATION_ID;

@NodeTypeName
public static final String NODETYPENAME = "relation_type”;

@NodeTypeld
public static final String NODE_TYPE.ID =
NODE_TYPE_APPLICATION_ID + $ + NODE.TYPE NAME;

The code above shows several annotations. There are two kinds of annotations; Cassandra
specific annotations (Datastax Object-mapping API[') and graph model annotations. The first

llhttps://docs.datastax.com/en/latestfjavafdriver/javafdriver/reference/
objectMappingApi.html

72

https://docs.datastax.com/en/latest-java-driver/java-driver/reference/objectMappingApi.html
https://docs.datastax.com/en/latest-java-driver/java-driver/reference/objectMappingApi.html

5.4. Implementation

set of annotations describe how the object is persisted in Cassandra. The second set of annota-
tions describe the graph model in code. In this example the following annotations are of interest;
@NodeModel, @NodeTypeApplicationld, @NodeTypeName, @NodeTypeld. These anno-
tations describe that the particular class is a model describing a particular node type within the
platform. Each NodeModel has an application ID and a name. The combination of the two
uniquely describes a node type within the platform. The values for these properties are constant
and the graph model annotations are used to define them in a conventional way.

Custom annotation parsers ensure that each class annotated with the @ NodeModel annota-
tion always define the fields NODE_TYPE_APPLICATION_ID, NODE_TYPE_NAME, NODE_TYPE_ID
and TARGET_NODE_PATH. This way, service description interfaces can reference node types
through constants, making misspelling bugs less likely. An example of usage of these constants
can be seen in the REST interface code shown in

@POST
@Path (User . TARGET_NODE PATH + ”/” + Application .NODE_TYPE_ID)
@Consumes (MediaType . APPLICATION_JSON)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views. Private . class)
Application create (

@PathParam (ID) String userld,

Application application) throws StorageException;

5.4.6 Indexing

An important part of the storage implementation is that efficient lookups should be possible.
This requirement is realized by making use of Cassandra functionalities. In Cassandra each
model defines a primary key. This primary key is used to determine where data should located
in the Cassandra cluster. Queries upon this primary key can efficiently be executed. Primary
keys can also consist of multiple fields.

This functionality is especially useful during proxy request handling since it allows for ef-
ficiently looking up desired meta data. When a proxy request is made there is a certain amount
of information available about the service being targeted; namely the target node type, the edge
node type, the HTTP method and the service version. This information is sufficient for deter-
mining the exact primary key of the targeted service.

This indexing behavior is materialized in another convention for implementation of Node-
Type classes; Each NodeType class defines some meta data about how they are uniquely identifi-
able. The first type of information is a Regex pattern[15]. This pattern describes how the model
is uniquely defined in the form of a string. Secondly, annotations are used to describe which
fields are part of this representation and in what order. Using this convention several functional-
ities can be created that allow for retrieving the unique identifier for a NodeType class instance
and for converting a unique identifier back to a NodeType class instance.

Consider the following class definitions describing some NodeTypes within the platform
(details have been omitted for brevity):

73

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

@NodeModel
public class Application extends AbstractModel {

@NodeldPattern
public static final String NODE_ID PATTERN =
”(” + NAMEPATTERN + 7)”;

@IdSegment (0)
private String name;

}

@NodeModel
public class NodeType extends AbstractModel {
@NodeldPattern
public static final String NODE_ID_PATTERN =
”(” + Application .NODE_ID_PATTERN +)~
+ $
+ 7(” + NAMEPATTERN + ”)”;

@IdSegment (0)
private String applicationld;

@IdSegment (1)
private String name;

In this code, NAME_PATTERN is a constant that has the pattern [a — zA — Z][a —zA — Z0 —
9_]* and $ is a constant that defines a default ID separation character, which in this case is a dot.

The first class definition describes the Application node type. This code shows that an ap-
plication is uniquely identifiable directly by its name. Subsequently, the NODE_ID_PATTERN
consists of a single Regex capture group for a name and there is one field, the name field, which
is part of the node id pattern.

The second class definition describes the NodeType meta node type. As can be seen from
this code a NodeType instance can be uniquely identified by an application id and a name. The
NODE_ID_PATTERN consists of two capture groups, one for the application id and one for the
name. The order of the fields in this NODE_ID_PATTERN is indicated by the @IdSegment
annotation.

The next code segments showcase how these conventions can be used throughout the imple-
mentation. These examples use the NodeType class to describe the gamification application and
a hypothetical images application. Using the id conventions the following behavior is possible
through generic methods defined in AbstractModel:

74

5.4. Implementation

Application gamificationApplication = new Application ();
gamificationApplication.setName(” gamification”);

gamificationApplication. getld (); // “gamification”
Application parsedApplication = Application.parse(”’images”);

parsedApplication.getName (); // “images”

NodeType achievementNodeType = new NodeType ();

achievementNodeType.setApplicationld (
gamificationApplication. getld ());

achievementNodeType.setName (”achievement”);

achievementNodeType. getld (); // “gamification.achievement”
NodeType parsedNodeType = NodeType.parse(”images.image”);

parsedNodeType . getApplicationld (); // “images”
parsedNodeType . getName (); // “image”

This mapping from strings to fields provides the opportunity to directly perform Cassandra
queries using models with multiple primary keys. This convention thus is mainly useful in the
context of Cassandra interaction. The following example shows how this convention can be used
to look up meta data about services:

Service serviceSignature = new Service ();

serviceSignature . setTargetNodeld (request. getTargetNodeTypeld ());
serviceSignature . setEdgeNodeTypeld(request.getEdgeNodeTypeld ());
serviceSignature . setHttpMethod (request.getHttpMethod ());
serviceSignature .setVersion(request.getVersion ());

ApiClient api = new ApiClient ();

// HTTP request to Application repository API

// returns the service together with all its meta data
api.get(”applications.service/” + serviceSignature.getld ());

// Equivalent

api.get(Service .NODE_TYPEID + ”/” + serviceSignature.getld ());
api.get(serviceSignature);

75

5.

A PRIVACY AWARE PLATFORM FOR DATA SHARING

54.7 JAX-RS 2.0

For constructing HTTP interfaces the JAX-RS 2.0 [27] standard is used. This standard provides
a simple way to expose services over HTTP. There are several implementations available for this
standard. The choice of this standard is driven by the fact that this standard is commonly used
when it comes to building HTTP APIs. Alternatives offer almost identical functionality but are
not as widely supported as JAX-RS.

JAX-RS uses annotations to describe how services can be accessed through HTTP. In the

platform implementation this is utilized as follows; Each core component specifies a number

of

interfaces that determine how the data model can be interacted with. These interfaces are

annotated with JAX-RS annotations. An example of such an annotated interface is given below:

@Path(”/”)
public interface ApplicationsResource extends Resource {

76

@POST
@Path(User . TARGET NODEPATH + ”/” + Application.NODE_TYPE_ID)
@Consumes (MediaType . APPLICATION_JSON)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views . Private . class)
void create (
@PathParam (ID) String userld,
Application application ,
@Suspended AsyncResponse asyncResponse);

@GET
@Path(Application .TARGET_NODE PATH)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views . Private . class)
void get(

@PathParam (ID) String id,

@Suspended AsyncResponse asyncResponse);

@DELETE
@Path(Application . TARGET_NODE_PATH)
void delete (
@PathParam (ID) String id,
@Suspended AsyncResponse asyncResponse);

@GET
@Path (User . TARGET NODE PATH + ”/” + Application .NODE_TYPE._ID)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views . Private . class)
void getAllByUserlId (
@PathParam (ID) String userld,

5.4. Implementation

@Suspended AsyncResponse asyncResponse);

@GET
@Path(Application .NODE_TYPE_ID)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views. Public. class)
void getAll(
@Suspended AsyncResponse asyncResponse);

This Java code snippet shows how JAX-RS annotations are used to describe access to appli-
cations in the Application data model. This interfaces shows some additional usage of function-
ality provided by JAX-RS:

1. The service descriptions work with plain Java objects. When requests are made against
this interface these methods are called directly. However, transportation is done using
the JSON format. In order to make this convention possible a JSON serializer is used as
middle-ware. This middle-ware converts JSON input to plain Java objects and back. For
the implementation Jackson has been used, but several alternative solutions exist.

2. Exceptions are not handled on a service level. Rather, middle-ware is used that handles
service invocation exceptions and provides descriptive JSON results to API users.

3. Every service description accepts an additional argument, an AsyncResponse. By using
the @Suspended annotation JAX-RS provides the ability to respond to request asyn-
chronously.

Behind the annotated interfaces describing the REST capabilities there are implementations
using a particular storage technology. Using this pattern implementations can be developed using
a different storage technologies. The access interface is known and by subsequently implement-
ing exactly this interface a new storage technology can be utilized. As an initial implementation
Cassandra was used for each of the core components but future work might focus on using more
suitable tools for the different core components.

5.4.8 Asynchronous programming stack

As mentioned in the previous chapter the JAX-RS services make use of asynchronous features
of the JAX-RS standard, namely the AsyncResponse. This feature is combined with various
other libraries and standards, resulting in a event driven implementation.

First of all the Cassandra queries are executed using the Datastax Java Cassandra driver
This driver provides an asynchronous API, for which connection pooling is utilized. This API
works with ListenableFutures from the Google Guava Java librar ListenableFutures, as the

12https://github.com/FasterxML/ jackson
Bnttps://github.com/datastax/java-driver
4https://github.com/google/guava

77

https://github.com/FasterXML/jackson
https://github.com/datastax/java-driver
https://github.com/google/guava

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

name suggests, represents results that are available sometime in the future. Subsequently listen-
ers can be attached to this future that will be notified when the result is available. Within core
components ListenableFuture instances are converted to Java 8 CompletableFuture instances.
CompletableFutures represent a similar abstraction as ListenableFutures, but CompletableFu-
tures provide a convenient Java 8 styled API.

Another point at which asynchronous tools are utilized is during inter component requests.
The central API uses services provided by core components during request proxying. Thus, to
make these requests possible without introducing too much overhead several requests have to be
executed in parallel. This is implemented using the AsyncHttpClient2 library E} This library
can be backed by Netty{]fl, an event driven network application framework. This library also
provides access to CompletableFutures.

Finally, the in memory caching implemented in the central API makes use of the Caffeine
caching librar This library provides an API that works with CompletableFutures and allows
for easily specifying caching details such as expiration requirements and asynchronous value
loading. Due to the use of the CompletableFuture API this library can easily be integrated with
the rest of the asynchronous technology stack.

5.4.9 Implementation of proxy request handling

As can be derived from the proxy request handling procedure as discussed in there
are a number of lookups that take place during proxy request handling. In order to implement
this process efficiently an asynchronous non blocking implementation is used. By using the
CompletableFuture API provided by Java 8 asynchronous events can be chained concisely.

When request are made to the central API the response is deferred using the JAX-RS @Sus-
pended response annotation. By using this annotation the response can be put on hold until
enough data is available. This is in contrary to a JAX-RS method without a suspended response
in which the executing thread will block until processing is completed. The required internal
calls to core components are wrapped in CompletableFutures. These futures are chained in such
a way that the result is a single CompletableFuture instance that describes the proxy request.
When this CompletableFuture is completed the suspended response is resumed by proxying the
request to the application defining the targeted service. When in any stage of the internal system
calls an error occurs this will be propagated to the resulting CompletableFuture, which in turn
will resume the suspended response with the appropriate error message.

Proxy request steps

There are several lookups that have to be made before a proxy request is executed. These lookups
ensure that access to data is allowed. As mentioned above these lookups are done in parallel to
keep latency low. However, some lookups are dependent on other lookups. Thus, there are
several required sequential steps needed during the proxying process. The order of these steps

is outlined in

1Shttps://github.com/AsyncHttpClient/async—http—client
18https://github.com/netty/netty
Thttps://github.com/ben-manes/caffeine

78

https://github.com/AsyncHttpClient/async-http-client
https://github.com/netty/netty
https://github.com/ben-manes/caffeine

5.4. Implementation

When a request is received the first step is determining the application meta data and au-
thentication context. Additionally, since all information required to identify the targeted service
together with the targeted node is contained in the request the service permission can be retrieved
directly. The next step is looking up the service consumption permission and evaluating the ser-
vice permission. In order to identify the targeted service consumption the authentication context
is needed because this context contains information about the application making the request.
For the service permission the authentication context is needed because this context contains the
user making the request. Finally, when the service consumption permission is obtained it can be
evaluated. When either the service permission or the service consumption permission has been
successfully evaluated the proxy request can continue.

After the headers are obtained during the proxy request additional node administration pro-
cesses can be started. This administration is executed in isolation of the proxy request. The rest
of the proxy response body is streamed to the client.

Application meta data Authentication)
(cached) context {cached) Semice pemission

Serice
Consumption EVT]:';#:E:S?DD;IEE
parmission

Evaluate senice
COnsumpton
permission

Figure 5.7: Proxy request steps

79

5. A PRIVACY AWARE PLATFORM FOR DATA SHARING

5.5 Third party application responsibilities

In order for third party applications to make use of the functionality of the platform they need
to perform some additional administration. In return, the application receives a standardized
manner to handle privacy and policies. Administration includes defining application services
and policies. After services have been defined they can be requested through the central APL

When a node is created through a service the application is responsible for registering this
node within the platform. An application can only register nodes of a node type it defined
itself. Similarly node deletion has to be registered in order for the system to remain consistent.
An additional advantage of node registrations is that these events can be propagated to other
applications. This way, a real-time flow of events can be established between applications.

As outlined in|subsection 5.3.8|node administration within the system is done at proxy time.
This means that when a proxy request is executed, the result of this proxy request is used by
the central API to determine changes to the graph model. For this approach to work correctly
applications must correctly specify the appropriate HTTP headers.

Besides the basic ownership administration that is automatically applied with the help of
contextual information applications can also provide additional relations that might be of use
when resolving permissions. For instance, a particular third party application can introduce
a friendship relation between nodes. This friendship relation can be useful for end users to
incorporate into the permission process; One user can configure that their profile is visible to
friends only. In order for this system to work applications are allowed to create additional
relations between nodes. Some restrictions that apply to this process are:

1. Applications are considered owners of node entries in the Nodes repository
2. Applications can only own nodes with a node type that they have defined

3. Applications can only create new relations where the target node is a node that they own

5.6 System consistency

As discussed in [subsection 5.3.8 having applications register status of nodes within the system
does introduce some downsides, the main one being additional complexity in keeping the plat-
form consistent. When an application creates a node there is always a chance that creation of the
node within the application succeeds but the registration fails. Failure can happen for any rea-
son, such as because of a programming error but also because of other events such as hardware
failure. This means that eventually a situation can occur in which the platform and the applica-
tion are in disagreement over the status of some node. In order to keep the system consistent
the eventual consistency strategy is applied. Additionally periodic consistency checking can be
planned between the central API and applications.

80

5.7. Reflection on scalability

5.7 Reflection on scalability

An important requirement of the system is scalability. Latency overhead should be minimal,
even when multiple applications expose high traffic services. For these applications the system
acts as a reverse proxy and while this has advantages for the implementation, it does make the
system a central bottle neck. Therefore, it is essential that the system can easily be scaled.

The service orientated architecture provides a basis for scalability. In this architecture, each
individual component can be scaled and optimized separately depending on how much traffic it
receives. In order to achieve scalability for core components, each component is constructed as
a fully stateless application. This means that each component can theoretically be replicated and
put behind a load balancer. Since each core repository makes use of Cassandra for storage the
persistence layer can also be scaled out when the need arises.

Since the central API will be the biggest bottle neck in the architecture the importance of
scalability is especially applicable to this part of the system. For this central API the same
stateless approach was used. This means that the central API applications can be replicated
when needed to allow for higher overall throughput.

For authentication the question of scalability is slightly more complicated. Because of the
use of the JWT standard the authentication server needs secret keys for token signing. When
servers are replicated these secret keys need to be taken into account. However, this is a common
challenge and several solutions exist, such as for instance Hardware Security Modules.

5.7.1 Performance limitations

Due to the required sequential steps in the proxying process there is a substantial overhead that
is added to API request that is not present when requests are made directly towards underlying
services. Thus, applications making use of the platform must be aware of the performance im-
plications paired with using the platform. Since the first layer of request can mostly be cached,
there are two additional internal round trips required before requests can be executed. In the cur-
rent implementation communication between components uses HTTP directly. Although this
provides some conveniences in terms of implementation, it does provide a lot of unnecessary
overhead. When HTTP is used then each request requires several handshakes for setting up a
connection. These connections are not persisted between request. This is obviously not desir-
able, especially for services that are invoked often such as the permission services and the node
services. For this a possible solution is the use of persistent HTTP connections. Alternatively
these communications can utilize other communication technologies, preferably with persisting
connections.

81

Chapter 6

Design validation and reflection

As part of the validation of this work discussions have been conducted with IBM employees
from different departments. In these discussions different perspectives have been taken into
account to validate whether the model is indeed a solution to the problem. First the high level
goals and results of this platform have been discussed with development management. Secondly
technical implementation details have been discussed with a software consultant.

6.1 High level goals and results

In order to validate the resulting system discussions have been performed with different em-
ployees of IBM. During the discussions of high level goals and design of the platform numerous
questions have come up. In the next sections these questions will be outlined together with
clarifications and reflections.

6.1.1 Who is responsible for management of application service descriptions?

A concern with a centrally managed platform such as presented in this work is that it requires
dedicated efforts to maintain application meta data. These efforts require additional managerial
decisions such as who is responsible for maintaining this meta data.

An argument against this concern is that it is not strictly bound to a centralized platform and
thus to this solution. In any case, when applications deal with sensitive personal information
there is a need for transparency towards end users. The question of responsibility would remain
in a environment in which data sharing is handled in a non centralized way. When this meta data
is defined in a single location it can become easier for end users to inspect this meta data which
would in turn improve transparency. Therefore, a centralized repository of such meta data can
actually be a beneficial addition to this concern.

Concluding, the question of responsibility is one that can come up in multiple different
approaches to the challenges faced in this work. This work states that it would be better to
formalize policies over responsibility rather than letting application developers handle this by
themselves. This solution would be viable in both a centralized as well as a non-centralized

83

6. DESIGN VALIDATION AND REFLECTION

platform, but we argue that in a centralized approach dealing with responsibility could be more
formalized and concrete than in a non-centralized approach.

Concretely this could lead to a situation in which application meta data is created by appli-
cation developers and approved by other departments within an organization. This way, more
control can be applied to data usage to ensure that every application respects company policies
with regards to data usage as well as third party data usage. By incorporating different expertise
into the process of application meta data approval the quality of the overall meta data can also
be increased. To elaborate, the technical details of application meta data are better suited for
application developers while legal aspects are better suited for people with expertise in this area.

6.1.2 Why does the system act as a proxy between servers instead of direct
interactions between service consumers and service providers?

A goal of the platform as implemented in this work is making data sharing between applications
easier while still respecting privacy. When direct interactions are allowed between service con-
sumers and service providers this means that there are several additional tasks that the service
provider has to execute. Mainly, these service providers would have to incorporate some autho-
rization and authentication logic into their functionality. This would introduce a large overhead
for every application and thus increase the complexity for sharing data. For this reason, a more
fitting approach is to incorporate this logic into a single point, thereby reducing the needs for
duplicate implementation of this logic across various applications. By using a single point at
which these sensitive access control decisions are made it will also be easier for application
developers to incorporate a consistent and secure implementation of this functionality into their
applications.

6.1.3 How are policies enforced throughout various applications?

As noted in [subsection 2.5.7| the design of the platform has focused on a situation in which
multiple development teams within an organization develop applications that aim to benefit em-
ployees in the context of an Inclusive Enterprise. Within this context, it is assumed that these
application developers act in good faith and thus a part of the responsibility of policy enforce-
ment lies with the application developers themselves. Nevertheless, it could still be possible that
some developers misinterpret policies in some way or that some developers purposefully misuse
their data access privileges. To combat these situations a formal approval process could be intro-
duced that imposes some quality requirements and regulations on applications interacting with
the Inclusive Enterprise platform. Additionally, as also stated in [subsection 2.5.7} a possible
future addition to the system is a reporting utility that can be used to bring to light malicious use
of the platform.

6.1.4 How can this platform efficiently be utilized by development teams?

In order for this platform to be efficiently usable by development teams there needs to be an
understanding among these teams about how such a system could benefit their applications. A
key concern here is that adaptability could be low due to current practices already fulfilling

84

6.2. Discussion of the implementation

some needs from an application developer’s perspective. However, in most of these situations
the user side of the problem is not considered. Therefore, additional requirements regarding
use of personal data should be highlighted together with the ways in which this platform aims
to address them. By clearly explaining the goals of this initiative there should be a proper
motivation to incorporate the platform into applications.

When the motivation to use this system is indeed present the next step is to provide proper
documentation and examples of platform usage. For these resources this thesis report can be
used, as well as platform code documentation. For example applications making use of the
platform the core components themselves can be inspected, as well as the management client
applications developed as part of this work.

6.1.5 Is such a fine grained access control model maintainable for end users?

The model constructed in this work offers a very fine grained access control model. The danger
of such a model is that it can become unusable by end users of the system. This is due to the fact
that there are so many options to configure that overall configuration can become very confusing.
This can especially become a problem when versions are upgraded frequently within the system.
Such a situation would require end users to also frequently reevaluate policies.

The argument against this concern is that the model itself already provides ways in which
granularity can be reduced. Mainly this involves the use of subset services, in which all nodes
of a certain node type belonging to a certain target node are returned. Using these services,
employees can grant applications access to numerous data nodes using only a single permission.

Secondly, a solution to tackle this potential problem is by means of innovative GUI designs.
Such designs can reduce the cognitive load required for the underlying model by providing some
layer of abstraction. For instance, such an interface can provide convenient methods to configure
permissions for multiple nodes at once. Additionally, such a GUI can provide easy to process
overviews of policy updates, showing only updated parts of a policy. Such a design falls outside
the scope of this work, but provides an interesting opportunity for future work.

6.2 Discussion of the implementation

Besides the high level goals the implementation has been discussed with a software consultant
within IBM. During this discussion some questions were raised, which will be outlined in the
upcoming sections.

6.2.1 OSGi

An initial version of the implementation made use of OSGi ﬂ OSGi is described as a dynamic
module system for Java. This technology provides the basis for highly modular Java applica-
tions. WebSphere Liberty also provides support for deployment of OSGi applications. A big
advantage of OSGi is that development within this system is pushed towards a modular design.

Thttps://www.osgi.org/

85

https://www.osgi.org/

6. DESIGN VALIDATION AND REFLECTION

Additionally, OSGi provides opportunities with regards to deployment. Through OSGi sub-
components of a system can be updated while other parts of the system remain running. This
functionality could benefit update cycles by providing minimal downtime. Another advantage
could be the availability of distributed OSGi implementations such as Apache CFX Distributed
OSGﬂ By utilizing these standards existing tooling can be used for implementing a scalable
system. In distributed OSGi modules can be exposed over networks, thereby providing a high
level of abstraction over distribution. Under the hood Apache CFG can communicate using
SOAP (Simple Object Access Protocol) over HTTP or even JAX-RS.

The main question for this point is what the reasoning is for not using these technologies and
instead implementing a REST architecture directly using JAX-RS. There are several reasons for
this decision, which will be discussed in the next sections.

Integration with OSGi tools

First, the Eclipse tooling provided by WebSphere Liberty does not integrate fluently with other
OSGi tools such as Bncﬂ and Bndtoolﬂ These tools provide an abundance of functionality
that helps with the development of OSGi bundles. For instance, Bnd can take care of a lot of
the administration involved in defining OSGi bundle manifests. Combined with Bndtools this
allows for fast development and fluent dependency management. Unfortunately these tools do
not work in conjunction with the IBM WebSphere Liberty Eclipse toolﬂ In contrast, these
tools provide a lot of functionality in terms of development to WebSphere Liberty, especially
with automatic deployment to a local development server. This allows for quick development
cycles with direct feedback. However bundle manifest administrations are less automated and
thus error prone, meaning that dependency management leaves a lot to be desired. The same
goes for the testing environment. Concluding, the integration issue meant that a choice had to be
made between several functionalities, all of which were very useful. Unfortunately no solution
existed that provided the best of both worlds. Finally, the WebSphere Liberty OSGi environment
caused some issues with several third party libraries.

Expected deployment practices

As mentioned above OSGi provides functionality for replacement of OSGi bundles while a sys-
tem remains running. The advantages of this functionality are especially apparent for scenarios
in which long running processes exist. For instance, a long running process could be controlling
an industrial machine. For such a situation modular updates or changes to the software can be
valuable.

However, the expected deployment within the platform designed in this work is slightly
different. Instead of long running processes the system is expected to be deployed to cloud
environments. Here, virtual machines can be bootstrapped or shut down quickly. The deployed
applications play a small role in the entire system. In this situation long running systems are

Znttps://cxf.apache.org/distributed-osgi.html
3nttp://wuw.aqute.biz/Bnd/Bnd
4http://bndtools.org/
Shttps://developer.ibm.com/wasdev/downloads/

86

https://cxf.apache.org/distributed-osgi.html
http://www.aqute.biz/Bnd/Bnd
http://bndtools.org/
https://developer.ibm.com/wasdev/downloads/

6.2. Discussion of the implementation

less likely to occur. An alternative to updating running systems is the gradual re-deployment of
new versions. In this situation multiple servers running some version of an application exist. By
gradually swapping these instances with upgraded versions the system can be updated while the
platform remains accessible.

In combination with upcoming containerization technologies this approach has several ad-
vantages over the OSGi approach. Through these containerization technologies immutable sys-
tem images can be created, thereby ensuring that two machines running the same image run with
exactly the same configurations. This is in contrast to the OSGi approach in which processes run
for longer durations. In this approach it is much harder to ensure that multiple instances running
the same software have exactly the same configurations. This becomes even more complicated
when systems are gradually updated over time. Changes between configurations of machines
running the same software is known as configuration drift.

OSGi conclusions

Concluding, there are numerous advantages and disadvantages to using OSGi for the platform
designed in this work. The points described in the previous sections explain some of the motiva-
tions behind not using OSGi as a development platform. The main reasoning can be summarized
as that the various development tools for OSGi in combination with the WebSphere Liberty tools
did not integrate fluently and that the capabilities of OSGi were not likely to be utilized fully
in the resulting implementation. Therefore, other technologies have been used for the proof
of concept implementation. However, the lessons learned from the modular approach of OSGi
have certainly helped in designing a modular system. For instance, in place of the dependency
management capabilities of OSGi a dependency injection framework was used.

6.2.2 Hardcoding core component network locations

In the REST based distributed architecture of the system the network locations of core compo-
nents are essential. Most of these locations can be stored in the Application repository. For the
Applications repository however the network location was hardcoded in the Central API. During
the discussion of the implementation this point has come up. An initial solution to this problem
is the use of environment variables for seeding Central APIs. Additionally, Docker container
networkingﬂ has been utilized for communications between core components. Instead of hard-
coding networking locations in the form of IP addresses Docker networking allows components
to be reached on specific domains. For instance, the Applications repository might be reachable
on the address https.//applications. The application repository is then bootstrapped with these
initial network addresses. Although this is a step up to the initial solution, this approach is not
yet prepared for more advanced scenarios in which replication and fault-tolerance are desired.
With this approach a more extensive service discovery infrastructure might be needed.

nttps://docs.docker.com/engine/userguide/networking/dockernetworks/

87

https://docs.docker.com/engine/userguide/networking/dockernetworks/

6. DESIGN VALIDATION AND REFLECTION

6.2.3 Scalability of the Authentication component

As previously mentioned a challenge with the current implementation is the scalability of the
Authentication component, which was questioned during the technical discussion. Since the
Authentication component uses asymmetric cryptography for signing JWTs, replication of this
component means that private keys have to be shared. This means that the component is not scal-
able in its current form. To combat this issue a more elaborate implementation is required. Such
an implementation can make use of specialized cryptography hardware to ensure the security
of private keys. Alternatively every JWT can include an identifier that specifies which instance
has signed it. This way, every Authentication component can keep a private key in memory,
subsequently JWTs are verified using the public key of a specific instance. A downside with this
approach is that when a single Authentication instance fails the JWTs issued by this instance
can not be verified anymore, requiring another proof of identity for these sessions. Concluding,
additional efforts have to be made to ensure scalability of the Authentication component.

6.2.4 Node administration through HTTP headers

During the technical discussion the point was raised that node administration does not neces-
sarily have to be explicitly performed by third party servers. Instead, HTTP headers can be
inspected to decide whether any changes have occurred to the graph model. Through this op-
timization the usability of the platform has increased greatly. Application developers can use
existing practices in terms of HTTP response headers to specify any changes to the graph model.
These practices are likely already implemented in most REST interfaces and thus this would in-
troduce minimal effort on the application developers part for making full use of the platform’s
functionalities.

6.2.5 Implementation discussion conclusions

The technical discussion raised some interesting questions with regards to the design choices for
the implementation. Some of these points remain valid and in future work some of the decisions
could be revisited to determine whether a better solution can be constructed. Nevertheless, the
current implementation provides a guideline for a future improved version. This implementation
can either be expanded upon or used as an inspiration.

6.3 Scalability

As already discussed scalability is an important requirement of the system and therefore scala-
bility has been kept in mind during architecture design. In order to verify the fulfillment of this
requirement several tests have been conducted. Performance of the system has been analyzed in
different ways. First of all, since the system is built out of multiple stand-alone core components,
performance is analyzed on a component level. For each component, there are multiple interest-
ing characteristics. Besides individual performance the next point of analysis is the system as a
whole. Besides testing core components another important characteristic of the system is how
it proxies requests to third party servers. In order to test the effects of different characteristics

88

6.3. Scalability

of these third party servers on overall performance a test server has been constructed. This test
server responds differently to requests based on query parameters. Varying factors include the
number number of permissions and the payload size.

Before discussing the results the expected platform load is discussed. This is followed by
some notes about different scalability characteristics and about the testing approach.

6.3.1 Expected load

The platform designed in this work is targeted towards enterprise environments. In these en-
vironments several offices exist that work together remotely. The scope of the platform is an
important factor in determining the expected traffic load. As an example several scopes can be
identified; Assume that a single office houses roughly 3000 employees. Then assume around
6 offices exist in a single country. Thus, in a single country there are roughly 18.000 employ-
ees. Besides this, an international scale could be much larger, such as the 377.757 employees
working for IBM Worldwideﬂ

When dealing with employee data these different scopes play an important role. Some enter-
prise applications deal with data mostly confined to a single office. For instance, an application
that allows employees to schedule office space in a certain building only requires data for that
specific office. For other applications there are more opportunities when data gathered from
multiple different regions is combined, such as for instance statistics about office climate. For
such a scenario the main advantages involve large scale analytics. For other applications such
as the gamification example application it can be engaging to see scores of close colleagues, but
seeing the results of other offices might also be beneficial for building a global company culture.

Keeping these scopes in mind, the throughput requirements of the platform could become
very high. Since the platform acts as a central gatekeeper for possibly a large amount of ap-
plications there could be a substantial throughput that needs to be handled. In return however
application servers require less administrative functionalities. When looking at a single office,
consider a scenario in which every employee uses several applications on their smart phone.
Assume that combined these applications make a request every 10 seconds. This would result
in 300 requests per second or 8.640.000 requests during an eight hours work day. This of course
depends a lot on how applications utilize cloud services. Nevertheless, this is already a substan-
tial load for a single office. When using the same assumptions a single country would generate
1800 requests per second or 51.840.000 requests during an eight hour work day. Finally, when
looking at IBM as a whole, these assumptions would lead to roughly 12.592 requests per sec-
ond worldwide. Note that these numbers are very simplistically calculated and do not have any
substantial or definite meaning. Actual numbers would depend heavily on the usage patterns of
enterprise applications. Such patterns could be studied in more detail in future work.

6.3.2 Testing environment

Since each core component is a stand-alone application they can easily be deployed to cloud
environments such as IBM SoftLaye By using such an environment the stateless nature of

"nttp://www.ibm.com/investor/att/pdf/IBM Annual_Report_2015.pdf
8nttp://www.softlayer.com/

&9

http://www.ibm.com/investor/att/pdf/IBM_Annual_Report_2015.pdf
http://www.softlayer.com/

6. DESIGN VALIDATION AND REFLECTION

these core components can be utilized to scale the system. Since this strategy is a key part of the
system design the scalability testing has been done in a cloud environment. To ease the process
of testing as well as deployment several tools were used, which will be discussed in the next
sections.

Testing scenarios

During testing two scenarios were used, each having a specific purpose. First off all several tests
were performed on low end hardware, which will be referred to as the low end scenario. The
main purpose of these tests was to find the relative performance of each core component, as well
as the impact of various implementation specific factors. These results are useful as the slowest
core component determines the performance of the overall system. Secondly several tests were
performed using higher end hardware, which will be referred to as the high end scenario. In these
tests the system as a whole was tested. The purpose of these tests was finding the capabilities of
the system under heavy load. The results of these tests can be used to determine the applicability
of the solution to an enterprise environment.

Virtual machines

As a basis for deployment virtual machines in a cloud environment are used. For the low end
tests machines with 512MB RAM and 1 CPU are used for deployment of core components.
Additionally three machines with 2GB RAM and 2 CPUs are used as a Cassandra cluster. For
the high end tests machines with 16GB RAM and 4 CPUs are used. All machines run Debian 8
x64P1

For ease of deployment each machine runs Docker Engin Docker Engine is a container-
ization technology that can be used for deploying light weight containers to machines. Provi-
sioning is done using Docker Machin Docker Machine is a tool for installing and managing
Docker Engine on virtual hosts.

Clustering

In order to experiment with scalability characteristics of the system Docker Swarnﬁ is used.
This technology provides clustering capabilities for several machines running Docker Engine.
By setting up a Docker Swarm various machines running Docker Engine can be exposed as a
single virtual Docker Machine. For setting up a Docker Swarm three types of machines are
configured. First off a single machine runs Consul [’} Consul is a distributed service discovery
service. Secondly a Docker Swarm master is set up. Finally additional machines running Docker
Engine can be added to the swarm. Provisioning is done for these different types of machines
through Docker Machine.

9nttps://www.debian.org/
Ohttps://docs.docker.com/engine/
Uhttps://docs.docker.com/machine/overview/
12https://docs.docker.com/swarm/overview/
Bnttps://www.consul.io/

90

https://www.debian.org/
https://docs.docker.com/engine/
https://docs.docker.com/machine/overview/
https://docs.docker.com/swarm/overview/
https://www.consul.io/

6.3. Scalability

Docker compose

Docker Compose[]z] is used to deploy the implementation. This tool can be used to deploy mul-
tiple docker containers to a Docker Machine at once. In combination with Docker Swarm this
tool can thus be used to deploy containers to multiple virtual machines. Additionally, Docker
Compose provides convenient utilities for setting up networking between Docker containers.

Docker containers

For deployment of the implementation several docker images are used. First of all the official
Cassandra Docker imageE] is used (v3.3), which acts as the main storage technology. Secondly,
an Nginxﬁ] image[]Z] is used for setting up HTTP load balancers for some of the testing set ups.
Nginx is, among other things, a reverse proxy. For each of the core components a docker image
is created using the official WebSphere Liberty docker image{];g] as a basis. Every image contains
a WAR file with the required Java class files and third party dependencies.

6.3.3 Network topology

An important part of deployment is the network topology. This topology determines which ap-
plications run on which virtual machines. During testing several topologies are used, an outline
of which will be discussed in the next sections.

Single components

For testing single components two approaches are used. In the first approach a single virtual ma-
chine is used for running a component, as shown in This topology can be extended
by replicating several instances of the component and putting these replications behind an Nginx
instance serving as a load balancer. This approach is shown in As previously men-
tioned replication is possible due to the stateless nature of the core components. For this setup a
round-robin distribution strategy is used, meaning that requests are proxied in turn to each com-
ponent instance. Additionally core components that require persistence use a Cassandra cluster
of three nodes.

4https://docs.docker.com/compose/overview/
Shttps://hub.docker.com/_/cassandra/
1nttp://nginx.org/
Tnttps://hub.docker.com/_/nginx/
18nttps://hub.docker.com/_/websphere-liberty/

91

https://docs.docker.com/compose/overview/
https://hub.docker.com/_/cassandra/
http://nginx.org/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/websphere-liberty/

6. DESIGN VALIDATION AND REFLECTION

E Component

1| Gassandra —+ Caszandra —+ Cassandra

Figure 6.1: Network topology single component (low end)

o | Component

E Componant

Figure 6.2: Network topology replicated components (low end)

Combined components

For the combined components there are a lot of possibilities with regards to network topology.
For the low end testing scenario each component is deployed to a single virtual machine as shown
in Note that the authentication component and applications repository component
are deployed to a single virtual machine. This is due to these components playing a small role
in the proxying process considering that the data needed from these components is cached by
the central API. Additionally a second approach for the low end testing scenario is shown in
In this approach two replicated Central API components are used, load balanced by
an Nginx instance. Note that in this approach the Cassandra cluster is reduced to two instances
due to limited testing capacity.

92

6.3. Scalability

A::;LQ"?;:;:;" Nodes Permissions Test
Wi WM Vi WM
Cassandra Cassandra - Cassandra
Vi W Vi

Figure 6.3: Network topology combined (low end)

Central AP Central AF1

: k:::;gg;?:;n Nodes : | Permissions : : Test
VM WMo VM WM
Gassandra Cassandra
M WM

Figure 6.4: Network topology combined with replicated Central API (low end)

For the high end scenario the approach was slightly different. In this scenario each VM had
substantial more resources. Initial tests showed that with these extra resources CPU utilization
was rather low. To utilize these resources more effectively multiple components were deployed
to single virtual machines. The network topology for this approach is shown in
Note that this setup is purely experimental and more efficient deployment approaches might
be possible. For instance, it might be better to run Cassandra on dedicated nodes. For more
comments on performance see [subsection 6.3.10]

93

6. DESIGN VALIDATION AND REFLECTION

Ceniral AF| Central AP

| Conval APt || | Tost |i | Cennal APl |

. | Cassandra | . | Cassandra | . | Cassandra | H

| ||

o 1 [omw],

| Authentication | | Permissions | | Cantral AP1 Ngin |

[ommn | [o] [o]

b M M

TN T

| Farmissions | | Permissions | | Parmissions |

Commen] [cmwmn] ([]
WM ' VM

Figure 6.5: Network topology combined (high end)

6.3.4 Testing tools

For the low end scenario testing was done using Apache JMete Several test plans were ex-
ecuted, each testing different properties of the system. For these tests a Throughput Shaping
Timer plug-in was used. This plug-in provides functionality for specifying the desired through-
put at which requests are made. Using this approach the limits of the components can easily be
determined. When these limits are reached, response latencies increase as the system becomes
saturated. During tests discussed in this section this approach is used to determine the maximum
throughput of each core component. For each test case the number of transactions is determined
to a point where latencies are influenced. This number of transactions is calculated numerous
times and averaged. JMeter tests were performed in GUI mode on a MacBook Pro with a 2.9
GHz processor and 8§GB RAM.

Although the tests performed with Apache JMeter provided some valuable insights into rel-
ative performance characteristics the results are not completely realistic. First off all running
JMeter in GUI mode provides additional processing overhead, thereby reducing the available
resources for actual requests. Additionally, considering that every requests originates from a
single machine, a similar network path is used for each request. This results in a high impact
of network performance in tests results. Therefore, for testing the high end scenario Loader.io
was used. Loader.io is a cloud-based load testing service that uses the Amazon Web Services
(AWS) platform to generate load. By using this service the results are less biased towards local

Ohttp://imeter.apache.org/
2Ohttps://loader.io/

94

http://jmeter.apache.org/
https://loader.io/

6.3. Scalability

network performance. The results of the Loader.io tests provide insights into expected latency
of the system as a whole.

6.3.5 Testing the Authentication component

The authentication component’s main responsibility is token management. The component has
responsibility over every aspect of authentication tokens, namely constructing JWT access to-
kens, storing refresh tokens and exchanging refresh tokens for access tokens. Due to the caching
implemented in the central API overall load of this component will not be substantial compared
to other components. Therefore this component will mostly be used to construct new JWTs.

Creating JWTs

The JWT creation service translates an authentication context into a signed JWT. This service
is called when users log in and, considering the short validity duration of the JWT tokens, addi-
tional times during application usage. Therefore, the expected load for this system is significant,
although less than for the data repositories. Testing this component with increasing throughput
shows an average bound of 280 transactions per second, after this latencies increase. The results
of a single test are shown in As can be seen from this figure the number of trans-
actions per second becomes irregular at the end of the test which is paired with an increased
response latency.

300 : -

250 7/"\/ | b

Transactions per second
- o
@ o
2 g
T T
\
v
| |

T
N
s

I
0 20 40 60 80 100
Test completion (%)

Figure 6.6: Creating JWT tokens, increasing transactions per second

Verifying JWTs

Besides creating JWTs the Authentication component also provides a service for verifying
JWTs. This service takes a JWT as a parameter and determines its validity by verifying the
signature against the key that is used to sign tokens. Note that this functionality is not used in
the proxying process due to an optimization. In this optimization the Central API caches the

95

6. DESIGN VALIDATION AND REFLECTION

public key exposed by the Authentication component and uses this public key to verify JWTs
directly. Nevertheless results of testing this verification service provides an upper bound on the
number of requests that can be processed by the Central API, since this services performs a
subset of the computations done during the proxying process. Testing this service resulted in an
average of 750 transactions per second before latencies are influenced.

6.3.6 Testing the Applications component

The application repository component as previously stated is in charge of storing the application
model. However, it also plays an important role in the proxying process. The applications com-
ponent is responsible for looking up application meta data needed during the proxying process.
This meta data is also cached in the central API. Nevertheless, lookups need to be fast, even
when a lot of requests are being handled. Since the number of applications in an enterprise is
relatively low the amount of available meta is not expected to grow as fast as data in the other
repositories.

The performance of this component scaled from one to three instances is shown in
As this figure shows a single instance of the Applications repository handles slightly
less than 300 requests per second. When adding additional instances the number of requests
increases by roughly /25 for each instance.

600 T

Transactions per second

200 -

2 3
Instances

Figure 6.7: Retrieving applications, max transactions per second

6.3.7 Testing the Nodes component

The node repository plays multiple important roles in the proxying process. First of all, the
repository is extensively used for node management. When node states change during service
invocations, the nodes repository is used for storing these changes. For instance, when nodes
are created during a service invocation, the nodes repository must store their existence, as well
as relational information about ownership. Besides storing node meta data, the nodes repository

96

6.3. Scalability

is also extensively queried during rule evaluation. Since rule validation equates to relationship
existence verification, the nodes repository must be able to quickly answer such queries, even
when the number of rules increases. Concluding, both the number of concurrent requests and
the amount of rules queried at once are important varying factors.

Creating nodes

The node creation services creates nodes and initializes relationships. This service is used by
the Central API when new nodes are created through external services. During node creation a
single node entry is made as well as three initial relations; one describing the identity of a node
(nodes:is), one describing the ownership relation (nodes:ownedBy) and finally one describing
the reverse of the ownership (nodes:ownerOf). These initial relationships are used in default
permission rules.

The resulting average maximum transactions per second for varying instances are outlined

in Additionally shows the number of created nodes and relations per

second. As these figures show, the number of requests per second starts at roughly 240. For
each addition instance the throughput increases by roughly 750.

600

T

500 - 4

400 -

300 - 4

200 - 4

100 4
0 1 2 3

Instances

Transactions per second

Figure 6.8: Creating nodes, max transactions per second

97

6. DESIGN VALIDATION AND REFLECTION

1800 T

1600 ElNodes b
[_JRelations

1400 N

IH i B

Instances

Created per second
2 @ o »
3 =1 =1 3
e 51 51 5]

T T T T

I I L

s

=}

=]
T

n

S

=]
T

o

Figure 6.9: Creating nodes, max created per second

Querying relations

During proxying the central API determines the relevant permissions rules that apply to a re-
quest. These permission rules state relationships that must exist in order for the access to a
service to be accepted. For determining existence of relationships a single service is available
that accepts a list of possible relations and determines whether any exists. For these queries an
important factor in the performance is the number of rules per permission, considering the O(n)
complexity of rule evaluation. In order to analyze the effects of an increasing number of rules
the service is invoked with varying number of relations.

The average maximum number of transactions with the varying factors are outlined in
As can be seen in this figure the number of queried relations has a substantial impact on
performance. Especially when 100 relations are queried at once the number of transactions per
second is very low. When the component is scaled to additional instances the capacity increases
roughly linearly. A single instance starts with an average maximum of /40 requests per second.
This increases to 280 with two instances and 355 with three instances. In the total
number of queried relations are shown. As this figure shows the even though the overall number

of transactions per second decreases, the total number of queried relations increases linearly.

98

6.3. Scalability

400 T

1 relation
3 relations B

350
I 10 relations
20 relations
140 relations B
1100 relations

300

250 F o]

160 - 5

Transactions per second

50 - b

w B

1 2
Instances

Figure 6.10: Querying relations, max transactions per second

18000 T

16000~ (HEM1 relation

3 relations
14000 -

140 relations

12000 |[C_1100 relations

10000 - — y
8000 - B
6000 - B

4000 - B

] _alll] B

Instances

Figure 6.11: Querying relations, max relations queried per second

6.3.8 Testing the permissions component

The permission repository also plays multiple roles in the proxying process. During node cre-
ation, default permissions for nodes have to be created in the permission repository. The chal-
lenge with this responsibility is that the number of default permissions could be high. Besides
creation of permissions the repository is also responsible for quickly looking up permissions for
certain services and service consumptions. These lookups are a key part of the proxying process.

99

6. DESIGN VALIDATION AND REFLECTION

Instantiating default permissions

The permission repository provides a service for instantiating the default permissions paired
with a specific service and service consumption. This service accepts the details of a node and
the targeted service or service consumption and uses this information to determine the default
permissions that have to be created. A varying factor in this is the number of default permissions
paired with the targeted service or service consumption.

shows the results for this test. As can be seen from this figure the number of
default permissions has a significant impact on the maximum number of transactions, although
less than what was seen in the relations query service. A single instance starts with an average
maximum of /60 requests per second. This increases two 325 with two instances and 400 for
three instances. The average maximum of the total number of permissions created are outlined
in[Figure 6.13] This figure shows the same pattern as for the relations query service, namely that
the data throughput increases linearly while the total number of transactions decreases.

450 T

B 1 permission
[l 3 permissions

[10 permissions
20 permissions
140 permissions —
3100 permissions

1 2
Instances

@

Figure 6.12: Instantiating default permissions, max transactions per second

100

6.3. Scalability

x10*

Il | permission
I3 permissions.
25F I 10 permissions 4

[0 permissions
[_140 permissions
1100 permissions

el
c
o
(&}
i)
S
[
g 15
o
Q
2
o
o
o
S

051 B

| I _a

1 2
Instances

Figure 6.13: Instantiating default permissions, max created permissions per second

Querying permissions

During request proxying a key part of the access control decision are the relevant permissions.
For each request two permissions can apply, one for the service and one for the service con-
sumption. This means that for each requests two permissions have to be retrieved.
shows the average maximum number of transactions per second for respectively one, two and
three instances. As this figure shows a single instance has an average maximum throughput of
250. This increases to 490 for two instances and 660 for three instances.

700 T

Transactions per second

1 2 3
Instances

Figure 6.14: Querying permissions, max transactions per second

101

6. DESIGN VALIDATION AND REFLECTION

6.3.9 Testing the Central API

As previously mentioned the Central API proxies requests to third party servers. During this
proxying process several core components are invoked to determine whether access is allowed.
Furthermore additional administration is done to keep the Nodes repository up to date. Due
to the dependency on core components the performance of the Central API is bound by the
performance of the core components. Specifically the slowest core component provides an up-
per bound on the throughput of the central API. By using the results from the tests targeting
individual components an upper bound on throughput of the Central API can be determined.

For testing the central API a single standalone test server was used. This test server exposes
two services through the Central API, one retrieval service and one creation service. For the re-
trieval service a query parameter can be provided that determines the amount of data returned in
Bytes. The creation service accepts an arbitrary payload size. Additionally, several permissions
and default permissions were created such that these factors could be varied during testing. As
was mentioned earlier two tests scenarios were performed, a low end scenario and a high end
scenario. The next sections detail the outcomes of tests under these scenarios.

Testing the Central API: Low end scenario

In the low end testing scenario the goal was to determine the performance of the Central API
relatively to the other core components, namely the Nodes repository and the Permissions repos-
itory. Additionally the payload size is varied to determine performance of the proxying itself.

shows the performance with network topology 1 and network topol-
ogy 2 (Figure 6.3). As this figure shows the number of request per second is relatively low. With

network topology 2 the performance increases, but not substantially. The reason for this low
number of request might be coupled with the fact that in these network topologies there is only a
single Nodes repository instance. As shown in|Figure 6.3.7|a single instance of the nodes repos-
itory has a capacity of /35 requests per second on average. Since for each request this service
is invoked the throughput of the Central API is limited by this number. The figure also shows
the impact of an increased payload size of API requests, which shows to have some effects on
overall throughput.

shows the performance with the same network topologies but instead for the
creation service. A key difference between these service invocations is that for the creation
service additional administrations are performed to keep the Nodes repository up to date. As
these figures show this additional administration has substantial impact on overall performance
of the Central APL

102

6.3. Scalability

120 [l 1024 Bytes
2048 Bytes
[[14096 Bytes
[_18192 Bytes

100

Transactions per second

Network topology

Figure 6.15: Central API retrieval test, max transactions per second

100 T

[l 1024 Bytes

0 r 2048 Bytes !
14096 Bytes

80+ (18092 Bytes o

Transactions per second

Network topology

Figure 6.16: Central API create test, max transactions per second

Testing the Central API: High end scenario

Although the tests under the low end scenario provide some insights into performance of the
Central API under different circumstances, the resulting throughput is rather low. To determine
whether the performance can be improved by using better hardware the high end scenario was
used. Additionally Loader.io was used for performing test to reduce the effects of local network
performance and other influences on test results. Loader.io offers the functionality to configure
the desired number of clients per second during a specific time period. Several different number

103

6. DESIGN VALIDATION AND REFLECTION

of desired clients per seconds were used to determine the effects of higher load on Central API
latency as well as the maximum throughput.

For these tests two versions of the network topology as given in were used. In
one version two instances of the Nodes repository and the Permissions Repository were used.
After these tests showed relatively low CPU utilization under heavy load additional instances
of each repository were deployed to the same number of machines. Thus, for each repository
four instances were used behind a single Nginx load balancer. The effects of these additional
instances are substantial. For the first version of this topology the maximum number of requests
per second without effecting latency is on average 525. During these tests the average latency
was 130 ms. The same test applied to the second version of the topology results in an average
maximum of 600 requests per second at a latency of 125 ms.

Figure 6.17|shows the average maximum number of transactions above which latencies are
influenced significantly. This figure also shows the effects of the number of permission rules
available for the requested node. As can be seen the number of transactions is substantially
higher than during the low end scenario. Nevertheless, the number of applicable permission
rules has a substantial impact on performance. The average response latencies are shown in[Fig{
As this figure shows the response latency also increases as more applicable permission
rules are available.

600 T T

500 -

400 E
300 -
200
100+ E

Number of permission rules

S

Transactions per second

S

S

o

Figure 6.17: Central API retrieval test, max transactions per second (high end)

104

6.3. Scalability

300 T T T T T

250 -

200 -

150 - 4
100 -

50

0 1 3 10 20 40 100

Number of permission rules

Response latency (ms)

Figure 6.18: Central API retrieval test, average response latency (high end)

6.3.10 Discussion of performance

The test results discussed in the previous sections have some implications regarding the usability
of the implementation. In this section the results will be discussed.

Reflection on expected load

The numbers given in [subsection 6.3.1|provide some initial targets in terms of required through-
put of the platform. During the tests in the high end scenario realistic throughputs of 400 to 550
requests per second were achieved. With regards to the expected load this would mean that only a
single office can be sustained during heavy application usage by employees. This indicates that
there is still work required in terms of implementation optimizations before wide scale adop-
tion is possible. Additionally, the latency during realistic test scenarios under heavy load was
roughly 125ms to 175ms. Depending on third party application requirements this could be too
high, especially when third party services are computationally heavy by themselves. For these
scenarios additional optimizations might be needed. In the next section possible optimizations
are discussed.

105

6. DESIGN VALIDATION AND REFLECTION

Performance gains

Although the implementation falls slightly short in terms of expected load, there are some
promising test outcomes in terms of scalability. Since the platform is built on top of scalable
technologies there are opportunities for horizontal scaling. This scaling behavior can be seen
during the tests targeting individual components as well as the overall platform. However, be-
fore such scaling is used it might better to optimize the implementation first. There are several
points at which the implementation could be optimized. These optimizations have not been im-
plemented due to time constraints. The next paragraphs discuss several potential optimizations.

JVM Profiling and tuning A common observation during testing shows that all core com-
ponents experience occasional hiccups. During these hiccups response latencies peak, resulting
in an increase in latency of roughly 50ms. The cause of these hiccups could be related to Java
garbage collection. In order to gain more insights into the garbage collection behavior it might
be worthwhile to profile the core components. During profiling insights can be collected to de-
termine the performance of specific code segments. During this profiling potential issues can
be detected. These issues might include code segments that produce a lot of garbage, leading
to more frequently triggered garbage collections. Furthermore, currently the JVM has not been
tuned at all. This might be another point of optimization.

Limitations on the data model As the test results given in|Figure 6.3.7|and [subsection 6.3.8]
show, the number of permission rules and default permissions have a significant impact on per-
formance. This behavior is also observable in the high end scenario (Figure 6.17)), in which the
maximum throughput is heavily influenced by the number of applicable permission rules. Al-
though this might be an issue it should be noted that /00 permission rules or default permission
are significantly more than what is expected during normal usage.

Consider the image uploading service to which users can upload images and consequently
determine who can view these images. Consider also an application that manages social rela-
tions between users. This social application might define relations such as social:friendOf or
social:familyOf. 1t is expected that the permission rules for the service exposing images only
target a single relation such as the onces named above. Thus, instead of requiring a single rule
for every user who requires access to the image a single permission rule can be used to describe
a larger group. When individual access is required it could also be an option to create an ap-
plication that manages user lists. This application could allow users to create custom lists and
subsequently add users to this list individually. The fact that a user is part of a list can be doc-
umented in a lists:partOf relation. This relation can then be used in a permission rule. This is
analogous to the privacy settings on existing social networks, where the options include settings
such as public or friends only. By using this approach the required number of permission rules
is reduced drastically. It could therefore be realistic to impose an upper bound on the number of
permission rules allowed for a single permission. Based on the test results such an upper bound
might be set to a number between 5 and 10. This would still provide a lot of configuration
opportunities for users while also providing relatively high performance.

A similar expectation holds for default permissions. When nodes are created the default
permissions are expected to be focused towards access through a single application and mainly

106

6.3. Scalability

by the owner of the created node. For example, when an image is created in the image up-
loading service, the default permissions might provide the owner with the ability to manage the
image. Thus, only three default permissions could be needed, namely for retrieving, updating,
and deleting the image. Additional permission rules can be added by the owner of the image
afterwards. Considering this expected usage pattern a similar upper bound can be applied to the
allowed number of default permissions.

Hardware configuration Although the deployment used a relatively large number of virtual
machines, several signs indicate that the hardware is not fully utilized. First off all, network
traffic was not even close to saturation. Secondly, during the tests in the high end scenario each
VM had a maximum load of 40%, while most VMs leaned towards a much lower CPU load of
roughly 20%, even when multiple Docker images were running on the same host. Finally, disk
activity was also rather low.

A reason for such inefficient resource usage might be due to the fact that a lot of configu-
rations use default values. These configurations target things such as the JVM, Cassandra con-
nection pooling, internal HTTP communication connections, Java thread pooling, Nginx load
balancers, VM configurations, kernel options or Docker configurations. In order to determine
the current bottlenecks in the implementation more experiments are needed. During future ex-
periments it would be desirable to determine whether the implementation in its current form is
network bounds, CPU bound or disk bound. Further optimizations can then be made accord-
ingly.

Finally, in the testing environment no distinction was made between virtual machines, even
though different parts of the implementation require different resources. For a more solid de-
ployment it might be better to deploy subcomponents to hardware that fits their use case best.
For instance, the Cassandra cluster could be deployed to dedicated hardware with carefully cho-
sen disks. Future experiments can aim to determine the resource requirements of individual
subcomponents more accurately.

Internal communication protocol Currently communications between the Central API and
core components is done over HTTP. This approach provided a number of advantages; first
of all the applicability of the model could be tested directly for these core components. This
provided several insights into the capabilities of the model. Additionally, frameworks such as
JAX-RS could be used for quick development. Although these advantages have certainly helped
during the implementation, there are some downsides to this approach, the main downside being
performance. Without any additional configuration the HTTP protocol establishes a new TCP
connection for each request. This is obviously not desirable for internal communications since
it introduces an unnecessary overhead. A possible optimization could be to use HTTP persistent
connections. This would have to be configured in both WebSphere Liberty and the Nginx load
balancers. An alternative could be to implement support for additional communication protocols
that better fit the job.

Lower level networking for proxy requests Currently the implementation of the Central API
also makes use of JAX-RS for proxying. Although this provides a basic implementation it might

107

6. DESIGN VALIDATION AND REFLECTION

be possible to achieve better performance by making use of lower level networking libraries.

Caching Currently no caching is used besides for the application meta data in the Central
API. Additional caching could be implemented for the Nodes repository and the Permissions
repository. These components could make use of a cache such as RedisErl Whether caches are
applicable on a large scale for these components remains an open question however. Since these
repositories are expected to contain a lot of data, cache hit ratios could be very low. On the other
hand, the data stored in these repositories is very small, thus it could be possible to load a large
part of the data in memory. Such a caching layer does introduce additional complications in
terms of cache invalidation.

6.4 Fulfillment of the requirements

In several requirements were discussed that are essential for a privacy management
solution within an enterprise. In this section these requirements are discussed in context of the
resulting framework.

6.4.1 Non-functional requirements

The non-functional requirements as given in provided a set of high level goals that
required additional attention during the design phase. Even though these requirements are not
very concrete some comments can be made on their fulfillment. An important note here is that
while these non-functional requirements have been kept in mind during the design phase, it is
likely that there will always be improvements that increase the fulfillment of these requirements
even further.

Secure The designed architecture is a central point in terms of security. Because the
platform acts as a central proxy between various actors with the goal of protecting private data
there is a lot of responsibility in terms of security. The model itself provides users with the
security that access to personal data is limited to those that have obtained the correct permissions.
However, a lot of this security is dependent on the correctness of the implementation. To ensure
solidity of the implementation a simple model was designed and existing and proven standards
as well as high quality tools were used. Nevertheless security remains an important point of
attention and additional security measures might have to be introduced to ensure overall system
security.

INFR.2| Modular The application model provides a framework for modular applications that
work together towards the goal of a more deeply integrated working environment. The frame-
work aims to impose little restrictions on implementation details while carefully orchestrating
dependencies between different applications. Even though the basis for a modular environment

2lhttp://redis.io/

108

http://redis.io/

6.4. Fulfillment of the requirements

is constructed, the applicability of the data model does impose some restrictions on the imple-
mentations. Namely, the ownership based model introduces several restrictions on API design.
This could impose challenges when connecting existing services to the platform. Even though
this model provides a simple way to handle privacy preferences across systems it remains a point
of future research whether this model is too restrictive.

Scalable As initial experiments show the scalable architecture of the system seems to
provide opportunities for large scale deployment. Even though these initial results fall short
of a direct nation wide deployment under heavy load, there are several possible improvement
points. Nevertheless scalability should be kept in mind in future work because of its importance
in enterprise environments.

User centric Throughout this work the non-functional requirement of user central-
ity played an important role. The model is heavily focused to individual control over privacy
settings and thus users are a centric part of the resulting framework.

Implemented using tools compliant with IBM guidelines By implementing a solu-
tion on top of IBM technologies a lot of the compliance requirements were fulfilled directly. In
addition several open source projects were used for the proof of concept implementation. All
of these solutions were either approved by IBM or easily replaceable by approved alternatives.
Using this approach compliance with the IBM guidelines was ensured.

6.4.2 Functional requirements

The fulfillment of the non-functional requirements is partly subjective. The functional require-
ments given in[section 2.5|however provide some guidelines as to how the results implement the
predefined functionalities. The next sections discuss these requirements.

Identifying users in different contexts (v') The use of the JWT standard provides func-
tionality to handle users in different contexts.

[AU.2|Revoking previously successful authentication attempts (X) By using short-lived signed
access tokens in combination with long-lived persistent refresh tokens revokal of successful au-
thentication attempts can be implemented. Although the design and used standards allow for
this functionality, due to time constraints only short-lived access tokens have been implemented.

Extensible specifications of data handling practices (v') The ability to specify data
handling practices through a standardized specification language is included in the application
model through service consumption policies. Using this model every service consumption can
specify a single policy that describes the relevant practices regarding data handling. The speci-
fication language however remains undecided in this work. The reasoning behind this is that the
goals of this work do not include the invention of a new policy specification language. Rather,
existing policy specification languages can be utilized. In this regard the results of this work

109

6. DESIGN VALIDATION AND REFLECTION

provide a framework for more closely integrating existing policy specification languages in a
multi-tenant application environment.

Specification of data usage restrictions (v') Specifications of data usage restrictions
can be specified through service policies. For these policies the same reasoning applies as given
above; rather than inventing a new policy specification language existing languages can be uti-
lized in the framework designed in this work.

Describing different purposes of data usage (v') The description of different purposes
of data usage is included in the application model through service consumption identifiers.
Through this construct applications can specify multiple reasons for accessing data.

[PP4|Infrastructure for dealing with policy changes (v')) A core part of the application model
is versioning. Service and service consumption versions are inherently linked to policy updates
and thus an initial infrastructure is made that allows applications to deal with such changes. The
versioning system also supports service deprecation, meaning that services can be flagged as
being deprecated. Through this infrastructure changes to an application can be made apparent
to other developers depending on the involved services.

Infrastructure for dealing with policy changes by external data sources (v') The in-
frastructure used to deal with internal policy updates is equally applicable to services connecting
with external data sources.

User centric access control (v')) Considering the user centrality that has been kept in
mind during system design, the fulfillment of this requirement falls in line with the fulfillment
of the non-function requirement of overall user centrality.

[AC.2|Fine-grained access control (v') The permission model provides users with fine-grained
control over access to their data. This means that users always have complete control over who
can access their data.

Opt-ins for data usage per application (v) Through service consumption permissions
applications require explicit opt-in before data is available.

[A0.2|Opt-ins for different purposes of data usage per application (v')) Because applications
can specify multiple service consumptions for different purposes, users are equally capable of
accepting or rejecting access for different purposes.

Revoking opt-ins at any time (v/) Since every request requires explicit permission re-
voking permissions naturally fits within the framework. This could become more challenging
when caches are added for increasing platform throughput. In this situation cache invalidation
becomes a challenge. Nevertheless revokal of permissions is a key part of the model.

110

6.4. Fulfillment of the requirements

Configuring scope of data usage (v') The scope of data usage can be adjusted through
permission rules. As the scalability tests indicate the number of permissions rules does have
an effect on performance. However, as outlined in [subsection 6.3.10} the number of permis-
sion rules that need to be evaluated for every request can be reduced through limitations and
additional relationship management.

[PR.1| Viewing data usage of applications after opt-ins have been granted (X) Currently the
platform does not implement additional logging. However, since the Central API handles every
request logging of request meta data can be implemented trivially. These logs can subsequently
be processed and made available such that users can inspect what applications do with their data.

Authentication via existing infrastructure (v')) The proof of concept implementation
uses 0oAuth2.0 for identity confirmations. Considering the oAuth2.0 capabilities of IBM Con-
nections this is a natural fit.

Extending available data services with application level data services (v') Applica-
tions can expose additional data services be registering node types and services. Extensibility
thus is a core part of the application model.

Platform provided privacy management (v') Through the Central API application de-
velopers can make use of existing privacy management infrastructure without needing to reinvent
the wheel.

Infrastructure for gradually upgrading various platform components and providing
dependent applications with sufficient means to handle version bumps (v') Similarly to
the requirement of dealing with policy changes this requirement is fulfilled through
a versioning system at the core of the application model.

Receiving real time data events within the system (X) Currently the platform does not
implement real time distribution of events within the system due to time constraints. However,
initial attempts have been made to implement such functionality and results were promising. Due
to the application model describing exact data needs for applications it is trivial to determine
what applications have access to what data when new data is created. This knowledge can
subsequently be used to push graph model changes to interested applications. However, creating
a scalable implementation of this functionality requires additional work in terms of efficient
data distribution and distribution protocols. At a minimum an additional core component can be
created that will be invoked after the graph model is updated. This component will determine
which applications have permission to access the changed data and notify these applications
accordingly. The applications would then have to retrieve the data through the Central API.

111

6. DESIGN VALIDATION AND REFLECTION

6.4.3 Privacy principles

The privacy principles given in outline various practices that should be used by
systems that handle personal information. Since the platform itself is also a system that handles
personal information these principles are shortly discussed.

Collection limitation principle The platform collects a lot of meta data about
users. The effort has been made to store as little data as possible while still providing enough
information to determine access rights. This is done by collecting only meta data about users.
Even though this meta data is collected for the purpose of access control it does provide some
privacy concerns. In order to use the collection limitation principle users of the platform should
therefore sufficiently be informed of the role of the platform and the privacy implications.

Data Quality Principle Several measures have been taken to ensure data quality,
namely the use of replicated fault-tolerant persistent storage and eventual consistency of the
graph model.

Purpose Specification Principle The purpose of data collection within the sys-
tem is clear; providing users with elaborate privacy management. However, additional work is
required to inform users of this purpose.

Use Limitation Principle The data stored within the graph model is solely used
for access control purposes.

PRIVACY.5|Security Safeguards Principle This principle falls in line with the non-functional
requirement that the system should be secure. Given the efforts made towards this goal this
principle is partly satisfied. Nevertheless additional work is required to ensure system security.

PRIVACY.6| Openness Principle The current implementation provides user with full insights
into what data is stored about them through services that expose the ownership within the graph
model.

Individual Participation Principle In line with the previous principle efforts
have been made to construct services that expose the ownership within the graph model to users.
Additional efforts could be made to ensure that users are in full control over data they own. For
instance, it could be made mandatory for applications to let owners of data delete the data from
their system.

PRIVACY.§| Accountability Principle The accountability principle becomes more important

when the proof of concept is deployed in a real environment. Therefore, this principle should be
kept in mind during such an event.

112

Chapter 7

Conclusions

In an increasingly connected work environment, data plays an important role. In this work
some of the technical challenges that are paired with the increased use of personal data by
enterprise-class applications have been tackled. Through a literature survey on the concepts of
authentication, privacy policies, access control models, provenance and authorization several key
observations are made. By combining these observations with the requirements from an real-
world multinational enterprise, a simple data model has been constructed that describes privacy
aware data sharing between different applications. Using this simple model an implementation
was made that has scalable technologies as a foundation.

Testing of the proof of concept implementation shows signs that the model can be success-
fully be deployed to a scalable architecture. Although performance needs to be improved before
large scale deployment is possible, several optimizations points remain open. Therefore an initial
foundation is made for a privacy aware infrastructure for personalized enterprise applications.

7.1 Future work
The model as demonstrated in this work provides a basis for a privacy aware data sharing plat-

form for enterprise applications. Although some of the challenges for such a platform have been
tackled there are numerous challenges left.

7.1.1 Implementation optimizations

As mentioned in [subsection 6.3.10] some additional efforts can be made to improve overall
throughput. Depending on the outcome of these optimizations it might be necessary to intro-
duce additional restrictions to the model in order to reduce the overhead.

7.1.2 Solution sustainability

Although there is room for improvement in terms of platform performance another question
that arises is whether the solution is actually sustainable. Sustainability is important in both
technical aspects as well as in usage aspects. The technical aspects include things such as the

113

7. CONCLUSIONS

ability of the system to stay consistent under heavy usage. Additionally, management of the
graph model must be sustainable. This could especially become challenging when third party
applications make more extensive use of the relational side of the graph model by introducing
custom relation types. Note that these sustainability challenges are inherit to the data model, not
necessarily the implementation.

For the usage aspects things such as usability are of importance. When every application
requires explicit opt-ins for every API call users might become desensitized. These users might
accept or reject every opt-in without reading the privacy implications. In such a scenario the
solution might not be sustainable because it is too fine grained.

7.1.3 Designing privacy management infrastructure

Closely linked with the previous point future work could focus on the management side of the
platform. A danger of a fine-grained privacy management system is that users might become
annoyed by the abundance of opt-ins that have to be managed. In future work an efficient man-
agement infrastructure can be designed to combat these issues. Such an infrastructure could
include a privacy management overview that allows for easily managing opt-ins for various ap-
plications. For this overview it should be possible to set opt-ins on a fine-grained level such
as what is possible in the underlying data model. Additionally the overview can provide func-
tionalities such as default settings or quick overviews of data usage per application. Besides a
management overview the infrastructure could also refine the versioning model such that it is
more accessible and manageable by users.

7.1.4 Dealing with sparse data

In this work a lot of focus has been put on the user side of the problem. For this side, the data
model clearly determines who has access to certain data and who does not. However, little fo-
cus was put on the implications of this model on application development. When application
developers use the platform it could be possible that a lot of data is not available due to missing
opt-ins. This requires application developers to be prepared to deal with sparse data. Further-
more, additional functionality could be needed to make dealing with sparse data easier. Here
questions arise such as how application developers can know what data is available to a certain
user.

7.1.5 Integration of the models in development environments

Currently application meta data needs to be constructed manually through either JSON files
or by using the Application management client as shown in In either case the
administration is rather cumbersome, especially when dealing with a lot of services. This could
lead to situations in which the implemented services and meta data stored in the Applications
repository are out of sync.

During development of the core components a possible solution for a potentially more sus-
tainable way of generating application meta data was conceived. This solution is inspired by the

114

7.1. Future work

OpenAPI Speciﬁcatiorﬂ This specification can be used to describe REST APIs. This is similar
to what the Application repository does, although here more restrictions are applied to how the
REST APIs are structured. For generating an OpenAPI Specification several tools are available
for various languages and frameworks including JAX-RS. For JAX-RS additional annotations
are available that can be used in conjunction with existing JAX-RS annotations to provide addi-
tional meta data about services. These annotations are then used to generate a JSON description
of the OpenAPI specification. A similar approach could be useful for the application model.
This way, maintaining services might become less cumbersome.

The following code segment shows an example of how additional annotations could be used
to describe a service within the application model:

@ ApplicationResource
public interface UsersResource implements Resource {

@Service (
edgeNodeType = User. class,
httpMethod = HttpMethod .POST,
version = 1L)
@Consumes (MediaType . APPLICATION_JSON)
@Produces (MediaType . APPLICATION_JSON)
User createUser (
User user);

@Service (
targetNodeType = User.class,
httpMethod = HttpMethod .GET,
version = 1L)
@Produces (MediaType . APPLICATION_JSON)
User getUser (
@PathParam (ID) String userld);

@Service (
targetNodeType = User.class,
edgeNodeType = Friendship.class,
httpMethod = HttpMethod.GET,
version = 1L)

@Produces (MediaType . APPLICATION_JSON)

Collection <Friendship> getFriends (
@PathParam (ID) String userld);

Ihttps://github.com/OAI/OpenAPI-Specification

115

https://github.com/OAI/OpenAPI-Specification

7. CONCLUSIONS

7.1.6 Enforcing policy compliance

Currently trust plays an important role in the privacy model. Application developers are expected
to be honest about their data usage. This means that every application should act in compliance
with accepted service policies. However, due to the inherit loss of control when data is provided
to external applications situations might occur in which compliance is not guaranteed. Several
approaches can be used to tackle this problem, thus making it a potential subject for future work.
Example approaches include introducing approval processes for applications making use of the
platform. Alternatively infrastructure can be set up for users to alert system administrators of
malicious data usage.

116

[1]

[5]

Bibliography

Alessandro Acquisti. The economics of personal data and the economics of privacy. 2010.

Claudio Agostino Ardagna, Marco Cremonini, S De Capitani di Vimercati, and Pierangela
Samarati. A privacy-aware access control system. Journal of Computer Security,
16(4):369-397, 2008.

Claudio Agostino Ardagna, Ernesto Damiani, S De Capitani di Vimercati, and Pierangela
Samarati. Towards privacy-enhanced authorization policies and languages. In Data and
applications security XIX, pages 16-27. Springer, 2005.

Claudio Agostino Ardagna, S De Capitani di Vimercati, and Pierangela Samarati. Enhanc-
ing user privacy through data handling policies. In Data and Applications Security XX,
pages 224-236. Springer, 2006.

Paul Ashley, Satoshi Hada, Giinter Karjoth, and Matthias Schunter. E-p3p privacy policies
and privacy authorization. In Proceedings of the 2002 ACM workshop on Privacy in the
Electronic Society, pages 103—-109. ACM, 2002.

Michael Beiter, Marco Casassa Mont, Liqun Chen, and Siani Pearson. End-to-end policy
based encryption techniques for multi-party data management. Computer Standards &
Interfaces, 36(4):689-703, 2014.

Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani Thuraisingham.
A language for provenance access control. In Proceedings of the first ACM conference on
Data and application security and privacy, pages 133—-144. ACM, 2011.

Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12-27,
2011.

Xiao Chen. Google big table. 2010.

Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and
Joseph Reagle. The platform for privacy preferences 1.0 (p3pl. 0) specification. W3C
recommendation, 16, 2002.

117

BIBLIOGRAPHY

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

118

Luca Galli and Piero Fraternali. Achievement systems explained. In Trends and Applica-
tions of Serious Gaming and Social Media, pages 25-50. Springer, 2014.

Hans Peter Gassmann. Oecd guidelines governing the protection of privacy and transborder
flows of personal data. Computer Networks (1976), 5(2):127-141, 1981.

Satoshi Hada and Hiroshi Maruyama. Session authentication protocol for web services.
In Applications and the Internet (SAINT) Workshops, 2002. Proceedings. 2002 Symposium
on, pages 158-165. IEEE, 2002.

Dick Hardt. The oauth 2.0 authorization framework. 2012.
KA Hargreaves and K Berry. Regex. Free Software Foundation, 675, 1992.

Marc Hiiffmeyer and Ulf Schreier. Efficient attribute based access control for restful ser-
vices. In ZEUS, pages 55-62, 2015.

Michael Jones, Paul Tarjan, Yaron Goland, Nat Sakimura, John Bradley, John Panzer, and
Dirk Balfanz. Json web token (jwt). 2012.

Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. Access control and the resource
description framework: A survey.

Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18-24,
1974.

Paul J Leach, John Franks, Ari Luotonen, Phillip M Hallam-Baker, Scott D Lawrence,
Jeffery L Hostetler, and Lawrence C Stewart. Http authentication: Basic and digest access
authentication. 1999.

Jun Li, Bryan Stephenson, Hamid R Motahari-Nezhad, and Sharad Singhal. A data assur-
ance policy specification and enforcement framework for outsourced services. HP Labo-
ratories, 2009.

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia
Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The open provenance model
core specification (v1. 1). Future Generation Computer Systems, 27(6):743-756, 2011.

Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi Sandhu, and Weili Han. An access control
language for a general provenance model. In Secure Data Management, pages 68—88.
Springer, 2009.

Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access control model.
In Privacy, Security and Trust (PST), 2012 Tenth Annual International Conference on,
pages 137-144. IEEE, 2012.

Joon S Park, Gaeil An, and Ivy Y Liu. Active access control (aac) with fine-granularity
and scalability. Security and Communication Networks, 4(10):1114-1129, 2011.

Bibliography

[26]

[27]

(28]

[29]

[30]

Siani Pearson. Privacy management in global organisations. In Communications and Mul-
timedia Security, pages 217-237. Springer, 2012.

Santiago Pericas-Geertsen and Marek Potociar. Jax-rs: Java api for restful web services.
Oracle Corporation, pages 1-84, 2013.

Joseph Reagle and Lorrie Faith Cranor. The platform for privacy preferences. Communi-
cations of the ACM, 42(2):48-55, 1999.

Pierangela Samarati and Sabrina De Capitani Di Vimercati. Access control: Policies,
models, and mechanisms. Lecture notes in computer science, pages 137-196, 2001.

Alberto Siena, Silvia Ingolfo, Anna Perini, Angelo Susi, and John Mylopoulos. Automated
reasoning for regulatory compliance. In Conceptual Modeling, pages 47—60. Springer,
2013.

Alberto Siena, Ivan Jureta, Silvia Ingolfo, Angelo Susi, Anna Perini, and John Mylopou-
los. Capturing variability of law with nomos 2. In Conceptual Modeling, pages 383—396.
Springer, 2012.

Alberto Siena, John Mylopoulos, Anna Perini, and Angelo Susi. Designing law-compliant
software requirements. In Conceptual Modeling-ER 2009, pages 472-486. Springer, 2009.

Robert-Jan Sips, Alessandro Bozzon, Gerard Smit, and Geert-Jan Houben. The inclusive
enterprise: Vision and roadmap. In Engineering the Web in the Big Data Era, pages 621—
624. Springer, 2015.

Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. Fast hash
table lookup using extended bloom filter: an aid to network processing. ACM SIGCOMM
Computer Communication Review, 35(4):181-192, 2005.

OASIS Standard. extensible access control markup language (xacml) version 2.0, 2005.

Romuald Thion, Frangois Lesueur, and Meriam Talbi. Tuple-based access control: a
provenance-based information flow control for relational data. 2015.

119

Appendix A

Implementing an image sharing service

As an example of how the model constructed in this work can be used this appendix shows
how a simple image sharing service API can be created. This implementation uses the same
technology stack and conventions as core components. This application provides services for
users to upload and view images. This example application implementation illustrates how the
model can be used to describe a simple service and shows how the platform can benefit the
simplicity of implementation.

A.1 Application definition (mainly for constants)

@ ApplicationDescription
public final class ImagesApplicationDescription {
@ Applicationld
public static final String APPLICATION_ID = “images”;

private ImagesApplicationDescription() { }

}

A.2 NodeType definitions

@Table (
keyspace = Image.NODE_TYPE_APPLICATION_ID,
name = Image.NODE_TYPENAME)
@NodeModel
public class Image extends AbstractCassandraModel {

@NodeTypeApplicationld
public static final String NODE_TYPE_APPLICATION_ID =
ImagesApplicationDescription . APPLICATION_ID;

121

A. IMPLEMENTING AN IMAGE SHARING SERVICE

@NodeTypeName
public static final String NODETYPENAME = "image”;

@NodeTypeld
public static final String NODE_TYPEID =
NODE_TYPE_APPLICATION_ID + $ + NODE.TYPENAME;

@NodeldPattern
public static final String NODE_ID_PATTERN =
”(” + User .NODEID_PATTERN + 7)\\.”
+ ”(” + UUID_PATTERN + ”)”;

@TargetNodePath
public static final String TARGET NODE PATH =
NODE_TYPE_ID + ID_START + NODE_ID_PATTERN + ID_END;

@JsonView (Views . Public . class)
@PartitionKey (0)
@IdSegment (0)

@Column(name = “user_id”)
private String userld = NULL;

@JsonView (Views . Public . class)
@PartitionKey (1)
@IdSegment (1)

@Column (name = “uuid”)
private UUID uuid;

@JsonView (Views . Public . class)
@Column(name = “mime_type”)
private String mimeType;

@JsonView (Views . Public . class)
@Column(name = " title”)
private String title;

@JsonView (Views . Public. class)
@Column(name = “description”)

private String description;

@Jsonlgnore
@Column(name = “image_data”)

122

A.3. REST service descriptions

private ByteBuffer imageData;

@JsonView (Views. Public . class)
@Column(name = “created”)
private Date created;

A.3 REST service descriptions

@Path(””)
public interface ImagesResource extends Resource {
@POST
@Path (Image . NODE_TYPE_ID)
@Consumes (MediaType . MULTIPART FORM_DATA)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views. Private . class)
Image createByAnonymous (
IMultipartBody multipartBody);

@POST
@Path (User . TARGET_NODE PATH + ”/” + Image.NODE_TYPE_ID)
@Consumes (MediaType . MULTIPART FORM _DATA)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views . Private . class)
Image createByUser (
@PathParam (ID) String userld,
IMultipartBody multipartBody);

@GET

@Path (Image . TARGET_NODE _PATH)
@Produces (MediaType . APPLICATION_JSON)
@JsonView (Views. Public. class)

Image get(@PathParam(ID) String id);

@GET

@Path (Image . TARGET_NODE_PATH)

@Produces (”image/x ")

Response getRaw (@PathParam (ID) String id);

@DELETE
@Path (Image . TARGET NODE_PATH)
@Produces (MediaType . APPLICATION_JSON)

123

A. IMPLEMENTING AN IMAGE SHARING SERVICE

@JsonView (Views. Private . class)
Image delete (@PathParam(ID) String id);

}

A.4 JAX-RS endpoint used in a web.xml in combination with the
servlet 3.1 spec

public class ImagesEndpoint extends AbstractEndpoint {

@OQverride
protected Stream<Class<?>> getResources () {
return Stream . of (
ImagesResource . class);
}

@Override
protected Stream<Class<?>> getProviders () {
return Stream.concat(
super . getProviders (),
Stream .of (PostLocationFilter.class));

A.5 Deployement and platform benefits

Finally the REST interface should be implemented using some storage technology. After this
the code can be deployed to a WebSphere Liberty application server and should only be able to
communicate with the central API. By structuring applications in this way a lot of functionality
is offered by the platform. By properly setting up service descriptions using the applications
manager client the image sharing API can be used by users to upload images and share them
only with those who they approved of. An example of this process will be given in[Appendix B|

124

Appendix B

Managing applications

The applications repository plays an important role in the designed platform. In this repository
all information is contained about how applications interact with data. During proxy request
handling this repository is used to determine validity of requests. For this reason it is important
that the application repository provides an accurate picture of reality. To facilitate the manage-
ment of applications a simple application management client application has been created. In
line with the example image uploading service the process of managing service is used as an
example of how this management application can be used.
The first step is creating the application, shown in

applcations
permissions

policies

applications_manager

nodes.

Name

test

Description
dashboard

connections APIURL
authentication

Login Redirect URL

api

Create new application Cancel | Reset Create

© IBM - Delft University of Technology + Home « Privacy

Figure B.1: Creating the application

After an application has been created it appears in the overview, shown in This
overview can be used to configure more details about the application.

125

B. MANAGING APPLICATIONS

applications

permissions

policies Services

applications_manager Service consumptions

nodes Create new node type.

test Create new service Name images
Description
dashboard Create new service consumption Description
connections Pt URD

hitp://images
images.
Login Redirect
authentication URL

Greate new application

Login redirect URL (only useful for web applications)

© IBM - Delft University of Technology + Home * Privacy

Figure B.2: Created application

Now that the application is available a new node type can be created, shown in
When creating a node type only a name is required. For this example an image node type can be
created, which is the main data type of the images application.

Application images

Name
image

Cancel Create

Figure B.3: Creating the image node type

After a node type has been created it will appear in the overview, shown in
Currently this overview provides little information, but this overview might include additional
information such that application developers can more easily determine what data is available.

126

applications

permissions

policies Services

applications_manager Service consumptions

Application images

nodes Create new node type.

Name image

test Create new service =
i Delete

dashboard Create new service consumption

connections

images

authentication

api

Greate new application

© IBM - Delft University of Technology * Home * Privacy

Figure B.4: Created node type

Now that a node type is available it is possible to create a new service, shown in [Figure B.5]
This figure shows the different properties that can be adjusted for services. In this case a new
service is created that represents the createByUser method from [section A.3] This service can
be used to create an image that is owned by a user.

Application

HTTP Method

Target node type

Edge node type

Version

images

POST

connections@user

images@image

1

Cancel || Create

Figure B.5: Creating a service

After the service has been created an overview of the service is available, shown in |Fig-|
Note that for this service no policy exists yet.

127

B. MANAGING APPLICATIONS

Application images
Target connections@user/{id}/images@image
HTTP Method GET

Target node type connections@user

Edge node type images@image
Version 1
Deprecated No
Polloy Key Value + Add

Reset Upload

Figure B.6: Created service

Before the service is usable a policy should be provided, the process of which is shown in
As a proof of concept a policy simply consists of key value pairs, although a more
elaborate policy specification language should be included here in the future.

128

Application
Target

HTTP Method
Target node type
Edge node type
Version
Depracated

Policy

Default
permissions

images
connections@user/fid}/images@image
POST

connections@user

images@image

g

No

removeAfter

storeln

30 days = Delete
EU = Delete
Value + Add

Resst | Upload

Figure B.7: Uploading a policy

After the policy has been uploaded it can not be changed anymore, shown in
Policy changes would require a new version of the service. A similar process would be required

for default permissions.

129

B. MANAGING APPLICATIONS

Application Images
Target connections@user/(id}/images@image
HTTP Method POST
Targetnode type connestions@user
Edgenodetype images@image
Version 1
Deprecated No
Rolicy) removeAfter 30 days
storeln EU

Default
permissions

1l Delete

Figure B.8: Uploaded policy

B.1 Conclusions

The current version of the applications manager client provides basic utilities for managing ap-
plications. The process outlined above shows the steps required when deploying services to the
platform. Although a basis for this client is built there are a lot of additional features that would
be useful in a real world environment. For instance, the application overview would be much
more usable of it was possible to inspect services of other applications together with detailed
information about the usage. Such a client could also be combined with existing documenta-
tion technologies such as the previously mentioned OpenAPI Specification. By providing such
resources through a single application it would be easy for developers to search for relevant
functionalities among the available services.

130

	Preface
	Contents
	List of Figures
	Introduction
	Example: Enterprise chat application
	Context
	Current and envisioned data sharing scenarios
	Challenges and contributions
	Methodology

	Problem statement
	Use cases
	System stakeholders
	High level goals
	Non-functional requirements
	Functional requirements

	Related work
	Privacy
	Authentication
	Privacy policies
	Access control
	Access control policy specification languages
	Authorization
	Provenance
	Conclusions

	A privacy aware model for data sharing
	Graph model
	Application model
	Permission model
	Combining the models

	A privacy aware platform for data sharing
	System architecture
	High level architecture
	Request processing
	Implementation
	Third party application responsibilities
	System consistency
	Reflection on scalability

	Design validation and reflection
	High level goals and results
	Discussion of the implementation
	Scalability
	Fulfillment of the requirements

	Conclusions
	Future work

	Bibliography
	Implementing an image sharing service
	Application definition (mainly for constants)
	NodeType definitions
	REST service descriptions
	JAX-RS endpoint used in a web.xml in combination with the servlet 3.1 spec
	Deployement and platform benefits

	Managing applications
	Conclusions

