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Abstract

The Nevado del Ruiz volcano is an active and dangerous volcano in the Andean volcanic belt. 
Measuring seismic activity is one of the most reliable and widely used techniques to monitor and 
predict renewed volcanic activity. Seismic activity can be caused by several different underlying 
physical processes. It is of interest to the earth-science observatories monitoring potentially 
dangerous volcanoes to determine the underlying cause of the registered earthquakes. Typically 
segmented seismic recordings are classified by hand often based upon their frequency contents. An 
automated system capable of discriminating reliably between several different seismic recording 
classes can potentially release the human expert from the labor intensive classification task. An 
Interesting question concerning the frequency representation of the segmented seismic recordings 
is: if it is better to use only frequency information in the form of a single spectrum or to use a time 
frequency representation such as a spectrogram. Furthermore it is of interest to see if the ordering of 
the spectral frames inside the resulting spectrograms is of importance. In this study a justified 
spectrogram representation is developed for the segmented recordings from the Nevado del Ruiz 
volcano. Using this spectrogram representation we also look at five different classification 
strategies in combination with a large number of different classifiers. Often seismic events such as 
volcanic tectonic earthquakes, tectonic earthquakes, rockfall etc... are registered by several seismic 
stations. It is of interest to see if the recordings of multiple stations can be combined to improve 
classification results. Furthermore it is of interest to see how well the untrained and trained 
classifier systems generalize to the recordings of other stations.         
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1 Introduction

1.1 The Nevado del Ruiz volcano 
The Nevado del Ruiz volcano is an active stratovolcano. A stratovolcano  is a tall conical shaped 
volcano. Stratovolcanoes are characterized by gentle lower slopes but steep upper slopes. 
Furthermore stratovolcanoes usually have a narrow summit crater. Stratovolcanoes are composed of 
many layers (strata) of hardened lava, volcanic ash and other volcanic material. Because of their 
composite layered structure stratovolcanoes are sometimes also referred to as composite volcanoes.
     

Figure 1.1: Schematic representation of a stratovolcano (left). The Nevado del Ruiz volcano 
(right).

The Nevado del Ruiz volcano is the northernmost of several Colombian stratovolcanoes in the 
Andean volcanic belt. The Andean volcanic belt is the result of subduction of the Nazca plate 
beneath the South American continental plate. Subduction is a process that occurs when two 
tectonic plates move towards each other.  One of the two tectonic plates moves over the other 
tectonic plate causing the second tectonic plate to sink into the earths mantle. Oceanic tectonic 
plates are heavier compared to continental tectonic plates. Therefore when a oceanic tectonic plate 
collides with a continental plate, the oceanic plate sinks into the earths mantle. Subduction is a 
process that is typically measured in centimeters per year. The subduction velocity of the Nazca 
plate with the South American continental plate is in the order of nine centimeters per year. A 
subduction zone is the area were two tectonic plates meet and were subduction occurs. Subduction 
zones are often characterized by high volcanic activity and frequent occurrence of earthquakes.    

Figure 1.2: Schematic representation of the subduction process
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The Nevado del Ruiz volcano is a very tall volcano. It's summit reaches 5389 meters above sea 
level. Although the volcano is located approximately 500 kilometers from the earths equator its 
summit is  covered  with 25 square kilometers of snow and ice. This is also were part of the name of 
the volcano comes from. Nevado means snowy or snow-capped. 

Stratovolcanoes often produce highly explosive and dangerous eruptions. This type of eruption is 
also known as Plinian. This type of explosive eruptions are called after Pliny the Younger. Pliny the 
Younger witnessed the famous eruption of the Vesuvius in 79AD and wrote a remarkable objective 
account on the eruption. Plinian eruptions are characterized by a large column of gas and other 
volcanic material (mostly pumice) that is emitted by the volcano at incredible force. The column 
often reaches high into the stratosphere.  The deposit  resulting from this column often covers large 
area's. During a Plinian eruption the volcano can also emit a large amount of magma. Sometimes 
the emission of magma is so large that the crater collapses. The resulting volcano is referred to as a 
caldera volcano. Plinian eruptions can also produce pyroclastic flows. A pyroclastic flow is a fast 
moving current of hot gasses and other volcanic material (not lava). The velocity of a pyroclastic 
flow can be as high as 700 kilometers per hour. The velocity of the pyroclastic flow depends on the 
amount of gas that is emitted per unit of time, the density of the material inside the flow and the 
gradient of the volcano. Usually pyroclastic flows travel close to the ground. The temperature inside 
a pyroclastic flow can reach 1000 degrees Celsius. The combination of its high velocity, high 
temperature and close to ground move pattern makes the pyroclastic flow very dangerous. It is 
estimated that during the famous eruption of the Vesuvius in 79AD, 62 percent of casualties inside 
Pompeii were caused by pyroclastic flows. Most other casualties were caused by collapsing 
buildings. The duration of a Plinian eruption can vary between less than a day up to several months. 

Figure 1.3:  A rendering of how the 79AD Vesuvius eruption might have looked like. (left) An 
example of a pyroclastic flow (right) 

The most recent  eruption of the Nevado del Ruiz volcano was on 13 November 1985. This was the 
third eruption of the volcano in 400 years. Prior to the eruption the volcano had been active for 
almost a year, producing minor earthquakes and steam explosions. The eruption began at 3:06 pm. 
Large amounts of pumice and ash were emitted into the air. Two hours later the deposit of the ash 
cloud reached the city of Armero. Armero is a medium sized city with over 28000 residents. At 7:00 
pm the red cross ordered an evacuation of the town. But shortly after the evacuation was ordered the 
ash and pumice stopped falling and the evacuation was canceled. At 9:08 pm the volcano resumed 
its eruption. This time molten rock was violently emitted by the volcano. Furthermore the volcano 
produced pyroclastic flows. The pyroclastic flows began to melt the summit ice cap. The molten ice 
in combination with the pyroclastic flows caused several lahars.  A lahar is a volcanic mudflow 
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often composed of water, volcanic ash pumice, and clotted lava. One of the lahars followed the river 
Cauca and submerged the village Chinchina. The village was completely destroyed and 1927 people 
were killed. Other lahars followed the path of previous mudflows caused by previous eruptions. The 
largest of the lahars reached the city of Armero. Most of the buildings were destroyed and buried in 
a matter of minutes. 21000 people were killed in the city of Armero. Some people were killed after 
the eruption caused by their injuries or due to infection. In total 23000 people were killed and 
another 5000 people were injured.  The eruption of November 1985 was the second deadliest 
eruption of the 20eith century. The eruption of Mont Pelée (Martinique) was even worse in terms of 
the number of casualties. New houses were build by the government for those who survived the 
disaster. It is estimated that the 1985 eruption cost the Colombian government 7,7 billion dollars 
which is approximately 20 percent of the annual Colombian national product. 

The high number of casualties can be partly explained by the fact that most people were unaware of 
the pyroclastic eruption due to bad weather conditions at the summit. Prior to the 1985 eruption 
Colombian volcanoes were not daily and sufficiently monitored. Furthermore their were reassuring 
messages from the mayor via the radio and from a local priest over the church public address 
system. Most people did not belief that the volcano was about to erupt violently.  When the city of 
Armero was build the local authorities ignored the fact that the location of the new city has a high 
mudflow risk. The city of Armero was build on the remainders of previous mudflows.

Figure 1.4: The Nevado del Ruiz hazard map

Figure 1.5: The deadly lahar destroys the city of Armero.
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2 Problem description

2.1 Introduction
As a response to the 1985 eruption the Nevado del Ruiz volcano and four other potentially 
dangerous volcanoes are monitored by the Volcanological and Seismological Observatory at 
Manizales (VSOM Abbreviated). Seismic activity can be an important indicator for renewed 
volcanic activity. Therefore seismic activity is measured by several strategically placed seismic 
stations. The resulting digital measurements are send to the observatory for evaluation. See figure 
2.1

Figure 2.1: Earth crust movement is measured at several seismic stations and send to the 
observatory
Earth crust movement can have several different causes. It is of interest to the VSOM staff to 
determine the cause of an incoming seismic signal. For example is a given seismic signal the result 
of transport of magma in the earths crust? Or was it just caused by rockfall?   

Regions of interest in the seismic recordings are still classified by hand by the VSOM staff. This is 
a time consuming and labor intensive procedure. An automated system could be of great help 
releasing the human experts from the task of classifying regions of interest into the appropriate 
seismic event class. Finding regions of interest in a much longer seismic recording is not difficult 
because most earthquakes have a much higher amplitude compared to the neighboring background 
or noise signal. One could for example compare the current average signal amplitude with the 
neighboring average signal amplitude followed by a thresholding scheme. [5]  

This study is focused on classifying regions of interest into a subset of seismic signal classes using a 
pattern classifier. Thus in this study one is not interested in segmenting a region of interest from a 
much longer seismic recording. The regions of interest are given. A simplified pattern classifier 
according to [3]  is given in figure 2.2. The pattern classifier consists of a sensor block, a feature 
selection or extraction block and a classifier block. In this study the sensor block is a digital 
seismometer producing a continuous seismic recording followed by a segmentation stage producing 
only regions of interest from the continuous recording. The sensor block is given. The sensor 
representation is a region of interest. The feature selection/extraction block is responsible for 
reducing the dimensionality of the sensor representation and providing a relevant set of features for 
the classifier block. Ideally the feature selection/extraction block removes all redundant information 
but maintains all information that contributes to classification performance. The feature 
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representation is the result of applying the feature selection/extraction block on the sensor 
representation. Finally the classifier block predicts the event type based upon the given feature 
representation. Several possible solutions for the feature selection/extraction and classifier blocks 
are discussed and tested in this study.

Figure 2.2: Pattern classifier according to [3]
When classification of regions of interest is done by hand often frequency information is used in the 
form of a single spectrum. A single spectrum only contains frequency information, all time 
information is lost. Often different underlying physical causes of earth crust movement produce 
different frequencies and or combinations of frequencies. In other studies frequency information 
was already successfully used to discriminate between several seismic event classes. Therefore also 
in this study frequency information is used to discriminate between different seismic event classes. 
The typical segmented seismic recording is not stationary. Meaning that signal characteristics such 
as amplitude (see for example figure 2.2) and frequency vary in time. Furthermore the typical 
segmented seismic recording is the result of registering several different wave types. Several 
different often occurring wave types will be discussed in chapter 3.

Fundamental questions concerning the representation of the segmented seismic recordings are:

• Can one discriminate automatically and successfully between different seismic recordings 
using only a single spectrum? Or can one achieve better classification results using a time 
frequency representation such as a spectrogram?

• Whilst using the spectrogram representation is the ordering of the spectral frames of 
importance? If so how can one model the ordering successfully?

Questions of interest concerning the recordings of multiple stations are:

• Can one improve classification results by combining recordings from several different 
seismic stations?

• How well does the untrained and trained pattern classifier generalize to the recordings of 
other seismic stations?  
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3 Seismic waves (definition, medium and registration)

3.1 Seismic waves

3.1.1 Waves
What are seismic waves?  A wave is often understood intuitively as the transport of a disturbance  in 
space. It is tempting to say that waves always travel through a medium. But this statement is 
falsified by the fact that electromagnetic waves can travel through a vacuum.  Waves travel and 
transfer energy, often with no permanent displacement of the particles in the medium. It is possible 
that a wave travels from one point to another without the displacement of mass. But again there is 
an exception. For a standing wave it is difficult to say that it is moving from one point to the other. 
A standing wave can occur because the medium is moving in the opposite direction (at equal 
propagation velocity) compared to the wave. A standing wave can also be the result of two 
interfering waves traveling in opposite direction.  

3.1.2 Mechanical waves
A mechanical wave propagates or travels through a medium thanks to the restoring force of the 
medium. The restoring force tries to maintain an equilibrium in the medium. When the equilibrium 
is disturbed for example by local deformation of the medium, the restoring force tries to bring back 
the equilibrium inside the medium. Often the restoring force over compensates in response to a 
disturbance, causing a overshoot past the equilibrium. The result is an oscillating medium. A 
mechanical wave requires an initial energy input (the disturbance). Once the initial energy is added 
the wave will travel through the medium until all the initial energy is dissipated. Transport of the 
disturbance in the form of a mechanical wave costs energy. The propagation velocity of the 
resulting wave  depends on the elasticity and density of the material. The final propagation distance 
depends on the amount of initial energy and also on the elasticity and density of the material. 

3.1.3 Seismic waves
A Seismic wave is an example of a mechanical wave. The medium of seismic waves is mostly the 
earth. But seismic waves can also propagate through water and unfortunately through man made 
structures. Some seismic waves (P-waves) can travel through the air and are audible. Seismic waves 
just like other mechanical waves are caused by a disturbance of the medium. Often the disturbance 
is a sudden release of build up energy in the earths crust. But there are also other causes for seismic 
waves. The location inside the earths crust where most of the energy is released is also referred to as 
the hypocentrum. The location on the earths surface where the amount of  remaining energy is 
highest is called the epicentrum.     

3.1.4 Seismic wave types
Seismic waves can be roughly categorized into two types of waves. The categorization is based 
upon the way the seismic waves travel through the medium. Note that the enumeration of seismic 
wave types is not complete but the most important types are given. The first type of seismic waves 
are referred to as body waves. The second type of waves are called surface waves. Body waves can 
travel through the earths inner layers. Whereas surface waves like the name already suggests can 
only travel along the earths surface. Earthquakes usually radiate both body waves and surface 
waves. Surface waves are almost always responsible for most of the damage in the event of an 
earthquake. Because surface waves can only travel along the earths surface the energy of  surface 
waves is reduced for deeper earthquakes. But because surface waves radiate energy only in two 
dimensions energy decline is slower compared to the body waves. 
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Body waves in turn can be categorized into P-waves and S-waves.

3.1.4.1 P-waves

Primary waves or P-waves are longitudinal or compression waves. When a longitudinal wave is 
passing through a medium the temporary direction of movement of the particles inside the medium 
is the same or opposite compared to the wave propagation direction. The result is a consecutive 
sequence of compressions and expansions in the wave propagation direction. See figure 3.1. 
Primary waves have the fastest propagation velocity of all seismic wave types. As a result in the 
event of an earthquake P-waves are felt or measured first. P-waves can travel through any type of 
material. Gasses support compression waves (sound) therefore P-waves can also travel through the 
air in the form of sound.

3.1.4.2 S-waves

Secondary waves or S-waves are transverse waves. When a transverse wave is passing through a 
medium the temporary direction of movement of the particles inside the medium is perpendicular to 
the wave propagation direction. See figure 3.1 Gasses and fluids do not support S-waves. Secondary 
waves do not propagate as fast as primary waves but S-waves are faster compared to the surface 
waves. Therefore in case of an earthquake S-waves are felt or measured shortly after the arrival of 
the P-waves. The latency between P-waves and S-waves is depended on the distance between the 
hypocentrum and the point of measurement but is usually in the order of seconds up to several 
minutes. The typical propagation velocity of an S-wave varies between 4 to 5 kilometers per second 
in the earths crust up to 7 kilometers per second in the inner mantle. 

There are two important types of surface waves namely Rayleigh waves and Love waves. 

3.1.4.3 Rayleigh waves

Rayleigh waves are named after sir John William Strutt the third Baron of Rayleigh who 
matematically predicted the existence of this type of surface waves in 1885. A Rayleigh wave has a 
movement pattern that is very similar to how waves move on a lake or on the middle of an ocean. 
When a Rayleigh wave is moving along the surface of the medium, particles in the medium 
temporarily move in ellipse shaped orbitals. The ellipse shaped movement is almost entirely in a 
two dimensional plane. The normals to the two dimensional orbital planes are perpendicular to the 
wave propagation direction. See also figure3.1. Particles deeper in the medium move in smaller 
orbitals. The propagation velocity of Rayleigh waves is approximately 90% of the propagation 
velocity of secondary waves. But because Rayleigh waves can only travel along the surface the 
distance traveled  by Rayleigh is larger compared to the distance traveled by body waves. 

3.1.4.4 Love waves

The second important type of surface waves are Love waves, named after A.E.H. Love a British 
mathematician who created a mathematical model for this type of surface waves in 1911. When a 
Love wave is moving along the surface of the medium, particles in the medium temporarily move 
from left to right perpendicular to the wave propagation direction and parallel to the surface of the 
medium. The amplitude of particle motion often decreases rapidly with depth. See figure 3.1. The 
Propagation velocity of Love waves is often slightly faster compared to Rayleigh waves, but slower 
compared to body waves. Love waves typically carry a lot of energy. Often in the event of a large 
earthquake Love waves are the waves that are felt and cause most of the damage.     
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Figure 3.1 : Most common seismic wave types (left). A fictive (simplified) seismic recording 
(right). 

3.2 Seismic wave medium

Seismic waves travel mostly through the earth. The earth can be though of as a medium for seismic 
waves. The earth is made of several layers. The outer most layer is the solid earth crust. The earth 
crust is part of the lithosphere. In general the lithosphere is the rocky and solid outer shell of a 
planet plus part of the uppermost mantle. The lithosphere is elastic when pressure is applied. But the 
lithosphere ruptures and is brittle when too much pressure is applied. Seismic waves are often 
caused by the rupture of the lithosphere. The rupture of the lithosphere can be thought of as one of 
several disturbances that cause seismic waves. 

The layer directly beneath the earth crust is called the outer mantle or asthenosphere. The 
asthenosphere in turn is divided in two layers: The inner asthenosphere and the lowest part of the 
lithosphere. Unlike the lithosphere the inner asthenosphere is viscose and behaves like a very thick 
fluid. Although the inner asthenosphere is not solid it does allow S-wave propagation. The lowest 
part of the lithosphere is composed of the same material as the inner ashtenosphere but is much 
more rigid because of the lower temperature. The lithosphere “floats” on top of the asthenosphere. 
The temperature of the inner asthenosphere is estimated to be between 1400 and 3000 degrees 
Celsius. Subduction and plate tectonics in general are caused by convection currents in the inner 
asthenosphere and parts of the inner mantle.

The inner mantle is the layer directly beneath the outer mantle. The temperature of the inner mantle 
is estimated to be 3000 degrees Celsius. Although the temperature is higher compared to the inner 
asthenosphere most of the material in the inner mantle is solid. This is due to the immense pressure 
applied by the lithosphere and asthenosphere. Creeping slow viscous deformation of the material in 
the inner mantle is still possible.
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The inner mantle encloses the outer core. Although the pressure on the outer core is even higher 
compared to the pressure on the inner mantle, the outer core is fluid. This is because the chemical 
composition of the material in the  mantle is different from the chemical composition of the material 
in the outer core. Furthermore the temperature of the outer core is  higher compared to the 
temperature of the inner mantle. The earths mantle is mainly composed of silicon oxide and 
magnesium oxide. The outer core is mainly composed of iron and nickel. The outer core 
temperature is estimated to range from 4400 degrees Celsius up to 5100 degrees Celsius. Being in a 
fluid state the outer core does not allow S-wave propagation. 

The inner core of the earth is a primarily solid sphere composed of a nickel-iron alloy. The core is 
solid because of the gigantic pressure. Temperatures are estimated to vary between 5000 and 6000 
degrees Celsius. These temperatures are similar to the temperatures at the surface of the sun.

The layered structure is mostly determined from studies of how seismic waves (S-waves and P-
waves) behave as they pass through the earth.

Figure 3.2: A schematic cut-out of the earth revealing the discussed layers (left). Propagation 
paths of P-waves and S-waves (right).

The propagation velocity of a seismic wave depends on the elasticity and density of the medium the 
wave is traveling through. The earth is composed of several layers with varying densities. As a 
result seismic waves travel with a varying propagation velocity between and within layers. For 
example the density of the inner mantle is higher close to the outer core compared to the density of 
the inner mantle close to the asthenosphere. In general the propagation velocity of seismic waves 
increases with depth whilst traveling through the same type of material (Pressure and density 
increases downward). See figure 3.2.

 The path of a seismic wave within a layer is bend because of the gradient in density. At strong 
density edges between layers  the path of a seismic wave is (almost) discontinuous. The path of a 
seismic wave is bend away from the normal of the density edge if the seismic wave is entering a 
denser material. Vice versa the path of a seismic wave is bend towards  the normal of the density 
edge if the seismic wave is entering a less dense material.  See also figure 3.2.   

The two most important discontinuities are referred to as the Gutenberg-discontinuity and the 
Mohorovicic-discontinuity. The latter is also often abbreviated to  Moho-discontinuity. The Moho-
discontinuity is measured at a depth of between 20 to 40 kilometers below the earths surface for 
continental plates and 4 to 8 kilometers below the ocean floor. The Moho-discontinuity is believed 
to indicate the edge between the oceanic and continental crust and the underlying mantle. The 
Gutenberg-discontinuity occurs within the earths interior at a depth of approximately 2900 
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kilometers below the surface. At this depth there is again an abrupt discontinuity in seismic wave 
paths and velocities. It is believed that the Gutenberg-discontinuity indicates the edge between the 
solid inner mantle and the liquid outer core.

Figure 3.3: Body wave Propagation velocity versus depth. [2]

3.3 Seismic wave registration

Seismic waves often cause a temporary movement of the earths crust. The amplitude of this 
movement can be as much as several decimeters near the epicentrum. These kind of movements are 
certainly felt by humans. On larger distances from the epicentrum the amplitude of movement is 
often only a fraction of a millimeter. These kind of movements are certainly not felt by humans 
Accurate quantification of the amplitude of earth movement in time is very interesting in many 
fields of science. For example the knowledge about the layered structure of the earth is largely 
courtesy to accurate quantification of earth crust movements in time. Furthermore accurate 
quantification of earth crust movement also helped to locate sources of earthquakes such as 
subduction zones. In the field of volcanic seismology accurate seismic measurements help to predict 
future volcanic eruptions.

There are three main terms for seismic wave indication and registration devices. 

The simplest of seismic wave registration devices are referred to as seismoscopes. Seismoscopes 
only register the occurrence of a seismic wave and perhaps provide the user with additional 
information such as a simple indication of the seismic wave magnitude. The first known 
seismoscope was invented in china by Zhang Heng in the year 123 AD. According to remaining 
texts the instrument was named “Houfeng Didong Yi“ which translates to instrument for measuring 
the seasonal winds and the movements of the earth. An ingenious mechanical system could release 
one of eight bales each suspended in the mouth of a bronze dragon to indicate the occurrence and 
direction of a passing seismic wave. Seismoscopes do not provide the user with a continuous 
recording of ground movement.  

Seismographs and seismometers do provide the user with a continuous recording of ground 
movement in time. The terms seismograph and seismometer are often used to indicate the same type 
of instrument but the term seismograph is more applicable to the older type of instruments where 
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both the quantification and registration of earth movement is done in one instrument. Thus a 
seismograph is a instrument that translates and amplifies the ground movement often mechanically 
and also does the registration. Whereas the functions of quantification and registration are clearly 
separated in case of a seismometer. 

The first difficulty in designing and constructing a seismograph or seismometer is to suspend part of 
the measurement instrument such that this part remains in a fixed position whilst the earth crust and 
everything that is attached to it moves. All seismographs and seismometers use a weight, often also 
referred to as the internal mass. The internal mass is somehow attached to the instruments frame 
and can move relative to it. In a very early (basic) seismograph design the internal mass is 
suspended from a tall fixture resulting in a pendulum. The pendulum can only move in its own 
resonance frequency which is dictated by the length of the pendulum. If the pendulum is long 
enough it will hardly move as a result of an earthquake. But the required length of the pendulum 
does not allow for compact instruments. Therefore in more complicated seismograph designs the 
internal mass is suspended using springs and or multiple anchor points to achieve the same low 
resonance frequency. In some modern seismometers the internal mass is suspended in a magnetic or 
electrostatic field. In these instruments the internal mass is kept nearly motionless (relative to the 
instruments frame) by a electronic negative feedback loop. The force required to keep the internal 
mass in place is a measure of earth crust movement. 

The second difficulty in designing and constructing a seismograph or seismometer is to measure 
and register the movement of the instrument relative to the internal mass. In our very (basic) 
seismograph design the relative movement might be measured and registered using a pen that is 
attached to the internal weight and a paper transport mechanism attached to the instruments frame. 
See also figure 3.4 In a more involved seismograph design a registration device such as a pen might 
be attached to a set of levers that mechanically amplify the relative movement of the internal 
weight. Again the recording might be kept on a continuous sheet of paper that is fed through the 
instrument via a paper transport mechanism. Nowadays the movement of the instrument relative to 
the internal mass is measured electronically, the resulting electronic quantity is typically fed to an 
analog to digital converter (ADC) turning the analogous electronic quantity into a time discrete and 
amplitude discrete signal. The resulting digital seismic recording is typically stored in computer 
memory awaiting further processing and or inspection.                   
 

Figure 3.4: Basic seismograph design with pendulum (left). Modern seismometer with digital 
signal registration (right).
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3.4 Volcanic seismic signals

The result of registering earth crust movement using a  seismometer is called a seismic signal. 
Volcanic seismic signals are seismic signals that are caused by volcanic activity. Prior to an eruption 
a volcano typically produces many thousands of (small) earthquakes. Often earthquakes can be used 
successfully to predict inbound eruptions. Seismic signals that are specific to volcanic activity are 
caused by two main types of physical phenomena. 

The withdrawal or injection of magma can cause pressure changes in solid rock. These pressure 
changes can cause the solid rock to break and crack. The resulting earthquakes are called volcanic 
tectonic earthquakes. Volcanic tectonic earthquakes are often an indication for renewed volcanic 
activity. Volcanoes can produce VT earthquakes for several days up to years prior to a possible 
eruption. Therefore volcanic tectonic earthquakes are not a reliable source for eruption prediction. 
Volcanic tectonic earthquakes or VT earthquakes often have a relative high frequency usually 
somewhere between one and five hertz.

The unsteady transport of magma through the cavities and folds in the earth can also cause a second 
type of earthquake. A sudden blockage in the path of the traveling magma can cause something that 
is similar to the “water hammer”. The “water hammer” can occur when water is traveling through a 
pipe and suddenly the passage is blocked for example by closing the tap. Instead of stopping 
instantaneously the water bounces against the tap and creates a pressure wave that moves back and 
forward through the pipe. Similar things can happen during the transport of magma inside a 
volcano. The resulting earthquakes are called long period earthquakes or LP earthquakes. Long 
period earthquakes often have a lower frequency compared to volcanic tectonic earthquakes usually 
between half a cycle per second up to three cycles a second. LP earthquakes are  more informative 
to seismologists compared to VT earthquakes. 

Volcanic tremor is a long period earthquake but one that lasts much longer than a long period 
earthquake. A single volcanic tremor can last from several minutes up to months. Frequency 
characteristics are similar compared to LP earthquakes. 

Finally a hybrid earthquake is a combination of a volcanic tectonic earthquake followed by a long 
period earthquake or vice versa. The occurrence of a VT earthquake might trigger a LP earthquake 
or the other way around, the result is a hybrid earthquake.  

Earthquakes that are caused by volcanic activity do travel the same way compared to normal 
earthquakes. Like normal earthquakes P-waves are the first to arrive at the point of measurement 
followed by S-waves and surface waves. 
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4 Dataset

4.1 Introduction

Prior to the eruption of the Nevado del Ruiz volcano in 1985 Colombian volcanoes were not daily 
and sufficiently monitored.  As a response to the devastating eruption in 1985 the Colombian 
government decided to start monitoring potentially dangerous volcanoes more regularly. The 
institute responsible for monitoring these potentially dangerous volcanoes is the volcanological and 
seismological observatory at Manizales or VSOM abbreviated. Earth crust movement is measured 
and stored digitally from several strategic locations resulting in an increasingly large database of 
seismic recordings. Nowadays classification of seismic signals is done by the VSOM staff by visual 
inspection of the signals. Needless to say that this manual classification of regions of interest is time 
consuming and labor intensive. 

Although the number of available recordings from the volcanological and seismological 
observatory is huge in this study a much smaller subset of segmented and labeled recordings is used 
because of practical and computational reasons. Thus the recordings in this smaller subset were first 
part of much longer continuous recordings possibly containing hours of less interesting background 
or noise signal. Furthermore a single label is assigned to each segmented recording. Both the 
segmentation and the labeling was done by human experts. The ground truth labels are used to test 
classification performance. The recordings in our subset are approximately one minute in length but 
recording lengths do vary. The recordings were digitized using a sampling frequency of 100.16 Hz 
and a amplitude resolution of 12 bits. The sampling values resulting from the 12 bit analog to digital 
converter are unsigned meaning that the sample values vary between 0 to 4095. The offset on the 
sample values should be  approximately 2096 but often the offset deviates from this value. 

In our subset recordings from five seismic stations are included. The seismic stations included are 
ALF, BIS, OLL, REC and REF. The recordings are coherent, meaning that any  recording i
corresponds to the same event for all seismic stations (Same event different measurement 
locations). The corresponding recordings are not necessarily exactly aligned in time though. 

Four signal classes are included in our subset. The signal classes included are  LP, RE,TL and VT. 
The VT and LP classes correspond to volcanic tectonic and long period seismic signals respectively. 
The cause of these signal classes was already discussed in the previous chapter (page 15). Because 
of the subduction process of the Nazca oceanic plate with the south American continental plate local 
tectonic earthquakes not caused by volcanic activity also do frequently occur.  It is of interest to the 
VSOM staff to discriminate between local tectonic earthquakes not caused by volcanic activity and 
earthquakes that are caused by volcanic activity. Local tectonic earthquakes correspond to the TL 
(sismos Tectónicos Locales) signal class.  The RE signal class correspond to regional seismic 
events. This class of seismic signals is very similar to the TL class. Regional seismic events also 
originate from an active fault. The difference between TL events and RE events is the distance 
between the hypocentrum and the point of measurement. RE events are more distant compared to 
TL events. A typical measure for hypocentrum distance is the difference between P-wave and S-
wave arrival times.   

The data-set received for this study also contains four additional signal classes but these signal 
classes are not included in this study because these signal classes are very poorly sampled in the 
received data-set.  (poorly sampled = only a few examples per signal class) 

In figure 4.1 a example of the time representation for each included signal class is given. 
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Figure 4.1: Example of a LP, RE,TL and VT event
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5 Feature selection/extraction

5.1 Introduction
One of the fundamental questions concerning the representation of the seismic recordings is if it is 
better to use a single spectrum or to use a spectrogram per recording. In this chapter a  justified 
dimensionality reduced spectrogram is developed using a set of existing signal processing and 
pattern recognition techniques. The resulting spectrogram representation is compared to the single 
spectrum representation using a Bayes classifier that does not assume/incorporate frame ordering. 

In figure 5.1 a segmented seismic recording is produced by the sensor block. This recording is also 
referred to as the sensor representation. The dimensionality of the sensor representation is often too 
high for direct classification. A typical segmented seismic recording contains thousands of 
measurements or variables. A solution is to reduce the number of measurements.     

Feature selection is concerned with selecting those d variables that contribute most to 
discrimination ( d  is an a priori chosen desired number of variables). An optimal feature selection 
solution is to evaluate all possible combinations of d variables using a chosen optimality criterion. 
The criterion function is over all possible combinations of d variables. But performing optimal 
feature selection directly on the sensor representation is often too computationally expensive even 
for a small number of variables. Sub optimal feature selection strategies exist. These sub optimal 
strategies reduce the number of evaluated combinations dramatically but are still impractical to 
apply directly on our sensor representation. Therefore in this study no feature selection techniques 
are used in the feature selection/extraction block. A combination of a feature extraction step 
followed by a feature selection step is possible. [12] 

Feature extraction is a transformation of the sensor representation (using all variables) to a feature 
representation with a reduced number of variables. The criterion function is taken over all possible 
transformations of the variables. Of-course the number of possible transformations is very high 
possibly infinite. But usually the class of transformation is a priory specified, bounding the number 
of possible transformations. The result is that feature extraction techniques are often far less 
computationally expensive compared to feature selection techniques. Furthermore feature extraction 
techniques provide both  linear and non-linear transformations of the sensor representation whereas 
feature selection techniques only provide axis aligned projections of the sensor representation. 
Therefore in this study feature extraction techniques are used to reduce the dimensionality of the 
sensor representation. 

Figure 5.1: Feature selection and extraction and the pattern classifier
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5.2 Feature extraction pipeline
To reduce the number of possible transformations in our feature extraction block a class of 
transformations is specified a priory. The class of transformations used in this study is a 
concatenation of (signal processing and pattern recognition) blocks. See also figure 5.2. Each block 
in the feature extraction pipeline modifies or transforms the sensor representation or intermediate 
representation (hopefully) towards a relevant set of features in the feature representation. A short 
explanation/justification for each block or pair of blocks is given below.
     

Figure 5.2: Feature extraction pipeline used in this study

5.2.1 Offset removal 
The first block in our feature extraction pipeline is the offset removal block. The offset removal 
block is responsible for removing the sample offset that was introduced by the unsigned analog to 
digital converter. Some signal transformations assume a zero mean recording. In this study the 
sample offset is removed by calculating the mean value of the given segmented seismic recording 
followed by subtracting this mean value from the same seismic recording. One could also use a high 
pass filter to achieve approximately the same thing. But a typical high pass filter (with a flat 
magnitude response in the pass band) also introduces an undesired step response in each segmented 
seismic recording [7]. In case of a continuous recording the low pass filter would have been a better 
solution. The sample probability density functions (per class) of the mean values of our selected 
data-set are given in figure 5.3. Clearly the probabilistic distance between these classes is very 
small. This indicates that the mean values do not contribute  to classification performance, and are 
therefore removed. A quantitative justification is given in the results section. 

Figure 5.3: Sample probability density functions of the mean values          
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5.2.2 Framing
A typical segmented seismic recording contains several seismic wave types such as P-waves and S-
waves. Therefore a typical segmented seismic recording is not stationary. Meaning that signal 
statistics such as  the mean, variance and frequency information change over time. Therefore it is 
interesting to measure signal statistics in the segmented seismic recording at several instances in 
time. The process of dividing a longer time series such as our segmented seismic recording into 
shorter possibly overlapping frames is also referred to as framing. The frame length and the amount 
of overlap between consecutive frames are parameters of interest. Overlapping frames introduce 
more measurement and the amount of redundancy between measurements increases with the 
amount of overlap. The advantage of overlapping frames is an increase in time/transform space 
resolution, reducing the probability of missing short but important transients in the given recording. 

5.2.3 Windowing and transform 
In this study two frequency transformation methods are used.

5.2.3.1 Discrete Fourier transform
The first transformation method is a non-parametric discrete Fourier transform. The discrete Fourier 
transform or DFT abbreviated transforms a discrete and finite sequence (such as the frames 
resulting from the framing step) into its frequency representation by projecting this sequence on a 
finite set of discrete cosine and sine functions. The resulting frequency representation is complex. In 
this study the presented sequences are in time domain. The DFT assumes that  the presented time 
domain sequences are exactly one period of a periodic signal and that this periodic signal repeats 
itself towards infinity in both directions. Thus the endpoints of the time domain signal are 
interpreted as if they were connected together. In a practical situation the time domain information 
in a given frame is seldom precisely one period of a periodic signal. The result is that the endpoints 
are discontinuous. The discontinuous endpoints introduce frequencies in the resulting spectrum that 
are not really present. This is also referred to as spectral leakage. Applying a window to the time 
domain information in each frame before computing the DFT can provide a better or smoother 
endpoint connection. The result is reduced spectral leakage.  But spectral leakage reduction also 
reduces spectral resolution. Choosing a window function is always a trade-off between spectral 
leakage suppression and spectral resolution. The output of a DFT is half redundant when presented 
with a real input. Meaning that one can obtain complete information by only looking at 
approximately half of the complex outputs. The other half is removed. The magnitude squared is 
computed from the first half of the complex outputs. For computational reasons the fast Fourier 
transformation is used instead of the DFT. The FFT is more restrictive compared to the DFT but the 
resulting frequency representations are identical.    

X [k ]=∑
n=0

N−1

x [n]e−i 2/ N  kn     X [t ,k ]=∑
n=0

N−1

w[n] x[ tn]e−i 2/ N kn

Equation 5.1: Discrete Fourier transform for periodic signals according to [6][7] (left) Short 
time windowed Fourier transform (right)

5.2.3.2 Yule-Walker auto-regression
The second transformation method used in this study is a parametric auto-regressive method. 
Instead of projecting the given sequence on a finite set of discrete cosine and sine functions auto-
regressive (AR) methods model the sequence as being the result of a linear model that is driven by 
white noise. The linear model is given in equation 5.2. The problem in AR analysis is to find good 
parameters a i for the linear model given a sequence x [n ] . Several methods of finding the 
parameters exist. In this study the AR method relies on the efficient inversion of the Toeplitz auto-
correlation matrix using the Levinson-Durbin recursion. This AR method is also referred to as the 
Yule-Walker AR method. The Yule-Walker AR method assumes that the measurements outside the 
given finite sequence are zero. To avoid large prediction errors near the edges of the given sequence 
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again a window is applied to the given sequence before applying the Yule-Walker AR method. The 
AR method used in this study also assumes that the presented sequence is zero-mean.  The resulting 
parameters can be used to estimate the magnitude spectrum of the given finite sequence. Or the 
parameters can be used directly for classification. The number of frequency bins in the magnitude 
spectrum can be arbitrarily high because the magnitude response is synthesized from the 
parameters. But in this study the number of frequency bins in the output is half the number of 
elements in the finite input sequence. (Equal number of frequency bins compared to the discrete 
Fourier transform) The number of parameters or filter coefficients used (model order) is a parameter 
of interest. A possible advantage of a AR spectrum estimation over the discrete Fourier transform is 
the possibility to control the complexity of the resulting magnitude spectrum using the model order. 
Furthermore the overall amplitude of the recording is expressed in one variable e  .

x [n]=∑
i=1

P

a i x[n−i]e            ∣H e
i w ∣=∣ e

1a1 e
−i w⋯a p e

−i w p∣
Equation 5.2: Linear autoregressive model (left). Magnitude spectrum estimation using filter 
coefficients a i  (right).

5.2.4 Scaling and dimensionality reduction
In this study three dimensionality reduction methods are used.

5.2.4.1 Discrete cosine transform
The first dimensionality reduction method used in this study is the discrete cosine transform or DCT 
abbreviated. The DCT is both data independent and unsupervised. The DCT is very similar  to the 
discrete Fourier transform. But the resulting output of the DCT is real. The presented sequence is 
only projected (linearly) on a finite set of discrete cosine functions. Furthermore the discrete cosine 
transform assumes that the presented input is only one half of a periodic sequence. The other half is 
identical to the first half but mirrored. Thus one assumed period is the concatenation of the 
presented input directly followed by the presented input mirrored. The resulting assumed periodic 
signal does not have end point discontinuities and therefore no prior windowing operation is 
required. When the presented input is correlated the discrete cosine transform is able to retain a lot 
of (comparable to the data dependent principle component analysis) the original variance in a much 
smaller number of variables (dimensionality reduction) [8]. Usually most of the original variance is 
packed in the first couple of variables. A data independent selection of the DCT variables was used. 
The number of DCT variables used is a parameter of interest. Several variants of the DCT exist with 
slightly modified definitions. The DCT used in this study is given in equation 5.3. Prior to applying 
the DCT the presented sequence is scaled using a data independent logarithmic transformation. 

X [k ]=w[k ]∑
n=0

N−1

x [n]cosN n1
2k w [k ]= 1

N
k=0

 2
N

k=1⋯N−1

Equation 5.3: Discrete cosine transform [8]

5.2.4.2 Principle component analysis
The second dimensionality reduction method used in this study is the principle component analysis. 
The principle component analysis or  Karhunen-Loeve 1 transform is data dependent but 
unsupervised. Meaning that one does need to use a representative training set to find a good 
transformation. Furthermore a different training set will in general give you a different 
transformation. But no label information is used to find the transformation. The principle 
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component analysis is a linear projection of the given sequence x  on the sorted eigenvectors A   
of the sample covariance matrix   . See equation 5.4. The sorting order of the eigenvectors is 
determined by the magnitude of the corresponding eigenvalues. Larger eigenvalues are more 
important. There is no other linear transformation that can maintain more of the original variance in 
a small number of variables than the principle component analysis. The principle component 
analysis is sensitive to scaling. Therefore prior to applying the principle component analysis the 
input variables are scaled to zero mean and unit variance (Data dependent but unsupervised 
scaling). The number of principle components used is a parameter of interest. 

=1
n∑j=1

n

 x j−m x j−m
T     

eigenvectors  =[X 1 , X 2 ,⋯,X k]
eigenvalues =[1 ,2 ,⋯,k ]
sort {1 , X 1},{2 , X 2},⋯,{k , X k}=[X 1 ,⋯,X k]
A=[X 1 ,⋯,X p] PCA=AT x

Equation 5.4: Sample covariance matrix (left). Principle component analysis is the projection 
of the original sequence x   on the  p   most important eigenvectors (right).

5.2.4.3 Fisher mapping
The third dimensionality reduction method used in this study is the Fisher mapping. The Fisher 
mapping is also referred to as the Karhunen-Loeve 5 transform. The Fisher mapping is both data 
dependent and supervised. Thus a labeled training set is required to find a good transformation. The 
Fisher mapping is again a linear projection. The presented sequences are projected on the sorted 
eigenvectors of the matrix product of the inverse sample within class covariance matrix and the 
sample between class covariance matrix. See also equation 5.5.  Again the sorting order of the 
eigenvectors is determined by the magnitude of the corresponding eigenvalues. Larger eigenvalues 
are more important. The within class covariance matrix is defined as the weighted sum of the 
sample class covariance matrices   i.  The between class covariance matrix is defined as the 
weighted sum of squared class mean mi and sample mean m  difference matrices ( mi  and 
m  are both column vectors). The Fisher mapping maximizes (linear) class separability. 

Sw=∑
i=1

C ni
n
i

S b=∑
i=1

C ni
n
mi−mmi−m

T

       

eigenvectors S w−1 S b=[X 1 , X 2 ,⋯,X k]
eigenvaluesS w−1 S b=[1 ,2 ,⋯,k ]
sort {1 , X 1},⋯,{k ,X k}=[X 1 ,⋯, X k ]
A=[X 1 ,⋯,X p] fisherm=AT x

Equation 5.5:  Sample within class covariance matrix and sample between class covariance 
matrix (left). Fisher mapping is the projection of the original sequence x   on the  p   most 
important eigenvectors (right).

In figure 5.4 The feature extraction pipeline is given with typical intermediate representations and 
feature representation. In figure 5.4 the uppermost subplot is the unprocessed sensor representation, 
and the subplot at the bottom of the figure is the resulting feature representation. In the third up to 
and including the sixth subplot intensity is color coded using a color map. Dark blue corresponds 
to small intensity values and dark red corresponds to large intensity values. (A colorbar was not 
included in this plot because of limited space)
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Figure 5.4: Feature extraction pipeline and typical intermediate representations and feature 
representation.   
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5.3 Experimental setup
5.3.1 Introduction
In the previous paragraph the class of transformations for the feature extraction block used in this 
study was discussed. But this does not already completely constraint the feature extraction pipeline. 
One can still choose among several blocks and combinations of blocks for the feature extraction 
pipeline. Furthermore the chosen blocks often also have parameters of interest that can vary. Two 
questions come to mind:

• What are good combinations of blocks?

• What are good parameters for the chosen blocks?

5.3.2 Testing criterion
One needs a criterion to decide which combinations of blocks and block parameters are good. 
Examples of these criteria are classification error/performance, class overlap/seperability and 
information loss.

Classification error/performance can be directly estimated using techniques such as the holdout 
estimate and Cross validation. The holdout estimate method splits the available data once into two 
mutually exclusive sets. These sets are often referred to as the training set and test set. The training 
set is used to train a classifier and if required to find a good transformation or projection for a data 
dependent dimensionality reduction method such as the PCA or Fisher mapping. The test set is only 
used to test classification error/performance. The cross validation method repetitively splits the 
available data into a mutually exclusive training set and test set. Each example in the available data 
is used only once for testing. Thus computational complexity increases with a decreasing test set 
size. A relatively large training set results in a well trained classifier but a unreliable 
error/performance measurement. Vice versa a relatively large test set results in a good 
error/performance measurement but this measurement is obtained using a possibly insufficiently 
trained classifier. Choosing a training set/test set proportion is always a tradeoff between the two. 
Often the available data is split in a 50% training set and  50% test set.

Probabilistic distance measures use the class conditional density functions to measure class 
overlap/separability. When the class conditional density functions can be estimated well, 
probabilistic distance measures are a very good indication for classification performance on unseen 
data. Furthermore probabilistic distance measures do not assume any type of distributions. One of 
the main disadvantages of the probabilistic distance measures is that they require an (accurate) 
estimate of  the class conditional density functions. Second they also involve  numerical integration 
which can be very very expensive if no explicit class conditional density functions are available. 
Most of the probabilistic distance measures simplify when a normal distribution is assumed. But 
this assumption can not always be justified.

Finally several easy to compute scatter based criteria exist.  These criteria are based upon the 
sample within class covariance matrix, the sample between class covariance matrix and the 
(unsupervised) covariance matrix. When using scatter based criteria often the aim is to find as set of 
features for which the within class spread is as small as possible and the between class spread is as 
large as possible. The scatter based criteria often express the within-class spread and the between 
class spread in one single number.  

In this study the criterion used is classification performance. The best classification performance 
estimates are the direct estimates such as Cross validation and the  holdout estimate.  These 
methods are far more expensive compared to the easy to compute scatter based criteria but provide 
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better classification performance estimates. In this study the probabilistic distance measures are not 
practical because the explicit class conditional density functions are unknown.

In this study the holdout estimate was used. The holdout estimate was repeated ten times each with 
a different random permutation of the data. The resulting ten classification performances were 
averaged to reduce the performance estimate variance and bias. The Mersenne twister random 
number generator was used in creating the random permutations of the data. In this study prior to 
each experiment the random number generator was seeded with a fixed seed. Thus all the 
permutation sequences were identical for each experiment.

5.3.3 Data set
In all the experiments the selected data were split in 75% for training and 25% for testing. From the 
received data set  the first 133 examples or events were selected from each class. Thus 100 
examples per class were used to train the classifier and if applicable to find a good data dependent 
transformation. The other 33 examples were only used for testing.  Furthermore for these 
experiments only the examples originating from the OLL station were used. For these experiments 
equal class priors were assumed.  This assumption is not supported by the empirical class 
frequencies in the received data set. In the received data set volcanic tectonic (VT) events, long 
period (LP) events and local tectonic events (TL) have approximately equal class frequencies. But 
in the received data set regional events (RE) occur approximately three times as often.                   

5.3.3 Classifier
Because the holdout method was used to estimate classification performance, one also requires a 
classifier. For these experiments the Bayes classifier was used. When presented with the true class 
posterior probability density function the Bayes classifier is optimal. Or in other words one can not 
attain better classification performance when the true class posterior probability density function is 
known. The Bayes classifier is a simple and very flexible classifier often providing very good 
classification performance, especially when there are a lot of training examples in a low 
dimensional feature space (Which is the case in these experiments).

In practice the true class posterior probability density function is not known. Instead a multivariate 
nonparametric kernel density method was used to estimate the class conditional density functions 
from the training set (see also equation 5.6). One class conditional density function was estimated 
per class. Thus for each random permutation of the selected data four class conditional density 
functions were estimated.  A nonparametric kernel density method was used because visual 
inspection of the selected examples in their resulting feature space did at least not always suggest 
towards a parametric density function. When using a kernel density method one also needs to 
decide on the kernel to use. In these experiments a multivariate normal kernel was used. In practice 
the normal kernel is used most often. The choice of the kernel is not critical but the normal kernel 
might give slightly better performance because of its infinite extend in the feature space. Additional 
computational requirements of the normal kernel are not so much of an issue anymore. 

The smoothing parameter was optimized for each presented training set (one smoothing parameter 
per class) using  likelihood cross validation on the training set [3]. Likelihood cross validation was 
repeated ten times and the resulting smoothing parameters were averaged. Likelihood cross 
validation was used because it does not assume an underlying distribution. A bounded interval 
greedy search algorithm was used to maximize the likelihood as a function of the smoothing 
parameter during likelihood cross validation. Although there is no guarantee that the likelihood 
function only has one global maximum, inspection of the likelihood function on several random 
permutations  always showed a well behaved function with one global maximum and no local 
maxima (see also figure 5.5).  One smoothing parameter for all dimensions was used because of 
computational reasons. Optimizing a high number of smoothing parameters using likelihood cross 
validation is very time consuming. 

To reduce the time required for these experiments a highly optimized GPU (graphics processor unit) 
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implantation was developed and used for these experiments. Kernel density estimation is massively 
parallel and scales extremely well on GPU architectures[4]. The typical speedup over my optimized 
single threaded c implementation was approximately 200x (Intel core 9550 vs nVidia 8800 GTS). 
Note that the GPU implementation uses single precision floating point math and fast 
approximations for the exp and log functions. But the differences between the resulting densities 
was marginal.    

All frames within a single example or event were assumed to come from the same distribution. 
Furthermore all the frames within a single example or event were assumed to be independent of 
each other. Thus frame probabilities were computed independent of each other using one 
conditional density function per class. The probability on a single example or event is the product 
off the assumed independent frame probabilities. Because of numerical precision log probabilities 
were used. This approach allows for segmented seismic recordings of variable length. In figure 5.5 
an example of a typical class conditional density function for a given training set (blue circles) is 
given. Each blue circle in figure 5.5 is a single frame from one of the training examples. The 
number of frames varies per training example. Furthermore the number of frames also depends on 
the window length and the amount of overlap between frames. One single training example is 
highlighted in green. The estimated multivariate probability density function is color coded. Dark 
blue corresponds to small log probabilities and dark red corresponds to large log probabilities.   

 
p x∣ j =

1
nh p∑

i=1

n

K1h  x−xi xi∈ j
               

K z= 1
2p /2

exp{−zT z2 }
Equation 5.6: Multivariate nonparametric kernel density estimation formula (left). 
Multivariate normal kernel (right).

Figure 5.5: Two dimensional class conditional density estimation on a given training set (left). 
log likelihood as a function of the smoothing parameter showing a well behaved function with 
one global optimum (right).
5.3.4 Accuracy of performance estimates
Although pessimistically biased, using the hold-out estimate one can easily compute a confidence 
interval on the true classification performance using a set of independent test samples drawn from 
the same distribution as the training set. According to [3] the conditional density function of the true 
classification performance cpT is binomial distributed (see equation 5.7). Actually in [3] the class 
conditional density function is given for the true error rate but both functions are identical. Using 
the Bayes rule and the assumption that the true classification performance does not depend on the 
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number of test examples one can find the posterior density function on the true classification 
performance (see also equation 5.7). In equation 5.7 n  is the number of test samples used to 
estimate the true classification performance. k  is the number of correct classified objects. In these 
experiments the number of objects used to estimate classification performance is 132. Using the 
posterior density function from equation 5.7 one can find a maximum 0.95 confidence interval of 
length 0.168 for k  equals 66. This is the largest confidence interval for a single holdout estimate 
using 132 test samples.

P k∣cpT ,n=nkcpTk 1−cpT n−k     P cpT∣k ,n= cpT
k 1−cpT 

n−k

∫cpTk 1−cpT n−k dcpT 
Equation 5.7: Conditional density function of the true classification performance (left). 
Posterior density function of the true classification performance (right).   
However,  in these experiments the holdout estimate was repeated ten times. The ten resulting 
classification performances were averaged reducing the bias and standard deviation of the 
performance estimates. Several statistical summary tests such as the Shapiro-Wilkinson tests show 
that a typical sample of ten classification performances are normally distributed. Therefore one can 
use the student distribution to compute confidence intervals for the mean (the variance is unknown) 
The confidence interval is given in equation 5.8. In equation 5.8 xn  Is the sample mean and sN  is 
the sample standard deviation. 

 xn−tn−1, / 2

sn
N

, xntn−1, /2

sn
N   xn−2.228

sn
10

, xn2.228
sn
10

Equation 5.8: Confidence interval for a normal distribution with unknown variance (left). 
0.95 Confidence interval for a normal distribution with unknown variance using ten samples 
(right).
A typical example of classification performance estimates as a function of a parameter of interest 
are given in figure 5.6. In figure 5.6 the upper and lower boundaries of the confidence interval are 
given (dotted red lines) Clearly in this example classification performance does not depend much on 
this chosen parameter of interest. But classification performance does seem to improve slightly 
towards the higher numbers for the parameter of interest. In these experiments the typical 0.95 
confidence interval length equals 0.05 or 5%.  

Figure 5.6: Typical example of classification performance estimates as a function of a 
parameter of interest.       
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5.4 Results
5.4.1 Magnitude squared FFT and DCT
In figure 5.7 experimental results of the block combination magnitude squared FFT and DCT are 
given as a function of the window overlap and window length (all other parameters remained fixed). 
A Hamming window was used for all the experiments. Furthermore the spectra were projected on 
the first four DCT components. The window overlap is given on the horizontal axis and the window 
length is given on the vertical axis. Classification performance is both color coded and given 
quantitatively. A window overlap of 0 means that there is no overlap between consecutive frames 
but there are also no unused samples between two neighboring frames. The amount of window 
overlap is proportional. For example a window overlap of 7/8 in combination with a window length 
of 256 means that consecutive frames  are overlapping with 224 samples. In figure 5.7 classification 
performances are close thus for this block combination the window overlap and window length are 
not really critical. Or at least not as critical as one might expect. However classification 
performance is marginally better for a window overlap of 3/4 in combination with a window length 
of 256 and a window overlap of 7/8 in combination with a window length of 128. Clearly the data 
dependent and unsupervised feature extraction method performs best with a relatively high number 
of resulting frames in the feature space. But a window length of 64 is probably too short to capture 
important signal characteristics. This window length is therefore not included in the other 
experiments (this window length performed worst and also required most computations).             

Figure 5.7: Classification performance as a function of the window length and window 
overlap using a discrete Fourier transform in combination with the DCT.

5.4.2 Magnitude squared FFT and PCA
In figure 5.8 experimental results of the block combination magnitude squared FFT and PCA are 
given as a function of the window overlap and window length. Again classification performances 
are close. The resulting spectra were projected on the first four principle components. Using more 
principle components did not improve performance. Again a Hamming window was used. In figure 
5.8 a completely different pattern emerges. The data dependent but unsupervised feature extraction 
method clearly performs better with longer window lengths. This is also what one would expect. A 
high number of frames could introduce significant but undesired within class projection directions. 
Furthermore it might be possible that longer window lengths result in slightly more discriminative 
feature vectors compared to the shorter window lengths. And that the supervised feature extraction 
method is able to take advantage of these more discriminative feature vectors whereas the 
unsupervised method can not. Best classification performances using this method were obtained 
using a window overlap of 1/2 and a window length of 2048.   
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Figure 5.8: Classification performance as a function of the window length and window 
overlap using a discrete Fourier transform in combination with principal component analysis.

5.4.3 Magnitude squared FFT and Fisher mapping
In figure 5.9 experimental results of the block combination magnitude squared FFT and Fisher 
mapping are given as a function of the window overlap and window length. Because a Fisher 
mapping is used the resulting magnitude spectra were projected on a three dimensional feature 
space (largest possible number of dimensions for a four class problem). Most of the classification 
performances are close but for very long window lengths in combination with no or little window 
overlap classification performances are very poor. This is because of poor within class covariance 
matrix estimation. For a window length of 2048 in combination with  a window overlap of 0 a 
typical segmented seismic recording is only partitioned into three frames. Best classification results 
were achieved using a long window length in combination with a large window overlap.     

Figure 5.9: Classification performance as a function of the window length and window 
overlap using a discrete Fourier transform in combination with the Fisher mapping.

5.4.4 Yule-Walker auto-regressive model 
In contrast to the FFT, using an auto-regressive method to estimate the power spectrum of a finite 
sequence one can control the complexity of the resulting spectra using one parameter (the model 
order). A small model order results in smooth but less detailed spectra. Whereas a large model order 
results in detailed spectra. Typically the averaged residual prediction error is used in combination 
with a simple heuristic to determine a suitable model order [13]. A typical averaged residual 
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predication error curve is given in figure 5.10. This error curve is the result of applying the Yule 
-Walker auto regressive method for several model orders on a typical random permutation of the 
selected data. A good choice for the model order according to the residual prediction error curve 
might be just to the right of the bending point of the curve e.g. a model order of 40 (After this point 
residual prediction error does not improve much). In figure 5.10 classification performance is also 
given as a function of the model order. According to figure 5.10 classification performance is 
maximized for a model order of 110. Classification performance was measured using the Yule- 
Walker auto regressive method in combination with the DCT. The window length was 256 and the 
window overlap was 0.75. Again a Hamming window was used. Of-course the optimal model order 
is dependent on the other parameters such as the window length and window overlap. The 
experiment was repeated once with a window length of 2048 and a window overlap of 0.75. In this 
experiment relatively good performance was achieved using a model order of 1050 and higher. Both 
results suggest that a good model order is approximately half the window length (Finding the 
optimal model order for each set of parameters is computationally too expensive). But from these 
results one can already conclude that detail in the resulting spectra is important for classification 
performance.

Figure 5.10: Residual prediction error as a function of the model order (left). Classification 
performance as a function of the model order (right).

5.4.5 Yule-Walker auto-regressive model and DCT
In figure 5.11 experimental results of the block combination Yule-Walker auto-regressive model and 
DCT are given as a function of the window overlap and window length. The model order for the 
Yule-Walker auto regressive block was set to half the window length for each experiment. Again 
comparable to the FFT DCT block combination best classification performance was achieved using 
short window lengths. But in this experiment classification performance was much worse for longer 
window lengths. The window length of 64 performed slightly better. Overall classification 
performances were not as good compared to the FFT DCT block combination. 
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Figure 5.11: Classification performance as a function of the window length and window 
overlap using the Yule-Walker auto regressive method in combination with the DCT.

5.4.6 Yule-Walker auto-regressive model and PCA
In figure 5.12 experimental results of the block combination Yule-Walker auto-regressive model and 
PCA are given as a function of the window overlap and window length. The emerging pattern of 
classification performances is very similar to the FFT PCA combination. Overall classification 
performances are slightly better. 

Figure 5.12: Classification performance as a function of the window length and window 
overlap using the Yule-Walker auto regressive method in combination with the data 
dependent but unsupervised PCA.
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5.4.7 Yule-Walker auto-regressive model and Fisher mapping
In figure 5.13 experimental results of the block combination Yule-Walker auto-regressive model and 
Fisher mapping are given as a function of the window overlap and window length. Overall 
classification performances are slightly better for the Yule-Walker auto-regressive method in 
combination with the Fisher mapping compared to the FFT Fisher mapping combination. But other 
than that results are the same.   

Figure 5.13: Classification performance as a function of the window length and window 
overlap using the Yule-Walker auto regressive method in combination with the data 
dependent and supervised Fisher mapping.

5.4.8 Influence of the window type on classification performance using the magnitude FFT in 
combination with the DCT
In the previous paragraphs test results for several block and block parameters were given. Best 
classification performance was achieved using the Yule-Walker auto regressive method  in 
combination with the data dependent PCA. But these results were obtained after the discovery that 
the residual prediction error is at least not always a good indication for retained classification 
performance. Prior to this discovery best classification performance was achieved using the 
magnitude squared FFT in combination with the data independent DCT. All of the coming tests 
were already performed prior to this discovery. 

Thus for the coming tests the magnitude squared FFT was used in combination with the DCT 
despite the fact that better classification performances were achieved using the LPC in combination 
with the PCA. A window length of 256 and a window overlap of 0.75 was used.

 In figure 5.14 Classification performance for this block and parameter combination is given using 
several different window types. In figure 5.14 The window type is given on the horizontal axis on 
the vertical axis classification performance is given. Again classification performance is close. Best 
classification performance was achieved using a Hamming window. This does not come completely 
as a surprise because both the block and parameter combinations were optimized using this window 
type. Because of computational constraints one cannot try all combinations of blocks and block 
parameters. If one would have performed the optimization tests using a different window type 
probably classification performance would have been better or even best for this different window 
type. Worst classification performance was achieved using a rectangular window. This is equivalent 
to not using a window at all. Classification performance of the rectangular window type was 0.721. 
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Figure 5.14: Classification performance as a function of the window type

5.4.9 Influence of the feature dimensionality on classification performance using the 
magnitude FFT in combination with the DCT
In figure 5.15 Classification performance is given for the magnitude FFT and DCT block 
combination as a function of the feature dimensionality. Best classification performance was 
achieved using a DCT feature dimensionality of four. But again classification performances were 
very close (for dimensionalities of four and more) . Similar to the window type experiment, block 
combinations and parameters were optimized using a DCT feature dimensionality of four. This 
might explain the marginal optimum for this feature dimensionality. Classification performance 
decreases for (very) high DCT feature dimensionalities.    

   

Figure 5.15: Classification performance as a function of the DCT feature dimensionality
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5.4.10 Influence of the offset removal on classification performance 
Removing the offset does improve classification performance a little when using the magnitude FFT 
in combination with the DCT (see table 5.1). The classification improvement is caused by the 
removal  of variance that does not contribute to classification performance (see also figure 5.3 on 
page 18). Classification improvements are much greater for the Yule-Walker auto-regressive method 
(see also table 5.1). With the offset present predication errors are larger near the edges of the frames 
when using the Yule-Walker AR method, resulting in worse classification performance. 

Table 5.1: Influence of the offset removal on classification performance

5.4.11 Classification performance using a single averaged spectrum per segmented seismic 
recording
One of the question of interest is, if it is required to divide the given segmented seismic recordings 
into shorter possibly overlapping frames or that a single averaged spectrum is already sufficient.

In this experiment the magnitude FFT was used in combination with the DCT. Per segmented 
seismic recording several frames are computed just like in the other experiments but in this 
experiment all frames resulting from one recording are averaged. Resulting in one averaged 
spectrum per recording instead of a spectrogram per recording. The window overlap used in this 
experiment was one minus the window length. Resulting in a high number of frames in case the 
window length is shorter compared to the recording length. Test results for this experiment are 
given in table 5.2. Similar classification results were achieved compared to the previous 
experiments using a spectrogram.  

Table 5.2: Classification performance using a single averaged spectrum per segmented seismic 
recording. 
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FFT+DCT Yule Walker AR+DCT
with offset 0,808 0,617

without offset 0,813 0,691

Window length
128 256 512 1024 2048
0,81 0,81 0,81 0,82 0,82



5.5 Observations and Conclusions
From the results one can conclude and observe the following:

• Dividing a given segmented seismic recording into several shorter possibly overlapping 
frames does not improve classification performance over a single averaged spectrum per 
seismic recording when used in combination with the kernel density Bayes classifier that 
does not assume frame ordering. When dividing a segmented seismic recording into several 
shorter possibly overlapping frames one has both time and frequency information. When 
using one averaged spectrum per segmented recording one only has frequency information. 
In both cases all information from each recording was used. 

• Classification performance in most cases is at least not strongly influenced by the chosen 
window overlap and window length (except for the Yule-Walker AR DCT combination). 
Typically classification performance varies 3%-5% as a function of the window overlap and 
window length.

• The data independent and unsupervised dimensionality reduction method performed well in 
comparison to the data dependent PCA and supervised Fisher mapping. Best classification 
performance was approximately equal for the three dimensionality reduction methods. 
(Again except for the Yule-Walker AR DCT combination)

• The DCT performed best with a relatively short window length in combination with a large 
window overlap.

• Both the PCA and the Fisher mapping performed best with longer window lengths. The 
fisher mapping performed best with a long window length in combination with a large 
window overlap.

• Classification performance is not strongly influenced by the choice of the window type. The 
window type that performed best was also the window type that was used to optimize the 
other block parameters and block combinations. Using a window does improve 
classification performance significantly.  

• Removing the mean from the segmented seismic recordings does slightly improve 
classification performance when using the magnitude squared FFT in combination with the 
DCT. The classification performance difference is greater for the Yule-Walker AR and DCT 
combination.

For this study several experiments were performed using the continuous wavelet transform. The 
continuous wavelet transform is another popular linear signal transformation that provides 
improved time transform space resolution (Improved over the time transform space resolution of the 
FFT and Yule-Walker AR). The transform space of the continuous wavelet transform is the time 
scale space representation. Higher scales correspond to lower frequencies and vice versa. The 
continuous wavelet transform allows one to specify the scales to use during transformation. 
Furthermore one can choose an arbitrary function to linearly project the time series on. Popular 
wavelet functions (examples: Mexican hat and Morlet wavelet)  are often very similar to the tapered 
cosine functions used in a windowed short time FFT. The more flexible continuous wavelet 
transform should provide better classification performance compared to the FFT and Yule-Walker 
AR methods. However in the experiments done for this study the continuous wavelet transform 
performed worse or almost similar to the FFT and Yule-Walker AR method. This is probably due to 
the high number of parameters one can choose/optimize (it is more difficult to find a good set of 
parameters). 
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6 Classification

6.1 Introduction
In the previous chapter a possible feature extraction implementation and justification was given for 
our volcano data set. We did already conclude that the optimized spectrogram representation did not 
improve classification performance over a single averaged spectrum whilst using the frame order 
independent kernel density estimation classifier. In this chapter it is of interest to see if there are 
perhaps better classifiers and classification strategies for the given volcano data-set and feature 
representation. Thus in this chapter several other classification strategies and techniques are 
discussed and used on the given volcano data set. In figure 6.1 a  categorization of classification 
techniques is given. Typically the classification block transforms the provided feature representation 
to a measure of class membership (class label or class posterior probability). 

Figure 6.1: Categorization of classification techniques according to [3]
There are two main divisions of classification techniques. The first main classification division is 
supervised classification. Supervised classification is sometimes also referred to as discrimination. 
In supervised classification a labelled set of examples is given a priori. This a priori given set of 
examples is also referred to as the training set. The labels are usually assigned to the training 
examples by a human expert but the labels could also be assigned to the training examples by an 
unsupervised classification algorithm. The task of the supervised classification algorithm is to 
assign class labels to new unseen presented examples using the information from the labelled 
training set. To achieve this the unsupervised classification algorithm has to generalize from the 
labelled training examples in a 'reasonable' way.  

The second main classification scheme is unsupervised classification. Unsupervised classification is 
often also referred to as clustering. In unsupervised classification no labelled training examples are 
present. Unsupervised classification is concerned in finding ‘natural’ groups in the given data based 
on a priori chosen distance or dissimilarity measure. The choice of the distance or dissimilarity 
measure is often crucial and determines the resulting group size and shape. Clustering algorithms 
are also often used as the first initialization for other supervised classification algorithms. 

In this study supervised classification techniques are used to assign class labels to new unseen test 
examples. However some supervised classification algorithms try to find an explicit structure in the 
provided training set. These supervised classification algorithms often require a reasonable initial 
grouping of the data. In these cases clustering techniques are used.  Clustering techniques are not 
discussed in this work.
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6.2 Supervised classification techniques
The supervised classification scheme is again subdivided into two supervised classification schemes 
(see again figure 6.1). The first supervised classification scheme is classification using the Bayes 
theorem. The second supervised classification scheme is discriminant analysis.   
   
6.2.1 Classification using the Bayes theorem
Classification using the Bayes theorem is based upon the knowledge of the class posterior 
probability density function of each class. The class posterior probability density function p i∣x
quantifies the probability on a particular class i given an observation or measurement x . 

The Bayes decision rule for minimum error assigns the given observation or measurement x to this 
class for which the class posterior probability density function is greatest (see equation 6.1). This 
Bayes decision rule minimizes the probability of making an error (Actually the resulting error from 
this decision rule is optimal). Other Bayes decision rules exist. For example there is also a Bayes 
decision rule which minimizes the risk. This decision rule is interesting when the cost associated 
with misclassification depends upon the true class of the observation and the class to which the 
observation is assigned. In this study the Bayes decision rule for minimum error is used (each error 
type is equally weighted).  

imax=argmax
i=1,2 , ... , C

 p i∣x

Equation 6.1: The Bayes decision rule for minimum error

In practice the true underlying class posterior probability density functions are seldom known, 
instead the class posterior density functions are estimated from a training set. The class posterior 
density functions may be expressed in terms of the prior probabilities p i , p x  and the class 
conditional density functions p x∣i (see equation 6.2). This equation is the well known Bayes 
rule. It is at least very often more natural to express the class posterior density functions in terms of 
the prior probabilities and the class conditional density functions instead of estimating the class 
posteriors directly from the available data-set. 

pi∣x=
p x∣i  pi

p x
Equation 6.2: The Bayes rule 

When using the Bayes decision rule for minimum error it is not required to estimate the observation 
prior density function from the available data-set because the class ordering is not altered by the 
class independent observation prior p x  . The practical Bayes decision rule for minimum error is 
given in equation 6.3.
pi∣x∝ px∣i pi imax=argmax

i=1,2 , ... , C
 px∣i p i

Equation 6.3: Practical Bayes decision rule for minimum error
Thus when using the Bayes theorem one needs to estimate the class priors and the class  conditional 
density functions. The class priors are often estimated using the empirical class frequencies. Or in 
other words how often a class occurs in a given training set relative to the size of the training set. 
One approach to estimate the class conditional density functions is to assume a simple underlying 
parametric distribution. Often a multivariate normal distribution is assumed. Another approach is to 
estimate the class conditional density functions using a non-parametric method. When using non-
parametric methods no underlying distribution is assumed and the class conditional density 
functions can be of arbitrary shape. Complexity of the resulting density functions is typically 
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controlled by one or more smoothing parameters.  

6.2.2 Parametric Bayes classifiers
6.2.2.1 Quadratic normal Bayes classifier 
The quadratic normal Bayes classifier is a parametric Bayes classifier based upon the normal 
distribution (The Bayes classifier was already explained in the previous paragraph). When using the 
quadratic normal Bayes classifier the class conditional density functions p x∣i  are assumed to be 
normally distributed (see equation 6.4). In equation 6.4 mi is the sample  mean for class i  and i is 
the sample covariance matrix for class i . The sample mean and covariance matrix are estimated for 
each class. For unequal class covariance matrices the resulting decision boundaries between the 
corresponding classes are quadratic. In equation 6.4 p  is the dimensionality of the measurements. 
The number of parameters one needs to estimate per class grows quadratically with the 
dimensionality of the measurements. 

p x∣i=
1

2 pdet  i
exp−1

2 x−mi 
T i

−1x−mi 
mi=

1
ni
∑
k=1

ni

xk

 i=
1
ni
∑
k=1

ni

 xk−m i xk−mi 
T  

Equation 6.4: Class conditional density function for the quadratic normal Bayes classifier 

6.2.2.2 Linear normal Bayes classifier
When using the quadratic normal Bayes classifier problems can occur with the inversion of the per 
class sample covariance matrices i . Typically these problems occur when there are to little 
observations in a high dimensional feature space. An alternative is to reduce the dimensionality of 
the observations prior to classification. There is a good chance that the inversion of the covariance 
matrices is not problematic in the reduced feature space. Another alternative is to reduce the 
complexity of the classifier. The linear normal Bayes classifier assumes that the class covariance 
matrices i  are all equal. The per class covariance matrices are replaced by one weighted average 
covariance matrix   (see equation 6.5). The resulting decision boundaries between classes are 
linear. 

p x∣i=
1

2 pdet  
exp−1

2  x−mi 
T −1 x−mi

=∑
i=1

C ni
n
 i

Equation 6.5: Class conditional density function for the linear normal Bayes classifier 
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6.2.2.3 Uncorrelated normal Bayes classifier.
Another possibility to reduce the complexity of the quadratic normal Bayes classifier is to assume 
uncorrelated features. The resulting per class covariance matrices i are (effectively) multiplied by 
the identity matrix I  (see equation6.6). Note that this multiplication is an element wise 
multiplication. The required number of parameters per class now grows linearly with the 
observation dimensionality. Resulting decision boundaries are quadratic for unequal diagonal 
covariance matrices. 

p x∣i=
1

2 pdet  i∗I 
exp−1

2  x−mi 
T i∗I 

−1x−mi 
Equation 6.6: Class conditional density function for the uncorrelated normal Bayes classifier

6.2.2.4 Scaled nearest mean normal Bayes classifier.
The scaled nearest mean normal Bayes classifier is an even further simplification of the quadratic 
normal Bayes classifier. This classifier assumes both uncorrelated features and equal class 
covariance matrices. The resulting decision boundaries are linear. The difference between this 
classifier and the nearest mean classifier is that this classifier does incorporate class priors and 
average feature variances. Unequal class priors introduce a translation of the decision boundary. 
Unequal average feature variances introduce a rotation of the decision boundary. Both in 
comparison to the nearest mean classifier.      

p x∣i=
1

2 pdet  ∗I 
exp−1

2 x−mi 
T  ∗I −1x−mi 

Equation 6.7: Class conditional density function for the scaled nearest mean normal Bayes 
classifier 

6.2.2.5 Nearest mean normal Bayes classifier.
The nearest mean normal Bayes classifier is the simplest form of the normal Bayes classifier. The 
assumed class covariance matrices are equal to the scaled identity matrix (see equation 6.8). The 
scaling is required to avoid numerical precision issues but does not influence the place of the 
decision boundaries. The scale can be an average dataset variance. Of course the nearest mean 
classifier can trivially be implemented without using density estimation techniques. 

imax=argmax
i=1,2 , ... ,C

 p x∣i 

p x∣i=
1

2 pdet  2 I 
exp−1

2  x−mi
T 2 I  x−mi

Equation 6.8: Class conditional density function for the nearest mean normal Bayes classifier
The mathematical expressions of the normal Bayes classifiers given in this paragraph can be 
simplified using log likelihoods and using the Bayes rule for minimum error. For example taking 
the logarithm over the class conditional density functions does not alter the class ordering. And for 
all the class conditional density expressions class ordering is independent of the 2p

normalization part. The less complex forms of the normal Bayes classifier can be simplified even 
further. 
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6.2.2.6 Normal mixture Bayes classifier
The simple normal Bayes classifiers discussed in the previous paragraphs perform well when the 
training and test observations are drawn from a per class uni-modal distribution that is similar to the 
normal distribution. However the per class distributions are at least not always uni-modal and 
similar to the normal distribution. In these other circumstances the more flexible Normal mixture 
Bayes classifier might provide improved classification performance over the simple normal Bayes 
classifiers. The class conditional density function of the normal mixture Bayes classifier is a 
weighted summation of normal distributions (see equation 6.9). The weights or mixing proportions 
ij  should all be positive or zero. Furthermore the sum over all the per class mixing proportions 
should equal to one. Decision boundaries can be of arbitrary shape depending on the number of 
normal distributions per class conditional density function. Classifier complexity is mainly 
controlled by the number of normal distributions. The number of normal distributions used per class 
is a parameter of interest. Again one can reduce the classifier complexity by assuming uncorrelated 
features and or equal covariance matrices.   

p x∣i=∑
j=1

J i

ijℜ x ,ij

ij0 i=1,... ,C j=1,... , J i ∑
j=1

J i

ij=1 i=1,... ,C

ℜ x ,ij=
1

2p detij
exp−1

2 x−mij
T ij x−mij ij=[mij ,ij ]

Equation 6.9: Normal mixture Bayes classifier
When using the normal mixture Bayes classifier there are three sets of parameters one needs to 
estimate. The first set of parameters are the numbers of normal distributions per class J i . Of course 
one can choose an arbitrary and unequal number of normal distributions per class but in this study 
an equal number of normal distributions per class was used. The second set of parameters are the 
mixing proportions ij . And the third and final set of parameters are the means mij and covariance 
matrices ij . The difficulty in finding the parameters is that one does not know to which normal 
distribution the per class training examples belong to. One usually does not know the underlying 
structuring (if any) of the normal distributions. The optimization criterion for the parameters of the 
normal mixture model is the maximum likelihood criterion. One would like to choose the discussed 
parameters such that the maximum likelihood function (see equation 6.10) is at its global maximum 
for a given set of per class training examples x ik .

Li=∏
k=1

K i

∑
j=1

J i

ijℜ x ik ,ij i=[ J i ,ij ,ij ] ij=[mij ,ij ]   

Equation 6.10: Likelihood function for the normal mixture Bayes classifier

In general it is not possible to solve ∂ L /∂i=0 explicitly for the parameters of the model. 
However it is possible to find a local maximum using the expectation maximization algorithm. The 
expectation maximization algorithm is an iterative algorithm that generates a sequence of parameter 
estimates. Each parameter estimate has a higher or equal likelihood compared to the previous 
parameter estimate. If the likelihood for the current parameter estimate equals the likelihood for the 
previous parameter estimate the sequence has converged to a local maximum. Usually a slightly 
less computational intensive convergence criterion is used because the EM algorithm often 
converges very slowly towards the local optimum. During the iterations of the expectation 
maximization algorithm two steps are repeated. The first step is the expectation step (see equation 
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6.11). In equation 6.11 ijk is the normalized probability of occurrence on the training example x ik  
for class i and component j  given the current set of parameters. The k  index is  the training 
example index. The second step is the maximization step (see equation 6.12). During the 
maximization step the parameters of the normal mixture Bayes classifier are re-estimated based 
upon the results ( ijk )from the expectation step. The formula's in equation 6.11 and equation 6.12 
are straight forward and are pretty easy to understand. 

ijk=
ij

t ℜx ik ,ij
t 

∑
j=1

J i

ij
t ℜ x ik ,ij

t 
=
ij

t ℜ x ik ,ij
t 

px ik∣i
t 

ij
t =[mij

t  ,ij
t ]

Equation 6.11: Expectation step for the normal mixture Bayes classifier

ij
t1 = 1

Ki
∑
k=1

K i

ijk

mij
 t1 =
∑
k=1

K i

ijk xik

∑
k=1

K i

ijk

  

ij
t1 =
∑
k=1

K i

ijk x ik−mij
t1x ik−mij

t1 T

∑
k =1

K i

ijk

Equation 6.12: Maximization step for the normal mixture Bayes classifier 
The local maximum that is found depends upon the initial initialization of the parameters. Often the 
k-means clustering algorithm is used to find a reasonable initial set of parameters (The k-means 
clustering algorithm will not be discussed). A random initialization is also possible but there is a 
possibility that one or more of the normal components are too far away from the training examples 
resulting in numerical issues such as singular covariance matrices.  
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6.2.3 Non parametric Bayes classifiers
Non-parametric Bayes classifiers assume no parametric form of the class conditional density 
functions p x∣i . Instead the probability of occurrence on a given observation x  is computed 
using the presence or distance to nearby training examples. The probability P  that a single given 
observation drawn from p x∣i  falls within a region ℜ  centered around the observation x is 
given in equation 6.13. 

P=∫
ℜ

p x∣i  d x

Equation 6.13:

Now let us assume that one does not have one but N i observations drawn from the same class 
conditional density function (Again i  is the class index). In this case the probability that k  of these 
N i  observations fall in the same region ℜ  is given by the binomial distribution (see equation6.14).

P k=N i

k Pk 1−P N i−k 

Equation 6.14:

It can be shown from the properties of the binomial distribution that the ratio k /N i has an expected 
value of P . Thus E [k /N i]=P . Furthermore one can also show that when N i  grows to infinity 
the  variance on the ratio k /N I  reduces to zero. Thus var k /N i=0 N i∞ . Thus for a 
sufficiently large N i , the ratio k /N i  is a good approximation of (or is similar to) the value P . 

 
k
N i
~P  

Equation 6.15: P  is similar to the ratio k /N i

Finally let is assume that the region ℜ  is so small that the class conditional density function 
p x∣i  is next to constant in this region. Using this assumption in combination with the  earlier 

found approximation for P  and one can find an approximation for the class conditional density 
function (see eqution 6.16). In equation 6.16 V  is the volume enclosed by the region ℜ .

P = ∫
ℜ

p x∣id x ~ p x∣iV , k
N i
~ P  p x∣i V ~

k
N i

px∣i ~
k
N iV

Equation 6.16: General approximation for the non-parametric class conditional density 
function

In practice N i  is fixed and corresponds to the number of per class training examples.
Accuracy of the class conditional density estimate depends upon the volume of  region ℜ  and the 
number of required training examples k  in this region. Preferably one would like to choose the 
volume such that it is as small as possible to support the assumption that p x∣i  is constant. On 
the other hand one would like the volume to be large enough to enclose at least one training 
example. 
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6.2.3.1 k nearest neighbour Bayes classifier
In the previous paragraph an approximation for the non-parametric class conditional density 
function was given. There are two basic classification approaches one can adopt in using the given 
conditional density function. The first approach is the k nearest neighbour Bayes classifier. The k 
nearest neighbour Bayes classifier uses a fixed value for k . The region ℜ  is spherical and 
centered around the given observation x . The radius of the spherical region is chosen such that the 
region exactly encloses k  nearest neighbours ( See also figure 6.2). Thus the resulting volume V is 
the smallest possible spherical volume that also contains  k nearest neighbours and is centered 
around x . The volume V  is variable in x . Complexity of the class conditional density function is 
controlled with k . A small value of  k  results in a complex density function with a lot of detail 
whereas a large value of k  results in a smooth density function with little detail. The k nearest 
neighbour Bayes classifier can also be implemented directly without the estimation of class 
conditional density functions. This classifier is referred to as the k nearest neighbour classifier. This 
discriminant classifier does not incorporate the class priors. In this study euclidean distances are 
used. Furthermore in this study the value of k  is optimized using internal cross-validation on the 
training set.  

imax=argmax
i=1,2 , ... ,C

 p x∣i  pi

p x∣i=
k
N iV

V d R=Cd R
d Cd=


d
2

  d21
Equation 6.17: k Nearest Neighbour Bayes classifier  

Figure 6.2: The volume V  is variable in x , the number of nearest neighbours is fixed

44



6.2.3.2 kernel density Bayes classifiers
The kernel density Bayes classifier was already introduced informally in chapter 5 were we needed 
a simple and flexible classifier for the feature extraction experiments. The kernel density Bayes 
classifier is also referred to as the Parzen classifier named after its inventor Emanuel Parzen. The 
kernel density classifier uses a fixed region volume V   and finds the number of training examples 
within this fixed region. If one would use the non parametric class conditional density function from 
equation 6.16 directly on would find a density function that is discontinuous in x . Every time one 
of the training examples enters or exits the fixed volume region results in a discontinuity in the 
density function. This is often not desirable. Therefore equation 6.16 is slightly modified. Instead of 
counting the training examples within a fixed volume, the distances between the given example x  
and all the training examples x ik are computed. These distances in turn are weighted using a kernel. 
More distant training examples typically receive a smaller value from the kernel compared to 
nearby training examples. Note that the volume of the fixed region is now controlled by the choice 
of the kernel function. The algorithm incorporates all the training examples but the kernel decides if 
a training example is inside a given finite volume. Again the kernel density classifier is given in 
equation 6.18. In this study the multivariate normal kernel was used.
   
imax=argmax

i=1,2 , ... ,C
 p x∣i  pi

p x∣i=
1
nh p∑k=1

K i

K  1h  x−x ik
K z = 1

2p /2
exp{−zT z2 }

Equation 6.18: Kernel density Bayes classifier

Figure 6.3: The volume V  is fixed the number of nearest neighbours is variable
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6.2.4 Hidden Markov models

Introduction
The Bayes classifiers discussed up until so far are able to classify objects based upon a single 
feature or measurement vector. Or when a sequence of feature vectors is given for each object one 
can compute the class conditional probability for each feature vector independently and combine 
the resulting probabilities using the product rule to find the probability on the sequence. The typical 
seismic recording is the result of registering several different seismic wave types and is therefore 
not stationary. The order of arrival of the different wave types is approximately fixed. The time 
between the arrival of different wave types can vary depending on the distance between the 
hypocentrum and the point of measurement. Therefore the order of the feature vectors inside the 
recordings might be of importance.

Markov models and the Markov property
Hidden Markov models are a widely used method for sequence modelling. A hidden Markov model 
is a statistical model for which the underlying system that is modelled is assumed to be a Markov 
random process. A Markov random process is a time varying random process for which the Markov 
property holds. A given random process has the Markov property if the conditional probability 
distribution of the future state only depends upon the present state and not on the past states. Thus 
the probability on the future process state is conditional independent of the past process states given 
the current process state (see equation 6.19). In equation 6.19 Qn , ... ,Q0  are the random process 
state variables taking on the state values qn ,... , q0  for the sequence indices n , ...,0 . 

p Qn=qn∣Qn−1=qn−1 , ... ,Q0=q0= p Qn=qn∣Qn−1=qn−1
Equation 6.19: The Markov property 

Continuous and discrete Markov models
Both continuous and discrete state space Markov models exist (continuous state space Markov 
models through the use of Harris chains). In this study we assumed that the seismic recordings are 
the result of a countable number of underlying physical processes. There are at least a countable 
number of wave types and perhaps also a countable number of states inside each earthquake type. 
Therefore discrete state space Markov models were used in this study. Spectral characteristics are 
measured at a finite number of positions inside each time discrete seismic recording. Therefore in 
this case it is most natural to use a time discrete Markov model. A Markov model that has both a 
discrete state space as well as discrete sequence indexing is also referred to as a Markov chain.

Hidden Markov models
For a Markov model the state and state sequence of the model are directly observable through the 
outputs of the model. The only parameters of interest are the state transition probabilities a ij  and 
possibly the state prior probabilities i . The state transition probabilities are almost always 
organized in a square state transition matrix. The sum over the destination state transition 
probabilities for each source state should equal to one. For a hidden Markov model the state and 
state sequence are not directly observable from the model outputs. For a hidden Markov model each 
state has its own probability distribution over the possible outputs of the model. These probability 
distributions are also referred to as the state emission probability distributions bi x  . Thus a 
typical hidden Markov model consist of three set of parameters: the state prior, the state transition 
and the state emission probabilities (see also figure 6.4). In this study both the state prior and state 
transition probability distributions are discrete. Furthermore in this study both continuous and 
discrete state emission probability distributions are used. Continuous state emission probabilities in 
the form of a normal mixture model for each state. And discrete emission probabilities in the form 
of a histogram of output probabilities for each state. From now on when referring to continuous 
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hidden Markov models, continuous emission density hidden Markov models are meant. When 
referring to discrete hidden Markov models, discrete emission density hidden Markov models are 
meant.     

Figure 6.4: Typical (fully connected) hidden Markov with three states

Hidden Markov model problems
There are three basic problems associated with hidden Markov models:

• Given the model parameters A , B  and  , it is of interest to be able to compute the 
probability on a given observed output sequence x1 ,... , xn . The probability on a given 
observed output sequence is the sum over all possible state sequences. The sum over all 
possible state sequences is a combinatorial explosion. For the direct/naive implementation 
the number of required computations  grows exponentially with the sequence length and is 
impractical for all but the simplest hidden Markov models in combination with very short 
observation sequences. Luckily an efficient dynamic programming algorithm exists namely 
the forward algorithm[18][19]. For the forward algorithm the number of required 
computations is linear in the sequence length and quadratic in the number of states. 

• Given the model parameters and a given observed output sequence x1 ,... , xn  it is of 
interest to find a corresponding state sequence q1 , ... , qn  which is the most likely to have 
generated the observed output sequence. The direct/naive implementation enumerates over 
all possible state sequences and picks this sequence for which the probability of generating 
the output sequence is highest. Again a dynamic programming algorithm exists which solves 
this problem efficiently. This algorithm is also referred to as the Viterbi algorithm[18][19]. 

• The last problem is to find a set of parameters for a hidden Markov model which maximizes 
the likelihood on one or multiple output sequences. This problem is typically solved using 
the well known Baum-Welch algorithm[18][19]. Which is a special version of the 
expectation maximization algorithm. 

Hidden Markov model problems in this study
In this study both problem 1 and problem 3 are of interest. First one would like to find/train a 
hidden Markov model for each seismic signal class based upon a set of training sequences. Second 
one would like to classify new unseen test sequences in their appropriate seismic signal class. In 
this study the Baum-Welch training algorithm is used to train a hidden Markov model for each 
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signal class. The number of states used for each hidden Markov model is a parameter of interest. 
The forward algorithm is used to compute the class conditional probabilities on the output 
sequences. The Bayes decision rule for minimum error is used to decide on the signal class. 
Hidden Markov models are more complicated compared to the Bayes classifiers discussed up until 
so far. Describing the mathematical details of the hidden Markov models would go beyond the 
scope of this report therefore I will not discuss the mathematical details of the hidden Markov 
models. Instead I would like to refer to [18] and [19] which are both excellent tutorials on hidden 
Markov models.
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6.2.5 Discriminant analysis
The general idea of supervised discriminant analysis is to find a linear or non-linear combination of 
features (the discriminant function) which best characterizes or separates two or more classes of 
observations (see figure 6.5). In this paragraph we will look briefly at the two class versions of a 
couple of discriminant analysis classifiers. Note that the generalization of the described classifiers 
towards multi class problems is often not trivial (This in contrast to the Bayes classifiers). But an 
elaborate discussion of the multi class discriminant analysis classifiers would go beyond the scope 
of this report.  

Figure 6.5: Linear discriminant function (left) Non-linear discriminant function (right)

6.2.5 Linear discriminant analysis
Two class linear discriminant classifiers use a linear discriminant function of the form given in 
equation 6.20. The goal of these classifiers is to find a suitable weighted combination of the features
w  and a threshold or offset weight w0  . When the weighted combination of a given feature vector 
x  is larger than zero then it is assigned to the first class. If the weighted combination is smaller 

than zero the given feature vector is assigned to the second class (see again equation 6.20). 

wT xw0
0
0

⇒ x ∈ 1

2
Equation 6.20: Two class linear discriminant classifier

6.2.5.1 Nearest mean classifier
The nearest mean classifier separates the two classes of objects by a linear discriminant function 
that is perpendicular to the line through the class means m1  and m2 . The discriminant function is 
placed exactly in between the two class means. The class priors are  ignored by this classifier.
(see equation 6.21) The implementation used for this study scales the nearest mean discriminant 
function such that the posterior probabilities of the training examples are maximized (not shown in 
equation 6.21).

w=m1−m2

w0=
1
2
m2

T m2−m1
T m1

Equation 6.21: Discriminant function for the two class nearest mean classifier
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6.2.5.2 Scaled nearest mean classifier
The scaled nearest mean classifier is already more complicated compared to the nearest mean 
classifier. The classes are separated by a discriminant function that is possibly a rotated and 
translated version of the nearest mean discriminant function. The possible relative rotation of the 
scaled nearest mean discriminant function depends on   (see equation 6.22).   is a class prior 
weighted sum of class covariance matrices followed by an element wise multiplication with the 
identity matrix. The possible translation of the discriminant function depends on the log ratio of the 
class priors. The implementation used for this study scales the scaled nearest mean discriminant 
function such that the posterior probabilities of the training examples are maximized 
      
= p 1 1 p2 2∗I

w= −1m1−m2

w0=
1
2 m2

T −1m2−m1
T −1m1log p1

p2
Equation 6.22: Discriminant function for the two class scaled nearest mean classier 

6.2.5.3 Fisher classifier
The two class fisher classifier is given in equation 6.23. The two class fisher classifier is 
mathematically very similar to the two class scaled nearest mean classifier. The only difference is 
that the fisher classifier uses the full within class covariance matrix whereas the scaled nearest mean 
classifier only uses the diagonal within class covariance matrix. The two class fisher classifier is the 
result of maximizing the fisher criterion (not given here). The fisher criterion is defined as the ratio 
of the between class and within class variances. 
  
= p1 1 p2 2

w= −1m1−m2

w0=
1
2 m2

T −1m2−m1
T −1m1log p1

p2
Equation 6.23: Discriminant function for the two class fisher classifier

6.2.5.4 Linear perceptron classifier
The linear perceptron classifier tries to minimize the perceptron criterion function given in equation 
6.24. The perceptron criterion function is proportional to the sum of distances of the misclassified 
samples to the decision boundary. The perceptron criterion function is thus only based upon the 
misclassified samples. One would like to find a discriminant function for which the perceptron 
criterion is minimized. Because the perceptron criterion function is continuous in the discriminant 
function one can find a solution using an iterative gradient based procedure (not given here). When 
the training examples are linearly separable, then the gradient based procedure is guaranteed to 
converge to a solution that separates the classes. When the classes are not linearly separable, then 
the solution will oscillate and no convergence occurs. The often used solution is to use a decreasing 
training step size whilst using the gradient based procedure. For very large training iteration indices 
the training step size approaches zero ensuring convergence in all cases.        
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J P w ,w0=∑
xi∈X 2

wT x iw0 − ∑
xi∈X 1

wT xiw0

X 1=Misclassified examples ∈1

X 2=Misclassified examples ∈2

[ w , w0]=argmin
w ,w0

 J P w ,w0

Equation 6.24: The linear perceptron classifier is the result op minimizing the perceptron 
criterion. 

6.2.5.5 Logistic classifier
The two class logistic classifier assumes that the linear discriminant function is equal to the 
logarithm over the ratio of the underlying class posterior probability density functions (see equation 
6.25). This assumption allows one to express the class posterior probability density functions in 
terms of the linear discriminant function. See also equation 6.25. The class posterior probability 
density functions are logistic functions. Of-course the discussed assumption is not justified for all 
class distributions. But many real data sets are close to normally distributed and including classes 
often have similar shapes. In these circumstances the assumption is (a proximately) justified. The 
parameters w  and w0  of the linear discriminant function are usually found using an iterative 
optimisation scheme of the maximum likelihood function. The  linear discriminant function 
parameters are chosen such that the product of the class conditional probabilities of the training set 
are maximized. 

log p1∣x 
p2∣x=wT xw0 p1∣x=

ew
T xw0

1ew
T xw0

p2∣x=
1

1ew
T xw0

Equation 6.25: Logistic classifier assumption (left) Resulting class posterior density functions 
(right)
     
6.2.5.6 Support vector classifier
The last linear classifier discussed and used in this study is the support vector classifier. The 
complexity of the decision boundaries of the support vector classifier are or can be controlled by the 
kernel choice. In this study  a linear kernel was used which is equivalent to not using a kernel. The 
resulting decision boundaries are linear. The idea of the support vector classifier is that one would 
like to find a linear discriminant function which separates the classes with the largest possible 
margin. The margin as a function of  the linear discriminant function is dependent on the nearest 
training examples of each class (see equation6.26). The nearest training examples are also referred 
to as the support vectors. The requirement of separability and placement of the decision boundary in 
the middle of the margin are both incorporated by a constraint (see again equation 6.26). The 
constraint requires that the training examples of class 1  are all at least a relative distance of one 
separated from the decision boundary. The training examples of class 2  are all required to be at 
least a relative distance of minus one separated from the decision boundary. The choice for the 
constant of one is arbitrary. The described constraint optimisation problem is typically solved using 
the generalization of the Lagrange multipliers (Karush-Kuhn-Tucker conditions) which can also 
take inequality constraints into account (not given here).

=min
xi∈1
wT x iw0

∥w∥ −maxxi∈2
wT xiw 0

∥w∥  wT x iw0 1 xi∈1

wT xiw0−1 xi∈2

[ w , w0]=argmax
w , w0

w , w0

Equation 6.26: Optimization function maximum margin (left) Constraint function (right). 
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6.2.5.7 Quadratic classifier
The two class quadratic discriminant classifier uses a quadratic discriminant function of the form 
given in equation 6.27. The quadratic classifier is equal to the fisher classifier when the within class 
covariance matrices 1  and 2  are equal. Similar to the quadratic Bayes classifier the inversion 
of the class covariance matrices can become problematic when an insufficient number of feature 
vectors is available. Although the formula given in equation 6.27 is a good and often used solution, 
other solutions for finding a quadratic classifiers exist. One such method is to create a new and 
longer measurement vector from the old feature vector by augmenting all pairwise products of 
individual features or measurements. Finding a quadratic classifier for the original feature vectors is 
now equal to finding a linear classifier for the pairwise product expanded feature vectors. This 
method is also referred to as the kernel trick.      

xTW xwT xw0

W= 2
−1− 1

−1

w=2 m1
T 1

−1−m2
T 2

−1

w0=m2
T 2

−1m2−m1
T 1

−1m1log det  2
det  1

Equation 6.27: Discriminant function for the two class quadratic classifier
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6.3 Experimental setup
6.3.1 Introduction
In chapter 5 the class of transformations for the feature extraction block used  in this study was 
discussed. A justification was given for a reasonable set of block and block parameters. In the 
coming experiments the FFT will be used in combination with the DCT. Furthermore the Hamming 
window will be used and the resulting spectra will be scaled using the log transformation. If not 
otherwise mentioned a window length of 256 will be used in combination with a window overlap of 
75%. And finally the first four DCT features are used.  The two questions that come to mind for the 
coming experiments are:     

• What are good classifiers for our resulting feature representation? 
• What are good classification strategies? 

6.3.2 Testing criteria
In these experiments the same testing criteria was used compared to the experiments of chapter 5 
but are briefly repeated for the comfort of the reader. In these experiments the holdout estimate was 
used. The holdout estimate was repeated ten times each with a different random permutation of the 
volcano data. The ten resulting classification performances were averaged reducing the performance 
estimate variance and bias. The Mersenne twister random number generator was used in creating 
the random permutations of the data. And prior to each experiment the random number generator 
was seeded with the same seed that was also used for all the experiments in chapter 5. The k-means 
clustering algorithm was used to find a reasonable initial set of normal distributions for the normal 
mixture Bayes classifier and the hidden Markov models. The k-means clustering algorithm also 
uses the random Number generator. Therefore the seed of the random number generator was loaded 
prior to- and stored after each permutation operation ensuring equal dataset permutations for all the 
experiments. 

6.3.3 Data set
In these experiments the same data set was used that was also used for the experiments of chapter 5. 
The first 133 seismic recordings were selected from each class. Thus a total of 532 seismic 
recording were used for all the experiments. All classifiers were trained using 100 randomly chosen 
recordings. Classification performance was tested on the remaining 33 recordings. Finally for these 
experiments only the recordings originating from the OLL station were used. In the next chapter we 
will look at combined classification results using the recordings of all the stations. 

6.3.4 Classifiers
Most of the classifiers used for these experiments were already discussed in the previous 
paragraphs. Thus a detailed explanation is not given again. However an enumeration of the 
classifiers used in these experiments is given in table 6.1 When applicable classifiers are optimized 
on each presented training set. For example internal cross validation on the training set was used to 
find the optimal number of nearest neighbours when using the nearest neighbour classifier. 
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Table 6.1: Classifiers used in the discussed experiments   

6.3.5 Classification strategies

Use only frequency information:
For the first classification strategy a spectrogram was computed for each segmented seismic 
recording (See also figure 6.6). The resulting spectrogram was averaged in the time/frame direction 
resulting in one averaged spectrum. This averaged spectrum in turn was scaled using the log (dB.) 
transformation and finally the dimensionality was reduced using the DCT. The dimensionality of 
the resulting feature vectors is four and each recording is represented by only one feature vector. 
Only (dimensionality reduced and decorrelated) frequency information is present in this 
representation. The complexity of the spectra is controlled by the window length which is a 
parameter of interest. The window overlap was set to one minus the window length.
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Name: Abbreviation: Decision boundary: Optimization parameter:

Parametric normal Bayes classifiers

Linear normal Bayes classifier Linear -
Uncorrelated normal Bayes classifier Quadratic -
Quadratic normal Bayes classifier Quadratic -
Normal mixture Bayes classifier Arbitrary(1) mixtures
Continuous hidden Markov classifier - Arbitrary(2) states/mixtures

Non parametric normal Bayes classifiers

Kernel density Bayes classifier (h) Arbitrary(3) h
Arbitrary(3)

Discrete hidden Markov classifier - Arbitrary(4) states/symbols

Linear discriminant classifiers

Nearest mean Bayes classifier Linear -
Scaled nearest mean Bayes classifier Linear -

Linear -
Fisher classifier Linear -
Logistic classifier Linear -
Support vector classifier Linear(5) -

Non linear discriminant classifiers

Quadratic classifier Quadratic -
k-nearest neighbour classifier Arbitrary(6) k

1 Depending on the number of normal distributions
2 Depending on the number of normal distributions and states
3 Depending on the smoothing parameter(s)
4 Depending on the number of histogram bins
5 Depending on the distance measure
6 Depending on the number of nearest neighbours

ldc.
udc.
qdc.
mogc.

parzenc.
Kernel density Bayes classifier (h1,...,hc) parzendc. h1,...,hc

nmc.
nmsc.

Linear perceptron classifier perlc.
fisherc.
loglc.
svc.

qdc.
knnc.



Figure 6.6: 

Use time frequency information and independent frames:
This strategy was also used in chapter 5 to find a good set of feature extraction blocks and block 
parameters using the kernel density classifier. Similar to the previous strategy a spectrogram was 
computed for each recording. The resulting spectral frames for each recording were scaled using the 
log (dB.) transformation and the dimensionality was reduced using the DCT (see figure 6.7). All 
frames within a given recording were assumed to come from the same probability distribution. One 
class conditional density function was estimated on the training set for each class. The frame 
probabilities were computed independent of each other using one conditional density function per 
class. The probability on a single test recording is the product of the assumed independent frame 
probabilities. To avoid numerical issues log probabilities were used. Only the Bayes classifiers were 
used for this experiment.  Both time and frequency information is present in this representation but 
the ordering of the frames resulting from the seismic recordings is of no importance.

Figure 6.7: 

Use time frequency information and hidden Markov models:
For the experiments that use this classification strategy a hidden Markov model was constructed for 
each class. In contrast to the naive Bayes classifiers used in the previous strategy, hidden Markov 
models can model the ordering of the frames within the given recordings if present. The class 
conditional probabilities were computed using the trained hidden Markov models and the well 
known forward algorithm . A single class conditional probability was computed for each recording. 
Again the Bayes decision rule for minimum error was used to decide on the class labels. Two types 
of hidden Markov models were used. The first type of hidden Markov model is the continuous 
hidden Markov model. The continuous hidden Markov models in these experiments only use one 
normal mixture function per state. It is possible to use several mixture components per state, but in 
the experiments done for this study it proofed very difficult to train hidden Markov models with 
more than one mixture component per state even when uncorrelated covariance matrices were used. 
Thus for the experiments using the continuous  hidden Markov models, classifier complexity was 
controlled by the number of states only. Full covariance matrices were used for each state. The 
second type of hidden Markov model used in this study is the discrete hidden Markov model. The 
discrete hidden Markov models uses a n by m emission histogram. n is the number of states 
and m is the number of possible observation symbols. For the discrete hidden Markov model 
complexity was controlled by the number of states and the number of symbols. Both the continuous 
and discrete hidden Markov models use the k-means clustering algorithm to find a reasonable initial 
clustering of the data. For the continuous hidden Markov model this initial clustering is not fixed. 
The normal mixture components can still change shape and move around through the feature space 
during training. The symbols assigned to the features whilst using the discrete hidden Markov 
models are fixed and do not change during training.  The well known and popular Baum Welch 
training algorithm was used to train the hidden Markov models. Like the expectation maximization 
algorithm the Baum welch training algorithm only finds a local maximum therefore the training 
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procedure was repeated ten times and the best model was used to test classification performance. 
The average likelihood on the training set was used to select the best hidden Markov model. 
(Higher likelihoods are better) In these experiments the  Baum Welch training runs were stopped 
after 1000 iterations or when the convergence criterion on the likelihood function was met 
(likelihood does not increase more than 1.0e-10). Whichever came first.  A constant and uniform 
initialization was used for the state prior and state transition matrices. Scaling of the forward and 
backward probabilities was used to avoid numerical under-flows[18] for long sequences of small 
probabilities. One could also use log probabilities [22] to avoid numerical under-flows but the log 
and exp functions required for the logsum operator are to computationally expensive. 
   
Training hidden Markov models is a time consuming business. A highly optimized c 
implementation  was developed for these experiments both for the continuous as well as the discrete 
emission density hidden Markov models. 

The hidden Markov models used in the experiments could not model the frame ordering whilst 
using the feature representation used up until so far (See the results section). Complete recordings 
are too far apart from each other in the feature space.  Therefore a second feature representation was 
introduced based upon the feature differences. In this feature representation the placement of the 
complete recordings in the feature space is of no importance. The recordings are all placed on top of 
each other in the new feature space. Only the displacements of neighboring frames in the recordings 
is of importance.        
         

Figure 6.8: hidden Markov model and the original feature space

Figure 6.9: hidden Markov model and the derivative or delta feature space

Use time frequency information and concatenated frames:
For this strategy again a very detailed spectrogram was computed for each recording using a 
window overlap of one minus the window length (see figure 6.10). The detailed spectrogram was 
divided into a given number of approximately equal sized blocks. The number of blocks is a 
parameter of interest and fixed for all seismic recordings. The spectral frames in each block were 
averaged in the time/frame direction. The resulting averaged frames were scaled using the dB. 
conversion and the dimensionality was reduced using the DCT. The dimensionality reduced spectral 
frames were concatenated into one long feature vector. The length of the feature vector equals the 
product of the number of DCT coefficients used and the number of blocks. Thus each seismic 
recording is summarized in one long feature vector. This single feature vector contains both time 
and frequency information. This in contrast to the first strategy were the resulting feature vectors 
only contain frequency information. Parts of the seismic recordings that correspond to the same 
underlying physical processes such as the arrival of a P-wave should ideally end up at the same 
location in the resulting feature vectors. There is some offset or displacement tolerance because one 
is typically averaging over several spectra inside each block. Displacement tolerance decreases with 
an increasing number of blocks.  
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Figure 6.10:

Use time frequency information concatenated frames in the dissimilarity space:
For the final classification strategy the same approach was followed compared to the previous 
strategy. However instead of using the concatenated feature vectors directly for classification, this 
strategy first computes the distances or dissimilarities between the feature vectors. These distances 
or dissimilarities in turn were used for classification. Thus whilst using this strategy classification 
was done in the dissimilarity space instead of in the feature space. The dimensionality of the 
dissimilarity space was controlled by the number of examples used in the representation set. The 
number of examples in the representation set is a parameter of interest. A higher number of 
examples in the representation set results in a higher dissimilarity dimensionality.  When using a 
distance or dissimilarity representation one also needs to decide on a distance measure. In this study 
two distance measures were used. The first distance measure used in this study is the well known 
euclidean distance (see equation 6.28). Whilst using the euclidean distance measure the ordering of 
the frames inside the concatenated feature vectors is (extremely) important. If one would change the 
ordering of the frames inside a given feature vector the resulting feature vector most likely ends up 
in a completely different part of the (high dimensional) feature space and the resulting euclidean 
distances to other unaltered feature vectors would also be different. Thus just like in the previous 
strategy the alignment of the time series is of importance whilst using the euclidean distance 
measure. The second distance measure used in this study is the modified Hausdorff distance (see 
equation 6.29).  The ordering of the frames inside the feature vectors is of no importance for the 
modified Hausdorff distance. When underlying physical processes produce similar averaged frames 
in different recordings, then these averaged frames do not have to be exactly aligned in the different 
resulting feature vectors to achieve a small distance measure.   

The representation set was drawn from the training set in a linear and predictable manner. For 
example when using 200 examples (50 per class) in the representation set all odd numbered 
examples are drawn from the training set and used in the representation set. The representation 
examples were always chosen such that an equal number of examples for all classes was included in 
the representation set.

Figure 6.11:

d e  x , y =∑i=1

p

xi− yi
2

 Equation 6.28: Euclidean distance between (feature) vectors x and y

 d h x , y=
1
M ∑a∈x

min
b∈ y
∥a−b∥

Equation 6.29: Modified Hausdorff distance between (feature) vectors x and y ( a and
b correspond to the frames inside the concatenated feature vectors and M correspond to 

the number of frames) 
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6.4 Results
6.4.1 Classification performance using only frequency information
In figure 6.12 Classification performance is given for several types of classifiers using a single 
averages spectrum per segmented seismic recording. On the horizontal axis the window length is 
given. And on the vertical axis the classifier type is given.  The classifier names are abbreviated 
because of limited space (see table 6.1). In this experiment the kernel density classifier with one 
smoothing parameter per class (parzendc) performed best. Followed by the kernel density classifier 
with one smoothing parameter for all the classes (parzenc). Again smoothing parameters were 
optimized using likelihood cross validation. The linear normal Bayes classifier (ldc) and  the 
quadratic normal Bayes classifier (qdc) performed  equally well whereas the uncorrelated normal 
Bayes classifier (udc) performed consistently worse. This indicates that the features of the classes 
are correlated. The classification results of the nearest mean classifier (nmc) and the scaled nearest 
mean classifier (nmsc) indicate that the orientation  of the decision boundaries relative to the line 
through the class means is of importance. The normal mixture Bayes classifier (mogc) performed 
well using shorter window lengths indicating that the class distributions resulting from the shorter 
window lengths are at least not exactly uni modal normal distributed. But the expectation 
maximization algorithm used for this experiment failed to converge for the longer window lengths. 
This is strange because the number and the dimensionality of the training examples remained fixed. 
Perhaps the resulting class distributions become closer to a uni modal normal distribution causing 
one of the two mixture covariance matrices to becomes singular. Overall classification performance 
improves when using more complex classifiers. This is true both for the Bayes classifiers as well as 
the discriminant analysis classifiers. Again classification performance was hardly dependent on the 
window length. The experiment with the variable number of DCT features was also repeated. Again 
classification performance did not improve for higher DCT feature dimensionalities. The 
optimization algorithm of the linear perception classifier (perlc) failed to find a good discriminant 
function.  

Figure 6.12: Classification performance using only frequency information

58



6.4.2 Classification performance using time frequency information and independent frames
In figure 6.13 classification performance is given for the Bayes classifiers using a spectrogram per 
segmented seismic recording. The spectral frames were assumed independent of each other. Again 
the parzendc classifier performed best. Classification performance for the parzendc classifier was 
approximately equal compared to the previous experiment. But for all other classifiers, 
classification performance was worse compared to the previous experiment. Thus for most 
classifiers when using this experimental setup it is better to use a single averaged spectrum than to 
use a spectrogram and assume independent frames. Overall classification performance increases 
with classifier complexity. Except for the udc and qdc classifiers.  The udc classifier outperforms 
the qdc classifier which is a little bit odd considering the number of frames per class (typically 
around 9000). In figure 6.14 a typical example of the feature representation is given for a window 
length of 256 and a window length of 2048. For the window length of 2048 the classes are slightly 
less overlapping at the top and bottom. Furthermore there is also a  tail to the right of three of the 
four point clouds. These tails rotate the qdc distributions a little bit to the right preventing this 
classifier to take advantage of the less overlapping regions at the top and bottom of the point 
constellations.  However the less flexible udc classifier can only place its distribution in the 
uncorrelated feature directions which is better in this case. The influence of the window length on 
classification performance is higher compared to the previous experiment. Classification 
performance is higher for the longer window lengths when using the parametric Bayes classifiers. 
The non parametric Bayes classifier performed better with shorter window lengths.

Figure 6.13: Classification performance using time frequency information and independent 
frames

Figure 6.14: Typical examples of feature representations for this experiment using two 
different window lengths
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6.4.3 Classification performance using time frequency information and hidden Markov 
models
In figure 6.15 classification performance is given for the normal mixture model and the continuous 
hidden Markov model as a function of the number of components/states. Both models receive an 
equal number of normal components. However in case of  the normal mixture model the 
components are organized into one large normal mixture and the ordering of the frames within the 
sequence is of no importance. The continuous hidden Markov model uses states and each state 
receives one normal component. For this classifier the ordering of frames within a sequence of 
feature vectors is (or can be) of importance. Although both models receive the same number of 
normal components the hidden Markov model is the more complicated classifier because it also 
estimates a state prior and state transition matrix. In figure 6.15 one can see that the normal mixture 
classifier outperforms the continuous hidden Markov model almost consistently. This can be 
explained by the fact that the ordering of the feature vectors for this feature representation is not 
modelled by the hidden Markov model. Instead the hidden Markov model does approximately the 
same as the normal mixture classifier. The resulting feature representations of the seismic 
recordings are too far apart in the feature space for the hidden Markov model to take advantage of 
the state transition matrix (see figure 6.17). The resulting state transition matrices for this feature 
space are therefore almost diagonal. Thus the extra complexity of the hidden Markov model is a 
disadvantage for this feature representation. Classification performance for both the normal mixture 
classier and the continuous hidden Markov model seem to level out towards the higher number of 
components/states. Classification performance is slightly less compared to the results obtained 
using the parzendc classifier in the previous experiments. Classification performance is equal for 
the HMM and GMM model whilst using only one component/state. This is also what one would 
expect.

Figure 6.15: Classification performance normal mixture model (GMM) versus continuous 
hidden Markov model (HMM) in the original feature space (feature space used up until so 
far)

To bring the seismic recordings closer together in the feature space one can take the first derivative 
of each corresponding feature vector sequence. A typical segmented seismic recording results in 90 
(four dimensional) feature vectors. Taking the first derivative of this sequence results in a new 
feature vector sequence of length 89. The dimensionality of the feature vectors remains the same. 
The new feature vectors contain the displacement between two consecutive feature vectors in the 
original feature space. Let us call this new feature space the delta feature space (see again figure 
6.9).
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In figure 6.16 classification performance is given for the normal mixture model and the continuous 
density hidden Markov model as a function of the number of components/states in the delta feature 
space. This time the hidden Markov model outperforms the normal mixture classifier. Typically the 
probability mass was also better divided inside the state transition matrices. The resulting state 
transition matrices were not almost diagonal any more. Classification performance for the hidden 
Markov  model in the delta feature space is clearly better compared to the performance of the 
hidden Markov model in the original feature space. The normal mixture model clearly suffers from 
the new feature representation. A typical example of one of the classes in both feature spaces is 
given in figure 6.17. Finally a last experiment was performed using both the original and the delta 
feature vectors in a new set of combined feature vectors. Classification performance was worse 
whilst using these combined feature vectors (worse compared to the results achieved using only the 
delta feature space). Classification results of this experiment are not given.

Figure 6.16: Classification performance normal mixture model versus continuous hidden 
Markov model in the delta feature space

Figure 6.17: Original feature representation of one of the classes (blue circles). And three 
highlighted recordings (green cyan and magenta circles) (Left). Delta feature representation 
of one of the classes (blue circles). And three highlighted recordings (green cyan and magenta 
circles)  (right)  
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In figure 6.18 classification performance is given for the discrete emission density hidden Markov 
model as a function of the number of states and the number of symbols or clusters. Classifier 
complexity of the discrete hidden Markov model is controlled by these two parameters. For this 
experiment again the delta feature space was used because it is the more interesting feature space 
for hidden Markov models.  When using the discrete hidden Markov model a symbol is assigned to 
each feature vector. In this experiment the symbols are assigned by the k-means clustering 
algorithm. The assigned symbols are fixed and cannot change during training. This in contrast to the 
continuous hidden Markov model were the normal components can move and change shape during 
training. In figure 6.18 best classification performance is achieved using seven or eight symbols. 
The choice of the number of states seems to be less of importance. But classification performance is 
considerably less when using three or less states indicating that the discrete hidden Markov model is 
influenced by or can take advantage of the sequence ordering. The emission density functions for all 
classes are equal when using only one symbol. This means that in that situation the probability of 
occurrence on a given test recording only depends on the state prior and state transition matrix. As a 
result test recordings are always assigned to the same class. Therefore the classification results are 
exactly 0.25 for the symbol count of one. On our dataset discrete hidden Markov models performed 
worse compared to the continuous hidden Markov models. 

Figure 6.18: Classification performance of the discrete hidden Markov model in the delta 
feature space as a function of the number of states and the number of symbols
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6.4.4 Classification performance using time frequency information and concatenated frames 
in the feature space
In figure 6.19 classification performance is given for several classifiers as a function of the number 
of averaged frames.  The dimensionality of the resulting feature vectors is four times the number of 
frames (Again four DCT coefficients were used). Clearly classification performance is significantly 
better compared to the previous experiments. The ldc and fisherc classifiers performed best. But 
most other more complicated classifiers performed remarkably well considering the high 
dimensionality of the  feature vectors. The parzenc classifier uses one smoothing parameter for all 
classes. It is possible that the distances between observations in one class vary too much from the 
distances between observations in the other classes. The different distances cannot all be modelled 
effectively using one smoothing parameter. If that is the case frame probabilities are computed 
using a very suboptimal smoothing parameter for each class resulting in numerical issues such as 
zero probabilities. This might explain the poor (random) classification performance for this 
classifier when using 33 frames and more. The quadrc classifier shows a very odd behaviour. First 
the classification performance decreases towards a minimum with an increasing number of frames. 
After this minimum the classification performance increases again with an even further increasing 
number of frames. That is not what one would expect. However there is a logical explanation for 
this behaviour in the internal construction of this classifier. When the dimensionality increases the 
covariance matrices become badly scaled and close to singular reducing classification performance. 
When the covariance matrices actually become singular the corresponding classifiers are replaced 
by fisher classifiers. When the dimensionality increases even further more and more classifiers are 
replaced by fisher classifiers. Therefore eventually classification performance is equal to the fisher 
classifier. It would have been better to use a regularization term for this classifier. Remarkably 
overall classification performance is not influenced much by the number of frames. The normal 
mixture Bayes classifier did not work and is not included in the experimental results. 

Figure 6.19: Classification performance using time frequency information and concatenated 
frames in the feature space
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6.4.5 Classification performance using time frequency information and concatenated frames 
in the dissimilarity space
In figure 6.20 classification performance is given for several classifiers as a function of the number 
of concatenated frames in the dissimilarity space. The number of examples in the representation set 
used for the results in figure 6.20was 120 (30 examples for each class). Several experiments with 
different numbers of representation examples were performed (see figure 6.21). But the 
representation set of 120 examples both gave a interesting result for most of the classifiers and also 
achieved a classification performance of 91% for the ldc and fisherc classifiers. A classification 
performance of 91% was also achieved for the fisherc classifier whilst using representation sets of 
200, 240, 280 and 320 examples but for these representation sets more classifiers produced a 
random classification performance. For the results in figure 6.21 the number of frames was fixed 
and set to 42. In figure 6.21 most of the Bayes classifiers clearly suffer from a higher number of 
representation examples. But the qdc classifier did remarkably well for the higher number of 
representation examples when compared for example with the udc and ldc classifiers. The 
discriminant classifiers were far less sensitive to a changing number of examples in the 
representation set. Except for the scaled nearest mean classifier. In figure 6.20  the dimensionality 
and the number of objects per class do not change as a function of the number of frames. Only the 
shape of the classes and the distances between the recordings change. The udc, parzenc and nmsc 
classifiers are clearly sensitive and negatively influenced by the changing class shapes and 
increasing distances. 

Figure 6.20: Classification performance using time frequency information and concatenated 
frames in the euclidean dissimilarity space (representation set size = 120 examples) 

Figure 6.21: Classification performance using time frequency information and concatenated 
frames in the euclidean dissimilarity space (number of frames = 42)
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In figure 6.22 the final classification results are given for this chapter. The experiment was 
performed in almost the same conditions compared to the previous experiment. Except for this 
experiment modified Hausdorff distances were used.  The number of examples in the representation 
set used for this experiment was 80. Again several experiments with different numbers of 
representation examples were performed. But best results were achieved using 80 representation 
examples. Clearly classification results are not as good as the results obtained using euclidean 
dissimilarities. The qdc classifier performed best followed by the ldc and fisher classifiers. Looking 
at the results given in figure 6.20 and figure 6.22 one might conclude that the ordering of the 
spectral frames inside the concatenated feature vectors is of importance. The modified Hausdorff 
distance allows seismic recordings that are similar but not exactly aligned in time to still have a 
small resulting distance to each other. Both Within class and between class recordings receive a 
distance that is equal or smaller compared to the euclidean distance. Thus typically the distances 
between recordings are smaller, this might also be the cause of the reduced classification 
performance (similar recordings of different classes also become closer to each other). Furthermore 
one might also conclude that the alignment of the segmented seismic recordings is very good. 
Otherwise one would not find such good classification results whilst using such a high number of 
frames.      

Figure 6.22: Classification performance using time frequency information and concatenated 
frames in the modified Hausdorff dissimilarity space (representation set size = 80)   
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6.5 Observations and conclusions

From the results one can observe and conclude the following:

• For most of the classifiers used in the experiments it is better to use a single averaged 
spectrum (only frequency information) than to use a spectrogram (time frequency 
information) and combine the spectral frame probabilities using the product rule. (similar 
conclusion compared to the conclusion in chapter 5 but now whilst using several different 
classifiers). 

• In the original feature representation developed in chapter 5 hidden Markov models were 
unable to model the sequence ordering because individual recordings were too far apart 
from each other in the feature space. Individual recordings were modeled by the normal 
components instead. Similar to what the normal mixture model does.  In the delta feature 
space the continuous hidden Markov model performed  better and was able to model the 
sequence ordering better. Classification performance improved over the single averaged 
spectrum representation.

• The discrete hidden Markov model performed worse compared to the continuous hidden 
Markov models but was also able to model the sequence ordering in the delta feature space.

• Incorporating both time and frequency information by concatenating several averaged 
frames in one long feature vector improves classification performance significantly over the 
single averaged spectrum representation, both in the feature as well as in the dissimilarity 
space.  

• The ordering of the averaged frames inside the resulting feature vectors is of importance 
whilst using the last two classification strategies. 

• The alignment of the segmented seismic recordings was very good. Thus averaged frames 
resulting from different segmented seismic recordings at least often correspond to the same 
underlying physical phenomenon (or at least have similar spectral characteristics).   

For this study a couple of experiments were also performed using maximum entropy models[23]
[24][25]. The principle of maximum entropy states that if incomplete information about a 
probability distribution is available, the only unbiased assumption that one can make is a 
distribution that is as uniform as possible under the constraints of the available training material. 
Maximum entropy models model the class posterior probability density function directly. This in 
contrast to the maximum likelihood models such as the Bayes classifiers which model the class 
conditional density functions. The training material is incorporated in the class posterior probability 
density function via the use of features. Typically features are defined as binary valued functions 
which both depend on the observation and on the class variable. When binary features are used the 
optimization surface is convex in terms of the model parameters. Thus a global optimum can be 
found (using for example the generalized iterative scaling algorithm) which is very interesting (The 
main reason why I started investigating these models). Maximum entropy models are very popular 
in natural language processing applications because the training material of these applications can 
be expressed conveniently in terms of binary feature functions. However for our volcano data set 
the use of binary valued features is unnatural and difficult. The main difficulty is to find a good set 
of binary features (how many binary features to use?, Where to place the binary features in the 
original continuous valued feature space? And what size should each binary feature occupy in the 
original continuous feature space) Optimizing a large number of binary features is very 
computational expensive (Convergence towards a global optimum for a large model can be slow). 
Furthermore the maximum entropy distribution is uniform outside the region occupied by the binary 
features potentially resulting in poor generalization. The maximum entropy model is simply not 
practical for our problem.
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 7 Multiple stations

7.1 Introduction
Up until so far the segmented seismic recordings from one station were used to find a good pattern 
classifier (feature extraction block and classification block). However the data set received for this 
study also contains segmented seismic recordings from several other seismic stations.

It is of interest to see if the pattern classifier developed in the previous two chapters also gives 
comparable classification results on the segmented seismic recordings of the other stations.  How 
well does the chosen block, block parameter and classifier combination generalizes to other 
stations? And can one successfully train a classifier on the seismic recordings of one station and 
find similar classification results when testing performance on the seismic recordings of the other 
stations? Is the same seismic event registered in a comparable way at different locations by different 
seismometers?      

Furthermore it is of interest to see if classification performance can be improved by combining 
classification results of several stations.

7.2 Experimental setup

7.2.1 Testing criteria
Again the hold out estimate was used. The holdout estimate was repeated ten times each with a 
different random permutation of the volcano dataset. The same random seed was used that was also 
used earlier for all the experiments in chapter 5 and 6.  Mutually exclusive random index 
permutations were used for selecting the training and test sets even when the training set station was 
different from the test set station. Otherwise the resulting performance measure might be positively 
biased. Remember that a given recording i corresponds to the same seismic event for all selected 
stations and that a given seismic event might look very similar when registered by different 
seismometers at different locations. When selecting training and test sets from multiple stations in 
the classifier combining experiment the same random index permutations were used for all the 
stations.  

7.2.2 Data set
For the following experiments recordings from all five a priory selected stations were used. The 
first 133 seismic recordings from each station and each class were selected. A total of 2660 seismic 
recordings were used for the experiments (5*4*133=2660). Again all classifiers were trained using 
100 randomly chosen recordings per class. Classification performance was tested on the remaining 
33 recordings of each class.     

7.2.3 Classifier
For these experiments the ldc classifier was used. The ldc classifier was trained on the euclidean 
dissimilarity feature vectors that were described/found in chapter 6. The number of averaged frames 
of each recording was set to 42. The number of representation examples used to form the 
dissimilarity space was set to 120. These settings gave the best classification results for the ldc 
classifier in chapter 6. The ldc classifier was used because it gave superior classification 
performances whilst using the datasets originating from the other stations. The experimental results 
of the other less performing classifiers are not included in this work.  
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7.2.4 Combining rules
In the classifier combining experiment the recordings from different seismic stations were 
combined at the feature level[3]. An ldc classifier was trained on the recordings of each station 
involved in each given combination. Obviously the sensor or station classifiers involved in the 
combinations were all trained in a different feature space. Each station classifier produces a set of 
class posterior probabilities p  j∣x  when presented with a test object. The sensor or station 
class posterior probabilities were combined using a combination rule, which is itself a classifier 
defined on a feature space of posterior probabilities. The combining rule provides an estimate of (or 
a value that is proportional to) the class posterior probability conditioned on the recordings of all 
involved stations p  j∣x1 , x 2 , ... , xN  . The classifier combining architecture is given in figure 
7.1. The obvious question for this architecture is: Given the outputs of the sensor or station 
classifiers what is a good choice for the combination rule?

Figure 7.1 Classifier combining architecture

Four combination rules were used in the combining experiment:

Product rule
The product rule assumes conditional independence of the recordings originating from different 
stations. The recordings x1 , x2 ,... , xN are assumed conditionally independent given the class. In 
all the experiments in this study equal class priors were used (class priors are ignored in the class 
posterior probability computations). Whilst using the product rule the test object is assigned to the 
class for which the product over the class posterior probabilities is largest The product index is 
running over the stations (See also equation 7.1). The product rule is usually applied when each 
classifier receives input from different (independent) sources.

∏
i=1

N

p  j∣x i∏
i=1

N

p k∣x i k=1,... ,C ; k≠ j

Equation 7.1: Product rule for equal class priors according to [3]
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Sum rule:
The sum rule is sometimes also referred to as Bayes voting. Intuitively this combining rule is 
similar to the majority vote combining rule. The majority vote combining rule is a combining 
method at the decision level. The majority vote combining rule assigns one to the class for which 
the corresponding posterior probability is largest and zero to all other classes. The 'vote' is assigned 
to one class. In contrast the sum combining rule divides the 'vote' in fractions to the different 
classes. The test object is assigned to the class for which the sum over the fractional 'votes' is 
largest. See equation 7.2. Mathematically one assumes that the posterior probabilities p  j∣x 
are similar to the class priors p  j which is unrealistic in many cases. However the combiner 
rule is  robust and often used for combining classifiers that were trained on common input patterns. 
Which is perhaps also the case for our data set (Possibly the recordings of different stations 
corresponding to the same seismic event are very similar).

∑
i=1

N

p j∣x i ∑
i=1

N

p k∣x i k=1,... ,C ;k≠ j

Equation 7.2: Sum combining rule for equal class priors according to [3]

Max rule:
The max combining rule is a simplification/approximation of the sum rule.  The assumption for the 
max combining rule is that there is one classifier output for each class that clearly dominates or is 
much larger compared to the other classifier outputs. The dominating output for a particular class is 
sometimes also referred to as the experts decision. Instead of summing over all the class posterior 
probabilities involved in the combination the max rule only uses the expert class posterior 
probabilities that would have otherwise dominated the outcome anyway. The max combining rule 
for equal class priors is given in equation 7.3. 

max
i
p  j∣x imax

i
p k∣x i k=1,... ,C ; k≠ j

Equation 7.3: Max combining rule for equal class priors according to [3]

Trained combining rule:
Another alternative is to use the class posterior probabilities resulting from the sensor/station 
classifiers as the input or features to a trained combining classifier. In the experiment several 
different classifiers (all classifiers of chapter 6 except the hidden Markov classifiers) were trained 
on the output posteriors of the station classifiers. 
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7.3 Results
7.3.1 Generalization to other seismic stations 
In figure 7.2 the classification results are given for the five a priory selected seismic stations. On the 
vertical axis the training set station is given. And on the horizontal axis the test set station is given. 
Classification results for the diagonal elements were achieved by both training and testing on the 
recordings originating from one given seismic station. Classification results for the off-diagonal 
elements were achieved by training on the recordings of one seismic station and testing on the 
recordings of another station. The diagonal classification results are all within 3% of each other 
indicating that the chosen pattern classifier is robust. The chosen block, block parameter and 
classifier combination is also a good solution for the recordings originating from the other stations. 
Like one would expect the off-diagonal classification results are almost always worse compared to 
the diagonal classification results. This might be caused by varying ground and instrument 
conditions at different locations. But the classification results of the off-diagonal elements are much 
better compared to results achieved using the random classifier indicating that seismic events are 
registered in a similar way by different seismometers at different locations. One would expect a 
somewhat symmetric classification result (symmetric around the diagonal). For example when the 
pattern classifier is trained using the recordings from station i and classification performance is 
measured using the recordings from station j one would expect similar classification results when 
station i and station j exchange place. However for the experimental results given in figure 7.2 
this is at least not always the case. Especially when the ref station is involved in training or testing. 

Figure 7.2: Classification performance for all five a priory selected stations using the ldc 
classifier in the euclidean dissimilarity space 
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7.3.2 Combining seismic stations
In figure 7.3 the classification results are given for the seismic station combining experiment. On 
the horizontal axis the seismic station combining method is given. On the vertical axis the seismic 
station combination permutation is given. Four classifier combining methods were used in this 
experiment. The product, sum and max combining rules were used in combination with all possible 
combinations of the five selected stations. When combining two or three stations there are ten 
possible combinations, when combining four stations there are five possible combinations and 
finally when combining all five stations there is only one possible combination (the ordering of 
stations is of no importance for these combining rules). When combining two stations the first 
combination permutation index corresponds to the combination of the alf and bis station. The 
second index corresponds to the combination of the alf and oll station etc... Best classification 
performance was achieved with the combination of the alf,  oll and rec stations whilst using the max 
combining rule. The oll and rec stations are the individually best performing stations thus this 
results does not come completely as a surprise. In this experiment the combined classification result 
was always better compared to the individual best performing station involved in the combination. 
In the experimental results given in figure 7.3, the choice of the stations inside a combination is of 
more importance than the choice of the combining rule. 

A couple of experiments were performed using several different classifiers in the classifier output 
space. For these experiments all five stations were used. The dimensionality of the classifier output 
space is the product of the number of stations and the number of classes. Thus the dimensionality of 
the resulting output space was 20. Best classification performance was achieved using the parzenc 
classifier. The classification result of the parzenc classifier in the classifier output space was worse 
compared to the untrained combining rules in the same output space. Indicating that the trained 
classifiers used for this experiment were either over trained or could not find a good generalization 
(the first cause is more likely in case of the parzenc classifier).  

The classification performance variance as a function of the combining permutation decreases with 
an increasing number of stations involved in the combination. Of-course this is also what one would 
expect. The classification improvement step is largest whilst going from the individual 
performances to a combination of two stations. 

 

Figure 7.3: Classification performance for several combinations of the seismic stations
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7.4 Observations and conclusions
From the results one can observe and conclude the following:

• One can conclude that the recordings from different stations are informatively different. 
Otherwise combining the recordings from different stations would not have improved 
classification performance. But one can also conclude that the informative differences are 
small. Only a maximum improvement of 3%-4% was achieved whilst combining seismic 
stations.  The differences in recording representation between stations are much larger. 
Otherwise the off-diagonal classification performance would have been better. 

• Best individual classification performances were achieved when both the training and test 
sets originate from the same station. Individual classification results of the five seismic 
stations were very similar indicating that the (untrained) pattern classifier is also a good 
solution for the recordings of the other stations.  

• Classification results were almost always significantly less when training was performed on 
the recordings of one station and testing was done on the recordings of another station. Thus 
preferably one pattern classifier is trained on the recordings of each station. It would have 
been interesting to see the classification results of a single pattern classifier that was trained 
on the recordings originating from all seismic stations. One would suspect that these results 
would have been somewhere in between the off-diagonal and diagonal results.    

• All combining rules used in this experiment improved classification performance over the 
best individual performing station involved in the combination (regardless of the station 
combination). The choice of the combining rule was not critical. The choice of the stations 
involved in the combination was of more importance. 

• Training a combining classifier in the classifier output space did also improve the 
classification performance over the best individual performing station. The choice of the 
classifier was critical. Only the parzenc and the nmsc classifier performed better than the 
best individual performing station. The trained combiner performed worse compared to the 
untrained combining rules.
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8 Discussion and Conclusions
The Nevado del Ruiz volcano is an active and dangerous volcano in the Andean volcanic belt. 
Measuring seismic activity is one of the most reliable and widely used techniques to monitor and 
predict renewed volcanic activity. Regions of interest are still classified by hand by the VSOM 
(Volcanological and Seismological Observatory Manizales) staff. In this study a pattern classifier 
was described/developed capable of discriminating reliably (±90%) between four frequently 
occurring seismic event types. (Frequently occurring in the received data set for this study) The 
received data set for this study also contained four additional event types but these event types were 
not included because these event types were poorly sampled in the received data set.

Frequency information in the form of a single spectrum per segmented seismic recording is often 
used by the VSOM staff to discriminate between different event types. Frequency information is 
also often successfully used in other studies involving seismic signals[13][14][15]. Therefore 
frequency information was also used in this study. Two popular types of spectral estimation 
methods were tested in combination with three dimensionality reduction methods. Overall the 
choice of the block and block parameters was not critical but by careful tweaking classification 
performance was improved by several percentages over the classification results achieved by the 
average block and block parameter choice (with a couple of exceptions of-course). Perhaps a 
careful study using the wavelet transform might improve classification performance even further[9]. 

The chosen block and block parameters in chapter 5 were used in combination with five different 
classification strategies and a large number of classifiers. Both Bayes and discriminant classifiers 
were used in the experiments. Using both time and frequency information improved classification 
performance over the single spectrogram representation. But only when the ordering of frames was 
taken into account in the representation. The continuous hidden Markov model improved 
classification results over the single spectrum representation whereas the naive Bayes classifiers 
trained on the same time frequency representation did not improve classification results. The 
concatenated spectrogram representation also improved classification results significantly over the 
single spectrum representation (Both in the feature space as well as the euclidean dissimilarity 
space). Classification performance was not improved whilst using the concatenated spectrogram 
representation in the Hausdorff dissimilarity space. The ordering of the frames in the spectrogram 
representation is of no importance whilst using the Hausdorff distance. Classification performance 
using the dissimilarity representation might be improved further using other distance measures. The 
classification performance of the hidden Markov models might be improved by the spectral 
averaging operation also done in the experiments with the concatenated feature vectors.  

In chapter 7 we looked at the recordings of multiple stations. The untrained pattern classifier 
developed in chapter 5 and 6 also generalizes to other stations. The untrained pattern classifier 
might even also be a good solution for the automatic classification of seismic signals at other 
volcanoes. Generalization of a trained pattern classifier to other stations was almost always (much) 
worse. In this study we looked at combining the recordings resulting from different stations at the 
feature level[3]. At the feature level, classification performance improvement were achieved of 
approximately 3-4% over the individual best performing stations. It is of interest to see if 
classification can be improved even further by combining classifiers at the data level.

The received data set for this study was relatively small. Which was great for testing. All recordings 
in the received data set originate from a small period in time. Resulting recordings from a given 
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class of events might change over time due to changing ground path and instrument conditions. It is 
of interest to see how well the developed pattern classifier generalizes when presented with a larger 
data set.     
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