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Abstract—It is challenging for key-value data stores to
trim user (tail) latency of requests as the workloads are
observed to have skewed number of key-value pairs and
commonly retrieved via multiget operation, i.e., all keys
at the same time. In this paper we present Chisel,
a novel client side solution to efficiently reshape the
query size at the data store by adaptively splitting big
requests into chunks to reap the benefits of parallelism
and merge small requests into a single query to amortize
latency overheads per request. We derive a novel layered
queueing model that can quickly and approximately steer
the decisions of Chisel. We extensively evaluate Chisel
on memcached clusters hosted on a testbed, across a large
number of scenarios with different workloads and system
configurations. Our evaluation results show that Chisel
can overturn the inherent high variability of requests into
a judicious operational region, showcasing significant gains
for the mean and 95th percentile of user perceived latency,
compared to the state-of-art query processing policy.

I. INTRODUCTION

Key-value data stores, such as memcached, are widely

deployed to scale up the performance of distributed

services in production systems, e.g., Facebook [1] and

Twitter [2]. Their popularity is grounded on their speed

to serve user requests few order of magnitude faster than

querying back-end databases or accessing file systems.

Users’ requests for interactive web services display a

highly varying degree of fanout [1, 3], intensifying many

times the challenge of delivering consistent latency. For

example, although the average number of keys in a single

request is roughly 24 at Facebook [1], around 10% of

requests ask for more than 100 keys (elephant request),

showing a skewed number of key-value pairs per user

request. To cater to users’ requests asking for several data

elements, multiget APIs are offered to batch multiple

read operations, further propagating the skewed request

sizes in key-value stores.

It is known that latency, particularly its tail, can dras-

tically degrade due to highly varying sizes as elephant

requests/queries require long processing times and cause

long waiting times for any mice requests behind them.

While a significant number of prior studies [4, 5, 6]

try to minimize the key-value retrieval time for single

key-value pairs via well-engineered implementations and

intelligent load balancing [7, 5], little is known on

managing latency for workloads with a skewed number

of key-value queries per request. Carefully scheduling

multiget requests [3] has been shown effective in min-

imizing the tail latency, reducing the difference among

operations’ finishing times.

Another dimension of multiget requests is that re-

source bottlenecks can switch depending on the mix

of request sizes, how queries are processed at the

datastores, and the servers’ load. On the one hand,

processing big requests as small parallel queries can

reduce the processing time but the overhead of excessive

parallelization increases the risk of server overloads

and stragglers [8, 9, 10]1. In fact, determining optimal

parallelism levels is a long standing challenge [11]. On

the other hand, merging small requests can reduce the

overhead, increasing the throughput in retrieved key-

value pairs at the expense of higher latency, particularly

important during high load.

In this paper, we propose a novel client-side solution,

Chisel, which adaptively and proactively splits and

merges user requests into queries to retrieve key-value

pairs. Particularly, Chisel splits big elephant requests

into smaller parallel queries and merges small mice re-

quests by piggybacking them during the connection setup

time. Chisel is a drop-in solution that can be deployed

on multiple clients. The key components of Chisel
are an analyzer thread, a dispatcher thread, and a pool

of query threads that enable non-blocking and parallel

processing of requests and queries. The analyzer thread

determines the optimal split and merge levels based on

a set of novel layered queueing models that capture the

complex interplay among request arrivals, the loads on

clients and memcached servers, and most importantly the

interaction among split and merge operations.

1In the following we refer to request as the original demand to the
datastore client and to query as the effective command sent to the
datastore server.
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We particularly focus on memcached to demonstrate

the effectiveness of Chisel and two prototype imple-

mentations, i.e., using the go programming language and

a more efficient one using libevent. Our extensive evalu-

ations show that Chisel can achieve significant latency

reductions for both the mean and 95th percentile latency

over hundreds of scenarios, respectively, compared to the

standard practice of processing all keys of a request as

a single memcached query.

The main contributions of Chisel are:,

• Chisel can reshape the query sizes by intelligently

combining split and merge operations. It is par-

ticularly effective to improve the (tail) latency by

reducing the request skew.

• Chisel takes a holistic approach that accounts for

latency at both the memcached client and server, and

is able to reduce the overall latency by trading-off the

benefits of parallelism with its additional overhead;

• Chisel is able to adapt to the varying workload and

system conditions, appropriately adjusting the split

and merge levels without intrusive modifications to

the memcached servers.

II. BACKGROUND AND MOTIVATION

User requests in web-serving architectures are typi-

cally served by a client that acts as an interface to a back-

end data store. User-perceived latency is thus composed

of the time spent at the client and the remote time to

retrieve the objects from the data store. The time spent

within the client encompasses library overhead, waiting

time and processing time if any. Processing time depends

on the role of the client. If the client simply acts as a

proxy for forwarding requests, the processing time is

almost non-existent. If the client is not just a proxy but

provides some management actions or performs some

pre-processing, then the client time includes a non-

negligible processing time. The remote time includes the

time spent at the data store and the transfer times at the

network time. Both these times grow linearly with the

number of objects requested.

Request Skew. The size of users’ requests in terms of

number of objects (keys in a key-value store) has been

shown to be highly skewed in production systems. For

example, the average number of keys per user request at

Facebook [1] is 24 but the 95th percentile is more than

95 keys. Another study on SoundCloud [3] identifies

that 40% of the requests have only one key while the

99th percentile is around 100 keys. This is essentially the

scenario of elephant and mice requests: a large number

of requests asks for few keys, while a small percentage

of requests asks for a large number of keys.

Batching. The state of practice is to retrieve all the

objects in one query via multiget API, also known as
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Fig. 1: The performance baseline: skewed requests de-

grade performance and the bottlenecks alter.

batching, and is widely used in today’s data stores,

e.g., Cassandra, MongoDB, Redis, and Memcached 2.

Batching essentially reduces the overall latency by avoid-

ing the network RTT associated with querying each

object, as requests for multiple objects are aggregated

within a single query. For in-memory data stores such

as memcached, networking is often the most expensive

part of a memcached request (Quora reports network

time accounts for over 80% of the total time processing

Memcached requests [12]) and batching is employed

widely to reduce network latency.

A. Impact of Skewed Workloads

We now demonstrate two key performance aspects

using memcached as an example: the impact of skewed

workloads and the performance bottleneck shift between

client and server depending on the offered load. To

this end we perform experiments, using batching, on

a memcached replica set of 4 servers hosted on our

testbed, detailed in Section V-A. To capture the impact

of skewed workloads we setup the following scenarios:

(i) homogeneous mice requests asking for 10 keys, and

(ii) skewed requests where mice (90%) ask for 10 keys

and elephants (10%) ask for 100 keys. To make a

fair comparison, we set the mean inter-arrival time to

100 and 190 μs for homogeneous and skewed requests,

respectively, keeping the same mean number of keys

requested per second in both scenarios.

Skewed workloads degrade performance. Fig. 1(a)

summarizes the mean and 95th percentile latency under

skewed and homogeneous workloads. In the skewed

request scenario, we show the overall latency and further

decompose it into the latency experienced by mice and

elephant requests individually. We can clearly see that

the 95th percentile latency of mice degrades by a factor

of 2.1X in the skewed scenario, compared to the homo-

geneous case. This is because mice requests experience

longer queueing times, waiting behind elephant requests.

Further, the level of degradation increases with the load,

as the probability of waiting behind elephant requests

2Throughout this paper, we refer to requests as the workload unit
from the user to the client and query as the workload unit from the
client to the data store.
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down of user perceived latency into client and mem-

cached that includes processing and network time.

is higher. Moreover, because of elephant requests, the

overall mean and 95th percentile latency increases by a

factor of 1.5X and 3.8X, respectively. In a nutshell, the

skewed workload worsens the performance with respect

to the homogenous workload, especially hurting the mice

requests and the tail latency.

Resource bottlenecks shift. We illustrate how the per-

formance bottleneck shifts between clients and servers at

different loads, when the client acts as more than just a

proxy. We use a skewed workload as above (90% mice

and 10% elephant) at mean inter-arrival times of 400,

200 and 100 μs, resulting into low, medium and high

loads at the client. We compute the latency breakdown

between the time spent locally in the memcached client

library (termed client time hereon) and remotely at the

memcached server (termed memcached time hereon),

which includes the network transfer time. Fig. 1(b)

summarizes the mean and 95th percentile under the

three different loads. For low and medium loads, the

memcached time accounts for the majority of the mean

and tail latency, representing the bottleneck; whereas

for high load the client time grows and becomes the

bottleneck. This shift in the bottleneck resource points

to different opportunities for latency improvement. For

example, one shall try to reduce memcached time during

low loads, for instance by exploiting parallel processing

of the keys within a request, whereas one shall try to

minimize the overhead at the client during high loads,

for instance by merging keys from multiple requests.

B. The Limits of Batching

As we have seen in the previous section batching
suffers a disadvantage in processing skewed requests.

Using an example, we demonstrate the limitations of

batching and explain the intuition behind Chisel.

In Fig. 2, we summarize the average request latency

at low loads (minimal client overhead) when different

number of keys are requested. The latency is decom-

posed into time spent at the client and at the memcached

server, which we further divide into processing time

and network time. Fig. 2 clearly shows that both the

processing time at memcached and the network time

increase linearly with the number of keys requested: (i)

the processing time is composed of a constant time to

process the memcached protocol headers and a variable

time to fetch each key from memcached, which grows

linearly with the number of keys requested; (ii) the

network time can be seen as a constant time of RTT and a

variable time to transfer the values on the network, which

also grows linearly with the number of keys requested.

Mice Requests. Batching all keys in a single query

helps to share the constant time (processing the protocol

headers at memcached and network RTT), compared to

retrieving every key in individual memcached queries.

For example, a mouse request with 4 keys when retrieved

in a single query takes about 119 μs of memcached

time but when retrieved in 4 sequential queries takes 376

μs. An alternative is to query all the 4 keys in parallel

(splitting), which takes about 95 μs. Intuitively, splitting

helps amortize the variable time (fetching the keys from

memcached and transferring the values over the network)

as these steps are done in parallel. In this case the gains

from splitting are not high because the number of keys

requested is small. In addition, gains from splitting also

depend on other constraints such as available threads at

the client, the server, and the workload intensity.

Elephant Requests. Next, let us look at elephant

requests with 100 keys. Batching all keys into one

memcached query takes 880 μs, whereas splitting it into

multiple parallel queries can take between 94 to 9400

μs depending on the degree of parallelism. In contrast

to mice requests, for elephant requests the constant time

of processing the protocol headers and network RTT

(86 μs) is significantly smaller than the variable time of

fetching keys from memcached and transferring values

over the network (780 μs). When the keys requested are

large, batching all keys into one query easily misses out

the significant gains from parallel execution. However,

splitting is not a panacea as the high fanout of perfect

parallelism (as many queries as keys) increases the risk

of sequential query execution due to the unavailability of

idle threads. Under high load, threads become scarce and

splitting may backfire unless the degree of parallelism is

carefully tuned. We discuss this trade-off in section III-C.

Discussion. The observation that splitting large keys

cuts the latency significantly is key to Chisel’s ap-

proach in handling skewed requests. As shown in Fig. 1,

under a skewed workload of mice and elephant requests,

when requests are only batched, mice requests experi-

ence high latency as they end up waiting behind elephant

requests that take much longer to respond. Chisel
aims to cut this waiting time by splitting the elephant

requests in parallel. Adequate splitting also slashes down
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Fig. 3: Illustration of the Chisel architecture.

the latency of elephant requests as they exploit available

parallel resources. In addition, Chisel merges multiple

mouse requests to pool overheads and amortize queuing

times under high loads (discussed in section III-B).

Chisel appropriately tunes the split and merge levels,

adapting to workload conditions that make either or both

strategies more effective to cut latency.

III. CHISEL

Chisel is a client-side solution implemented on

top of a traditional memcached library to re-shape the

request sizes by applying two main operations: split and

merge. On the one hand, Chisel splits large user re-

quests, made up of a large number of keys, into multiple

sub-requests, to exploit the memcached parallelism. On

the other hand, Chisel merges multiple small user

requests into a single large query to amortize the query

processing overhead across many small requests. The

challenge however lies in deciding the right split and

merge levels. This is especially difficult since, as we see

next, their impact on the user-perceived latency depends

on a number of factors, such as the workload, the actual

request sizes, and the amount of available parallelism on

both the client and the server.

We first explain Chisel’s architectural design and

implementation details. Second, we illustrate the key

workload and system parameters that affect the decisions

of split and merge.

A. Architecture and Implementation

Chisel consists of three main components: (i) an

analyzer, (ii) a dispatcher thread, and (iii) a pool of

query threads (see Fig. 3). The analyzer determines the

split and merge levels, i.e., the number of chunks to

split elephant requests and the number of mice requests

to merge into a single request. Due to the complexity

involved in choosing the split and merge levels, the

core of the analyzer is a set of stochastic models that

predict the expected latency under different split and

merge configurations (see Section IV). The dispatcher
and query threads actuate the optimal split and merge

decisions determined by the analyzer.

Dispatcher Thread Upon receiving a user request,

the dispatcher thread checks the request size (number

of requested keys) and takes the following actions ac-

cordingly. For elephant requests, the dispatcher thread

splits them into chunks or sub-requests according to the

optimal number of chunks determined by the analyzer,

and dispatches these subrequests to the queues of differ-

ent query threads to enable parallel retrieval. The queues

are chosen in a round robin fashion. For mice requests,

the dispatcher appends the optimal number of requests

to merge (B∗) as metadata to the request and sends it

to the query threads. After forwarding B∗ consecutive

mice requests to one query thread, the dispatcher selects

a new query thread in round robin order to process the

next B∗ mice requests as one merged query. Let us take

B∗ = 3 as an example. In this case the dispatcher sends

three consecutive mice requests to the same query thread

queue before moving on to the next thread in a round

robin fashion. We thus quickly accumulate B∗ mice

requests to merge at the same query thread, avoiding

unnecessary delays. To allow this optimization without

the need of synchronization, and since the overhead of

processing a user request by the dispatcher is low, we

opted to have a single dispatcher thread.

Query Threads All (sub)requests wait at the queues

in front of query threads, which in turn process

(sub)requests in a first-come-first-served fashion. For

every (sub)request at the head of queue, the query thread

first checks the optimal number of requests to merge

saved in its metadata while setting up the communica-

tion with one of the memcached servers. The overhead

imposed at the query thread depends on the library im-

plementation and additional functionalities required, e.g.,

consistency checks. The memcached protocol allows to

retrieve keys via two commands: one key at a time

(get command) or multiple keys together (gets com-

mand) [13]. As the (sub)requests in the query threads’

queues have a list of requested keys, all query threads

use the second alternative only.

Query threads try to piggyback (sub)requests accord-

ing to the optimal number of requests to merge, under

the condition that subsequent requests arrive before

completing the connection to the memcached servers.

In other words, the setup time is the upper limit on

the additional wait to merge multiple (sub)requests. This

limit also bounds the search for the optimal merging

level performed with the latency model implemented by

the analyzer (see Section IV). Another critical parameter

here is the number of query threads. Chisel sets the

number of query threads at least as high as the available

memcached threads, so as to better leverage the available

resources. In case the memcached servers are faster

to return query results than query threads to process

(sub)requests, it is possible to set a higher number

of query threads than memcached threads. The impact

of such choice is also reflected in the latency models

implemented by the analyzer. We note that the analyzer

can set the optimal number of requests to merge and the
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Fig. 4: Example of merging mice requests.

optimal number of chunks to one. In such case, all keys

in a request are processed in a single memcached query

as performed in state-of-the-art memcached clients. This

mode of operation is the same as batching.

System Assumptions We particularly focus on the

scenario of read-dominated workloads in a single replica

pool, where there are only a small number of memcached

servers. Consistency within the replica set is ensured

by broadcasting updates across all its members. We do

not assume that all the data stored is available in one

replica set, instead each Chisel client focuses on traffic

directed to a single replica pool.

B. Merging Mice Requests

First, we distinguish the difference between batching

and merging, and then highlight the conditions under

which merging improves latency.

Batching vs. Merging. While batching aggregates

multiple keys of a single user request into one mem-

cached query, merging aggregates multiple user requests

into a single memcached query. It defers the execution of

a user request by waiting to group multiple user requests

into one batch, which is then forwarded as a single

query to Memcached. Every user, then, experiences a

latency greater than or equal to the time it takes to

process all merged users requests. At the outset merging

seems to introduce additional delays in exchange for

little to no benefits. Actually, we show that merging

multiple users requests reduces the latency under specific

circumstances, particularly when any client overhead can

be pooled together or when requests queue at the client.

Overhead Pooling and Queuing. The overhead at a

client can range from connection handling to data and

consistency management. The benefits of merging user

requests begin to manifest when the client overhead can

be pooled together and executed in parallel with the

waiting time for merging user requests. In Fig. 4, we

illustrate the merge operation via an example of merging

two requests. User 1 sends a request for 2 keys which

are then immediately forwarded by the dispatcher thread

to a query thread. While the query thread sets up the

connection with one of the memcached servers, another

mouse request from User 2 is forwarded to the same

query thread by the dispatcher thread. The query thread

piggybacks request 2 with request 1 and sends them as

Fig. 5: Example of splitting elephant requests.

a single query. The client time (TC) time for request 2

reduces and the setup time is amortized over the two

requests. Moreover, as the two requests are processed in

the same memcached query, they have the same request

submission time (N ′
S), waiting time (WS), processing

time (PS1 +PS2 ), and value transfer time (N ′′
S1

+N ′′
S2

).

Our experimental results (omitted due to lack of space)

indicate that at high loads merging multiple mice re-

quests cuts latency even in the absence of any overhead.

C. Splitting Elephant Requests

To mitigate the performance degradation caused by

elephant requests, Chisel proactively splits these re-

quests into a set of smaller memcached queries or

chunks. The optimal number of chunks to split a re-

quest depends on the load at client and servers, the

thread availability, as well as the overhead of splitting,

which needs to be highly optimized to fulfill the sub-

millisecond latency requirements of in-memory data

stores such as memcached.

We illustrate the gain and overhead of splitting with

the example in Fig. 5, where an elephant request is split

into two memcached queries or chunks. As soon as the

request arrives at Chisel, the dispatcher thread splits

the elephant request into two subrequests and enqueues

them to two different query thread queues in a round-

robin fashion. The subrequests wait until they reach the

head of the queue (WC) and are then processed and

forwarded by the query threads (PC) to the memcached

servers. We refer to the sum of these two times as the

Chisel client time TC
3. Once forwarded, each query

is sent over the network (N ′
S), waits at the memcached

server (WS), is processed to retrieve the keys (PS),

and the resulting values are transferred back to the

query thread (N ′′
S ). All these times together make up the

memcached server time TS . Each subrequest experiences

different TC and TS times and the user-perceived latency

is determined by the last subrequest that completes. The

gains from splitting thus come from parallelizing the

server time (TS).

In our experimental results under high load the client

time increases with the number of chunks due to the

3We denote in general the waiting, processing and network and total
time with the letters W , P , N and T , respectively, where N = N ′ +
N ′′, and use the subscripts C and S to denote the client and server.
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include response times at server and network.

splitting overhead and the time waiting for available

query threads. In contrast, with low load Chisel is

able to better harvest the parallelism at the client and

the memcached servers using the split operation.

D. Split Plus Merge

The previous sections illustrate that, for either splitting

or merging, the load intensity is critical to determine the

trade-off between the performance gain and the addi-

tional overhead at both client and memcached servers. At

very low loads, it is beneficial to split elephant requests

into multiple chunks and not to merge any mice requests.

On the other extreme, at very high loads, it is beneficial

to merge multiple mice requests and not split elephant

requests. For loads in between, different combinations

of merging and splitting provide different benefits. It is

extremely difficult to learn the optimal split and merge

levels via offline profiling as the waiting times at the

query queues and within the memcached servers depend

on the complex interplay of workload dynamics, system

configurations, and split/merge operations themselves.

In addition, as Chisel performs both split and merge

concurrently on different sets of requests (mice and

elephants), their combined impact significantly increases

the difficulty to obtain the optimal split and merge levels.

We thus develop stochastic models to support the core

operations of the analyzer: (i) to estimate the queueing

times when simultaneously applying the split and merge

operations, and (ii) to determine the optimal split and

merge levels. Moreover, unlike the optimal splitting level

the model parameters can be easily profiled under low

loads.

IV. ANALYZER MAIN FEATURES

It is challenging to decide upon the right split and

merge levels. To tackle this complexity we develop a

set of stochastic models that obtain the expected user-

perceived latency for a given configuration. The Chisel
analyzer implements these models to find split and merge

levels that result in the lowest predicted latency.

1. Layered Operation. The first key aspect considered

in the model is that the request processing times at the

Chisel client incorporate the delays at other resources,

namely the network and the memcached server. Figure 6

illustrates this layered dependency via a high level

queueing model for the splitting operation. To process

a request the Chisel client first splits it in chunks

and forwards them to different servers. Each chunk

then experiences subsequent steps to be completed, i.e.,

network delay, memcached server time, and network

delay again. During these steps, the Chisel thread

handling the user request remains busy. This layered

dependency of the client thread holds for both split and

merge operations, as shown in their system illustrations

of Figures 4 and 5. To capture such a dependency, we

use a layered model, where the service times at one layer

are made of the response times at other layers. We thus

first analyze the memcached server and network layers to

obtain their latency, and employ the results to analyze the

Chisel client layer and obtain the request total latency.

2. Explicit Overhead in Query Processing and
Network times. Our model captures the amortization

of processing and network overheads in the split and

merge operations. As illustrated in Section II-B, both the

query processing times and the network transfer time

are composed of a constant time and a variable time.

The examples presented in Section II-B clearly illustrate

that the specific values of these constant times can be

very significant when deciding the appropriate split and

merge levels. The proposed models explicitly consider

that request processing time is made of constant and

variable times, and that the latter depends on the number

of keys in a query. The models are thus able to capture

the impact that split and merge have on the request

latency. Furthermore, the models incorporate both the

server and network overhead, where the total transfer

time is also made of a constant and a variable time.

3. Capturing the Impact of split and merge on
Latency. The proposed models also take into account

that both split and merge generate additional overheads.

Consider for instance the case of splitting shown in

Figure 6. To put together the user response the Chisel
client must wait for the results of all chunks to arrive,

generating a delay that would not be present in the

case without splitting. This requires approximating a

fork-join-like behavior by means of harmonic numbers

together with fairly general processing and inter-arrival

times [14]. In the case of merging, the models incor-

porate the additional delay caused when accumulating

several requests into a single one. Further, combining

elephant and mouse requests requires considering multi-

class traffic, which we capture as a marked markovian

arrival process [15].

4. Approximate Analysis for Quick Scenario Eval-
uation. Given the sub-millisecond operation of mem-

cached data stores, the proposed models provide approx-
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imate closed formulas for the overall request latency,

which can be quickly evaluated for a number of Chisel
configurations. Evaluations in Section V show that the

models are in fact accurate and can thus support the

selection of the optimal split and merge levels.

All in all, the proposed models allow us to quickly

evaluate the expected latency for a given Chisel con-

figuration. The main knobs to consider are the number

of mice requests to merge B and the size of the chunks

in which the elephant requests are split L. The Chisel
analyzer exploits the model to evaluate many possible

combinations of B and L via a grid search and chooses

the one that provides the smallest expected request

latency. The experiments presented in the next section

show that the model is able to provide accurate results

to support the selection of the right split (L) and merge

(B) levels.

V. EVALUATION

In this section we extensively evaluate Chisel as

a mechanism to improve latency under various request

size mixes and load conditions. Particularly, we deploy

Chisel on memcached hosted on the testbed described

in Section V-A. We focus on the mean and 95th percentile

of user perceived latency as main performance metrics.

We show that Chisel can achieve significant latency

gains against the state-of-practice of retrieving all keys

of one request in a single memcached query, i.e., using

only batching.

A. Setup and Scenarios

Testbed. The testbed is composed of identical physical

servers, used to either host memcached or Chisel
collocated with an in-house memcached load generator.

Each server is equipped with two Intel Xeon E5-2630v3

CPUs, 128 GB DDR4 RAM, six 1-TB solid state disks

in RAID5, and dual 10-Gigabit Ethernet adapters with

Jumbo frames enabled. Servers are connected in a star

topology via a Cisco 9500 switch. We use memcached

server v1.4.31 configured with 4 threads to avoid thread

scaling issues [16].

Chisel. We implement Chisel in the go program-

ming language as a layer on top of the gomemcache

library handling the low level memcached protocol. We

use the golang v1.7.3 compiler as we noticed signifi-

cant performance improvements with respect to older

versions. The binary combines Chisel with an in-house

load generator with support for different arrival and

request size distributions. We also implement a highly

efficient version of Chisel in C, using libevent, that

is capable of achieving throughputs of around 800,000

requests per second.

Scenarios. We generate mixed user

requests, whose inter-arrival times (A)

follow an exponential distribution with mean

{50, 60, 70, 90, 120, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1100}μs. We consider three sizes for mice request,

i.e., 1, 5, and 10 keys, while elephant requests ask for

100 keys in all scenarios. In terms of mice-to-elephant

request mixes, we consider 9 to 1 and 5 to 1 ratios,

i.e., for every elephant request we inject on average 9

or 5 mice requests. We emulate different memcached

client overheads by artificially injecting waiting times

of roughly 0, 60, 120, and 180 μs.

Baseline. As baseline key retrieval policy we use

batching-only, the state-of-practice where all key-value

pairs in a user request are processed in a single mem-

cached query by our Chisel client, i.e., both splitting

and merging are disabled. All requests are processed

in parallel by the query threads, i.e. the baseline is an

optimized solution, rather than a naive approach.

Metrics. Due to the large number of combinations

of the aforementioned parameters and the space limit,

we mainly show aggregate results, i.e., the average and

standard deviation from multiple scenarios. We partic-

ularly present the performance gain on the mean and

95th percentile latency, i.e., the percentage of latency

reduction from the baseline case. The higher the latency

gain, the better Chisel performs. We refer to the 95th

percentile latency as tail latency here on.

Profiling of PS and NS . The analyzer requires

separate models of the processing PS (processing time

at memcached) and network NS (time to transfer values

from memcached to Chisel) times for the memcached

queries across different request sizes. We obtain these via

offline profiling on the testbed using low load runs with

different fixed request sizes. During the offline profiling,

we instrument memcached to report PS . We collect the

memcached time TS from Chisel, and estimate NS

as the difference TS − PS . We find that PS and NS

are approximated by the following two linear equations:

PS = 3.3 + 0.6 ∗K μs and NS = 85.0 + 6.5 ∗K μs,

where K is the number of keys.

B. Chisel Aggregate Results

We first evaluate a single Chisel over 360 scenarios.

Fig. 7 summarizes the results. Fig. 7(a) shows the

complementary CDF (CCDF) of the performance gains

on mean and tail latency. The higher tail latency curve

(compared to the mean latency curve) immediately in-

dicates that tail latency reductions achieved by Chisel
are better than for the mean. On average, Chisel is

able to reduce mean latency by 16% and 95th percentile

by 46.5% compared to the baseline policy. As Chisel
proactively splits elephant requests - a root cause of

high tail latency, Chisel can effectively reduce the tail

compared to the baseline. Zooming into the CCDF of the

tail latency, we also see that Chisel achieves at least
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Fig. 7: Bare-metal: CCDF of overall performance gain, gain on the client and on memcached, and optimality ratio

over 360 scenarios.

a 50% improvement for more than half of the scenarios

considered. The low latency gains of tail mainly happen

at the scenarios with high loads, i.e., small inter-arrival

times, e.g., A = 50, 60 and 70 μs. Moreover, the sharp

fall of the CCDF indicates that performance gains are

similar across many scenarios, supporting the robustness

and adaptability of Chisel to different operation points.

Considering the lower latency reduction for the mean,

we observe that the request size mixes evaluated here are

dominated by mice requests, which are improved by the

merging operation during high loads. This corresponds

to a small number of scenarios with low inter-arrival

rates, e.g., A = 50 and 60 μs. Also, roughly 40% of

the scenarios have mean latency reductions greater than

20%, which mainly correspond to scenarios with a 5-1

mice to elephant mix, with mice request size of one key,

and under lower loads where elephants are better split.

We further break down the performance gains by

the client and memcached times in Fig. 7(b) and (c),

comparing them with the client and memcached times of

the baseline. On the one hand, the client time of Chisel
actually increases compared to the baseline in roughly

90% of scenarios, for both the mean and tail latency. On

the other hand, the memcached time is reduced in almost

all scenarios, resulting in an average reduction of 30%

and 70% for mean and tail latency, respectively. Chisel
essentially improves the memcached time at the cost of

a higher client time, especially due to the overhead of

the additional Chisel split and merge operations.

C. Sensitivity Analysis

Here we present a detailed sensitivity analysis to

show the impact of workload mixes, mice request sizes,

loads, and client overheads. To this end we compute

the average latency reduction for each condition of

interest, see Fig. 8. When the size difference between

mice and elephant requests is bigger, e.g., 1 v.s. 10

keys per mice request, Chisel achieves higher latency

reductions by proactively resizing memcached queries to

reduce their variability. Consequently, Fig. 8(a) shows a

slightly decreasing trend in gain as mice request size

increases. Fig. 8(b) depicts that there is no difference

in tail latency reduction between 9-1 and 5-1 mixes,

whereas reduction in mean slightly increases. This is due

to Chisel being able to split the more frequent elephant

requests under the 5-1 mix, increasing the benefit for

mice requests as their probability of waiting behind big

elephants reduces.

Fig. 8(c) shows how Chisel performs against a set

of selected inter-arrival times. With increasing A, the

reduction in mean and tail latency increases. Under high

load, Chisel tends to split elephant requests into fewer

chunks due to the reduced degree of parallelism. Con-

sequently, query variability is less mitigated under low

inter-arrival times. In contrast, merging requests is better

suited during high loads, although its effectiveness is less

prominent than the one of split operation. Regarding

client overhead, Fig. 8(d) shows that the impact of a

larger overhead is similar to lowering inter-arrival times.

The reduction in mean drops significantly from no-

overhead to 60 μs overhead and then stabilizes, whereas

the tail reduction shows a rather linear trend with respect

to the overhead considered. The increasing overhead

essentially makes the overall constant term per user

request more dominant, weakening the benefit of using

parallelism to reduce the variable term. In summary,

Chisel is particularly effective for skewed request sizes

and light-weight client implementations.

D. Effective Query Sizes

Here we present the average effective query sizes to

support our argument that one of the key reasons for the

gains achieved by Chisel is its ability to reshape the

memcached query sizes. Fig. 9 summarizes the average

size before and after applying Chisel in a high load

(A = 120μs) and a low load (A = 1000μs) scenario.

We show six different cases made up of two request size

mixes and three different mice request sizes. We note that

these two load levels also represent the minimum and

maximum reduction in average memcached query sizes.
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Chisel is able to reduce the average size significantly

compared to the baseline, particularly under low load

due to the splitting operation. Comparing the mixes of

9-1 and 5-1, the difference between the baseline and

Chisel-LL is higher for 5-1 for all the mice sizes

considered. This is because Chisel has more chances

to apply splitting on the elephant requests. The largest

reduction in average query size with respect to the

baseline is with 1-key mice requests and a 5-1 mix.

VI. RELATED WORK

As the core design principle of Chisel is to adap-

tively change the query size to retrieve users’ requests for

in-memory stores to optimize the latency, we structure

the prior art in two main areas.

Latency optimization for in-memory data stores.
Due to the effectiveness of in-memory stores to scale the

performance of large-scale social network services [17,

18], significant efforts from industry and academia try to

optimize their performance, either by directly modifying

the memcached implementation [4, 6] or by altering the

request scheduling [7, 5]. Social network companies,

such as Facebook [1] and Twitter [2], not only make

their memcached implementation available on public

repositories but also include their proxy servers, e.g.,

MCrouter [19], which load balance queries across a large

number of memcached servers. Novel techniques on

hashing, cache replacement [4], and data structures [6]

enable efficient and parallel access to a single mem-

cached server. To improve the performance of the entire

cluster, various distributed and centralized load balancing

techniques are proposed to mitigate the tail latency

degradation, relying on consistent hashing [20], key

popularity [7, 21], and key replications [22, 23].

While the focus of these works is on the latency spent

at the memcached servers only, our interest is on the

user perceived latency, a super set of memcached time

and client time. Chisel is compatible with state of

the art memcached implementations as well as ready

to be integrated with existing load balancing policies.

Moreover, Chisel uses the novel idea of splitting

(merging) user requests into multiple (a single) query,

which has not been explored before in the context of

in-memory stores.

Modeling and Managing Skewed Sizes. There is

a number of analytical studies modeling the impact of

executing skewed workloads with big and small jobs

and proposing novel scheduling policies [24, 25, 26] to

improve particularly the tail latency. The presence of big

jobs [27, 28] can significantly hurt the small jobs that

wait behind. One particular challenge to address with

mixed workloads is the lack of size information prior to

execution. Shortest remaining processing time [29] has

been shown to be a near optimal scheduling policy, even

with inexact job size information. Rein [3] propose a

multi-get aware scheduling to cut tail latency.

However, most analyses do not consider the option of

altering the job sizes as the workloads are assumed to

be uncontrollable. Instead, we derive a set of layered

queueing models that can approximately capture the

request latency under skewed workloads and employ

the novel query sizing strategy proposed in Chisel.

Moreover, Chisel can also adopt existing scheduling

policies to further improve the latency.

VII. CONCLUDING REMARKS

In this paper we present a novel solution, Chisel,

which can effectively improve the mean and tail re-

quest latency in data stores where requests display

a skewed number of key-value pairs. Chisel splits

elephant requests into parallel queries while merging

mice requests into single queries, adaptively shaping the

queries’ sizes and level of parallelism guided by novel
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layered queueing models. Chisel is able to achieve

nearly optimal latency results from merging and splitting

requests as evidenced by our empirical evaluation. We

extensively evaluate Chisel on a testbed using two

prototype implementations. Overall, the parallel design

and implementation of Chisel is able to improve both

the mean and tail latency, over hundreds of scenarios

with different request arrivals and size distributions. For

our future work, we intend to validate the optimality

of the model-based decisions and further extend the

evaluation to different system platforms and multi-client

scenarios.
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