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Shrinking Horizon Model Predictive Control With Signal Temporal Logic
Constraints Under Stochastic Disturbances

Samira S. Farahani , Rupak Majumdar , Vinayak S. Prabhu , and Sadegh Soudjani

Abstract—We present shrinking horizon model predictive con-
trol for discrete-time linear systems under stochastic disturbances
with constraints encoded as signal temporal logic (STL) specifica-
tion. The control objective is to satisfy a given STL specification
with high probability against stochastic uncertainties while maxi-
mizing the robust satisfaction of an STL specification with minimum
control effort. We formulate a general solution, which does not re-
quire precise knowledge of probability distributions of (possibly de-
pendent) stochastic disturbances; only the bounded support of the
density functions and moment intervals are used. For the specific
case of disturbances that are normally distributed, we optimize the
controllers by utilizing knowledge of the probability distribution of
the disturbance. We show that in both cases, the control law can be
obtained by solving optimization problems with linear constraints
at each step. We experimentally demonstrate effectiveness of this
approach by synthesizing a controller for a heating, ventilation, and
air conditioning system.

Index Terms—HVAC system, predictive control, signal temporal
logic, stochastic disturbance.

I. INTRODUCTION

We consider the control synthesis problem for stochastic discrete-
time linear systems under path constraints that are expressed as tempo-
ral logic specifications and are written in signal temporal logic (STL)
[21]. Our aim is to obtain a controller that robustly satisfies desired tem-
poral properties with high probability despite stochastic disturbances,
while optimizing additional control objectives. With focus on temporal
properties defined on a finite path segment, we use a model predictive
control (MPC) scheme [3], [20] with a shrinking horizon: the horizon
window is fixed and not shifted at each time step of the controller syn-
thesis problem. We start with an initial prediction horizon dependent on
the temporal logic constraints, compute the optimal control sequence
for the horizon, apply the first step, observe the system evolution un-
der the stochastic disturbance, and repeat the process (decreasing the
prediction horizon by 1) till the end of the simulation time.

Our proposed setting requires solving three technical challenges in
the MPC framework. First, in addition to optimizing the control and
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state cost, the derived controller must ensure that the system evolution
satisfies chance constraints arising from the STL specifications, i.e.,
closed-loop trajectories that depend on uncertain variables must sat-
isfy specifications with high probability. Previous choices of control
actions can impose temporal constraints on the rest of the path. The
shrinking horizon approach guarantees that the previous actions will
be taken into account when future control actions are computed. Sec-
ond, for some temporal constraints, we may require that the system
satisfies the constraints robustly: small changes to the inputs should not
invalidate the temporal constraint. To ensure robust satisfaction, we
use a quantitative notion of robustness for STL [9], [10]. We augment
the control objective to maximize the expected robustness of an STL
specification, in addition to minimizing control and state costs under
chance constraints. Unfortunately, the resulting optimization problem
is not convex. As a third contribution, we propose an approximation
method for the solution of the optimization problem. We conservatively
approximate chance constraints by linear inequalities and compute an
upper bound for the expected value of the robustness function that
appears in the objective function.

Recently receding horizon control with STL constraints has been
studied in [12], [24], and [26], where the worst case MPC opti-
mization problem is solved by assuming disturbances taking values
from a bounded polytope. An overview of stochastic control under
chance constraints can be found in [28], and customized approaches
for normally distributed uncertainties are presented in [29]. Chance-
constrained MPC for deterministic systems with measurement noise
has been addressed in [27]. It is also applied to drinking water net-
works [14] and to urban autonomous driving [6]. Sadigh and Kapoor
[25] addresses optimizations with constraints encoded via convex frag-
ment of a logic known as PrSTL. The class of C2TL specifications
is defined in [17] for deterministic systems, where the uncertainty is
introduced only in the coefficients of atomic predicates.

In this paper, we assume in the general case that the disturbance has
an arbitrary probability distribution with bounded domain and that we
only know its support and first moment interval. In order to solve the
optimization problem efficiently, we transform chance constraints into
linear constraints. To this end, we employ concentration of measure
inequalities [5] to conservatively approximate the feasible domain of
the optimization specified by chance constraints. We also approximate
the expected value of the robustness function using the moment inter-
val of the disturbance to prevent numerical integration. For the special
case where the disturbance is normally disturbed, we apply additional
computational techniques. Clearly, the assumption of bounded support
is not valid for this case. Instead of truncating normal distribution to
obtain a bounded support, we employ a different approach based on
quantiles of normally distributed random variables to replace chance
constraints by linear constraints. We show that in this case, the ex-
pected value of the robustness function can be upper bounded based on
techniques from [13] developed for approximating the expected value
of max-affine expressions.
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This paper extends the results of [11], where only the case of nor-
mal distribution is discussed and gives more compact and efficient
representations for transforming probabilistic constraints into linear
constraints. We demonstrate the effectiveness of our approach by syn-
thesizing a controller for a heating, ventilation, and air conditioning
(HVAC) system.

Notation: We use R for the set of reals and N :={0, 1, 2, . . .} for the
set of nonnegative integers. For v ∈ Rs , its components are denoted
by vk , k ∈ {1, . . . , s}. We use small letter y to indicate observations
of a random vector Y . For a random variable X with values in Rn and
probability distribution Pr, its support is defined as the smallest closed
set C such that Pr[X ∈ C ] = 1. We denote the support of X by IX
and its first moment by E[X ].

II. DISCRETE-TIME STOCHASTIC LINEAR SYSTEMS

We consider time-variant discrete-time stochastic systems modeled
by the difference equation

X(t+ 1) = A(t)X(t) + B(t)u(t) +W (t), X(0) = x0 (1)

where X(t) ∈ Rn , u(t) ∈ Rm , and W (t) ∈ Rn denote, respectively,
the state, control input, and disturbance of the system at time instant t.
MatricesA(·) ∈ Rn×n andB(·) ∈ Rn×m are possibly time-dependent
system’s matrices, and the initial state X(0) is known. We assume
that W (0), . . . ,W (t) are mutually independent random vectors for
all time instants t. We conduct our study for the following two cases:
First, the disturbance signal has an arbitrary probability distribution
with a bounded domain for which we only know the support and their
first moment intervals; and second, the disturbance signal has a normal
distribution. For any t ∈ N, the state-space model (1) provides the
following explicit form for X(τ ), τ ≥ t, as a function of X(t), u(·),
and W (·):

X(τ ) = Φ(τ, t)X(t) +
τ −1∑

k= t

Φ(τ, k + 1) (B(k)u(k) +W (k)) (2)

where Φ(·,·) is the state transition matrix of (1), defined as

Φ(τ, t) =

{
A(τ − 1)A(τ − 2) · · ·A(t) τ > t ≥ 0
In τ = t ≥ 0

with In being the identity matrix.
For a fixed positive integer N , and a given t ∈ N, let ũ(t : N ) =

[uT (t), uT (t+ 1), . . . , uT (N − 1)] (vector W̃ (t : N ) is defined sim-
ilarly). Given system (1), and a time interval [t : N ], a (discrete-
time) stochastic process can be defined as Ξ(t : N ) = X(t)X(t+
1) · · ·X(N ), corresponding to a finite sequence of random state
variables. As the process Ξ(t : N ) depends on X(t), ũ(t : N ), and
W̃ (t : N ), we can rewrite Ξ(t : N ) in a more elaborative nota-
tion as ΞN (X(t), ũ(t : N ), W̃ (t : N )). Analogously, we define an
unbounded-time stochastic process Ξ = X(t)X(t+ 1)X(t+ 2) . . .,
corresponding to an infinite sequence of random state variables.

III. SIGNAL TEMPORAL LOGIC

An infinite run of system (1) can be considered as a signal
ξ = x(0)x(1)x(2) . . . , which is a sequence of observed states. We
consider STL formulas with bounded-time temporal operators defined
recursively according to the grammar [21]: ϕ ::= � | π | ¬ϕ | ϕ ∧ ψ |
ϕU[a ,b ]ψ; where � is the true predicate; π is a predicate of the form
π = {α(x) ≥ 0} with α : Rn → R being an affine function of state
variables; ψ is an STL formula; ¬ and ∧ indicate negation and con-
junction of formulas; and U[a ,b ] is the until operator with a, b ∈ R≥0

and a ≤ b.

A run ξ satisfies ϕ at time t, denoted by (ξ, t) |= ϕ, if the se-
quence x(t)x(t+ 1) . . . satisfies ϕ. Accordingly, ξ satisfies ϕ, de-
noted by ξ |= ϕ, if (ξ, 0) |= ϕ. Semantics of STL formulas are defined
as follows. Every run satisfies �. For a run ξ = x(0)x(1)x(2) . . .
and a predicate π = {α(x) ≥ 0}, we have (ξ, t) |= π if α(x(t)) ≥ 0.
The run ξ satisfies ¬ϕ if it does not satisfy ϕ; it satisfies ϕ ∧ ψ
if both ϕ and ψ hold. Finally, (ξ, t) |= ϕU[a ,b ]ψ if ϕ holds at ev-
ery time step starting from time t before ψ holds, and addition-
ally ψ holds at some time instant between a + t and b + t. More-
over, we derive the other standard operators as follows. Disjunction
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), eventually as ♦[a ,b ]ϕ := �U[a ,b ]ϕ, and al-
ways as �[a ,b ] ϕ := ¬♦[a ,b ]¬ϕ. For an unbounded-time stochastic pro-
cess Ξ = X(t), X(t+ 1), X(t+ 2), . . ., we denote by Pr(Ξ |= ϕ) the
probability measure of the set of instantiations ξ of Ξ such that ξ |= ϕ.

A. Formula Horizon

The horizon of an STL formula ϕ, denoted by Δ, is the smallest n ∈
N such that the following holds for all signals ξ = x(0)x(1)x(2) . . .
and ξ ′ = x′(0)x′(1)x′(2) . . .: if:

x(t+ i)=x′(t+ i) ∀i ∈ {0, . . . , n} ⇒ (ξ, t) |=ϕ iff (ξ ′, t) |=ϕ.

Thus, in order to determine whether a signal ξ satisfies an STL formula
ϕ, we can restrict our attention to the signal prefix x(0), . . . , x(Δ).
This horizon can be upper-approximated by a bound, defined as
the maximum over the sums of all nested upper bounds on the
temporal operators, denoted by len(ϕ). Formally, len(ϕ) is defined
recursively as

len(�) = len(π) = 0, len(¬ϕ) = len(ϕ)

len(ϕ1 ∧ ϕ2 ) = max (len(ϕ1 ), len(ϕ2 ))

len(ϕ1 U[a ,b ] ϕ2 ) = b + max (len(ϕ1 ), len(ϕ2 )).

For example, for ϕ = �[0 ,4]♦[3 ,6]π, we have len(ϕ) = 4 + 6 = 10.
For any STL formula ϕ, it is possible to verify that ξ |= ϕ using only
the finite run x(0)x(1) · · ·x(len(ϕ)).

B. STL Robustness

In contrast to the above-mentioned Boolean semantics, the quantita-
tive semantics of STL [9], [18] assigns to each formula ϕ a real-valued
function ρϕ of signal ξ and t such that (ξ, t) |=ϕ if ρϕ (ξ, t)>0, and is
defined recursively as

ρ�(ξ, t) = +∞, ρπ (ξ, t) = α(x(t)) with π = {α(x) ≥ 0}
ρ¬ϕ (ξ, t) = −ρϕ (ξ, t), ρϕ∧ψ (ξ, t) = min (ρϕ (ξ, t), ρψ (ξ, t))

ρϕU[a , b ]ψ (ξ, t)= max
i∈[a ,b ]

(
min (ρψ (ξ, t+ i), min

j∈[0 , i)
ρϕ (ξ, t+ j))

)

where x(t) refers to signal ξ at time t. Robustness of ♦[a ,b ]ϕ
can be derived as ρ♦[a , b ]ϕ (ξ, t) = maxi∈[a ,b ] ρ

ϕ (ξ, t+ i). Similarly,
ρ�[a , b ] ϕ (ξ, t) = mini∈[a ,b ] ρ

ϕ (ξ, t+ i).

C. STL Robustness for Stochastic Processes

Analogous to robustness for signals ξ = x(0)x(1)x(2) . . . , we de-
fine the stochastic robustness ρϕ (Ξ, t) of a formula ϕ (with bounded-
time temporal operators) at time twith respect to the stochastic process
Ξ, by replacing the concrete states x(t) with the random state vari-
ables X(t). It can be shown that the bounded-time stochastic process
Ξ(t : t+ N )=X(t)X(1) · · ·X(t+ N ) withN = len(ϕ) is sufficient
to study the probabilistic properties of Ξ with respect to ϕ. Note that
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ρϕ (Ξ(t : t+ N ), t) is a random variable since affine operators, max-
imization, and minimization are measurable functions. We can also
show that for any formula ϕ and constant δ∈(0, 1), the stochastic
process Ξ=X(0)X(1)X(2) . . . satisfies ϕ with probability ≥ 1 − δ
(i.e., Pr(Ξ |= ϕ) ≥1 − δ) if Pr[ρϕ (Ξ(0 : N ), 0)>0] ≥1 − δ for some
N ≥ len(ϕ).

IV. PROBLEM STATEMENT

For system (1) with a given initial state X(0) = x0 , STL formu-
las ϕ and ψ, and a constant N ≥ max (len(ϕ), len(ψ)), the con-
trol problem can be defined as finding an optimal input sequence
ũ∗(0 : N ) = [u∗T (0), . . . , u∗T (N − 1)], that minimizes the expected
value of a given objective function J(X̃(0 : N + 1), ũ(0 : N )) sub-
ject to constraints on states and input variables, where X̃(0 : N + 1)=
[XT (0), X(1)T x, . . . , XT (N )]. This optimization problem is defined
as

min
ũ (0 :N )

E
[
J(X̃(0 : N + 1), ũ(0 : N ))

]
s.t. (3a)

X(t) = Φ(t, 0)x0 +
t−1∑

k=0

Φ(t, k + 1) (B(k)u(k) +W (k)) (3b)

Pr
[
ΞN (x0 , ũ(0 : N ), W̃ (0 : N )) |= ϕ

]
≥ 1 − δ (3c)

ũ(0 : N ) ∈ UN (3d)

where E[·] denotes the expectation operator and the set U ⊂Rm speci-
fies the constraint set for the input variables. The chance constraints (3c)
state that for a given δ∈(0, 1), stochastic process ΞN should satisfy ϕ
with probability ≥ 1 − δ.

We consider the following objective function:

J(X̃(0 : N + 1), ũ(0 : N )) := Jrobust(X̃(0 : N + 1))

+ Jin(ũ(0 : N ))

where the first term Jrobust(X̃(0 : N + 1)) :=−ρψ (X̃(0 : N + 1), 0)
represents the negative value of the robustness function on STL formula
ψ at time 0 that needs to be minimized; and the second term Jin(ũ(0 :
N )) reflects the cost on input variables defined based on infinity norm,
one norm, or any piecewise constant function.

Remark 1: The above-mentioned problem formulation enables us
to distinguish the following two cases. First, we put the robustness
of a formula in the objective function if the system is required to be
robust with respect to satisfying the formula. Second, we encode the
formula in the probabilistic constraint if only satisfaction of the formula
is important.

V. MODEL PREDICTIVE CONTROL

Optimization problem (3) is an open-loop optimization that does
not incorporate any information related to the observed states of the
system. In order to include such information in the computation of
the control input, instead of solving (3), we employ shrinking horizon
model predictive control (SHMPC), which is summarized as follows:
At time step one, we obtain a sequence of control inputs with length
N (the prediction horizon) to optimize the cost function; then, we
only apply the first component of the obtained control sequence to the
system and observe the next state; in the next time step, we fix the first
component of the control sequence by its optimal value, and hence, we
only optimize for a control sequence of lengthN − 1. As such, at each
time step, the size of the control sequence decreases by 1.

A natural choice for the prediction horizon N in this setting with
STL specifications ϕ and ψ in constraints and in the objective function
is to set it greater than or equal to the bounds of the formulas, i.e.,
N ≥ max (len(ϕ), len(ψ)), with the length of formula defined in the
previous section. This choice provides a conservative trajectory length
required to make a decision about the satisfiability of the formula.

Let X̄(0 : t : N + 1) = [xT (0), . . . , xT (t), XT (t+ 1), . . . , XT

(N )], where x(0), . . . , x(t) are the observed states up to time
t, and X(τ ) is the random state variable at time τ > t, also
let W̄ (0 : t− 1 : N )= [wT (0), . . . , wT (t− 1),W T (t),W T (t+
1), . . . ,W T (N − 1)] such that w(0), . . . , w(t− 1) are distur-
bance realizations up to time t− 1, and W (τ ) are random
disturbances at time t ≤ τ ≤ N − 1. Define ū(0 : t− 1 : N )=
[u∗T (0), . . . , u∗T (t− 1), uT (t), . . . , uT (N − 1)] to be the vector of
input variables such that u∗(0), . . . , u∗(t− 1) are the obtained optimal
control inputs up to time t− 1, and u(t), . . . , u(N − 1) are the input
variables that need to be determined at time t.

Given formulas ϕ, ψ, observed states x(0), x(1), . . . , x(t), and
obtained control inputs u∗(0), . . . , u∗(t− 1) for system (1), the
stochastic SHMPC optimization problem minimizes the expectation
of cost function J(X̄(0 : t : N + 1), ū(0 : t− 1 : N ))=Jrobust(X̄(0 :
t : N + 1)) + Jin(ū(0 : t− 1 : N )), at each time instant 0 ≤ t<N ,
as

min
ũ (t :N )

E
[
J(X̄(0 : t : N + 1), ū(0 : t− 1 : N ))

]
s.t. (4a)

X(τ ) = Φ(τ, t)x(t) +
τ −1∑

k= t

Φ(τ, k + 1) (B(k)u(k) +W (k)) (4b)

Pr
[
ΞN (x0 , ū(0 : t− 1 : N ), W̄ (0 : t− 1 : N )) |= ϕ

] ≥ 1 − δ
(4c)

ũ(t : N ) ∈ UN −t (4d)

where the expected value E[·] in (4a) is conditioned on observed states
x(0), . . . , x(t). Optimization variables in (4) are control inputs ũ(t :
N )= [uT (t), . . . , uT (N − 1)]. We indicate the argument of minimum
by ũopt(t : N )= [uTopt(t), . . . , u

T
opt(N − 1)].

The following theorem states that by using SHMPC that keeps track
of control inputs and observed states, the closed-loop system satisfies
the STL specification ϕ with probability greater than or equal to 1 − δ.

Theorem 2: Given δ∈(0, 1) and STL formula ϕ, if the optimiza-
tion problem (4) is feasible for all t<N , the computed optimal con-
trol sequence ũ∗(0 : N )= [u∗T (0), . . . , u∗T (N − 1)] ensures that the
closed-loop system satisfies ϕ with probability greater than or equal to
1 − δ.

Remark 3: Note that for having the result of Theorem 2, we only
need feasibility at the last time step t = N − 1. In practice, the op-
timization problem (4) might be infeasible for some t<N due to
the stochastic nature of the disturbance. Therefore, we should guide
the optimization toward its feasible domain, which can be done by
replacing ϕ with its relaxed version [26] and try to minimize the
violation of constraints. Alternatively, for any t<N that (4) is in-
feasible, we opt for maximizing the expectation of robustness of ϕ,
E

[
ρϕ (X̄(0 :, t, N + 1), 0)

]
, without any chance constraint in order to

obtain an input that is most likely to result in satisfaction of ϕ.
Computing the solution of optimization problem (4) requires ad-

dressing the following two main challenges. First, the expected value
of the objective function (4a) is in general difficult to be calculated
analytically as a function of ũ(t : N ). Second, it is hard to characterize
the exact feasible set of the optimization restricted by the chance con-
straint (4c). We propose approximation methods in Sections VI–VII to,
respectively, address these two challenges.
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VI. APPROXIMATING THE OBJECTIVE FUNCTION

To solve the optimization problem (4), one needs to calculate the
expected value of the objective function. One way to do this is via nu-
merical integration methods [7], which is in general both cumbersome
and time-consuming. In this section, we discuss an efficient method
that computes an upper bound for the expected value of the objec-
tive function and we minimize this upper bound instead. We discuss
computation of such upper bounds for both cases of disturbances with
arbitrary probability distribution and with normal distribution. We first
provide a canonical form for the STL robustness function which is the
min–max or max–min of random variables. This result is inspired by
[8], in which the authors provide such canonical forms for max-min-
plus-scaling functions.

Theorem 4: For a given STL formula ψ, the robustness function
ρψ (Ξ(0 : N ), 0), and hence the function Jrobust(X̄(0 : t : N )), can be
written into a max–min canonical form

Jrobust(X̄(0 : t : N )) = max
i∈{1 , . . . ,L }

min
j∈{1 , . . . ,m i }

{
ηij + W̄ (0 : t : N )λij

}

(5)
and into a min–max canonical form

Jrobust(X̄(0 : t : N )) = min
i∈{1 , . . . ,K }

max
j∈{1 , . . . ,n i }

{
ζij + W̄ (0 : t : N )γij

}

(6)
for some integers K,L, n1 , . . . , nK ,m1 , . . . , mL , where λij and γij
are column vectors as weights, and ηij and ζij are affine functions of
ū(0 : t : N ) and x0 .

Remark 5: Note that any of the canonical forms (5) and (6) can be
transformed to the other one utilizing identities

min (max (f1 , f2 ),max (g1 , g2 ))

= max (min (f1 , g1 ),min (f1 , g2 ),min (f2 , g1 ),min (f2 , g2 )) .

and −max (f1 , f2 ) = min (−f1 ,−f2 ), for any f1 , f2 , g1 , and g2 .
Proof: Proof is inductive on the structure of ψ. Since (5) and (6)

can be transformed to each other using identities of Remark 5, it is
sufficient to work with and establish only one of them. The canonical
forms are valid for any atomic predicate {α(x) ≥ 0} evaluated at time
τ . To see this, take the affine function α(x) := α0 + αT1 x and use state
equation (2) to get L = K = mi = ni = 1 and ζ11 = η11 with

η11 := −α0 − αT1 Φ(τ, 0)x(0) −
τ −1∑

k=0

αT1 Φ(τ, k + 1)B(k)u(k).

We also have γ11 = λ11 = [λ0
11 ; λ

1
11 ; . . . ; λ

N −1
11 ] with λk11 =

−ΦT (τ, k + 1)α1 for k < τ and zero, otherwise. Suppose ρψ has
the form (5) with ηij and λij . Then, ρ¬ψ = −ρψ has the form (6)
with ζij = −ηij , γij = −λij , and the same set of indices. If ρψ 1 and
ρψ 2 have the canonical form (5) with L1 , L2 , η1

ij , λ
2
ij , then ρψ 1 ∨ψ 2 =

max (ρψ 1 , ρψ 2 ) will also have the form (5) with L = L1 + L2 and

{
ηij = η1

ij and λij = λ1
ij for 1 ≤ i ≤ L1 ,

ηij = η2
ij and λij = λ2

ij for L1 + 1 ≤ i ≤ L2 .

Similar equalities hold for ψ = ψ1 ∧ ψ2 but using canonical form (6).
The same reasoning can be applied to ψ1U ψ2 . �

A. Arbitrary Probability Distributions With Bounded Support

Suppose the elements of the stochastic vectorW (t), i.e.,Wk (t), k ∈
{1, . . . , n} have arbitrary probability distribution with known bounded
support IWk (t) = [ak , bk ] and their first moments E[Wk (t)] be-
longs to the intervals MWk (t) = [ck , dk ], with known quantities
ak , bk , ck , dk ∈ R. We denote by IW (t) and MW (t) , respectively, as
the product of intervals IWk (t) and MWk (t) , k ∈ {1, . . . , n}. Under
this assumption, the explicit form of X(·) in (2) implies that, for the
observed value of X(t) as x(t), X(τ ) is a random vector with the
following interval of support and the first moment interval

IX (τ ) = [āτ + C̄τ , b̄τ + C̄τ ], MX (τ ) = [c̄τ + C̄τ , d̄τ + C̄τ ] (7)

where C̄τ = Φ(τ, t)x(t) +
∑τ −1

k= t Φ(τ, k + 1)B(k)u(k), [āτ , b̄τ ] =∑τ −1
k= t Φ(τ, k + 1)IW (k ) , and [c̄τ , d̄τ ] =

∑τ −1
k= t Φ(τ, k + 1)MW (k ) .

The elements of āτ , b̄τ , c̄τ , and d̄τ are computed using the follow-
ing operations on intervals extended naturally to vectors and matrix
multiplications: for two arbitrary intervals [a, b] and [c, d], and con-
stant λ ∈ R, we have [a, b] + [c, d] = [a + c, b+ d] and λ · [a, b] =
[min (λa, λb),max (λa, λb)].

The expected value of the objective function in (4) can be written as
E

[
Jrobust(X̄(0 : t : N + 1))

]
+ Jin(ū(0 : t− 1 : N ))), where X̄(0 :

t : N + 1) includes un-observed states after t. The following theorem
shows that we can compute an upper bound for E[Jrobust(X̄(0 : t :
N + 1))] based on the Jrobust. canonical form.

Theorem 6: For a given STL formula ψ, E[Jrobust(X̄(0 : t :
N + 1))] can be upper bounded by

max
i∈{1 , . . . ,L }

min
j∈{1 , . . . ,m i }

(η̂ij + d̂ij ) + κ (8)

where η̂ij , i ∈ {1, . . . , L}, j ∈ {1, . . . , mi}, are affine functions of
ū(0 : t− 1 : N ), x(0), andw(0), . . . , w(t− 1). The constants d̂ij and
κ are, respectively, a weighted sum of ck , dk and a function of ak , bk ,
k ∈ {1, . . . , n}.

Proof: With focus on the canonical form (5), letYij = ηij + W̄ (0 :
t : N )λij with column vector λij := [λ0

ij ; λ
1
ij ; . . . ; λ

N −1
ij ], and λkij ∈

Rn , k ∈ {0, 1, . . . , N − 1}. Considering the support and moment in-
terval of the components of W (τ ), τ ∈ {t, . . . , N − 1}, each random
variable Yij has the following support and moment interval [similar to
(7)]:

IY i j = [âij + η̂ij , b̂ij + η̂ij ], MY i j = [ĉij + η̂ij , d̂ij + η̂ij ] (9)

where η̂ij := ηij +
∑t−1

k=0 w
T (k)λkij , [âij , b̂ij ] =

∑N −1
k= t I

T
W (k )λ

k
ij ,

and [ĉij , d̂ij ] =
∑N −1

k= t MT
W (k )λ

k
ij . We utilize Lipschitz continuity of

the min function to get

min
j
Yij ≤ min

j

(
η̂ij +

N −1∑

k= t

E[W (k)]T λkij

)

+
N −1∑

k= t

max
j

‖λkij ‖2‖W (k) − E[W (k)]‖2 .

By taking maximum and then expectation, we have

E[Jrobust] ≤ max
i

min
j

(
η̂ij + d̂ij

)

+
N −1∑

k= t

max
i ,j

‖λkij ‖2 E [‖W (k) − E[W (k)]‖2 ] . (10)
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The last term in (10) can also be upper bounded using Popoviciu’s
inequality on variances [4] as

κ :=
N −1∑

k= t

max
i ,j

1
2
‖λkij ‖2

[
n∑

s=1

(bs − as )2

]1/2

. (11)

�
Hence, as we are minimizing the cost function in (4), we can replace

E
[
Jrobust(X̄(0 : t : N + 1))

]
by maxi minj (η̂ij + d̂ij ) due to κ in

(11) being a constant independent of the input. Note that the approxi-
mation methodology of Theorem 6 is applicable also to the min–max
canonical form (6).

B. Normal Distribution

The upper bound on the objective function in the previous section
is not directly applicable to unbounded support disturbances. Here, we
address disturbances with normal distribution separately due to their
wide use in engineering applications.

Suppose that for any t ∈ N, W (t) is normally distributed with
mean E[W (t)] = 0 and covariance matrix ΣW (t) , i.e., W (t) ∼
N (0,ΣW (t) ). The explicit form of X(τ ) in (2) and the fact
that the normal distribution is closed under affine transforma-
tions result in normal distribution for X(τ ), τ ∈ N. Its expected
value and covariance matrix with an observed value x(t) of
X(t) are μτ = Φ(τ, t)x(t) +

∑τ −1
k= t Φ(τ, k + 1)B(k)u(k) and Στ =∑τ −1

k= t Φ(τ, k + 1)ΣW (k )Φ(τ, k + 1)T , τ ≥ t ≥ 0.
In this section, we use the representation in Theorem 4, which states

that Jrobust can be written in either of the forms

max
i∈{1 , . . . ,L }

min
j∈{1 , . . . ,m i }

Yij or min
i∈{1 , . . . ,K }

max
j∈{1 , . . . ,n i }

Zij (12)

with Yij and Zij being affine functions of disturbance, thus normally
distributed random variables. With focus on these canonical represen-
tations for Jrobust, we employ next theorem from [11] for computing an
upper bound for E [Jrobust] based on higher order moments of Yij and
Zij .

Theorem 7: Considering the canonical forms in (12) for Jrobust as
a function of random variables Yij and Zij , E [Jrobust] can be upper
bounded by

E

[
max

i∈{1 , . . . ,L }
min

j∈{1 , . . . ,m i }
Yij

]
≤

(
L∑

i=1

m i∑

j=1

E[Y p
ij ]

)1/p

(13)

E

[
min

i∈{1 , . . . ,K }
max

j∈{1 , . . . ,n i }
Zij

]
≤ min

i∈{1 , . . . ,K }

(
n i∑

j=1

E
[
Zp
ij

]
)1/p

(14)

with p > 0 being an even integer.
Proof: The proof is based on the relation between the infinity norm

and p-norm of a vector and Jensen’s inequality. For brevity, we refer to
[11, Corollaries 7 and 8]. �

Note that random variables Yij andZij in (13) and (14) are normally
distributed. Higher order moments of normal random variables can be
computed analytically in a closed form as a function of the first two
moments, i.e., mean and variance. More specifically, for a normal
random variable Z with mean μ and variance σ2 , the pth moment has
a closed form as E [Zp ] = σp i−pHp (iμ/σ), where i is the imaginary
unit and

Hp (z) = p!
p/2∑

l=0

(−1)l zp−2 l

2l l!(p − 2l)!
(15)

is the pth Hermite polynomial [1, Ch. 22 and 26].

In the following section, we discuss how to cope with the second
challenge of characterizing the feasible set of the optimization restricted
by the chance constraint (4c).

VII. UNDER APPROXIMATION OF CHANCE CONSTRAINTS

In this section, we discuss methods for computing conservative
approximations of the chance constraints in (4c) as linear constraints.
For the sake of compact notation, we indicate the stochastic process
Ξ(0 : N ) = X(0)X(1) . . . X(N ) only by ΞN without declaring its
dependence on the state, input, and disturbance. Recall the chance
constraint (4c) as Pr [ΞN |= ϕ] ≥ 1 − δ. In order to transform this
constraint into linear inequalities, we first show in the following
theorem, that this constraint can be transformed into similar proba-
bilistic constraints on (ΞN , τ ) |=π, with π being an atomic predicate.
Then, in Sections VII-A and VII-B, we discuss how to transform the
resulting constraints with atomic predicates into linear inequalities for
the cases of arbitrary random variables with known bounded support
and moment interval and of normally distributed random variables.

Theorem 8: For any formula ϕ and a constant ϑ ∈ (0, 1), con-
straints of the forms

Pr [(ΞN , t) |=ϕ] ≥ ϑ and Pr [(ΞN , t) |=ϕ] ≤ ϑ (16)

can be transformed inductively on the structure of ϕ into similar prob-
abilistic constraints on (ΞN , τ ) |=π, τ ≥ t, with π being an atomic
predicate.

Proof: The proof is inductive on the structure of the formula ϕ as
discussed in the following three cases.

Case I: ϕ = ¬ϕ1 , we have the following equivalences:

Pr [(ΞN , t) |= ¬ϕ1 ] ≥ ϑ ⇔ Pr [(ΞN , t) � ϕ1 ] ≥ ϑ

⇔ Pr [(ΞN , t) |= ϕ1 ] ≤ 1 − ϑ

Pr [(ΞN , t) |= ¬ϕ1 ] ≤ ϑ ⇔ Pr [(ΞN , t) � ϕ1 ] ≤ ϑ

⇔ Pr [(ΞN , t) |= ϕ1 ] ≥ 1 − ϑ.

Case II: ϕ = ϕ1 ∧ ϕ2 , we obtain the following inequalities by
using the fact that for possibly joint events A and B, it holds
that Pr[A ∧ B] ≥ ϑ ⇔ Pr(¬A ∨ ¬B) ≤ 1 − ϑ and Pr(A ∨ B) ≤
Pr[A ] + Pr[B]:

Pr[(ΞN , t) |=ϕ1 ∧ϕ2] ≥ ϑ⇔Pr [(ΞN , t) |= ϕ1 ∧ (ΞN , t) |= ϕ2 ] ≥ ϑ

⇔ Pr [(ΞN , t) � ϕ1 ∨ (ΞN , t) � ϕ2 ] ≤ 1 − ϑ

⇐ Pr [(ΞN , t) � ϕ1 ] + Pr [(ΞN , t) � ϕ2 ] ≤ 1 − ϑ

⇐ Pr [(ΞN , t) � ϕi ] ≤ 1 − ϑ

2
i = 1, 2. (17)

Now consider the following second possibility:

Pr [(ΞN , t) |= ϕ1 ∧ϕ2 ] ≤ ϑ⇔Pr [(ΞN , t) |= ¬ϕ1 ∨¬ϕ2 ] ≥ 1 − ϑ

⇔ Pr [(ΞN , t) |= ¬ϕ1 ∨ (ϕ1 ∧ ¬ϕ2 )] ≥ 1 − ϑ

⇔ Pr [(ΞN , t) |= ¬ϕ1 ] + Pr [(ΞN , t) |= ϕ1 ∧ ¬ϕ2 ] ≥ 1 − ϑ (18)

where the last line of (18) is due to the fact that the events are disjoint.
Assuming that the probabilities of these two events are lower bounded
by the same values, i.e., (1 − ϑ)/2, we have the following inequalities:

Pr [(ΞN , t) |=¬ϕ1 ]≥ 1 − ϑ

2
, Pr [(ΞN , t) |=ϕ1 ∧¬ϕ2 ] ≥ 1 − ϑ

2

which are in the form of inequalities discussed previously. Note that
(17)–(18) discuss the case of having conjunction of two STL formulas.
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The results can be easily extended to conjunction of n STL formulas
by replacing (1 − ϑ)/2 with (1 − ϑ)/n.

Case III: ϕ = ϕ1U[a ,b ]ϕ2 , the satisfaction (ΞN , t) |= ϕ1U[a ,b ]ϕ2

is equivalent to
∨t+ b
j= t+a ψj with disjoint events

ψj =
t+a−1∧

i= t

(ΞN , i) |= ϕ1

j−1∧

i=a+ t

(ΞN , i) |= (ϕ1 ∧ ¬ϕ2 ) ∧ (ΞN , j) |= ϕ2 .

Thus, Pr
[
(ΞN , t) |= ϕ1U[a ,b ]ϕ2

] ≥ ϑ is equivalent to∑t+ b
j= t+a Pr[ψj ] ≥ ϑ. Assuming the probabilities of events are

lower bounded by the same values, we have Pr[ψj ] ≥ ϑ/(b − a + 1)
for j=a + t, . . . , b+ t, which again can be reduced as in Case II.

The second possible probabilistic constraint in Case III can be ob-
tained as

Pr
[
(ΞN , t) |= ϕ1U[a ,b ]ϕ2

] ≤ ϑ ⇔ Pr

[
b+ t∨

j=a+ t

ψj

]
≤ ϑ

⇔
t+ b∑

j= t+a

Pr[ψj ] ≤ ϑ ⇔ Pr[ψj ] ≥ ϑ/(b − a + 1) (19)

which can be again reduced as in Case II. Here also, we used the fact
that ψj consists of disjoint events, and we assume that the probabilities
of events are lower bounded by the same value, i.e., by ϑ/(b − a + 1),
for j = a + t, . . . , b+ t. �

Remark 9: In order to reduce the level of conservatism, one might
allow nonuniform risk allocation in Theorem 8. For instance, in the
last line of (17), one can replace the two upper bounds (1 − ϑ)/2
with δ1 and δ2 such that δ1 + δ2 = 1 − ϑ, and take them as part of
the optimization. As we see later, these quantities will appear in the
constraints through logarithm or the inverse of quantile functions. Then,
the optimization problem in both cases will have nonlinear inequalities,
and its complexity depends on the number of variables, which results in
larger computational complexity compared to uniform risk allocation
and is not scalable, especially ,due to the increasing number of δt as a
function of length of the STL formula.

So far, we have shown how to reduce the chance constraint (4c) in-
ductively to inequalities of the form (16) with atomic predicates. In the
rest of this section, we discuss their corresponding linear inequalities
for the two types of probability distributions considered in this paper.

A. Arbitrary Probability Distributions With Bounded Support

To transform the chance constraints into linear constraints in the case
of disturbances with arbitrary probability distributions, we apply an
approximation method based on the upper bound proposed by Bouissou
et al. [5]. Let Zi , i ∈ {1, . . . , n}, be a random variable with bounded
support [ai , bi ] and expectation E[Zi ] belonging to the moment interval
Mi . Define Z =

∑n
i=1 Zi and E(Z) =

∑n
i=1 E[Zi ]. We derive an

inequality for this generic random variable Z , which will be applied
to α(X(t)) in the sequel. Using Chernoff–Hoeffding inequality, the
following upper bound exists

Pr [Z − E[Z ] ≤ −ς ] ≤ exp

( −ς2

ν
∑n

i=1 (bi − ai )2

)
∀ς ≥ 0 (20)

where ν>0 is a constant [16]. If Z1 , . . . , Zn are dependent, then the
inequality applies with a constant ν = χ(Ĝ)/2, where Ĝ denotes the
indirected dependence graph ofZ1 , . . . , Zn , andχ(Ĝ) is the chromatic
number of the graph Ĝ defined as the minimum number of colors re-
quired to color Ĝ. For the independent case, χ(Ĝ) = 1. The expression
for the right tail probability is derived identically.

Consider the chance constraints (16) with atomic predicate ϕ =
{α ≥ 0}, where α(x) = α0 + αT1 x is an affine function evaluated at
X(τ ), τ ∈ {t, t+ 1, . . . , N}. Since X(τ ) is a random variable with
support and moment interval defined in (7), α(X(τ )) is itself a random
variable with the following support and moment interval:

Iα (X (τ )) = [ãτ + C̃τ , b̃τ + C̃τ ], Mα (X (τ )) = [c̃τ + C̃τ , d̃τ + C̃τ ]
(21)

where C̃τ := α0 + αT1 C̄τ is an affine function of input variables,
[ãτ , b̃τ ] := αT1 [āτ , b̄τ ], and [c̃τ , d̃τ ] := αT1 [c̄τ , d̄τ ].

Applying (20) with Z=α(X(τ )) and ς=E [Z ], we obtain

Pr [(ΞN , τ ) |= ϕ] ≥ 1 − δ ⇔ Pr [α(X(τ )) > 0] ≥ 1 − δ

⇔ Pr [α(X(τ )) ≤ 0] ≤ δ ⇐ exp

(−ς2

νsα

)
≤ δ ⇔ −ς2

νsα
≤ log(δ)

⇔ −ς2 ≤ ν log(δ)sα ⇐ ς ≥
√

−ν log(δ)sα (22)

where sα :=
∑τ −1

k= t

[
αT1 Φ(τ, k + 1)|IW (k ) |

]2
with |IW (k ) | being the

length of IW (k ) . Hence, we can replace ς in (22) by the lower bound
of its moment interval in (21), i.e., with c̃τ + C̃τ , which is a linear
expression in input variables. Consequently, the chance constraint in
(4) can be conservatively replaced by inequalities of the form

c̃τ + C̃τ ≥
√

−ν log(δ) · sα . (23)

For the second type of probabilistic inequalities in (16), we can again
use (20) for the right tail probability; hence, we have

Pr [(ΞN , τ ) |= ϕ] ≤ 1 − δ ⇐ Pr [α(X(τ )) ≥ 0] ≤ 1 − δ

⇐ exp

(−ς2

νsα

)
≤ 1 − δ (24)

and then following the same steps as in (22), we obtain the same linear
expression for the chance constant as in (23) by only replacing δ by
1 − δ in the related expressions.

By replacing the expectation of the objective function with its upper
bound given in Theorem 6, and by substituting probabilistic constraints
with their linear approximations, optimization problem (4) can be then
recasted as a mixed integer linear programming (MILP) problem. This
is due the presence of nonlinear functions only in the form of min, max,
and absolute value, which all can be expressed in terms of Boolean
variables and linear functions. The resulting optimization can then be
solved using the available MILP solvers [2], [19].

B. Normal Distribution

To transform the chance constraints into linear constraints in the case
of having normally distributed random variables, we use the quantile
of the normal distribution. By definition, for a normal random variable
X with mean μ and variance σ2 ,

Pr[X ≤ b] ≤ δ ⇔ F −1 (δ) ≥ b ⇔ μ + σφ−1 (δ) ≥ b (25)

Pr[X ≤ b] ≥ δ ⇔ F −1 (δ) ≤ b ⇔ μ + σφ−1 (δ) ≤ b (26)

where F −1 denotes the inverse of the cumulative distribution function
or the quantile function and φ−1 is the inverse of the error function of
a normally distributed random variable.

Recall the chance constraints (16) with ϕ = {α ≥ 0}. Since α(·)
is an affine function of normally distributed state variables, it is also
normal with appropriately defined mean μτ and variance σ2

τ . Hence,
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we can directly use (25) and (26) as

Pr [(ΞN , τ ) |= ϕ] ≥ 1 − δ ⇔ Pr [α(X(τ )) > 0] ≥ 1 − δ

⇔ Pr [α(X(τ )) ≤ 0] ≤ δ ⇔ F−1 (δ) ≥ 0 ⇔ μτ + στ φ
−1 (δ) ≥ 0

(27)

Pr [(ΞN , τ ) |= ϕ] ≤ 1 − δ ⇔ Pr [α(X(τ )) > 0] ≤ 1 − δ

⇔ Pr [α(X(τ )) ≤ 0] ≥ δ ⇔ F−1 (δ) ≤ 0 ⇔ μτ + στ φ
−1 (δ) ≤ 0.

(28)

Therefore, the chance constraint can be replaced by the equivalent
linear constraint (27) or (28), depending on the type of the constraint
we have.

By replacing the expectation of the objective function by its upper
bound given in Theorem 7, and by substituting chance constraints with
their linear approximations, optimization problem (4) can be recast as
a (possibly convex) nonlinear optimization problem with linear con-
straints, which can be solved using algorithms such as an interior point
method [23] or multistart sequential quadratic programming [22].

VIII. EXPERIMENTAL RESULTS

We use our synthesis approach for controlling the temperature
in a building. The thermal model of the building is X(t+ 1) =
AX(t) + Bu(t) +W (t), where X ∈Rn is the temperature of walls
and rooms and input u∈Rm includes the air mass flow rate and dis-
charge air temperature of conditioned air into each thermal zone. Ma-
trices A,B are obtained after linearizing and discretizing the model
presented in [15] and [24] with sampling time ts =30 min. Dis-
turbance W (·) aggregates various unmodeled dynamics of the sys-
tem [15]. We control the temperature of one room in the building,
which is the last element of state X denoted by X5 , with n = 5 and
m = 1. Unlike [24] that considers deterministic disturbances, we as-
sume stochastic disturbances with a reference wr (t) and perturbed by
uniformly distributed random vectors e(t) with support [−1.5, 1.5]n ,
i.e., W (t) = wr (t) + e(t).

Temperature dynamics depend also on room occupancy indicated
by a known signal occ : N → {−1, 1}, where occ(t) = 1 if the room
is occupied at time t and occ(t) = −1 otherwise. We are interested in
keeping the room temperature in the interval [Tr − Δ, Tr + Δ] when-
ever the room is occupied. The reference temperature is Tr = 68 ◦F
and Δ = 1 is the acceptable variation. For this to happen, we allow
the controller to change the temperature within 3 time steps, i.e., [0, 2],
when the room is occupied. Temperature should also always stay in
[66, 72]. This desired behavior can be expressed via the STL specifi-
cation ϕ = ψ1 ∧ ψ2 , where ψ1 = �[0 ,N ] (66 ≤ X5 ≤ 72) and ψ2 =
�[0 ,N ]

(
occ = 1 → ♦[0 ,2]

(
(|X5 − Tr | ≤ Δ)U[0 ,N ] (occ = −1)

))
. In

optimization problem (4), we consider the chance constraint (4c) de-
fined with the specification ϕ. We choose the objective function (4a) as
E[−ρψ 2 (X̄(0 : t : N ), 0)] + γu

∑N −1
k=0 ||u(k)||1 , which includes ro-

bustness of ψ2 . Hence, the optimization tries to satisfy both ψ1 and ψ2

with probability 1 − δ, but puts more emphasis on ψ2 by maximizing
its robustness in a tradeoff with the consumed energy weighted by a
constant γu > 0. We approximate E[−ρψ (X̃(0 : t : N ), 0)] using (8)
and transform the chance constraint into linear inequalities using the
approach of Section VII-A. We also assume that inputs are bounded,
i.e., u(t) ∈ U = [0, 300]. We control the room temperature for 23 h
(N = 46) and select δ = 0.1 so that the obtained control input provides
90% confidence on satisfaction of the desired behavior.

We perform 200 simulations using MATLAB R2016b on a 3.1 GHz
Intel Core i5 processor. Fig. 1 shows the results of these simulations.
The top plot shows the occupancy signal. The middle plot illustrates

Fig. 1. Controlling the room temperature using SHMPC in the presence
of normally distributed disturbance and STL constraints.

TABLE I
COMPARISON OF THE STATISTICS OF THE FAN ENERGY CONSUMPTION

USING RMPC AND SHMPC APPROACHES

the average, minimum, and maximum of the obtained room temper-
atures over 200 simulations as a function of time. It also shows the
minimum and maximum room temperature bounds in Fahrenheit. The
controller ensures that the room temperature enters the desired inter-
val within two time steps once the occupancy signal is one and stays
there as long as the room is occupied. We witnessed that our proposed
over approximation of the chance constraints is infeasible in 6.5% of
the simulations, but including the robustness in the objective function
pushes the closed-loop system toward satisfying the specification in all
cases (cf. Remark 3). The bottom plot shows the average, minimum,

and maximum of the air flow rate in
[

ft3

min

]
, which indicates that the

input constraint is not violated.
Note that assessing the level of conservatism in replacing the ob-

jective function (4a) with an upper bound using (8) is analytically
cumbersome. However, for this case study, we have calculated the ob-
jective function using Monte Carlo simulation and compared its values
against the upper bound (8). The comparison shows that the average
and maximum relative errors are, respectively, 15.22% and 15.54% in
200 simulations.

To further illustrate the performance of our method, we compare
our SHMPC approach with the robust MPC (RMPC) approach of [24].
Table I shows total fan energy consumption, which is proportional to
the cubic of airflow and the computation times for both approaches. For
RMPC and SHMPC, we report the average computation time and the
average and standard deviation of the total energy consumption using
the sum of cubes of the optimal input sequences corresponding to 200
simulations. Since RMPC is more conservative compared to SHMPC,
the average energy consumption is higher for the RMPC controller
compared to the SHMPC controller: the SHMPC controller achieves
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18% reduction of total energy consumption on average compared to
RMPC.

IX. CONCLUSION

In this paper, we presented SHMPC for stochastic linear systems
with constraints encoded as STL specifications. The goal of SHMPC
is to obtain an optimal control sequence that guarantees satisfaction of
STL specifications with a probability greater than a given threshold.
We provided an approximation technique that gives an upper bound
on the objective function and conservatively replaces chance constraint
with linear inequalities. Our approximation relies on knowing only the
support and moment intervals of disturbance. We also discussed how
the approximation can be customized for normal disturbances.
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