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A B S T R A C T

Amidst the pressing need for sustainable transportation, Shared Automated Electric Vehicles (SAEVs) emerge as 
an increasingly explored solution with the potential to revolutionize mobility. Yet, understanding the environ
mental impacts of operating this mobility solution at different scales remains sparse. This study addresses this by 
integrating Agent-Based Modelling (ABM) and Life Cycle Assessment (LCA) to assess the environmental impacts 
of SAEVs at municipal, subregional and regional scales. ABM simulates travellers’ behaviour and SAEVs 
deployment strategies, yielding dynamic patterns along a typical day, while LCA provides a structured frame
work for assessing the life cycle environmental impacts. This process involves creating an ABM that reflects a 
representative mobility scenario, and a modified ABM scenario where private car and bus trips are replaced with 
SAEV services. The analysis extends the different scales, providing both short-term and long-term perspectives on 
LCA impacts. Findings revealed significant reductions in global warming potential (up to 91%), but challenges 
include increased operational intensity, human toxicity (up to 240%), and mineral resource scarcity (up to 
229%). Vehicle kilometres travelled, and fleet replacement needs are key factors influencing long-term envi
ronmental impacts. Larger-scale implementation yields greater environmental benefits compared to smaller-scale 
deployment.

Introduction

The upcoming evolution of mobility is at the forefront of efforts to 
address the environmental challenges of the century. As a key economic 
sector, transportation is closely linked to substantial environmental 
impacts and is the largest contributor to greenhouse gas (GHG) emis
sions in the European Union (EU-27), accounting for 25.1 % in 2022 
(IEA, 2023a; IPCC, 2023). Despite advances in engine efficiency, the 
growing adoption of electric vehicles, and the integration of biofuels, 
emissions from passenger cars and heavy-duty vehicles have continued 
to rise (IEA., 2023b). This is exemplified by a 5.8 % increase in carbon 
dioxide (CO2) emissions from EU-27 passenger cars between 2000 and 
2019 (EEA, 2022). These trends underscore the urgent need for systemic 
changes in mobility to reconcile its environmental footprint with 

sustainability goals. Thus, conventional road transportation concepts 
are undergoing a profound shift, led by three key principles: innovation, 
sustainability, and accessibility. This transition is evident in the emer
gence of Shared Automated Electric Vehicles (SAEVs), which are nearing 
technological maturity and proving economically feasible in urban en
vironments (Andorka & Rambow-Hoeschele, 2020; Jager et al., 2017; 
Vermesan et al., 2021). However, the deployment of SAEVs raises con
cerns regarding their environmental impact and feasibility, particularly 
when considering a broader range of sustainability factors, including 
diverse environmental impact categories and their effectiveness in 
larger, low-density areas.

Recent studies characterize SAEVs as an effective, comfortable, safe, 
and affordable mode of transportation (Becker et al., 2020; European 
Commission, 2019; Greenwald & Kornhauser, 2019; Loeb & Kockelman, 
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2019; Meyer et al., 2017; Taiebat & Xu, 2019). While public perception 
and acceptance will be key in determining SAEVs adoption (e.g. 
Dichabeng et al., 2021; Miller et al., 2022; Mouratidis, 2022, Patel et al., 
2023, Thaithatkul et al., 2024), this mode of transport holds the po
tential to enhance travel time value and present an opportunity to 
alleviate the financial strain of owning and maintaining a personal 
vehicle, enhancing mobility and accessibility for individuals who face 
transportation challenges due to limited physical access, economic 
barriers, or other constraints (Dill & McNeil, 2021; Taiebat et al., 2018). 
However, there is increasing scepticism regarding the assumption that 
SAEVs will consistently improve welfare. For instance, while SAEVs 
have shown promise in lowering air pollution and the number of cars 
required to provide transportation services (Ding et al., 2019), the 
widespread adoption of SAEVs may lead to intensive vehicle usage (with 
empty kilometres associated with vehicle relocation), a potential 
decrease in public transport adhesion, and higher levels of fleet turnover 
(Axsen & Sovacool, Manders et al., 2020, 2019; Vilaça et al., 2022; 
Wadud et al., 2016). The aforementioned adaptations largely rely on 
penetration levels, deployment strategies, and user behaviour, thereby 
posing significant uncertainty (Ahmed et al., 2023; Arbeláez Vélez, 
2024; Axsen and Sovacool, 2019; Garus et al., 2022; Jones and Leibo
wicz, 2019; Vilaça et al., 2022).

Recognising the limited research and uncertainties surrounding the 
environmental impact of SAEVs, this paper proposes an approach that 
integrates Agent-Based Modelling (ABM) with Life Cycle Assessment 
(LCA) to assess the environmental impacts of SAEVs across municipal, 
subregional, and regional scales. ABM offers a dynamic perspective by 
simulating individual behaviour and interactions within a trans
portation network, providing valuable insights into real-world usage 
patterns and deployment strategies (Berrada & Leurent, 2017; Huang 
et al., 2022; Jing et al., 2020; Li et al., 2021, Nguyen et al., 2021). 
Complementing this with LCA, a well-established and standardised tool 
for assessing environmental impacts, ensures a comprehensive and ho
listic view of the environmental implications of SAEVs, considering 
different aspects of the dynamic information provided by ABM. As 
observed by Onat and Kucukvar (2022), there is a lack of integrated 
modelling approaches for life cycle assessment.

This manuscript builds upon a previous proof-of-concept study 
(Vilaça et al., 2024) that demonstrated the feasibility of coupling an 
agent-based model with life cycle assessment (LCA) to evaluate SAEVs at 
a single subregional scale, limited to global warming potential. The 
current paper significantly expands both the methodological and 
analytical scope. Specifically, the LCA now includes dynamic modelling 
of baseline and SAEV scenarios across seven midpoint environmental 
impact categories, covers three spatial scales (municipal, subregional, 
and regional), and introduces a structured verification and validation 
framework to assess behavioural fidelity. This approach is consistent 
with evidence that effective transport decarbonization requires life
–cycle–based regulatory frameworks. Furthermore, the analysis extends 
to different spatial scales, encompassing not only urban areas but also 
peripheral regions with low population density and long travel dis
tances. This approach fills a research gap in the existing literature, which 
predominantly focuses on urban environments, many times only the city 
centre. By examining shared mobility in areas with varying population 
densities, we aim to provide a more comprehensive understanding of the 
potential societal and equity impacts of future massive deployment of 
SAEVs. The pronounced differences in travel behaviour and transit 
accessibility across spatial contexts underscore the importance of 
context-sensitive evaluations.

Recognizing the transformative potential of SAEVs, this study ex
plores extreme scenarios where personal mobility is entirely replaced by 
this service. While such a scenario may not reflect near-future realities, it 
serves as a valuable tool to probe the boundaries of system performance 
and environmental impacts under maximum adoption conditions. 
Testing extreme cases is a well-established methodology in trans
portation research, providing insights into the resilience and feasibility 

of new systems under high-stress conditions (e.g.,Lorig et al., 2023; 
Martinez & Viegas, 2017; Sopjani et al., 2020). The objectives of this 
paper are threefold: 

1. To assess the operational and environmental viability of SAEVs 
across different scales: municipal, subregional, and regional.

2. To investigate the potential sustainability benefits and challenges 
associated with the widespread adoption of SAEVs, including their 
impacts on global warming potential, particulate matter formation, 
tropospheric ozone formation, human toxicity, land use, mineral and 
fossil resource depletion

3. To identify key factors influencing the life cycle environmental 
performance of SAEVs.

In the next section, we will delve into the literature review, with a 
focus on the ABM-LCA integration. Section 3 will outline the methodo
logical approach, which is subdivided into the ABM and LCA. The details 
of input data and case study applications will be examined in Section 4. 
Section 5 will focus on model verification and validation, including 
evidence supporting the reliability of the ABM. The results will be pre
sented in Section 6. Finally, Section 7 will conclude with a summary of 
key findings, contributions, research limitations, and suggestions for 
future research.

Literature review

LCA offers a comprehensive method for assessing environmental 
impacts, but it usually depends on predefined assumptions and over
looks the dynamic nature of human decision-making (Gutowski, 2018). 
As a result, the outcomes may not fully reflect the real-world environ
mental impacts. One promising approach to obtain closer-to-reality re
sults is through the usage of ABM or other microsimulation approaches 
which allows for the simulation of individual-level decision-making 
processes and interactions within complex mobility systems (Francois & 
Coulombel, 2024; Hicks, 2022). ABM provides valuable insights into the 
complex decision-making processes underlying transportation choices 
by simulating individual agents’ behaviours and interactions within a 
larger mobility system. Its importance lies in its ability to capture human 
behaviour and vehicle deployment strategies, ultimately contributing to 
a more comprehensive assessment of future mobility scenarios.

The ABM methodology has found extensive application in depicting 
the interplay between supply and demand within transportation systems 
across various domains, including but not limited to traffic flow analysis, 
modelling travel behaviour, planning and managing transportation 
systems, adopting emergent technologies, and examining potential 
rebound effects (Calabrò et al., 2022; Gurumurthy et al., 2019; Huang 
et al., 2022; Li et al., 2021; Soteropoulos et al., 2019; Stevens et al., 
2022; Sun et al., 2022). Several researchers, including Ciari, Milos, and 
Axhausen (2016), Jager, Agua, and Lienkamp (2017), Becker, Ciari, and 
Axhausen (2018), Sheppard et al. (2019) and Wang, Correia, and Lin 
(2019) have applied ABM to analyse the operational system perfor
mance, infrastructure requirements, power grid constraints, and policy 
assessments related to SAEVs. These studies underscore ABM’s effec
tiveness in simulating real-world mobility scenarios and analyse oper
ational system performance, infrastructure needs, power grid impacts, 
and policy assessments. For instance, Jager, Agua, and Lienkamp (2017)
presented an operational simulation of on-demand SAEVs. They 
concluded that environmental benefits should only be expected when 
carpooling is encouraged and the energy supply is sourced from 
renewable resources, underscoring the importance of simultaneously 
evaluating both performance and environmental factors. Regarding 
vehicle performance, SAEVs may require frequent relocation, likely 
instigating congestion (Bösch et al., 2018). Varying from 5 to 10 min at 
an urban scale with 95 % of accepted travel demand, average waiting 
times are a crucial metric for assessing service quality and user satis
faction (Basu et al., 2018; Gurumurthy et al., 2020). Unoccupied 
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repositioning journeys can raise greenhouse gas emissions by 25 % of 
non-electrified AVs (Lu et al., 2018). However, service levels can worsen 
due to vehicle electrification and the type of shared system (Vasconcelos 
et al., 2017; Hyland & Mahmassani, 2020; Vosooghi et al., 2020).

When LCA methods are integrated with ABM, it becomes possible to 
deepen our comprehension of environmental impacts. This is achieved 
by revealing how changes in individual behaviour and technology 
adoption influence environmental outcomes (Alfaro et al., 2010; Mico
lier et al., 2019). Davis et al. (2009) pioneered this integration within 
the bioelectricity domain, in a proof-of-concept model. While this 
coupling has seen widespread application in energy and agriculture, its 
utilisation in transportation remains limited. Florent and Enrico (2015)
integrated ABM into a consequential LCA to analyse mobility-related 
policies and simulate automobile market dynamics to determine the 
effects on the economy and environment. Onat et al. (2017) developed 
an ABM to predict the upcoming market share of electric vehicles in the 
US, assessing their life-cycle environmental and economic impact. Lu 
and Hsu (2017) employed an LCA-ABM framework to evaluate the 
environmental impacts associated with the implementation of a high- 
speed railway. Recently, Vilaça et al. (2024) introduced a conceptual 
framework that integrates ABM and LCA for a behaviour-driven SAEV 
assessment at a large scale. This is the first time that such an integrated 
approach has been applied for this purpose. This framework demon
strates a significant reduction in daily global warming potential (GWP) 
without compromising user experience. However, a 30-year perspective, 
the study projects a 170 % increase in GWP when SAEVs meet all road 
transport demand in the region. Later, Luo et al., (2024) applied a 
similar approach to evaluate the environmental impacts of AVs in pri
vate use. Their study suggests that AVs may increase the total distance 
travelled, which, without the promotion of BEVs and increased pene
tration of renewable energy sources in the power grid, could lead to a 
substantial increase in fossil fuel consumption.

Despite the growing body of research on SAEVs, significant gaps 
remain, particularly in comprehensively assessing their life cycle envi
ronmental impacts through integrated methodologies like ABM and 
LCA. Most studies have predominantly focused on market share esti
mations among different transportation modes or technologies, without 
fully integrating these approaches to evaluate environmental outcomes 
in a real-world context (Florent & Enrico, 2015; Lu & Hsu, 2017; Onat 

et al., 2017). This underscores a critical need for research that, not only 
bridges these methodological approaches but also applies them to a 
scalable assessment of SAEVs across multiple scales. Furthermore, this 
study broadens the analysis beyond typical assessments, encompassing 
diverse environmental impact categories, namely global warming po
tential, particulate matter formation, tropospheric ozone formation, 
human toxicity, land use and mineral and fossil resource depletion. 
These categories provide a comprehensive framework for understanding 
the multidisciplinary impacts of transportation systems. By encom
passing key areas such as health outcomes, environmental degradation, 
and economic pressures, they offer a well-rounded perspective on the 
challenges and trade-offs associated with sustainable transportation. 
This selection ensures that the analysis captures not only immediate 
effects, such as air quality and human health risks, but also broader 
implications for resource use, land management, and long-term 
ecological sustainability. Investigating these impact categories will 
deepen our understanding of the environmental, health, and economic 
implications of SAEVs’ implementation, offering crucial insights to 
guide policy and future research in sustainable transportation.

Methodology

This study proposes a methodology that integrates ABM and LCA to 
assess the environmental impacts associated with the deployment of 
SAEVs for door-to-door polled ride-sharing transport. Fig. 1 provides an 
overview of the methodology structure including the specific tools that 
have been used for each component.

The methodology comprises a comparative evaluation of the impact 
of SAEVs before and after substituting them into the representative 
mobility system, assessing the life cycle implications across various 
geographic scales - municipal, subregional, and regional. This process 
entails the construction of an ABM that resembles a common mobility 
context, alongside a modified ABM scenario wherein private car and bus 
journeys are substituted with SAEV services.

The ABM models are developed in MATSim (Version 13.0) (Horni 
et al., 2016). The models serve two purposes: they replicate the dy
namics of the representative mobility system and the hypothetical SAEV 
mobility service, thereby generating datasets for a LCA and essential 
service performance metrics such as vehicular distance covered, 

Fig. 1. Methodological framework.
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occupancy rates, and daily mobility efficiency at each examined scale. 
The environmental impact assessment is executed using SimaPro 
(Version 9.6.0.1), a widely recognised LCA software renowned for its 
methodical approach to evaluating the environmental performance of 
products or processes across all life stages (PréConsultants, 2024). 
Moreover, the ReCiPe 2016 (H) version 1.1 impact assessment method is 
used, this method aligns with European regulatory frameworks and 
environmental policies and is widely used in academic research (e.g. 
Florent & Enrico, 2015; Koroma et al., 2022) due to its detailed cate
gorisation (Huijbregts et al., 2016).

Subsequent sections provide a detailed breakdown of our methodo
logical approach. Section 3.1 explains the ABM simulation, designed in 
the MATSim simulation platform, and Section 3.2 elaborates on the 
standardised LCA approach and the environmental impact categories 
under evaluation.

ABM simulation framework

This study employs MATSim as a simulation platform, to model the 
behaviour and daily schedules of agents representing the real population 
of a region. The core concept of MATSim is the simulation of agents and 
their daily plans, comprising different activities (such as home, work, 
leisure) and the trips between these locations. These trips can span 
different modes of transportation, including car, public transport, or 
taxi. The framework is specially designed to handle large-scale trans
portation scenarios by simplifying the framework with a queue-based 
model for network loading and incorporating parallel processing to 
enhance efficiency (Horni et al., 2016). Essential inputs for initiating 
MATSim include a synthetic population reflecting the socio-economic 
attributes, a comprehensive daily activity plan per agent, and trans
port network attributes with a virtual representation of spatial layout (e. 
g. residential, commercial, and industrial areas) and available transport 
services.

The initial population of agents, representing the initial set of daily 
plans, is obtained through the generation of synthetic population data 
based on travel diary data from surveys. The generation of the synthetic 
population begins with data preprocessing for each individual daily 
travel plan. Although the specific details of the survey data are pro
prietary and not publicly accessible, an overview of its key character
istics and the method for generating the synthetic population is provided 
in Section 4.

To model the replacement of conventional road trips with SAEVs, the 
Demand-Responsive Transport (DRT) extension developed by Bischoff 
et al. (2017) was employed. This extension addresses the dynamic 
vehicle allocation problem by applying a vehicle dispatch algorithm to 
meet travel demands dynamically based on constraints like capacity, 
time window, maximum waiting time, and travel time. The primary 
objective is to maximise a multi-objective function that seeks to balance 
operational efficiency with service quality. Thus, in cases where multi
ple vehicles can fulfil the request, the system selects the most suitable. 
This DRT extension has been used in previous studies such as Bischoff & 
MacIejewski (2020); Vosooghi et al. (2019, 2020); Zwick et al. (2021).

Life cycle assessment

Aligned with the ISO 14044:2006 framework (ISO 14044, 2006), this 
research adopts a structured LCA methodology to assess the environ
mental impacts of integrating SAEVs into a macroscopic road trans
portation system. Following the framework structure, we aim to 
compare seven impact categories of a conventional road transportation 
system against a system that uses SAEVs across three scale levels: 
municipal, subregional, and regional.

A fleet-based life cycle model encompassing production, usage, 
maintenance, and final disposal stages is developed. LCA execution 
utilised the SimaPro software (version 9.6.0.1) together with the 
Ecoinvent database (version 3.10) (Ecoinvent, 2024; PréConsultants, 

2024). Furthermore, ReCiPe 2016 v.1.1 impact assessment method was 
used to calculate global warming potential, particulate matter forma
tion, ozone formation, human toxicity; land use; and mineral and fossil 
resources scarcity impact categories (Huijbregts et al., 2016). The 
method comprises a hierarchist (H) perspective (over a 100-year hori
zon) which aligns with a predetermined framework for evaluating cur
rent technological developments (Huijbregts et al., 2016). This widely 
applied impact assessment approach, with its midpoint-level charac
terisation factors, ensures a process of low uncertainty due to the strong 
correlation between the selected indicators and environmental impacts 
(Montoya-Torres et al., 2023). Table 1 reviews the description of each 
environmental impact category and its relevance to the transportation 
sector.

The environmental and health impacts of transportation systems 
manifest strongly at the local level, where high concentrations of 
emissions and infrastructure demands directly affect communities. 
Global warming potential contributes to localized effects such as the 
urban heat island phenomenon and increased vulnerability to climate- 
related disasters like floods and storms. Particulate matter formation 
(PM2.5 and PM10) and tropospheric ozone formation degrade air quality, 
leading to elevated rates of respiratory and cardiovascular diseases, 
particularly in urban and high-traffic areas. Human toxicity, through 
exposure to pollutants such as heavy metals and volatile organic com
pounds, poses significant health risks, including cancer and neurological 
damage. Land use changes, driven by transportation infrastructure, 
result in habitat destruction, loss of green spaces, and ecosystem 

Table 1 
Environmental Impact Categories Evaluated Using the ReCiPe Midpoint Method 
(Adapted from (Huijbregts et al., 2016)).

Impact 
Category

Description Relevance to the 
Transportation Sector

Global Warming 
Potential 
(kg CO2eq.)

Measures the impact of 
greenhouse gases on global 
warming, expressed as CO2 

equivalents.

Essential for evaluating the role 
of vehicle GHG emissions in 
climate change. Directly reflects 
sustainability goals in mobility.

Particulate 
Matter 
Formation 
(kg PM2.5)

Emissions of particulate 
matter can affect air quality 
and cause respiratory issues.

Relevant to assess the 
contributions of vehicle 
emissions to air quality 
(particularly from engine 
emissions, tire and brake wear). 
Exposure to particulate matter 
poses serious health risks, 
including respiratory and 
cardiovascular diseases.

Ozone 
formation 
(kg NOx)

Formation of ozone from 
volatile organic compounds 
and nitrogen oxides.

Crucial for understanding the 
transportation impact on urban 
smog and air pollution, 
especially in high traffic 
conditions. It is a harmful 
pollutant affecting human 
health and ecosystems.

Human Toxicity 
(kg 1,4-DCB)

Evaluates harmful effects of 
released chemical 
substances.

Vehicle production, 
maintenance and end-of-life 
processes can release toxic 
pollutants, such as benzene and 
heavy metals, which can cause 
cancer and neurological 
disorders.

Land Use (m2. 
yr)

Impact on land through 
occupation or 
transformation

Affects patterns due to 
infrastructure development and 
raw material extraction, leading 
to habitat destruction and 
biodiversity loss.

Mineral 
Resources 
Scarcity (kg 
Cu)

Depletion of mineral 
resources due to extraction 
and use.

Particularly relevant in the 
production of electric vehicles, 
which require significant 
quantities of rare minerals for 
batteries.

Fossil Resources 
Scarcity (kg 
oil)

Depletion of fossil resources 
due to extraction and use.

Important for assessing the 
impact of conventional vehicle 
fuels.

M. Vilaça et al.                                                                                                                                                                                                                                  Transportation Research Interdisciplinary Perspectives 33 (2025) 101623 

4 



fragmentation, which reduce biodiversity and urban resilience. Addi
tionally, mineral and fossil resource depletion exert economic stress on 
communities through increased costs and environmental degradation in 
resource extraction regions (Kwan & Hashim, 2016; Nieuwenhuijsen, 
2016).

Case study: Central region of Portugal

Study area overview and data

The designed methodology is applied to the Coimbra Region in 
central Portugal (Fig. 2). This region consists of 26 municipalities 
covering approximately 5900 km2 and had a resident population of 
around 601,000, of which 86 % are aged 15 and above (TIS.PT, 2009). 
This region provides a foundation for exploring transportation dynamics 
across different spatial scales. Thus, for the study purposes, the region is 
divided into three levels − municipal, subregional, and regional (see 
Fig. 2). The population densities at the subregional and municipal levels 
are estimated to be 1.2 and 3.3 times higher, respectively, than at the 
regional level (101 inhabitants per km2) (TIS.PT, 2009). In each scale, it 
is ensured that all trip origins and destinations fall within their respec
tive geographic boundaries.

Data from a comprehensive mobility survey conducted by an 
external company (TIS.PT, 2009) form the basis for building the ABM. 
Despite having been done in 2009 this is still the most accurate data 
source for characterising the mobility in the region, reporting detailed 
daily trip information, transport mode options, and satisfaction levels 
with existing transport modes. In the meantime, the structure of the 
region did not change significantly neither in terms of population nor 
regarding transport systems supply. However, the objective is not to 
replicate the exact current mobility conditions but to develop a mobility 
system that is representative enough to support the analysis and provide 
a robust basis for the ABM model. About 13,696 residents were sur
veyed, contributing to a dataset of 17,760 trips. The survey focused on 
the population aged 15 or above and included socioeconomic status 
questions to characterise household transportation behaviour more 
accurately. The zoning of the geographical area under study (Fig. 2) 
formed the basis for the survey sample sizing. The adopted zoning has 
the following general characteristics: the zones are always subsets of 
municipalities; in the case of the municipality of Coimbra, the zones are 
sets of statistical sub-sections, generally not respecting administrative 
boundaries; in the remaining municipalities, the zones consist of one or 
more administrative boroughs or encompass the entire municipality. 
The zoning becomes more detailed as closer to the urban area (TIS.PT, 
2009).

Mobility patterns in the region indicate an average of 1.5 daily trips 
per person, primarily dominated by private car usage at 80 %, followed 
by walking at 10 %, public transport at 8 %, and other less representa
tive modes making up the remaining 2 % (TIS.PT, 2009). Recent studies 
have indicated minor changes in the modal split: private car usage 
decreased to 72 %, walking trips increased to 11 %, and PT increased to 
16 % (CIM Coimbra, 2016). It is identified in the survey 8518 activities 
locations. These locations reflect the destination location of a specific 
trip purpose classified into: work (18 %), home (67 %), health (2 %), 
education (1 %), services (5 %), shopping (2 %), restaurant (<1%), 
leisure (2 %), escort (2 %) and other (<1%) (TIS.PT, 2009).

Synthetic population generation

A synthetic population estimation technique was employed to model 
the demographic distribution across the region. Main variables are ob
tained from the survey, including person ID, origin and destination co
ordinates, respective zone ID of those coordinates, travel purpose, mode 
of transportation, start at home, trip sequence, start time, and coefficient 
of expansion from sample to population. First, trip sequences are 
reviewed to ensure the trip plans adhere to the reported sequence. 
Following that, the ’start at home’ parameter, which indicates the origin 
of each individual’s first trip, is processed with two options: ’home’ or 
’other’. A bank of coordinates is subsequently created from the original 
data, with each geographical coordinate characterised by zone ID and 
trip purpose (related to the typology of the facility of origin). This bank 
is also used to identify locations for the types of activities. Synthetic 
population generation is then initiated based on a coefficient of expan
sion, estimated together with the survey which is dependent on the 
population characteristics in each zone. The coefficient of expansion 
represents the ratio used to correlate the number of valid survey re
sponses to the corresponding population size within each sample 
extract, categorized by residential zone, age group, and gender. The 
synthetic population is reconstructed, and synthetic trips are scaled 
using this coefficient. For each synthetic individual trip, a random co
ordinate is selected from the bank of coordinates, ensuring alignment 
with the reported zone ID and trip purpose. Each coordinate in the bank 
is associated with multiple purposes and several repetitions, acting as a 
ponderation for selecting a coordinate. To introduce temporal vari
ability, random deviations of ± 10 min are applied to the start times of 
synthetic trips. The randomised coordinates for synthetic trips are 
selected while retaining the original trip plan structure, maintaining the 
integrity of the individual’s travel patterns. This algorithmic process 
captures not only structural aspects of travel orders but also introduces 
stochastic elements for variability. The weighted selection mechanism 

Fig. 2. Coimbra Case Study Location in Central Portugal.
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further refines the process, enhancing the representation of diverse 
travel patterns within the simulated population. Resulting in a total of 
615,007 trips within the region, the synthetic trips estimation error 
varied by scale: − 3% at the regional level, − 7% at the subregional level, 
and + 3 % at the municipal level compared to the coefficient of 
expansion.

Simulation setup

The simulation model uses the Dijkstra algorithm to select the 
shortest driving path, which is based on minimizing travel time. The 
simulation model does not incorporate dynamic rerouting. However, 
this is not expected to significantly affect the results, as the network in 
our case study has limited alternative route options.

Integration of GTFS files from the SMTUC (Municipal Services of 
Urban Transport of Coimbra), which operates Coimbra’s bus system, 
and Transdev, the main private transit operator at the regional level, 
enabled transit route modelling. The GTFS data provided by these two 
public transport operators was converted into MATSim data format. The 
municipal services provide 937 transit routes, while combined with 
Transdev, the regional and subregional scales present 1810 transit 
routes. Buses in this model are considered to have a capacity of 70 
passengers.

Every trip made by bike, on foot, by car, and by PT was modelled. 
However, for this study, we restrict our analysis to motorised trips (car 
and PT). A time step of one second was used in the simulated scenarios.

The SAEVs are designed to represent a door-to-door system, offering 
passengers a service closely resembling private transportation. Each 
vehicle is configured to carry up to four passengers, a capacity aligning 
with industry standards such as Uber, and commonly accepted in shared 
mobility models (Alonso-Mora et al., 2017; Zeng et al., 2020). It is 
important to emphasise that although the model assumes a maximum 
capacity of four passengers per SAEV, this does not entail consistent 
operation at full capacity. The model enables occupancy level variation, 
reflecting real-world conditions impacted by factors such as time of day, 
route, and demand fluctuations.

Model execution was computationally demanding, especially at 
larger geographic scales. All simulations were conducted on a high- 
performance workstation equipped with 256 GB of RAM and dual pro
cessors. Simulation time varied depending on the spatial scale and 
complexity, ranging from approximately 24 to 168 h per run.

Saevs departure station allocation and fleet distribution strategy

An approach based on the demand density per zone was used to 
determine the departure stations for the SAEVs fleet to initiate its ser
vices. At the municipal scale, where trips are more concentrated, five 
departure stations were chosen. These stations were distributed across 
the municipal boundaries, ensuring they were located in areas with 
sufficient space and covering trips within a short radius of action. For the 
subregional and regional scales, additional departure points were set 
based on the zones that accounted for more than 5 % of all departures at 
each respective scale. At the subregional scale, seven additional stations 
were added to the existing five municipal points. Similarly, at the 
regional scale, six additional stations were introduced, including the 
stations from the municipal and subregional scales. Not diversifying 
these locations would hinder the vehicles from picking up the passengers 
at an acceptable waiting time, especially when the day begins. For 
example, if vehicles are requested at a city that is at more than 30 min 
travel time distance from the nearest station, and travellers are only 
willing to wait for 20 min, this would lead to immediately rejected trips. 
Fig. 3 illustrates the location of the determined departure points.

The fleet of SAEVs was distributed proportionally to the demand for 
trips at each scale. Within each scale, the vehicles were divided evenly 
among the departure points except for municipal scale. Specifically, at 
the municipal scale, the fleet was divided among the five departure 
stations: the two central stations are assigned 50 % of the fleet allocated 
to this scale, while the remaining three stations handle the other 50 %. 
At the subregional scale, 88 % of the fleet was allocated to the five 
municipal stations, while 12 % was distributed among the seven sub
regional stations. At the regional scale, 49 % of the fleet was placed at 
the municipal stations, 7 % at the subregional stations, and the 
remaining 45 % at the six regional stations. Note that vehicles are not 
required to return to their starting locations after each service, allowing 
for flexible routing. We could assume that they will return for spending 
the night period, but this was not modelled.

Scenarios design

To provide a clear understanding of the different scenarios analysed 
in this study, Table 2 presents an overview of each scenario and its key 
characteristics. The explanation behind the selection of the specific 
scenarios is provided in the next subsections.

Each of the four scenarios (Baseline, Electric Benchmark, SAEVs 

Fig. 3. SAEVs departure stations.
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Fleet A, and SAEVs Fleet B) is considered across the three spatial scales: 
municipal, subregional, and regional.

In terms of LCA the impact categories are assessed considering two 
time-frames: the daily impact and a 100-year horizon evaluation. The 
long-term environmental impact assessment takes into account fleet 
renewal cycles and their consequent environmental effects. To compute 
the long-term environmental implications, a scaling factor is applied. 
This factor accounts for the number of fleet replacements anticipated 
over 100 years, based on the reference lifetime values for electric ve
hicles (EVs) and internal combustion engine vehicles (ICEVs). Specif
ically, these values are 150,000 km for EVs and 250,000 km for ICEVs 
(Notter et al., 2010; Wernet et al., 2016).

The functional unit applied in the performed LCA scenarios is 
passenger-kilometre (pass.km) travelled, reflecting the current demand 
for transportation services. For this purpose, passenger counting is 
conducted using a trip-based counting approach, where each trip 
segment undertaken by an individual is counted separately. This method 
ensures accuracy in capturing the performance of the mobility system 
comparatively across each spatial scale and for both private and public 
transport. By using passenger-kilometre travelled, the life cycle impact 
assessment also accounts for possible rejected trips, thereby providing a 
realistic assessment when compared to shared mobility scenarios.

Baseline scenario
The baseline scenario mirrors the current mobility conditions and the 

fleet inventory draws from the national fleet composition, with specifics 
detailed in Table 3, linking to the selected Ecoinvent database sources 
used for life cycle impact assessment (Ecoinvent, 2024; Emisia, 2022). It 
classifies passenger vehicles according to fuel type, size segment (small, 
medium, large), and EURO emissions standards, providing an outline of 
the conventional vehicle context. In the construction of the life cycle 
inventory for this analysis, where specific data for newer emissions 
standards (such as EURO 6) were not available for certain vehicle types, 
the most recent applicable dataset was employed. In cases where the 
number of vehicles meeting a specific EURO standard is very low (less 
than 1 %), these vehicles are grouped into broader emissions categories. 
To choose a representative EURO standard for each group, we use a 
weighted average. This average considers not only the proportion of 
each EURO standard in the national fleet but a proportional weight to 
the EURO standard immediately before and after it. The analysis adopts 
a generic model for buses that mirrors the operational characteristics of 
a typical bus within the representative fleet.

Electric benchmark scenario
In addition to the baseline scenario, a second scenario is run, 

reflecting the current mobility conditions but assuming a future where 
all private vehicles are BEV and electric buses. This hypothetical sce
nario, called ’electric benchmark’ scenario, provides a level comparison 
for assessing the SAEV scenario against a fully electrified current 

mobility system, thus highlighting potential advantages in a future- 
oriented context.

The Portuguese electricity generation mix from 2020, comprising 33 
% natural gas, 26 % hydro, 23 % wind, 7 % biofuels, 4 % coal, 3 %, solar 
photovoltaic, 2 % oil, and 2 % waste and geothermal is the basis for 
modelling the energy consumption of EV’s use phase (IEA, 2024).

SAEVs scenarios
The determination of the initial SAEVs fleet size was established 

based on two different scenarios. The first is that one ride-sharing 
vehicle is on average able to replace 5 private cars (Nenseth et al., 
2012; Peer et al., 2024) (designated as Fleet A). The second, in a less 
conservative approach, is that one ride-sharing vehicle can replace ten 
private cars (Bischoff & Maciejewski, 2014; Fagnant & Kockelman, 
2014; Martinez et al., 2015; Santos & Correia, 2021) (designated as Fleet 
B). In this study, we expand the scope of these assumptions by consid
ering that all road trips (done by private cars and buses) will be replaced 
by SAEVs. This is particularly relevant in large-scale, low-density sce
narios where public transport often lacks efficiency and frequently 
operates with low occupancy levels.

In the scenario involving SAEVs, the LCA model is grounded on a 
BEV model. This base model is enhanced with necessary sensors and 
subsystems essential for full automation (level 4 or higher) as detailed in 
prior research by Vilaça et al., (2022). Furthermore, the LCA model 
incorporates the percentage of kilometres travelled by SAEVs either 
without passengers or carrying between 1 and 4 passengers, with each 
passenger assumed to weigh 60 kg (Simons, 2016). Energy consumption 
during the use phase of SAEVs is modelled based on the Portuguese 
electricity generation mix from 2020. Trips that could not be accom
modated by the SAEVs system were accounted for in the LCA. It is 
assumed that when a trip cannot be completed by the shared system 
(rejected trips), a private electric car is used. This ensures that the LCA is 
comparing the same mobility demand. This approach reflects the 

Table 2 
Overview of the studied scenarios and description.

Scenario Description

Baseline Represent representative mobility conditions, reflecting the 
characteristics of the average national fleet.

Electric 
Benchmark

Models the current mobility with an all-electric fleet, 
maintaining the same operational characteristics as the baseline 
scenario. This scenario serves as a reference for LCA 
comparisons.

SAEVs Fleet A Follows the operational characteristics of shared mobility, where 
one SAEV replaces five road trips. For environmental assessment, 
rejected trips are assumed to be fulfilled by private-use electric 
cars.

SAEVs Fleet B Follows the operational characteristics of shared mobility, where 
one SAEV replaces ten road trips. For environmental assessment, 
rejected trips are assumed to be fulfilled by private-use electric 
cars.

Table 3 
Passenger Car National Fleet Composition and typical bus and selected Ecoin
vent database source.

Fuel Segment Euro % Ecoinvent Database

Petrol Small 3 12 Transport, passenger car, small size, petrol, 
EURO 3 {RER}|Cut-off, U

Petrol Small 4 8 Transport, passenger car, small size, petrol, 
EURO 4 {RER}|Cut-off, U

Petrol Small 5;6 15 Transport, passenger car, small size, petrol, 
EURO 5 {RER}|Cut-off, U

Petrol Medium 3;4;5;6 3 Transport, passenger car, medium size, 
petrol, EURO 3 {RER}|Cut-off, U

Petrol Large(1) 3;4;5;6 1 Transport, passenger car, large size, petrol, 
EURO 4 {RER}|Cut-off, U

Diesel Small 4 4 Transport, passenger car, small size, diesel, 
EURO 4 {RER}|Cut-off, U

Diesel Small 5/6 4 Transport, passenger car, small size, diesel, 
EURO 5 {RER}|Cut-off, U

Diesel Medium 3 8 Transport, passenger car, medium size, 
diesel, EURO 3 {RER}|Cut-off, U

Diesel Medium 4 14 Transport, passenger car, medium size, 
diesel, EURO 4 {RER}|Cut-off, U

Diesel Medium 5;6 24 Transport, passenger car, medium size, 
diesel, EURO 5 {RER}|Cut-off, U

Diesel Large 3 2 Transport, passenger car, large size, diesel, 
EURO 3 {RER}|Cut-off, U

Diesel Large 4 2 Transport, passenger car, large size, diesel, 
EURO 4 {RER}|Cut-off, U

Diesel Large 5;6 2 Transport, passenger car, large size, diesel, 
EURO 5 {RER}|Cut-off, U

BEV S/M/L 5;6 1 Transport, passenger car, electric {GLO}| 
Cut-off, U

Bus Generic Generic -(2) Transport, regular bus {RoW}| transport, 
regular bus | Cut-off, U

(1)Large – SUV – Executive.
(2)Directly applied to all the public transit fleet.
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anticipated widespread adoption of electric vehicles in a future where 
SAEVs are common. It can be interpreted in two ways: individuals whose 
trips are not accommodated by the shared system will use their private 
electric cars, or from a company perspective, if the service cannot fulfil a 
request, the company provides an electric car for the individual. The 
model is designed to minimise rejection trips, which are a by-product of 
providing a mobility system feasible and attractive to users (i.e. main
taining acceptable waiting times). Above all, the rejection trips repre
sent a small percentage of the overall system impact.

Model verification and validation

To assess the accuracy of the ABM developed for the case study, a 
multi-step verification process was employed. This process aimed to 
validate the model’s ability to reflect the mobility system by comparing 
it against established benchmarks from a reference transportation 
planning study conducted in 2008 (TIS.PT, 2008), and by critically 
comparing any potential simulation thresholds. The 2008 data was used 
because it is a high-quality study and one of the few available with such 
detailed information. For the purpose of this study, it is not crucial that 
the data reflects the current situation in 2024, rather it should represent 
realistic mobility patterns in the case study area. Additionally, as the 
study area has had limited investment in public transportation and 
maintains a stable population number, it is unlikely that significant 
changes have occurred since the data was collected.

First, visual inspection of the activity locations represented in the 
ABM is made. This was conducted to ensure that the model accurately 
depicted the urban layout and key points of interest as observed in the 
city’s actual environment (Fig. 4). The visual inspection revealed a 
strong correlation between the model’s representation and the actual 
city layout.

Subsequently, the validation process assessed overall traffic volumes 
across the urban network. This validation is particularly focused on the 
city of Coimbra network, as it is the area for which we possess 
comparative traffic volume data and is less affected by extra-regional 
trips. A visual verification to compare overall traffic volumes across 
the network was conducted. This qualitative assessment involved 
comparing traffic volumes on major links within the city (as counted in 
the 2009 study) to see if high-traffic volumes were consistent between 
the ABM and the reference model (VISUM macro model based on the 
survey and traffic counts).

Following the visual verification, nine specific locations were iden
tified, and absolute traffic volumes (vehicles per day) were compared in 
both directions of the road (Fig. 5). These locations were strategically 

chosen based on their importance in terms of traffic flow.
Through the visual comparison, a fair level of consistency between 

the models has been observed (Fig. 5). Furthermore, the fact that the 
links with the most significant traffic volumes coincide between the two 
models, coupled with our comprehensive understanding of the case 
study area, further strengthens the credibility of the MATSim model. The 
specific location analysis showed a mean absolute percentage error of 
− 21 %, indicating an underestimation of traffic volumes by MATSim. 
This deviation is within an acceptable range, given the model’s design to 
exclude traffic not originating within the region. Thus, the observed 
discrepancy can be rationalised as the model’s intentional omission of 
trips that extend beyond the region of interest.

Finally, the accuracy of the simulation model in estimating travel 
distances and times was evaluated. This evaluation began by assessing 
the estimated distances and travel times of the trips reported in the 
survey (TIS.PT, 2008) using the Google Distance Matrix API (Google, 
2024). A script was developed to convert the coordinates to the WGS84 
system, readable by Google Maps. The API requests included departure 
times and accounted for average traffic conditions to estimate the travel 
times. This approach was applied to both types of motorised trips: cars 
and buses. The average travel distances and times obtained from the API 
for trips by car and bus at three regional scales, weighted by the coef
ficient of expansion for estimation, were then compared with those 
simulated by the ABM model. The results indicate that simulated car trip 
distances vary by no more than 0.5 km on average, while public trans
port trips vary by up to 1 km. In terms of travel time, on average, the 
MATSim model slightly underestimates car trips by up to 2 min and PT 
trips by up to 15 min. The discrepancy, particularly in PT travel times, 
can be attributed to modelling previous public transport demand with 
the current PT system, which may cause some differences. Additionally, 
the routing module aggregates travel time estimations into time bins to 
keep computational effort feasible. These aggregations can introduce 
minor inaccuracies as they generalise travel times over periods rather 
than accounting for exact variations (Horni et al., 2016).

Overall, the integrated ABM framework demonstrates strong 
contextual fidelity, particularly in replicating spatial mobility patterns 
and realistic vehicle operations. Nonetheless, limitations should be 
noted. First, the model validation is constrained by the availability of 
historical mobility and traffic data; while robust for the purposes of 
spatial and behavioural benchmarking, these datasets may not fully 
capture recent or emergent trends. Second, assumptions related to SAEV 
operations (such as routing logic, passenger acceptance of shared rides, 
and fixed vehicle capacities) introduce simplifications that could affect 
the accuracy of trip rejection rates and occupancy estimates. Third, 

Fig. 4. Visual Representation of Activities Locations within the Urban Environment of the Case Study.
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while the LCA component uses a well-established impact assessment 
method (ReCiPe 2016) and high-quality inventory data, there remains 
uncertainty in long-term projections, particularly for battery degrada
tion, electricity mix evolution, and recycling rates. Despite these limi
tations, the combination of rigorous simulation design, careful scenario 
framing, and sensitivity to real-world constraints supports the reliability 
of the study’s core findings.

Results

Table 4 summarises the baseline daily transportation system per
formance metrics derived from the ABM across the three different 
geographic scales (review Fig. 2). It details the number of operational 
vehicles, the average kilometres travelled per vehicle, the number of 
passengers travelling in both private cars and PT, and the median 
waiting time for PT. It is important to note, as previously mentioned, 
that the passenger counts are based on trip occurrences, facilitating a 
more accurate comparison with public transport and shared mobility 
metrics. These counts do not represent the total population size but 
rather the extent of transportation utilisation.

Despite the increase in the total number of private cars with the 
expansion of the geographic scale, the number of vehicles in movement 
per km2 decreases significantly as the scale increases. Specifically, at the 
municipal level, there are approximately 222 vehicles in movement per 
km2. This value reduces to 98 vehicles per km2 at the subregional level 
and further decreases to 41 vehicles per km2 at the regional level. This 
trend aligns with expectations, as the population density decreases 
across the geographic areas. Additionally, private cars travelled signif
icantly more distance in regional (+77 %) and subregional (+27 %) 

scales when compared to the municipal scale. The number of passengers 
in private cars increased by 28 % at the subregional scale and 237 % at 
the regional scale, compared to population increases of 23 % at the 
subregional scale and 189 % at the regional scale. This indicates an 
increased dependency on private cars as one moves away from the main 
urban centre in the region, the city of Coimbra.

In terms of PT, the same number of buses is provided for the subre
gional and regional scales, with differences only observed in the 
reduction of passengers and fewer kilometres travelled per vehicle. On 
average, a regional bus travelled 23 km more than a municipal bus. 
However, the reliance on PT decreases as the geographical scale in
creases and we move away from the urban centre, with the number of 
passengers in public transport increasing by only 5 % at the subregional 
scale and 16 % at the regional scale, which is significantly lower than the 
population increase.

Table 5 presents the results of the MATSim output metrics when 
shifting to SAEVs considering fleets A and B. The table also includes the 
percentage of trip rejections, the median waiting time per passenger and 
the average level of detour. The detour is defined as the ratio of the 
actual distance travelled by a passenger to the shortest possible distance 
if the trip were direct (without detours or shared segments). Thus, the 

Fig. 5. Comparative analysis of traffic volumes in the urban environment of the case study. A) Reference Transportation Planning Study (adjusted from (TIS.PT, 
2008)); B) Developed MATSim model.

Table 4 
Simulated Baseline Daily Transportation Metrics across Municipal, Subregional, 
and Regional Scales.

Mode Metrics Municipal Subregional Regional

Private 
Cars

Number of Vehicles 66,821 86,972 237,082
Kilometres per vehicle 
(km/veh.)

16.2 20.5 28.8

Number of Passengers 145,292 186,326 490,159

PT Buses Number of Vehicles used 4,638 5,921 5,921
Kilometres per vehicle 
(km/veh.)

66.9 64.7 89.9

Number of Passengers 43,606 46,184 50,491
Median Waiting Time 
(minutes)

6.7 8.2 11.6

Table 5 
Simulated Transportation Metrics for SAEVs Scenarios Across Municipal, Sub
regional, and Regional Scales.

Fleet Metric (Per Day) Municipal Subregional Regional

A (1 SAEV per 
5 trips)

Number of Vehicles 14,292 18,579 48,601
Kilometres per 
Vehicle (km/veh.)

41.6 49.5 59.6

Number of 
Passengers

149,147 188,659 387,543

Trip Rejection Rate 
(%)

14 14 22

Median Waiting Time 
(min)

4.1 4.5 5.1

Detour Level (%) 58 54 49

B (1 SAEV per 
10 trips)

Number of Vehicles 7146 9289 24,300
Kilometres per 
Vehicle (km/veh.)

76.2 84.7 112.9

Number of 
Passengers

131,697 157,430 354,060

Trip Rejection Rate 
(%)

22 24 26

Median Waiting Time 
(min)

4.5 4.8 5.4

Detour Level (%) 58 54 49
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level of detour represents the increase in travel distance compared to a 
direct trip.

For fleet A, the reduction of fleet size by 5 times results in daily 
kilometres travelled per SAEV being 1.6, 1.4, and 1.1 times higher than 
private cars at the municipal, subregional, and regional scales, respec
tively. With a tenfold reduction in fleet size in fleet B, the vehicle usage 
intensity is more pronounced. Compared to private vehicles in the 
baseline scenario, SAEVs travel 3.7 times more kilometres at the 
municipal scale, 3.1 times more at the subregional scale, and 2.9 times 
more at the regional scale. The reduction between regional and 
municipal levels is due to the fact that in the latter scale, many trips are 
done without detouring and a larger distance, connecting different sub- 
cities with the main one of Coimbra in the centre.

The trip rejection rate increases as the geographic scale enlarges for 
both fleets. In fleet A, rejection rates range from 14 % to 22 %, while in 
fleet B, it ranges from 22 % to 26 %.

Regarding user experience, the median waiting time for SAEVs 
across all scenarios varies from 4.1 to 5.4 min, which is 3 to 8 min less 
compared to PT. The waiting time for passengers increases slightly as the 
geographic scale expands due to longer distances and increased travel 
times within larger areas. Furthermore, waiting times are higher in fleet 
configurations where each SAEV is responsible for replacing 10 trips 
(Fleet B) compared to configurations where 1 SAEV replaces 5 trips 
(Fleet A). This is because the higher demand on each SAEV in the former 
configuration results in more operational constraints and longer waiting 
times for passengers. Additionally, the level of detour is highest at the 
municipal scale, where vehicles travel 58 % more than the direct route. 
The higher detour level at the municipal scale reflects the higher density 
of pick-up and drop-off points in urban areas, which requires more 
frequent stops and route adjustments for ride-sharing.

The following figures present the LCA results considering two ap
proaches: daily impact (Fig. 6) and a 100-year perspective (Fig. 7). The 
heat-tables display the impact values (numbers annotated within each 
cell) and use colour intensity to represent the normalised values within 
each impact category. Columns represent Baseline, Electric Benchmark, 
Fleet A, and Fleet B scenarios for each geographic scale. To enhance 
clarity, normalisation and the associated colour scale are applied inde
pendently to each set of four columns, corresponding to the respective 

geographic scale section. Darker shades indicate higher normalised 
values relative to the maximum value within each row, facilitating the 
comparison of environmental impacts. Categories include GWP (kg CO2 
eq), Ozone formation (kg NOx eq), Fine particulate matter formation (kg 
PM2.5 eq), Human carcinogenic toxicity (kg 1,4-DCB eq), Human non- 
carcinogenic toxicity (kg 1,4-DCB eq), Land use (m2.yr crop eq), Min
eral resource scarcity (kg Cu eq), and Fossil resource scarcity (kg oil eq). 
Values in the figures should be analysed by impact category (i.e., by 
row) since each impact category follows different units and scales.

In terms of daily LCA impacts (Fig. 6), the electric benchmark 
demonstrates clear advantages at the municipal and subregional scales, 
whereas the baseline scenario proves more favourable at the regional 
scale. At the municipal scale, five out of eight daily impact categories at 
SAEVs scenarios reveal increases compared to the baseline scenario. 
Focusing on the impact categories benefiting from this transition, the 
GWP shows a potential reduction of 15 % (fleet A) and 35 % (fleet B); 
fine particulate matter formation decreases by 3 % (fleet A) and 26 % 
(fleet B); and fossil resource scarcity presents reductions of 18 % (fleet 
A) and 37 % (fleet B).

At subregional scale, the GWP shows a potential reduction of 40 % 
(fleet A) and 61 % (fleet B); ozone formation presents a decrease of 9 % 
(fleet A) and 41 % (fleet B); fine particulate matter presents a reduction 
of 32 % (fleet A) and 55 % (fleet B); and fossil resource scarcity is 
reduced by 42 % (fleet A) and 62 % (fleet B). The remaining impact 
categories, however, worsen with this transition.

Across all three geographical scales, the impact categories that 
consistently show increased negative impacts are human toxicity (both 
carcinogenic and non-carcinogenic) and mineral resource scarcity. This 
highlights the importance of a balanced and comprehensive approach 
when considering the adoption of SAEVs, ensuring that improvements in 
some areas do not lead to significant detriments in others.

Daily impacts are influenced mostly by operational efficiency, so the 
fleet size, increase in vehicle kilometres travelled, and rejection rates 
have a significant influence on these results. Despite efforts to maintain a 
smaller rejection rate, the impact of these trips is substantial, repre
senting around 78–86 % of the impact in Fleet A and 73–78 % in Fleet B.

The long-term LCA impacts were analyzed, considering the number 
of fleet replacements and maintenance needed for both the baseline, 

Fig. 6. Comparative Environmental Impact of Baseline and SAEVs scenarios across different geographic scales. Daily Impact, Values per passenger kilometre 
(pass.km).
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electric benchmark, and SAEVs scenarios over a 100-year period (Fig. 7). 
It is important to note that this analysis does not account for the po
tential evolution of vehicle efficiency over the years. The difference 
between the daily impact analysis and this long-term perspective lies in 
the normalization of impacts, particularly concerning the need for fleet 
replacements. Over the 100-year timeframe, the replacement and 
maintenance cycles significantly influence the overall environmental 
impacts, highlighting the importance of durability and operational in
tensity in determining long-term sustainability outcomes.

In the long-term perspective, it becomes evident the potential of 
SAEVs to reduce most of the impact categories at every scale compared 
to the baseline scenario. However, there are notable increases in human 
toxicity and mineral resource scarcity impacts. For instance, human 
carcinogenic toxicity reveals a potential increase of up to 99 % for fleet A 
and 45 % for fleet B, whereas the regional scale observes a reduction of 
31 % (fleet A) and 38 % (fleet B). Human non-carcinogenic toxicity 
shows increases in SAEVs scenarios across all scales and fleet configu
rations, with increases reaching up to 240 % for fleet A at the municipal 
scale. Mineral resource scarcity with an impact that can increase up to 
229 % for fleet A at the subregional scale.

The impacts of the SAEVs at fleet A configuration are close to those of 
the electric benchmark. This similarity suggests that the environmental 
benefits of shared automated mobility may not be significantly higher 
than those achieved by simply transitioning to an electric vehicle fleet.

The need for fleet replacement is a crucial factor in the long-term 
environmental impact of SAEVs. With more vehicles, Fleet A benefits 
from less frequent replacements (10–12 replacements over 100 years, 
depending on the geographic scale). In contrast, Fleet B, with fewer 
vehicles but higher utilisation rates, requires more frequent re
placements (19 to 23 over 100 years). Despite this increased frequency 
of replacements, Fleet B still presents better overall environmental 
performance than Fleet A. The reduced number of vehicles in Fleet B 
effectively compensates for the higher replacement frequency, resulting 
in overall better environmental outcomes.

Considering the differences between geographical scales, larger 

scales tend to be more favourable in most cases when looking at long- 
term impacts. This indicates that implementing SAEVs on a larger 
scale could amplify the environmental benefits. This occurs because, 
even under higher-intensity usage and consequently facing higher 
replacement rates, their ability to dynamically adjust to demand still 
allows them to transport more passengers efficiently compared to, for 
example, traditional buses, reducing detour levels and the inefficiency of 
empty trips.

Conclusions and future work

This study aimed to assess the environmental impacts of transition
ing from conventional road transportation systems to Shared Autono
mous Electric Vehicles (SAEVs) across various geographic scales. By 
integrating Agent-Based Modeling (ABM) with Life Cycle Assessment 
(LCA), we compared seven impact categories of both systems at 
municipal, subregional, and regional levels.

Our findings reveal that the adoption of SAEVs presents promising 
opportunities to reduce the number of vehicles, generally improve user 
experience (with median waiting times 3–8 min shorter than public 
transport), and partially enhance environmental sustainability. How
ever, the transition introduces challenges such as increased operational 
intensity (resulting in 30–60 additional kilometres travelled per vehicle 
per day), trip rejection rates, and the complexity of interpreting future 
environmental trade-offs.

From an environmental perspective, transitioning to SAEVs offers 
substantial reductions in several environmental impact categories, such 
as global warming potential, ozone formation, particulate matter for
mation, land use, and fossil resource scarcity. However, these benefits 
come with significant increases in human toxicity (both carcinogenic 
and non-carcinogenic) and mineral resource scarcity. Over the long 
term, human toxicity could increase by up to 99 % for carcinogenic and 
240 % for non-carcinogenic effects, while mineral resource scarcity may 
rise by as much as 229 %. This suggests that focusing solely on global 
warming emissions may introduce bias into life cycle assessments. 

Fig. 7. Comparative Environmental Impact of Baseline and SAEVs scenarios across different geographic scales – 100-Years Perspective, Values per passenger kil
ometre (pass.km).
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Human toxicity impacts can lead to a decline in human health, which 
can be difficult to trace to its source due to long-term exposure. Simi
larly, the scarcity of mineral resources can drive up system costs, 
creating economic disadvantages and supply chain vulnerabilities. 
While addressing global warming remains critical, comprehensively 
addressing human toxicity and mineral resource depletion is equally 
imperative for achieving overall environmental sustainability. This 
aligns with evidence suggesting that transportation decarbonization 
requires a lifecycle-based regulatory approach (Xue et al., 2023). 
Accordingly, extended-producer-responsibility schemes, mandatory 
recycled content thresholds for battery packs, and transparent diligence 
requirements for critical-mineral supply chains should be integrated into 
AEV deployment strategies.

Our analysis indicates that the need for fleet replacement signifi
cantly influences long-term impacts. High operational intensity, re
flected in the number of kilometres travelled per vehicle, exacerbates 
the intensity of fleet replacement. To mitigate this, stakeholders must 
consider the trade-offs between reducing trip rejection rates and man
aging fleet sizes. Excessive efforts to reduce rejection rates by increasing 
fleet size can lead to increased kilometres travelled per vehicle, 
adversely affecting environmental outcomes.

This finding highlights that SAEVs can be effectively implemented on 
a large scale to maximise environmental benefits. Nevertheless, parallel 
investments in renewable-generation capacity and smart-charging 
infrastructure are essential to ensure that upstream power-sector emis
sions do not erode tail-pipe gains, especially under high-penetration 
scenarios.

This research makes several novel contributions. First, it introduces 
an integrated ABM-LCA framework that enables the simultaneous 
assessment of operational performance and environmental impact of 
SAEV systems. Second, it quantifies trade-offs across multiple environ
mental categories, offering researchers new insights into the spatial and 
systemic implications of SAEV deployment. For policymakers, the re
sults show that fleet operational efficiency alone does not ensure envi
ronmental benefits; life cycle considerations must be embedded into 
deployment strategies. The analysis also identifies critical trade-offs 
(particularly in toxicity and resource scarcity) that require careful 
management, highlighting the need for policies on battery and electric 
powertrain chemistry and technologies, as well as the importance of 
clear recycling measures. Finally, the study underscores the potential of 
equitable SAEV deployment in low-density regions, highlighting its role 
in supporting transport inclusivity alongside sustainability.

While the findings of this study offer valuable insights, it is important 
to state some limitations. First, the model does not account for potential 
shifts in population distribution patterns, which could significantly 
impact transportation needs and preferences. Additionally, our model 
lacks mechanisms to predict mode choices it varies from the current 
mobility scenario to an extreme scenario where most demand is satisfied 
by SAEVs. These static assumptions limit the ability to capture vari
ability in user preferences and operational factors. Additionally, future 
research should incorporate structured feedback from stakeholders to 
validate model assumptions and ensure practical relevance. Stakeholder 
engagement through focus groups, expert interviews, or participatory 
scenario design could enhance the credibility and applicability of the 
findings, and help align technological pathways with user expectations, 
regulatory feasibility, and local planning contexts.

Future research should address these limitations to provide a more 
comprehensive understanding of the impacts of SAEVs. Linking dis
crete–choice travel–demand models to agent–based simulations, 
coupling power–system optimisation with vehicle–to–grid scenarios, 
and using mixed–methods to reveal distributional effects across income, 
gender, and ability will build a stronger evidence base for holistic policy. 
Cross–disciplinary collaboration can translate that evidence into 
test–bed regulations that foster innovation, protect the environment, 
and advance social justice.
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