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Abstract

Recommender systems are widely used to help users navigate vast content catalogs, but they often
limit users to suggestions that closely match their existing preferences, creating ”filter bubbles” that
discourage exploration. We focus on solving this problem in the context of music recommendations,
helping users discover and develop new musical tastes. We embed a knowledge graph containing
expert-curated metadata, user interaction data, and audio similarity features, into a representation
space where similar songs are mapped closely together. This enables the system to gradually guide
users from their current preferences toward a new genre through personalized recommendations. Ad-
ditionally, we apply a Bayesian active learning approach to iteratively update user preference models
based on feedback, balancing exploration and exploitation to ensure user satisfaction while gather-
ing information on the user’s new preferences. We conducted a user study to evaluate the approach,
demonstrating that a gradual, interactive approach outperforms directly introducing users to a new
genre, increasing user engagement and their affinity toward the target genre. This research highlights
the value of gradual, user-driven exploration in creating better music discovery experiences. Based
on our findings, we provide recommendations for industry stakeholders and discuss opportunities for
future research on targeted exploration in music recommendation.
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1
Introduction

Recommender systems play a big part in our current culture of online content consumption, providing
suggestions on movies, music, social media content, and more. The goal of these systems is to reduce
information overload and help users quickly get matched with content tailored to their preferences
[60]. Modern recommender systems excel at delivering highly personalized recommendations, utilizing
implicit and explicit feedback from users’ historical interactions to predict their preferences. While the
improvement of these systems generally increases user satisfaction [41], there is concern that they
may become overly personalized. This can result in ”filter bubbles” [53], where users only receive
suggestions closely aligned with their current preferences, leaving little room for exploration.

To address these concerns, researchers have proposed a shift in focus toward recommender systems
that support ”self-actualization.” Such systems prioritize helping users develop, explore, and better
understand their preferences [39]. In the context of music recommendation, supporting exploration
can be a particularly meaningful goal. For example, a user who predominantly listens to dance music
but wishes to connect with a friend or partner who prefers country music might want a recommender
system that helps them with this exploration. A straightforward approach could involve suggesting
representative or popular country songs [44]. However, a big jump directly into an unfamiliar genre can
feel overwhelming or discouraging, especially when the target is significantly different from the user’s
current preferences. Alternatively, another strategy might involve guiding the user toward their goal
gradually. The recommender system could introduce intermediate recommendations that bridge the
gap between the user’s current tastes and their exploration target.

Additionally, we note that exploration can be viewed as a unique cold-start scenario [64], where the
user’s current preferences are known, but their future, yet-to-be-discovered preferences remain un-
known. In a scenario where the system is gradually guiding the user toward the target genre from
the user’s current preferences, there are several paths the system can take. Initially, we have no in-
formation on which paths will be most effective and satisfying for the user. Incorporating feedback
through interactive recommendations could further improve the effectiveness of exploration, allowing
the system to identify the most enjoyable paths of exploration for the user.

1.1. Industry context
The work presented in this thesis was conducted at XITE, a company that develops an interactive mu-
sic video platform. XITE operates on linear and interactive television networks as well as offering an
on-demand streaming service through its own TV app. Besides music videos, XITE’s catalog contains
over 300 themed playlists curated by music experts, covering various genres, moods, and eras. In the
app, users can search for music, like music videos, create their own mix of songs, and access person-
alized playlists based on their viewing behavior and liked videos. Personalized recommendations of
playlists or videos in ‘For You’ playlists are made possible by a music video graph they have developed
containing a mix of factual, expert-curated, and user interaction data. This combination of data has the
potential to facilitate unique recommendation scenarios beyond standard recommendations.
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1.2. Thesis objective and research questions
In this thesis, we tackle the problem of targeted music exploration. This notion is further elaborated in
our research question:

How can we effectively guide a user towards developing a new taste based on their current preference
profile?

Our hypothesis for this question has two parts. First, we believe taking gradual steps, starting with cur-
rent preferences and moving towards the new goal taste, is more effective than immediately providing
the user with representative songs (H1). Providing users with recommendations from their preference
profile and then slowly growing this profile toward the target can make the journey more approachable
and engaging, increasing the likelihood of success. Second, we hypothesize that integrating user feed-
back and interaction can further improve the effectiveness of the approach for guiding users toward
developing a new taste (H2). Ideally, the exploration method balances exploration and exploitation.
Meaning it can effectively gather information about user preferences while delivering high-quality rec-
ommendations [78, 83]

To answer our research question and confirm our hypotheses, we identify two sub-research questions
that must be addressed first. These sub-questions are:

RQ1: How can we develop a multi-modal data representation of songs that clusters similar songs
together, enabling the discovery and development of new musical tastes?

To enable the system to take small incremental steps from a user’s current preferences toward a goal
we need a feature space where this is possible. This requires creating representations of songs where
similar songs are mapped closely together.

RQ2: How can user feedback and interaction be integrated into the exploration process to aid users in
the discovery and development of new musical tastes?

Logically following our second hypothesis, we need to find a way to incorporate user feedback into the
targeted exploration process. Though some research has been done for the targeted music exploration
scenario [72, 44], none of the work has tried to apply active learning and interactive recommendation
techniques to increase the effectiveness of the exploration process.

1.3. Contributions
The work in this thesis has several contributions to the current literature:

1. Utilizing multiple data modalities we provide a method for creating song representations that allow
for nuanced continuous item-item comparisons to facilitate algorithms for music exploration.

2. We propose a novel approach to targeted music exploration where the user takes gradual steps
towards a target preference while the system incorporates their feedback using a Bayesian opti-
mization procedure.

3. We conduct user experiments to evaluate the effectiveness of our active targeted music explo-
ration approach and gain insight into its limitations and potential applications.

1.4. Thesis structure
We structure this thesis by dividing it into 8 chapters. In Chapter 2, we first introduce the background on
recommender systems and the relevant approaches. Following, we outline the work that has been done
in the various recommender systems domains that we touch upon in this thesis. Chapter 3 discusses
our work done on developing data representations that can be utilized for music exploration. In Chapter
4 we describe the methods we used and adapted for targeted exploration. Our experimental setup is
described in Chapter 5, and the results of those experiments are discussed in Chapter 6. Finally, we
conclude the thesis with Chapter 7, where we summarize our findings, discuss the limitations of the
work, and highlight potential future practical applications and research avenues.



2
Related Work

The goal of this chapter is twofold. We first introduce relevant technical background on recommender
systems which are the basis of this research. The second goal is to to review and analyze related work
across the various domains of recommender systems that are explored throughout the thesis.

2.1. Background: Recommender Systems
Recommender systems are a class of information filtering systems designed to predict the utility of items
for a user, providing personalized suggestions based on those predictions [59]. The recommendations
generated by a recommender system are designed to assist users in making various decisions, such
as choosing what items to buy, what music to listen to, or what news to read. We use the word utility
here as it is commonly used for recommendation [2]. Another term that is frequently used instead of
utility is preference [19]. We will use these terms interchangeably throughout the paper.

We formally define the recommendation task as follows: Let U represent the set of users and let I rep-
resent the set of all possible items that can be recommended. The system first learns representations
for user u and item i. A utility function, f(u, i) = yu,i, is assumed to model the usefulness of item i for
user u. The system’s goal is to predict the value of yu,i for various user-item pairs.

User preference can be recorded as explicit feedback on previously consumed items through numbered
ratings such as 0-5 stars or a binary scale in the form of likes and dislikes. Another way is to record
implicit feedback through item purchases or consumption of the item .e.g watching a video or listening
to a song.

This historical feedback represents the known utility values for user-item pairs. The system uses this
information to generalize and estimate a utility function f̂(u, i). Based on this estimated function, the
system computes ŷu,i for all possible user-item combinations and generates a ranked list of K items
with the highest predicted utility for recommendation.

2.1.1. Recommendation approaches
Broadly recommender systems can be divided into three different approaches. These are collaborative
filtering (CF), content-based filtering (CBF), and a hybrid approach.

Collaborative Filtering (CF) is an approach to recommendation that bases its predictions and recom-
mendations for a user on items previously rated by similar users [19]. The underlying assumption is
that users with similar historical interactions (such as ratings, clicks, or purchases) are likely to prefer
similar items. In its simplest form, it operates on a user-item interaction matrix to make predictions for
a user on unobserved items (Figure 2.2).

We make a distinction between two different categories of collaborative filtering: neighborhood-based
and model-based collaborative filtering [59, 3]. Neighborhood-based approaches identify relationships
either between users (user-user relationships) or between items (item-item relationships) based on the
similarity of their interactions. For example, user-based neighborhood filtering recommends items to a

3
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Figure 2.1

Figure 2.2

user by finding others with similar preferences, while item-based neighborhood filtering recommends
items that are comparable to those the user has already interacted with.

In model-based collaborative filtering, predictive models are used to detect latent patterns within user-
item interactions. A summarized model of the data is created up front, as with supervised or unsuper-
vised machine learning methods. Therefore, the training is clearly separated from the prediction phase.
These models are trained to capture complex relationships and offer more scalable solutions for large
datasets. Examples of model-based methods include latent factor models, decision trees, Bayesian
methods, and Neural Networks.

Collaborative filtering, in both its neighborhood and model-based forms, has proven effective in deliver-
ing relevant, often surprising recommendations tailored to users’ preferences. However, CF algorithms
tend to struggle in cold-start scenarios, where they lack sufficient interaction data for recommendations
when presented with new users or new items. In addition, if a user has some niche unique preferences
the system will not find enough genuinely similar users resulting in decreased recommendation accu-
racy.

Content-Based Filtering (CBF) recommends items to users by analyzing item attributes and compar-
ing them to a user’s historical interactions [46]. Unlike collaborative filtering, which relies on similarities
between users or items, this method builds individual user profiles based on characteristics of previ-
ously interacted items. For example, in a music recommendation system, content-based filtering might
suggest songs that share similar genres, artists, or moods with those a user has already enjoyed. This
method works well in cold-start scenarios for new items by focusing on item features and user prefer-
ences. However, CBF still struggles with new users as the system needs sufficient information on the
user’s preference for content to give accurate recommendations [2]. Other drawbacks of CBF include,
extracting content features for items is generally difficult and systems can often only recommend items
closely related to known preferences, limiting opportunities for users to discover new or diverse content.

Hybrid approaches use a combination of collaborative signals and content features to leverage strengths
and minimize weaknesses of the individual approaches [2, 9]. A hybrid approach combines user and
item content attributes and historical user behavior data to utilize information from both types of data.
For example, a hybrid approach might combine user-item interaction data with item feature data to
improve recommendations for new or sparsely-rated items, addressing the cold-start problem more
effectively. This combination allows systems to generate recommendations even when user interac-
tion data is limited or when rich content attributes can improve personalization. Additionally, hybrid
methods can reduce the limitations of CF’s dependency on user similarity and CBF’s narrow focus on
known preferences, in that way offering more diverse recommendations personalized to users’ unique
tastes and evolving interests.

2.1.2. Knowledge Graphs in Recommendation
A knowledge graph (KG) is a structured network of information that models entities and the relations [25,
82]. These relationships are represented in the form of a graph, where nodes represent entities and
edges capture the semantic connections between them. Formally, a KG is a directed graph G = (V,E),
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with entity nodes V and relation edges E. Each edge is of the form < h, r, t >, indicating a relationship
of r from head entity h to tail entity t. A KG-based recommender system typically has three main
parts: the knowledge graph, a representation module, and a recommendation module. The KG stores
the rich semantic information, that is turned into low-dimensional vectors by the representation model,
after which the recommendation model calculates the user-item relations.

Typical challenges in recommender systems, such as sparse relation data between users and items
and the cold-start problems [2], are difficult to fully address with just collaborative and content-based,
as they rely on user interaction and complex item features. Knowledge graph-based systems can lever-
age rich semantic information allowing for a deeper understanding of both the content and context of
the items being recommended, making them especially valuable for domains like music [6], where rela-
tionships between entities can be highly nuanced (e.g., artist collaborations, genre overlaps, subgenre
correlation).

2.2. Music Recommendation
2.2.1. Music Similarity
Music similarity is a complex and highly subjective concept [80], posing significant challenges in both
implementation and evaluation [80]. The debate around the ”semantic gap” between low-level music
representations and high-level human understanding emphasizes the psychological nature of music
perception [57, 38, 80]. To bridge this gap, researchers proposemid-level representations that combine
low-level features with perceptually motivated knowledge meaning systems that aim to encode music
similarity must, by definition, do so in a human-like way [80]. Examples are context-aware clustering of
songs and audio features motivated by how humans perceive sound. The creation of these mid-level
features requires a human-focused understanding of music, which can be found in music experts and
curator teams, such as the ones employed by streaming services and radio stations.

Music similarity evaluation: The difficulties of defining music similarity make evaluating music simi-
larity algorithms equally challenging. The similarity is context-dependent and based on a multitude of
factors besides raw content. This often results in the absence of an objective ground truth [80]. Three
main evaluation strategies have emerged [38]: using prelabeled data (e.g., genre [66]) as a proxy for
similarity, human assessment of algorithm quality and analysis of user interaction data such as listening
history [48] or playlists [11, 63]. Methods that rely on prelabeled data are often set up as classification
or retrieval tasks and thus make use of traditional metrics such as precision and recall. The downside
of this strategy is the dependence on the labeling of the data which, such as for the case of genres
[66], is regularly not consistent throughout all people. Having humans assess the quality of music sim-
ilarity algorithms is a potentially more accurate, though more costly, evaluation strategy. This method
provides more meaningful evaluation results that align closely with human perceptions of similarity.
However, relying on human judgment is both expensive and labor-intensive. Additionally, this strategy
is still susceptible to biases due to the subjective nature of music perception. For instance, one person
might find two songs similar because of their melodies or rhythms, while another might see them as
different due to contrasting lyrical themes, such as war versus love. In an evaluation by analysis of
user interaction, a retrieval task is constructed based on user listening history by splitting the collection
into a training and test set [48]. The benefits of this evaluation method include its focus on the user ex-
perience and its use of real-world data. Additionally, it effectively avoids the need for explicitly labeling
music or quantifying the degree of similarity between music pieces. However, in practice, users do not
listen to one distinct type of music and will listen to different music depending on the context, such as
their mood or time of day. To remedy this fact we can make use of another type of interaction data, user
playlists. Playlists are often created to fit a theme or activity [15], making them more homogeneous in
terms of music similarity compared to listening history. This allows tasks like the playlist completion
task [11] to be used forthe evaluation of music embeddings [63].

2.3. KG embedding
The goal of Knowledge Graph Embeddings (KGE) is to simplify the processing of a knowledge graph
while preserving its structural integrity and relative node relations. These embeddings map entities
within a knowledge graph to vectors in an n-dimensional space for further use in downstream tasks.
Vectors are often simpler and more efficient to work with than their graph structure counterparts. Dis-
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tances in vector space can be determined using well-established distance metrics, and these vectors
can also serve as feature vectors for subsequent machine-learning tasks. There are various different
approaches for graph embedding. Below we will briefly discuss a few of them.

Translation-based models represent relationships between entities as translations in the embedding
space. They use a distance-based scoring function and optimize the entity and relationship embeddings
such that adding a relation vector to a head entity vector approximates the tail entity vector. One of the
classic KG embedding algorithms is TransE [7] which represents entities and relations as vectors in
the same space. For a triplet (h, r, t), where h and t are entities and r is the relation, TransE optimizes
||h + r − t||2. Despite its simplicity, TransE performs well on various benchmark datasets. However,
it struggles with complex relations such as one-to-many, many-to-one, and many-to-many. Following
TransE, numerous variants were introduced to improve on its shortcomings. TransH, TransR, and
TransD have been proposed to overcome these problems by applying the relation transformation into
different hyper-planes/subspaces [79, 45, 31]. Other models include ConvE [16], which applies 2D
convolutional operations to the embedding vectors, and RotatE [71], which defines each relation as
a rotation from the source entity to the target entity in the complex vector space. Translation-based
knowledge graph embedding models, while effective, have several disadvantages. These models face
difficulty in generalizing to different graph structures and are typically unable to handle edge weights,
which in certain graphs convey a large amount of information.

Graph neural network (GNN) models are often applied to learn node embeddings by aggregating
information from their neighbors. GCN [37] and its extension R-GCN [65] use graph convolution for
efficient learning of node representations in large-scale graphs. GAT [74] together with its KG-specific
adaptation KGAT [77] apply the concept of graph attention networks to KG embeddings, allowing them
to handle more complex entity relation information and structural patterns. GNN models have shown
great potential for knowledge graph embedding, however, they do suffer from limited interpretability as
well as being resource intensive in terms of both computational power and memory.

Random walk-based methods focus on exploring the neighborhood structure in a graph in order to
preserve proximity among nodes. These models ensure nodes that are close to each other in the graph
get similar vector representations. One of the first of its kind is DeepWalk [54], which applies the ideas
of the popular natural language processing method Word2vec to graphs instead of text. In DeepWalk,
paths are created starting from a target node by uniformly choosing a neighbor of the current node
as the next node for the path until a walk length n is reached. For each node m random walks are
generated resulting in N ·m paths of length n. These paths are then treated as sentences in the same
way as Word2vec where using single hidden layer neural networks following the so-called skip-gram
model, given a target ”word” the context, is predicted. The weights of the hidden layer are then used
as vector representations of the graph nodes.

Node2vec [24] is an extension of DeepWalk where, instead of the decision for the next node to visit
being completely random, a biased randomwalk is implemented. This is done using a weight parameter
α that sets the probability of an edge to be traversed for balancing breath-first and depth-first graph
search. This parameter in turn uses the parameters p and q that control the rate of exploration and
how fast the walk leaves the neighborhood of the starting node. Parameter p controls the likelihood of
revisiting the previous node in the walk. The higher the likelihood of jumping back, the more likely the
random walk stays in the current neighborhood. Parameter q determines the likelihood of a depth-first
search. A low value of q increases the likelihood of jumping to nodes that are further away from the
previously visited node.

In metapath2vec [18] and HIN2vec [21], the random walks are guided by meta-paths which are estab-
lished beforehand. While metapath-based approaches offer the advantage of incorporating domain-
specific semantics through carefully designed paths, their complexity and sensitivity to path design
can be significant drawbacks, especially when understanding the embedding results is of significant
importance. Additionally, in the case of a graph with edge weights, it is not trivial to incorporate these
weights. This is in contrast with Node2vec, where edge weights can simply modify the probability of
transitions during random walks.
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2.3.1. Multi modal KG embedding
Recently, work has been done to extend KG embedding methods by incorporating side information,
such as text, video, or audio. [17] introduceW-KG2Vec, where the text-based similarity between entities
is used to weigh certain metapaths in their metapath-based random-walk approach. In MKGAT [70],
graph attention is first applied to aggregate information from an entity’s multi-modal neighbors, which
in their version of a multi-modal graph are also first-class entities. Following this, embeddings are
computed in a traditional way using the transE model. In the field of music recommendation, MKGCN
[14] was proposed to enhance music recommendation by additionally using the audio features of songs.
MKGCN first fuses all types of multi-modal data of an entity by aggregating to obtain a multi-modal
aggregated representation vector of the entity. Then a GCN aggregation layer models the high-order
user and item representations by aggregating their neighbor representations layer by layer, starting
from the outermost sampled neighbor. In [62], the authors opt for a simpler approach to incorporating
acoustic features into knowledge graph-based recommendation to allow for the use of more explainable
recommendation approaches. For the construction of the graph, edges between two different songs are
created based on the similarity of their acoustic feature vector. Specifically, when the cosine similarity
between f i of song mi and f j of song mj is greater than a threshold, a new edge is defined between
their two nodes. Intuitively, the minimal changes to the graph allow you to use any KGE approach on
top of it, including the one most appropriate for your goal.

Figure 2.3: In active learning the system interactively/iteratively elicits training data from the user to refine its preference
models [61].

2.4. Active Learning for Preference Elicitation
Efficient preference elicitation is essential in cold-start scenarios when the user model is not detailed
enough to provide accurate personalized recommendations. Managing a lack of initial information
about a new user is typically described as a cold-start problem. However, this problem is not unique
to the first usage of a recommender system. Deliberately sending users to areas in the item space
previously unknown to them may also encounter the challenge of insufficient information about their
preferences. This cold-start problem is often tackled with Active Learning [61]. Active Learning (AL)
is based on the concept that a machine learning algorithm can achieve higher accuracy with fewer
labeled training examples if it is allowed to choose the training data from which it learns. In the context
of recommender systems, this is achieved by allowing the system to influence the items a user is
exposed to, enabling it to learn user preferences more efficiently (Figure 2.3).

Traditional AL recommendation strategies approach this problem by first splitting the process up into
a preference elicitation (exploration) phase and a recommendation (exploitation) phase [30]. In the
exploration phase, the system questions the users or recommends items to the user to maximize diver-
sity [34], reduce the system’s uncertainty [58], or reduce the model’s error [23]. These methods have
proven effective in reducing the number of interactions required to build an accurate model of user
preferences. However, fully focusing on exploration for the initial recommendations could reduce the
overall enjoyment of the user, even prompting the user to leave the service before their profile has been
established [67]. An effective algorithm should balance exploration-exploitation, allowing the system
to effectively gather information about user preferences while delivering high-quality recommendations.
Bayesian approaches [75, 32] are particularly useful here, as they maintain a belief state over the utility
of items that can be sampled and updated with a query selection strategy such as Thompson Sampling
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[83], that naturally and dynamically balances exploration and exploitation of user preferences [78, 49].

Thompson Sampling’s [10] simplicity and effectiveness make it a popular choice for applications such
as multi-armed bandit frameworks [69] and personalized interactive recommendation systems [26]. In
this strategy, the system maintains a probability distribution (posterior) over the parameters of each
item’s utility. To select an item for recommendation, it samples from these distributions to estimate the
potential reward for each option and select the option with the highest sampled reward. This method
naturally incorporates exploration, as less certain options with wider distributions are more likely to be
sampled, while also exploiting known high-reward options as more data is gathered.

A limitation of Thompson Sampling is that when the set of possible actions is large or the number of
rounds to elicit feedback is small it runs into sample efficiency problems. This means the algorithm
cannot converge given the amount of data received. Several approaches have been proposed to
address this limitation. In Collaborative Thompson Sampling [85] users are clustered into groups, and
the feedback of all users in the same group is used to estimate the expected reward of an item. For a
content-based approach similarity information can be used from items embedded into a representation
space [12, 68, 84, 4, 81] to efficiently process feedback from sampled items.

2.5. Recommender Systems for Targeted Music Exploration
The role of recommender systems since their inception has been to help prevent information overload
for users navigating the large amount of content available to them. While current systems effectively
create personalized spaces for users, there is concern that these may be overly personalized, resulting
in ”filter bubbles” [53]. This prompted researchers to think about the recommendation problem ”beyond
accuracy” [28] and consider evaluating recommender systems from the perspective of user experience
[41, 40]. Systems should not just optimize for the highest utility items given the current data, but give
the users control over the recommendation process [29] so that they can use these systems to support
the development and exploration of their own unique tastes and preferences [39, 36].

2.5.1. Supporting Discovery and Exploration in Music Recommendation
In the music domain, supporting discovery has been identified as essential for improving user satisfac-
tion and engagement [42, 22]. As such, several works have focused on ways to assist and encourage
users to explore and develop new tastes.

One approach is to provide interfaces for users that visualize how their music tastes relate to the rest
of the music space. In Island of Music, songs are visualized on a 2D map representing an artificial
landscape [52]. Going further, Music Tower Blocks contains a 3D visualization in an interface where
users can search, filter, and connect their personal streaming profiles to support manual exploration.

Another approach is to incorporate interactivity into the recommender systems letting users actively
modify their own recommendations. In TagFlip [35], users can specify social tags that are associated
with the next song. TagFlip was perceived to enable more control and transparency over recommenda-
tions, compared to the mobile Spotify interface. TasteWeights lets users get insight into and adjust the
weights in a hybrid recommender system to get artist recommendations [8]. Combining visualization
and interactive interfaces, TastePaths [55] helps users understand genre relations by presenting an
overview of the genre landscape as a clustered graph of related artists. Evaluating between a person-
alized and non-personalized version they find that users prefer having their exploration ”anchored” by
their personal music profile.

2.5.2. Targeted Music Exploration
Rather than giving users the freedom to discover without guidance, recent studies have looked at
discovery in a new scenario where users set a goal to learn a new taste. In music recommendation,
this can mean choosing a genre to explore.

In [44] users are presented with playlists that immediately introduce users to a new genre, but with
various levels of personalization. Experimenting with representative, personalized, and mixed genre
playlists they found that balancing personalization and genre representativeness could be important
for effective new genre exploration. However, these effects were observed in a single-session study,
whereas developing new preferences often takes time. Therefore, in a following work, the authors con-
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duct a longitudinal study on users’ exploration behavior and behavior change over time after using a
music genre exploration tool for four sessions. In the study, users were randomly assigned to a more
personalized or a more representative initial playlist for the first session. In sessions 2-4, participants
used a trade-off slider for adjusting the recommendation personalization level, from the most represen-
tative to the most personalized, to adapt their playlist for the session. Experiment results show that
the users perceived the system to be more helpful when their slider positions were set to more helpful
in sessions 2 and 3. This suggests that giving the user access to a personalized trade-off slider for
exploration allows them to explore a genre effectively. These studies hint at the potential for effective
exploration of having recommendation playlists that become gradually less personalized and more rep-
resentative but do not investigate this scenario. Additionally, recommendations always start within the
target genre which could still be a significant jump if that genre is far away from current preferences.
Finally, the generated playlists are only affected by the personalization-representativeness trade-off
in the algorithm’s content-based representation space, ignoring all other dimensions that could be ex-
plored to increase the effectiveness of recommendations for a user during exploration.

In other work [72], exploration of a new genre is guided by letting the user take gradual steps toward the
target genre. The system identifies the shortest path from the user’s current preferences to the target
genre in a user similarity graph, with nodes corresponding to users and edges representing user-user
similarity. This path consists of user nodes where the target genre is represented by a ’destination
user’ who is the best match for the selected target genre. For each user along the path, the top three
artists matching best with the target genre will be selected and these are assembled as a sequence
of recommended artists for exploration. Taking gradual steps benefits the users as they can reason
how these recommendations relate to their tastes. However, it has some shortcomings limiting its ef-
fectiveness. The algorithm is mainly collaborative which in music recommendation has been shown
to lack the depth of information needed for accurate music similarity. This can result in recommenda-
tions becoming noisy and hard to understand between the user’s current preferences and the target.
Furthermore, the path generated is only the shortest path from the user’s current preferences towards
the target, which does not necessarily mean that it is the most effective path to follow. Finally, the
discovery process starts and ends with the generation of the list of recommended artists, not allowing
the user any control in adapting the recommendations while they are following the path to their goal.



3
Data Representation

In this chapter, we explore how multi-modal data representations can support targeted exploration algo-
rithms in music recommendation systems. To achieve effective targeted discovery we guide the user
toward their new music preferences by taking small, incremental steps in a feature space. This re-
quires representations where similar songs are mapped closely together, allowing users to seamlessly
transition from their current preferences to new discoveries.

In our approach we focus on integrating three key sources of information: expert-annotated content,
user interaction data, and audio-based features. By combining these data modalities, we aim to create
a richer, more nuanced representation of music that accurately reflects its inherent similarities. The
ultimate goal is to ensure that users can be effectively guided toward their target preferences in a
structured and intuitive manner.

3.1. Overview of Data and Modeling
3.1.1. Expert Based Collaborative Music Knowledge Graph
To organize the rich semantic content and relationship information that we intend to exploit, we utilize
a Knowledge Graph (KG) constructed from a meta-data database. This database contains a combi-
nation of factual data, such as artist and decade, expert-curated data, and user interaction data. To
manage these diverse relational structures accurately, distinct edge types are assigned unique weights
contingent upon their relative significance. An overview of the graph structure can be found in Figure
3.1. In the following, we will outline the various kinds of data contained in the graph.

Genre and subgenre are two fundamental attributes that have been used to classify pieces of music
based on common characteristics. These traits can include musical elements such as rhythm, tempo,
instrumentation, and lyrical themes, as well as other factors such as cultural influence or intended au-
dience. Songs can be categorized into genres through numerous methods, and there is no universally
accepted definition for these genres, leading to extensive and highly subjective taxonomies. However,
expert music curators are trained to consider a wide range of factors when developing and assigning
songs to a taxonomy that is generally agreed upon by users. The subgenre nodes additionally include
edges between them for subgenre correlation, capturing pairwise similarity between subgenres, as
perceived by music experts, via an iterative manual process.

Next, we address curated playlists, which are collections of songs grouped based on shared attributes
or a common theme, such as 90s Hip-Hop, Country Today, or Sing Along. Unlike genres, which are typ-
ically more rigid in their classification, curated playlists offer greater flexibility in both creation and song
assignment. New playlists can be generated at any time, and individual songs can belong to multiple
playlists simultaneously. This overlap permits a more dynamic and versatile approach to organizing
music collections, allowing for a broad range of dimensions for similarity.

After processing the expert-curated data, the graph is transformed into a Collaborative Knowledge
Graph (CKG) with user interaction data, denoted by like and play edges connecting users and songs.

10
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This allows us to exploit the advantages of CF-based recommendation, such as capturing measured
collective preferences of users and identifying hidden latent factors driving user-song interactions.

The knowledge graph enables the discovery of latent relationships between songs via multi-hop con-
nections. A notable feature of the graph is that it is essentially homogeneous in terms of the song nodes.
Nearly all other types of nodes, with small exceptions, such as subgenres through subgenre correlation
and hierarchical genre connection, are only connected to song nodes. In this way, these types of nodes
can more so be seen as relational nodes, where, for example, two song nodes connected to the same
genre node can be seen as a ’same genre’ relation. Therefore, even though songs are not directly
linked, the presence of a large number of short paths between two songs may indicate their semantic
similarity and suggest that they should be grouped together. This allows relatively simple walk-based
graph embedding models to accurately model node neighborhoods.

Figure 3.1: Graph schema for the full CKG with occurrence counts.

3.1.2. Enhancing Music KG through Audio Similarity Information
Up to this point, our CKG contains expert-generated semantic data and user-interaction data. Next, we
explore the potential of a multi-modal approach by incorporating audio embedding information in our
similarity computations. Low-level content representations, while on their own usually not sufficient for
music understanding, can potentially aid our song representation with subtle patterns not picked up or
recorded by the current combination of expert and user-interaction data.

We enhance the graph with song-song audio similarity edges, connecting nodes directly if one song is
among the top 10 nearest neighbors of another based on audio representation, using the Faiss library
for efficient similarity search. A direct edge between two song nodes allows for transitioning directly
between similar songs without needing to pass through intermediary nodes like genre or artist. We reg-
ulate the influence of audio similarity by scaling edge weights proportionate to their cosine similarity and
experiment with different scales. The MULE (Musicset Unsupervised Large Embedding) [47] model,
which uses contrastive learning through the SimCLR objective on log-mel spectrograms, provides the
audio embeddings. MULE, trained on the extensive Musicset dataset, has demonstrated state-of-the-
art performance in music understanding tasks and can be directly applied to our data without additional
fine-tuning.
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Figure 3.2: (a) A t-SNE visualization of the node2vec embeddings showing the separation of genres in the representations. (b)
A reduced opacity (α = 0.1) t-SNE visualization mostly emphasizes coordinates where a genre is densely located thereby

filtering out overlapping outliers.

3.1.3. KG embedding
To enable the music exploration algorithm to effectively guide discovery and recommend songs, we
embed the knowledge graph into a vector space where the relationships and similarity between songs
are preserved. For this, we utilize Node2vec [24], an embedding technique that balances computa-
tional efficiency with the ability to capture nuanced graph relationships. Node2vec offers flexibility by
allowing us to control how the algorithm explores the graph, ensuring it captures both local connec-
tions (like songs in the same genre) and broader patterns (like shared user preferences). Furthermore,
Node2vec supports weighted edges, allowing us to integrate the varying importance of relationships
within the graph, such as subgenre correlations or audio similarities. Its scalability and simplicity make
it well-suited for large-scale graphs, ensuring computational efficiency while maintaining high-quality
embeddings.

3.2. Evaluation of Data Representations Methods
3.2.1. Visualization
Visualizing embeddings is a valuable first step in evaluation as it provides an intuitive and immediate
sense of how well the embeddings capture and preserve relationships among data points. As a fun-
damental requirement for our final discovery setting, it is crucial that groups of songs that may serve
as a target, such as genres, are sufficiently separated in their representation. Unfortunately, our em-
beddings are high-dimensional vectors, therefore we cannot directly visualize them. For this, we need
dimensionality reduction techniques to transform them into a 2D space.

To perform dimensionality reduction, we apply the t-Distributed Stochastic Neighbor Embedding (t-SNE)
approach [73]. t-SNE is often used to visualize high-dimensional embeddings by reducing the number
of dimensions while preserving the local structure and neighborhood relationships. This helps in re-
vealing whether the underlying structure of the representations follows our fundamental requirement of
sufficiently separating groups of songs, such as genres.

In Figure 3.2a we visualize our reduced-dimensionality embeddings in a 2D scatterplot, with genres
labeled as colors. We can see a clear separation between genres, yet also some overlap. However,
looking at the biggest overlaps, they generally are understandable. Pop music bleeds into multiple
clusters, such as Country, Latin, and Electronic/Dance. Pop music is known to borrow elements from
other styles [20] such as these named, which means that two relatively similar songs could be classified
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differently into, for example, Pop and Country. Other overlaps include Rock into Hard Rock/Metal and
Alternative/Indie, and Rap/Hip-Hop into R&B/Soul. In Figure 3.2b we reduce the opacity of the points to
get more insight into the density in their clusters. If the genre color is still visible with the reduced opacity,
the density of that genre at those coordinates is high. We can see here that the overlap between the
genres is strongly reduced while the clusters remain visible. This would indicate that the overlap seen
in the original t-SNE visualization are more likely to be outliers than a structural misrepresentation of
the embedding model.

Overall this initial visual evaluation shows promising results for the effectiveness of the representation
method in separating genres. However, this can be seen as an expected result as genre information
was included in the training data as nodes in the KG. Additionally transforming the data and visualizing it
does not necessarily result in an objective measure of embedding quality. For a more sound evaluation,
we need a quantitative approach and a measure of similarity that is more easily separated from the data.

3.2.2. Playlist Completion
To quantitatively evaluate the quality of our KG song embeddings, we utilize the playlist completion
task [63, 11]. The assumption for this task is that a playlist of songs is created by a user to fit a certain
grouping of songs (e.g. genre, mood, task), making the songs in the playlist similar in at least one way.
Experiments for this task can be done offline and involve recommending related songs given a number
of songs from a playlist. The playlist completion task is as follows. For a playlist with n songs, we
randomly sample n · x% of songs to be the seed and calculate a seed embedding by averaging over
them. Next, we retrieve and rank the n · (100− x)% most similar songs to the seed embedding zs from
all available song embeddings using the Faiss library [33]. Finally, this ranking is evaluated against
the remaining non-seed songs from the playlist, using traditional ranking metrics such as Precision and
Normalized Discounted Cumulative Gain (NDCG). We intend to fill the playlist up to its original size,
meaning we use the top n · (100 − x)% ranked songs as the playlist completion set returned by the
embeddings.

Precision measures the proportion of correctly retrieved songs in the set returned by the embedding,
focusing on the presence of relevant (non-seed) songs without considering their order. This makes it
useful for simply evaluating the accuracy and ”cleanliness” of the embeddings in terms of matching the
intended playlist content. In contrast, NDCG (Normalized Discounted Cumulative Gain) considers not
just the presence but the rank order of retrieved songs, reflecting how well the most relevant songs are
prioritized. Higher NDCG values indicate that relevant songs are not only retrieved but appear near
the top.

We evaluate our embeddings on two datasets containing playlists. First, we use the curated playlist
used to create the embedded CKG (Section 3.1.1). The knowledge of these music experts allows them
to create playlists that feel coherent and cohesive to the common user. In creation of these playlists
the music experts can directly see the meta-data of individual songs to aid in finding matching songs
to add. Since the playlist creation and rest of the meta-data that are in the CKG are so closely linked,
evaluating on a test set of these playlists gives us insight into how well the embedding models capture
different, sometimes overlapping, clusters of songs that are semantically similar in some way. We take
20% of the playlists in the dataset as a test set and remove them from the graph before training the
embedding model.

Next, we evaluate on actual user created playlists from a Spotify dataset [56]. The dataset is created
by crawling the playlists of Spotify users that share which songs they are listening to using #nowplaying
on the popular social media platform X (formerly Twitter). The dataset consists of <user, track, artist,
playlist>-quadruples with 15,345 unique users who listened to 1,878,457 unique tracks by 276,848
unique artists contained in 143,528 unique playlists. We match the track instances of this dataset with
songs in the CKG data by exactly matching the song title and artist name which leaves us with 7,405
playlists containing 20,007 unique songs.
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Graph Precision NDCG Spotify Precision Spotify NDCG
1 Full CKG 0.4978 0.7488 0.0167 0.0963
2 Full CKG + audio similarity (weights scaled to 0.5) 0.5774 0.8631 0.0196 0.1101
3 Full CKG + audio similarity (weight scaled to 0.25) 0.6455 0.9096 0.0200 0.1154

Table 3.1: Average results of the Playlist Completion task with node2vec embeddings on full CKG compared with and without
audio similarity edges, based on six runs.

3.3. Results
To determine the hyper-parameters for the Node2Vec implementation, we run a grid-search on the
full CKG optimizing d ∈ [8, 32, 128], walk_length ∈ [10, 20, 40], context_window ∈ [5, 10], and p, q ∈
[0.5, 1, 2]. We select d = 128, walk_length = 20, context_window = 5, p = 0.5, q = 0.5 for all
graph versions and train for 200 epochs. All models are run using the fastnode2vec [1] implementation
configured to handle edge weights.

The results of the playlist completion evaluation task are presented in Table 3.1 and discussed below in
terms of their implications for the project. We report Precision and NDCG to evaluate the quality of our
model. Precision measures the proportion of songs returned by the embeddings that are in the playlist
originally, meaning they are correctly retrieved. NDCG further evaluates the quality of the embeddings
by valuing correctly retrieved songs that are placed higher in the rankings. Notably, NDCG is higher
than Precision for all cases. This indicates that even in cases where the total mix of relevant songs in
the playlist completion set is not as high, the relevant items are still ranked near the top of the set.

3.3.1. Evaluation on Curated Playlists
The first evaluation was performed on the curated playlist dataset. These playlists were created by
experts and are highly structured, which makes them a good benchmark for testing how well the em-
beddings capture meaningful relationships between songs. Using the embeddings from the full CKG,
we achieved a baseline Precision of 0.4978 and an NDCG of 0.7488. These scores show that the CKG
embeddings are capable of identifying semantically similar songs based on the metadata relationships
encoded in the graph.

When we added audio similarity edges to the graph, scaled with a weight of 0.5, the results improved
noticeably. Precision increased to 0.5774, and NDCG rose to 0.8631, suggesting that including audio
similarity helped the embeddings better capture relationships that are not apparent in the metadata
alone. Reducing the weight of the audio edges to 0.25 led to further improvements, with Precision
reaching 0.6091 and NDCG increasing to 0.8745. This indicates that combining metadata and audio
features in a balanced way can enhance the quality of the embeddings, making them more effective
for tasks like playlist completion.

3.3.2. Evaluation on Spotify Playlists
The second evaluation used the user-generated Spotify playlists. These playlists are less structured
and often reflect individual user preferences, making them much harder to model compared to the
curated playlists, especially given the structured nature of the data on which the embeddings were
trained. For the embeddings generated from the full CKG, the baseline Precision was 0.0167, and
NDCGwas 0.0963. These scores aremuch lower than those for the curated playlists, which is expected
given the noisy and diverse nature of user-generated playlists.

Adding audio similarity edges improved the results here as well. With audio edges scaled to 0.5, Pre-
cision increased to 0.0196, and NDCG improved to 0.1101. When the weight of audio edges was
reduced to 0.25, the best results were achieved, with Precision rising to 0.0200 and NDCG to 0.1153.
Although the overall performance is still low on this dataset, these improvements suggest that audio
features can help fill in gaps where metadata alone fails to capture meaningful relationships.

3.3.3. Key Observations and Implications
The results show that combining user interactions and expert metadata from the CKG with audio-based
similarity helps improve the quality of the embeddings in both datasets. The curated playlist dataset
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benefited the most, as the embeddings already had a strong structure from the metadata, and the audio
features provided additional fine-grained relationships. In the Spotify dataset, while the performance
was lower overall, adding audio features still resulted in consistent improvements, which is promising
given the noisy nature of the data.

Interestingly, scaling the weight of the audio edges to 0.25 provided the best performance across both
datasets. This suggests that while audio features are valuable, they work best when combined with
metadata in a balanced way. Overweighting audio similarity may make the embeddings less focused
on the broader semantic relationships encoded in the graph.

In this chapter, we have demonstrated the ability of our knowledge graph embedding approach to
effectively cluster songs by combining metadata and audio features, creating a rich and nuanced rep-
resentation space. This enables smooth and meaningful transitions between user preferences and
target genres, forming the backbone for our exploration algorithms. Our evaluation results confirm that
this approach supports effective, user-driven exploration.



4
Targeted Exploration

This chapter focuses on the methods and techniques developed to enable users to gradually transition
from their current musical tastes to a target genre, offering a personalized and engaging discovery
experience. Our objective here is to effectively define transitions within the representation space that
connect user preferences to the target genre. To achieve this, we leverage the song representations
discussed in the previous chapter. Several challenges must be addressed to facilitate effective explo-
ration in this representation space, including the sparsity of data, and diversity of user preferences and
target genres.

We will first address the challenges of navigating high-dimensional spaces using graph-based ap-
proaches (Figure 4.1). Next, we will introduce an active learning approach to guiding users toward
their exploration targets (Figure 4.3). Together, these methods aim to enable a smooth and adaptive
discovery process that incrementally guides users towards their target preferences while incorporating
their feedback along the way.

Figure 4.1: We turn 128-dimensional song representations into a KNN graph where we can set appropriate start and target
nodes. This allows us to move between them through nearest-neighbor edges.

4.1. Moving through the feature space
The feature space which contains all song representations should allow us to take the small steps
needed to effectively guide the user to the target preference. Unfortunately, since the feature space
is high-dimensional we run into the Curse of Dimensionality. This refers to the exponential increase in
data sparsity and computational complexity as the number of features (dimensions) grows. Especially
this data sparsity becomes a problem when trying to take steps through the feature space. With the
data being so sparse a very small amount of songs would align themselves sufficiently between the
start and end locations such that they get sampled when taking steps between these locations. A com-
mon solution to the Curse of Dimensionality problem is to do dimensionality reduction [76]. However,
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experimenting with various ways of doing dimensionality reduction we found that reducing dimension-
ality led to a significant degradation of representations’ performance on the playlist completion task we
could not accept. As an alternative to traditional dimensionality reduction techniques, we chose to cre-
ate a K-Nearest Neighbor(KNN)-graph where steps can be taken by following edges between the song
nodes. This approach parallels our method of evaluating representations through the playlist comple-
tion task. Similarly to the evaluation task, we employ the Faiss library [33] to retrieve nearest neighbors
for a query, in this case a song. This way, we can increase confidence that the performance observed
during the representation evaluation task translates effectively to our discovery setting. Specifically, we
construct the KNN graph with each song node connected to its 10 closest neighbors in the represen-
tation space. The choice of using 10 neighbors (K=10) balances sufficient connectivity and avoiding
overly dense graph structures, which could obscure meaningful relationships between songs.

4.1.1. Defining Start and Target
In our final representation space, we need to define both the starting position and the target position for
the recommendation algorithm to gradually move between them. To this end, we need to characterize
both the user and the target by some point or collection of points in the space. User preferences are
often not uniform, with individuals often listening to and liking several different styles of songs that
can be dissimilar from each other. For example, a user might enjoy music from both the Country and
the Rap/Hip-Hop genre. Similarly, targets preferences such as genres are often comprised of several
distinct sub-styles/genres, for instance, the Rap/Hip-Hop genre contains the sub-genres ”Southern Hip-
Hop” and ”Pop Rap”. We want to make sure that these subgroups are well represented in regards to
the starting and ending locations because any of these user-target subgroup combinations could be
the optimal one for maximizing recommendation effectiveness and user satisfaction.

We represent these subgroups by identifying central nodes within their subgraphs, enabling the creation
of paths towards these groups. To ensure diversity, we select these central nodes such that each is
a sufficient distance away from previously chosen nodes. This approach helps capture the centers of
distinct clusters within the subgraph. For user preferences, these central nodes serve as starting points,
while for the target genres, they act as destinations. To identify central nodes, we use the PageRank
algorithm [51]. This process generates a starting set of user nodes Sstart = {s1, ..., sm} of sizeM , and
a target set of nodes Starget = {t1, ..., tn} of size N .

Figure 4.2: Visualizing a subset of paths between start nodes ⊚ in the top right and target nodes in the bottom left with t-SNE
[73].

4.1.2. Generating Paths
To give the user the possibility of moving through the graph using any of the combinations of user-target
subgroup combinations we generate paths P with

P = {p(s, t) | s ∈ Sstart, t ∈ Starget}
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Figure 4.3: An overview of the the active learning of path utilities algorithm for targeted exploration. We maintain a belief over
every path in the form of a posterior distribution. These posteriors are sampled to get a set of paths to recommend and songs
at the current step are presented to the user. Following user feedback we update all beliefs with w based on their similarity to

the sampled paths at the current step.

where p(s, t) = [s, x1, x2, ..., xl, t] is a path standardized for length L between s and t in the graph.
These paths are created by finding the shortest path with Breadth-First Search and then standardized.
If the shortest path is shorter than L nodes are inserted that connect two consecutive nodes in the path.
In the case that the path is longer than L, we keep searching for and removing node xi where xi−1 and
xi+1 have the highest cosine similarity between their embedding. Both of these actions are repeated
until the path is of length L.

We now have paths pi ∈ P where every subsequent song s ∈ Sp in a path is closer to the target than
the previous songs on the path, based on their representation xs ∈ x. This means following the path
you get gradually closer to the target that has been set for discovery. In Figure 4.2 we use t-SNE [73] to
visualize an example subset of paths in a 2-dimensional representation space. T-SNE tries to preserve
local relationships between points by keeping close neighbors together while reducing dimensions.
This focus on neighbors parallels our KNN graph, which means we can use its visualization as a way
to get an intuition for how the paths run through the graph.

4.2. Active learning for targeted exploration
As we gradually take steps between the current preferences and the target, the user is likely to en-
counter unfamiliar areas of music. Since we know little about the user’s enjoyment of these areas it is
unclear which paths will result in the most enjoyment for the user while discovering these unexplored
areas. To address this uncertainty, we generate a large number of possible paths and dynamically
adjust which ones to follow based on user feedback. This process creates an exploration-exploitation
trade-off: we need to explore a diverse range of paths to discover new preferences, while also focus-
ing on paths the user has already shown to enjoy. To balance this trade-off, we employ a Bayesian
Optimization approach in a novel application of path-following algorithms. At each step, the algorithm
maintains a Bayesian belief state that estimates the utility of a given path for the user.

4.2.1. Path Utility Beliefs
Prior Beliefs
Before any recommendations are made we set a prior belief P(u) over all paths p on their utility to the
user. We assume the prior for each utility up is a Beta distribution

P(up) = Beta(α0
p, β

0
p). (4.1)

Initially we have no information on the utility of these paths so we initialize them with a uniform Beta
prior of Beta(1, 1). Beta distributions lie in the domain [0, 1], which makes them suited for the context
of recommendation where feedback of the user often comes in the form of a like or dislike of an item.
For paths of songs we can interpret a utility value of up = 1 as the user enjoying the whole path, while



4.2. Active learning for targeted exploration 19

1 2 3 4 5 6

Step

0.02

0.04

0.06

0.08

0.10

M
SE

MSE Over Time

Uniform (Passive)
No similarity (Active)
Cosine similarity (Active)
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Figure 4.5: Results of experimenting with threshold ϵ for
updating remaining paths.

values up = [0, 1) represent some various strength of non-complete enjoyment starting from complete
dislike.

Sampling Based on Belief
We update the utility belief by incorporating observed responses rl to the songs sl available at step l
across all paths. This requires modeling the likelihood of these responses, expressed as P(rl|x,u, sl).
In our recommendation setting, the response we can observe from the user is binary with rl ∈ (0, 1},
where 1 means the user liked the song and 0 means the user disliked the song. We can now simply
model the likelihood as

P(rlp|xs, up, s
l
p) = Bernoulli(up), (4.2)

where xs is the representation of song slp, sampled at step l.

Due to the conjugacy rule, when the prior is a Beta distribution (4.1 and the likelihood is Bernoulli (4.2,
the posterior distribution remains a Beta distribution with updated parameters based on the observed
successes and failures. This means our posterior looks like

P(up|xs, s
l
p, r

l
p) = Beta(αl

p, β
l
p), (4.3)

where rlp are historic rewards from songs slp up until step l. To use the posterior distribution for sampling
paths and updating our belief of their utility we adapt the popular Thompson Sampling (TS) strategy.
With TS, we explore more when beliefs have a higher uncertainty and exploit more as the system
becomes more confident. TS takes a sample of each paths utility up from the posterior. In the typical
case, TS selects the item with the highest sampled utility. For our case we select the top 20 paths with
the highest sampled utilities and recommend these to the user as independent songs.

Efficient Belief Updating
Using traditional TS, observed feedback for a path p would update the posterior distribution for that
path. At step l, if a like (reward r = 1) or dislike (reward r = 0) is observed for song slp of path p the
posterior distribution of up is updated to be

Beta(αl
p + r, βl

p + (1− r)) (4.4)

As we have limited steps we want to improve the sample efficiency of TS. We do this by not only
updating the observed path put also updating all other paths based on their similarity to the observed
path. For this we introduce the weight parameterwl

pq, calculated by the cosine similarity between songs
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slp and slq, which are songs of paths p and q at step l. This way the posterior distribution update of up

becomes

Beta(αl
p + r · wl

pq, β
l
p + (1− r) · wl

pq) (4.5)

where q is a sampled path for which we received user feedback on song slq.

This efficient belief updating should lead to a faster convergence to the actual path utilities, compared to
the traditional way of TS. To demonstrate this we simulate a targeted exploration setting using user his-
torical interaction data. In this example the user almost exclusively enjoys Rap/Hip-Hop and R&B/Soul
music, and has set the Country genre as their target for exploration.

We generate the set of standardize paths P for the user to move through. As a ground truth for every
path we set a true success rate between 0 and 1. For the simulation we pick one path to be the perfect
path for the user to move through with a true success rate of 1. All other paths success rate are then
set based on the average cosine similarity of their songs at every step in the path to the songs of the
same step in the perfect path. This way highly similar paths will also have a close to 1 true success
rate.

In the simulation we sample the paths exactly like the real case by sampling from their posterior distri-
bution and selecting the top 20 sampled utilities. Then to simulate user feedback we sample a binomial
distribution using the paths’ true success rate as the probability of success. We evaluate by using the
sampled path utilities and calculating their Mean Squared Error (MSE) with the ground truth success
rates. As can be seen in Figure 4.4, efficiently updating the belief by updating remaining paths based
on cosine similarity achieves a large improvement in speed of MSE reduction compared to the tradi-
tional TS approach without similarity. As a baseline we also show the case where all path posterior
distributions stay uniform throughout the steps meaning we do not take user feedback into account.

Additionally, we experimented with controlling the threshold of cosine similarity to the sampled path for
when to update a remaining path, using the hyperparameter ϵ as the threshold number. For example,
a threshold of 0.5 means only paths for which the current step songs similarity has a cosine similarity
with the sampled path current step song of higher than 0.5 will be updated using Equation 4.5. Results
for this experiment can be seen in Figure 4.5. We can see as the threshold goes down the reduction
in MSE becomes greater and steeper. A threshold of 0, meaning all remaining paths get updated,
delivered the best result, which meant we decided on keeping the threshold at 0 for the final algorithm.

By addressing the challenges of sparsity, and user preference and target diversity, we developed a
robust methodology for path generation. These steps form the foundation for enabling personalized,
user-driven exploration in the representation space. The next sections will discuss the evaluation of
this discovery approach and the implications for exploration music recommendation systems.



5
Experimental Setup

We conducted an online experiment to evaluate how effectively our approach helps guide users toward
developing a new taste based on their current preference profile. Specifically, we investigate whether
taking gradual steps toward the target and integrating user feedback during the exploration process
increases the effectiveness of the recommendation process.

Figure 5.1: A cold-start user can search for and flip through their preferred genre of songs to fill their initial preference profile.

5.1. Experiment Scenario & Platform
To carry out the experiment, we created an experiment platform through a website1 where we can set
up our recommendation scenario for evaluation. The website is built using the popular Python-based
web framework Django and uses a PostgreSQL database. Experiment subjects can create an account
on the website under which all their discovery progress is stored.

Our recommendation scenario goes as follows. We start off with a completely cold-start user, for which
we have no information on their music interests and preferences. To establish a simple user model,
we prompt the user to specify 20 songs which they enjoy to create the initial user preferences the
personalized recommendations can be based off (Figure A.12). Next, the user picks a target genre
that they would like to explore. Completion of this initial phase sends them straight into the exploration
phase in which the user will go through 6 exploration steps, each step containing 20 recommended
songs in random order (Figure A.11). Songs in a step are played in random order to control for any
order effects.

1https://expandyoursound.xite.com/
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Figure 5.2: In every discovery step the user receives 20 recommendations one-by-one in random order. Users can add a song
to the set of liked songs in their user profile and can move to the next step after going through all 20 songs once.

5.2. Participants
Around half of the participants were recruited from XITE, with most of them coming from the music
curation team. The rest were recruited via convenience sampling. They were invited to the online
study by group or personal messages and sent the website link. Upon visiting the home page of the
website they are presented with the basic procedures of the study and an informed consent statement.
This includes the explanation: ”This experience is designed to help you explore new music based on
your current preferences, guiding you toward a genre or style you’d like to enjoy. Each user will follow
a unique path, making the journey both personalized and enjoyable.”

5.3. Evaluation
Evaluating our system beyond accuracy is essential to gaining insight into the effectiveness of our
methods. To this end, we follow a user-centric evaluation framework [40] that will allow us to answer our
research questions. This framework allows us to examine how users’ interactions with the system (INT),
perceived subjective system aspects (SSA), and user experience (EXP) relate to different conditions
(Objective System Aspects: OSA) to which we subject the users.

In our case, we evaluate two OSAs that relate to our hypotheses (Ch. 1), namely, (1) taking gradual
steps starting from current user preferences is more effective than one large step and (2) incorporating
feedback improves effectiveness of the approach. Adopting a between-subjects study design, we aim
to evaluate our approach by splitting subjects into three groups, covering our OSAs:

• Big Step (BS): From the start of the experiment we immediately jump to the target genre and
start recommending items from the target. This group is meant as a baseline for evaluating the
effect of taking small gradual steps towards the target.

• Small Steps Passive (SSP): These users start of by getting recommendations close to their cur-
rent preferences and gradually get recommendations that get closer and closer to the target genre
by randomly following any of the generated paths through the KNN-graph. Since in this group
user feedback is not incorporated for picking which paths to follow, it serves as an intermediate
baseline for evaluating the effect of integrating user feedback in the recommendation process.

• Small Steps Active (SSA): Similar to SSP, recommendations for these users gradually move
from current preferences to the target genre. However, for this group, we update our belief on the
enjoyment of a path for a user while taking step and receiving feedback. We then use this belief
to guide the sampling of paths for the user.

The next step for evaluation is to select our outcomemeasures from observed behaviors (INT) and user
survey feedback (EXP). As a first observed behavior, we track the number of songs liked throughout
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EXP/SSA Question item

Perceived helpfulness
This approach supports me in getting to know the new genre.

This approach motivates me to more delve into the new genre.

This approach is useful in exploring a new genre.

Affinity Toward Target
I enjoy the music from [target taste].

My enjoyment of music from [target taste] has increased since the start of the experiment.

My enjoyment of music from [target taste] has increased since the previous step.

Quality of Direction
I can notice the recommendations going in the direction of the target.

The recommended songs seem to be in between my preferences and the target.

Personalization
I feel like the recommended songs take my preferences into account.

I find the songs from the playlist appealing.

I would listen to the playlist again.

Control
I found it easy to modify the recommendations in the recommender.

The recommender allows only limited control to modify the recommendations.

I feel in control of modifying the recommendations.

Understandability
I understand how the recommended songs relate to my musical taste.

It is easy to grasp why I received these recommended songs.

The recommendation process is clear to me.

Table 5.1: Individual survey questions for each subjective construct.

the different steps. This gives us an objective measure of the enjoyment of a user during exploration
both as the total amount of songs liked and the progression of number of songs liked at each step. The
second observed behavior we look at is songs liked from the target genre. The total number of target
genre songs liked gives us an indication of the user’s affinity to the target genre and the progression of
this number shows us how this affinity changes throughout the discovery process.

To supplement these objective measures, we survey the user’s subjective experience in questionnaires
throughout the experiment. Our EXP variables are perceived helpfulness and perceived affinity towards
target. These EXP variables combined with the INT variables we see as representing effectiveness.
A targeted discovery process being effective means the user’s affinity towards the target is shifted
positively and the user has enjoyed listening to the music presented to them during the discovery
process.

We have established the OSAs for our subjects to experience and have INT and EXP outcomes that
align with our defined measures of user effectiveness. This would be sufficient to answer our hypothe-
ses for the research questions. However, to get more insights into why the OSAs result in INT and EXP
outcomes we also include subjective system aspects (SSA) in the experiment questionnaires. These
SSAs serve both as a dependent variable (in the hypothesized effect of OSA → SSA) and an inde-
pendent variable (in the hypothesized effect of SSA → EXP). These kind of variables are often called
mediating variables. The SSAs we measure are (1) perceived control, (2) perceived understandability,
(3) perceived quality of direction, (4) perceived personalization. These are all factors that can differ
based on the OSAs and can influence the user’s perceived helpfulness and affinity towards target. We
hypothesize that taking small gradual steps starting from current preferences will increase the user’s
perception of personalization and quality of direction. Further, we hypothesize that incorporating feed-
back increases the user’s perception of control over the recommendations and their understanding of
the recommendation process. Finally, we hypothesize that all measured SSAs have a positive effect
on the INT and EXP measures.
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All EXP and SSA factors are measured by multiple question items on a 7-point Likert scale ranging
from Strongly Disagree to Strongly Agree (Table 5.1). For all factors except helpfulness we repeat
these questions after every step to measure how they progress throughout the steps. Questions for
control, understandability, personalization and helpfulness are adapted from [43], and new question
items are constructed for perceived quality of direction and affinity towards target.



6
Results and Discussion

6.1. Results
The online experiment ran from October to November 2024 and accrued 21 valid responses. We only
included results for users who finished all 6 steps. In total 49 people signed up for the platform. However,
19 people did not start the experiment, 5 people stopped after creating their initial user preferences,
and 4 people did not come back after going through the first step. The average age of participants
was 28.1 years (std. 6.43), with 11 females and 10 males. During sign-up participants were randomly
assigned to each of the user groups, BS (N=6), SSP (N=8), SSA (N=7).

The number of valid responses combined with the complexity of the required model to encompass all
survey and interaction variables means we cannot achieve a valid fit for a structural equation model
as in [40]. We focus on exploring and discussing the observed patterns and relationships, leveraging
available data to identify areas of potential significance where possible. We follow the approach by [5] to
evaluate hypothesized mediation effects of SSAs between the OSAs and the INT/EXP outcomes, and
bootstrap confidence intervals to test for significance [27]. Especially the dispersion of data points over
multiple recommendation steps complicates the model. To remedy this, for statistical evaluation, we
individually aggregate every measure over the time steps in a way that makes sense for that measure.
These aggregate measurements can be found in Table 6.2. Further, we examine the measurements
across time steps in search of potentially interesting insight and present them here. For all aggregated
survey factors (EXP & SSA) convergent validity holds as the average variance extracted between
question items in each factor is larger than 0.50. An overview of all measurements can be found in
Appendix A.

OSA INT
Total Likes Target Likes Target Likes/Song

User Group Mean Std. Mean Std. Mean Std.

BS 14.33 10.65 14.33 10.65 0.12 0.09
SSP + SSA 44.80 9.35 11.67 6.33 0.34 0.16
SSP 42.25 6.80 9.63 4.93 0.28 0.22
SSA 47.71 11.47 14.00 7.30 0.40 0.19

Table 6.1: Overview of aggregated like data with total likes, total liked songs from target genre, ratio between total
recommended songs from target genre and total liked songs from target genre.

6.1.1. Liked songs
For the observed behaviors, number of liked songs and number of liked songs from the target genre,
we first look at the total number of liked songs and liked target songs (Table 6.1). When comparing total
liked target songs between, we look at the ratio between target songs liked and received, as the BS
group naturally receives more songs from the target genre. Separating our OSAs from the user groups,
we look at the BS group compared to the combined group of SSP and SSA for the effect of gradual
steps and at the SSP group compared to the SSA group for the effect of incorporating feedback on total

25
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liked songs. We use Poisson regression to analyze the total number of likes because this method is
well-suited for count data, where the response variable consists of non-negative whole numbers [13].
For the ratio of target likes to the number of target songs, we apply regular linear regression [50]. This
method is appropriate because the ratio is a continuous variable, and linear regression helps us test
for significant differences across conditions.
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Figure 6.1: Average like progress throughout the steps for different user groups.

Total Likes
Between BS and SSP + SSA we observe a significant difference between their expected total likes
(β1 = 1.14; se = 0.11; p < .001). This shows that having the user take gradual steps starting from their
current preferences towards the target will mean that they encounter more songs that are enjoyable to
them during the discovery process. Comparing the effects of incorporating feedback between the SSP
and SSA groups shows a slight increase in total likes for the SSA group (β = 0.12; se = 0.08; p = .11).
However, this difference between SSP and SSA was not statistically significant. This means looking at
total likes we cannot conclude that incorporating feedback significantly improves the user’s enjoyment
during the discovery process.

To get more insight into the number of songs liked for each user group, we will look at their progress
throughout the steps in Figure 6.1 (left). We can now see that both SSP and SSA start with a high
like count when song recommendations are still close to their initial preferences. For both groups this
like count drops in the following steps. In the last two steps we can see the difference between SSP
and SSA become apparent. The like count for SSA seems to recover, while the like count for SSP
keeps falling. This could indicate that the incorporated feedback of the system for the SSA group
allowed them to find the subgroup of the genre that they enjoy as opposed to the SSP group that still
get recommendations spread through all possible paths to the genre.

For BS, the like count starts relatively low and keeps slowly reducing. This further reduction could be
explained by the users growing tired of the volume of target genre recommendations that the SSP and
SSA groups did not get. However, the number of likes from their first exposure to the target genre is
still lower than the number of likes for the SSP and SSA groups in step five and six where they most
likely first got fully exposed to their target genre.

Liked Target Songs
When looking at the ratio of liked to received target songs, we observe a significant uplift between the
SSP + SSA group and the BS group (β = 0.22; se = 0.08; p = .02). This means that taking gradual
steps results in users enjoying a larger proportion of the target songs they receive. Between SSP and
SSA, this increase in proportion of target songs liked, similar to total likes, is smaller and nonsignificant
(β = 0.12; se = 0.1; p = .25). Again, the sample size limits our ability to make any strong conclusions
on the effect of incorporating feedback, but a detectable effect is present.

Figure 6.1 (right) shows the progression of both received target songs and liked target songs. Both
SSP and SSA get recommended a similar amount of songs from their targets throughout the steps.

1Note that β in the total likes regressions is the coefficient for Poisson regression.
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The number of liked target songs also starts off growing similarly. However, in the last two steps, the
SSA group starts liking more target songs, with the last step having a difference of around 3.5 likes.
Similar to total likes, this shows users from the SSA group eventually more often find the subgroup of
their target that they enjoy.

OSA EXP SSA
Helpfulness Final Affinity Avg. Direction Quality Avg. Personalization Avg. Control Avg. Understandability

User Group Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

BS 3.39 1.14 1.94 0.57 2.58 0.62 2.38 0.59 2.15 0.31 2.59 0.45
SSP + SSA 5.51 1.32 4.87 1.30 4.70 1.19 4.40 1.02 4.36 0.99 4.95 1.22
SSP 5.00 1.55 4.58 1.32 4.31 1.36 4.08 1.23 3.92 1.14 4.47 1.41
SSA 6.10 0.71 5.19 1.29 5.14 0.84 4.76 0.61 4.87 0.42 5.51 0.70

Table 6.2: Aggregated measures from questionnaires for different user groups.

6.1.2. Perceived quality of direction and personalization (SSA)
We examine the SSA measures, perceived quality of direction and perceived personalization, hypothe-
sized to be influenced by taking gradual steps towards target and to influence all INT and EXPmeasures
(Table 6.2). As expected, a comparison between the BS group and the SSP+SSA group shows us a
large effect (d = 1.98; p < .001) on the user’s average perceived quality of direction. This means the
user directly notices the songs moving from their current preferences towards the target. Surprisingly,
between the SSP and SSA groups, there is a moderate effect detectable, even though not statistically
significant (d = 0.72; p = 0.18). Observing the measure throughout the steps can give us more insight
to why this effect exists (Figure 6.2). The perception of the quality of direction is relatively close be-
tween the groups for the first few steps but their relative difference grows towards the final steps. This
suggests as the users from SSA group get further along the discovery and more feedback is integrated
to receive recommendations the user is more likely to enjoy, their perception of moving between their
preferences increases.
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Figure 6.2: Average perceived quality of direction and personalization throughout the steps for different user groups.

Looking at the effects of the OSAs on average perceived personalization we observe a strong signifi-
cant effect when taking gradual steps towards the target (β = 2.02; se = 0.45; p < .001) and a moderate
insignificant effect when incorporating feedback (β = 0.68; se = 0.51; p = .21). These results confirm
that users actually perceived the recommendations that start at their current preferences as more per-
sonal. This perception holds even when moving further away from initial preferences (Figure 6.2). We
observe a moderate effect when incorporating feedback due to an increase in perceived personaliza-
tion in the final steps for the SSA group after decreasing in the first few steps. This means when more
feedback is integrated the user again perceives the recommendations as being more close to their
preferences.

6.1.3. Perceived control and understandability (SSA)
We explore perceived control and perceived understandability, hypothesized to be influenced by in-
corporating feedback and to influence all INT and EXP measures (Table 6.2). The effect of gradual
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steps is average perceived control (β = 0.99; se = 0.23; p < .001). A similar significant is observed
for average perceived understandability (β = 2.35; se = 0.52; p < .001). These are not effects we
initially hypothesized; however these findings align with an intuitive explanation: users may feel more
control and better understand how the recommendations relate to their musical when the system be-
gins with preferences close to their own. Going from the SSP group to the SSA group where feedback
is incorporated we observe an effect on control (β = 0.45; se = 0.24; p = .09) and a strong effect on
understandability (β = 1.04; se = 0.59; p = .1). Results for both suggest that with a larger sample size,
a statistically significant effect might be detected. This would confirm our hypothesis that incorporating
feedback increases the user’s perception of control and understandability of the system.
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Figure 6.3: Average perceived control and understandability throughout the steps for different user groups.

For the progression of both perceived control and perceived understandability, the SSP and SSA groups
follow similar patterns. Both start relatively high for the first two steps, then decrease in the intermediate
steps, increasing again for the final steps. When the user’s current preferences and the target are
significantly far apart, the intermediate steps often consist of songs that neither align closely with the
user’s current preferences nor belong to the target genre. This mismatch could explain the observed
negative trend in control and understandability during these steps.
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Figure 6.4: Perceived helpfulness (error bars 95% confidence interval) and average perceived affinity towards target
throughout the steps for different user groups.

6.1.4. Perceived helpfulness and affinity towards target (EXP)
We inspect the effects of the different OSAs, as well as any significant mediating effects from the
SSAs, on the subject outcome measures we set to represent the effectiveness of our system, allow-
ing us to answer our main research question and second sub-research question. Table 6.2 shows
the mean and standard deviation of the aggregated measures from questionnaires for the different
conditions. As seen in Figure 6.4 (left), there is a clear difference in perceived helpfulness between
groups, with error bars indicating 95% confidence intervals. This visual aligns with the statistical evalu-
ation: there is a strong direct effect between user groups BS and SSP+SSA for perceived helpfulness
(β = 2.12; se = 0.62; p = .003) showing that taking gradual steps from the current preferences to-



6.2. Discussion 29

Figure 6.5: Mediated effect of incorporating feedback on
helpfulness through personalization. Individual
coefficients, standard errors and p-values shown.

Figure 6.6: Mediated effect of taking gradual steps on
affinity through personalization. Individual coefficients,

standard errors and p-values shown.

wards the target is perceived as more helpful for exploration of the target. Additionally, we measure a
borderline statistically significant indirect effect between taking gradual steps and helpfulness through
perceived personalization (β = 1.76; se = 0.96; p = .067). This lack of significance may come from the
limited sample size, which reduces the power to detect mediation effects. From the SSP to SSA group
there is a direct effect on helpfulness, but it is not statistically significant (β = 1.095; se = 0.64; p = .11).
A stronger (indirect) effect is found through personalization (β = 1.27; se = 0.73; p = .082) (Figure 6.5)
and a slightly weaker effect is found through understandability (β = 0.92; se = 0.65; p = .16) which
shows, despite not being statistically significant, that potentially the increased perception of personal-
ization and understandability of the recommenders due to the incorporation of feedback increases the
user’s perception of the helpfulness of the system.

For perceived affinity towards the target, we decide to aggregate by selecting the value from the final
discovery step (Table 6.2). This represents the user’s affinity at the end of the discovery process, which
is what we are most interested in. Similar to helpfulness, between user groups BS and SSA+SSP
there is a strong direct effect ((β = 2.92; se = 0.56; p < .001).This effect is also found indirectly though
perceived personalization (β = 2.63; se = 0.70; p < .001) indicating that taking gradual steps results in
significantly more affinity towards the target, which is partly explained by an increase in the perception
of personalization of the recommendations (Figure 6.6). The difference in affinity to target between the
SSA and SSP groups is noticeable (β = 0.6; se = 0.68; p = .38); however, not statistically significant.
The relative strength of effect still suggests a potentially meaningful impact of incorporating feedback.

Figure 6.4 (right) shows the progression of affinity towards target over the discovery steps. Interest-
ingly, the affinity towards target starts off higher for the BS group as they receive target specific song
recommendation immediately and even increases for step two. However, affinity starts decreasing
rapidly in the following steps. This negative change is potentially the result of saturation from receiving
exclusively target songs at each step, decreasing the users enjoyment of the process, and in turn, their
affinity toward what they are trying to explore. The progression of affinity for the SSP and SSA groups
follow similar patterns, starting off relatively low and slowly increasing. Affinity towards target for the
SSA group increases marginally faster and therefore ends up higher after the final step.

6.2. Discussion
Analyzing the results of this user experiment reveals several key insights into the effectiveness of
gradual steps and feedback incorporation in guiding users towards new musical preferences. These
findings contribute to a deeper understanding of how recommendation systems can enable targeted
exploration while ensuring user satisfaction.

The strongest increases in perceived helpfulness and affinity were observed when users took gradual
steps from their current preferences toward the target genre. This aligns with our hypothesis (H1) that
gradually introducing users to the target is more effective than directly exposing users to representative
songs from the target. The results also revealed that gradual steps significantly increased both the total
number of liked songs and the proportion of target songs liked. These findings highlight the importance
of incremental exploration in improving user engagement and aligning recommendations with user
preferences.

Incorporating feedback into the recommendation process resulted in positive but non-significant effects
on several measures, including total likes, perceived personalization, and perceived understandability.
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Notably, the SSA group showed a recovery in total likes during later steps, even when far away from ini-
tial preferences. This, along with the increased proportion of target songs liked in later steps, suggests
that feedback helped users to discover subgenres they enjoyed from their target genre. These observa-
tions align with our second hypothesis (H2) that integrating user feedback and interaction could further
improve the effectiveness of the approach for guiding users toward developing a new taste. Enabling
users to fine-tune recommendations with their feedback helps the system discover and leverage their
hidden preferences, increasing both engagement and satisfaction. Although the current experiment
lacked sufficient statistical power to confirm these effects, the results highlight the potential of feedback
integration for personalizing and optimizing the discovery process.

Gradual steps also significantly improved perceived control and understandability. These measures
are critical for user engagement, as they ensure users feel their preferences influence the system and
can understand the reasoning behind recommendations. Interestingly, both control and understand-
ability decreased during intermediate steps, likely due to recommendations falling outside both user
preferences and the target genre. However, similar to total likes they recovered in later steps, indi-
cating the importance of making users understand and feel control over where their recommendations
come from. This suggests that for future systems incorporating explanations or insight into where users
are in the discovery process could increase user engagement and satisfaction, especially in situations
where the recommendations are not intuitive.

Although the results were promising, our experiment has some limitations. The low sample size re-
stricted our ability to fit a structural equation model (SEM) accounting for all factors simultaneously.
Instead, we evaluated individual effects in isolation, which could overlook interactions between vari-
ables. Additionally, some hypothesized effects, such as the impact of feedback on personalization
and control, lacked statistical significance due to limited power. These constraints should be carefully
considered when interpreting the findings.

The small sample size resulted from both resource constraints and experiment design choices. Conve-
nience sampling limited the number of participants and their diversity, while the large time commitment
necessary to complete the experiment led to high drop-out rates. Participants were required to select
20 initial preference songs and complete 6 rounds of 20 recommendations, which likely contributed to
the high drop-out rate. Additionally, users had to perform the experiment on a separate website, which
may have introduced friction and reduced engagement. Future studies could address these issues by
simplifying the process, such as reducing the number of steps or initial song selections, and integrat-
ing the experiment into platforms users already engage with, such as music streaming services. This
approach could improve ease of use and likely eliminate the need for an initial preference elicitation
process, making participation more intuitive and natural for users.

Another limitation of the experiments is that users had complete freedom to determine how long they
spent on each step and the time they waited between steps. This could have contributed to user fatigue
for the control group if they went through the consecutive steps shortly after each other, as they received
similar content in all steps.



7
Conclusion

7.1. Summary
In this thesis, we aimed to enable targeted music exploration with interactive recommendations. Ad-
dressing the main research question, “How can we effectively guide a user towards developing a new
taste based on their current preference profile?”, we propose an approach that gradually guides the
user from their current preferences to a target genre.

Facilitating our gradual exploration approach, we combined high-level expert-annotated content, low-
level audio-based features, and user interaction data to create a representation space where similar
songs are mapped closely together. In our approach to constructing the representation space, we
embed a music knowledge graph enhanced with audio similarity information. We performed an ini-
tial visual evaluation, confirming that our method qualitatively aligns with our expectations. Following,
through quantitative evaluation on a playlist completion task, we demonstrated the effectiveness of our
approach for separating songs in a way that aligns with human understanding of music in context.

We evaluate our approach in extensive user experiments, showcasing the effectiveness of guiding
users incrementally from their current preferences toward a target genre. Our findings show that grad-
ual exploration improved engagement and satisfaction compared to directly introducing users to songs
from the target genre. Incorporating user feedback through a Bayesian approach to active learning
further enhanced the effectiveness of the recommendation process, allowing the system to gather in-
formation on the user’s preferences while ensuring the recommendations remain enjoyable.

7.2. Industry Recommendations
Based on the work done in this thesis we can make some recommendations for industry players who
wish to provide their users with alternative ways to approach listening to music. Despite the limited
sample size of experiments, the benefits of gradual exploration in improving satisfaction and engage-
ment are clear. While the impact of incorporating feedback remains inconclusive, it is reasonable to
expect including additional user feedback beyond historical interactions should not negatively affect
recommendations.

Industry applications would address several limitations of this work. Embedding a version of our meth-
ods into existing music streaming platforms could allow for seamless user interaction and greater ac-
cessibility. This would likely improve the sample size of any experiments and ensure that the evaluation
of the system aligns more closely with how users are likely to interact with the algorithm in real-world
scenarios.

We envision two approaches to the industry application of this recommendation scenario. One ap-
proach would be to create a separate section on their platform dedicated to targeted exploration, where
the user can set a target genre, access and listen to the recommendations playlist of their current step,
and look back at their journey through previously recommended playlists. Another approach would
be to seamlessly integrate targeted exploration into the platform by providing the user with a targeted

31
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exploration playlist alongside other weekly updating recommendation playlists such as ’Your Weekly’
and ’Discover Weekly’.

Implementing targeted exploration in industry does however involve trade-offs between resource invest-
ment, user engagement, and system complexity. Gradual exploration requires computationally efficient
graph representations but enhances user engagement by guiding users incrementally. Feedback inte-
gration could further improve user satisfaction and engagement but demands real-time processing.

7.3. Future Work
Despite its contributions, this research has limitations that could be addressed in future work on targeted
exploration.

Experiment design: The small sample size of user experiments in this work restricted the general-
izability of findings to broader, real-world applications. Future studies with a larger pool of subjects
would make it possible to provide more conclusive statements on the effect of targeted exploration
approaches on user satisfaction and engagement. Furthermore, investigating the long-term impacts
of gradual exploration on user satisfaction and taste development would provide valuable insights into
the sustainability of this approach.

Evaluation of AL algorithm: We evaluated the effectiveness of the active learning algorithm in a
simulation, demonstrating its potential effectiveness. However, when evaluating on real users this
algorithm was only compared to the absence of interactive recommendations. Future research could
focus on implementing several active learning algorithms in live systems to evaluate their effectiveness
with actual users. This could help determine whether alternative approaches to incorporating feedback
might yield improved results or uncover new insights into user behavior during exploration.

Improvements on methods: Integrating richer prior information from similar users could further accel-
erate the belief update process and improve recommendation efficiency. Additionally, providing users
with explanations or insights into the recommendation process during exploration may help address
potential moments of confusion or disengagement, especially during intermediate steps where recom-
mendations are far from current preferences and the intended target.

Applicability to other target types: In this work we focused on the exploration of target genres. How-
ever, we believe that the methods outlined have the potential to apply to several target types, such as
subgenres and artists. As the size and diversity of subgenre and artist groups differ largely from most
genres this belief would have to be validated in future studies.
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Experiment Supplementary

A.1. Individual Survey Question Responses
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Figure A.1: Average individual question responses for helpfulness per group.
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Figure A.2: Average individual question responses from factor affinity towards target throughout the steps for different user
groups.
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Figure A.3: Average individual question responses from factor quality of direction throughout the steps for different user
groups.
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Figure A.4: Average individual question responses from factor personalization throughout the steps for different user groups.
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Figure A.5: Average individual question responses from factor control throughout the steps for different user groups.
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Figure A.6: Average individual question responses from factor understandability throughout the steps for different user groups.
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A.2. Experiment Platform Steps

Figure A.7: The opening screen combining a welcome message and explanations with informed consent.

Figure A.8: The user is asked to select their preferred genre of songs.
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Figure A.9: A cold-start user can search for and flip through their preferred genre of songs to fill their initial preference profile.

Figure A.10: The user is asked to set a target genre for exploration.



A.2. Experiment Platform Steps 43

Figure A.11: In every discovery step the user receives 20 recommendations one-by-one in random order. Users can add a
song to the set of liked songs in their user profile and can move to the next step after going through all 20 songs once.

Figure A.12: After every step the user is asked to fill in a survey on their experience.
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