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A FAST SOLVER FOR HSS REPRESENTATIONS VIA SPARSE
MATRICES∗
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Abstract. In this paper we present a fast direct solver for certain classes of dense structured
linear systems that works by first converting the given dense system to a larger system of block
sparse equations and then uses standard sparse direct solvers. The kind of matrix structures that
we consider are induced by numerical low rank in the off-diagonal blocks of the matrix and are
related to the structures exploited by the fast multipole method (FMM) of Greengard and Rokhlin.
The special structure that we exploit in this paper is captured by what we term the hierarchically
semiseparable (HSS) representation of a matrix. Numerical experiments indicate that the method is
probably backward stable.
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1. Introduction. Beginning with the early work of Gohberg, Kailath, and Kol-
tracht [6] and Rokhlin [11], and the introduction of the fast multipole method (FMM)
of Greengard and Rokhlin [7], it has become clear that many large matrices that
arise in practice have a complex low-rank structure in their submatrices that can be
exploited efficiently to speed up matrix algorithms. In particular, such structured
matrices arise in the numerical solution of integral equations, as fill-in during Gauss-
ian elimination of sparse matrices that come from the discretization of elliptic PDEs,
and in many other applications. In earlier work [2] we introduced techniques to de-
sign fast and stable direct solvers for such structured matrices based on an implicit
ULV factorization algorithm and a matrix representation that we called hierarchically
semiseparable (HSS). In this paper we show that linear systems of equations involving
such dense structured matrices can be efficiently converted into a larger sparse system
of equations that has an ordering of the unknowns permitting a very efficient direct
Gaussian elimination solver to be used. This technique has several advantages. First,
it makes it possible to exploit the highly developed sparse direct solver technology
to attack dense structured problems. Second, it provides a theoretical tool to study
these large dense structured matrices. However, in this paper we just concentrate on
showing how this technique can be used to design a fast, stable solver for matrices in
HSS form only.
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Fig. 1. One level HSS partition tree with m0;1 = m1;1 + m1;2.

The idea of explicitly using sparse representations of low-rank structured matrices
seems to have first originated in the use of diagonal algebras in time-varying systems
theory [5]. Of course, such representations are implicit even in the original FMM
papers [7].

2. HSS representations. Usually an m×n matrix A is represented in terms of
its mn entries Ai,j . The HSS representation of A is another way to present the same
information. It tries to exploit the presence of low- (numerical) rank submatrices in
A. Of course this presumes that we know which submatrices are potentially of low
rank. Fortunately, in the application that we have in mind, namely, the numerical
solution of elliptic PDEs, this information is usually available. In particular, the
HSS representation assumes that the matrix has its low-rank submatrices in the off-
diagonal regions. Historically the HSS representation is just a special case of the
representations commonly exploited in the FMM literature.

The HSS representation depends directly on a recursive block partitioning of the
matrix. It is natural to use a tree to represent these partitions. Suppose at the first
level the matrix is partitioned as follows:

A =

( m1;1 m1;2

m1;1 A1;1,1 A1;1,2

m1;2 A1;2,1 A1;2,2

)
.

Then the corresponding HSS partition tree is shown in Figure 1 where it is assumed
that A is an m0;1 ×m0;1 matrix.

The HSS representation tries to exploit the low (numerical) rank of the off-
diagonal blocks. The one level HSS tree, for example, is based on the partitioning

A =

( m1;1 m1;2

m1;1 D1;1 U1;1B1;1,2V
H
1;2

m1;2 U1;2B1;2,1V
H
1;1 D1;2

)
,

where clearly the factorization of the off-diagonal blocks can be chosen to be rank-
revealing. The tree is shown in Figure 2. At this stage it is not quite clear why, for
example, U1;1 is written at the first leaf node. One reason is that that particular
node corresponds to the first m1;1 rows of the matrix, and U1;1 is associated with
(a portion) of those rows. A better reason will become obvious once we get into
section 3. Similarly the expansion coefficient B1;1,2 is placed on the edge connecting
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Fig. 2. One level HSS.

the two leaves because it sits at the intersection of the rows corresponding to the first
leaf node and the columns corresponding to the second leaf node. The matrices R1;i

and W1;i have no columns at all and will be explained shortly.
The two level HSS representation is based on the partition

A =

⎛
⎜⎜⎝

(m2;1 m2;2 ) (m2;3 m2;4 )(
m2;1

m2;2

) (
A2;1,1 A2;1,2

A2;2,1 A2;2,2

)
A1;1,2(

m2;3

m2;4

)
A1;2,1

(
A2;3,3 A2;3,4

A2;4,3 A2;4,4

)
⎞
⎟⎟⎠,

where m1;i = m2;2i−1 + m2;2i for i = 1, 2. The matrices that make up the two level
HSS form of A are in turn inferred from the equation

A =

⎛
⎜⎜⎝

(
D2;1 U2;1B2;1,2V

H
2;2

U2;2B2;2,1V
H
2;1 D2;2

)
U1;1B1;1,2V

H
1;2

U1;2B1;2,1V
H
1;1

(
D2;3 U2;3B2;3,4V

H
2;4

U2;4B2;4,3V
H
2;3 D2;4

)
⎞
⎟⎟⎠ .

However, the matrices U1;i and V1;i are not part of the two level HSS representation.
And, equally importantly, U2;i (V2;i) is not chosen as a column (row) basis for A2;i,j

(A2;j,i). Rather we define translation operators R2;i and W2;i such that

U1;i =

(
U2;2i−1R2;2i−1

U2;2iR2;2i

)
, i = 1, 2,(1)

V1;i =

(
V2;2i−1W2;2i−1

V2;2iW2;2i

)
, i = 1, 2.(2)

Notice that for this to be possible we must choose U2;i such that it forms a column
basis for the submatrix

(A2;i,1 · · ·A2;i,i−1 A2;i,i+1 · · · A2;i,4 ) .

Notice that we obtain the above matrix by taking the ith block row from the second
level partition of A and dropping the diagonal block A2;i,i. Similarly we choose V2;i
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Fig. 3. Two level HSS.

to be a row basis for the submatrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2;1,i

...
A2;i−1,i

A2;i+1,i

...
A2;4,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The two level HSS tree is shown in Figure 3. The translation operators are placed
at the edges from the leaves of the second level to their parents in the first level to
reflect (1) and (2). The translation operators R1;i and W1;i are not important and
are usually chosen to be matrices with no columns at all.

Generally speaking, an HSS representation is a finite binary tree of the type shown
in Figure 3, where the dimensions of the matrices at the nodes and leaves must be
chosen according to the restrictions that these assemblies(

Bk;2i−1,2i RH
k+1;2i−1

Wk+1;2i 0

)
and

(
Bk;2i,2i−1 RH

k+1;2i

Wk+1;2i−1 0

)

are possible if the node (k, i) is not a leaf,1 and if it is a leaf, then the assembly(
Dk;i Uk;i

V H
k;i 0

)

1The node (k, i) is the ith node counting from the left at level k in the tree.
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and the multiplications

Uk;iRk;i and Vk;iWk;i

must be possible. In this paper we always assume that R1;i and W1;i have no columns
at all.

Given an arbitrary HSS tree and an arbitrary matrix A with the right number of
rows and columns, one can always find an HSS representation for A conforming with
the HSS tree. The O(n2) flops algorithm to carry this out is presented in [2].

3. Fast multiplication. The key to the fast inversion algorithm is the fast
algorithm for multiplying a matrix in HSS form with a vector. In particular, it is
the recursions for the multiplication algorithm that are the key. The recursions we
present are exactly the same as those used in the FMM [7].

To be concrete assume that the HSS form of the matrix A is available and that we
want to multiply it rapidly with the vector x to obtain Ax = b. Of course one method
is to first get the componentwise entries Ai,j of A and to then use a conventional
algorithm. However, that would not be the most efficient thing to do.

Rather, we first observe that we need to multiply submatrices of x with Vk;i for
each node in the HSS tree. Of course some of these Vk;i’s are not directly available,
namely, those on the nonleaf nodes, but we can get around that using the translation
operators Wk;i. Before we get into the details we need some notation. We will assume
that xk;i denotes a submatrix of x partitioned according to the kth level of the HSS
tree. That is,

x =

(
m1;1 x1;1

m1;2 x1;2

)
,

and

x =

⎛
⎜⎜⎝

m2;1 x2;1

m2;2 x2;2

m2;3 x2;3

m2;4 x2;4

⎞
⎟⎟⎠,

and so on.

Now we observe that at the leaf node (k, i) we can compute

gk;i = V H
k;ixk;i.

If (k, i) is not a leaf node we can infer

gk;i = V H
k;ixk;i

=

(
Vk+1;2i−1Wk+1;2i−1

Vk+1;2iWk+1;2i

)H (
xk+1;2i−1

xk+1;2i

)

= WH
k+1;2i−1V

H
k+1;2i−1xk+1;2i−1 + WH

k+1;2iV
H
k+1;2ixk+1;2i

= WH
k+1;2i−1gk+1;2i−1 + WH

k+1;2igk+1;2i.
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We see therefore that gk;i = V H
k;ixk;i can be computed at each node of the HSS tree

very efficiently via the set of equations

gk;i = V H
k;ixk;i at a leaf,(3)

= WH
k+1;2i−1gk+1;2i−1 + WH

k+1;2igk+1;2i at a nonleaf node.(4)

To complete the multiplication let us look in detail at b2;1 for a two level HSS
tree

b2;1 = D2;1x2;1 + U2;1B2;1,2g2;2 + U2;1R2;1B1;1,2g1;2,

which we can regroup more carefully as follows:

b2;1 = D2;1x2;1 + U2;1(B2;1,2g2;2 + R2;1B1;1,2g1;2).

This suggests that we define the auxiliary variables fk;i such that

bk;i = Ak;i,ixk;i + Uk;ifk;i.

Of course if (k, i) is not a leaf, then we will not have access to the diagonal block Ak;i,i

or Uk;i. But in that case we see that we can split the equation using the translation
operators Rk;i as follows:(

bk+1;2i−1

bk+1;2i

)
=

(
Ak+1;2i−1,2i−1 Uk+1;2i−1Bk+1;2i−1,2iV

H
k+1;2i

Uk+1;2iBk+1;2i,2i−1V
H
k+1;2i−1 Ak+1;2i,2i

)

·
(
xk+1;2i−1

xk+1;2i

)
+

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
fk;i,

which simplifies to the pair of equations

bk+1;2i−1 = Ak+1;2i−1,2i−1xk+1;2i−1 + Uk+1;2i−1 (Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk;i) ,

bk+1;2i = Ak+1;2i,2ixk+1;2i−1,2i + Uk+1;2i (Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2i−fk;i) .

This does not seem to lead anywhere, but in fact it does tell us that the recursive
equations for the auxiliary variables fk;i are

fk+1;2i−1 = Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk;i,(5)

fk+1;2i = Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2ifk;i.(6)

This looks good, but how do we start off the recursion? In other words, what is f0;1?
Let us look at its defining equation

b = Ax = b0;1 = A0;1x0;1 + U0;1f0;1,

which implies that

f0;1 = ( ) ,(7)

the empty matrix! Of course at the leaf level we can directly compute the outputs
from

bk;i = Dk;ixk;i + Uk;ifk;i.(8)

With that we have a complete set of efficient recursions for computing Ax = b
given x and the HSS form of A.
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4. Sparse representation. We will now make the effort to write the multipli-
cation recursions in a compact form using matrix notation, and without indices. This
will turn out to be the key step that can reveal the way to the fast solver.

We first define some block diagonal matrices. Let D be a block diagonal ma-
trix formed by ordering Dk;i in, say, breadth-first order.2 Similarly we define block
diagonal matrices U and V. For example, for a two level HSS form, we would have

U =

⎛
⎜⎝

U2;1

U2;2

U2;3

U2;4

⎞
⎟⎠ .

We also arrange all the translation operators Rk;i in a block diagonal matrix R,
in breadth-first order. Note that there is one Rk;i per parent node. So R will be a
block diagonal matrix with a potentially different number of diagonal blocks than,
say, U. Similarly we define the block diagonal matrix W. For example, for a two
level HSS representation we would have

W =

⎛
⎜⎜⎜⎜⎜⎝

W1;1

W1;2

W2;1

W2;2

W2;3

W2;4

⎞
⎟⎟⎟⎟⎟⎠ .

We also arrange the Bk;i,j in a block diagonal matrix B, with the Bk;i,j in breadth-
first order, and within a node we place Bk+1;2i−1,2i before Bk+1;2i,2i−1. So for a two
level HSS form we would have

B =

⎛
⎜⎜⎜⎜⎜⎝

B1;1,2

B1;2,1

B2;1,2

B2;2,1

B2;3,4

B2;4,3

⎞
⎟⎟⎟⎟⎟⎠ .

We next define the shift-down operator Z↓ on trees. Given a binary tree with
matrices on each node, the action of Z↓ on the binary tree is to produce an identical
tree in which the matrix on every parent node has been moved into the children. The
matrices at the leaves are dropped off. The root node acquires a zero matrix. For
example for a two level HSS tree the action of Z↓ (in the depth-first order for input
and output) is expressed by the following equation corresponding to Figure 4:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Z↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
a
a
b
b
c
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(9)

2We are free to pick this order, but once we have chosen an order we must stick with it for the
remaining diagonal matrices too.
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Fig. 4. Action of Z↓ on a two level HSS tree.

Fig. 5. Action of Z↔ on a two level HSS tree.

As can be seen Z↓ is very sparse and noninvertible.

Now we define the twiddle operator Z↔ on trees. When Z↔ acts on a binary tree
with matrices on each node, it exchanges the matrices on sibling nodes. The following
equation gives an explicit representation for Z↔ on a two level HSS tree (which is
shown pictorially in Figure 5):

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Z↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
c
b
e
d
g
f

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Z↔ is a permutation matrix (which are always very sparse, of course).

Now let us assign the intermediate quantities gk;i and fk;i to the corresponding
nodes on the HSS tree. Naturally we can then stack them up in breadth-first ordering
in a single block vector and call them g and f . For example, for the two level HSS
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tree we would have

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f0;1

f1;1

f1;2

f2;1

f2;2

f2;3

f2;4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We also need to define a projection operator Pleaf that acting on a block vector
like f would return the restriction of it to the leaf nodes. For example, for the two
level HSS tree we would have

⎛
⎜⎝

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
Pleaf

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f0;1

f1;1

f1;2

f2;1

f2;2

f2;3

f2;4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

f2;1

f2;2

f2;3

f2;4

⎞
⎟⎠ .(10)

We also define x and b as the two block vectors obtained by arranging the sub-
matrices of x and b according to the leaf partitions of the HSS tree. So, for example,
in the case of a two level HSS tree we would have

x =

⎛
⎜⎝

x2;1

x2;2

x2;3

x2;4

⎞
⎟⎠ .

Of course this is just x in this case. But if we had ordered the tree nodes (and hence
leaves) in some other order this may not have been the case.

With these new matrices we can rewrite the fast multiplication recursions in
compact form. Let us start with the pair (3) and (4) which can be written together
as

g = PH
leafV

Hx + ZH
↓ WHg.(11)

It is very important for the reader to understand why the single equation above is
exactly equivalent to the pair (3) and (4). For example, let us check if (3) is captured
correctly.

To do that we can apply the leaf projection operator from the left in (11) and
obtain

Pleafg = PleafP
H
leafV

Hx + PleafZ
H
↓ WHg.(12)

We need to understand the significance of PH
leaf and ZH

↓ and their relationship to
Pleaf .

For example, PH
leaf is the pseudoinverse of Pleaf , as Pleaf is an orthogonal projector
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Fig. 6. Action of ZH
↓ on a two level HSS tree.

“onto the leaves of the HSS tree.” So if we look at the example in (10) we have⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

f2;1

f2;2

f2;3

f2;4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= PH
leaf

⎛
⎜⎝

f2;1

f2;2

f2;3

f2;4

⎞
⎟⎠ .

From this we can see that PH
leaf embeds a block vector inside an HSS tree with the

blocks assigned to the leaves and zeros assigned to the parent nodes. It follows that
PleafP

H
leaf = I.

Next we look at ZH
↓ . Since the action of Z↓ on an HSS tree is to move the vectors

at the parent node down into the child nodes, it is not surprising to learn that ZH
↓

does nearly the opposite; it adds the vectors in the child nodes together and assigns
them to the parent nodes, while the leaf nodes are assigned zeros. This is depicted in
Figure 6. From this it follows that PleafZ

H
↓ = 0.

Putting all this together we see that (12) can be simplified to

Pleafg = VHx,

which is exactly (3) written using block matrices.
Next we quickly describe how (4) is embedded in (11). For this we need to consider

the nonleaf nodes on both sides of (11). We can do so, for example, by multiplying
both sides by I −PH

leafPleaf . The latter acts on an HSS tree by setting all the vectors
at the leaf nodes to zero. From this, and our earlier description of PH

leaf and ZH
↓ , it is

easy to verify that (I −PH
leafPleaf)P

H
leaf = 0 and (I −PH

leafPleaf)Z
H
↓ = ZH

↓ . Therefore

when we multiply both sides of (11) by (I − PH
leafPleaf) we obtain

(I − PH
leafPleaf)g = ZH

↓ WHg,

which when written out componentwise for each nonleaf node yields (4).
Next we observe that (7), (5), and (6) can be combined and written as the single

equation

f = RZ↓f + BZ↔g.(13)
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Finally, we can write the output (8) as

b = Dx + UPleaf f .(14)

It is more convenient to combine the three equations (11), (13), and (14) into the
single equation⎛

⎝ D 0 UPleaf

0 BZ↔ RZ↓ − I
PH

leafV
H ZH

↓ WH − I 0

⎞
⎠

︸ ︷︷ ︸
S

⎛
⎝x

g
f

⎞
⎠ =

⎛
⎝b

0
0

⎞
⎠ .(15)

We first observe that the matrix S is extremely block sparse. In particular, S is
a block matrix with at most three nonzero blocks in every block row. For example,
the first block row of (15) reads

D2;1x2;1 + U2;1f2;1 = b2;1,

and it shows that S has only two nonzero blocks, D2;1 and U2;1, in its first block row.
The general observation, that S has at most three nonzero blocks in any block row,
follows from the recursions for the fast multiplication algorithm, (3) to (7).

It is now convenient to look at a graph representation of S. We will use the
standard one from text books (see [1, section 6.4.2]). Usually sparse matrices are
viewed elementwise and the corresponding graphs have elements on the edges. In our
case it is best to view S as a block sparse matrix and to look at the corresponding
graph instead. First we observe that even though S is not a Hermitian matrix, its
nonzero blocks form a structurally symmetric matrix; that is, if the (i, j) block of S
is a structural nonzero block, then the (j, i) block is also a structural nonzero block.
Therefore, we can use an undirected graph to represent the block sparsity of S. An
example of the graph we will use for a two level HSS form is shown in Figure 7. The
graph is set up as follows. First certain block rows and columns are assigned (or
associated) with a node of the graph. For example, in Figure 7, the block column
corresponding to the unknowns f0;1 and g0;1 is assigned to the topmost node in the
figure. Similarly the block column corresponding to the unknowns f2;1, g2;1, and x2;1

is assigned to the bottom leftmost leaf node. Once a block column has been associated
with a node of the graph the corresponding block row is also associated with the same
node. Note that the nodes for the graph representation of S are exactly the nodes
of the HSS tree. This is not a coincidence. Once the nodes have been assigned the
edges for the graph are picked according to the structural nonzero blocks of S. For
example, the equation

g1;2 −WH
2;3g2;3 −WH

2;4g2;4 = 0

is one of the rows of the equation expressed by (15). Since this equation connects
the block variable g2;3 with the block variable g1;2 there is an edge in the graph of
Figure 7 between the two nodes connecting these two variables. We do a similar
thing for every block row equation of (15), drawing an edge between two nodes of
the graph if there is a block equation connecting unknowns in the two nodes. The
resulting graph representation for S for a two level HSS form is shown in Figure 7.
The assignment of block rows and columns in this figure might seem arbitrary but the
intention will become clear soon. Definitely one of the reasons was to make clear that
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Fig. 7. Block sparse graph of S arising from two level HSS form.

the graph representing the sparsity of S is closely related to the graph representing
the HSS form of A.

Since S is very sparse it naturally raises the idea that we could solve the sparse
system of equations (15) for x efficiently using a standard sparse solver. However,
to establish that we must first establish that the system is invertible (if the original
matrix A is) and that we will not incur too much fill-in during Gaussian elimination
on S.

We begin with the first issue: does S−1 exist whenever A−1 exists? While resolv-
ing this question we will discover a remarkable diagonal formula for HSS representa-
tions. First, observe that the bottom 2× 2 principal submatrix of S is invertible with
an inverse given by the explicit formula

(
BZ↔ RZ↓ − I

ZH
↓ WH − I 0

)−1

=

(
0 (ZH

↓ WH − I)−1

(RZ↓ − I)−1 −(RZ↓ − I)−1BZ↔(ZH
↓ WH − I)−1

)
.

Of course the validity of this formula hinges upon the existence of the two inverses

(WZ↓ − I)−1 and (RZ↓ − I)−1.

But these two inverses always exist. The reasoning is as follows. We see from (9) that
Z↓ is nilpotent. Since W and R are block diagonal matrices with block sizes chosen
to be compatible with the block identities in Z↓, it follows that WZ↓ and RZ↓ are
also nilpotent matrices. From this it follows that the above two inverses always exist.
This proves our assertion.

Now we can always solve (15) for x and obtain

(
D + UPleaf(I − RZ↓)

−1BZ↔(I − ZH
↓ WH)−1PH

leafV
H
)
x = b.(16)
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Since this is true for all x, it follows that

A = D + UPleaf(I − RZ↓)
−1BZ↔(I − ZH

↓ WH)−1PH
leafV

H .(17)

This is a compact diagonal representation of the HSS form of A. It therefore follows
that if A is invertible then the sparse matrix S in (15) is also invertible, since A is
just the (1, 1) Schur complement of S.

So it is clear that to solve Ax = b for x we could solve the sparse system of
equations (15) instead. But to establish that there is a computational advantage in
doing so, we must show that the sparse system (15) has an ordering that will not fill
in during Gaussian elimination. Of course if we first eliminate f and then g, we will
get exactly A, which is the original matrix and completely filled in!

To find a better ordering we look at the block sparse graph for the system of which
an example for the two level HSS representation is shown in Figure 7. From that figure
it is obvious that there will be no block fill-in for the nested dissection ordering of the
unknowns, that is, if we eliminate in the following block order: ( f2;1 g2;1 x2;1 ),
( f2;2 g2;2 x2;2 ), ( f2;3 g2;3 x2;3 ), ( f2;4 g2;4 x2;4 ), ( f1;1 g1;1 ), ( f1;2 g1;2 ),
( f0;1 g0;1 ). To see why this is so, note that after eliminating the variables f2;1, g2;1,
and x2;1, for example, the remaining equations will have no new nonzero blocks (see
[1, sections 6.4.4 and 6.5.3] for further explanations on how determine fill-in during
Gaussian elimination from the graph representation).

In general, in the nested dissection ordering all the variables on the left subtree
are ordered before all the variables in the right subtree, with the variables on the root
node coming last. Of course, the variables in the left and right subtrees are themselves
ordered recursively in nested dissection order.

The bottom line is that there exists a no fill-in Gaussian elimination order. But
what about pivoting to ensure numerical stability? That is a more complicated ques-
tion, and we do not answer it here. Rather, we just observe that the block sparse
graph also shows that we can get an efficient sparse QR factorization in the nested
dissection ordering.

To see this let us follow through the first step of a block Givens QR factorization
algorithm on the two level HSS form shown in Figure 7. We first try to eliminate the
node containing f2;1, g2;1, and x2;1. We have to first apply a block Givens rotation
involving the pivot row and the row corresponding to the variables f2;2, g2;2, and x2;2.
We note that the only possible fill-in in this row and the pivot row must correspond to
the variables f1;1 and g1;1. But both these positions are already nonzero, so no fill-in
edges have to be added to the graph. If we now proceed with the nested dissection
ordering, we can argue similarly that no fill-in edges at all will be added to the block
sparse graph (see [1, section 6.6.4]).

Hence, to avoid numerical instabilities, we can just use a sparse QR factorization
method. Since there is essentially no fill-in, we obtain a solver that is numerically
stable and is linear in the dimension of the matrix A, with a constant that depends
on the size of the Bk;i,j matrices. In particular, the number of flops is a constant
times the sum of the cube of the sizes of the Bk;i,j ’s. This can be inferred as follows.

First note that every block equation has at most three block terms. Therefore,
every stage of the block QR factorization involves a constant number of matrix mul-
tiplications. For the sake of simplicity, let us consider the case when every matrix in
the HSS form is no bigger than p×p for some integer p. Then, it is clear that at every
stage of the block QR algorithm, the number of flops will not exceed some constant
times p3. Since there is no fill-in during the QR factorization, it also follows that the
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total number of flops will not exceed the number of nodes in the HSS tree times p3

times some constant. But the number of nodes in the HSS tree cannot exceed n/p
times some constant, where n is the dimension of the matrix A. Therefore, in this
case, the number of flops is O(np2).

We caution that to construct an HSS representation from a dense matrix will in
general require O(n2) flops (using the algorithm presented in [2], for example). The
same paper [2] also describes examples where the HSS representation can be computed
in O(n) flops. Similarly, the entire FMM literature can be viewed as a repository of
examples where the FMM representation can be computed in O(n) flops, and from
which the HSS representation in turn can be computed in O(n) flops.

5. Numerical experiments. We now describe some numerical experiments
that exhibit the efficiency and the stability of the sparse solver approach. All ex-
periments were carried out on a 1GHz PowerPC G4 machine with 1.5GB RAM and
a 167MHz bus. We used the vendor supplied BLAS.

The n × n matrix A was chosen according to the formula Ai,j =
√
|x(n)

i − x
(n)
j |,

with the points x
(n)
i = cos(π(2i+1)/2n) as the zeros of the nth Chebyshev polynomial.

The HSS tree was decided by a standard dyadic division of the interval [−1, 1]. The
intervals were repeatedly divided in half until there were less than p points left. The
value of p was chosen according to the matrix size to enable better memory behavior.
Since the zeros of the Chebyshev polynomial cluster at the end points the resulting
HSS tree was not uniform. We measure the skewness of the HSS tree as the ratio of the
longest path (shortest distance) from a root to a leaf to the shortest path from a root
to a leaf. The HSS form of the matrix was computed beforehand using the algorithm
in the earlier paper [2] to eight digits of accuracy. It is well known that for matrices of
the form we are considering in this experiment the ranks of the Bk;i,j ’s are essentially
proportional to the logarithm of the accuracy. Therefore, in this experiment the sizes
of the Bk;i,j ’s were essentially constant, independent of the matrix size. Therefore,
we should expect the CPU time of the solver to scale linearly in the matrix size.

The experimental data are reported in Table 1. The first column shows that we
tried matrices that varied in size from 256 × 256 to 131072 × 131072. The second
column shows the factor p that decides the maximum number of rows (and columns)
in a leaf node. The skewness of the HSS tree of the various matrices that we tried
is shown in column three. The fourth column shows the CPU time required by the
sparse solver.

The sparse solver we used was a custom built block QR solver. We ordered the
sparse matrix in (15) in nested dissection order. As can be seen from column four of
the table the solver is essentially a linear time solver as predicted by the theory, and
that it is not affected adversely by the skewness of the HSS tree.

In column five we show the backward error for each solve. The backward error
for solving the system Ax = b with computed solution x̂ is defined to be the ratio of
the smallest 2-norm of any matrix E that satisfies the equation (A+E)x̂ = b, and the
2-norm of A (see [1, section 1.4.6]). As can be seen from column five, the backward
error for our method is essentially machine precision. This shows that the method
behaved in a backward stable manner in this set of experiments.

6. Conclusion. We have shown that a fast direct solver for linear systems of
equations with the coefficient matrix in HSS form can be easily constructed from a
sparse solver. The resulting algorithm is fast and stable.

It is easy to see that this idea can easily be extended to handle more complex
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Table 1

Speed and stability of sparse solver for HSS forms.

Matrix size Leaf block size Skewness of tree CPU time in seconds Backward error
256 13 2 0.07 9.90765e-17
512 14 1.8 0.15 1.01727e-16
1024 15 1.83333 0.32 2.86709e-16
2048 16 1.85714 0.68 5.5083e-17
4096 17 1.875 1.43 8.24819e-17
8192 18 1.88889 2.87 4.0822e-17
16384 19 1.9 5.57 5.32472e-17
32768 20 2 11.29 4.96643e-17
65536 21 2 25.43 8.64522e-17
131072 22 2 53.88 8.51812e-17

partitions of the matrix than the one used in the HSS representation. In particu-
lar, the method can easily be extended to handle a full FMM representation of the
matrix (see [10]), the hierarchical matrix representation (see [8, 9]), and the sequen-
tially semiseparable representation (see [3, 4]). These matters will be presented in a
companion paper.
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