
A Stealth Learning Approach:

Teaching Programming Concepts

by Building Games

Author: Michel Fiege

Student number: 1262955

MSc Science Education & Communication

July 12, 2011

Abstract

Building games in introductory programming is seen more often. Although

it motivates pupils to learn, less is known regarding learning results. In

this study the learning results on programming concepts in introductory

programming are described. The study involved one group of 30 pupils in the

age of 12-13 from secondary education in The Netherlands. Over a period

of 10 lessons pupils build 6 small games by completion using new online

learning material for Game Maker. They also created a game themselves.

In the process of creating online learning material, an automated approach

for creating Game Maker manuals was developed. The results show that

pupils developed a basic understanding of some programming concepts in

their first programming experience.

Preface

Games and education: I could not wish a better combination of subjects for

my graduation project. In September 2007 I started teaching computer sci-

ence in secondary education at the RSG Hoeksche Waard in Oud-Beijerland.

I experienced the use of games in the classroom and especially the creating

of games. Pupils like to build games and given the tools available nowadays

it is easy to setup game making courses. Every week I now see pupils from

10 to 18 years old having fun building games.

So when in November 2009 I started thinking about a graduating project

I contacted Dr. Rafael Bidarra to see if we could come up with an idea

involving games. Over time the idea changed and developed into a web

application as described in chapter 4. I would like to thank Dr. Rafael

Bidarra for many things, but most of all for his patience as he has been

involved from the very beginning.

In November 2010 my graduation project really started. I would like

to thank my supervisor Drs. Martin Jacobs for his support, feedback and

guidance. I learned a lot from him. I would also like to express my gratitude

to Ir. Hans Geers and Drs. Martin Bruggink for the discussions we had.

Those talks put me back on track and provided useful insights. Finally,

I would like to thank my colleagues at the RSG Hoeksche Waard and in

special Marcel Eggen. It really helped that I could interview pupils during

their lessons.

Michel Fiege

Rotterdam, The Netherlands

July 12, 2011

2

Contents

1 Introduction 6

1.1 Motivation and problem description 6

1.2 Thesis overview . 7

2 Related research 8

2.1 Teaching introductory programming 8

2.2 Building games in education using frameworks 10

2.2.1 Alice . 10

2.2.2 Game Maker . 12

2.2.3 Scratch . 13

2.2.4 Comparison on programming concepts 14

2.3 Research question . 15

3 Learning Material 16

3.1 Teaching philosophy . 16

3.2 Structure of learning material 17

3.3 Teaching strategy . 18

3.4 Programming concepts and learning goals 19

3.4.1 Lesson 1: Sokoban . 19

3.4.2 Lesson 2: Breakout . 20

3.4.3 Lesson 3: Pac-Man . 20

3.4.4 Lesson 4: Asteroids 22

3.4.5 Lesson 5: Snake . 22

3.4.6 Lesson 6: Super Mario 23

3.5 Website specifications . 23

4 Automatic generation of game-related learning material 24

4.1 Requirements analysis . 24

3

4.2 Design and implementation 26

4.3 Evaluation and conclusion . 28

5 Research method 30

5.1 Design . 30

5.2 Sample . 31

5.3 Procedure . 32

5.3.1 Week 0: Pre-test . 32

5.3.2 Weeks 1 to 10: Game Maker curriculum 33

5.3.3 Week 11 and 12: Post-test 34

5.4 Instruments . 35

5.4.1 Pre-test interview . 35

5.4.2 Observations and logbook 36

5.4.3 Games built with Game Maker 37

5.4.4 Questionnaire . 37

5.4.5 Written test . 38

5.4.6 Post-test interview . 38

6 Results 39

6.1 General impressions . 39

6.2 Applying programming concepts 40

6.3 Giving examples of programming concepts 43

6.4 Explaining programming concepts 46

6.5 Systematically thinking about programming 47

6.6 Course evaluation . 48

7 Conclusions 52

8 Discussion 55

9 Reflection 58

Bibliography 60

A Online learning material 63

B Web application: GManualizer 68

C Slides Pac-Man 72

4

D Questionnaire 76

E Written test 78

F The 14 rated games 81

G Screen shots used in the interviews 83

H Examples of writings during interview 85

5

Chapter 1

Introduction

This graduation project consists of two parts: in-class research and software

development. In this chapter the motivation and problem description for

both parts are given followed by an overview of the chapters in this thesis.

1.1 Motivation and problem description

Games are used more and more in education. Not only are games being

played in an educational context, games are also being built. In the process

of building a game the learner is confronted with different programming

concepts such as objects, conditional statements and variables. As a teacher

in computer science in secondary education it is encouraging to see that

building games motivate pupils [26]. Motivated pupils learn better and a

game building course as introductory programming is therefore attractive.

Especially when in this way besides boys also girls are attracted to the

area of computer science [14]. However, although building games motivate

and stimulate pupils to use deep learning strategies [30], less is actually

clear regarding learning outcomes. This raises the question: what do pupils

actually learn from building games in terms of programming concepts?

In order to study these questions game-related learning material was

created. However, creating learning material is a time-consuming task and

it is often difficult to write and structure the material in a consistent way.

Also, problems can arise when the material needs to be updated or delivered

to the learners. Would it therefore not be easier if game-related learning

material could be generated in an automated fashion?

6

1.2 Thesis overview

In chapter 2 related research is described and different tools for building

games are compared. In the end of the chapter the research question is

further elaborated. In chapter 3 the learning material that was created is

described. In chapter 4 a new approach in creating game-related learning

material is found. This is the software development part of the thesis. Chap-

ters 5 and 6 describe the research method and results of the in-class study.

In chapter 7 conclusions are drawn and the discussion can be found in chap-

ter 8. Finally, a small reflection on the author’s learning can be found in

chapter 9.

7

Chapter 2

Related research

In this chapter research related to teaching introductory programming and

tools and trends in doing so are described. Three frameworks for building

games are then introduced and results of research regarding these frame-

works on programming concepts are described. One framework is chosen

for the introductory programming course and finally the research question

is elaborated.

2.1 Teaching introductory programming

An objects-first approach in teaching introductory programming received a

lot of attention in recent years. Compared to the more traditional imperative-

first or functional-first approaches, objects-first starts with concepts like ob-

jects and inheritance. More traditional concepts like control structures are

introduced later on in an object oriented context [7]. In teaching objects-

first, programming is taught ‘top-down’ and emphasizes the design of a pro-

gram. This reflects the way how humans solve problems [9]. At universities,

colleges and high schools worldwide an objects-first approach is nowadays

used most often [27].

Besides the object-oriented programming paradigm being used, there

are many tools that visualize programming using graphics and animation.

Visualization can help instructors in different ways. For example concepts

can be explained easier, the attention of learners is easier grabbed and more

material can be covered in less time [3]. In short, visualization can aid in

learning to program. Especially the argument that programming requires

8

both halves of the brain, thus also involving the artistic half and building

mental images of concepts, is found in earlier work [3, 6, 18].

There are multiple ways to visualize programming [18]. Graphics can for

example clarify the execution path or states of a program. The term used for

this type of visualization is ‘program visualization’. In this report the focus is

on ‘dynamic’ visualization where a program is visualized in runtime, instead

of ‘static visualization’ where snapshots of the program are taken at certain

points in the execution. Examples of systems that dynamically visualize a

program and have found their use in education are Turtle graphics in Logo

and successors like Karel the Robot, JavaLogo and PythonTurtle. The main

idea of these systems is that the learner controls an object, like a robot or

pen, and sees the execution of the program being drawn.

Another type of visualization is ‘visual programming’. Here graphics aid

in building the program itself. Typing syntax is minimized as the learner

uses graphical elements to create the program. For example boxes and

arrows, lines, flowcharts, icons, forms or diagrams are used to assist the

user. However, the program’s execution is not visualized. BlueJ [15] is an

example of a visual programming system that also takes the objects-first

approach. The learner uses forms and class diagrams to start programming,

focusing on the structure and design of the program.

A ‘visual programming language’ is a system that includes both ‘pro-

graming visualization’ and ‘visual programming’. In education Alice, Game

Maker and Scratch are examples of such systems. These systems, or frame-

works as they are called from now on, provide an environment for learners

to build computer games.

The objects-first approach goes hand in hand with programming games.

In a game everything is an object: walls, coins, characters, etcetera. Pro-

gramming the behavior of these objects is like thinking what happens to ob-

jects when certain events occur like pressing the arrow keys on the keyboard.

Concepts like objects, events or even difficult concepts like inheritance come

really natural in building games [20].

9

2.2 Building games in education using frameworks

The ‘visual programming languages’ Alice, Game Maker and Scratch are

now introduced. These frameworks provide a drag-and-drop environment

which makes programming more accessible as there is no need to learn any

syntax. The frameworks are used widely in education and have large online

user communities.

2.2.1 Alice

Alice 2.01 is an open source 3-dimensional interactive animation environ-

ment. Novice programmers learn the concepts of object-oriented program-

ming (OOP) by creating 3-D movies and games. Alice is designed by a

research group at the Carnegie Mellon University and is used for introduc-

tory programming in middle school [26] and higher education. [7].

The 3-D approach taken by Alice assists in providing a strong, appealing

context for students to learn the concepts of OOP. In Alice the objects-first

approach is clearly visible, because everything is an object with properties,

methods and functions. Triggered by events, the different methods of objects

can be executed. Alice comes with a large library of models which can be

used directly in the animations. Models consist of different parts which can

all be programmed by using the available properties and methods.

Shortcomings of Alice are found in its weak inheritance model. A class

can be extended by modifying an instance and thereby a subclass is created.

However, when changing the superclass these changes are not propagated to

its subclasses. Here the benefits of inheritance are lost [4]. As of Alice 3.0,

which is still in beta, the inheritance model will be improved. The choice

for a 3-D environment can become a burden when users want to create their

own models. Although Alice is bundled with 1200 models, the learner here

is not completely free in personalizing his game.

From observations by Cooper et al. in 2003 [7] it followed that students

in an elective Alice course prior to CS1 developed a strong sense of program

design, objects, inheritance, events, boolean types and program state. Stu-

dents collaborated by dividing tasks and they developed a an appreciation

of trial and error. Students however did not develop a detailed sense of syn-

tax, clearly because programming constructs are dragged and dropped. The

1http://alice.org

10

group of students that took the Alice course performed significantly better

in CS1 than the students that did not followed the Alice course. Something

similar is described by Moskal [17]. Her students’ performances in CS1 also

increased by taking an Alice course, although not significantly.

Although Brown [4] was able to teach a difficult concept like recursion

with Alice, he mentions his concerns crossing the gap from an Alice CS1

course to Java CS2. He notes that the most positive reports of Alice deal

with pupils in secondary education.

One of these reports is from Kelleher et al. [14]. She compared ‘Sto-

rytelling Alice’ (an adjusted version of Alice for building short animated

movies) with ‘Generic Alice’ (the normal version). On learning basic pro-

gramming concepts she concludes that pupils (all girls in this study) using

‘Generic Alice’ and ’Storytelling Alice’ were equally successful. In this study

data was collected from different instruments including the created Alice pro-

grams, a forced-choice programming quiz, Alice logs, an attitude survey and

behavioral data. The use of programming concepts was analyzed by count-

ing the number of pupils that used a certain concept including methods, do

togethers and loops.

Another report of Alice used with pupils in secondary education is of

Adams [1]. He describes the research that took place during an 8 day sum-

mer camp. The days were split in a morning session and afternoon session.

In each session a different programming concept or Alice specific concept

was explained. The pupils then produced an animated movie using the just

learned concept. Programming knowledge of the pupils was assessed in a

pre-test and post-test. Pupils were asked “Rate how much you know about

programming” on a 0 (nothing) to 5 (expert) scale. The average shift on

this scale was +1.8 and statistically significant.

The results of another summer camp are reported by Rodger et al. [26].

Over twenty tutorials were developed as learning material covering a variety

of Alice constructs. The use of programming concepts was examined by

counting the concepts that were applied in the projects. Percentages were

then calculated. Built-in function, events and loops where used most often.

11

2.2.2 Game Maker

Game Maker2 is an integrated development environment for the creation

of computer games. Users without any prior computer programming expe-

rience are able to develop games by means of the so-called drag-and-drop

functionality. Experienced users can make use of Game Maker’s full poten-

tial by writing scripts in Game Maker Language (GML). Game Maker is

developed by Mark Overmars3 in 1999 and is currently maintained by YoYo

Games. The latest releases are version 8 for Windows and version 7 for Mac

OS. Game Maker 8 for Windows is available in a free (Lite) and charged

(Pro) version. The Lite version suffices for creating most games. From now

on Game Maker should be read as ‘Game Maker 8 Lite for Windows’.

Game Maker uses an object-oriented design. Creating a game is a matter

of defining objects, events and actions. Some objects have a visual represen-

tation, others are used to control certain game aspects and are not visible in

the game [20]. Instances of objects are placed in a room, which is basically a

level editor. Game Maker also provides conditional statements and executes

a continuous loop during game execution. So both selection and iteration

can be discussed [5].

Game Maker also provides an intuitive image editor to create and edit

(animated) sprites. Using the community recourses however, thousands of

sprites, sounds and backgrounds can be found for free.

Shortcoming of Game Maker in relation to programming concepts are

the fact that arrays and lists are not easily supported using the drag-and-

drop environment. GML however supports these data structures, but then

the learner needs to learn some syntax.

Grgurina [11], computer science teacher educator at the University of

Groniningen, says from own experience in secondary education that Game

Maker “proved to be truly suitable to teach a large number of program-

ming concepts in a limited period of time while appealing and motivation

to students”.

Besides these words by Grgurina little literature is found regarding pro-

gramming concepts other then Overmars [20, 19], Chamillard [5] and Hab-

good [12] describing the possibilities of Game Maker.

2http://yoyogames.com/gamemaker
3http://people.cs.uu.nl/markov

12

2.2.3 Scratch

Scratch4 is a 2-D environment for creating interactive stories, games, anima-

tions and simulations. It is developed by the Lifelong Kindergarten Group

at the MIT Media Lab.

Three core design principles are applied: making programming more

tinkerable, more meaningful and more social. Especially this social factor is

interesting. With one click a project is shared online and others can view or

edit it. And that is what happens a lot. There are children creating Scratch

projects to teach others how to do certain things in Scratch [24].

Programming in Scratch is like playing with Lego. The ‘programming

blocks’ fit into each other, giving programming a very playful character. A

Scratch project starts with a sprite and then scripts (blocks), animations

and sounds are added to it. It’s all intuitive because blocks only fit on other

blocks when this is appropriate, making margin for error small.

Scratch is bundled with a lot of images that can be used as in-game

sprites or backgrounds. Images can also be edited with the build-in image

editor, making the game more personal.

Scratch does not support object oriented concepts like inheritance and

defining classes of objects. As a matter of fact the programming approach

is ‘bottom-up’ and Scratch makes no attempt to teach OOP [28].

Maloney et al. [16] reported on programming experiences of youth work-

ing on their own at a Computer Clubhouse over a period of 18 months. In

total 536 projects were analyzed on the use of programming concepts. This

was done by checking if a concept was used within a project. 111 of these

projects contained no scripts at all. Scratch was simply used as a media

manipulation tool. The core concepts of Scratch, sequential execution and

threads, were used most often. The 7 other concepts subject to study, in

order of usage, were user interaction, loops, conditional statements, commu-

nications and sync, boolean logic, variables and random numbers. Maloney

speculates that the concepts variables and random numbers are not easily

discovered without guidance. Only after instruction pupils began to use

variables.

4http://scratch.mit.edu

13

2.2.4 Comparison on programming concepts

Alice, Game Maker and Scratch were compared on the programming con-

cepts that the frameworks support in table 2.1. Alice and Game Maker sup-

port a wide range of programming concepts. Scratch supports less concepts,

partly because the framework does not support object oriented program-

ming concepts like inheritance and classes. However, general concepts like

iteration, conditionals and variables are supported, making Scratch suitable

to use for a first programming experience. The lack of OOP-concepts also

makes Scratch focus more on ‘play and try’ instead of ‘design and try’ as

Alice and Game Maker do.

Considering programming Alice takes the most serious approach. This

can also been seen from the fact that Alice is used in introductory program-

ming courses at universities [7], whereas research to Scratch focuses more at

younger children in secondary education [28]. Game Maker ends up some-

where in the middle when using only the drag-and-drop functionality. When

using the full functionality of Game Maker by means of scripting in GML

all programming concepts in table 2.1 are supported.

Alice 2.2 Game Maker 8 Lite Scratch 1.4

Sequence Yes Yes Yes
Iteration Yes Yes Yes
Conditional statements Yes Yes Yes
Variables Yes Yes Yes
Arrays Yes No Yes
Lists Yes No Yes
Event handling Yes Yes Yes
Threads Yes Yes Yes
Boolean logic Yes Yes Yes
Parameter passing Yes No No
Return values Yes No No
Procedures / functions Yes Yes No
Classes of objects Yes Yes No
Objects Yes Yes No
Inheritance Yes Yes No
Recursion Yes Yes No

Table 2.1: Comparison of Alice, Game Maker and Scratch on programming
concepts

14

Although the 3-D approach of Alice looks appealing, a 2-D environment

seems more attractive to use, because it allows for easy personalization of

a game. The author prefers the objects-first approach over ‘tinkering’ in

Scratch, because this way more attention can be given to the design of a

program. Therefore Game Maker was chosen as the framework to work with.

The programming concepts subject to study are object, instance, vari-

able, event, condition, iteration, function, inheritance and recursion. Using

these concepts simple games can be build, whereas functions and recursion

allow for more difficult but clever constructs. Note that due to naming in

Game Maker, an object actually is a class and an instance is an instantiated

object of a class.

2.3 Research question

Over the last years, like Grgurina [11], the author has seen pupils in sec-

ondary education successfully using Game Maker. The objects-first ap-

proach in combination with a ‘visual programming language’ let pupils easily

build games. But what do the pupils actually learn about the programming

concepts that they use in order to build their games?

Therefore the following research question was stated: To what extent

do pupils learn about programming concepts when building games as intro-

ductory programming? To answer this question the following sub questions

were stated:

• To what extent do pupils apply programming concepts in their own

game creations?

• To what extent can pupils give examples of programming concepts

used in a game?

• To what extent can pupils explain programming concepts in their own

words?

• To what extent do pupils develop a systematic or structural thinking

about programming?

15

Chapter 3

Learning Material

3.1 Teaching philosophy

The teaching philosophy is based on constructivist principles wherein learn-

ing is an active process in a relevant context with the learners being respon-

sible for their own learning. Learning is stimulated by means of ‘stealth

learning’, freedom, reward and challenge.

The learning material developed for this project starts with a new game

each lesson. The games chosen are all game-classics. Therefore chances are

high pupils are familiar with the games and that the games connect to the

environment of the pupils. An environment wherein the pupil spends more

than 100 minutes per day playing computer games [29].

Building a game over a long period is instructive, but can become te-

dious for the less motivated pupils. Pupils should experience moments of

success often when building games. In each lesson therefore a game is to be

build by completion. Pupils learn the basics of Game Maker by looking at

the example games, modify them and extend them. This approach is also

seen in objects-first programming [9] where concepts are taught ‘top-down’.

However, the difference here is that the focus in the learning material is al-

ways on building games and less on learning programming concepts. This is

what Randy Pausch called ‘a head fake’. Pupils are learning one thing while

they believe they are learning something else [8]. In this case the pupils are

building games while learning to program. This ‘stealth learning’ approach

in which pupils ideally don’t realize what they are actually learning [23],

should keep the lessons fun and the pupils engaged and motivated, resulting

16

in great learning experiences [22].

Once the game is completed at the end of the lesson, the pupil is given

the opportunity to really play the game. This moment of success, or reward,

is taken onto the next lesson, knowing that finishing the tutorial gives the

pupil a playable game. The game however can always be improved. Thus the

pupil is asked to extend the game, but this time with little to no instruction.

This freedom and challenge to change the game is important to motivation

[2].

The learning material is presented in the form of a website. This way

the material is available anytime everywhere. Enthusiastic pupils can access

the tutorials in their own time. For example to work ahead or create modi-

fications of the games. For this reason all games can be build with the free

version of Game Maker.

During the lessons the teacher mainly acts as a coach, a facilitator. The

teacher assists pupils in learning to learn from the online material. This

way pupils construct their own knowledge. Only a small part of the lesson

is used for direct instruction. See section 3.3. The lesson is ended with a

reflection on the work done as, according to Paras et al. [22], “learning is

not fully realized unless the player [here pupil] reflects on the events that

took place during the experience”.

3.2 Structure of learning material

Each lesson adheres to the following structure. The learning material can

be found online, see section 3.5.

1. A short background to the game as introduction

2. Learning goals stated in an understandable fashion

3. Text and images clarifying the first version of the game

4. Building the game by completion following step-by-step instructions

5. Summary, including references to the learning goals

6. A list of ideas for extending the game

The step-by-step instruction is inspired by ‘The Game Makers’s Com-

panion’ by Habgood et al. [13]. Each step, if applicable, is accommodated

with an image corresponding to the action’s icon in Game Maker. The

instruction itself is written and directly followed by a clarification of the

17

instruction. In addition to Habgood a screenshot of the current view in

Game Maker is included as a link. Here the benefits of a web page clearly

arise, making it possible to add visual help to every instruction. Clues about

Game Maker and explanation about programming concepts are written in

red text blocks. The blocks are positioned to the right of the actual con-

tent, making them stand out more. See appendix A for screen shots of the

website.

3.3 Teaching strategy

The teaching strategy is based on the pupils working independently. The

role of the teacher is to structure the lesson and provide assistance where

needed. The lesson plan is as follows.

1. Introduction (5 minutes)

(a) Rehearsal of the key slides of last lesson

(b) Introduction to today’s game, including a background story

(c) Explaining important elements that already work in the first ver-

sion of the game

2. Building the game (40 minutes)

(a) Pupils login on the website

(b) Pupils download the practice material

(c) Pupils create the game by following the steps on the website while

the teacher is available for questions

3. Reflection (5 minutes)

(a) Reflecting on important elements the pupils encountered

(b) Telling what game is next

Appendix C shows an example of the slides used in a lesson.

18

3.4 Programming concepts and learning goals

A programming concept is considered covered whenever the learner must

apply a concept or when the learning material explains the concept. In table

3.1 an overview of programming concepts treated in the learning material is

given. For each of the six lessons the learning goals are described. The goals

are twofold. There are Game Maker specific goals and there are goals for

learning programming concepts. The goals are described in the subsections

below. Some learning goals naturally contain both aspects.

Concept Sokoban Breakout Pac-Man Asteroids Snake Super Mario

1. Object X X X X X X
2. Instance X X X X X X
3. Variable X X X X X X
4. Event X X X X X X
5. Condition X X X X X X
6. Iteration X X X X
7. Function X X X
8. Inheritance X X X
9. Recursion X X

Table 3.1: Programming concepts throughout the learning material

3.4.1 Lesson 1: Sokoban

In this first lesson the basics of Game Maker are treated, like installing and

starting the program. Sokoban is completed by adding the character and

making it move through the room. More difficult game-aspects like shoving

the crates or checking whether a level is completed, are already implemented.

At the end of the lesson the learner is encouraged to create more levels.

The learner. . .

• is able to download the practice files from the website

• is able to unzip a zip-file

• is able to install Game Maker on the computer

• is able to open a practice file in Game Maker

• is able to add and edit sprites and objects

• understands that a sprite can consist of multiple images, called subim-

ages

• is able to edit a room by adding and removing instances of objects

19

• knows what a grid is when talking about rooms

• is able to explain what an event is

• is able to explain what an action is

• is able to count using a variable

3.4.2 Lesson 2: Breakout

In Breakout the learner starts to make the paddle move from left to right.

Then the learner adds new stone objects. While making use of inheritance

the learner implements the collision between the ball and the stones. The

ball itself was already programmed to collide with the paddle in a logical

manner. Finally the learner is asked to create more stones in different colors.

The learner. . .

• is able to explain what a collision-event is

• is able to use inheritance to avoid creating multiple collision-events

• is able to adjust the speed of an object using a variable

• is able to explain how the function max() works

• is able to explain the difference between an object and an instance

• is able to explain the difference between an object variable and a global

variable

3.4.3 Lesson 3: Pac-Man

The goal in creating Pac-Man is to discover the very basics of artificial intel-

ligence. Pac-Man itself is already created. The learner needs to implement

the four different ghosts, each one being a bit smarter than the last one. At

the end the learner is challenged to create yet another ghost that behaves

different than the once created before.

The learner. . .

• is able to explain how recursion can be applied in a game

• is able to use the step-event

• is able to adjust the x and y coordinates of an object

• is able to implement chances in Game Maker

20

(a) Sokoban (b) Breakout

(c) Pac-Man (d) Asteroids

(e) Snake (f) Super Mario

Figure 3.1: Screen shots of the 6 games

21

3.4.4 Lesson 4: Asteroids

In this lesson the learner needs to implement the steering of the spaceship.

By making use of subimages and variables the learner rotates and accelerates

the ship. In the end the learner implements a laser gun. Extra challenges

can be found in the creation of a protection shield or a computer controlled

alien enemy.

The learner. . .

• is able to rotate an object

• is able to use inheritance

• is able to explain what parent-objects and child-objects are

• is able to explain how the function min() works

• is able to explain the very basics of modulo arithmetic

3.4.5 Lesson 5: Snake

This exercise is yet another approach in making an object move in Game

Maker. The most difficult part of Snake is already created, namely the

body following the head of the snake. The learner needs to implement

the movement of the head using coordinates in the step-event. At the end

the learner is asked to create more levels and to change the sprites and

backgrounds.

The learner. . .

• is able to change the position of an object using variables

• is able to explain the difference between a non-persistent and persist

object

• is able to explain how the create-event is used for recursion

• is able to state the numbers corresponding to the directions right, up,

left, down

• is able to explain how many times the actions in the step-event are

executed

22

3.4.6 Lesson 6: Super Mario

Super Mario, who can jump, duck and run is used to teach the learner about

states and transitions. The learner implements parts of these transitions,

focusing on the concept of gravity in Game Maker. Finally, the learner is

challenged to make Mario enter a green tube.

The learner. . .

• is able to explain the different states Mario can be in

• is able to explain the state-transitions of Mario

• is able to implement gravity in Game Maker

• is able to explain what a view is when talking about rooms

• is able to explain why inheritance can be useful

• is able to use variables for multiple purposes

3.5 Website specifications

The website, publicly available at http://gm.michelfiege.nl, was created

using HTML, CSS and PHP. In appendix A screen shots of the website can

be found. For research matters an adjusted version was created. In that

version a MySQL database was used to collect usage statistics such as page

views, visits, downloads and clicks.

23

Chapter 4

Automatic generation of

game-related learning

material

Creating game-related learning material, for example as described in chapter

3, is a time consuming process. In its simplest form a game has to be built,

the manual has to be written and the manual should be distributed amongst

pupils. In this chapter a web application is introduced that makes the

process of creating learning material for Game Maker easier: ‘GManualizer’.

4.1 Requirements analysis

Learning material for Game Maker is basically found in three ways. Profes-

sional books like ‘The Game Makers Companion’ [13] or ‘Games ontwerpen

met Game Maker’ [21], tutorials by the creator of Game Maker1 and ma-

terial created by individual teachers. The books are full of information on

game design, story development and describe the creation of the example

games in full detail. The instructional directions are clarified with small

action-icon images from Game Maker, but mainly text dominates. Some-

times screen shots of the program state are given. The tutorials written by

Mark Overmars are bundled in a zip-file containing recourses like sprites

and sounds, Game Maker files and a pdf file containing the actual manual.

Like the books the manual contains a lot of explanatory text, but the in-

1http://www.game-maker.nl/tutorials

24

structions are now either in this text or in a screen shot of the program’s

state. Material by individual teachers2,3 are structured in a variety of ways,

but the approach by Overmars is often adopted, although not always Game

Maker files and recourses are included.

The learning material basically consists of the following items:

• Instructions (with or without Game Makers’ action-icons)

• Explanatory text

• Screen shots of Game Maker’s state

• Resources like sprites and sounds

• One or more Game Maker (.gmk) files

The process of creating a manual for Game Maker consists of the follow-

ing steps. The items between brackets are optional.

1. Create a game

2. Determine the order in which the game should be build

3. Open a text-editor and start writing

(a) Write instructions one at a time

(b) (Add action icon)

(c) (Write explanatory text)

(d) (Add screenshot)

4. Save the document

5. (Bundle the document, recourses and Game Maker files)

6. Distribute the manual

Throughout the writing process attention is given to a consistent writing

style, a nice layout and correct placement of the images. Steps involved in

creating a minimal manual thus are creating a game, determining the order

of instructions, writing the instructions and distributing the manual.

The game itself actually possesses valuable information that can be used

to write the instructions. In Game Maker there is an option to show the

Object Information of the game. This is a small text file containing informa-

tion about the objects, including events, actions and action parameters such

2http://www.game-maker.nl/educatief
3http://gamescool.nl/gratis_lesmateriaal.php

25

Figure 4.1: Screen shot of an Object Information file

as the name of the action and the values that were applied. In figure 4.1 a

screen shot of a piece of Object Information from a small Pac-Man game is

included. This file can be used to write the instructions automatically.

4.2 Design and implementation

The Object Information is the key component in automatically generating

the learning material. This file is used as input for the web application. In

figure 4.2 the process of creating a manual with GManualizer is outlined.

In appendix B screen shots of the web application can be found that show

the steps in creating a manual.

The user uploads the Object Information, which is a plain text-file, to

the web application. The file is read line by line (parsed) and a manual is

generated automatically.

In the parsing process the lines of the file are matched against a set of

carefully crafted regular expressions. This way objects, events and actions

are distinguished from each other. First a GM Manual object is created. If

a match is found one of the corresponding objects GM Object, GM Event or

GM Action is created and class variables are set. Each GM Object is linked

26

Figure 4.2: Flowchart of creating a manual with GManualizer

to GM Manual, each GM Event is linked to a GM Object, each GM Action

is linked to a GM Event and possible sub-actions (indents in the Object

Information file) are linked to parent-actions. For each of the actions the

parser then tries to automatically add some explanatory or supporting text

based on the name of the action and the parameters that were set. The result

of the parsing process is a GM Manual object containing all the information

from the Object Information file in a editable data structure. See figure 4.3

for a simplified object diagram.

After the parsing phase the user can customize the manual by adding

text and explanations and by arranging the order of objects and events. The

manual is a PHP-object which is displayed using HTML and styled using

CSS. In the manual the actions are visually supported by the corresponding

icons. Each time changes are made to the manual the GM Manual object is

serialized and stored in a session. The user can preview the manual anytime

without sharing it.

The manual can be saved for later editing and shared online to make

it accessible for anyone. When saving the GM Manual object it is first

serialized and then stored in MySQL database consisting of just one table.

27

Figure 4.3: Simplified object diagram of the GManualizer data structure

Through serialization the amount of queries to save the manual is minimized.

The user finally receives an email containing links to edit and share the

manual.

The shared manual can be viewed in any browser. There is also an option

to print the manual in case the learner prefers to read from paper.

The web application was custom build using PHP, HTML, CSS and

JavaScript and can be found at http://gmanualizer.michelfiege.nl/

alpha.

4.3 Evaluation and conclusion

GManualizer was thus far only used by the author. The Object Information

from Game Maker is useful as a starting point for creating a manual. The

basic steps in writing a manual, including adding explanations to instruc-

tions and distributing the manual, are covered. Moreover, every action in

the game is displayed in a consistent way in the manual. This makes the

creator of a manual focus on what’s important: the actual learning contents.

However, because it’s an automated approach, as a creator you don’t have

as much freedom as for example in creating a manual in a text editor. You’re

somewhat tied to a fixed pattern. The author beliefs that with some future

work and a thorough evaluation GManualizer could be improved and made

available to a larger audience.

28

A paper to be published later by the author will cover thorough testing,

evaluation and an improved version of GManualizer. Future work at this

point can be summed up as follows.

• The set of regular expressions should be extended to also support

Game Maker Pro functionality. Currently 85 actions from Game Maker

Lite are supported.

• The parser needs to be adapted in order to parse a few multi-line

actions. Currently those actions are skipped.

• The algorithm to automatically add supporting text could be im-

proved.

• Easy localization support should be added. GManualizer is currently

only available in English.

• Currently there is no support for adding custom images. Perhaps a

little more freedom in creating the manual will attract a larger audi-

ence.

• GManualizer can be made more ‘social’, as in personal pages and

overviews of recently created manuals.

• GManualizer’s implementation could be improved by choosing a PHP-

framework over the current custom build web application. This way

future maintenance is easier.

29

Chapter 5

Research method

5.1 Design

A pre-test post-test single group design was used for this study. Multiple

rather qualitative instruments were used to do the measurements.

This design in general is not strong in internal validity [25]. Single group

threats like history, maturation, testing, instrumentation, regression and

mortality may all occur. However, in this case not all of these threats

applied. The history and maturation threats were low, because the time of

the study was only 13 weeks. Also, because the curriculum was not graded,

pupils were likely not stimulated by other events to perform better other

then by the intervention.

The testing threat might have been an issue. However, the pre-test

interview lasted only 10 minutes and the pupil was not told how he or she

performed. The pupil was therefor not likely to really learn anything during

this interview. On the other hand, the pupils might have spoken to each

other about the interview, influencing each others prior knowledge.

The instrumentation threat was low when looking at the pre-test and

pre-test interview. The interviews were conducted in the same fashion with

as good as the same questions. However, the initial situation was measured

with one instrument and the final situation was measured using multiple in-

struments. Those instruments together provide more data, but also difficul-

ties comparing them to the initial situation. In section 5.4 each instrument

is accounted for with regard to the reliability.

The regression threat was high. The pupils had little to no prior pro-

30

gramming knowledge. It’s thus likely that students performed better after

the intervention.

The mortality threat was present. No pupils dropped out entirely, but

some students received more intervention than others.

5.2 Sample

The study was conducted in a class of 30 pupils in secondary education, dur-

ing a IT-course called ICT-Extra. The pupils were all around the age of 12

and they followed different streams of education: MAVO (pre-vocational sec-

ondary education), HAVO (senior general secondary education) and VWO

(pre-university education). The class was formed at the beginning of the

school year. Besides the regular curriculum pupils had to choose exactly

one of the following elective courses: Sport-Extra, Dance and Drama, ICT-

Extra or homework counseling. In table 5.1 details of the group can be

found.

Male Female Total

MAVO 4 5 9
HAVO 6 2 8
VWO 8 5 13

18 12 30

Table 5.1: The sample in streams of education and gender

Most pupils had already worked a bit with Game Maker before this study

commenced. Those pupils spent one day at primary school creating games

as an introductory to ICT-Extra. In this one day crash course, about 8 to

12 months ago, the pupils created a simple maze kind of game in a very

classical, step by step, direct teaching style. Only three of the pupils from

the sample did not have any experience in Game Maker at all.

31

5.3 Procedure

The study was conducted in the 13 weeks between 10 January 2011 and 8

April 2011. In table 5.2 the time path of the study is given.

Week Subject

0 Pre-test: Interview
1 Lesson 1: Sokoban
2 Lesson 2: Breakout
3 Lesson 3: Pac-Man
4 Lesson 4: Asteroids
5 Lesson 5: Snake
6 Lesson 6: Super Mario
7 Lesson 7: Building own game
8 Lesson 8: Building own game
9 Lesson 9: Building own game
10 Lesson 10: Completion and handing in own game
11 Post-test: Questionnaire and written test
12 Post-test: Interview

Table 5.2: Time path of the study

5.3.1 Week 0: Pre-test

The week before the course started the pupils were interviewed individually

for 10 minutes by the author. During those interviews, which were recorded

with a digital video camera, the pupils were first asked to tell about their

experience with Game Maker. After that, they were shown a screen shot

(appendix G) of the game-classic Breakout. If a pupil had used Game Maker

before, the following questions regarding programming concepts were asked

first.

1. Can you tell me the difference between an object and a sprite?

2. Can you tell me the difference between an object and an instance?

3. Can you tell me the number of objects, instances and sprites in the

picture? Please explain.

4. Can you tell me what events and actions are? Can you give an example

in Breakout?

32

5. Can you tell me what variables are? Can you give an example in

Breakout?

6. Can you tell me what inheritance is? Can you give an example in

Breakout?

Thereafter, they were asked to tell in their own words how Breakout

works. Finally, they were asked to write down on paper the way Breakout

works in a computer kind of language that felt right for them (in Dutch:

“voor jouw gevoel computerachtige taal”). Note that during and at the end

of the interview the pupil was not given any response on how he or she

performed.

5.3.2 Weeks 1 to 10: Game Maker curriculum

In weeks 1 to 6 the pupils worked with the online learning material (see

chapter 3) creating 6 different games. The teacher followed the teaching

strategy as described in section 3.3.

In weeks 7 to 10 the pupils created their own game. The pupils were given

the choice to work together in a small group or to create a game on their own.

Pupils could also voluntary sign up for the Creative Game Challenge1, a

national game creation contest for secondary education organized by Utrecht

University. The same teaching strategy was used.

During the curriculum the pupils were given the opportunity to stay an

additional 50 minutes right after the lesson.

The games were handed in by email in week 10. The pupils that partic-

ipated in the Creative Game Challenge also submitted their games on the

website of the organization.

At first the idea was to also keep in-class notes using observation schemes

created in advance, but this turned out to be too intensive a task. Some

observation where however written down during the lesson, but this was

only done when an observation was too important to ignore or when very

few fingers were up in the air.

Each lesson was recorded using a digital video camera and a tripod.

Also, after every lesson a short report was filed in the form of a post on my

research blog2.

1http://www.creativegamechallenge.nl
2http://michelfiege.blogspot.com

33

5.3.3 Week 11 and 12: Post-test

In week 11 the pupils were given a questionnaire (appendix D). The pupils

answered 10 questions on a 5-point scale giving their opinions about the first

6 lessons (online learning material), the last 4 lessons (creating their own

game) and more general points.

In the last week the pupils were interviewed again. The interviews were

a near copy of the interviews in the pre-test, only this time the game of

discussion was Space Invaders (appendix G). Once again every interview

was recorded using a digital video camera. The questions asked were the

ones stated below.

1. Can you tell me the number of objects and instances in the picture?

Please explain.

2. Can you give some examples of events and actions in Space Invaders?

3. Can you give some examples of variables in Space Invaders?

4. Can you tell me how inheritance could be applied in Space Invaders?

After answering these questions the pupils were asked to describe Space

Invaders in their own words. At last they were asked to write down on paper

the way Space Invaders works in a computer kind of language that felt right

for them (in Dutch: “voor jouw gevoel computerachtige taal”). Note that

during and at the end of the interview the pupil was not given any response

on how he or she performed.

34

5.4 Instruments

In this section the instruments used in this study are described in relation to

the research questions. Multiple instruments were used including interviews,

observations, created work, a questionnaire and a written test. The validity

of the instruments is based on the fact that the instruments were developed

in consultation with colleagues and experts in the area of computer science

education. Their reliability is discussed as well. For sake of clearness, the

research questions are labeled as below.

{apply} To what extent do pupils apply programming concepts in their

own game creations?

{examples} To what extent can pupils give examples of programming con-

cepts used in a game?

{explain} To what extent can pupils explain programming concepts in

their own words?

{structure} To what extent do pupils develop a systematic or structural

thinking about programming?

The concept investigated is learning programming concepts. The 4 di-

mensions are {apply}, {examples}, {explain} and {structure}. The way

these dimensions are assessed and by which indicators is described in the

subsections below.

5.4.1 Pre-test interview

To determine the pupils’ knowledge about programming concepts before the

intervention, every pupil was interviewed individually as described in section

5.3.1. This instrument was carefully created with the help of two educators

in computer science and tested on 3 pupils not included in the sample.

The interview gave a first impression about {examples}, {explain} and

{structure}. The reliability of this instrument is based on the interviewer

and the interpreter of the answers. To strengthen the reliability the questions

were written out and asked in the same order every time. The interview

was timed with a stopwatch in order to question every pupil for the same

amount of time. Also the interviews were recorded with a video camera.

35

The interviews were spread over multiple days. To conduct all interviews in

the same fashion the interviewer prepared the interviews by watching the

recordings of the day before. Analysis of the interviews started after the last

interview was held. This way the risk of leading questions was minimized.

Each of the concepts discussed in the interview (object, instance, vari-

able, inheritance, events and actions) were either clear (’Yes’) or not clear

(’No’) to the pupils. The results were assessed by inspecting the notes taken

during the interview and by carefully watching back the recordings. For

objects to be rated correctly, at least the ’monsters’, ’walls’ and the ’space-

ship’ should be pointed to without making other mistakes (see appendix G.

In order to receive a ’Yes’ on instances it should be clear that the pupil

is counting every instance in the screen shot of the objects he pointed out

before. Variables are rated ’Yes’ when besides for example saying “coordi-

nates” at least ’lives’ and ’score’ are pointed to. Inheritance is given a ’Yes’

when it is clear that the pupil does not confuse it with instance and that

the answer contains one of the elements ’parent’, ’child’ or a description

stating that inheritance “makes it easier to account for collision of multiple

objects”. Events and actions get a ’Yes’ when the pupil can give an example

of an event and action in Break Out.

Rating {structure} is also done on a ’Yes’ or ’No’ scale. The pupil either

writes in a ’programming kind of structure’ or not. The criteria to be given

a ’Yes’ were defined after the interviews, as little was known of what to

expect. A ’Yes’ was given when a pupil successfully wrote down objects,

events and actions in a table- or line-by-line-style, as opposed to making a

small story with long sentences.

The interpretation relies on the author and the reliability is therefor, as

good as intentions might be, subjective. It’s likely that there will be dis-

crepancies between any two experts. To determine reliability the Spearman-

Brown prophecy was used, using odd-even Split-Half Correlation. The in-

ternal consistency of the 8 items was 0.86 (n=26).

5.4.2 Observations and logbook

The observations, although not structured using schemes, were used to give

an impression of the learning material and the course as a whole. During the

lesson small notes where taken by the teacher and at the end of each lesson

an entry was submitted to the logbook. The lessons were also recorded using

36

a video camera. Attention was given at ambiguities regarding the learning

material, pupils’ commitment, the atmosphere in the classroom and ques-

tions regarding Game Maker or programming concepts. The logbook was

later consulted to support the findings in the results section. The record-

ings give an impression of the attitude and behavior of the pupils during the

lesson. The recordings don’t give information as detailed as the recordings

of individual pupils during the interviews. Reliability of the logbook and

observation is low, because it is incomplete (the teacher could never have

observed and reported everything) and thus only a selection of observations

was reported.

5.4.3 Games built with Game Maker

The games created by the pupils were analyzed with regard to the use of

programming concepts. This was done by counting the applied concepts,

similar to what was done in Maloney for Scratch [16] and Rodger for Al-

ice [26]. This number gives insight in {apply}. To strengthen reliability

counting was done twice for each game. No differences where found in this

process. However, the counting was done by the same person and therefor

it is hard to say that this instrument is reliable.

5.4.4 Questionnaire

The questionnaire (appendix D) was used to evaluate the pupils attitude

towards the learning material, building an own game, and the lessons series

in general. Although the questionnaire does not answer any of the research

questions, it provides valuable background information. The questionnaire

consists of 10 questions rated on a 5-point scale, including a neutral option.

Regarding the learning material the pupils were asked how ‘fun’, ‘interest-

ing’, ‘difficult’ and ‘clear’ they found it. On building their own game they

were asked how ‘fun’ and ‘difficult’ they found it. Finally the pupils were

asked how much they had ‘learned’, to rate their ‘skills’ in Game Maker and

to tell what they thought of the instruction and reflection at respectively the

‘start and end of the lesson’. The reliability is measured using Cronbach’s

Alpha internal-consistency method: α = 0.68 (n=30). This value is close to

satisfactory.

37

5.4.5 Written test

The written test was created in consideration with a teacher in computer

science in secondary education. The test consisted of 10 questions. The

first 9 questions asked the pupils to explain and give an example of a given

programming concept. Those questions respectively were used to measure

{examples} and {explain}. The 10th question was used to find out more

about {structure}. The questions regarding giving examples were rated 1

point for each good example. Most questions however only asked for one

example. For all the explanation questions a maximum of 2 points was to

be scored. For a blank or wrong answer 0 points were given, for an answer

containing at most one wrong element 1 point was given and for a complete

answer containing no wrong elements 2 points were given. Reliability of this

instrument has not been strengthened in any way.

5.4.6 Post-test interview

To find out more about {examples}, {explain} and {structure} a second

interview was conducted. The interview was held in the same way as the pre-

test (see section 5.4.1). The setting, duration, kind of questions, interviewer,

interviewees were all the same. In order to strengthen the reliability the

interviewer prepared the interviews by watching some of the recordings of

the pre-test.

Rating the conceptual knowledge ({examples}, {explain}) of the pupils

was also done on a ’Yes’ or ’No’ scale as described in section 5.4.1. The

same is true for {structure}. To determine reliability the Spearman-Brown

prophecy was used, using odd-even Split-Half Correlation. The internal

consistency of the 8 items was 0.67 (n=30).

38

Chapter 6

Results

In this chapter the four subquestions as stated in section 1.1 are answered.

To put the level of conceptual knowledge in perspective, examples of quotes

and answers from pupils are given.

6.1 General impressions

The interviews held at the beginning of this study went well. In general

the pupils were comfortable answering the questions and only one pupil did

not want to be filmed. Most of the questions the pupils could not answer

correctly, but they felt somewhat obliged to guess anyway.

At the beginning of the course the pupils were all excited to start building

games. They were focused on getting the game to work in order to play

and some pupils therefore rushed through the manuals. Often this hasty

attitude lead to questions, because instructions were misread or not read

at all. Especially Ramon, a bright pupil who worked hard, showed this

behavior. When I checked his games during the lessons things did not work

as supposed, but he could not care less. He played and modified the game,

because he liked that more than following instructions. Another group of

pupils found it difficult to start and basically wanted a teacher to look

over their shoulder. Unfortunately the group was too big to instruct each

pupil individually. The teacher also noticed that the pupils worked mostly

individually and that they did not bother to help each other in case of

problems, although the teacher encouraged pupils to do so. When asked

why the pupils did not help each other the argument given was all too often

39

that they did not quit understand it themselves.

The creation of a completely new game brought new problems. The

learning material was not really used anymore and pupils tried to figure out

things all by themselves. For example in the learning material the way to

make an object move using the arrow keys is explained in multiple ways.

However, most of the pupils did not use these examples and created the

control of an object themselves, often resulting in small errors and new

questions. The creation of one’s own game also showed that pupils really

liked to edit images, such as sprites and backgrounds. The built-in tools

in Game Maker to edit images were used without any problems and pupils

spent lots of time in doing so. Sanne for instance, who worked together with

Sven on their game, spent whole lessons creating new images.

At the end of the course the teacher felt that most of the pupils really

wanted to start on a new subject. However, the pupils still needed to fill

in a questionnaire and make a small written test. Only the pupils who

really enjoyed building their own game would have wanted to continue. As

a matter of fact 4 pupils kept making extra hours working with Game Maker

long after the course was finished.

The questionnaire and written test were handed out to the pupils in the

last lesson. Filling in the questionnaire went smoothly. The written test

caused a bit of rumor in the class, because a lot of the questions were too

difficult to answer. The fact that pupils knew that they did not get a grade

was reason for some of the pupils to leave blank answers, instead of trying

to write something reasonable.

The interviews held at the end of this study also went well. The pupils

were even more comfortable as they knew what to expect. Besides, they

now also told that they “just did not know that answer”, instead of guessing

anyway. Two pupils however did not want to be filmed.

6.2 Applying programming concepts

To what extend pupils apply programming concepts is measured by analysis

of their created games and by observation.

Of the 19 created games 14 were inspected on the use of programming

concepts. The 5 dropped games were mash-ups of the practice material

where no new elements were programmed. In these games for example only

40

new levels and new sprites were created. Similar findings were reported

by Maloney [16], where in 21% of the Scratch projects the program was

used as a media editing tool instead of a programming tool. In total 384

programming concepts were applied. In figure 6.1 the percentage of concepts

applied in the 14 games is visualized.

O
bje

ct

Var
ia
bl

e

Eve
nt

C
on

di
tio

n

It
er

at
io
n

Fu
nc

tio
n

In
he

rit
an

ce

R
ec

ur
sio

n

0

10

20

30

40

50

25

17

47

6
4

1 0 0

%
of

co
n

ce
p

ts
ap

p
li

ed

Figure 6.1: Concepts used in the created games

Since creating a game in Game Maker is primarily based on objects,

events and actions it is not surprising to find high percentages for the con-

cepts object and event. Variables were mainly used to keep track of scores

and lives. These two variables each have an own action icon in Game Maker,

making them easy to use. Only two groups used other variables. For ex-

ample to adjust x- and y-coordinates or speed and direction of an instance.

Conditions, including if- and else-statements were used in 7 of the 14 games.

In particular to implement gravity or to check when to go to the next room.

The event based approach of Game Maker makes the need for conditions low

in these simple games. Iterations, implemented by the Step- and Draw-event

were used in 6 games, mainly to handle gravity. Only in 1 game functions

were used to limit speed and to set boundaries for x- and y-coordinates.

Inheritance was used once (0.08%) and recursion was not used at all.

The quality of the games was low. Most of the games were unfinished and

poorly playable. However, that was to be expected with approximately 200

41

minutes of work for a first attempt in creating an own game. See appendix

F to get an idea of the quality of the games. Two games, named Dolphin

Island and De Spetterende Druppel Quiz (The Splashing Drop Quiz) were

really finished. Those games were created in groups of respectively 2 and 3

pupils and were also submitted to the Creative Game Challenge. Because

the pupils of these groups often stayed an extra hour, they also received

more help from the teacher compared to other pupils.

Dolphin Island was created by Sven and Sanne. Sven was responsible for

programming and Sanne created the graphics. Sven was a pupil who always

stayed an extra hour after the lesson. He worked approximately 10 hours on

the game, including some time at home. Sven could not have created the

game without the help of the teacher. He did not ask much, but he needed

help on variables and functions. Those concepts he could not apply on his

own using the online learning material or other tutorials found online. Just

before the post-test interview started Sven said “please don’t ask me about

variables”.

De Spetterende Druppel Quiz was created by Tessa, Anne and Sanne.

Tessa was responsible for programming and Anne and Sanne created the

questions and the graphics for the quiz. Tessa spent about 5 hours pro-

gramming the game. She had help using the Draw-event and variables, as

well as for creating a basic structure for the answering the quiz questions.

Concepts like iteration, variables and conditions raised many questions.

The two games described above have in common that they were created

by a group of pupils, not by a single individual. There was a clear division of

tasks and the programmers of the teams were both highly motivated. This

combination seems to work out well considering the timespan. The pupils

who created a game on their own lacked the time to create graphics and

to program the game. The result was often that both parts failed to be

accomplished well.

As for Game Maker, creating objects, events, actions and rooms the

pupils all learned and understood the basics. Difficulties were often found

in applying concepts like variables, conditions and iteration. For example

to count instances of objects or to check the position of an instance in

a loop. Much individual help was required here. Difficulties regarding the

basic concepts of the object-oriented event based approach (object, instance,

event) were solved in the first 6 lessons using the online learning material.

42

In the process of creating an own game only questions were asked regarding

what certain events were used for or whether some event existed.

In general the pupil is able to apply the concepts object and event with-

out help. The concept of an instance is not included in figure 6.1. However,

every game logically contained more instances than objects and the pupils

were all able to place instances of an object in the game without help. As for

variables the pupils could only use the in-game variables like score and lives

without problems. Variables that need to be created using the variable-icon,

as well as the concepts condition, iteration, function, inheritance and recur-

sion are not as much applied for two reasons. The first being that there is

often no need for it, because a lot of the game mechanics can be built using

only objects, events and simple actions. Second, the pupil could not figure

it out and asked no questions or a question was not answered (in time) due

to the size of the group and the large amount of questions.

6.3 Giving examples of programming concepts

To what extend pupils can give examples of programming concepts is mea-

sured by a written test and an interview.

The written test was done by all 30 pupils. In figure 6.2 the percentage

of correct examples per concept is given. In order to appreciate these results

it is good to see some of the individual answers that were given. An overview

of correct and incorrect examples for a given programming concept is given

in table 6.1. The test itself can be found in appendix E.

From the written test it follows that pupils have difficulties stating ex-

amples on paper. An example of an object is given correctly by 70% of

the pupils, but on all other concepts the pupils scored less than 50%. The

concept event (41% correct) is sometimes falsely seen as an action. This is

clearly a misconception. Examples of variables (33% correct) are vague. A

lot of pupils answered this question by writing “x- and y axis”. It seems

they are thinking in the right direction, but they can’t really give a right

example. Considering all low scores, the fact that difficult concepts like

inheritance (30% correct) and recursion (23% correct) score relatively well

are remarkable. Again, the examples are not great, but the pupils were

able to think in the right direction. However, the two concepts were also all

too often mixed up. Meaning that an example of inheritance was given for

43

recursion and vice versa. Good examples of instances (20% correct), the

concept they applied most in their own games, are few. It seems like this

concept has not been labeled into the minds of the pupils. Often there is

given no answer or an example is given of some random concept. An answer

containing the word object would be expected, but this is never the case.

Examples of conditions (7% correct), split into if and else in the written

test to make it more clear, were answered with a big question mark. Only

three pupils had some idea that came close to testing variables. Examples

of iteration and functions (both 0% correct) were not given correctly at all.

Similar results can be seen in figure 6.3, wherein the results of the in-

terviews are displayed. In those interviews the pupils were asked to point

out certain concepts in a screen shot of a game (See appendix G). Each

concept is understood better in the post-test than in the pre-test. From the

figure it follows that the pupils could give examples of actions in 67% of

the cases. Action is however not considered a concept. It is tested in this

interview to see how well the Game Maker trinity object, event, action is

understood. Objects (63%) and events (47%) were pointed out correctly by

almost a majority of the pupils. Again some of the pupils mixed up the

concepts of event and action. The score on inheritance is again relatively

high with 17%, but during the interviews a lot of pupils also gave examples

pointing towards the concept of instance. Examples of instances (7%) were

scarce, just as in the written test. In the interviews almost every pupil told

that they did not know that term and wanted to skip that question. Sven

however gave an answer that showed he did understand it. He argued that

there were no objects to be seen in the picture, but that it were all instances

of objects. None of the pupils could point out variables. Again the majority

of pupils said they did not really understand that term.

In general the pupil is able to correctly give examples of objects and to a

lesser extent of events. Events are too often mistaken for actions. Examples

of other concepts, including instance, variable, condition, iteration, function,

inheritance and recursion were only given correctly by a minority of the

pupils. The relatively few correct answers concerning instances is peculiar,

as the pupils worked with them a lot. On the other hand, examples given of

difficult concepts like inheritance and recursion make it plausible that too

little attention is given to the relatively easy concepts variable and instance.

44

O
bje

ct

In
st
an

ce

Var
ia
bl

e

Eve
nt

C
on

di
tio

n

It
er

at
io
n

Fu
nc

tio
n

In
he

rit
an

ce

R
ec

ur
sio

n

0

10

20

30

40

50

60

70

48

7

12

32

7

0 0

23

7

70

20

33

41

7

0 0

30

23

%
of

co
rr

ec
t

an
sw

er
s

Written explanation
Written example

Figure 6.2: Results of written test

Example Correct Wrong

Object “A dummy that moves back
and forth”

“An image of a water drop”

Instance “The Mario who you put
somewhere (in the room)”

“Move forwards”

Variable “To count steps” “Event”

Event “Create, Collision, Key-
board, Press, Step”

“The direction he is moving
towards”

Condition “If you’re hit, die, else
don’t.”

“For a number between 1
and 50”

Iteration no correct answers “If you create coins”

Function no correct answers “Walking, jumping, run-
ning”

Inheritance “To give objects the same
events”

“That they multiply”

Recursion “To add multiple coins in a
room at once”

“An object”

Table 6.1: Examples of correct and wrong examples of concepts

45

O
bje

ct

In
st
an

ce

Var
ia
bl

e

In
he

rit
an

ce

Eve
nt

A
ct

io
n

St
ru

ct
ur

e

0

20

40

60
50

0 0 0

28

36

7

63

7

0

17

47

67

21

%
of

‘c
o
rr

ec
t’

a
n

sw
er

s

Pre-test interview Post-test interview

Figure 6.3: Results of the interviews

6.4 Explaining programming concepts

To what extend pupils can explain programming concepts in their own words

is measured by a written test and an interview.

The written test was done by all 30 pupils. An overview of correctly

explained programming concepts is given in table 6.2. From the figure it

follows that the concepts object and event are best known. In table 6.2

some individual answers regarding the programming concepts are stated.

Explaining a concept is more difficult than giving an example as can been

seen in the table.

The concept object is explained well by 48% of the pupils. Some pupils

mistake an object with a sprite, which basically is an image, and others find

it just difficult to state it their own words. Descriptions of event (32%)

and inheritance (23%) lack precision, but often the pupil heads in the right

direction. As written earlier, there are also misconceptions in play. Events

are considered actions, and inheritance is explained as the concept instance.

The concept of variable (12%) is not clear at all. Pupils often guess by filling

in some random answer. There is no general error to be found amongst the

answers. Answers like “something that repeats itself”, “the x- and y-axis”

or “is a thing that walks” don’t show any similarities. The concepts instance

46

and condition (both 7%), as well as iteration and function (both 0%) are

all explained poorly or not at all.

Description (Partially) correct Wrong

Object “It’s connected to a sprite
and you program stuff in it”

“Something you place in a
room”

Instance “The object that is placed in
the room”

“Something your object
does when you press a key”

Variable “It adds/subtracts things” “A button for the direction
0-360”

Event An occurrence in the game “Something you put the ac-
tions into”

Condition “If you are working with
variables”

“It’s the speed”

Iteration no correct answers “The counting of points”

Function no correct answers “Something he does”

Inheritance “An object that has the
same properties”

“That’s something that
keeps the game running”

Recursion “That an object (coin) splits
itself”

“That the grid is filled with
instances”

Table 6.2: Examples of correct and wrong description of concepts

6.5 Systematically thinking about programming

To what extend pupils can systematically think about programming is mea-

sured by a written assignment during an interview. In appendix H the

writings of 4 pupils can be found.

From the pre-test interview it followed that 3 pupils (7%) could reason

and write in a somewhat abstract and structural way. Meaning that they

wrote down objects, events and actions in a structured way. They thought

about interaction between objects in terms of events and actions. For the

other pupils a generic trend was to be seen. These pupils could all orally

explain the way Break Out works in a good fashion, but lacked the ability to

write in a structured way as the other 3 pupils did. This formalization step

went laborious, resulting in long sentences that described the game, rather

than “programmed” the game. Compare for example the writings of Tessa

and Justus with the writing of Kimberley in appendix H. In order to find

out if the pupils knew what was most important in their sentences, they

were asked to underline words. This step in the interview was improvised

after seeing pupils struggle with the assignment. All pupils that were asked

47

to do this did this surprisingly well. Words like “block”, “bat”, “wall”, “if”

and “then” were marked. Then they were asked to start over. They were

now explicitly told that the sentences did not have to be well-formed, and

that shorter was better. Shorter it got, but it were basically still sentences

lacking a few words. Structure in the sense of line breaks or text indents

were not applied.

In the post-test interview pupils showed more understanding of events

and actions. Still however long sentences were formed. For example in

Dylan’s case who wrote: “you set the event left/right and space and the

action causes [the object] to move left, right or shoot”. Answers like this

were not graded as correct, because these sentences show no, or at least little,

systematic thinking about programming. Compare for example Kimberley’s

pre- and post-test as shown in appendix H. Her pre-test is a typical example

of the way most pupils did both tests. However, her writings in the post-test

were graded as correct, because there is a clear structure in objects, events

and actions to be seen. For Sven the same is true. His pre-test writings

were considered wrong and in the post-test he did correct. Tessa and Justus

were the only two who structured their writing correctly in both the pre-test

and post-test. In total 6 writings (21%) were graded as correct.

6.6 Course evaluation

All 30 pupils filled in the questionnaire. The results can be found in figure

6.4. The pupils on average assessed (on a 1 to 5 scale) the online learning

material to be fun (3.5), interesting (3.2), easy (3.4) and clear (3.7). They

found it more fun (3.7) to create their own game. And creating their own

game was as easy (3.4) as working with the learning material. The pupils

learned a lot (3.6) if you ask them, but they are critical at their own skills

(2.7) concerning Game Maker. The first (2.7) and last (2.8) 5 minutes of

a lesson, in which instruction was given and concepts were explained, were

not seen as useful. Additional comments from pupils (19 in total) are listed

below.

+ “It was super fun!”

+ “The teacher explained everything well.”

+ “It was fun.” (2x)

48

Fu
n

(m
at

er
ia
l)

In
te

re
st
in

g
(m

at
er

ia
l)

Eas
y

(m
at

er
ia
l)

C
le
ar

(m
at

er
ia
l)

Fu
n

(o
w
n

ga
m

e)

Eas
y

(o
w
n

ga
m

e)

Lea
rn

ed
Sk

ill
s

U
se

fu
l (fi

rs
t
5

m
in

.)

U
se

fu
l (la

st
5

m
in

.)
2.6

2.8

3

3.2

3.4

3.6

3.8

3.5

3.2

3.4

3.7 3.7

3.4

3.6

2.7 2.7
2.8

Figure 6.4: Results of questionnaire

+ “I’ve learned a lot in 10 lessons working with Game Maker.”

+ “I learned a lot. I found it an interesting subject and I also spent time

working at home.”

+/- “I found it difficult to remember and apply things. Even though the

lessons were fine and I hope my skills get better over time.”

+/- “Sometimes I got bored, but overall it was fun.”

+/- “I had more fun as the course developed over time.”

+/- “Some lessons were fun, others a little less.”

+/- “I’m not really clever in this kind of things, but the more easy stuff I

could do and remember.”

+/- “It was boring, but also fun.”

- “Game Maker is too complicated.”

- “I’ve learned just a little of Game Maker in 10 lessons.”

- “Lots of things I could not find in the online material.”

- “Six games were a little too much. I had too little time for my own

game.”

- “The first six lessons were too much. We had only little time to create

49

our own game. We did some work at home though.

- “I would suggest that you can start right away; that not everyone

should listen to the introduction in the first five minutes of the lesson.”

- “We had to do too much on our own.”

The website containing the learning material is visited 230 times, result-

ing in 7.6 visits on average. A pupil spent on average 145 minutes on the

site. The total time a pupil spent on the curriculum, including the time

in the classroom and the time on the website, is on average 541 minutes.

That’s slightly more than 50 minutes per lesson. However, there are huge

differences between pupils. The pupil that received the most intervention

spent a total of 1071 minutes, while the least active student spent only 300

minutes. Notable is that only 2 pupils visited the website at home. Some

pupils said they worked at home, but they must have done this without

using the website.

From a teachers perspective the curriculum was fun and interesting, but

not without comments. In total 35 blog posts were written to evaluate

interviews and lessons, saving remarks and noting musings.

It took about 3 lessons before every pupil was able to independently

download, unzip and open the practice file from the website. Direct in-

struction at the beginning of the lesson was more than once necessary on

this subject, while this time was planned to instruct the pupils about Game

Maker and programming concepts. The instructions in the online learning

material were kept short on purpose, but still pupils did not read them well.

Often the teacher was called quickly for help. As some pupil stated in the

additional comments above, he had to do too much on his own. Given a

class of 30 pupils with a lot of questions it was not weird that in the first

4 lessons only about half of the class managed to built the game of that

day completely. The last 2 lessons working with the online learning ma-

terial went smooth as the pupils really got the hang of Game Maker and

understood were to put their attention to in the manuals.

The first and last 5 minutes of a lesson often were a struggle. Once a

pupil entered the class all he or she really wanted to do was to continue

with Game Maker. Waiting for some instruction only slowed things down

in their opinion. The pupils did not seem to realize that they needed this

instruction. At the end of the lessons, when the pupils were finishing up

50

their game, it was difficult to get the full attention of the class. The results

from the questionnaire make it clear that the short instructions were seen

as obstacles, rather than as helpful.

The teacher expected more of the created games and the motivation of

pupils. Normally a subject of ICT-Extra is given for 6 or 7 weeks. Maybe

this is why some of the pupils got bored and did not perform at their bests.

Another factor might be that the assignment of creating ones own game was

stated too open. For intrinsic motivation to flourish a challenge should be

’pleasantly frustrating’ [10]. The teacher thinks that the majority of pupils

saw the creating of a game more as ’frustrating’ than ’pleasant’, because the

group was too large to successfully assist each pupil individually. It might

also had been better to just grade the work, even though no officials grades

were to be given for the course. A little extrinsic motivation would not have

harmed the pupils.

On the positive side, there were 8 pupils that stayed at least one extra

hour in the 10 weeks. Two of them followed this extra lesson every week. In

this hour more personal attention was given and better learning conditions

were present. In these moments the pupils worked on their own game,

finished or extended the game of that lesson and sometimes played each

others games or played games found online.

51

Chapter 7

Conclusions

In this study the following question was addressed. To what extent do pupils

learn about programming concepts when building games? Pupils’ learning

was investigated by assessing which concepts they applied in their games,

to what extent they could give examples of programming concepts, to what

extent they could explain programming concepts and to what extent they

developed a way of ‘structural thinking’ about programing. Pupils showed

a basic understanding of some programming concepts while other concepts

were poorly understood.

The results show that objects and events, together with instances and ac-

tions were most used. This is not surprising, because of the object-oriented

event-based approach Game Maker takes. In order to build a simple game,

like the pupils did, these four concepts suffice.

The pupils were best able to give examples of objects, actions and events.

It seems that what they use most they know best. However, for instances

this was not true. The term clearly was not labeled in their minds. One

explanation might be that in Game Maker the word ‘instance’ is almost

never used. Another explanation might be that the teacher spent more time

on concepts like inheritance and recursion, as pupils were better able to

give examples of these relatively difficult concepts. For variables something

similar was observed. Although pupils used variables to set scores and lives,

they actually did not label these as being variables. This can be explained

by the fact that Game Maker uses separate action-icons for lives and score.

Pupils are therefore not confronted with the word ‘variable’. This seems to

be a disadvantage of ‘visual programming’ regarding learning programming

52

concepts. The pupils had lots of difficulties giving examples of conditions,

iterations and functions. Most of the pupils simply had no idea. These

concepts were rarely used in their games. It’s therefore noteworthy that

pupils could relatively well give examples of inheritance and recursion. None

of the pupils used these difficult concepts in their own game, but from the

post-test interview and written test it followed that the pupils could give

simple examples of these concepts.

Explaining concepts was more difficult than giving examples of concepts.

Again on the concepts of objects, events and actions the pupils scored best.

The other concepts were all poorly explained.

On structural thinking it’s important to note that no teaching what-

soever was done on the subject of structuring ‘code’. Never in the whole

intervention had the pupils been given examples or instruction on this mat-

ter. Building games with Game Maker and short instruction on program-

ming concepts were the only interventions applied. In the post-test 6 pupils

structured their writings using the trinity objects, events and actions of

Game Maker. Also the 2 pupils who did structure their writings in the

pre-test performed better in the post-test. The influence of the objects-first

approach here is clearly visible, especially because concepts like conditional

statements and iteration were not used in the writings. Pupils thus seem to

develop a top-down thinking about programming.

Teaching 30 pupils on programming concepts without the ‘stealth learn-

ing’ approach of ‘building games’ would have been stricter and probably less

fun to the pupils. The fact that pupils enjoyed working on their own game

almost as much as working with the manuals is reason to believe that the

course was not really seen as ‘learning’, but more like ‘building a game’.

Although some pupils could not cope well with the freedom that was given,

the more motivated pupils produced playable games and learned quite a bit

about programming concepts in doing so. The best example of this is Sven,

who could not answer any of the questions in the pre-test correctly, but

scored best in the post-test interview. He also created the best game and

was among the best pupils in the written test.

Despite the poor summative results, the pupils did learn some things

about programming concepts. The extent in which this happened can not

be given a value, but can be best described as follows. Objects, actions and

events were best known before and after the intervention. The increase in

53

knowledge about these concepts was foremost on recognizing and giving ex-

amples. The better pupils were also able to explain these concepts in a basic

way and they could think in a structured manner about programming. For

the relatively more abstract concepts inheritance and recursion the pupils

had some idea what it was, but applying these concepts themselves was too

big a step. The terms variables and instances, although used in all games,

were not labeled and therefore pupils could use them, but not explain them.

For the concepts condition, iteration and function hardly any learning effects

were visible. Quite possibly, when more instruction was given on variables

and instances, instead of recursion and inheritance, the pupils’ learning of

concepts would have correlated with the usage of concepts. However, further

research is needed to investigate this statement.

54

Chapter 8

Discussion

It is important to see the results in the context of secondary education and

to take the age of the pupils into account. ‘Learning programming concepts’

is more like ‘learning the basics of programming concepts’ and in that light

the pupils were also assessed. There was not a pupil that could explain for

example the inheritance model of Game Maker in full detail, but notions of

‘sharing the same events and actions’ showed a basic understanding.

The fact that pupils were not graded during the course might have influ-

enced the learning results. In a regular course the pupils are also extrinsically

motivated by means of grades. In this elective course the absence of grades

provided an opportunity to see how ‘stealth learning’ and intrinsic motiva-

tion can lead to understanding of programming concepts. For a majority

of pupils this led to a decrease in motivation over time and looking back as

a teacher the atmosphere in the class was not optimal for learning. This

might explain the somewhat disappointing learning results.

It’s somewhat strange that relative easy concepts like variables and in-

stances were less understood than inheritance and recursion. Clearly the

terms ‘variable’ and ‘instance’ were not labeled in the minds of pupils, pos-

sible because less direct instruction was given too those concepts. Maloney

et al. [16] confirm the need for guidance on variables as this concepts is

caught on slowly by the pupils.

Misconceptions were also found. Pupils who could explain the basics of

inheritance for example thought they were talking about instances and vice

versa. Clearly applying concepts from a step-by-step manual and later on

trying to build ones own game does not imply deep learning. Especially not

55

in such a short time and with abstract entities like programming concepts.

On the other hand pupils might have felt obliged to answer questions in the

interviews and guessed certain answers instead of telling that they did not

knew the answer.

The learning results might explain why pupils did not, although encour-

aged by the teacher, really help each other. The most obvious reason is that

the pupils had a hard time figuring it out themselves, let alone help their

fellow pupils. Possible the learning material was too difficult for their age.

The learning material, although well received by the pupils, was created

in just 6 weeks and never used before in another setting. Only after the

in-class research was conducted the learning material was made public. In

the period from March 1st to June 30th the website was visited over 2600

times with more then 7000 pageviews and an average of 21 visitors a day.

The author received numerous e-mails from teachers from other schools who

were happy with the learning material. It would be interesting to conduct a

follow-up study to see what a large number of pupils think of the material.

Such a study might shed light on why the learning material was hardly used

anymore when the pupils had to build their own game.

‘GManualizer’ might be an answer to the demand for Game Maker man-

uals. Although not yet used in education, the author beliefs that this web

application can cause teachers (or even pupils) to create a variety of man-

uals, all bundled in one place. It would then be interesting to see which

manuals are used most. Over time this might give insight in what teachers

and pupils think are great manuals. For now ‘GManualizer’ needs to be

tested by users and improved before made public to a large audience.

The notion that learning is correlated with the usage of programming

concepts also suggests that working with another framework would likely

produce other learning results. Projects produced in Alice and Scratch for

example show a somewhat different use of programming concepts [26, 16].

Learning concepts therefor is likely to depend on the context in which they

are taught. This research project could for example be extended with an-

other group of pupils taking an Alice course.

It would also be interesting to research whether the conceptual knowl-

edge of one framework is transferable to another. Would pupils who had

Game Maker before perform better in an Alice course than pupils who have

never used Game Maker nor Alice before?

56

The fact that there was only one group tested makes it impossible to

generalize the results. Also the use of rather qualitative measures made

it difficult to say things with certainty. In future studies a forced choice

written test would therefore be recommended. The interviews provided a

deep look in the minds of pupils and were found most useful in this study.

57

Chapter 9

Reflection

In this chapter I reflect on what I have learned and whether I have become

a better, more researching teacher during my graduation project.

I learned that doing research, quite similar to giving a good lesson, is

all about preparation and design. Without a well designed intervention and

proper instruments research fails and without a lesson plan and learning ma-

terial a lesson fails. I believe that this thesis helped me valuing preparation

and design more than ever. Looking back for example at learning material

that I created before this graduation project it often misses explicit learning

goals and moments of reflection. I am working on new learning material

for ICT-Extra and started with learning goals and summaries. The actual

lessons will be written later. I believe that I have matured in creating learn-

ing material and lesson plans.

Interviewing pupils was new to me. From this I learned that pupils,

although I knew this quite a bit already, are very honest and sincere in a

personal conversation. Also I believe that interviews could be used well for

assessing pupils. Basically I was testing what pupils knew and in 10 minutes

time you can actually find out interesting things. I would like to find out

more about oral assessments in the future.

From the interviews, but also because I created all the learning material,

I now have a better view on what pupils in the age of 12-13 are capable

of learning. Estimating the time pupils need for certain tasks is difficult.

I learned that by means of additional exercises for the quicker pupils it’s

possible to keep all pupils equally busy during a lesson. I will try to keep

this thought in mind while preparing lessons and creating learning material.

58

I learned a lot from writing this thesis. Structuring a large report, the

style of writing, a supervisor questioning statements; it was a new experience

and an experience I embrace. I believe that this experience can help me guide

pupils in writing their (smaller) reports.

I also developed an appreciation for research and I learned to look crit-

ically at the work of others. I find it interesting to see new developments

in the area of computer science education and I think it’s important as a

teacher to keep up to date. Especially regarding ‘visual programming lan-

guages’, which I believe are valuable in secondary education, I will keep

myself informed. Perhaps I will even do some research myself once again in

this area as I am planning to use more of these tools/frameworks/languages.

Although the research process matured me in thinking about preparation

and design, I believe that regarding the research itself I still have a lot to

learn. For example, I should have focused more on the design of the study

and instruments. This could have made the results and conclusions more

generalizable. And although I already had some experience in keeping a

logbook of in-class events, I do this for all my lessons, for research matters

it’s better to have someone else report on observations. Being a teacher,

researcher and observer at the same time is too much.

Then again, this was my first time doing research. Just as in creating

learning material I believe that I will become better in doing research, be-

cause most importantly I find it fun and interesting to explore and create

new things and write about it.

Did I become a better, more researching teacher? I think I did. However,

a lot remains to be learned in the years coming. I think reflecting on learning

processes by writing, for research or personal matters, is the key in getting

better step by step.

59

Bibliography

[1] Adam, J. C. Alice, Middle Schoolers and The Imaginary Worlds

Camps. SIGCSE’07 (2007).

[2] Alessi, M., and Trollip, S. Multimedia for Learning: Methods and

Development, 3 ed. Allyn and Bacon, 2001.

[3] Bergin, J., Brodie, K., Patiño-Mart́ınez, M., McNally, M.,

Naps, T., Rodger, S., Wilson, J., Goldweber, M., Khuri, S.,

and Jiménez-Peris, R. An Overview of Visualization: Its Use and

Design: Report of the Working Group in Visualization. ITiCSE ’96

(1996).

[4] Brown, P. H. Some Field Experience With Alice. Computing Sciences

in Colleges 24 (2008).

[5] Chamillard, A. Introductory Game Creation: No Programming Re-

quired. SIGCSE ’06 (2006).

[6] Cooper, S., Dann, W., and Paush, R. Alice: A 3-D Tool For

Introductory Programming. JCSC (2000).

[7] Cooper, S., Dann, W., and Paush, R. Teaching Objects-first In

Introductory Computer Science. SIGCSE’03 (2003).

[8] Dann, W., and Cooper, S. Education: Alice 3: Concrete to Ab-

stract. Communications of the ACM (2009).

[9] Decker, R., and Hirshfield, S. Top-Down Teaching: Object Ori-

ented Programming in CS 1. SIGCSE ’93 25 (1993).

[10] Gee, J. P. What Video Games Have to Teach Us About Learning and

Literacy. ACM Computers in Entertainment 1, 1 (2003).

60

[11] Grgurina, N. Teaching CS in the Netherlands with Game Maker.

Informatik und Kultur (2011).

[12] Habgood, J. Passing On the Family Trade. Develop Magazine (2005).

[13] Habgood, J., Nielsen, N., and Rijks, M. The Game Maker’s

Companion. Apress, 2010.

[14] Kelleher, C., Pausch, R., and Kiesler, S. Storytelling Alice

Motivates Middle School Girls to Learn Computer Programming. CHI

’07 (2007).

[15] Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. The

BlueJ system and its pedagogy. Journal of Computer Science Educa-

tion, Special issue on Learning and Teaching Object Technology 13, 4

(2003).

[16] Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., and

Rusk, N. Programming by Choice: Urban Youth Learning Program-

ming with Scratch. SIGCSE’08 (2008).

[17] Moskal, B., Lurie, D., and Cooper, S. Evaluating the Effective-

ness of a New Instructional Approach. SIGCSE’04 (2004).

[18] Myers, B. A. Taxonomies of Visual Programming and Program Vi-

sualization. Journal of Visual Languages & Computing 1, 1 (1990),

97–123.

[19] Overmars, M. Game Design in Education. 2004.

[20] Overmars, M. Learning Object-Oriented Design by Creating Games.

Potentials, IEEE 23 (2004), 11–13.

[21] Overmars, M., and Habgood, J. Games ontwerpen met

Gamemaker. Van Duuren Media, 2008.

[22] Paras, B., and Bizzocchi, J. Game, Motivation, and Effective

Learning: An Integrated Model for Educational Game Design. DiGRA

2005 Conference (2011).

[23] Prensky, M. Digital Game-Based Learning. McGraw-Hill, 2001.

61

[24] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Sil-

ver, J., Silverman, B., and Kafai, Y. Scratch: Programming for

All. Communications of the ACM (2009).

[25] Robson, C. Real World Research, second ed. Blackwell Publishing,

2002.

[26] Rodger, S. H., Hayes, J., Lezin, G., Qin, H., Nelson, D., and

Tucker, R. Engaging Middle School Teachers and Students with Alice

in a Diverse Set of Subjects. SIGCSE’09 (2009).

[27] Schulte, C., and Bennedsen, J. What do Teachers Teach in Intro-

ductory Programming? ICER’06 (2006).

[28] Utting, I., Cooper, S., Kölling, M., Maloney, J., and

Resnick, M. Alice, Greenfoot, and Scratch - A Discussion. ACM

Transactions on Computing Education (2010).

[29] van Dorsselaer, S., Zeijl, E., van den Eeckhout, S., ter

Bogt, T., and Vollebergh, W. HBSC 2005 Gezondheid en welzijn

van jongeren in Nederland. Trimbos-instituut (2007).

[30] Vos, N., van der Meijden, H., and Denessen, E. Effects of con-

structing versus playing an educational game on student motivation

and deep learning strategy use. Computers & Education 56 (2011),

127–137.

62

Appendix A

Online learning material

63

1. Homepage of the online learning material

2. Introduction, learning goals and download first version

3. Closeup of the instructions and explanations

4. Every instruction comes with a screen shot, showing the current state of Game Maker

Appendix B

Web application:

GManualizer

68

1. Homepage of GManualizer

2. Form to upload Object Information file

3. The generated manual in editing mode

Everything displayed in this image is untouched and automatticly generated. On the left the order of

objects and events can be arranged by clicking on the arrow buttons.

4. Close up of adding text to the manual

5. A small part of the manual once exported

6. The manual in print style

Appendix C

Slides Pac-Man

72

15/05/2011

1

GAME MAKER ONLINE
Les 3 / Pac-Man

15-5-2011 Michel Fiege 1

Vandaag

• Pac-Man

• Eerst een uitleg van wat er allemaal al werkt

• Daarna zelf aan de slag!

15-5-2011 Michel Fiege 2

Dus… Wat werkt er al?

15-5-2011 Michel Fiege 3

Pac-Man loopt…

15-5-2011 Michel Fiege 4

...en maakt gebruik van subimages

15-5-2011 Michel Fiege 5

Botsing Pac-Man en Monsters

15-5-2011 Michel Fiege 6

15/05/2011

2

Object obj_controller

15-5-2011 Michel Fiege 7

Aan de slag:

Monsters maken!

15-5-2011 Michel Fiege 8

Website “Game Maker Online”

• http://gamemaker.michelfiege.nl

– Zonder “www”

• Selecteer je naam uit de lijst

• Wachtwoord = “rsgict” of eigen wachtwoord

• Klik op inloggen

15-5-2011 Michel Fiege 9

Zelf aan de slag

• Goed lezen

– Gebruik de plaatjes!

• Altijd de oefenbestanden downloaden

– In dit geval “pacman.zip”

• Help elkaar!

Succes!

15-5-2011 Michel Fiege 10

Wat heb je vandaag

geleerd?

15-5-2011 Michel Fiege 11

Recursie

15-5-2011 Michel Fiege 12

15/05/2011

3

Step-Event

15-5-2011 Michel Fiege 13

Variabelen x en y

15-5-2011 Michel Fiege 14

• Elke instantie in een room heeft coördinaten:

– x (horizontaal)

– y (verticaal)

• Variabelen kun je opvragen en aanpassen

– object.x = object.x + 10

Kansen

15-5-2011 Michel Fiege 15

• Vergelijk met het gooien van een dobbelsteen

• Een dobbelsteen met 6 zijden:

– Kans van 1 op 6 dat we het juiste getal raden

• Een dobbelsteen in Game Maker met 10

zijden:

– Kans van 1 op 10 dat de onderstaande actie wordt

uitgevoerd

Volgende keer…

15-5-2011 Michel Fiege 16

Appendix D

Questionnaire

76

Brugklas – ICT / FGM

Enquête: Wat vond je van Game Maker?

1. Wat is je naam? …….

2. In welke klas zit je?  B1B  B1C  B1E  B1F

Online lesmateriaal

3. Hoe leuk vond je de eerste 6 lessen Game Maker? (online lesmateriaal)

 helemaal niet leuk  niet leuk  neutraal  leuk  heel leuk

4. Hoe interessant vond je eerste 6 lessen Game Maker? (online lesmateriaal)

 helemaal niet interessant  niet interessant  neutraal  interessant  heel interessant

5. Hoe moeilijk vond je de eerste 6 lessen Game Maker? (online lesmateriaal)

 te moeilijk  moeilijk  het ging wel  makkelijk  erg makkelijk

6. Hoe duidelijk vond je het online lesmateriaal?

 helemaal niet duidelijk  niet duidelijk  neutraal  duidelijk  heel duidelijk

Eigen spel maken

7. Hoe leuk vond je de laatste 4 lessen Game Maker? (eigen spel maken)

 helemaal niet leuk  niet leuk  neutraal  leuk  heel leuk

8. Hoe moeilijk vond je de laatste 4 lessen Game Maker? (eigen spel maken)

 te moeilijk  moeilijk  het ging wel  makkelijk  erg makkelijk

Algemeen

9. Hoeveel heb je geleerd van de afgelopen 10 lessen Game Maker?

 heel weinig  weinig  neutraal  veel  heel veel

10. Hoe goed vind je jezelf met Game Maker?

 erg slecht  slecht  middelmatig  goed  erg goed

11. Hoe nuttig vond je de 5 minuten aan het begin van elke les?

 helemaal niet nuttig  niet nuttig  neutraal  nuttig  heel nuttig

12. Hoe nuttig vond je de 5 minuten aan het einde van elke les?

 helemaal niet nuttig  niet nuttig  neutraal  nuttig  heel nuttig

Tot slot

13. Heb je nog opmerkingen over de afgelopen 10 lessen Game Maker?

Appendix E

Written test

78

Brugklas – ICT Extra / FGM

Overhoring Game Maker

1. Wat is een object? Geef een voorbeeld in Game Maker.

2. Wat is een instantie? Geef een voorbeeld in Game Maker.

3. Wat is een variabele? Waarvoor gebruik je variabelen in Game Maker?

4. Wat is een event? Geef 5 voorbeelden van events in Game Maker.

5. Waarvoor gebruik je een if en een else? Geef een voorbeeld in Game Maker.

Een object is…

Bijvoorbeeld...

Een instantie is…

Bijvoorbeeld...

Een variabele is…

Je gebruikt variabelen voor…

Een event is…

Vijf voorbeelden van events zijn…

Een if…

Een else…

Bijvoorbeeld…

Brugklas – ICT Extra / FGM

6. Wat is een iteratie? Geef een voorbeeld in Game Maker.

7. Wat is een functie? Geef 3 voorbeelden van functies in Game Maker.

8. Wat is overerving? Waarvoor gebruik je overerving in Game Maker?

9. Wat is recursie? Waarvoor gebruik je recursie in Game Maker?

10. Bekijk onderstaand scripts. Welke waarde wordt geprint op de laatste regel (print(A))?

Een iteratie is…

Bijvoorbeeld…

Een functie is…

Drie voorbeelden van functies zijn…

Overerving is…

Je gebruikt overerving voor…

Recursie is…

Je gebruikt recursie voor…

Script 1

A = 2;

B = 1;

A = A + 10;

A = A + B;

print(A);

Script 3

A = 2;

B = 0;

terwijl(B < 10) doe:

 A = A + 1;

 B = B + 1;

einde terwijl;

print(A);

Script 2

A = 2;

A = A * 4

als(A > 10) doe:

 A = A – 1;

anders

 A = A+3;

einde als;

print(A);

Antwoord script 1: Antwoord script 2: Antwoord script 3:

Appendix F

The 14 rated games

81

Appendix G

Screen shots used in the

interviews

83

Screen shot used in pre-test

Screen shot used in post-test

Appendix H

Examples of writings during

interview

85

Justus pre-test

Justus post-test

Tessa pre-test

Tessa post-test

Kimberley pre-test

Kimberley post-test

Sven pre-test

Sven post-test

