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Executive summary  
The SARS-CoV-2 virus, more commonly known as the coronavirus, is arguably responsible for the 
biggest global crisis in recent history. In an attempt to effectively deal with this crisis, politicians 
around the globe have been using simulation models in their policy development. There are multiple 
types of modelling techniques used for epidemiological transmission modelling (Alsharhan, 2021; 
Anastassopoulou, Russo, Tsakris, & Siettos, 2020). Each different method used has different 
advantages and disadvantages related to them. 
 One of the used simulation methods for transmission modelling is the Agent-Based 
Modelling (ABM) technique. The technique is a bottom-up approach, meaning it focusses on the 
behaviour of individuals to gather knowledge about the resulting emergent overall system behaviour. 
This technique specifically excels at developing early epidemic growth profiles, however, to gain this 
feature it needs to process a large amount of data. This data is not always readily available. Even if it 
is available, the amount of data that needs to be processed combined with the focus on individual 
behaviour, requires a lot of computational power for simulations making a robust uncertainty 
analysis very time consuming. 
 An alternative technique is equation-based modelling, with System Dynamics (SD) being an 
instance of it with additional benefits regarding communication. This is more of a top-down 
approach, focussing on the overall mechanics of the systems instead of the behaviour of the 
individuals in the system. Working with aggregate values for most if not all variables to create 
increased understanding in the system behaviour under different circumstances. Because this 
technique works with these aggregate values, there is a less of a computational strain when 
simulating the model. However, this comes at the costs of being able to generate accurate early 
epidemic growth profiles, as this technique is not capable of fully incorporating key concepts for 
transmission models, such as heterogeneity of agents, spatial effects, and stochasticity. 
 These two aforementioned modelling techniques, ABM and SD, have characteristic that lean 
themselves well to cover for each other’s weaknesses. Utilising a technique that dynamically 
switches between the two modelling methods depending on the state of the model, could 
incorporate the strengths both models have, this is called dynamic coarse-graining. These strengths 
are the accuracy and incorporation of key concepts for the ABM side of the model, combined with 
the simulation speed of the SD side of the model. This dynamic coarse-graining is still in its infancy, as 
research related to it is very limited. The goal of this research is to examine what dynamically coarse-
graining an ABM model to a SD model would mean for the simulation speed of the model, and 
whether the results will stay consistent with the more accurate ABM method.  
 The current research that has been performed on this topic has been on behaviourally stable 
models (Bobashev et al., 2007; Gray and Wotherspoon, 2012), meaning there are no changes to the 
behavioural mode of the model during the dynamic coarse-graining process. In this research two 
epidemiological transmission models are analysed. The first model will be a relatively simple model 
that is similarly incapable of exhibiting behavioural changes during the switching process. This Simple 
model is used as a test-case, for a more extensive SARS-CoV-2 specific model. This Extensive model 
will include the option of behavioural change during the switching process itself, meaning both the 
dynamic switching condition and agents’ behaviour is dependent on disease state. As an added 
benefit, by comparing the results of the two different models, the gained insights are more 
generalisable.  
 By analysing the results of the dynamically coarse-grained models insights in regard to the 
consistency and simulation speed were generated. To be able to analyse the consistency of the 
models a metric of similarity, the normalised complexity invariant distance (NCID), has been 
proposed, based on the already existing Complexity Invariant Distance metric (Batista et al., 2013). 
The NCID metric combines the Euclidian distance between to data sets with the complexity of those 
datasets. The incorporation of the complexity aspect makes it well suited for analysing data that 
exhibits oscillatory behaviour, which is generally the case when examining transmission models. This 
metric allows for objective comparison of dynamically coarse-grained results, compared to the 



results of the original ABM model it is supposed to replicate. Additionally, the outcomes were also 
analysed in conjunction with the uncertainty space to ascertain whether any uncertainty values 
predicted worse outcomes in terms of consistency.  
 The main results in term of simulation speed were, that both the Simple and Extensive model 
increased the simulation speed with 73,5% and 2,9% respectively. This increased simulation speed 
did come at the cost of consistency of the coarse-grained model, as the NCID metric indicated that 
respectively 66.7% and 57.5% were actually consistent with their ABM counterpart. 
 The difference in simulation speed is most likely explained by the computational burden 
created by the switching process itself. Due to the simplicity of the Simple model the switching 
process was very straightforward, however when switching the Extensive model significant amount 
of relevant information is lost. This information loss needs to be compensated, resulting in a more 
complex switching procedure, which has a significant computational burden associated with it. 
However, to be able to conclusively state this as the cause for the limited speed increase in the 
Extensive model, additional data on the speed of the different aspects of the simulation is required. 
 The outcome analysis of the consistency revealed that the inconsistencies in the Simple 
model can primarily be attributed to the method of modelling the disease duration. In the ABM 
model the agents will stay sick for exactly the given duration, whereas the agents in the SD model 
will stay sick for that duration on average, resulting in faster spill over into the immune group. The 
longer this main disease duration is, the bigger the impact on the overall model behaviour. 
 The main indicator for poor consistency results in the Extensive model, was the switching 
condition itself. The later the switch takes place from the ABM model to the SD model the more 
consistent the results are on average. This can mean that the stochastic components of the ABM 
model still have to much influence on the overall behaviour under the lower switching conditions. 
Alternatively, this could be the direct result of making the switch later in the modelling system, 
resulting in an increased percentage of the overall simulation being run in the ABM part of the 
coarse-grained model, and thus being more consistent with the ABM outcome. For the overall model 
this means there is no uncertainty space that specifically caused the inconsistencies, but the overall 
structure of the models seems to be lacking. The structure of the agents coming in contact, is the 
most probable cause of the problem as this structure was difficult to replicate in SD, and has big 
impact on the overall model behaviour. 
 From a more practical point of view, three distinct applications for dynamically coarse-
grained models have been identified. Models that will be used for a sufficient amount of time, 
resulting in a raw time save in the long term, like Integrated Assessment Models (Weyant, et al., 
1996). Models that can be created in advance and used in times of crisis, like epidemiological 
transmission models. Models working in real-time where speed is vital, for instance in case of self-
driving cars.  
  The scientific contributions of this paper are the incorporation of an open exploration and 
behavioural changes with the dynamic coarse-graining method, the concretisation of the translation 
of some complex ABM properties to the SD paradigm, and lastly the introduction of NCID metric for 
consistency comparison of dynamically coarse-grained models.  
 It can be concluded that dynamic coarse-graining is a promising technique, yet only useful in 
specific niches. In order to gain the full benefits of this technique, the resulting model either needs to 
be used for near decades in case of Integrated Assessment Models or can be developed beforehand 
and used under extreme time pressures, in case of crises situations or self-driving cars. Once dynamic 
coarse-graining models have been fully developed, they do have the potential be an improvement on 
the currently utilised model, and dependent on their use even to help in saving lives. 
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1. Introduction 
The coronavirus is arguably responsible for the biggest global crisis in recent history, having 
tremendous impact on, among other things, the economy, the healthcare systems, and peoples’ 
personal lives (Søreide et al., 2020; Wójcik & Ioannou, 2020; Xiong et al., 2020). In order to find the 
best strategies in mitigating the consequences of the corona pandemic, governments have been 
using simulation models (Currie et al., 2020). There are several different simulation modelling 
methods, that all have their own advantages and disadvantages. The choice for a specific method is 
mainly based on the characteristics and type of the problem and the requirements the decision 
makers have (Chahal & Eldabi, 2010). In order to support the decision makers in dealing with the 
coronavirus, potential issues with the currently used modelling methods will be explored, and 
potential ways to mitigate these issues will be investigated. 
 
Epidemiological modelling  
Epidemiology is the study of the behaviour and determinants of disease in a defined population 
(Rothman, 2012). Since it would be unethical and dangerous to release diseases into non-laboratory 
populations, epidemiology is defined as an observational science (House, 2012). These restrictions 
make the use of mathematical and simulation models for research in this area almost a necessity. 
Simulation models have become more prevalent over the years to help policy-makers prepare for 
and deal with the increasing risk of pandemics, due to globalisation (Saker, Lee, Cannito, Gilmore, & 
Campbell-Lendrum, 2004). The most used methods of simulating epidemiology are Agent-Based 
Modelling (ABM), and System Dynamics (SD) (Gethmann et al., 2019; Huang, Lin, Chen, Huang, & Wu, 
2013; Vonk Noordegraaf et al., 1998; Forrester, 1961; Sterman, 2000; Epstein & Axtell, 1996). This is 
also the case for the current modelling of SARS-CoV-2 (Alsharhan, 2021; Anastassopoulou, Russo, 
Tsakris, & Siettos, 2020). The main difference between the two paradigms is that ABM models have a 
stochastic nature versus the more deterministic nature of SD models (Railsback & Grimm, 2019; 
Jackson 1991). According to Epstein (2009), ABM models are best-suited for the simulation of a virus, 
as they can capture the global scale, complex social networks, and irrational behaviour, which is 
essential in confronting a virus. In accordance with this van Kleef, Robotham, Jit, Deeny, & Edmunds 
(2013) found that the prevalence of stochastic transmission models significantly increased relative to 
deterministic models over the years. However, SD is still recurrently used to research health policies 
and disease dynamics (Thompson & Tebbens, 2008), as they are among other reasons deemed to be 
easier to create (Maugeri, Barchitta, Battiato, & Agodi, 2020). 
 
ABM & SD epidemiological models 
When deciding between the two methods there are a few key characteristics that should be kept in 
mind. SD is a differential equation-based method, where every formula is pre-defined resulting in its 
more deterministic nature. This way of modelling results in implicit homogenous mixing assumption, 
as well as ignoring spatial effects of disease transmission (Merler et al., 2015; Di Stefano, Fuks, & 
Lawniczak, 2000). However, since people are likely to change their contact behaviour as a result of a 
deadly epidemic, it is important to model the heterogeneity of people and their adaptive behaviour 
(Epstein, Parker, Cummings, & Hammond, 2008). This lack of spatial effects generally results in 
overestimates of the very relevant R0 value, which is an indication of the current reproductive 
number of the disease, making a precise definition of R0 required for knowing vaccination thresholds 
and planning a vaccination strategy (Keeling & Grenfell, 2000). ABM models are able to tackle most 
of these issues. For one it is able to model of heterogeneous population and spatial factors, even 
tracking every individual’s mobility and associated dynamic contacts, which is important for 
modelling realistic early epidemic growth profiles (Perez & Dragicevic, 2009; Chowell, Sattenspiel, 
Bansal, & Viboud, 2016). This is partly due to being able to incorporate so-called “super-spreading” 
events, situations in which a single individual directly infects a large number of others, which can 
have a large influence in the early course of the epidemic, especially in the case of a coronavirus 
(Lipsitch, 2003; Riley, 2003). The stochasticity that allows this inclusion, also allows the exploration of 



the effects of various treatment strategies and model parameters on R0 (Granich, Gilks, Dye, De Cock, 
& Williams, 2009). The combination of these capabilities makes ABM the state-of-the-art for 
simulating complex epidemic systems, especially the capacity of incorporating very detailed 
information is crucial (Siettos & Russo, 2013). The high complexity present in these ABM models 
comes at a cost, as very complex simulation models take a longer time to run (Chwif, Barretto, & 
Paul, 2000). To fully utilise the capabilities of ABM there is also a need for very detailed input data, 
which can be hard to obtain, whereas SD is less detailed, which makes it more scalable, increasing 
the spatial and temporal ranges that can be analysed (Ajelli et al., 2010). Ajelli et al. (2010) also 
suggest the possibilities of combining the methods, as the complexity present in agent-based models 
is primarily necessary to simulate the beginning stages of a pandemic more accurately when there 
are only a few infected citizens, making the behavioural impact a singular citizen or agent can have 
on the system as a whole significantly larger. When the number of infected citizens is getting larger, 
the Law of Large Numbers takes effect (Hsu & Robbins, 1947), meaning the agents could potentially 
get aggregated without significant loss of information. SD is a method that takes advantage of this, 
by allowing for a focus on aggregates (Tesfamariam & Lindberg, 2005). By modelling aggregates 
instead of every single individual, the computational power required is reduced significantly. When 
the purpose is to build a robust statistical portrait comparable to epidemic data, a model has to be 
run thousands of times (Epstein, 2009). This fact combined with the long run-time of complex ABM 
models can result in serious issues. Therefore, methods of increasing simulation speed should be 
looked into further. 
 
Methods of increasing simulation speed 
In principle two methods of speeding up simulation exist; one can either increase computing power, 
via methods like Distributed Simulation (Taylor, 2019), or one can try to reduce the required 
computing power, via methods like dynamic coarse-graining. Dynamic coarse-graining essentially 
looks for parts of the system that could potentially be reduced to a less complex form, without losing 
essential information. Simulating this part of the system in its reduced form would theoretically 
reduce the required computational power, resulting in a faster simulation (Xue, Ludovice, & Grover, 
2011). 

Coarse-graining itself, in regard to modelling, finds its origin in molecular modelling. Doing 
mathematical calculations using proteins is incredibly difficult, as even very small proteins have 
around 200 degrees of freedom. To improve the efficiency of these calculations Levitt and Warshel 
(1975) simplified the representation of these proteins, by averaging over the fine details. This 
process would later become known as coarse-graining. Since then, coarse-graining has become a fast 
developing methodology, yet primarily bounded to the field of biomolecular simulation (Saunders & 
Voth, 2013).  
 Biomolecular modelling was not the only modelling niche, that struggled with computational 
power issues when attempting to simulate very complex models (Railsback, Lytinen, & Jackson, 2006; 
Wang & Chatwin, 2004). While Biomolecular modelling focussed primarily on coarse-graining as a 
method to improve simulation speed, other areas focussed on parallel and distributed simulation 
(Fujimoto, 2015). Over the years parallel and distributed simulation methods have established 
themselves as very capable of speeding up the simulation time of models (R. M. Fujimoto et al., 
2003; Mustafee & Taylor, 2009). In spite of this benefit, distributed simulation standards like the 
high-level architecture (HLA) are scarcely used in practice (Boer, de Bruin, & Verbraeck, 2009). 
According to Boer, de Bruin, and Verbraeck (2009) there are multiple reasons for this, ranging from 
performance issues to unfavourable cost-benefit ratios. Since then, there has been a lot of progress 
in the field of distributed simulation as demonstrated by Taylor (2019).  However, issues like user-
accessibility still persist. It is clear that the future of parallel and distributed simulation is very 
promising, but researchers and policy-analysts might not always be able to access the necessary 
computational power this still requires. Adaptation of coarse-graining techniques by the wider 
modelling community could therefore be a very interesting proposition, especially since the two 
techniques are not mutually exclusive (Ford, Weitzner, & Bahl, 2019). 



 
 
Hybrid ABM-SD models 
Integrating System Dynamics models with ABM models has the potential to utilise the strengths of 
both techniques while covering for each other’s weaknesses (Nasirzadeh, Khanzadi, & Mir, 2017). 
Specially, the combination of them more accurate yet slower ABM models combined with the less 
accurate but faster SD models, to result in a both accurate and fast model. The potential for this 
combination was already identified by Scholl in his 2001 paper. He argued that even though the 
epistemological and ontological standpoints may differ, the practical benefits of working together are 
undeniable (Scholl, 2001). Since this paper there have been a number of successful collaborations 
between the two disciplines (Łatuszyńska, 2019; Monasterolo & Raberto, 2016; Swinerd & 
McNaught, 2014). However, these collaborations are still few and far between. If we look specifically 
at dynamic coarse-graining an ABM model into a SD model - also called IB-SD models swapping 
(Vincenot et al., 2011) - there are even fewer collaborations. Wallentin and Neuwirth (2017) used 
this method in regard to a simple predator-prey model. They found that it only sped the simulation 
up in some cases, this could probably be attributed to the added computational power needed for 
switching paradigms, which may not weigh up to the increase in modelling speed for simple models. 
Bobashev, Goedecke, Feng Yu, and Epstein (2007) used an approach similar to this to study 
epidemiological processes, however they did not use a System Dynamics approach specifically. Their 
results show that coarse-graining these models can save significant computational times but can also 
come at the expense of the desired accuracy. As mentioned in their discussion, they used a relatively 
simple agent-based model, not accounting for behavioural changes during an epidemic. In light of the 
Corona crisis, where behavioural changes play a very significant role, the spread of the virus and 
effectiveness of the mitigation measures (Luo, Yao, Zhou, Yuan, & Zhong, 2020), it is clear that 
additional research into the potential benefits of dynamic coarse-graining is required.  

The potential benefits related coarse-graining can also be relevant for decision-makers. Since, 
decision-makers currently dealing with the corona pandemic, having access to faster yet accurate 
simulation models will allow them to test and develop new policies faster. The increased speed of 
development of dynamic policy pathways, has the potential to positively influence the amount of 
lives saved, the economy, and many other aspects of society currently suffering from the pandemic.  
 

1.1. Research objective 
Based upon the knowledge gap identified in the introduction, the following research question has 
been formulated:  
 
“What is the effect of dynamically coarse-graining an Agent-Based SARS-CoV-2 model into a System 

Dynamics model on the simulation speed and the consistency of results?” 
 

In order to adequately tackle this question, several sub questions have been developed. These sub 
questions have been devised in such a way that the intermediary objectives will be fully resolved, 
leading to an answer for the main research question. The devised sub questions are shown below: 
 

1. What are different methods, and their associated advantages and disadvantages, in regard to 
modelling SARS-CoV-2 transmission in populations? 

2. What set of rules should be used for dynamic coarse-graining an agent-based SARS-CoV-2 
transmission model into a system dynamics model? 

3. What would dynamic coarse-graining an agent-based SARS-CoV-2 transmission model mean 
in terms of simulation speed? 

4. What are the differences and similarities between the coarse-grained and the original agent-
based SARS-CoV-2 transmission model in terms of consistency of results? 



1.2. Report structure 
This research consists of five main chapters, that build on each other to come to a well substantiated 
conclusion. This chapter serves as an introduction to the topic of dynamic coarse-graining. In chapter 
2 the literature regarding epidemiological models will be discussed. Based on this knowledge two 
dynamic coarse-graining models will be developed and discussed in chapter 3. Subsequently, the 
results of the simulation study will be showcased in chapter 4, with a discussion about the model and 
the conclusions to all sub-questions in chapter 5.   



2. Methods of epidemiological modelling  
This chapter will focus on the methods used for researching epidemiological transmission systems. 
First the most common type of transmission models will be discussed; “Susceptible-Exposed-
Infectious-Removed” (SEIR) transmission models. Sections 2.2 and 2.3 will discuss modelling 
paradigms that are used most when utilising a SEIR model. The Agent Based Modelling (ABM) will be 
discussed followed by Equation-Based techniques, and System Dynamics (SD) in particular. These 
sections will primarily focus on the advantages and disadvantages in regard to modelling SARS-CoV-2. 
In Section 2.4 it will be discussed how a combination of these methods can be used to potentially 
gain additional benefits compared to using the methods in a vacuum. The combined knowledge 
gathered in these sections will be used to answer the second sub-question; “What are different 
methods, and their associated advantages and disadvantages, in regard to modelling SARS-CoV-2 
transmission in population?”. The fifth Section will describe how the knowledge gained in the 
aforementioned sections will be utilised for experimentation. This Section will be followed by a 
Section that will discuss how the results of the coarse-grained model will be compared to the results 
of the ABM model. Lastly in Section 2.7 the process of the outcome analysis is described in detail.  
 

2.1. SEIR Transmission models 
Epidemiological transmission simulation models have long been used to study the effects of 
potentially dangerous disease outbreaks in populations (Hethcote et al., 1981). The main structure of 
these models is based on the different stages of a disease in individuals of a population, as indicated 
by their more common name of SEIR models, where SEIR stands for Susceptible-Exposed-Infectious-
Removed (H. A. Biswas et al., 2014). The “Susceptible” population is everyone who is currently not 
infected by the disease yet is able to get infected by the disease. Once someone gets infected, they 
will first go through some incubation period before they are able to infect others (Sartwell, 1966), 
individuals in this stage are called “Exposed”. After the pathogen is sufficiently incubated, the 
exposed individuals will become able to spread the infection, moving them to the “Infectious” stage. 
For the dynamics of transmission models, it is generally important to differentiate between these 
two stages, however some more simpler models opt to combine these two stages into a singular 
“Infected” stage. The last stage, “Removed”, is in its most basic form a combination of the individuals 
who succumbed to the disease and the individuals who recovered from it, and thus gained immunity. 
These groups are both categorised as removed, since they both do not play any role in further 
transmissions. 
 Besides these main stages of disease progression sometimes extended versions of the 
generic SEIR models are used. These models include additional progression stages that can have an 
influence on the overall spread of the disease, especially when modelling human populations this 
should be considered (Franco, 2021). Some extensions we will discuss are the inclusions of 
hospitalised individuals, the uncoupling of deceased and recovered populations, and differentiating 
between asymptomatic, symptomatic, and pre-symptomatic infectious individuals. 
 Including hospitalised individuals has two advantages, the pressure on the healthcare system 
can be ascertained and it influences the spread of the disease. People who are hospitalised are 
basically removed from the general population, as they do not partake in societal activities anymore. 
This significantly reduces the chance of them infecting susceptible people. Secondly, by tracking the 
amount of people that are hospitalised, the influence of potential mitigation measures on the 
healthcare system can be evaluated. 
 The inclusion of the different symptomatic types can greatly influence the disease dynamics, 
this is due to the big impact asymptomatic infectious individuals can have (Shao & Shan, 2020). When 
an individual gets symptoms of a disease, they are usually less likely to continue spreading the 
disease because of two reasons. For one the symptoms could make the infected individual bedridden 
or too sick to make them attend to social gatherings. Secondly the knowledge of having a 
transmissible disease can prevent them from attending social events based on moral grounds or have 



them take precautions to reduce the chance of spreading the disease any further. However, when 
someone is either asymptomatically, or pre-symptomatically infectious they are often not aware of 
their infectious status, as they do not experience any (severe) symptoms of the disease. This 
difference has a great influence of the behaviour of the infectious populations and thus also 
influencing the spread of the disease. 
 The last extension we will discuss is the uncoupling of the “Removed” stage into deceased 
and either recovered or immune. Depending on the time the immunity is supposed to last for and 
the temporal scope of the model it could be relevant to include the loss of immunity in the model, 
replenishing the susceptible population.  
 Now the standard SEIR model and some potential extension to the model have been 
discussed, we can take a look at what modelling paradigm is most helpful for modelling SARS-CoV-2. 
Even though both techniques will be using the same basics in terms of SEIR, the actual 
implementation can result in quite different outcomes. 
 

2.2. Agent-Based Modelling 
Agent-Based Modelling (ABM) is a technique that can best be categorised as a bottom-up approach 
(Boulain et al., 2007), starting off will a collection of simple interactions and rules, that occur within 
the system of interest. The combination of all these different “simple” interactions can lead to 
emergent complex behavioural patterns. Section 2.2.1. will delve deeper in the basics of ABM. 
Section 2.2.2. will evaluate the capabilities of ABM for modelling transmission models. 
 

2.2.1. ABM in general 
The technique of Agent-Based modelling (ABM) was originally developed by Epstein and Axtell (1996) 
in an attempt to showcase, that the so-called soft sciences are just as decomposable into small 
subprocesses, as processes studied in subjects like physics. They argue that the aggregate behaviour 
we can all observe is a result of small processes going on everywhere. By modelling parts of systems, 
and the specific behaviours people may or may not preform, it would become easier to say whether 
these small behaviours actually lead to a particular property within a society, as performing 
controlled experiments to test such a hypothesis, is extremely difficult if not impossible. 
 ABM models can be best described by using the ODD protocol (Overview, Design concepts, 
Details) originally developed by Grimm et al. in 2006 and further updated by Grimm et al. in 2010 and 
by Grimm et al. in 2020. The seven main elements of this protocol form the core for every ABM 
model. An overview of these elements can be seen in figure 1. 
 

  
Figure 1: Elements of ODD protocol (Grimm et al. 2020) 



The first element is in regard to the purpose of the model, and its expected patterns. The 
purpose of the model indicates why the model is created in the first place, and in extension also what 
should be and should not be included in the model. This follows from the principle of parsimony, also 
known as Ockham’s razor, meaning only parts that serve the purpose of the model should be 
included in the model (Rodriguez-Fernández, 1999). To ensure the models suitability for its purpose, 
some expected behavioural patterns, that can be used to evaluate the model, should be pre-defined. 
 The second element of the ODD protocol is related to entities, state variables and scales, 
which can be considered the basic building blocks of the actual model itself. An entity is described as 
“a distinct or separate object or actor that behaves as a unit” (Grimm et all. 2020). These entities can 
be subdivided in four categories: agents, collectives, spatial units, and the environment. Agents are 
individual units that all have their own state variables and behaviours, creating the opportunity for 
heterogeneity within the model. Collectives are groups of agents that have certain attributes in 
common. Spatial units are used to define the conditions of the local space an agent exists in, most 
often this regards to geographical terrain. Lastly the environment holds state variables that are not 
space dependent. All these variables also have a predefined scale, the spatial units, or grids, have a 
certain size for instance.  
 The third element is about the processes that take place in the model, and on what schedule 
these processes take place. This primarily refers to the entities in the model, and how and when they 
interact with each other.  

When movement options and interactions or “rules” between agents, based on these 
properties, are introduced the behaviour can become very complex. This gained complexity from 
“simple” behavioural patterns is called emergence, which is one of the design concepts within ABM. 
The design concepts can be interpreted as ABM specific characteristics. Not all design concepts all 
present in every model, as the use also depends on the purpose of the model. We will discuss a few 
design concepts most relevant for epidemiological transmission models.  

Adaptation: This design concept encompasses the behavioural changes agents exhibit as a 
result of changes in their own state variables or the environment. In transmission models this is 
utilised when agents move through the different disease stages, as agents will for instance stop 
roaming around when they get ill, or change their behaviour based on a change in the active 
restrictions. 

Emergence; As mentioned before, emergence can be seen as complex behavioural patterns 
that are results of simple behaviours or adaptive traits exhibited by agents. In transmission models 
this can for instance be seen in oscillating amount of infected individuals in persistent diseases. 

Interactions: This characteristic is about how agents can affect other agents in the model. 
This is very relevant for transmission models, as the infections between agents are basically 
interactions. Infected agents effectively change the state variables of susceptible agents. 

Stochasticity; or in Layman’s terms randomness. This is one of the most important aspects 
for transmission models, as the inclusion of stochasticity is required to enable several key 
characteristics. By making both movement and infection chance stochastic, phenomenon like super-
spreading events and local die-outs are able to occur, potentially having tremendous impact on the 
overall spread of the disease. 

Collectives: are groups of individuals, that have certain state variables in common. In 
transmission models one could see the people in a certain disease phase as a collective, like the 
susceptible people. Another relevant collective is the age groups of the agents, as people are more 
likely to meet other people from the same age group, which influences the transmission mechanics. 

The fifth part of an ODD is about the initialisation of the model, meaning the parameter 
values at the beginning of the simulation. The initial conditions of a model can have a big influence 
on the overall outcome of a model, making it very relevant for replication of results. This is most 
relevant when researching very specific regions, where the parameter values need to exactly match 
reality. However, when exploratory modelling is utilised, this is less relevant, as most if not all initial 
parameter values will be randomised. 



The sixth aspect is in regard to external data sources, that are used during the simulation 
(not initial values). These external sources can be used to incorporate time series data of 
environmental variables, for instance the rain fall throughout a year or, more relevant for 
transmission models, the amount of incoming tourists.  

Now that the basics of ABMs have been thoroughly discussed, the use of these models for 
the purpose of researching SARS-CoV-2 can be explored.  
 

2.2.2. ABM SARS-CoV-2 models 
Ever since the SARS-CoV-2 virus started to become a global pandemic a lot of scientific literature has 
been written about utilising ABM to assess the properties of the virus and the effectiveness of 
different mitigation methods on the spread of the virus (Alsharhan, 2021; Bossert et al., 2021; Chang, 
Harding, Zachreson, Cliff, & Prokopenko, 2020; Dignum et al., 2020; D’Orazio, Bernardini, & 
Quagliarini, 2021; Gopalan & Tyagi, 2020; Hinch et al., 2021; Hoertel et al., 2020; Kai, Goldstein, 
Morgunov, Nangalia, & Rotkirch, 2020; Rockett et al., 2020; Shamil, Farheen, Ibtehaz, Khan, & 
Rahman, 2021; Silva et al., 2020).  

This wide utilisation is due to the capability of ABM models to incorporate some of the key 
characteristics of epidemiological transmission models (Silva et al., 2020): Heterogeneity, Movement, 
Contract tracing and superspreading events. One of these characteristics is heterogeneity of the 
population. For example, factors regarding health, like obesity and age (Alberca, Oliveira, Branco, 
Pereira, & Sato, 2020), are important to take note of, as they play a major role in determining the 
amount of SARS-CoV-2 patients in the ICU. Because ABM allows the setting of different parameters 
for every individual (Kai, Goldstein, Morgunov, Nangalia, & Rotkirch, 2020), it is possible to capture 
this heterogeneity. 

A second important characteristic, that can be captured by ABM models is the movement of 
people. This movement is relevant as it determines whether infected people actually come in contact 
with susceptible people. By combining a detailed travel diary component with a classical SEIR model, 
ABM simulations can depict the heterogeneity between people and be able to model the 
sophisticated dynamic connections among them, including infection rate that is subject to peoples 
detailed personal activities, their methods of movement and their physical distance between one 
another (Shi, Wu, & Ben-Arieh, 2014). 

This is also relevant in regard to the third key characteristic, the opportunity for contact 
tracing. Epidemiological transmission models of SARS-CoV-2 have indicated that the virus spread can 
be contained by fast recognition and quarantine of infected individuals and their recent contacts 
(Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020). Due to the ability of ABM to simulate 
every individual and their movement patterns explicitly, it is better at simulating contract tracing 
accurately relative to models based on ordinary differential equations (ODEs) (Arino & Portet, 2020). 
This tracking of the agent movement and associated contacts allows for the occurrence of so-called 
super-spreading events, where an infectious individual infects a significantly larger amount of 
susceptible people than would usually happen. The inclusion of these events is especially important, 
as it has a big impact on early epidemic growth profiles of the spread of the virus. (Lipsitch, 2003; 
Riley, 2003).  
 The use of ABM models to model SARS-CoV-2 has some caveats as well, mainly relating to 
availability of data and computational burden. These models and their parameterisation are often 
very reliant on the availability data, to be able to be correctly calibrated (Hoertel et al., 2020). The 
more detailed a model becomes, the more data is needed and also the more computationally 
intensive it becomes to actually simulate the model (Shamil, Farheen, Ibtehaz, Khan, & Rahman, 
2021). This is especially an issue for ABM models as these models are very computationally intensive 
as is. This computational intensity does not only increase the time that is needed to fully simulate the 
model but can also limit the ability to explore a wide range of parameter combinations (Hinch et al., 
2021). When new policies are not tested for a wide range of parameter combinations the outcomes 
can be disastrous, as was shown in The Netherlands in the beginning of July 2021. The amount of 



confirmed corona-cases grew explosive due to some recent easing of the corona-mitigating measures 
(RIVM, 2021). Multiple members of the Dutch Outbreak Management Team (OMT) declared that this 
growth was above all expectations shown in the models (NU.nl, 2021a, 2021b), indicating that the 
uncertainties in the model were not explored to the fullest extent. Stochastic ABMs have been 
recognized as a robust method for discovering the impacts of heterogenous mitigation measures in 
varied pandemic and epidemic situations (Balcan et al., 2010; Barrett, Bisset, Leidig, Marathe, & 
Marathe, 2010; Chang, Harding, Zachreson, Cliff, & Prokopenko, 2020; Chao, Halloran, Obenchain, & 
Longini, 2010; Eubank et al., 2004; Ferguson et al., 2005; Germann, Kadau, Longini, & Macken, 2006; 
Halloran, 2002; Longini, 2004, 2005). This indicates that a stochastic ABM model should have been 
able to explore such an outcome, but that the high computationally burden that comes with it either 
prevented full exploration of the uncertainties or pushed the researchers towards a different 
modelling paradigm, that is less accurate when it comes to transmission models.  
 

2.3. Equation-based modelling 
Equation-based modelling is another technique that has widely been used to model epidemiological 
transmission systems. Utilising the equation-based paradigm instead of the agent-based method to 
model these types of systems has several advantages, and also some disadvantages. These will be 
discussed in Section 2.3.2. Section 2.3.1 will first focus on the characteristics of the technique itself, 
which is important to understand to be able fully grasps the differences between the two techniques.  
 

2.3.1. Equation-based techniques in general 
Equation-based simulation models are a collective of modelling techniques that most often use 
deterministic or ordinary differential equations (ODE) to analyse a system of interest. In this research 
we utilise a specific instance of those techniques, System Dynamics. The primary advantage of 
utilising this technique over the others is its ability to clearly communicate model structure to people 
not adapt at reading complicated mathematical equations, which is most of the population.  

System Dynamics (SD) is a modelling technique developed by Forrester (1961) to increase 
understanding in the behaviour of complex dynamic systems. These kinds of systems are inherently 
difficult to grasp, since they are characterised by the occurrence of feedback structures, 
accumulations, and delays. Mental simulation of systems that incorporate these concepts is quite 
complicated, evidence suggests that people cannot mentally simulate any but the simplest of mental 
models without error (Doyle & Ford, 1998; Sterman, 1989). Utilising SD does not only support mental 
simulation of models, but also prompts the modeller to evaluate the direct and indirect 
dependencies between variables within the system. SD can also be viewed as a top-down approach, 
as the focus is mostly on the aggregate effects different parts of the system have on each other, 
which is opposite to the ABM approach (M’hamdi & Nemiche, 2018).  

The SD technique utilises stock-flow diagrams to quantify its properties (Liu et al., 2021). The 
stocks are used for accumulation of mostly tangible objects, like people, but can also be used for 
intangible variables, like confidence levels (A. Ford, 1999). These objects or variables can enter or 
leave stocks via respectively inflows and outflows. Besides these two main variable types there are 
also constants and auxiliary variables. The constants are used to determine both the initial values for 
other variables, like stocks or delays, and the constant characteristics of the system. The auxiliary 
variables are used to combine the other variables with each other, via the use of mathematical 
equations, that are solved via the use differential equations (Ossimitz & Mrotzek, 2008). These 
equations are all deterministic from nature (Jackson, 1994), meaning the model will always result in 
the same outcome when it has the same initial starting conditions. 

Besides utilising stock-flow diagrams for quantifying the model properties, it is also an 
excellent method of communicating the basic structure of models (Lane, 2008), as all non-stock or 
flow variables are also interconnected via the use of arrows, which indicate direct causal 
relationships. The combination of these variables and interconnections will results in a rough image 



of how the system works, without needing to know any associated mathematical equations. This 
allows for effective communication of the model structure. 

 

2.3.2. Equation based SARS-CoV-2 models 
Equation based simulation methods have arguably been the most used technique of researching the 
SARS-CoV-2 pandemic (Abdo, Shah, Wahash, & Panchal, 2020; Anastassopoulou, Russo, Tsakris, & 
Siettos, 2020; Arino & Portet, 2020; Barlow & Weinstein, 2020; Chatterjee, Chatterjee, Kumar, & 
Shankar, 2020; Choi & Ki, 2020; Fanelli & Piazza, 2020; Ibarra-Vega, 2020; Ivorra, Ferrández, Vela-
Pérez, & Ramos, 2020; Kim, Kim, Peck, & Jung, 2020; Kuniya, 2020; Li, Song, Yang, Gao, & Gao, 2020; 
Manchein, Brugnago, da Silva, Mendes, & Beims, 2020; Maugeri, Barchitta, Battiato, & Agodi, 2020; 
Tang et al., 2020; Tuite, Fisman, & Greer, 2020; H. Wang et al., 2020).   
 Diekmann, Heesterbeek, and Britton (2013), argue that the choice for a deterministic model 
is preferable as a first approach for analysing a transmission system, as such models have a few 
advantages compared to their stochastic counterpart, when not much is known about the pathogen. 
The primary advantage of using an equation-based method is the relative ease of creating such a 
model, the low computational burden it has, and its ability to give a clear overview of the feedback 
mechanisms at work.  
 The relative ease of building an equation-based simulation model is showcased by a few 
recent SARS-CoV-2 papers, where there were only a very few equations required to create a 
relatively adequately working model (Chatterjee, Chatterjee, Kumar, & Shankar, 2020; Maugeri, 
Barchitta, Battiato, & Agodi, 2020). These models comprised of only a few equations are not as 
accurate as more detailed/extensive models, since any model involves trade-offs between simplicity 
and realism (Tuite, Fisman, & Greer, 2020). 
 By creating models comprised of solely differential equations focussed on aggregates, 
instead of needing to model individual agents, the computational burden is decreased significantly 
(Parry & Evans, 2008). The smaller computational burden will result in faster simulations and the 
opportunity for a more extensive calibration of model parameters and exploration of the uncertainty 
space (Ivorra, Ferrández, Vela-Pérez, & Ramos, 2020). 
 The last big advantage of using ODEs is its ability to give clear insights in the (feedback) 
structure of the model. In their equation form these models will be able to communicate this to 
people very familiar with calculus, however when they are translated into a Stock-Flow diagram (SFD) 
they can be very effective in communicating with the general public (Lane, 2008). 
 Utilising a deterministic equation-based method to model epidemiological transmission 
systems also has some severe downsides, as it requires some unrealistic assumptions about key 
characteristics of these models (as mentioned in Section 2.2.2.).  
 The biggest issue is the implicit assumption of homogeneity present in ODEs, as examining 
pandemics while only considering the averages and aggregates of the population does not exhibit the 
complex emerging dynamics accurately (Großmann, Backenköhler, & Wolf, 2021). The lack of 
heterogeneity within these models, also dampers the inclusion of hubs (people with an unusually 
large amount of contacts) and super-spreading events (Shen, Taleb, & Bar-Yam, 2020). The 
importance of inclusion of these events, has already been mentioned in Section 2.2.2., and has also 
been indicated by several studies covering SARS-CoV-2 (Cave, 2020; Hasan et al., 2020; Riou & 
Althaus, 2020).  
 The use of aggregates and differential equations also fails to take spatial distribution and 
realistic movement patterns of individuals into account (Mammeri, 2020). Due to this is lack of actual 
movement within the model, it is difficult to ascertain results regarding testing and contact tracing, 
which would be possible when utilising a different modelling paradigm like ABM (Arino & Portet, 
2020). Arino & Portret (2020), also mention this would be less of an issue when considering larger 
populations, as aggregate values will more accurately resemble reality in that case.  
 



2.4. Multi-Modelling 
An often discussed yet seldom performed method to model transmission systems is by coupling SD 
and ABM models (Scholl, 2001). The properties of these techniques are quite opposite to each other, 
which could potentially make them difficult to design. However, the techniques cover each other’s 
weaknesses, while creating an opportunity to benefit from the advantages, resulting in a best of both 
worlds scenario (Banos et al., 2017). Specifically, the accuracy of which ABM models can simulate the 
beginning stages of virus transmissions (Perez & Dragicevic, 2009; Chowell, Sattenspiel, Bansal, & 
Viboud, 2016) and especially its ability to incorporate super-spreading events in these stages 
(Lipsitch, 2003; Riley, 2003), can be combined with the high speed the equation-based technique is 
able to simulate its models (Parry & Evans, 2008).  

In general, there are four different types of model coupling that can be utilised, depending on 
when and how the different modelling techniques need to communicate (Vincenot et al., 2011). 
These four coupling methods are: Individual interacting with a single SD model, SD submodels 
embedded in individuals, individuals interacting with a space made of SD models, and model 
swapping. These different coupling methods will be shortly explored, to determine the best method 
to use for this research.  

Individuals interacting with a single SD model relates to a situation where an ABM and SD 
model are run in unison. The agents behave in the same manner as they would in a solely ABM 
model, however some environmental variables are determined by the SD model. This SD model can 
also be influenced by the behaviour of the agents in the ABM model. This can be useful, as some 
environmental factor can more accurately be determined by a SD model. 

SD submodels embedded in individuals, is similar to aforementioned technique. However, 
instead of utilising a single SD model to determine some global environmental variables, the agents 
utilise the SD models to dynamically determine some of their properties. The main use of this 
coupling method is to simulate the internal properties of agents more accurately. 

Individuals interacting with a space made of SD models, utilises SD models to determine the 
environment of the agents again. However, instead of utilising a singular SD model to determine 
some global aspects of the environment, multiple SD models are used that each determine some 
specific space. This creates the ability to include heterogeneous spatial features in the modelling. 

Model swapping, this method of model coupling is proposed with the express purpose of 
combining models that exhibit differences in computation time and accuracy based on the chosen 
paradigm. The concept relates to only having one of the two models running at any point in time, 
with a threshold value of certain event triggering a swap between the models used.    

In this case, where to focus is on utilising the ABM paradigm during the beginning stages of an 
epidemic and the equation-based paradigm during the peak infections, the most logical choice is to 
utilise coarse-graining or model-swapping. Meaning the two models each work completely separate 
from each other, and only communicate when the epidemic in question swaps stages, leading to a 
swap in the model to use. This concept is illustrated in figure 2.  



 
Figure 2: Coarse-graining concept 

This swapping process itself will decrease the simulation speed somewhat, as some extra 
computations need to be performed, however this loss should be offset by a considerable margin 
due the speed increase gained from utilising the equation-based paradigm. This potential speed 
increase is only relevant, if meanwhile the results stay consistent, as there would be no point in 
utilising this type of multi-modelling if it would result in significantly less accurate results. Model-
swapping, or dynamic coarse-graining, is a fairly new area of research, resulting in a limited amount 
of previous work, which will be discussed in the next section. 

 

2.4.1. Previous coarse-graining work 
One of the first attempts to actually combine the advantages of agent-based and equation-based 
approaches was done in 2007 by Bobashev et al.. They combined and ABM model and Equation 
based model based on a threshold switch, that was based on a stabilisation of a disease transmission 
parameter. This approach yielded good results, in terms of consistency, but required a fairly 
simplified model without any behavioural changes during the epidemic. Behavioural changes would 
alter the transmission parameter, and thus prevent the stabilisation. They did not look into the 
effects of the technique on the simulation speed.  
 A paper by Gray and Wotherspoon (2012), introduced the coarse-graining concept to 
contaminants in marine life models. They highlight the issues that transitioning between models can 
cause especially regarding fine-scale position data, that is lost. They argue that a plausible position 
for each individual can be reconstructed using the population distribution function, as there is no 
behavioural change associated with contaminant load. They found that coarse-graining the model 
significantly increases computational speed. However, their population’s values suggest that a few 
variables behave quite differently under the coarse-graining. This “error” is not further investigated, 
but already showcases the difficulties of utilising this technique. 
 In 2015 Gray and Wotherspoon, wrote another paper regarding adaptive hybrid modelling. 
One of the key issues they discuss in the paper is regarding a suitable mathematical representation 
which allows for comparison of model configurations. They do not introduce a concrete method for 
this comparison, but do coin the term fidelity, to indicate the quality of a model’s performance. 
Fidelity can be seen as a measure of the difference between real world results and the model’s 
results in terms of distribution. The issue with using a metric that can only compare the results to 
reality, is that only models of real specific systems can be evaluated. 
 Wallentin and Neuwirth (2017) utilised the dynamic coarse-graining technique, when 
simulating the dynamics between fish and plankton. They specifically compared different types of 
models within this hybridised simulation. Like Bobashev et al. (2007) they also utilised emergence-
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based aggregation, as the switching condition. Among their findings was that simulation time does 
not necessarily linearly correlate with aggregation level. With some less aggregated models 
outperforming more aggregated models of the same system in terms of speed. They also argue the 
emergence-based switches can connect spatial and hierarchical scale levels, while minimising loss of 
relevant information. 
 Based on these papers it can be concluded that the dynamic coarse-graining principle 
certainly has the capabilities to increase the simulation speed and also to stay consistent under 
specific circumstances. However, the combination of creating a fast, consistent and complex coarse-
grained model has yet to be achieved. Since the studies that found significant speed increases, lacked 
in the consistency department, and the studies that found consistency restricted behavioural 
changes during the switching process. Lastly, there also seems to be a lack of a concrete method to 
determine the actual consistency between model results.  
 

2.5. Experimental setup 
In this study we will attempt to dynamically coarse-grain two separate epidemiological transmission 
models. First a very basic model will be utilised. The basic or simple ABM model, as we will call it, can 
be viewed as a test-case. The main benefit of first attempting to coarse-grain this Simple model is 
related to the identification of potential complications. The potential complications of the coarse-
graining process are easier to be identified, as these complications are less likely to be buried 
beneath the complexity of the model. Additionally, the result of the Simple model can potentially 
lead to more insights when they are analysed in conjunction with a more complex model. To ensure 
the simplicity of the model it is important, that it cannot exhibit behavioural changes during the 
switching process, similarly to the model used by Bobashev et al. (2007). 
 Besides the Simple model there will also be an attempt made to coarse-grain a more 
extensive and complex ABM model. This Extensive model will be a SARS-CoV-2 specific model, 
include more complex concept, and exhibit potential behavioural changes during the switching 
process. The inclusion of these properties is necessary in order to be able to examine the ability of 
SARS-CoV-2 models to be coarse-grained. For both ABM models the Netlogo software will be utilised 
(Wilensky, 1999).  
 Once these models have been selected on the aforementioned criteria they first need to be 
translated. For this translation a rule set of sorts will be developed. These rules will primarily be 
based on a paper by Borshev & Filippov (2004). This paper describes how a SD model can be 
translated towards an ABM model, and its primary aim is to function as a practical reference for 
those who have prior experience with SD, and potentially want to supplement their models with an 
ABM add-on. Even though, this paper is focussed on creating an ABM model from an existing SD 
model, the principles it introduced should also be able to be used the other way around. This reverse 
engineering of their concepts slightly complicates the translation, however there is no paper 
available that concretely explains how an ABM model can be translated to the SD paradigm. Once 
this rule set has been completed the ABM Netlogo models will be translated into SD models using the 
Vensim software (Ventana Systems Inc., 2011).  
 The two versions of both models should each be capable of running completely 
autonomously, however in order to actually coarse-grain and be able to take advantage of both the 
accuracy of the ABM model and the speed of the SD model they will need to be connected. This 
connection only needs to take place during the switching process itself, as there is no need for 
communication between the models during the simulation itself. This connection will be established 
with use of the python programming language (Rossum, 1995). 
 Before starting to use the models for experimentation it is important to ensure the models 
are valid, meaning they are fit for their purpose. Every model will have its own limitations, as they 
are always simplifications of reality (Watson, Doherty, & Christensen, 2013), so the question is not 
whether these limitations exist, but whether the model is “good enough” for the intended purpose. 
These validations tests will focus primarily on the structure of the models, as a coherent structure is 



vital for the coarse-graining process. This is not a trivial matter, as a valid ABM transmission model 
will most likely contain structures, which would be very demanding to accurately replicate in the 
equation-based paradigm. Additionally, the models’ ability to exhibit the expected disease dynamics 
will be examined. 
 Once the models are deemed valid, the actual experimentation can commence. For this 
experimentation a form of exploratory modelling will be utilised (Kwakkel, 2017). The basic principle 
of exploratory modelling is to vary the values of uncertain variables, in such a range that policies can 
be tested for almost all possible scenarios, enabling testing the robustness of such policies. Or in case 
of this research to ensure the model functions as intended under all circumstances, instead of only 
under a pre-defined specific circumstance. Utilising uniform distributed Monte Carlo sampling a large 
amount of computational experiments can be generated (Shapiro, 2003). The advantage of using 
Monte Carlo sampling, over for instance Latin Hypercube sampling (Stein, 1987), is that the 
computational experiments are independent from each other. This allows for an expansion of 
computational experiments when required. Additionally, every computational experiment will be 
replicated multiple times, only saving the average results of these replications, to mitigate the 
stochasticity present in the ABM models. 
 Lastly, all the outcomes will be analysed and discussed. The analysis will focus on two parts 
of the outcome. First the increase in simulation speed will be examined by comparing the time it 
took for all the experiments to complete between both the ABM and the coarse-grained model for 
both the Simple and Extensive models. Secondly, the consistency of the coarse-graining results will 
be analysed. This will be done by quantifying the differences in the time series data for the Key 
Performance Indicators (KPIs) of both models. This quantified data will then be used to determine 
the percentage of computational experiments that result in consistent outcome, indicating the 
overall consistency of the coarse-graining process. Additionally, it can also be used to identify any 
potential uncertain variable values that results in less consistent result and are thus problematic 
when trying to coarse-grain a transmission model. An overview of all steps taken in this research can 
be found in figure 3.   
 

 
Figure 3: Overview of research steps 

2.6. Comparing dynamically coarse-grained models 
After the coarse-grained model has been developed, the model performance has to be evaluated. 
This evaluation will be based on the two main factors of interest due to the coarse-graining: the 
speed of the simulation and the accuracy of the simulation.  

The main reason of utilising the coarse-graining technique is to improve the simulation speed 
of the model, as indicated by the third sub-question. This aspect can relatively easily be compared, 
by running both models for a large number of replications, utilising the same hardware, and tracking 
the time it took for the simulation to complete. By assessing the time, it took to fully complete the 
simulations it can be concluded whether the switch of paradigm will actually save time. However, if it 
turns out the coarse-gained model is actually slower than the original ABM model, it does not 
necessarily mean coarse-graining cannot be faster. This could, for instance, also be caused by 
inefficient coding. In that case the time it takes for specific parts of the simulation to run can be 



analysed. That data can then be used to extrapolate, whether the simulation would potentially be 
faster on more extensive models. This could be the case when, for instance, the time saved by 
decreasing the computational burden does not weigh up to the time cost of making the switch itself. 

Regardless of whether the coarse-grained model simulates faster or not, the coarse-graining 
process would be quite obsolete if it were to mean that the results are inconsistent with the original 
model. In order to adequately tackle sub-question 4, it is important to know how results acquired via 
different modelling paradigms can be compared to each other. 

In order to determine the best method of comparing results between paradigms, the nature 
of the results must first be established. In the case of both models the data will be in the form of 
time series data, showcasing the evolution of the virus spread over time.  

In a 2013 study performed by Figueredo, Siebers, and Aickelin they compared the results of 
ordinary differential equation (ODE) models, to an equivalent ABM model. They use the Wilcoxon 
rank-sum test (Rosner, Glynn, & Ting Lee, 2003). to determine whether the output of both models is 
statistically the same or not. They argue the Wilcoxon test is robust when the populations are not 
normally distributed (Rosner et al., 2003), which is the case for results gathered by using ABM and 
ODE models, whereas tests like the t-test could result in imprecise findings, as their performance 
suffers when the distribution does not follow the normal distribution.  However, it is entirely possible 
that the Wilcoxon test will reject the similarity due to some paradigm differences. For instance, due 
to the continuous nature of ODE models most stocks will probably never fully reach zero once they 
have gone above it, in contrast to the ABM model, which does not exhibit this problem, as it is 
discrete in nature. 

Auping, Pruyt and Kwakkel (2014), attempted to compare the results of three SD models of 
the global copper system, but with some structural differences between the models. They use 
absolute differences between trajectories of the runs to estimate the average difference between 
the runs. The main issue with this method of comparison is related potential oscillatory 
desynchronisation, which could result in counter phase behaviour. When relatively similar oscillatory 
behavioural modes are then compared, it might result in large differences. Since, epidemiological 
transmission models are characterised by oscillatory behavioural patterns Bjørnstad et al. (2021), this 
issue can be quite problematic.  

Another method of assessing the similarity of time series data is by utilising the Complex 
Invariant Distance (CID) clustering algorithm (Batista et al., 2013; Steinmann et al., 2020). This 
algorithm utilises a complexity correction factor combined with the Euclidean distance between two 
time series to assess the similarity of the two time-series. The correction factor is calculated by 
comparing the length of the two time-series after they have been stretched into a straight line. If the 
stretched-out lines are equal in terms of length, the lines are equally complex, resulting in a 
correction factor of 1. This principle is illustrated in figure 4.  

 
Figure 4: Complexity differences (Batista et al., 2013) 

By comparing these complexity differences the issue related to oscillatory desynchronisation 
is largely resolved, since these desynchronised lines will be very similar in terms of overall 
complexity. Due to the importance of this property, the CID metric is deemed the best fit for this 
particular research. This does not mean other properties related to lines are irrelevant in regard to 
this subject, but since most of these properties, like for instance steepness and curvature, also 
influence the complexity of the lines and the Euclidean distance between the lines, these properties 
will not be examined explicitly.  



The CID calculation will result in a distance measure, which indicates the similarity of two 
time series data. This measure cannot be interpreted directly, as it is also dependent on both the 
scale of time series data and the length of the data. Therefore, the data will be normalised by 
dividing it by both the average value of the dataset and the amount of data points in the dataset. 

It is important that the coarse-graining process works under as many instances as possible, 
and not only for one pre-defined combination of variables, as a good scientist can draw an elephant 
with only three parameters (Seidenberg, 1993). Therefore, the model needs to be analysed for a 
wide range of uncertainties, ensuring its usability under all circumstances. 
 This normalised data can be used in several analysis. Firstly, it can be used to ascertain the 
percentage of runs above a pre-defined similarity threshold. This will indicate the overall 
performance of the coarse-graining process. Secondly, it can also be combined with the uncertainty 
data in order to determine under what conditions the dynamically coarse-grained model is 
potentially not able to reach the same results as the ABM model. This information can then be used 
to either make further improvement to the model or describe situations where the coarse-graining 
cannot be utilised in a satisfactory manner. 
 

2.7. Outcome analysis 
In order to analyse the results of the open exploration a PRIM inspired outcome analysis will be 
performed (Friedman & Fisher, 1999). The goal of this analysis is to find variables values that more 
often result in poor NCID values. Indicating either the existence of a bug in the program somewhere, 
or a variable that is not easily translated between paradigms, and therefore more difficult to 
correctly analyse using the dynamic coarse-graining technique. 

The analysis works by first dividing all non-categorical variables up into 5 categories. Since 
the computational experiments are created by using a uniform distribution, the subdivision is made 
based on their value, as this will roughly results in categories of equal sizes. For instance, if the 
uncertainty range for a variable is between 0 and 100, roughly 20% of values should be between the 
values of 80-100. The NCID values are not a result of a uniform distribution, therefore these variables 
will be categorised in quintiles, based on their values. The analysis will therefore be based on 
relativeness of results instead of absolute results. The disadvantage of this is that values can vary a 
lot in absolute terms. For instance, if all NCID values are very good except 5%, the worst quantile will 
include some very good NCID values, but still the worst very good NCID values. 

Once all variables have been categorised, they will get a score based on the amount of times 
they result in certain NCID quintiles. The score alterations related to the different categories of NCID 
values can be seen in table 1. Having both positive and negative score alterations is to account for 
variables that have less than five categories, the variables that are originally categorical. These 
variables will have more value instances per category, and would therefore always result in higher 
scores if this was not accounted for.  

 
Table 1. Score alterations based on NCID category 

Categorical NCID values Score alteration 

0 (best 20% of values) -2 

1 -1 

2 0 

3 +1 

4 (worst 20% of values) +2 

 
By comparing the final score, the variables and associated values that cause the most inconsistency 
can be identified. Additionally, potential linearity between scores of categories associated with the 
same variable, can help indicate whether there is a trend, or a potential high-score is more likely to 
have happened due to randomness. If a certain variable category reaches a high score this is an 



indication of the dynamic coarse-graining resulting in different outcomes, in regards to the ABM 
model. The reason behind the inconsistency can then be attempted to be ascertained manually. By 
removing the computational experiments that include the problematic variable category from the 
analysis. Additional problematic variable categories can potentially be identified. If there are no 
problematic variables in the analysis the scores of all categorised variable values should be around 0.  
  



3. Model 
This chapter focusses on the development of the coarse-grained SARS-CoV-2 transmission model. In 
order to ensure a correct and usable translation of the complex SARS-CoV-2 transmission model, the 
Extensive model, there will first be an attempt to coarse-grain a relatively simple ABM transmission 
model, the Simple model which is discussed in Section 3.1. This will make it easier to identify 
potential complications, as these complications are less likely to be buried beneath the complexity of 
the model. Finding these complications in the Simple model, will then create an opportunity for 
anticipation, making it easier to cope with them when coarse-graining the Extensive model, 
discussed in Section 3.2. In regard to the Extensive model, the basic structure of the ABM model will 
be discussed first. Subsequently paragraph 3.3 will focus on how this structure will be translated into 
a System Dynamics structure. Sections 3.4 and 3.5 of this chapter will discuss the translated System 
dynamics models of the Simple and Extensive model respectively. The Section 3.6 will put the focus 
on how these two separate models communicate with each other, to essentially form one big coarse-
grained model. The validation of the models will be discussed in Section 3.7, and the practical 
experimental setup will be discussed in Section 3.8. All used models, data and code are also openly 
available on https://github.com/MaxvEck17/Dynamic_coarse_graining.  
 

3.1. Simple ABM transmission model 
The Simple model used in this research is part of NetLogo’s (Wilensky, 1999) standard library of 
models, and can be found under sample models, Biology, Virus (Wilensky, 1998).  The basics of the 
model will be shortly discussed, for a more extensive explanation of the model the official 
documentation can be consulted. 

The ABM model can be considered a simplified version of the classical SEIR models. The 
exposed and infectious groups are taken together, resulting in three sperate possible disease states 
for the agents, which will also proxy as the Key Performance Indicators (KPI) of this model. Agents 
can be susceptible (S), sick (E + I), and immune (R). The progression of the disease states is visualised 
in figure 5. 
 

 
Figure 5: Disease progression in Simple ABM model 

Additional to these main states the agents are also equipped with an age, which indicates 
when the agent will die, and internal timers that keep track for how many more ticks, which 
represents weeks, the agent should stay sick or immune. Infections have a pre-defined chance to 
take place between the sick and susceptible agents when they come in contact. Coming in contact 
means the spatial distance between two agents is smaller than a certain threshold. As the agents all 
move randomly through the model, the amount of infections will vary. Both the movement and 
infection chance add a certain amount of stochasticity to the model. The agent can die from either 
the virus or from reaching their total lifespan. Non-sick agents have a chance to reproduce as long as 
the total carrying capacity has not been reached yet. Depending on the settings used for the 
constants there are different modes of behaviour patterns possible. The virus has the potential to die 
out, however the most common behavioural mode is oscillating behaviour in regard to the amount 
of sick people. In figure 6 the flowchart of this behaviour is shown.  

This model is deemed useable for the purpose of the Simple model as it exhibits the 
characteristics of SEIR models in their most basic forms. Furthermore, the model does not include 

https://github.com/MaxvEck17/Dynamic_coarse_graining


behavioural changes during different parts of the disease cycle, which is an important feature of the 
Simple model, as mentioned in Section 2.5. 

  

 
Figure 6: Flowchart Simple ABM model 

3.2. Extensive Agent-Based model 
The Agent-Based modelling (ABM) model has been developed by J. Badham (2021) and is primarily 
focussed on social, non-pharmaceutical, interventions and their influence on both transmission and 



disease progression. Similar to the Simple model, the basics of the model will be shortly discussed, 
for a more extensive explanation of the model the official documentation can be consulted. 

The basic structure consists of an extended person to person SEIR model, which excludes all 
other methods of infection. The agents, or people, in the model can have seven different 
epidemiological statuses. People start off as being susceptible (S), have a chance of becoming 
exposed (E) after coming in contact with an Infectious (I) individual, and become infectious 
themselves after a certain amount of time passes. While being infectious people can infect others 
and may experience symptoms. If these symptoms become severe people might need to be 
Hospitalised and in the most severe cases be moved to Critical care. All people that are in one of 
these three different infectious stages also have the possibility of recovery, making them immune, or 
in the worst case dying (R). Lastly, immune people have a chance of becoming susceptible again after 
a certain amount of time. This disease progression is visualised in figure 7. 
 

 
Figure 7: Disease progression in Extensive ABM model 

The KPIs of this model are also related to the different stages of disease progression in the 
model. The three KPIs are: Incidence, prevalence-I, and prevalence-all. With incidence indicating the 
percentage of people that became exposed during the last tick, which represents a day. Prevalence-I 
is the percentage of people who are currently able to infect others, thus being either Infectious, 
Hospitalised or in Critical care. Lastly, prevalence-all indicates the percentage of agents who are 
currently infected with SARS-CoV-2, thus exposed, infectious, hospitalised or in critical care.  

Transmissions are modelled by combining a chance of infection with spatial proximity. If a 
transmitter, an infectious person who is not isolated, comes in contact with a susceptible person a 
chance of transmission will be calculated based on a number of factors; like the age-groups the 
agents belong to, or possible social distancing interventions. When agents transition stage, both the 
time they will stay in the state, and their next state will be determined by a weighted draw. On onset 
of symptoms after infection they also have a probability to go into isolation, and potentially report 
their infectious state to the agents they already have infected. The movement that leads to these 
contacts is based on random draws, as there are no actual activities included in the model, which 
introduces a considerable stochastic component. A simplified version of how an agent goes through 
these interactions can be seen in the flowchart in figure 8.  

Besides actions agents can take there are also global variables that affect most of these 
actions. These global variables can be seen as governmental interventions. Interventions can either 



be activated for the entire duration of a simulation run or be trigger dependent. Interventions that 
run for the entire duration are the in essence the less extreme interventions, which are feasible to be 
maintained for a longer time period in a real population. An example of this would be to self-isolate 
oneself when starting to experience symptoms of the virus, or when being informed by an infected 
contact. The more intrusive, and trigger dependent, policies are mostly focussed on reducing the 
movement of agents. For instance, the high-risk-shielding intervention, puts every agent that has the 
high-risk state in isolation, regardless of current infection status. The trigger itself is activated if one 
of three variables; the amount of days passed since start of the outbreak, the amount of hospitalised 
people, or the amount of active cases, goes past a pre-defined threshold. 

The model also includes an option of vaccinating the agents. This vaccination is not modelled 
in a gradual way, but instead as a button that needs to be pressed by the person who runs the 
simulation, to vaccinate a specified percentage of the agents. Since this is not an integrated process, 
there will not be any vaccinations during the coarse-graining process. However, this could be useful 
to determine the behaviour of SARS-CoV-2 when a large part of the population is already vaccinated 
at the start of a potential wave. 

This model is deemed useable for the purpose of the Extensive model as it exhibits the 
characteristics of SEIR models in an extended form. It also includes all the required aforementioned 
characteristics as mentioned in Section 2.5. These characteristics include: being a SARS-CoV-2 specific 
model, including complex to translate concepts like individual tracking, and being able to exhibit 
behavioural changes during the switching process, which can be found in interventions that can be 
activated and are able to change the behavioural patterns.  

 
 
 



 
Figure 8: Simplified flowchart of Extensive ABM model 



3.3. Coarse-grained modelling rule set 
When combining the ABM and SD paradigm there are some issues that can occur, as the techniques 
were not developed with interconnection in mind. Making the translation of certain parts of the 
model more difficult than others. This could potentially be remedied somewhat if the original model, 
either ABM or SD, is developed with the other paradigm in mind. Processes in modelling almost 
never have one correct way to be modelled, but one way of modelling a certain process will allow it 
to be translated to the other paradigm more easily than an alternative way. By considering ways, it 
would be possible to translate it into the different paradigm, while making the original model a lot of 
issues could potentially be avoided. In this case, however, the original ABM models were not 
developed with a translation to SD in mind. Therefore, there is a need for a rough rule set of 
translating common, yet complex processes from ABM to SD. The goal of this section will hence be to 
resolve the second sub-question: “What set of rules should be used for dynamic coarse-graining two 
SARS-CoV-2 transmission models in different modelling paradigms?” 
 

3.3.1. Basics of translating ABM models towards SD models 
The basics of translating a model in the ABM paradigm to the SD paradigm will be based on the paper 
by Borshev & Filippov (2004). Their focus was on translating a SD model towards the ABM paradigm. 
Meaning their findings will essentially have to be reversed. The starting point will be the aggregation 
of agents and their different states into stocks. Because agents can theoretically have an infinite 
amount of states it is important to think about which states need their own stock, which states can 
be combined into the same stock, and which states are better of being subscripted. The flows 
between these different stocks can be seen as the transition between states agents might 
experience. It is also good practice to include every single variable that is included in the other 
model, assuming they are all used. Using the exact same variable name will also make the connection 
easier to make and help clarify what the original variables are and what the new variables are.  
 

3.3.2. Translating complex concepts from ABM towards SD 
Besides the easy to convert aspects of ABM models, there are some characteristics of ABM that SD 
does not have, which introduces some complications. The main issues are related to the lack of 
stochasticity, heterogeneity, and spatial effects in the SD paradigm. The most common occurrences 
of these aspects in ABM will be discussed. An overview of these concepts, potential solutions and 
chosen solution is shown in table 2. 
 Stochasticity in ABM is very common, nevertheless most uses can be generalised. The most 
common usage of stochastic aspects is in chance calculations on a nominal scale. Since SD is non-
discrete those chances can be converted directly to distributions. If an agent has a 50% chance to 
recover from a disease or die alternatively, instead of choosing one of the two options SD can let half 
of the agent recover and half of the agent die, due to its continuous nature. An extension on this 
principle is drawing options based on a chance distribution on an interval or ratio scale. Theoretically 
speaking this could be resolved in the same way as the nominal chance, however the amount of 
nominal options are usually limited, whereas interval or ratio numbers can be scaled up much easier. 
For instance, when asking an agent to perform an action after a certain amount of time, the different 
time options are essentially limitless. Therefore, it is impractical to create separate flows for every 
possibility, in this case it is more practical to take the average value of the distribution. However, 
when these distributions are used in delay functions, most distributions are not fully captured 
correctly. Borshev and Filippov (2004) note that exponential distributions are the only correct way to 
transform a delay, in extension this means that delays are only capable of perfectly mimicking 
exponential distributions, being slightly off on other kinds of distributions. In spite of this, there is no 
clear alternative method of modelling this, so we will stick to the average outcomes of these 
distributions.  
 A considerable reason to analyse epidemiological transmission systems with the ABM 
paradigm is for the inclusion of special effects that are an important factor in the spread of viruses. 



These factors are very difficult to incorporate in a SD model, forming a substantial obstacle in the 
translation of these models. Depending on the complexity of the movement options of the agents, it 
can be difficult to almost impossible to mathematically determine the related variables. In 
transmission models the main method of utilising spatial effects is to model the infections, as agents 
need to be close to each other to be able to infect each other. Mathematical attempts to calculate 
what the odds are for a susceptible agent to encounter another an infectious agent are complicated. 
Even if these odds can be determined the heterogeneity of the agents put another spoke in the 
wheel. If there exists a constant that explains this behaviour, it is very complicated to determine it. It 
needs to be controlled for just the right variables, and a statistical analysis will hardly help in finding 
these variables due to the many feedback mechanisms in transmission models. For instance, the 
amount of infected people determines how likely it is for a susceptible person to encounter an 
infected person, but this chance also influences the amount of infected people there will be. A 
solution to this problem would be to empirically estimate a variable, chance of contact for instance, 
controlled for some variable likely to affect it, and create a look-up function dependent on the 
control variables. This is not ideal, as it will always stay an estimate, but can function adequately 
enough. However, this method will not work when alterations to variables underlying the movement 
do not scale this look-up function in an easy to identify fashion.  
 A last difficult to translate concept is the use of individual tracking. In the Extensive ABM 
model this is for instance used to track the agents that got infected by a pre-symptomatic agent. This 
allows them to get informed of their infection once the symptoms for their infector start. In SD there 
are essentially no individuals, but only groups, or aggregates of individuals, this prevents any and all 
forms of individual tracking. This should be able to be remedied by using the fraction of pre-
symptomatic people to determine what fraction of exposed people should get informed of their 
infection. However, there can also be structures in the model that cause agents in certain age groups 
to have an altered chance of infecting agents in other age groups, such a structure can be found in 
the Extensive model in the form of the contact-age-homophily variable. Structures like this make the 
correct implementation of individual tracking, as they are easy to overlook when constructing the SD 
model. 
 
Table 2. Overview of complex to translate concepts and solutions 

Complex concept Potential solutions Chosen solution 
Stochasticity • Create separate stocks (or subscripts) for 

every possible outcome and let the flows 
follow the pre-defined distribution in a 
continuous manner. 

• Aggregate the stochasticity to its average 
outcome 

Nominal/Ordinal distributions: 
create separate stocks 
 
Ratio/Interval distributions: use 
average value 

Spatial movement 
of agents 

• Calculate the chance of agents coming in 
contact with each other based on the 
movement patterns, and variables like the 
amount of agents, and the size of the 
space the agents live in. 

• Empirically estimate the amount of 
contacts occurring in the model, 
controlled for variables that are likely to 
influence this amount 

Simple model: Calculate the 
chance, but combined with a slight 
empirically estimated correction 
factor as the calculated result, did 
not exactly match the original 
outcome 
 
Extensive model: Empirically 
estimate controlled for the amount 
of susceptible and infectious 
agents.  

Individual tracking 
of agents 

• Combine relevant fractions to 
mathematically calculate the results this 
tracking should have, without explicit 
modelling of the tracking itself 

No explicit individual tracking, but 
calculations utilising the relevant 
variables to gain similar outcomes. 

 



 

3.4. Simple SD transmission model 
Using the coarse-graining ruleset, developed in Section 3.3, the Simple ABM model, described in 
3.1.1, has been translated into a SD model, utilising the Vensim Software (Ventana Systems Inc., 
2011). The stock-structure in the SD model, is built upon the different states the agents can take. This 
can be seen in the conceptual Stock Flow diagram in figure 9.  
 

 
Figure 9: Conceptual Stock Flow diagram of Simple SD model 

This diagram showcases the overlap with the agent states in the ABM model, as shown in Section 
3.1.1, only adding outflows for deaths and an inflow for new-borns. Agents flow though these states 
by a third order delay of the average time they should spent in these stocks. However, being Healthy 
is not time dependent, but contact dependent. This creates the first issue, as the chance of coming in 
contact with another agent is purely spatial dependent and has a heavy stochastic component. This 
value should approach the amount of agents present in the model, thus the Total population, divided 
by the amount of space they live in, which can be interpreted as the total amount of patches present 
in the ABM model. A patch being the unit of one block of space. However, probably due to the 
heterogeneity of agents, this value was still off, making the use of an empirically found correction 
factor necessary. 
 A second issue also relates to the flows in the model. Because these flows are mostly 
modelled using third order delays and averages, any oscillatory behaviour is quickly lost. A delay 
function delays its inputs using an exponential distribution with a specified order and using the delay 
time as its average. By changing exact delay time to approximate delays time, the peaks will be 
smoothed out more, reducing the oscillatory behaviour. The main cause of this issue is the absence 
of stochasticity in the SD model. So, any singular replication performed in Netlogo instead of Vensim, 
will have drastically different results. Taking the average of multiple Netlogo replications will result in 
similar results to a singular replication of Vensim, meaning this is not necessarily something that 
needs changing.  
 The rest of the model was quite straightforward in terms of modelling. Most variables were 
able to be copied directly into the SD paradigm. All ratio and interval stochastic processes were 
changed to their average outcomes, and internal timers were translated in global chances to die or 
get past a certain state. A figure of the full model can be found in Appendix III. 
 

3.5. Extensive System Dynamics model 
Using the coarse-graining ruleset, developed in Section 3.3, the Extensive ABM model, described in 
Section 3.2, has been translated into a SD model, utilising the Vensim Software (Ventana Systems 
Inc., 2011). The basic concepts of the SD paradigm are described in Section 2.3.1. The stock-structure 
in the SD model, is mainly built on the different disease states agents can take. This can be seen in 
the conceptual model in figure 10.  
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Figure 10: Conceptual Stock Flow diagram of Extensive SD model 

The conceptual model is a very simplified version of the actual model, where the disease stages are 
broken up even further, including asymptomatic, pre-symptomatic and critical care. Besides the main 
disease stages, the main mitigation strategies are also included in the conceptual model. These 
strategies will either try to reduce the chance of a susceptible person to come in contact with an 
infectious person or reduce the probability of infection when they come in contact. The dashed lines 
indicate causal relationships, that can be turned on or off.  
The other important agent states, present in the ABM model, are made into subscripts. Subscripts 
can be viewed as variables within other variables, which among other things helps in keeping some 
agent heterogeneity in the model. The subscripts used are; age-groups, risk-type, vaccination-type, 
and isolation status, creating 24 unique states within every disease state. 
 The flows between the stocks follow the same logic as in the ABM model. The time it takes to 
move on from one stock to the next is translated, from a weighted draw to the average outcome, 
and combined with a third order delay. As mentioned in Section 3.3.2. this is not a perfect translation 
of a weighted draw, as this changes the chance distribution into an exponential distribution.  

One of the flows is not time dependent, and that is the Exposing flow between the 
Susceptible and Exposed stocks. This flow is dependent on the variable that was most difficult to 
quantify, the chance of contact between a susceptible person and a transmitter. This crucial variable 
is influenced by both the heterogeneity and the spatial aspects of the ABM model, making it hard to 
find a constant. When the variable was controlled for both the movement variables, the amount of 
susceptible people and the amount of transmitters, it still was far from constant in the ABM model. 
An attempt at a statistical analysis of the variable, also did not yield any useable results, due to the 
many feedback mechanisms present in this part of the model. Therefore, the decision to empirically 
estimate the variable was made. This was possible as the variable did consistently show about the 
same results, when also taking the stochasticity associated with this variable into account. This 
solution came with additional issues, as the resulting look-up function did not scale in an easily 
identifiable manner with the movement variables it should be dependent upon.  
 Another change that was made compared to the ABM model is related to the isolation of the 
agents. In the ABM model agents remember which agents they have infected, and more importantly 
stay isolated for a prespecified amount of time, independent from disease state. This makes it very 
difficult to make sure the people move through the disease model in a correct manner when they go 
in isolation halfway through. To remedy this, there was decided to couple the processes, meaning 
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people will only and always leave isolation when they either die, become immune or get admitted to 
a hospital. This change has the potential to result in an underestimate of the infections, as people 
that get notified of their infection in an early stage, for instance when they have just been exposed, 
could have already left their isolation before they have actually become immune. This also means the 
isolation duration will not be able to vary between runs, as the SD model is not capable of having 
shorter or longer isolation periods. 
 The last simplification that was made is in regard to the people who lose their immunity. In 
the Netlogo model the amount of episodes every agent experiences is recorded. However, since SD 
does not allow for tracking of individuals it is unable to say whether an individual has gone through 
the whole process multiple times. Therefore, it only tracks the amount of susceptible people who 
never have been infected. This will make it possible to determine the total impact the virus has had 
on the population. Every other part of the original model has been faithfully recreated, which should 
result in similar outputs for the two models. Especially for the key performance indicators (KPIs) of 
the model, which in this case are; The total prevalence of the virus (prevalence-all), the prevalence of 
infectious people (prevalence-I), and the amount of new people who get infected every day 
(incidence).  
 

3.6. Interconnection of models 
The two models are each capable of running completely autonomously, however in order to actually 
coarse-grain and be able to take advantage of both the accuracy of the ABM model and the speed of 
the SD model they will need to be connected. This connection only needs to take place during the 
switching process itself, as there is no need for communication between the models during the 
simulation itself. To accomplish this connection use of the python programming language will be 
made. The coarse-graining process will always start in the ABM model, as this is the best method of 
subdividing the agents over all stages. We can subdivide the swapping process in two separate 
processes, from ABM to SD and from SD to ABM, that each have their own set of steps to be taken. In 
order to account for the swapping process, there also need to be made a few alterations to the 
models themselves. In Section 3.6.1. the interconnection of the Simple model will be discussed, and 
in Section 3.6.2. the interconnection of the Extensive model. An overview of the complicated issues 
related to the interconnection of both models can be found in table 3, below Section 3.6.2.  
 

3.6.1. Interconnection of the Simple model 
As one of the goals of this research is to see what speed improvement can result from utilising the 
coarse-graining technique, it is important the interconnection of the two models does not take up to 
much extra computational power. To this end it is important there is no constant connection 
between the models. In order to achieve this, there needs to be a variable stopping condition added 
to the ABM model. This function is implemented by creating a “go_while” procedure, which will run 
the model until either the switching condition is met, the amount of sick turtles has become zero or 
the pre-defined runtime is exceeded.  
 Once the ABM model has stopped running, it will return the relevant data to python 
(Rossum, 1995). This data will subsequently be used to specify all constants and initial values in the 
SD model. To reduce the chance of an error occurring, all constants are overwritten to the most 
recent values in the ABM model, even those that are not supposed to vary. 
 At this point the SD model will start running, starting from the point the ABM model stopped. 
Similarly, to the ABM model, the SD model also has a build-in stopping condition, preventing the 
waste of time by simulating the model longer than necessary. The stopping condition in the SD model 
will always be half of the stopping condition in the ABM model. This prevents rapid switching 
between the models if the model is closely oscillating around the switching condition, as multiple 
unnecessary switches can quickly increase the required simulation time significantly. 
 After the model falls below the switching condition, it will return the relevant data to python 
and prepare the ABM model for taking over. This is a bit more complicated, due to the paradigm 



differences. There are three major issues that need to be addressed. Firstly, the continuous values 
need to be discretised. This is only an issue when switching form SD towards ABM, as all discrete 
values lay on the continuous spectrum, but not all continuous values lay on the discrete spectrum. 
For the Simple model this issue is not too difficult to solve, as the only values that need to be 
transferred are the amount of Sick, Immune and Total people. Which can just be rounded to their 
nearest number. However, this will create a sudden yet subtle change of values in the data, which 
could potentially be seen in graphs of the data. 

The second issue relates to the spatial aspect of ABM models. The spatial information is 
largely lost when the swap from the ABM towards the SD is made. When returning to ABM, all agents 
need to have a spatial position that results in reasonable behaviour, in regard to in which phase of 
the transmission cycle the model exists. If, for instance, all agents would be put on the same place, 
the amount of infections that occur will be significantly higher than could be reasonably expected. In 
this Simple model the movement of the agents is completely random, independent from any 
variables and large enough to get through the entire “map”. The combination of these factors make 
it possible to put the agents back on the map in a completely random fashion. This will be done in 
the same fashion as at the start of the simulation by using the setup button.  

The last issue is related to the internal timers the agents have. These internal timers are used 
to determine when agents are supposed to perform a certain action. In the case of the Simple model 
internal timers ascertain whether turtles should change their status from Sick to Immune/Dead or 
from Immune to Susceptible and when they should die. The easiest way of resolving this issue is by 
setting their internal timers for a random time period between zero and the maximum time. This 
solution can possibly create issues when spatial effects and heterogeneity play an important part, as 
it disregards whether it is more likely, that the agent was recently infected, or has been infected for a 
long time already. Due to the simplistic nature of this model, this does not seem to affect the results 
in any noticeable manner. 

These two models will keep switching between each other until one of them reaches the 
total run-time, or the amount of sick people is reduced to zero. In this latter case the SD model will 
run until completion. Once the simulations are completed the partial runs from both models are 
combined and saved for potential analyses. An overview of the pseudocode underlying this process 
can be seen in figure 11.  

 
Figure 11: Pseudo code of coarse-graining process for both models. 



3.6.2.  Interconnection of the Extensive model 
Similar to the Simple model, both the ABM and SD model need to have a built-in switching condition 
to minimise the computational power required for the interconnection of the models. This will make 
the ABM model simulate until either, the amount of infectious people reaches a certain threshold, 
the full run-time is completed or there are no more infected people in the model. Additionally, to 
these requirements, the model will also continue running when new mitigation measures have just 
been activated or the simulation has almost reached its full run-time. The respective reasons are that 
the coarse-graining preforms poorly when switching shortly after activation of mitigation measures, 
and if the simulation is almost completed it will take more time to actually switch models than to 
have the ABM model run its course.  

Once the ABM model has first reached its switching condition all relevant data is saved, and 
all variables are copied and set to the Vensim model. Some variable values need to be translated due 
to the paradigm switch, as ABM allows for variables to hold String values and Booleans, where SD 
only utilises numbers. Additionally, percentages are used differently which means they sometimes 
need to be divided by a hundred when making the transition. Besides all real variables, that need to 
be set there is also a correction factor present in the model. This variable is used to adjust the look-
up movement variable to be more consistent with the ABM model. It calculates ratio between the 
last amount of contacts per transmitter per susceptible person and the look-up of the same variable 
and multiplies the look-up variable by this ratio. This has empirically shown to yield more similar 
results than solely utilising the look-up function.  

After all variables in the SD model have been set to their correct values, its simulation can 
commence. This simulation will last until “Prevalence-I” falls below the 0.013 threshold, and the 
model has to at least be running for a prespecified amount of days, 7 in this case. This prevents the 
coarse-graining process from oscillating between the two models. When the simulation is completed 
all its data is saved in a run file.  

The data in this run file is used to make the switch back to the ABM paradigm. Swapping back 
is a fair bit more complicated as information not present in the SD model needs to put into the ABM 
model. Unlike the Simple model it is crucial the Extensive ABM model is not reloaded, setup again, or 
changed in any way shape or form before switching back. By keeping the original ABM model as is, 
during the Vensim simulation, the information still contained in the model can be used in the 
switching process. This is especially useful, as the amount of agents in the model stays constant 
during the run, and most agent states, like age-group, also do not change.  

Keeping the previous model will thus save the locality and heterogeneity of agents. This is 
important, as when all agents are put back in a homogenous or random manner, the amount of 
infections will be greatly overestimated after the switch. An attempt to preserve the heterogeneity 
present in the original model is made by utilising the initial infected agent. Due to the spatial manner 
of infecting other agents, the agents closest to the original agent should have gotten infected first 
and be the furthest in the infection cycle. Therefore, agents will gain a state based on their own 
original constant attributes (risk-type, age, and vaccination-status), and their proximity to the original 
agent.  

The three states, the closest agents are theoretically most likely to have, are; to be immune, 
dead, or susceptible again. To accommodate for this, the amount of agents in these groups are 
tagged based on their proximity to the original agent. The tagged agents will then be made dead, 
immune, or susceptible, based on their permanent states and random chance. Once these three 
groups have been put back in the model, the other disease stages will also be put back based in a 
similar manner. The order in which they will be returned is; critical, hospitalised, severe 
symptomatic, mild symptomatic, asymptomatic, pre-symptomatic, exposed, and finally susceptible. 
This will result in a circular pattern around the initial infected agent.  

This will not perfectly mimic the original situation, but probably be a close approximation. The 
only part that is disregarded, is that not every agent in the model will have gone through the virus 
process. So in between the sick and recovered agents, there should be some agents scattered who 



managed to dodge the virus. To accommodate for this all susceptible agents who have not gone 
through the virus yet will be placed first. Fifty percent of these agents will first take a random spot of 
a random agents that belongs to fifty percent of closed agents with the other fifty percent being 
returned completely random. These agents will be locked away from being able to get infected 
during the transformation process. A rough estimation of how this should look can be seen in figure 
12.  

 
Figure 12: Rough estimation of ABM transformation result 

Another issue with the transformation process of the ABM model is the discretisation of values. Since 
the amount of agents with specific attributes is constant, and thus unchanging, situations can occur 
where there are not enough agents left to fit a disease state. This happens when the disease states 
that were put back first were mostly rounded-up. This will slightly alter the composition of the agents 
in terms of disease state, however due to the large amount of agents present in the model, the 
impact should be minimal.  
 Dependent on which disease stage the agents get during the transformation process they 
need to have different set of timers and attributes set. To accomplish this, there are distinct 
procedures established. The only state not able to be somewhat reproduced is “my- infected”, which 
holds the data on what agents each transmitter has infected. This is only relevant for the pre-
symptomatic agents, as they could tell their infected agents to go in isolation once they become 
symptomatic. However, since agents only stay pre-symptomatic for a very short time, this should not 
have a big impact on the overall model behaviour. Especially as the model will be in a downwards 
trend when making the switch, resulting in a very low proportion of pre-symptomatic agents. 
 

Table 3. Overview of complications and solutions related to interconnection of models 

Issue Solution 

Ensure minimal computational 
requirements during switching 
process 

Embed switching conditions within the models themselves, to 
reduce communication during simulation. 

Ensure variables keep their 
correct value 

Overwrite every variable every switch including constants as a 
failsafe. 



Oscillatory switching between 
models 

Set the switching condition for switching back lower than other 
the switch condition. 
Prevent model from switching back the first few time steps after 
switching. 

Continuous variables need to 
be discretised 

Round continuous variable to the closest discrete value. 

Loss of spatial information in 
model 

Simple model: re-setup the model with correct amount of agents 
and alter attributes randomly. 
 
Extensive model: save original model and only change their 
attributes related to their disease state. Combined with an 
algorithm that determines what agents need to change based on 
their proximity to the original infected agent. 

Internal timers of agents Set the time to a random time between the maximum value of the 
timer and 0. 

Switching after activation of 
intervention 

Prevent switching at this time as it results in poorer results. 

Loss of agent tracking 
information 

Tracking is only relevant for pre-symptomatic agents, which are a 
very small group at the time of switching back, thus ignoring this 
has only a very minor impact on the model. 

 

3.7. Verification and validation 
Before starting to use the models for experimentation it is important to ensure the models are valid, 

meaning they are fit for their purpose. Every model will have its own limitations, as they are always 

simplifications of reality (Watson, Doherty, & Christensen, 2013), so the question is not whether 

these limitations exist, but whether the model is “good enough” for the intended purpose. For 

instance, you should not judge a fish on its ability fly. So, depending on what the model is intended to 

be used for, the set of validation tests will vary. In Section 3.7.1. the purpose of the four models will 

first be discussed, followed by the validation tests, and the conclusion regarding their validity. 

3.7.1. Purpose of the models 
In order to validate any model, it is paramount that the purpose of the model is clearly defined. To 
this end the purpose of this research needs to be analysed. In this case the research is mainly of a 
methodological nature, as the models are not intended to give any direct policy advice. This means 
the models will need to be able to function in such a way the use of the new methodology can be 
analysed. To this end, the purpose of the SD models is purely whether they able to mimic the results 
of their related ABM model under certain conditions. So, it could be argued that the validity of the SD 
models is the heart of the research. Therefore, the validity of these models should theoretically only 
be based on its similarity to the ABM model, which behavioural components will be discussed further 
in chapters 4 and 5. However, these models are in essence also still epidemiological transmission 
models, so they will also be judged upon their ability to exhibit the standard disease mechanics 
expected from such models.  
 The same holds true for the ABM model to some extent. When looking at the research in a 
vacuum, for the coarse-graining it is not really relevant whether the behaviour exhibited by the ABM 
models is a good representation of real disease dynamics. The primary purpose of both models is to 
include concepts that are either simple or complex to translate to the SD paradigm. If these concepts, 
like stochasticity for instance, are included in the ABM model and the SD model is able to replicate it, 
the coarse-graining was successful, regardless of the behaviour that is actually exhibited. However, 
since the goal of the research is to specifically look at coarse-graining SARS-CoV-2 models, it could be 
argued that the behaviour displayed by the ABM models is relevant to this end. Therefore, the ABM 



models will also be validated upon their ability to exhibit behaviour expected from such 
epidemiological transmission models. 
 

3.7.2. Validation of Simple model 
Based on the purpose of the both the ABM and SD version of the Simple model explained in Section 
3.7.1, a selection of behavioural and structural tests will be performed. Starting with the ABM model 
it needs to include concepts deemed not very complex to translate to the SD paradigm, the basic 
structure of epidemiological transmission models and exhibit basic disease dynamics. The SD model 
structure will be validated based in unison with the ABM model, as they should be perfectly aligned 
due to the coarse-graining. The behaviour of the SD model will also separately be tested on its ability 
to exhibit basic disease dynamics.  
 

3.7.2.1. Parameter verification test of Simple model 

The parameter verification test entails the comparison of the different variables in the model to their 
real world counter-part. Ideally every variable should have a distinctive meaning and a logical value 
attached to them. If there are a significant amount of variables without such meaning, this could be 
an indication of overfitting a model, meaning the model is less likely to be an accurate representation 
of reality. The extended execution of this test is located in Appendix I. It can be concluded that, even 
though not every single variable has an established real-world counterpart, the parameters make 
enough sense for the purpose of this research. 
 

3.7.2.2. Structure verification test 

Verifying the structure of the Simple models will be the most important test in regard to the purpose 
of the model. Since this model is purely utilised to serve as a test-case for the Extensive model, the 
most important thing is that the basic structure follows the structure of standard transmission 
models. If this is not the case, it could be argued that using this model as the test-case would be 
senseless. In Appendix I is discussed how the Simple ABM model incorporates every attribute to 
make it a viable option in regard to the methodological goal. 
 

3.7.2.3. Dimensional-consistency 

This test will help to build confidence in the internal consistency of the SD model. Since most 
variables in the Netlogo model do not have dimensions attached to them, this test will only be 
performed on the SD side of the Simple model. Consistency of the dimensions in the Vensim model 
also implicates, that the dimensions of the Netlogo model variables are consistent, as the functions 
are essentially the same. Dimensions failing to add up implicates a structural mistake in the model 
and should therefore be analysed carefully. This test is especially useful in conjunction with the 
parameter verification test, as this eliminates the variables used to fix the dimensions without having 
any real-life meaning. Based on the information provided in Appendix I it can be concluded that both 
models are dimensionally consistent, building a significant amount of confidence in the underlying 
structure of the model. 
 

3.7.2.4. Extreme conditions test 

To ensure the models behaviour does not exhibit any impossibilities, the model is tested under 
conditions that are most likely to break the model. For instance, when putting the carrying-capacity 
to zero the amount of agents in the model should never increase and always decline. More obvious 
mistakes, like variable going negative, are also indicators of failing this test. By passing this test, the 
likelihood of the basic structure functioning correctly is increased. The full implementation of the 
extreme conditions test, for both Simple models, can be found in Appendix I. Based on these results 
it can be seen the Simple ABM model functions perfectly under all circumstances. The same cannot 
be said for the SD model, as its capacity to work correctly is contingent on the duration of both the 



immunity and sickness being at least one week, and the Lifespan of the people being not smaller 
than either of these variables. If these specific conditions are kept in mind when experimenting on 
the model, it does function well enough for its purpose of being a test-case. 
 

3.7.2.5. Basic behavioural test 

Once it has been established that the main structure of the Simple models functions well enough for 
the purpose of this research, the actual behaviour can be analysed. This behaviour should roughly 
replicate know disease dynamics. According to Bjørnstad et al. (2021) SIR models, and their 
extensions, should exhibit periodicity when R0 > 1 and there is recruitment into the susceptible 
population. This behaviour is visualised in figure 13.  

 
Figure 13: Disease dynamics when R0 > 1, Bjørnstad et al. (2021) 

The ability of the models to exhibit these behavioural patterns is analysed in Appendix I. Based on 
the findings it can be concluded that the models are able to replicate these disease dynamics. 
Therefore, the confidence in the model to result in known disease dynamics is increased, and the 
model’s behaviour is deemed good enough for the purpose of this research. 
  

3.7.2.6. Conclusion Simple model 

Based on the five validation tests performed it can be concluded that the Simple models satisfy all 
requirements for them to serve as a test case for the Extensive model. Not only do their structures 
seem very solid under most conditions, all relevant structures for preparing to coarse-grain a more 
complex model are also included. One can never be a hundred percent certain of a model’s validity 
but passing the proposed validations does create enough confidence to move forward with these 
models.  
 

3.7.3. Validation of Extensive model 
Similar to the Simple model, one of the goals of utilising the ABM model is to find out if it is 
methodologically possible to perform coarse-graining on an ABM model, that includes more complex 
concepts. In order to be able to successfully achieve this goal, the only requirement of the model is 
that it is structurally valid. To this end, the same structural validation tests as the Simple model went 
through will be performed: the parameter verification, structure verification, and the dimensional-
consistency test. For the Extensive model there will not be an extreme conditions test, as there are 
too many constant variables, and the test will be performed indirectly during the exploratory 
modelling. In contrast with the Simple model, the Extensive model also serves to model a specific 
pathogen. Therefore, validation tests regarding behaviour should be performed, to check whether 
the behaviour of the SARS-CoV-2 virus is mimicked. However, due to the many mitigation measure 
countries have deployed against this virus, it will not be possible to perform an accurate historical 



validation test. This means the correct implantation of the SARS-CoV-2 virus can merely be tested via 
parameter verification. Therefore, the only real test of behaviour will be testing the basic disease 
dynamics. The structural tests will be performed in unison of the models, and the behaviour test will 
be performed separately. All these tests are fully performed in Appendix II. 
 

3.7.3.1. Parameter verification of Extensive model 

All model parameters are fully analysed to ensure they have a real world meaning and also have 

values correspondent with this real world meaning. A full discussion of the parameter verification 

can be found in Appendix II. In this discussion it was found that the variables related to movement, 

lack adequate real world meaning, making the model unusable for exploration of movement 

reduction policies. Additionally, a few variables lack real world meanings, this lack can either be 

explained by the simplifications made in the model, making these variables necessary or will be 

further explored in the dimensional consistency test. Overall, almost all parameters present in the 

model are valid, in both real world meaning and value, increasing confidence in the model’s ability to 

be used for the purpose of this research. 

3.7.3.2. Structure verification of Extensive model 

For the structural verification there are three structural elements that are studied in more detail. 
These are general epidemiological transmission structure, realistic structural constructions, and 
complex structural concepts. The full analysis of these structural elements can be found in Appendix 
II. The only issues that have been identified are related to realistic structural constructs. Especially 
the structures related to isolation mechanics are a bit unrealistic. This makes the model unable to 
accurately represent concrete dynamics and mitigation measures in the model. However, for the 
primary methodological objectives of this research the model can be considered sufficient. 
 

3.7.3.3. Dimensional consistency of Extensive model 

By analysing the dimensional consistency of the models, any potential structural mistakes can be 
identified. Because the structure of both models is almost identical, any dimensional issue in one of 
the models will also exists in the other. The analysis will therefore only be performed on the SD 
version of the model. In Appendix II the full test has been discussed. It was found that only one 
variable had dimensional consistency issues, but because that variable is purely supplementary in 
nature it does not affect the rest of the model. So, in conclusion the model is almost completely 
dimensionally consistent, which increases the confidence in the structural foundation of the models. 
  

3.7.3.4. Basic behaviour Extensive model 

For the basic behaviour of the Extensive model an attempted will be made to replicate the expected 
behaviour as shown by Bjørnstad et al. (2021) in figure 13. The basic concept is that there should 
occur when both R0 > 1 and there is recruitment into the susceptible population. In the model the R0 
value is above 1, however the recruitment into the susceptible population generally happens only 
after the disease has already died out. Therefore, the immunity duration will be decreased and the 
percentage of people who will lose their immunity will be increased. The full results can be found in 
Appendix II Based on the findings it can be concluded that the models are able to replicate these 
disease dynamics. Therefore, the confidence in the model to result in known disease dynamics is 
increased, and the model’s behaviour is deemed good enough for the purpose of this research. 
 

3.7.4. Conclusion of Extensive model validation 
Based on the structure and behaviour tests, fully performed in Appendix II. there is a significant 
amount of confidence gained in the validity of both the basic structure of the model and the 
behaviour the model performs under different conditions. There are some caveats to the validity of 
the model, for instance the movement options are not easily translated to the real world. The closest 



thing would be within city movements as short movement and between city movement for long 
movements, however this interpretation would require some city like structures in the model, which 
are also not present. Nevertheless, the model is deemed valid enough for use. 
 

3.8. Experimental setup 
The goal of the experimentation will primarily be to discover whether the coarse-grained model 
generates statistically similar results to the ABM model, and under what circumstances it is or is not 
capable of reproducing accurate results. It is important that the coarse-graining process works under 
as many instances as possible, and not only for one pre-defined combination of variables, as a good 
scientist can draw an elephant with only three parameters (Seidenberg, 1993). Therefore, the model 
needs to be analysed for a wide range of uncertainties, ensuring its usability under all circumstances. 
The more computational experiments that are performed the better, as both the amount of analyses 
that can be performed, and the potential to gain knowledge will increase. However, running these 
computational experiments is also very time consuming. Due to these time constraints, a total of 200 
computational experiments will be performed on all models. But since the computational 
experiments are constructed with the use of Monte-Carlo sampling, further research can simply add 
more experiments to the already existing ones.  

When experimenting with a stochastic model, it is also important to replicate the model 
multiple times for the same combination of uncertainties, as the results of unreplicated simulation 
models cannot be trusted (Edmonds & Hales, 2003). According to M.E. Warnier (personal 
communication, December 2, 2019) the amount of replications you need per computational 
experiment is more of an art than a science. The reason for this is that it is highly dependent on the 
impact of the stochastic processes on the overall performance of the model. If the model is strongly 
path dependent or complex you would need more replications, as the variation of the outcomes will 
be greater. Some combinations of uncertainties have been shown to result in behavioural modes, 
that occur in less than 5% of the replications, meaning those runs will most likely only occur in one of 
the models, if not enough replications are ran. To fully eliminate this issue, the amount of 
replications per computational experiment can be further increased, however for this research we 
will perform 20 replications of every computational experiment to balance between simulation time 
and accuracy of the results.  
 Besides establishing whether the models generate statistically similar behaviour, it is also 
important to look at the switching condition. In order to obtain the full benefits of coarse-graining 
process, the switch should not be made too early, as the outcomes of the results will potentially start 
to vary too much. However, the switch should also not be made too late since this will be detrimental 
to the simulation speed. During the simulation of all computational experiments, the time it takes 
the simulation to fully complete for the two models will be measured. 
 To ensure reproducibility the software programs utilised in this research can be found in 
table 4. Since this software is subject to change the used versions are also listed. 
 

Table 4. Software used for research 

Software Version Reason 

NetLogo 6.1.0. Software for ABM modelling 

Vensim DSS 9.0.1. Software for SD modelling 

Python 3.8.3. Programming language used 

Jupyter Notebook 6.4.6 Interface for using Python 

Ema-workbench 2.0 Interconnection of models 

 

3.8.1. Experimental setup of the Simple model 
In order to find out whether it is possible to coarse-grain the Simple model, while keeping the results 
consistent, the model needs to be run for a large amount of computational experiments. Each 



computational experiment exists out of values for seven variables that have been created via Monte-
Carlo sampling with an uniform distribution. The variables that were varied, and their value ranges, 
can been found in table 5. 
 

Table 5. Simple model uncertainties 

Variable Value range Extra information 

Carrying capacity 50-1000  

Infectiousness 0%-100%  

Immunity-duration  1-150 Minimum of 1, as it is the SD model limit 

Lifespan 50-10000 Minimum of 50, to decrease chance of being lower 
than either immunity-duration or Sickness-duration 

Chance-recover 0%-100%  

Chance-reproduce 0%-10%  

Sickness-duration 1-100 Minimum of 1, as it is the SD model limit 

 
Due to the stochasticity present in the Netlogo model, each computational experiment will be 
replicated twenty times, using the aggregate results of these replications. The amount of runs, and 
thus unique computational experiments, used to analyse the Simple model will be 200. Every unique 
run will be saved, as the time series data is needed for the NCID analysis. This will ensure, that any 
combination of factors that result in inconsistencies between the two models can be identified and 
analysed individually. All variables not mentioned in table 5. are set to their base value, as can be 
found in the full model, which is available on GitHub. 
 

3.8.2. Experimental setup of the Extensive model 
The Extensive model will be tested for a total of 31 variables, of which 19 are uncertainties and 12 
are policy levers. The values of these variables are all obtained by Monte-Carlo sampling using 
uniform distribution. The variables that are analysed, their potential ranges and potential extra 
information can be seen in table 6. 
 

Table 6. Extensive model uncertainties and levers 

Variable Value range Extra information 

Transmission-parameter 0-015 Based on Netlogo-range 

Beds-H 0-100  

Beds-C 0-10  

Death-no-bed 0-1  

Distancing-reduction 0-1  

HR-Shield-duration 1-52  

Isolation-efficacy 0.8-1 Based on Netlogo-range 

Mild-asymptomatic 0-1  

Self-isolators 0-1  

Informers 0-1  

Found-and-isolate 0-1  

Prob-InfDeath 0-0.02 Based on Netlogo-range 

Prob-InfHosp 0-0.25 Based on Netlogo-range 

Prob-HospDeath 0-1 Prob-HospDeath + prob-HospCrit cannot exceed 
1 

Prob-HospCrit 0-1 Prob-HospDeath + prob-HospCrit cannot exceed 
1 

Prob-CritDeath 0-1  



Immune-mild 0-1  

Immune-severe 0-1  

Immune-loss-when 4-26 Based on Netlogo-range 

When-symptoms-if-I 0.05-2.5 Must be a bit bigger than the Time Step used in 
Vensim 

Prop-high-risk 0-0.2 Based on Netlogo-range 

Relative-risk 1-15 Based on Netlogo-range 

Intervention-duration 1-52  

Blocked-bed-effect 0,1 Boolean variable 

Distancing-option 0,1,2,3 Categorical variable 

Isolate-inform? 0,1 Boolean variable 

High-risk-shielding 0,1 Boolean variable 

Use-age-mixing? 0,1 Boolean variable 

Trigger-type 1,2,3 Categorical variable, but 0 is not possible, as that 
requires interactivity with the modeller during 
the simulation 

Trigger-level X Value depends on the trigger-type 

Trigger-level(days) 5-200  

Trigger-level(hospital) 0-1 Percentage of total available beds 

Trigger-level(cases) 50-2000  

Switch-level 1000,1500,2000,2500 Categorical variable 

 
It is important to note that four relatively important variables will not be varied during the open 
exploration of the coarse-grained model (see Appendix IV). These variables are all related to the 
movement of the agents. As mentioned in Section 3.7.3.1, the movement of the agents is not 
implemented in a structurally realistic manner, this combined with difficulties in scaling the related 
look-up variable made the outcomes very inconsistent. For a more in-depth explanation of the issues 
related the movement variables Appendix IV can be examined.  

Due to the stochasticity present in the model, it will be ran twenty times for each 
computational experiment, comparing the aggregate results of computational experiments.  As there 
are a large number of variables that need to vary, there is also a need for a large amount of 
replications, to ensure the correct behaviour of the model under all circumstances. Both models will 
be run for 200 different computational experiments. This should give a good representation of most 
potential behaviour there can occur in the model.  
 

 

  



4. Results 
In this chapter the outcomes of the experiments will be evaluated and discussed. The experimental 
setup, which is used for the exploration is described in chapter 3 paragraph 8. First the results of 
simulation speed will be discussed for both models. In Section 4.2 the consistency of the Simple 
model will be discussed followed by the Extensive model in Section 4.3. 
 

4.1. Simulation speeds results 
The main goal of the coarse-graining process is to increase the speed at which the results for 
simulations are gained. To this end the simulation speed of both models for the 200 computational 
experiments under 20 replications has been measured. The observed time it took for these 
simulations to complete can be found in table 7.  
 

Table 7. Simulation speed of the different models. 

Model Simple simulation speed Extensive simulation speed 

ABM 00:15:46.86 18.00:19.15 

Coarse-grained 00:09:05.66 17:29:58.18 

Speed increase 73,5% 2,9% 

 
The difference in simulation speed is significant for both models, although much higher for the 

Simple model. The formula for the speed increase is as follows: 
(𝐴𝐵𝑀 𝑠𝑝𝑒𝑒𝑑− 𝐶𝑜𝑎𝑟𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑒𝑑 𝑠𝑝𝑒𝑒𝑑)

𝐶𝑜𝑎𝑟𝑠𝑒𝑔𝑟𝑎𝑖𝑛𝑒𝑑 𝑠𝑝𝑒𝑒𝑑
. A 

doubling of the simulation speed would thus be indicated by a speed increase of 100%. This is 
probably due to the computational burden of the switching process itself. In earlier versions of the 
Extensive coarse-grained model, running the coarse-grained model took even longer than running 
the ABM model, this time was upset by some coding optimisations. 
 These results indicate the promise the coarse-graining process holds. When the coarse-
graining process gets even more streamlined and efficiently coded, the speed increase can also be 
further improved. However, improving the simulation speed only serves a purpose under the 
condition that the results stay consistent. So, to this end the results themselves need to be analysed 
further.  
 

4.2. Consistency of results 
Two hundred unique computational experiments have been run with twenty replications per set for 
both the coarse-grained and ABM model and for both the Simple and Extensive model. During the 
simulation these twenty replications were combined into a singular run for every computational 
experiment. Additionally, all singular runs have also been combined with each other to form one 
aggregate run per model. In order to find out whether the results stayed consistent when using the 
coarse-graining method, the runs were compared using a normalised Complex Invariant Distance 
(NCID) metric, as discussed in Section 2.6. The overall results of the consistency will be discussed 
first, followed by a more in-depth outcome analysis. The Simple model will be analysed first in 
Section 4.2.1. followed by the Extensive model in Section 4.2.2. 

It is first important to note, that the NCID values of the computational experiments can be 
seen as an equality measure. However, there is no predefined value, at which the data can be 
considered equal “enough”. For the purpose of this research a NCID value of 0.05 will be considered 
the cut-off point for equality. This value is chosen arbitrarily but based on the standard p-value cut-
off point used in statistics. 

 



4.2.1. Consistency of Simple model 
Based on the NCID cut-off value of 0.05, 200 of the 600 variable outcomes are deemed unequal. All 
these runs can be seen in the ensemble shown in figure 14. The orange lines indicate lines with a 
NCID value below the cut-off value, with the blue lines having higher NCID values.  

 
Figure 14: Ensemble of runs Simple model 

This figure indicate that the coarse-grained Simple model relatively accurately models the healthy 
population, but the Immune populations seem to differ a lot. Additionally it can be seen that there is 
a big difference in oscillatory behaviour between the models, with a loss of oscillation when utilising 
the coarse-grained model.  

However, perhaps more importantly the overall aggregate results have values significantly 
below the 0.05 threshold. The results of the aggregate run can be seen in figure 15. The aggregate 
Healthy, Sick, and Immune variables have NCID values of 0.0041, 0.0097 and 0.0162 respectively, as 
also shown in table 8. 
 

Table 8. Aggregate NCID values of KPIs Simple model 

Variable NCID value 

Healthy 0.0041 

Sick 0.0097 

Immune 0.0162 

 



 

Figure 15: Aggregate run of Simple model 

The aggregate run shows that the two models start very similar, than diverge to converge in the end. 
This behaviour can best be explained by the fact both models start out in ABM. The coarse-grained 
model loses its oscillatory behaviour quickly, but in the long run both models lose the oscillations. 
Based on this hypothesis it is likely that the NCID values will decrease as the run-time of the models 
increases. 
 Besides knowing what percentage of runs exhibit the same behaviour it is also important to 
gain knowledge regarding parameter values that result in unequal runs. To this end an output 
analysis has been performed the full explanation of this method can be found in Section 2.7. In short, 
this method categorises all uncertainty values as well as the NCID outcomes. The more often a 
parameter value in a certain category leads to unfavourable outcomes (High NCID values), the score 
of that category will be increased. Each time a certain parameter value leads to a more favourable 
outcome the score will also be decreased. The final score will then give a rough estimation of the 
performance of the variable during the coarse-graining process. As there are three Key Performance 
Indicators (KPIs) in the Simple model, there are also three NCID scores per computational 
experiment. This can be used to differentiate between the impact of the parameter value on the 
different KPIs. For this analysis the combined NCID value of the three KPIs will be used. 
 This analysis found that the variable Duration with values higher than 80 ended up with a 
score of 55, which is an incredibly high score. The most likely explanation for this occurrence, is 
related to paradigm differences. In the ABM model, people will stay sick for exactly the duration of 
the disease. Whereas on the SD side, people will stay sick for the duration of the disease on average. 
This will mean people will start to spill over into either immunity or death far earlier. This behaviour 
is also showcased in figure 16.   

 
 Figure 16: Effect of high duration on coarse-graining Simple model  



When removing the computational experiments that include durations with values above 80 the 
outcome analysis resulted in a similar outcome. This instance showed durations above the value of 
60 performed worst. By further removing those computational experiments the next worst score was 
negative two. This generally indicates that the variable value more often leads to a run with a low 
NCID, than a high NCID. This result is slightly skewed, as the remaining computational experiments 
contain significantly more low NCIDs than high NCIDs. Overall, it does not seem that there is another 
variable that causes a significant amount of poor results, when dynamically coarse-graining the 
Simple model.  
 

4.2.2. Consistency of Extensive model 
Using the cut-off value of 0.05 to determine the consistency of the models, it can be seen that the 
Extensive model is less consistent than the Simple model, as here 255 of the 603 variable outcomes 
have higher NCID values. This increased inconsistency can also be seen when looking at the ensemble 
of runs shown in figure 17.  

 

Figure 17: Ensemble of runs Extensive model 

This ensemble shows that the coarse-grained model has a tendency to overestimate infections at the 
beginning of the simulation leading to higher peaks. When looking at the ABM side of the model it 
does not seem that there is a certain behavioural mode that specifically leads to this overestimation. 
This lower consistency compared to the Simple model can also be seen in the NCID values for the 
aggregate run for the KPIs; Incidence, Prevalence-I, and Prevalence-all. Their aggregate NCID values 



are respectively 0.0258, 0.0158, and 0.0161, as also shown in table 9. Even though they have 
comparatively higher NCID values, these values are still below the cut-off point, this could be 
interpreted as the model on average being consistent. The results of these aggregate runs can be 
seen in figure 18. 
 

Table 9. Aggregate NCID values of KPIs Extensive model 

Variable NCID value 

Incidence 0.0258 

Prevalence-I 0.0158 

Prevalence-all 0.0161 

 
 

 
Figure 18: Aggregate results of Extensive model 

These aggregate results showcase that the biggest difference between the models can be found at 
the peak, as the coarse-graining results in a significantly higher peak. To potentially determine the 
cause of this difference a closer look will be taken at the variables that lead to the worst outcomes, 
using an outcome analysis, explained in Section 2.7. 
 The variable that is most indicative of inconsistent results is the switching level. This variable 
indicates when the model makes the switch form the ABM model to the SD model. In this case both 
switching levels of 1000 of 1500, resulted in significantly more inconsistent runs. With the score of 
switching level 1000, being more than twice as high as the 1500 switching level. This can be seen as a 
positive, as this indicates that the model is less accurate when switching too early. However, this 
does not necessarily mean the model actually functions better under an even higher switching level. 
By heightening the switch-level it can occur, that the switching level never gets reached, resulting in 
a purely ABM simulation. As can also be seen in figure 18. a Prevalence-I of 0.1 (which is comparable 
to a switch level of 2000), is at the very peak of the graph. Due to computational experiments that 
die out immediately after the start this peak is a bit lower than the real peak could reach, so 
switching at the level of both 2000 and 2500 does still happen, yet less often than compared to the 
1000 and 1500 levels, as can also be seen in figure 17. This has the potential to skew the results. The 
failure to identify any real parameters that cause the behavioural differences, indicate that the 
differences are most likely due to structural issues, with the movement look-up variable being the 
most likely issue. A theoretical solution would be to artificially lower this look-up variable, however 
this will also impact the runs that are consistent at the current moment. Potentially under-estimating 
the amount of infections occurring, which has an additional detrimental effect of resulting in 
switches occurring more often and in extension a decreased simulation speed. 



 Another issue that can be identified by closely examining figure 18, is that the decrease at 
the end of the simulation of the coarse-grained model drops off, compared to its ABM counterpart. 
This is due to a second wave of infections that is build-up in the coarse-grained models after a 
switch-back occurred. The complexity related to the transformation of the ABM model, makes the 
model significantly less often die out. This divergence at the end of the simulation indicates, that the 
NCIDs will keep increasing as the run-time is increased, which is opposite to the Simple model. 
Additionally, to the less consistent results the simulation speed of the coarse-grained model will 
potentially also suffer. When a second wave of infections occur, there will also be additional switches 
made between the two models, which could increase the computational power required.  Based on 
these results it can be concluded that the principle of coarse-graining works, but there is still ample 
room for improvement. 

  



5. Discussion and conclusions 
In this chapter, the results will be discussed. More specifically, Section 5.1. discusses the main results, 
while Section 5.2 addresses the strengths and weaknesses. Next, Section 5.3. explains the potential 
real-world applications dynamic coarse-graining, followed by the scientific contribution of this work 
in Section 5.4. Finally, recommendations for future research are given in Section 5.5, followed by the 
main conclusions presented in Section  5.6. 
 

5.1. Discussion of main results 
The main research question was: “What is the effect of dynamically coarse-graining an agent-based 
SARS-CoV-2 model into a System Dynamics model on the simulation speed and the consistency of 
results?”. This question was divided in four sub-questions which will be answered in Sections 5.1.1 
(sub-question one and two), 5.1.2 (sub-question three), and 5.1.3 (sub-question four). Together, they 
answer the main research question.  
 

5.1.1. Method and rules for dynamic coarse-graining of an agent-based SARS-CoV-2 

transmission model. 
In this section, the answers to the first two sub-questions will be summarised. 

• What are different methods, and their associated advantages and disadvantages, in regard 

to modelling SARS-CoV-2 transmission in populations? 

• What set of rules should be used for dynamic coarse-graining an agent-based SARS-CoV-2 

transmission model into a system dynamics model? 

 
These sub-questions were answered in Chapters 2 and 3 with a literature review. The main 

results for the different methods of modelling of transmission models there are that there are in 
general two main simulation techniques utilised, and thus also in regard to SARS-CoV-2 modelling, 
that follow the same basic structure. This basic structure is based on the general disease dynamics of 
virtually all known transmissible diseases, the SEIR structure (H. A. Biswas et al., 2014). The two 
methods most commonly used are Agent-Based Modelling (ABM) and Equation-Based Modelling. 
 ABM models are generally more computationally intensive, but also more accurate as it 
allows for inclusion of more important disease dynamics, especially at the early stages of an 
epidemic. Equation-based models are very fast to run, as they can exists of only a very limited 
amount of differential equations, but in exchange for this speed they lack some key characteristics 
for modelling an accurate epidemiological transmission model. 
 To take advantages of both the accuracy of the ABM paradigm and the speed of the 
equation-based paradigm, a hybrid structure is proposed focussed on dynamically switching between 
the two models during simulation.  

When answering the second sub-question, it is relevant to note that the most important 
aspect during the dynamic coarse-graining is the consistency of results between the models. In order 
to achieve this consistency, the main structure of the two models need to be identical. Borshev & 
Filippov (2004), described how an equation-based model could be translated to the ABM paradigm. 
Their proposed methods were used as the main guidelines to follow in translation process. For the 
complete method of translating all concepts, Section 3.3 and specifically table 2 can be consulted. 
 

5.1.2. Coarse-graining and simulation speed 
The third research sub-question was: 

• What would dynamic coarse-graining an agent-based SARS-CoV-2 transmission model mean 
in terms of simulation speed. 

 



Based on the results presented in chapter 4, it can be seen that dynamic coarse-graining has 
the potential to improve simulation speed quite considerable. Two coarse-grained models were 
created, a simple and extensive model differing in both size and complexity. The Simple model and 
Extensive model had an increased simulation speed of 73.5% and 2.9% respectively, compared to 
their respective original ABM model. This showcases the potential of speed increase coarse-graining 
can have. However, it also indicates that the benefits can be very limited when the switching 
procedure is too computationally intensive. As, when the extensive SD and ABM model are run 
independently, the simulation time of the SD model is significantly shorter compared to the ABM 
model.  

As showcased in chapter 4, the coarse-graining technique does improve the simulation speed 
of the model, just as theorised in chapter 2, and in coherence with the increased simulation speed of 
a coarse-grained model in Gray and Wotherspoon (2012). This improved speed of simulation does 
come at the costs of simulation accuracy, with a between 33.3% and 42.5% of the runs not reaching 
the predefined consistency level of 0.05 NCID between the models. In the case of the Simple model 
this was largely the case due to the simplistic and also unrealistic manner the sickness duration was 
implemented in the original ABM model (Wilensky, 1998). If this duration was used in a more realistic 
manner, preferably with the use of an exponential distribution the coarse-grained model output 
would come really close to the ABM model output. 
 The bigger issue at hand has to do with the Extensive model, which failed to find variables 
responsible for the inconsistencies. This indicates the inconsistency was a result of a structural issue 
within the model. As most of the model was duplicated in an exact manner, the issue is most likely in 
the look-up variable for the movement options. This variable was constructed fairly crude, as the 
coherence between the movement variables, the susceptible people and transmitters were too 
difficult to find. There most likely does exist a more mathematical solution to the problem, which 
could in turn significantly improve the coarse-graining consistency. 
 The second big issue in the Extensive model is related to the swapping between models, 
specifically going from the SD model to the ABM model. A lot of information goes lost when the 
initial switch towards the SD model is made, which was also noted as a problem by Wallentin and 
Neuwirth (2017). To counteract this the agents are kept in place during the SD simulation. However, 
when switching back, an estimate of which agents should be in which disease state needs to be 
made. The choice was made to make this dependent on proximity to the first agent infector. With 
agents that are in an early disease state, like exposed, being positioned far away from that agents’ 
positions, and people who are at the end of the dynamics, like immune, being close to the agent. This 
can be seen as realistic, however that is only the case under a specific condition. That is the impact of 
the virus at hand was high. If the disease dies down or out because of mitigation measures put in 
place, when only a small portion of agents have been impacted the spatial situation is very different. 
Therefore, it would probably better to have the switching method be dependent on the total impact 
of the virus, instead of only having one method of transforming the ABM model. 
 

5.1.3. Comparison of a dynamically coarse-grained model with the original agent-based 

SARS-CoV-2 transmission model. 
The fourth sub-question was: 

• What are the differences and similarities between the dynamically coarse-grained and the 
original agent-based SARS-CoV-2 transmission model in terms of consistency of results?  

 
In order to determine the similarity of the two models in terms of consistency of results, 

there first needs to be an objective metric for the similarity between the original and dynamically 
coarse-grained model. We presented a normalised CID metric, to assess this similarity. Based on this 
metric, and the devised cut-off point for similarity of 0.05, the Simple and Extensive models were 
inconsistent for 33.3% and 42.5% of the computational experiments respectively. Perhaps more 



importantly, the aggregate run of both models were deemed consistent, indicating the models are 
consistent on average.  

Besides the issues that are related to the coarse-graining process itself, there are also issues 
related to analysis of the outcomes of the coarse-graining process. Firstly, the normalised CID, is not 
a very consistent metric. The original CID measure is in concept a measure of distance (Batista et al., 
2013). However, when looking at distance measures the concept of relativity is very important. When 
a measurement has a 10 centimetres error margin this can be a significant margin when considering 
a small distance or only a minor margin when considering a measurement of several kilometres. 
When talking about normal distance measurements, one could express this margin as a percentage 
difference, which is a good indication of the actual accuracy (Rabinovich, 2017). This concept was 
attempted to be utilised, however time series data does not have a singular value that can be used 
for this comparison. When using the highest value in the data, the results for data that includes very 
few large numbers, and a lot of small numbers would be skewed. Therefore, the average value of the 
time series data and the length of the time series data were used to “normalise” the CID value and 
make it viable for general comparison. The resulted NCID values are unfortunately not very 
consistent. Some series had relatively high NCID values, even though the resulting graphs look very 
similar, and did not even reach the switching conditioning. Meaning they should have been almost 
identical after twenty replications, but the discreteness of the model combined with a little 
stochasticity thus resulted in inconsistencies. Since the main variable that was used for further 
analysis was a bit inconsistent, the subsequent analysis was also made more inconsistent. 
 This subsequent analysis could be considered as a PRIM inspired analysis (Friedman & Fisher, 
1999). The need for an inspired analysis was necessary as the amount of data needed for a real PRIM 
analysis was too time consuming to collect. This simplified version required less data, in exchange for 
more crude results. By clustering the continuous uncertainty values to five groups per uncertainty, it 
becomes easier to see what group of inputs leads to what group of outputs. This process is 
dependent on the grouping to be done in a correct manner, as when part of the same group results 
in high NCID values and another part of the same group results in low NCID values the only result 
that is shown, is no significant influence on NCID values. This problem does not occur when working 
with a regression analysis instead of clusters (Dazard et al., 2015). 
 Assuming the clusters of uncertainty values were valid, every time a cluster and the 
corresponding computational experiments get removed from the analysis two issues start to 
develop. For one a big chunk of “bad” NCID values get removed from the analysis. Therefore, the 
remaining clusters will most likely result in relatively “good” NCIDs just from the virtue of still being 
in the analysis. After two or three rounds of removing clusters, this analysis can therefore not 
accurately depict the remaining problematic clusters (if any). This can be solved by either re-
clustering the NCID values every time a cluster gets removed, or even better running the entire 
simulation again without the removed cluster. This last option will take a considerable amount of 
extra time but will ensure there are always enough datapoints available for the analysis. 
 A second issue with this analysis is the lack of multivariate testing. It is entirely possible that 
a specific cluster only results in undesirable outcomes when it is combined with a specific other 
cluster. The outcome analysis is not equipped to identify these reinforcing effects, whereas a real 
PRIM is able to actually find those scenarios if and when they occur (Guivarch et al., 2016). 
 It must also be noted that the outcome analysis utilising the NCID values is far from obsolete, 
despite the many issues associated with it. The outcome analysis was able to identify several errors 
in the coarse-graining process, which helped to improve it. Therefore, it can be concluded that even 
though the outcome analysis is far from perfect it is definitely valuable. 
 

5.2. Strengths and weaknesses 
This study appears to be the first study to research modelling concepts in the relatively new field of 
dynamic coarse-graining, or model swapping (Vincenot et al., 2011). These modelling concepts are an 
open exploration and allowing for behavioural changes to occur during the dynamic switching 



process. This study can then function as the basis for future studies looking into a combination of 
these concepts. More specifically on how an open exploration of the uncertainty space can help in 
evaluating the consistency of coarse-grained models, and on what the effects of behavioural mode 
switches during the coarse-graining process are on both the consistency and simulation speed of this 
technique. 
 The second key strength of this study is also related to the evaluation of consistency and 
simulation speed, and that the evaluation of multiple models that differ on most scales but are 
related to the same system (Gray and Wotherspoon, 2012). By first evaluating the Simple model as a 
case-study, additional insights in the potential generalisability of the found results. By comparing the 
outcomes of the two models it was for instance found that dynamic coarse-graining does have the 
potential to significantly increase simulation speed, but only under certain circumstances. 

A third strength of this study is the attempt to resolve the issue regarding the metric of 
comparing modelling outcomes in terms of consistency. This issue has been mentioned in multiple 
papers that researched the comparison of models (Auping, Pruyt and Kwakkel, 2014; Gray and 
Wotherspoon, 2015). To this end the NCID metric was introduced, which is especially useful for 
comparison of oscillatory behaviour, while also resolving the issue of relativity mentioned by Auping, 
Pruyt and Kwakkel (2014). 
 Besides its strengths the study also has some limitations, which need to be kept in mind 
when evaluating the contents of this paper. However, as the great Dutch football coach Johan Cruijff 
once said, every disadvantage has its advantage (RTL, 1997), so do these limitations, as they can form 
the basis for future research. 
 A methodological weakness of this research is related to the limited amount of runs 
performed on the Extensive model, namely 200 whereas it would have been more advisable to 
perform a couple thousand runs. The limited amount of performed runs has two detrimental effects 
on the research as a whole. For one it could have prevented some modes of behaviour from 
occurring as they might only occur under very specific circumstances, that would normally be found 
when fully exploring the uncertainty space. When attempting to develop robust policies using open 
exploration this can be a big issue, as it is essential to test the robustness under all circumstances. 
However, in this case the goal was not to create a robust policy, but to see under what circumstances 
the coarse-grained model is able to stay consistent to its ABM counterpart. Therefore, in the worst-
case scenario these undiscovered behavioural modes would also result in inconsistent modelling 
results, and therefore slightly lower the percentage of consistent runs. 
 Another related limitation is the impact it has on the methods of analysis. Due to the lack of 
runs there is also a lack of available data that can be used for analysis. This for instance prevented 
the use of a PRIM analysis (Friedman & Fisher, 1999), and forced the use of outcome analysis as 
described in Section 2.7. The detrimental effects of using this analysis instead of the PRIM are 
described in more detail in Section 5.2.2. 
 A second limitation is related to the evaluation of the simulation speed. To get a good grasp 
of the different aspects influencing the speed differences between the models it would be better to 
gain more data related to the simulation besides the total simulation time. By broadening the scope 
of the time analysis to include data about individual runs or even individual aspects of runs, like for 
instance the time the switching process itself takes, a better understanding could have been gained 
regarding the possibilities of the speed increase, and the causes of any potential lag. 
 The last major limitation is in regard to the setup of the Extensive model. The Extensive ABM 
model is SARS-CoV-2 specific and includes some complex to translate properties but is in its current 
form not useable to give actual policy advice. If a model, that was actually used for the creation of 
policies in a country, was coarse-grained and analysed a more concrete overlook of the specific 
advantages for SARS-CoV-2 could be given. The analysis would in turn be able to both give insights in 
the coarse-graining technique as well as insights relating SARS-CoV-2 mitigation policies.  
 



5.3. Practical applications for coarse-graining 
What the new insights gained during this research actually mean for the viability for coarse-graining 
simulation models moving forward will be discussed now. The perhaps most important lesson is the 
difficulty involved in developing a coarse-grained model. As discussed in Section 5.2.1 there are still a 
plethora of both small and big issues in the coarse-grained model, especially in the Extensive model. 
Before a coarse-grained model is actual able to be used for practical applications it is paramount 
these kinds of issues are all fixed first. The more complex a model becomes, the complexity of 
coarse-graining that model grows exponentially. Creating a good valid model from scratch, already 
takes a significant amount of time. Making two of them in different paradigms that flawlessly fit 
together will take even more time. All this time loss needs to be offset by the resulting coarse-
grained model otherwise it would not be practical to go to the effort of creating the model in the first 
place. So, the question becomes when would it be viable to utilise the dynamic coarse-graining 
technique? 
There are essentially three distinct applications for coarse-grained models.  

1. Models that will be used for a sufficient amount of time that the time investment will be 
gained back by the increased simulation speed 

2. Models that can be created in advance, and used in times of crisis 
3. Models working in real-time, where speed is vital 

 
The first option mentioned here, relates to models that will need to be used for simulation on a 
regular basis for years or even decades. A model type that encompasses these attributes are the 
Integrated Assessment Models (IAMs) (Weyant, et al., 1996). These IAMS are primarily used to model 
the impact of policies on global climate change (van Vuuren et al., 2009). Since there are many 
uncertainties regarding climate science, an extensive uncertainty analysis would be necessary to 
evaluate such a model, whereas most only utilised a few sensitivity analyses to this end (Stanton et 
al., 2009). Utilising more realistic open exploration methods like Monte-Carlo analyses showed to 
have a major impact on model outcomes (Dietz and Hope, 2007). In one stochastic IAM 2000 
parameters values were sampled from a probability distribution (Dowlatabadi, 1998). Performing an 
open exploration on such a model would be incredibly computationally intensive. This is a good 
example of where coarse-graining to save simulation time could have significant benefit. When 
looking at the results displayed in Section 4.1, it clearly shows that coarse-graining increases the 
speed at which simulation can be completed. The speed increase is very dependent on the 
computational burden the switching process between the models encompasses. It is not unthinkable, 
that a more streamlined coarse-graining process could potentially half the simulation time needed 
for models. However, these IAMs will probably also have quite a bit of switching lag, due to the size 
of these model. So, the increased simulation speed will probably lie somewhere in between the 
speed increases seen in table 7. Keeping the long and difficult development process in mind, these 
models will likely need to be ran for a very long time to see a return on time investment. 
 The second option relates to crises like the current SARS-CoV-2 crisis. When a good coarse-
grained model can be developed before a virus reaches the country of interest for instance, the time 
sink is not relevant if it makes the ability to find robust policies faster at that time, when more 
specifications of the virus become known. In cases like this swift actions from governments have the 
potential to save lives of a lot of individuals. By supporting this decision-making process with a faster 
method of simulating, this can be an invaluable tool in savings lives. 
 The last real-world application and perhaps the most promising is related to real-time 
simulations, where speed is vital. A good example of such a situation is with self-driving cars. These 
self-driving cars need to perform an enormous amount of simulations while driving to ensure the 
safety of both the passenger and others in traffic (Chen et al., 2019). By coarse-graining parts of 
these simulations, for instance cars a bit further away, vital milliseconds can be saved, which in turn 
can be used to save lives. This is an especially promising avenue, as other solutions like distributed 
simulations are not viable alternatives, due to safety concerns.  



 

5.4. Scientific contributions 
In order to see the full scientific contributions of this research, the previous research containing 
dynamic coarse-grained simulation models must be examined. In Section 2.4.1 the previous works in 
this relatively new field were discussed. By comparing those works with this new research, the 
contributions of this research can be made explicit. Based on those paper (Bobashev et al, 2007; Gray 
and Wotherspoon, 2012; Gray and Wotherspoon, 2015; Wallentin and Neuwirth, 2017) this research 
seems to be the first research into dynamically coarse-graining populations while allowing for 
behavioural change during the dynamic coarse-graining process. This behavioural change, due to for 
instance implementation of mitigation measures, makes the switching back process to the ABM 
model significantly more complex, as relevant information needed for good spatial positions of the 
agents relative to each other is lost. By removing the confines of behavioural stability from the 
coarse-graining process its uses can be a lot more widespread. 

A second addition to the current scientific literature is the open exploration of the 
uncertainty space in order to gain insights into overall behaviour of the coarse-grained model. 
Wallentin and Neuwirth (2017) also tested their coarse-grained model under multiple scenarios, but 
their scenarios focussed on the aggregation levels and moment of switching instead of the inherent 
uncertainty in the underlying model.  
 A third addition is the concretisation of the translation of some more complex ABM 
properties to the SD paradigm, which extends on the paper of Borshev & Filippov (2004), who 
primarily discussed the translation of basic properties between the two paradigms. This extension 
can serve to support researchers when translating different modelling, being another step towards 
and exhaustive concrete list regarding methods of translating these properties. 

Lastly, this is also the first research that tries to mathematically analyse the similarity between 
the dynamic coarse-grained model and the ABM model. In this similarity comparison the starting 
point is to have the original ABM model as the benchmark instead of reality itself. This allows for the 
comparison of every coarse-grained model instead of only realistic models. The NCID term of 
consistency has been introduced to this end.   
 

5.5. Future Research 
Based on the limitations discussed in Section 5.2 there are a few avenues, that could benefit from 
further investigations. These avenues can be divided into two categories. Firstly, improvements 
made to this research specifically, and secondly standardisation of concepts for dynamic coarse-
graining.  
 For the improvements made to this research specifically, the analysis can be expanded upon 
significantly. Utilising a real PRIM to analyse the results, can potentially result in new insights that 
were missed due to simplifications that were made. Since the current computational experiments are 
both openly available and sampled via the Monte-Carlo method, more experiments can be added 
upon the existing ones. 
 A second avenue of future research in context of improving  the current analysis is related to 
the used NCID metric. This metric generally only focusses on Euclidean distance and the complexity 
of the analysed lines. Whereas perhaps different metrics relating to other attributes of lines might 
give a better insight in the similarity between the runs of the two different models, which in turn 
would help by any further analysis regarding the consistency of the dynamic coarse-graining process. 
 Besides improving the analysis of the current models, the models themselves could 
potentially also benefit from improvements. The concepts that created the most issues could 
primarily take advantage of improvements made to them. Firstly, by devising a more accurate way of 
creating a variable related to the chance of contact could significantly improve consistency results, as 
this would potentially prevent both over- and under estimations of infections happening. The second 
big issue, is related during the switch back from the SD model to the ABM model. During the switch 
back all agents need to get the correct attributes attached to them, to ensure the coarse-grained 



ABM model will follow the same behavioural mode as the original ABM model. Creating an improved 
algorithm for this process or making the SD model more geographically specific could potentially 
solve this issue. By making these improvements to the models the limits of consistency for the 
dynamic coarse-graining can be explored further. Knowing these limits of consistency can be crucial 
to determine whether it is safe to use such a technique in self-driving cars for instance.  

Lastly, by optimising the coding for the interconnection and additional time measurements, 
the knowledge regarding improvements in simulation speed can be increased. Optimisations would 
give better insights into the real potential speed increases of the techniques, as that might be 
hindered, by sluggish code. Secondly, additional time measurements of all different steps of the 
dynamic coarse-graining process can give extra insights into potential bottlenecks of the technique. 
By knowing these bottlenecks, or main reasons of time loss, a better extrapolation could be made 
regarding the potential time save of even bigger models, like the Integrated Assessments Models 
mentioned in Section 5.3.  
 More interesting is perhaps improvement to standardisation of concepts. The concepts that 
could benefit most from standardisation is the comparison metric used for dynamically hybrid 
models. The NCID proposed here gives an insight into the similarity of the time series data but does 
seem to be inconsistent for some cases. Just like how the introduction of the standardised metric 
system, reduced the amount of different metrics used greatly, and by extension improved both trade 
and scientific progress (Poirier, n.d.). Standardisation of the similarity metric would change the 
current status quo of almost every paper using a different metric to measure similarity. This can in 
turn support the analysis of the different papers on the subject, and extension improve scientific 
progress moving forwards.  

The second standardisation, that can be looked into is regarding the translation of complex 
concepts form ABM models to an equation-based equivalent. Concepts like how random movement 
relates to chances of encountering, or an algorithm for gaining relevant information for switching 
between models, could be really helpful. Now every time someone attempts this the wheel has to be 
reinvented, whereas there is probably a more robust solution for these issues. 
 

5.6. Conclusion 
Due to the new SARS-CoV-2 pandemic, governments all over the world started to use simulation 
models in an afford to mitigate the effects on both the economy and human lives. In times of 
pandemics every day a mitigation measure gets activated sooner, more damage to society is 
prevented. To achieve this goal a new dynamic coarse-graining method of combining ABM and SD is 
proposed, where during the coarse-graining behavioural changes can occur. Two dynamically coarse-
grained models (simple and extensive) were compared to their original ABM counterpart model. By 
utilising the newly proposed NCID metric, the consistency of this method was analysed. Using a NCID 
cut-off point of 0.05, it was found that between 33.3% and 42.5% of the runs were not consistent 
enough with the original ABM model. The simulation speed increase was considerable, ranging 
between a 73.5% and 2.9% increase. To achieve more consistent dynamically coarse-grained models 
a lot of additional development time will be required. Therefore, it can be concluded that dynamic 
coarse-graining is a promising technique, yet only useful in specific niches. In order to gain the full 
benefits of this technique, the resulting model either needs to be used for near decades in case of 
Integrated Assessment Models or can be developed beforehand and used under extreme time 
pressures, in case of crises situations or self-driving cars. Once dynamic coarse-graining models have 
been fully developed, they do have the potential be an improvement on the currently utilised model, 
and dependent on their use even to help in saving lives.   
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Appendix I: Validation of Simple model 
In this Appendix all validation test performed on the Simple ABM and SD model will be extensively 
discussed. The resulting conclusions can be found in paragraph 3.7.2. 
 

Parameter verification Simple model 
The parameter verification test entails the comparison of the different variables in the model to their 
real world counter-part. Ideally every variable should have a distinctive meaning and a logical value 
attached to them. If there are a significant amount of variables without such meaning, this could be 
an indication of overfitting a model, meaning the model is less likely to be an accurate representation 
of reality. In regard to the Simple model the parameters will be primarily judged to their meaning 
and not to their actual value, as the model is highly simplified. 
 In the ABM model there are a few aspects that are not present in the SD model, these will be 
discussed first. The movement procedure is specified as a random turn right combined with a 
random turn left and a single movement forward. This does not relate to any real-world walking 
phenomenon, which is generally with intent in mind, instead of being random. However, due to the 
simplified nature of the model, in combination with the absence of a utilisation goal this is perfectly 
acceptable. 
 All the variables that are present in both models have a clear meaning, and their values 
relative to each other make sense. The only variable present in Vensim without having a real-world 
counterpart is the “correction factor” variable. This variable is not used to correct unit errors, but 
because the Vensim overestimates the amount of contacts between Sick and Susceptible people that 
take place. This is probably needed to account for the heterogeneity present in the Netlogo model. In 
the Vensim model every person has an equal amount of chance of encountering any other person. In 
the Netlogo model this is not the case, as recently infected people have an increased chance of 
encountering their infector, due to them being close to each other. It would be better if it was not 
necessary to use an arbitrary factor to solve this problem, but in lights of the purpose of this model it 
is not very relevant. 
 

Structure verification test Simple model 
Verifying the structure of the Simple models will be the most important test in regard to the purpose 
of the model. Since this model is purely utilised to serve as a test-case for the Extensive model, the 
most important thing is that the basic structure follows the structure of standard transmission 
models. If this is not the case, it could be argued that using this model as the test-case would be 
senseless. For agent-based transmission models there a number of key characteristics that need to 
be included for it to be considered representative. These are the standard SEIR structure, spatial 
effects, heterogeneity of the population and stochasticity. The first aspect relates primarily to 
transmission models as a concept, whereas the latter three constitute properties that have an 
important role in real world transmissions, while also being difficult to include in a SD model of 
transmission.  
 The SEIR structure is included in one of its most basic forms, reducing it to a SIR model. These 
three states are used to generate the oscillatory behaviour usually observed when analysing 
infectious diseases, like viruses. Spatial effects are included via the movement options combined 
with the proximity-based infections. Heterogeneity is a direct result of the combination of these two 
properties. Stochasticity is also seen included in the movement options, but is also found in odds of 
reproducing, infecting one another, and the chance of recovering. The inclusion of these properties, 
make this Simple ABM virus model a good choice in regard to the methodological purpose of this 
research.  
 Since the structure of the SD model is the same as the ABM model structure it also 
incorporates a reduced SEIR model as its foundation.  
 



Dimensional-consistency Simple model 
This test will help to build confidence in the internal consistency of the SD model. Since most 
variables in the Netlogo model do not have dimensions attached to them, this test will only be 
performed on the SD side of the Simple model. Consistency of the dimensions in the Vensim model 
would also implicate the dimensions of the Netlogo model variables are consistent, as the functions 
essentially the same. Dimensions failing to add up implicate a structural mistake in the model and 
should therefore be analysed carefully. This test is especially useful in conjunction with the 
parameter verification test, as this eliminates the variables used to fix the dimensions without having 
any real-life meaning. 
 As Netlogo models do not include units for most variables, this test will be performed using 
the SD version of the model. Since that model incorporates all variables present in the Netlogo 
model, this should also give a good indication of whether to original model was dimensionally 
consistent. In the parameter verification test it was already concluded that there are no variables 
included without meaning, with the purpose of altering the dimension of a variable, since removing 
the correction factor will keep the dimension of the related variable the same. Utilising the build-in 
unit check function of Vensim, it can be concluded that all included dimensions add up. This does not 
necessarily mean all dimensions are definitely correct for every variable but does build a significant 
amount of confidence in the base structure of the model.  
 

Extreme conditions test Simple model 
To ensure the models behaviour does not show any impossibilities, the model is tested under 
conditions that are most likely to break the model. For instance, when putting the carrying-capacity 
to zero the amount of agents in the model should never increase and always decline. More obvious 
mistakes, like variable going negative, are also indicators of failing this test. By passing this test, the 
likelihood of the basic structure functioning correctly is increased.  
 In table 10 below it is shown which variables are changed, their original value, and the 
value(s) used for the extreme conditions testing. All changes are tested both individually and in 
conjunction with each other. Due to the stochastic nature of the ABM model, the model will be ran 
five times. All these runs will be evaluated individually, as looking at the aggregate of the five might 
hide some issues.  

Table 10. Variables and values used for extreme condition testing 

Netlogo variable Vensim variable Original value Lower value Upper value 

carrying-capacity Carrying capacity 300 0 10000 

Infectiousness Chance of infection 65% - 0.65 0 100% - 1 

Immunity-duration Immunity duration 52 0  1000 

Lifespan Lifespan 2600 0 10000 

Chance-recover Recovery-rate 75% - 0.75 0 100% - 1 

Chance-reproduce Reproduction chance 1 – 0.01 0 100 – 1 

Duration Sickness duration 20 0 1000 

 
 Depending on the variable that underwent the change the most relevant KPI will be shown, from a 
choice of the Healthy people, Sick people, Immune people, or All people. Due to visibility concerns 
we will not show all KPIs for every run. The images on the right showcase the Netlogo outcome, with 
the left showing the outcome Vensim generates. All results of these tests can be seen in the figures 
below. 

During the test, it became evident that the SD model breaks when immunity duration goes 
below 1, this is probably due to a combination of the Time Step used (0.03125) and the fact that it is 
used inside a delay function. For diseases that have a shorter immune period than 1 week this model 
does not function correctly. In that case it is advisable to switch to a model that utilises days every 
time step instead of weeks. The same holds true of the sickness duration. Additionally, the flows are 



coupled to each other by using the fraction of sickness or immunity duration compared to lifespan. 
Due to this the model starts to fail when Lifespan becomes lower than either of these variables.  
 When looking at the combination of all high factors in figure 26, it can be seen that the 
behaviour of Immune people is different in the SD model. This is due to the method of disease 
modelling. In the SD model Turtles will stay sick for 1000 weeks on average, whereas turtles in the 
ABM model stay sick for exactly 1000 weeks. This results in a discrepancy in the immune population 
 Lastly, to ensure the model also functions under different combinations of these factors the 
sensitivity tool in Vensim is utilised. The result can be seen in figure 27. All variables are varied 
between the ranges depicted in table 10. It showcases the basic structure of the model functions as it 
should. 
 
 

  
 
 
 
 
 
 
 
 

 
 

 
 

 
  
  
  
 
  
  
 
 

Figure 19: Extreme carrying capacities 

Figure 21: Extreme infectiousness 

Figure 20: Extreme Immunity duration 



   
 
 
   
  
  
  
 
   

 
  
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Figure 22: Extreme lifespan 

Figure 24: Extreme recovery-rate 

Figure 23: Extreme reproduction-rate 

Figure 25: Extreme sickness duration 



 
Figure 27: Extreme combination sensitivity 

Basic behavioural test Simple model 
Once it has been established that the main structure of the Simple models functions well enough for 
the purpose of this research, the actual behaviour can be analysed. This behaviour should roughly 
replicate know disease dynamics. According to Bjørnstad et al. (2021) SIR models, and their 
extensions, should exhibit periodicity when R0 > 1 and there is recruitment into the susceptible 
population. This behaviour is visualised in figure 28.  

 
Figure 28: Disease dynamics when R0>1 Bjørnstad et al. (2021) 

 

Figure 26: Extreme combination 



The Simple model should roughly be able to replicate this behaviour by altering a few of its variables. 
By reducing the carrying-capacity to the amount of initial agents and increasing the Lifespan and 
Recovery-rate to a value that prevents any deaths from occurring, 260100 and 1 respectively, the 
amount of agents in the model should stay constant. Dependent on the infection and delay rates, 
between the different disease stages, behaviour akin to figure 28 should be exhibited if disease 
dynamics are implemented correctly. 

  
 
 
 
 
 
 
 
 
 

 
 

In figure 29 the results for both models under these conditions are showcased. Both models exhibit 
this oscillatory periodicity to some extent. In the SD model this periodicity is quite quickly lost but 
does showcase the long-term behaviour. In the ABM model the oscillations are significantly bigger, 
but also slowly decrease in size towards a constant amount. 
 Based on the behaviours displayed in figure 29, it can be conluded that both models follow 

the basic disease dynamics present in SIR models, and its extensions. Therefore, the confidence in 

the model to result in known disease dynamics is increased, and the model’s behaviour is deemed 

good enough for the purpose of this research. 

  

Figure 29: Basic disease behaviour Simple model 



Appendix II; Validation of Extensive model 
In this appendix the full behavioural and structural validation of the Extensive model will be 
performed. As mentioned in paragraph 3.5.2. the validation tests of model structure that will be 
performed are: the parameter verification test, structure verification test, dimensional-consistency 
test, and extreme conditions test. For the test of the behaviour of the model a behaviour 
reproduction test will be performed. 
 

Parameter verification Extensive model 
The parameter verification test entails the comparison of the different variables in the model to their 
real world counter-part. Ideally every variable should have a distinctive meaning and a logical value 
attached to them. If there are a significant amount of variables without such meaning, this could be 
an indication of overfitting a model, meaning the model is less likely to be an accurate representation 
of reality. As the model is supposed to be a representation of a system with the SARS-CoV-2 virus, all 
variables will also be judged on their similarity to known values associated with this virus. The 
variables will be discussed based on their use in the model. 
 Within the variables related to movement there are a few variables that have lacklustre real-
life meaning. Starting with both prop-move-long and prop-move-short, these should indicate what 
the chance is of a person to move either 3 or 1 patch respectively. This is probably supposed to 
mimic the movement of people going either far from home or staying close. In reality people will 
almost always move from their in the beginning of a day and to their home at the end. This 
implementation of movement will thus result in people eventually meeting a random set of other 
people whereas people often meet the same people quite regularly (friends, family, colleagues, etc.) 
and strangers on more rare occasions (going to an event for instance). This makes the model quite 
unusable, when trying to analyse the impact of mitigation aimed at reducing the movement of 
people. Due to this stochastic element in the model the uncertainty in regards the chance of people 
meeting each other is quite considerable, to reduce this a Fix variable has been added to the model 
that has no real world meaning, but only helps to increase consistency between the two models. 
 The second group of variables is related to SARS-CoV-2 attributes. Almost all of these 
variables have been based on reports and studies publicised in late 2020. The figures used are 
therefore viewed as valid but can potentially be outdated. A few parameters do not seem to have 
any real variables associated, for instance the standard value for Transmission-parameter seems to 
be determined via method of trial-and-error. This variable can be explained as the chance of 
transmitting the disease when actually coming in contact with someone, however as coming in 
contact is loosely defined as being on the same patch, it would be unreasonable to expect a real life 
tested variable value. 
 All other groups of variables have logical meanings and values attached to them, except for 
the unit correction factors. These are used to alter the dimension of some variables, to make the 
model dimensionally consistent. These do not have any real-world counterpart, and their use should 
be closely examined in the dimensional consistency test. Overall, this test increases confidence that 
the model is adequate for the purpose of exploring the effects of SARS-CoV-2, except when 
movement reduction policies are explored.  
 

Structure verification test Extensive model 
The structure of the Extensive model will be tested for basic epidemiological transmission structure, 
realistic structural constructions, and inclusion of complex to translate ABM concepts. These aspects 
are important as they form the foundation for respectively, disease dynamics, interpretability of the 
results, and coarse-graining capabilities. 
 The models include an extended SEIR structure, including asymptomatic, pre-symptomatic 
and hospital states. The inclusion of these extra states makes the model able to represent the real 
disease dynamics more accurately, as the impact of these groups is quite significant (see Section 2.1). 



Regarding the structural constructs, we will discuss the concepts which can be viewed as 
unrealistically implemented. The structure related to the availability of hospital and ICU beds can be 
viewed as a bit unrealistic. The amount of available beds is predefined and constant in the model. 
When all beds are in use people either get rejected by hospitals or the availability of beds does not 
play any factor in hospitalisation of people. However, in reality the amount of beds available for 
SARS-CoV-2 patients will be scaled up when necessary. When the choice is made to have the 
availability of beds not affect the hospitalisations, this will not be entirely accurate, but can be used 
to see at what point and under what circumstances this amount gets eclipsed. 
 A second structural issue is related to the isolation mechanics in the model. There are two 
main methods of going into isolation: on onset of symptoms of when getting informed by your 
infector. This means only people who have actually gotten infected by the virus will ever go in 
isolation. In reality the infector does not know which people they have come in contact with were 
actually infected by them, making them also warn uninfected susceptible people. These susceptible 
people would also go in isolation for some time. During the time they are isolated, they cannot 
become infected by any transmitters, which can thus have a considerable impact on the disease 
dynamics. A second structural issue related to isolation mechanics is solely present in the SD version 
of the model. In this model people will not leave isolation after a certain time period, but only when 
becoming immune, going to the hospital, or dying. This simplification was necessary as the correct 
flows would otherwise become too difficult to accurately determine. In reality people are able to 
leave isolation before they have lost their infectiousness, which could lead them to infect more 
susceptible people. These structural simplifications are not optimal; however, the model should still 
be able to be used to gain insight in the disease dynamics under these circumstances. 
 The last structural element that needs to be examined is related to complex structures in 
regard to coarse-graining. Besides the elements that were already present in the Simple model, like 
stochasticity, heterogeneity of agents, and spatiality, more complex aspects need to be included to 
gain confidence in the ability of coarse-graining to work for more complex models. The increased 
structural complexity in the model can be found in the inclusion of individual tracking and the 
increased heterogeneity. Especially the increased heterogeneity in conjunction with the spatiality 
made the coarse-graining significantly more complex. 
 Based on the analysis of the structural elements in the two models, it can be concluded that 
the main structure of the model is sufficient for the goals of this research. However, when trying to 
research concrete dynamics and mitigations measures present in the model, a distorted view can be 
generated, due to the simplifications in the model. This model should thus primarily be used with 
methodological goals in mind.  
 

Dimensional-consistency Extensive model 
The dimensional-consistency tests will only be performed on the SD version of the model, as it 
includes a tool for this purpose, and every variable has a specified unit. Due to the coarse-graining, 
the main structure and functions of the models are exactly the same, so consistency in the SD model 
also indicates consistency in the ABM version. Dimensions failing to add up implicate a structural 
mistake in the model and should therefore be analysed carefully. This test is especially useful in 
conjunction with the parameter verification test, as this eliminates the variables used to fix the 
dimensions without having any real-life meaning. 
 The parameter verification test identified a few variables that were solely used to alter the 
dimensions of other parameters. The use of these variables; day unit correction and people unit 
correction, will be discussed to identify whether their use is justified or hides structural issues. 
 day unit correction, is utilised four times in the model. Two uses are in conditional checks 
where several types of variables, are checked against the same condition. To this end, variables that 
are checked against this condition are changed to be dimensionless with use of this unit correction.  
A third use is when a look-up function uses time as its input. The final use is to calculate Mix R0. The 
need for a correction factor here seems to indicate a dimensional error, as the formula does not add 



up without the correction. This could be caused by a forgotten factor with a value of 1 in the ABM 
model, or a structural mistake. However, since this is a purely supplementary variable (meaning it is 
not used any further in the model), the issue can be ignored. 
 people unit correction, is used twice in the model. The first use is in the same conditional 
check as mentioned for day unit correction. The second use is also related to the Mix R0 variable. So, 
it can be concluded that this variable was not used to hide any relevant structural mistakes. 
 Overall, there are not any other issues with the dimensions present in either model. This 
does not indicate that all variables are correct, only that these variables are consistent with each 
other. This consistency increases the confidence in the correctness of the internal structure of the 
model.  
 

Basic behavioural test Extensive model 
Once it has been established that the main structure of the Extensive models functions in lights of 
the purpose of this research, the actual behaviour can be analysed. This behaviour should roughly 
replicate know disease dynamics. According to Bjørnstad et al. (2021) SIR models, and their 
extensions, should exhibit periodicity when R0 > 1 and there is recruitment into the susceptible 
population. This behaviour is visualised in figure 30.  

 
Figure 30: Disease dynamics when R0>1 Bjørnstad et al. (2021) 

This behaviour should be replicated when the aforementioned conditions are in place. To ensure the 
recruitment into susceptible population and prevent the disease from dying out before this 
recruitment a few variables are altered. The time people are immune is decreased to 14 days on 
average by setting Immune-loss-when to 2. And by putting both Immune-mild and Immune-severe to 
0, everybody can lose their immunity. The resulting behaviour for both models can be seen in figure 
31. 

 
Figure 31: Basic disease dynamics Extensive model 



In figure 31 the results for both models under these conditions are showcased. Both models exhibit 
this oscillatory periodicity, while slowly reaching an equilibrium near the end of the simulation. Both 
models clearly showcase the expected disease behaviour mentioned by Bjørnstad et al. (2021). 
Therefore, we can conclude that the main disease functions act appropriately and we can use these 
models to research the behaviour of SARS-CoV-2 in the population. 
 

Appendix III: Simple SD model 
 

 

Figure 32: Full Simple SD model 

Appendix IV: Explanation for exclusion of movement 
It is important to note that four relatively important variables will not be varied during the open 
exploration of the coarse-grained model. These variables are all related to the movement of the 
agents. As mentioned in Section 3.5, the movement of the agents and related chance of running into 
each other has been translated into a look-up variable, which does not scale in an identifiable 
manner with these movement variables. Since the movement in the ABM model is completely 
random, alterations to the movement options work differently than they would in reality. In the ABM 
model the movement reductions have a compounding effect over time, as they will primarily reduce 
the chance of the virus spreading to faraway places in a short time. Locally these reductions have a 
very limited impact on reducing infections, and perhaps even detrimental by reducing the chance an 
agent near an outbreak has to dodge the virus. However, on the really long term the effects of these 
reductions will start decreasing as the virus will most likely still reach the far places, only at a slower 
pace. This combination of factors makes it borderline impossible to accurately represent this in a SD 
model. Not only is it not able to be translated easily, the effects these changes cause are not 
comparable to the real-life counterparts these changes should have. In real life people will generally 
always start and end up at the same place, their home. Therefore, there is no compounding effect 
related to reaching faraway places, as people are just as likely to visit those places at the onset of the 
reduction, compared to several weeks after the onset. Inclusion of these variables in the open 
exploration will only result in less consistent results, without gaining any useful insights.  
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