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Abstract: In this paper, a new identification method for large 2D grids of interconnected
systems is presented. The proposed algorithm minimizes the Output-Error of the lifted system
by using a Steepest-Descent optimization method which exploit the Multilevel Sequentially-
Semi Separable (MSSS) structure of the involved matrices. Furthermore, it is shown that
the computational complexity of the proposed approach is linear with respect to the number
of subsystems in the grid. Finally, a numerical example is presented in order to show the
effectiveness of the proposed algorithm.
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Efficient Algorithms.

1. INTRODUCTION

In recent years, there has been an increasing interest
in identification and modeling of interconnected systems.
This has been motivated for the large number of applica-
tions where interconnected systems appear, such as: car
platoons, Horowitz and Varaiya (2000), structural beams,
Scholte and D’Andrea (2003), irrigation networks, Cantoni
et al. (2007), turbulent wavefront reconstruction, Fraanje
et al. (2010), satellite formations, Massioni (2010) between
others. In the case of Prediction-Error methods (PEM),
an identification approach for Linear Parameter Varying
(LPV) spatially interconnected systems in input-output
form based on Least Squares (LS) estimation is presented
in Mukhtar et al. (2010). This approach has also been
extended to Box-Jenkins models in Mukhtar et al. (2011).
In Dankers (2015), the theory of closed-loop system identi-
fication is extended to networks of dynamical systems with
known topology. Moreover, Weerts et al. (2016) studies
the conditions for uniquely identify the topology of the
network when some nodes are not contaminated by noise.
One of the drawbacks of the methods mentioned before is
the computational complexity. Therefore, new tools need
to be developed for the identification of large networks of
interconnected systems with general topology. In the same
line, Torres et al. (2015) proposes an efficient Output-Error
identification method for 1D interconnected systems. The
method exploits Sequentially Semi-Separable (SSS) matrix
operations to speed up the optimization routines. More-
over, in Yu and Verhaegen (2017) a subspace identification
approach for 1D heterogeneous interconnected systems
that exploit local input-output data is presented. Even
though these methods are efficient in terms of computa-
tional complexity they focus in 1D spatially interconnected
systems and not in complexer networks.
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Fig. 1. 2D spatially interconnected systems.

In order to cope with this limitation, in this paper, an
efficient Output-Error identification method for 2D grids
of interconnected systems is introduced. The algorithm ex-
ploits the Multilevel Sequentially Semi-Separable (MSSS)
structure, Qiu et al. (2015), of the matrices involved to
perform an efficient Steepest-Descent optimization in lin-
ear complexity with respect to the number of subsystems
in the grid. This is achieved by using basic operations with
MSSS matrices. The main contribution of this paper is to
show that all the matrices involved in the computations
(including partial derivatives) have MSSS structure.

In this context, the outline of our paper is as follows: In
Section 2, the problem formulation and the statement of
the identification problem are presented. The complete
algorithm is exposed in Section 3 while in Section 4 an
example is provided in order to show the potential of the
proposed algorithm. Finally, we draw our conclusions.
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Fig. 2. a) Sequentially Semi-Separable matrix A
(1)

for N = 4, b) Multi-Level Sequentially Semi-Separable system matrix

A for N = 3 y M = 3
.

2. PROBLEM FORMULATION

We consider a 2D grid of M × N interconnected systems
as depicted in Fig.1. Every sub-system is described by the
following set of equations:

Σ(i,j) :
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,

(1)

where x
(i,j)
k ∈ R

n is the state vector, u
(i,j)
k ∈ R

r is the input

vector, y
(i,j)
k ∈ R

ℓ is the output vector, e
(i,j)
k ∈ R

q, w
(i,j)
k ∈

R
q, η

(i,j)
k ∈ R

q and S
(i,j)
k ∈ R

q are the interconnection
variables 1 . The dimensions of the matrices in (1) are
consistent to the sizes of the corresponding vectors.

If we consider N × M sub-systems with the following

boundary conditions: e
(0,j)
k = 0, w

(N+1,j)
k = 0, η

(i,0)
k = 0

and S
(i,M+1)
k = 0, (∀i = 1, 2, . . . ,M , ∀j = 1, 2, . . . , N the

lifted system representing the complete 2D grid can be
obtained by performing consecutive substitutions in (1):

Σ :

�

xk+1

yk

�

=

�

A B

C D

�

�

xk

uk

�

, (2)

where xk ∈ R
NMn is the interconnected state vector

that contains all the local states stacked together. Similar
definitions hold for xk+1 ∈ R

NMn, uk ∈ R
NMr and

yk ∈ R
NMℓ. On the other hand, A ∈ R

NMn×NMn, B ∈

R
NMn×NMr , C ∈ R

NMℓ×NMn, and D ∈ R
NMℓ×NMr are

Multilevel Sequentially Semi-Separable (MSSS) matrices

1 Without loss of generality, we assume the subsystems have the
same number of states, inputs, outputs and interconnection variables.

characterized by the special structure depicted in Fig. 2.b).
Notice from Fig. 2.b) that a MSSS matrix is a Sequentially
Semi-Separable (SSS) matrix whose generators are SSS
matrices themselves (see eq. (4)-(10)). Moreover, an SSS
matrix has the structure depicted in Fig. 2.a). This matrix
can be obtained by sequentially multiplying the generators
appearing in eq. (4) as shown in Fig. 2.a) and by placing
the matrices A(i,j) in the main diagonal.

A = MSSS(B
(i)

N ,W
(i)

N , C
(i)

N , A
(i)
, B

(i)

s ,W
(i)

s C
(i)

s ), (3)

A
(i)
= SSS(B(i,j)

e ,W (i,j)
e , C(i,j)

e , A(i,j), B(i,j)
w ,W (i,j)

w , C(i,j)
w ),

(4)

B
(i)

N = SSS(0, 0, 0, B
(i,j)
N , 0, 0, 0), (5)

W
(i)

N = SSS(0, 0, 0,W
(i,j)
N , 0, 0, 0), (6)

C
(i)

N = SSS(0, 0, 0, C
(i,j)
N , 0, 0, 0), (7)

B
(i)

s = SSS(0, 0, 0, B(i,j)
s , 0, 0, 0), (8)

W
(i)

s = SSS(0, 0, 0,W (i,j)
s , 0, 0, 0), (9)

C
(i)

s = SSS(0, 0, 0, C(i,j)
s , 0, 0, 0). (10)

∀i ∈ {1, · · · ,M}, ∀j ∈ {1, · · · , N}

Therefore, for the rest of the lifted matrices we have
a similar definition but exchanging the corresponding

generators. Thus for obtaining B we replace matrix A by

B and C by D in eq. (3)-(10). For C we replace matrix A

by C and B by F and finally for D we replace matrices A
and C by D and B by F .

Thus, the identification problem can now be formulated as
follows: Given the input-output sequences:

{u
(i,j)
k , y

(i,j)
k }

i={1,...,M},j={1,...,N}
k={1,...,K} ,

estimate the distributed system matrices A(i,j), B(i,j),

B
(i,j)
e , B

(i,j)
w , B

(i,j)
N , B

(i,j)
s , C(i,j), C

(i,j)
e , C

(i,j)
w , C

(i,j)
N ,

C
(i,j)
s , D(i,j), D

(i,j)
e , D

(i,j)
w , D

(i,j)
N , D

(i,j)
s , F

(i,j)
e , F

(i,j)
w ,
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Fig. 2. a) Sequentially Semi-Separable matrix A
(1)

for N = 4, b) Multi-Level Sequentially Semi-Separable system matrix

A for N = 3 y M = 3
.

2. PROBLEM FORMULATION

We consider a 2D grid of M × N interconnected systems
as depicted in Fig.1. Every sub-system is described by the
following set of equations:

Σ(i,j) :
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,

(1)

where x
(i,j)
k ∈ R

n is the state vector, u
(i,j)
k ∈ R

r is the input

vector, y
(i,j)
k ∈ R

ℓ is the output vector, e
(i,j)
k ∈ R

q, w
(i,j)
k ∈

R
q, η

(i,j)
k ∈ R

q and S
(i,j)
k ∈ R

q are the interconnection
variables 1 . The dimensions of the matrices in (1) are
consistent to the sizes of the corresponding vectors.

If we consider N × M sub-systems with the following

boundary conditions: e
(0,j)
k = 0, w

(N+1,j)
k = 0, η

(i,0)
k = 0

and S
(i,M+1)
k = 0, (∀i = 1, 2, . . . ,M , ∀j = 1, 2, . . . , N the

lifted system representing the complete 2D grid can be
obtained by performing consecutive substitutions in (1):

Σ :

�

xk+1

yk

�

=

�

A B

C D

�

�

xk

uk

�

, (2)

where xk ∈ R
NMn is the interconnected state vector

that contains all the local states stacked together. Similar
definitions hold for xk+1 ∈ R

NMn, uk ∈ R
NMr and

yk ∈ R
NMℓ. On the other hand, A ∈ R

NMn×NMn, B ∈

R
NMn×NMr , C ∈ R

NMℓ×NMn, and D ∈ R
NMℓ×NMr are

Multilevel Sequentially Semi-Separable (MSSS) matrices

1 Without loss of generality, we assume the subsystems have the
same number of states, inputs, outputs and interconnection variables.

characterized by the special structure depicted in Fig. 2.b).
Notice from Fig. 2.b) that a MSSS matrix is a Sequentially
Semi-Separable (SSS) matrix whose generators are SSS
matrices themselves (see eq. (4)-(10)). Moreover, an SSS
matrix has the structure depicted in Fig. 2.a). This matrix
can be obtained by sequentially multiplying the generators
appearing in eq. (4) as shown in Fig. 2.a) and by placing
the matrices A(i,j) in the main diagonal.

A = MSSS(B
(i)

N ,W
(i)

N , C
(i)

N , A
(i)
, B

(i)

s ,W
(i)

s C
(i)

s ), (3)

A
(i)
= SSS(B(i,j)

e ,W (i,j)
e , C(i,j)

e , A(i,j), B(i,j)
w ,W (i,j)

w , C(i,j)
w ),

(4)

B
(i)

N = SSS(0, 0, 0, B
(i,j)
N , 0, 0, 0), (5)

W
(i)

N = SSS(0, 0, 0,W
(i,j)
N , 0, 0, 0), (6)

C
(i)

N = SSS(0, 0, 0, C
(i,j)
N , 0, 0, 0), (7)

B
(i)

s = SSS(0, 0, 0, B(i,j)
s , 0, 0, 0), (8)

W
(i)

s = SSS(0, 0, 0,W (i,j)
s , 0, 0, 0), (9)

C
(i)

s = SSS(0, 0, 0, C(i,j)
s , 0, 0, 0). (10)

∀i ∈ {1, · · · ,M}, ∀j ∈ {1, · · · , N}

Therefore, for the rest of the lifted matrices we have
a similar definition but exchanging the corresponding

generators. Thus for obtaining B we replace matrix A by

B and C by D in eq. (3)-(10). For C we replace matrix A

by C and B by F and finally for D we replace matrices A
and C by D and B by F .

Thus, the identification problem can now be formulated as
follows: Given the input-output sequences:

{u
(i,j)
k , y

(i,j)
k }

i={1,...,M},j={1,...,N}
k={1,...,K} ,

estimate the distributed system matrices A(i,j), B(i,j),

B
(i,j)
e , B

(i,j)
w , B

(i,j)
N , B

(i,j)
s , C(i,j), C

(i,j)
e , C

(i,j)
w , C

(i,j)
N ,

C
(i,j)
s , D(i,j), D

(i,j)
e , D

(i,j)
w , D

(i,j)
N , D

(i,j)
s , F

(i,j)
e , F

(i,j)
w ,
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F
(i,j)
N , F

(i,j)
s , W

(i,j)
e , W

(i,j)
w , W

(i,j)
N and W

(i,j)
s for all

i ∈ {1, 2, · · · ,M} and j ∈ {1, 2, · · · , N} up to a set of
similarity transformations.

3. DISTRIBUTED OUTPUT-ERROR PARAMETRIC
MODEL ESTIMATION

In this section, the Multilevel Sequentially Semi-Separable
(MSSS) Output-Error identification approach is presented.
Firstly, the Steepest-Descent optimization method is in-
troduced. Then, the use of MSSS matrices is described
together with an analysis of computational complexity.
It is shown that all the computations of the algorithm
can be expressed as basic operations with MSSS matrices
and thus they can be performed in linear complexity with
respect to the number of subsystems in the grid.

3.1 Numerical optimization

In the Output-Error model approach, the measurements
are supposed to be contaminated by white noise. This fact
leads to the derivation of the following objective function:

JK(θ) =
1

K

K
�

k=1

||yk − ŷk(θ)||
2
2 =

1

K
ET

K(θ)EK(θ), (11)

where

EK(θ) =













y1 − ŷ1(θ)

y2 − ŷ2(θ)
...

yK − ŷK(θ)













=













ǫ1(θ)

ǫ2(θ)
...

ǫK(θ)













,

yk is the k-th measurement of the output and ŷk(θ) is the
output of the model. In order to minimize the objective
function given in (11), several optimization methods can
be considered (Steepest-Descent, Quasi-Newton), for the
sake of simplicity, in this paper, we focus on the Steepest-
Descent approach and therefore the computation of the
Jacobian is required:

J
′

K =
2

K

�

∂EK(θ)

∂θ
T

�T

EK(θ) (12)

For the state-space model considered in this paper, we use
the following equation for the Jacobian which includes the

adjoint state Xk:

J
′

K = −
2

K

�

J
′

1 + J
′

2 + J
′

3 + J
′

4

�

, (13)

with:

J
′

1 =
K
�

k=1

�

∂A(θ)

∂θ
T

�

Ip ⊗ x̂k(θ)
�

�T

Xk(θ), (14)

J
′

2 =

K
�

k=1

�

∂B(θ)

∂θ
T

�

Ip ⊗ uk

�

�T

Xk(θ), (15)

J
′

3 =

K
�

k=1

�

∂C(θ)

∂θ
T

�

Ip ⊗ x̂k(θ)
�

�T

ǫk(θ), (16)

J
′

4 =

K
�

k=1

�

∂D(θ)

∂θ
T

�

Ip ⊗ uk

�

�T

ǫk(θ), (17)

and the adjoint state-space equation given by:

Xk−1(θ) = A
T

(θ)Xk(θ) + C
T

(θ)ǫk(θ) (18)

where x̂k(θ) and ǫk(θ) are obtained by simulating the
model given in (2). Notice that in this case two simulations
are needed: the backward simulation (18) and the forward
simulation of (2). For the derivation of the equations pre-
sented above the interested reader is referred to Verhaegen
and Verdult (2007).

The main contribution of this paper is to show that all the
matrices involved in the computations have MSSS struc-
ture (denoted by ∗). Furthermore, the partial derivatives
involved in the formulas can also be written as MSSS
matrices:

∂A

∂θ
T

�

Ip ⊗ x̂k(θ)

�

= MSSS(B
(i)
N ,W

(i)
N , C

(i)
N ,A

(i)
, B

(i)
s ,W

(i)
s C

(i)
s ),

∂B

∂θ
T

�

Ip ⊗ uk

�

= MSSS(B
(i)
N ,W

(i)
N ,D

(i)
N ,B

(i)
, B

(i)
s ,W

(i)
s D

(i)
s ),

∂C

∂θ
T

�

Ip ⊗
ˆ
xk(θ)

�

= MSSS(F
(i)
N ,W

(i)
N , C

(i)
N , C

(i)
, F

(i)
s ,W

(i)
s C

(i)
s ),

∂D

∂θ
T

�

Ip ⊗ uk

�

= MSSS(F
(i)
N ,W

(i)
N ,D

(i)
N ,D

(i)
, F

(i)
s ,W

(i)
s D

(i)
s ),

∀i ∈ {1, · · · ,M}

A
(i)

= SSS(B
(i,j)
e ,W

(i,j)
e , C

(i,j)
e ,A(i,j), B

(i,j)
w ,W

(i,j)
w , C

(i,j)
w ),

B
(i)

= SSS(B
(i,j)
e ,W

(i,j)
e ,D

(i,j)
e ,B(i,j), B

(i,j)
w ,W

(i,j)
w ,D

(i,j)
w ),

C
(i)

= SSS(F
(i,j)
e ,W

(i,j)
e , C

(i,j)
e , C(i,j), F

(i,j)
w ,W

(i,j)
w , C

(i,j)
w ),

D
(i)

= SSS(F
(i,j)
e ,W

(i,j)
e ,D

(i,j)
e ,D(i,j), F

(i,j)
w ,W

(i,j)
w ,D

(i,j
w ),

C
(i)
N = SSS(0, 0, 0, C

(i,j)
N

, 0, 0, 0),

C
(i)
s = SSS(0, 0, 0, C

(i,j)
s , 0, 0, 0),

D
(i)
N = SSS(0, 0, 0,D

(i,j)
N

, 0, 0, 0),

D
(i)
s = SSS(0, 0, 0,D

(i,j)
s , 0, 0, 0),

∀j ∈ {1, · · · , N}

where the generator matrices in caligraphic style are
depicted in Fig. 3. The corresponding matrix recurrences
γ and δ used to compute the generators are given in
Appendix A.

3.2 Computational Complexity

According to the exposed before, matrix-vector product
and matrix transpose MSSS operations are required for
the two simulations and the computation of the Jacobian
in every iteration. Furthermore, both operations can be
performed in linear complexity with respect to the number
of subsystems in the grid O(NM), (Houtzager and Rice
(2009)). Moreover, the identification problem described
above requires p = (n2 + nr+8nq+ ℓn+ ℓr+ 4ℓq+ 4rq+
4q2)NM parameters to be estimated. This is clearly much
better than the complexity of the full parameterization of
the state space model (2), that produces (n2 + nr + nℓ +
ℓr)N2M2 parameters (assuming that n, r, ℓ, q << N,M).
In addition, the number of parameters to be stored for the
partial derivatives also increase linearly with respect to the
number of sub-systems in the grid: (2n+2ℓ+12q)(n2+nr+
8nq + nℓ + ℓr + 4qr + 4qℓ + 4q2)NM (see Fig. 3). In the
case of Quasi-Newton methods, the implementation also
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Fig. 3. Generator matrices used to compute the partial derivatives (⊗ is the Kronecker product)

results in linear complexity with respect to the number of
subsystems in the grid as the approximation of the Hessian
can also be represented as a SSS matrix. In addition, faster
convergence to the optimum should be expected.

4. SIMULATION EXAMPLE

The proposed identification algorithm is tested on the
heat equation discretized in a 2D domain with Dirichlet
boundary conditions:
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, (19)

c(i,j) = 0.006(Γ(i,j) + Γ(i,j−1)), (20)

d(i,j) = 0.006(Γ(i,j) + Γ(i,j+1)), (21)

e(i,j) = 0.006(Γ(i,j) + Γ(i−1,j)), (22)

f(i,j) = 0.006(Γ(i,j) + Γ(i+1,j)) (23)

where a(i,j) = 1 − (c(i,j) + d(i,j)) − (e(i,j) + f(i,j)) − 0.5,
b(i,j) = 0.3 × 1e − 06 and Γ(i,j) ∼ U(0, 5) are uniformly
distributed parameters. The input signals are normally
distributed random variables with covariance matrix equal
to cov(uk) = Ir . In addition, a Gaussian noise is added
to the outputs with a prescribed Signal-to-Noise Ratio
(SNR).

In the following subsections, the prediction capabilities of
the identified model, the computational complexity of the

algorithm and the effect of the noise level on the prediction
error are investigated.

4.1 Variance Accounted For as function of the number of
iterations

In this case, the Variance-Accounted-For (VAF) 2 is stud-
ied as function of the number of iterations. A 2D grid
of 15 × 15 = 225 sub-systems is considered. A set of
20 experiments is performed where every trial is a ran-
dom realization of the parameters of every sub-system in
the grid. In addition, the outputs are corrupted with a
Gaussian noise of SNRdB = 40dB. The mean of the VAF
is calculated over 20 trials and depicted in Fig. A.1. It
is observed that the VAF converges to the 100% as the
number of iterations increases.

4.2 Computational Complexity

In this section, the computation time per iteration of the
proposed algorithm is studied. The computation time is
recorded for 2D grids of increasing number of sub-systems
and for 20 Monte-Carlo simulations per each grid. The
results are presented in Fig. A.2.

In fact, it is observed that the computation time increases
linearly as the number of sub-systems grows. This result
confirms our hypothesis that the computations are per-
formed on linear time with respect to the number of sub-
systems in the grid O(NM).

2 the VAF is defined as: V AF = 100 ·max{0, (1−
var(ŷk−yk)

var(yk)
)}[%]
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Fig. 3. Generator matrices used to compute the partial derivatives (⊗ is the Kronecker product)

results in linear complexity with respect to the number of
subsystems in the grid as the approximation of the Hessian
can also be represented as a SSS matrix. In addition, faster
convergence to the optimum should be expected.

4. SIMULATION EXAMPLE

The proposed identification algorithm is tested on the
heat equation discretized in a 2D domain with Dirichlet
boundary conditions:
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, (19)

c(i,j) = 0.006(Γ(i,j) + Γ(i,j−1)), (20)

d(i,j) = 0.006(Γ(i,j) + Γ(i,j+1)), (21)

e(i,j) = 0.006(Γ(i,j) + Γ(i−1,j)), (22)

f(i,j) = 0.006(Γ(i,j) + Γ(i+1,j)) (23)

where a(i,j) = 1 − (c(i,j) + d(i,j)) − (e(i,j) + f(i,j)) − 0.5,
b(i,j) = 0.3 × 1e − 06 and Γ(i,j) ∼ U(0, 5) are uniformly
distributed parameters. The input signals are normally
distributed random variables with covariance matrix equal
to cov(uk) = Ir . In addition, a Gaussian noise is added
to the outputs with a prescribed Signal-to-Noise Ratio
(SNR).

In the following subsections, the prediction capabilities of
the identified model, the computational complexity of the

algorithm and the effect of the noise level on the prediction
error are investigated.

4.1 Variance Accounted For as function of the number of
iterations

In this case, the Variance-Accounted-For (VAF) 2 is stud-
ied as function of the number of iterations. A 2D grid
of 15 × 15 = 225 sub-systems is considered. A set of
20 experiments is performed where every trial is a ran-
dom realization of the parameters of every sub-system in
the grid. In addition, the outputs are corrupted with a
Gaussian noise of SNRdB = 40dB. The mean of the VAF
is calculated over 20 trials and depicted in Fig. A.1. It
is observed that the VAF converges to the 100% as the
number of iterations increases.

4.2 Computational Complexity

In this section, the computation time per iteration of the
proposed algorithm is studied. The computation time is
recorded for 2D grids of increasing number of sub-systems
and for 20 Monte-Carlo simulations per each grid. The
results are presented in Fig. A.2.

In fact, it is observed that the computation time increases
linearly as the number of sub-systems grows. This result
confirms our hypothesis that the computations are per-
formed on linear time with respect to the number of sub-
systems in the grid O(NM).

2 the VAF is defined as: V AF = 100 ·max{0, (1−
var(ŷk−yk)

var(yk)
)}[%]
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4.3 The effect of noise

Finally, the effect of noise is investigated on the VAF index.
The outputs are contaminated with Gaussian noise of
different SNR characteristics and with different number of
samples. Moreover, different realization of the subsystems
in the grid along 20 Monte-Carlo simulations are consid-
ered. The results for two different data sets are depicted
in Fig. A.3: A) noisy data used for training the model and
B) noise-free data used for validation.

In this scenario, two effects can be observed. If the num-
ber of samples remain constant at K = 30, the VAF
disminishes when the power of the noise increases (SNR
decreases). This means that the prediction performance is
deteriorated when the influence of noise is predominant.
On the other hand, if the noise power is set constant and
high at SNRdB = 10dB, the prediction capabilities are
enhanced (VAF is increased) if the amount of samples used
on the identification is increased (K = 90), i.e, the use of
longer sequences in the training procedure attenuates the
noise overfit improving the results on the validation data.

5. CONCLUSION

In this paper, an efficient Output-Error identification
method for 2D interconnected systems based on the
Steepest-Descent gradient method was presented. It was
shown that for 2D interconnected systems the whole algo-
rithm can be expressed within the MSSS-approach which
resulted in linear time computations with respect to the
number of sub-systems in the grid. In addition, the re-
sults were strengthened by a simulation example showing
the linearity and effectiveness of the proposed method.
Convergence of the VAF to the 100% in finite number of
iterations was exposed as well. Even though the prediction
capabilities of the resulting model were deteriorated by
output data contaminated with increasing noise power
(overfit), this negative effects can be attenuated by con-
sidering data sequences with larger number of samples.

Appendix A

A.1 Matrices γ

Given the matrices WN ∈ R
q×q and CN ∈ R

q×n we define

the matrix sequence γ
(i,j)
N as follows:

γ
(i,j)
N = γ

(i−1,j)
N W

(i−1,j)T
N + xT

(i−1,j)C
(i−1,j)T
N ,

∀i ∈ {2, · · · ,M}, ∀j ∈ {1, · · · , N}

γ
(1,j)
N = 0. ∀j ∈ {1, · · · , N}

On the other hand, given Ws ∈ R
q×q and Cs ∈ R

q×n we
have:

γ(i−1,j)
s = γ(i,j)

s W (i,j)T
s + xT

(i,j)C
(i,j)T
s ,

∀i ∈ {M, · · · , 2}, ∀j ∈ {1, · · · , N}

γ(M,j)
s = 0. ∀j ∈ {1, · · · , N}

Finally, given We ∈ R
q×q, Ww ∈ R

q×q, Ce ∈ R
q×n and

Cw ∈ R
q×n we define:

γ(i,j)
e = γ(i,j−1)

e W (i,j−1)T
e + xT

(i,j−1)C
(i,j−1)T
e ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {2, · · · , N}

γ(i,1)
e = 0, ∀i ∈ {1, · · · ,M}
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and:

γ(i,j−1)
w = γ(i,j)

w W (i,j)T
w + xT

(i,j)C
(i,j)T
w ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {N, · · · , 2}

γ(i,N)
w = 0. ∀i ∈ {1, · · · ,M}

A.2 Matrices δ

Moreover, given the matrices WN ∈ R
q×q and DN ∈ R

q×r

we define the matrix sequence δ
(i,j)
N as follows:

δ
(i,j)
N = δ

(i−1,j)
N W

(i−1,j)T
N + uT

(i−1,j)D
(i−1,j)T
N ,

∀i ∈ {2, · · · ,M}, ∀j ∈ {1, · · · , N}

δ
(1,j)
N = 0. ∀j ∈ {1, · · · , N}

On the other hand, given Ws ∈ R
q×q and Ds ∈ R

q×r we
have:

δ(i−1,j)
s = δ(i,j)s W (i,j)T

s + uT
(i,j)D

(i,j)T
s ,

∀i ∈ {M, · · · , 2}, ∀j ∈ {1, · · · , N}

δ(M,j)
s = 0. ∀j ∈ {1, · · · , N}

Finally, given We ∈ R
q×q, Ww ∈ R

q×q, De ∈ R
q×r and

Dw ∈ R
q×r we define:

δ(i,j)e = δ(i,j−1)
e W (i,j−1)T

e + uT
(i,j−1)D

(i,j−1)T
e ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {2, · · · , N}

δ(i,1)e = 0, ∀i ∈ {1, · · · ,M}

and:

δ(i,j−1)
w = δ(i,j)w W (i,j)T

w + uT
(i,j)D

(i,j)T
w ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {N, · · · , 2}

δ(i,N)
w = 0. ∀i ∈ {1, · · · ,M}
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and:

γ(i,j−1)
w = γ(i,j)

w W (i,j)T
w + xT

(i,j)C
(i,j)T
w ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {N, · · · , 2}

γ(i,N)
w = 0. ∀i ∈ {1, · · · ,M}

A.2 Matrices δ

Moreover, given the matrices WN ∈ R
q×q and DN ∈ R

q×r

we define the matrix sequence δ
(i,j)
N as follows:

δ
(i,j)
N = δ

(i−1,j)
N W

(i−1,j)T
N + uT

(i−1,j)D
(i−1,j)T
N ,

∀i ∈ {2, · · · ,M}, ∀j ∈ {1, · · · , N}

δ
(1,j)
N = 0. ∀j ∈ {1, · · · , N}

On the other hand, given Ws ∈ R
q×q and Ds ∈ R

q×r we
have:

δ(i−1,j)
s = δ(i,j)s W (i,j)T

s + uT
(i,j)D

(i,j)T
s ,

∀i ∈ {M, · · · , 2}, ∀j ∈ {1, · · · , N}

δ(M,j)
s = 0. ∀j ∈ {1, · · · , N}

Finally, given We ∈ R
q×q, Ww ∈ R

q×q, De ∈ R
q×r and

Dw ∈ R
q×r we define:

δ(i,j)e = δ(i,j−1)
e W (i,j−1)T

e + uT
(i,j−1)D

(i,j−1)T
e ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {2, · · · , N}

δ(i,1)e = 0, ∀i ∈ {1, · · · ,M}

and:

δ(i,j−1)
w = δ(i,j)w W (i,j)T

w + uT
(i,j)D

(i,j)T
w ,

∀i ∈ {1, · · · ,M}, ∀j ∈ {N, · · · , 2}

δ(i,N)
w = 0. ∀i ∈ {1, · · · ,M}
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