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A Clustering Approach to Unveil User Similarities in 6 df
Extended Reality Applications

SILVIA ROSSI and IRENE VIOLA, Centrum Wiskunde and Informatica (CWI), Amsterdam, The
Netherlands
LAURA TONI, University College London (UCL), London, United Kingdom
PABLO CESAR, Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands and Technische
Universiteit (TU) Delft, Delft, The Netherlands

The advent in our daily life of Extended Reality (XR) technologies, such as Virtual and Augmented Reality, has
led to the rise of user-centric systems, offering higher level of interaction and presence in virtual environments.
In this context, understanding the actual interactivity of users is still an open challenge and a key step to
enabling user-centric system. In this work, our goal is to construct an efficient clustering tool for 6 df navigation
trajectories by extending the applicability of existing behavioural tool. Specifically, we first compare the
navigation in 6 df with its 3 df counterpart, highlighting themain differences and novelties.Then, we investigate
newmetrics aimed at better modelling behavioural similarities between users in a 6 df system. More concretely,
we define and compare 11 similarity metrics which are based on different distance features (i.e., user positions in
the 3D space, user viewing directions) and distance measurements (i.e., Euclidean, Geodesic, angular distance).
Our solutions are validated and tested on real navigation paths of users interacting with dynamic volumetric
media in both 6 df Virtual Reality and Augmented Reality conditions. Results show that metrics based on
both user position and viewing direction better perform in detecting user similarity while navigating in a 6
df system. Such easy-to-use but robust metrics allow us to answer a fundamental question for user-centric
systems: ‘How do we detect if users look at the same content in 6 df?’, opening the gate to new solutions
based on users interactivity, such as viewport prediction, live streaming services optimised based on users
behaviour but also for user-based quality assessment methods.

CCS Concepts: • Human-centered computing → User studies; Mixed / augmented reality; Virtual
reality; • Hardware → Analysis and design of emerging devices and systems; • Information systems
→Multimedia streaming; • Mathematics of computing→ Cluster analysis; Exploratory data analysis;
Time series analysis; • Computing methodologies→ Cluster analysis;

Additional Key Words and Phrases: Behavioural Analysis, Data Clustering, 6 df, Extended Reality, Virtual
Reality, Trajectory analysis, immersive navigation, interaction analysis, clustering tools, similarity metrics
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1 Introduction
Extended Reality (XR) is transforming the way users interact with media content, surpassing
the passive paradigm of traditional video technology, and offering more degrees of presence and
interaction in a virtual and immersive environment. This technology is envisioned to lead the
next generation virtual worlds [20]. Specifically, the term XR indicates all current immersive
technologies, spanning from fully physical to fully virtual world realities. While Augmented
Reality (AR) combines virtual and real objects on a screen device, Virtual Reality (VR) allows
users to immerse themselves in an entirely synthetic and virtual experience where they can
navigate and interact. Depending on how much a user can move in the 3D space, immersive
environments can be classified as 3 or 6 df. In the former scenario, the de-facto multimedia content
is the omnidirectional or spherical video, representing an entire 360◦ environment on a virtual
sphere. The viewer is fully immersed in a virtual space where they can navigate and interact thanks
to an immersive device—typically a Head-Mounted Display (HMD), which enables to view
only a portion of the environment around themself, named viewport. The media is displayed from
an inward position, and the viewer can interact with the content only by changing the viewing
direction (i.e., by looking up/down or left/right or tilting the head side to side). In a 6 df system,
the user can also change viewing perspective by moving (e.g., walking, jumping) inside the virtual
space. The scene is therefore populated by volumetric objects (i.e., meshes or point clouds) which
are observed from an outward position. These extra df bring the virtual experience even closer
to reality: A higher level of interactivity makes the user more immersed and present within the
virtual environment [9].

Despite their differences, the common denominator of both interactive systems is that the viewer
acts as an active decision-maker of the displayed content. This active role defines an user-centric era,
in which content processing, streaming and rendering need to be tailored to the viewer interaction
to remain bandwidth-tolerant whilst meeting quality and latency criteria [37, 57]. Media codecs
need to be optimised to maximise the quality experienced by users [17, 47, 59]. Similarly, streaming
should be tailored to users interactivity to ensure high-quality content and smooth navigation
[31, 46, 51]. From here, the importance to understand, analyse and predict users movements (i.e.,
user behaviour ) within an immersive scenario [18, 35, 38, 55]. A better understanding of how the
population behave within XR experience has an impact that goes also beyond multimedia system
applications, leading to user clustering/profiling which is essential for several reasons, from security
purposes to medical applications [32]. For example, in the context of authentication, profiling
enables secure authentication for specific categories of users or continuous verification based on
behavioural analysis, thus increasing security [54]. In medical applications, detecting cluster of
similar users allows for personalised healthcare, while identifying outlier behaviour could simplify
the detection and treatment of mental disorders [25].

Thanks to the large availability of publicly datasets [21, 28, 34], user navigation in 3 df immersive
systems has been deeply investigated, showing the importance of analysing and detecting key
behavioural aspects in interactive (user-centric) systems [1, 6, 41, 42, 48]. However, the 6 df
counterpart has been overlooked in the literature [2, 19, 50, 60]. Due to the change in the viewing
paradigm (from inward to outward) and to more level of interaction in 6 df, current studies in
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Fig. 1. Volumetric sequences of publicly available navigation trajectory datasets used in our experiments.

3 df cannot be directly applied to 6 df domains [44]. Filling this gap is the main goal of this
article by providing new metrics for user behavioural analysis in 6 df. Specifically, we focus on
extending the applicability of clustering methods to investigate users similarity (i.e., users sharing
common behaviours while interacting with the content) within 6 df environments. Starting from
the state-of-the-art clustering algorithm developed in 3 df [36], and the main limitations of the
tool when extended to 6 df described in [44], we further extend our previous work presented in
[45] by investigating new methodologies for better modelling user similarities and overcoming
those limitations. First, we recall the definition of user navigation trajectory in 6 df. Then, we
present the exact user similarity metric, which we will be considering as our ground truth. Given its
computational complexity, after an exhaustive study, we propose a simpler and yet reliable proxy for
it. More concretely, we define and compare 11 similaritymetrics which are based on different distance
features (i.e., user positions in the 3D space, user viewing directions) and distance measurements
(i.e., Euclidean, Geodesic distance, angular distance). We validate and test our proposed similarity
metrics on a publicly available dataset of navigation trajectories collected in a 6 df VR scenario
[51] based on four volumetric sequences shown in Figure 1(a). Results highlight that similarity
metrics based on more distance features are promising solutions to correctly detect users with
similar behaviour while experiencing volumetric content. Finally, we further validate the proposed
tool by testing it on navigation trajectories collected in a different setting, a 6 df AR scenario [60]
composed by two volumetric sequences shown in Figure 1(b). Similarities among users are detected
as well in this new interactive setting, showing that the proposed metrics are general enough to be
efficient in multiple interactive systems with 6 df.

In summary, we extend our previous work [45] by including user viewing direction as additional
distance feature, and adding three new similarity metrics. We also present a novel use case of
behavioural analysis in an AR environment to emphasise the importance of testing the proposed
metrics in different XR settings. Thus, the main contributions of this article to the open problem of
behavioural analysis in 6 df can be summarised as follows:

— Introduction of the general problem of detecting behavioural similarities in a 6 df system, and
definition of novel similarity metrics able to model the user behaviour in this scenario. These
are expressed as a function of various distance features and measurements and we divide
them into two groups: single- and multi-features metrics;

—An exhaustive analysis of the different proposed metrics aimed at capturing users behaviour
similarity (in terms of displayed content). This analysis based on 6 df VR trajectories reveals

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 9, Article 254. Publication date: September 2025.



254:4 S. Rossi et al.

that the position on the floor alone is not always sufficient to characterise the user behaviour
and thus the viewing direction cannot be neglected;

—A case study of behavioural analysis in an AR system via a state-of-the-art clustering tool using
our proposed similarity metrics. This second example tests our proposed metrics showing
their flexibility and validity also in a different XR setting.

The remainder of this article is organised as follows: Section 2 reviews related work on be-
havioural analysis in 3 df and 6 df systems; the main challenges and the importance of detecting
behavioural similarities in 6 df are discussed in Section 3. Our proposed similarity metrics are
detailed in Section 4, with experimental setup and validation on real 6 df navigation trajectories
collected in VR in Sections 5 and 6. Section 7 demonstrates the applicability of our metrics in a 6 df
AR setting. Further discussions, including limitations and future work, are given in Section 8, and
final conclusion in Section 9.

2 Related Work
We now describe how user behaviour has been analysed in 3 df systems, showing also the benefit
of this type of analysis in user-centric systems. Then, we show which methods have been used for
the analysis in 6 df scenarios, highlighting the still outstanding open challenges.

2.1 User Behaviour in 3 df Environment
The user navigation within a 3 df environment has been intensely analysed from different per-
spectives [37]. Many studies have focused on psychological investigations of user engagement
and presence correlated to movements within the spherical content. In [22], a study from a large-
scale experiment (511 users and 80 omnidirectional videos) showed a positive correlation between
lower interactivity level and higher engagement level (strong focus on few points of interest). A
correlation between the perceived sense of presence and the interactivity level was detected in
[4], with more random exploratory interactions for less immersed (and hence less engaged) users.
Recently, an exploration analysis has also shown benefit on the user of experience by aligning
the displayed portion of the content with specific region of interest [3]. This impact has been
examined, considering factors such as head motion, sense of presence and discomfort highlighting
that innovative editing techniques involving gradual rotation of VR content contribute to improve
the overall user experience. To further understand how people observe and explore VR contents,
many publicly datasets of navigation trajectories have been made available. Those datasets usually
come with statistical analysis aimed at capturing average users behaviour, as a function of average
angular speeds under various video segment lengths [10], exploration time [48] or eye fixation
distribution [12]. These traditional analysis have been exploited also to investigate the immersive
navigation of dynamic scenes characterised by directional sounds [5]. However, no objective metric
to properly quantify and characterise user behaviour has been presented in these works.

In [28], the dataset has been analysed through a clustering algorithm presented in [36], specifically
built to have in the same cluster users who similarly explore 360◦ content. This investigation
highlighted that movies with few focus of attention lead to higher engagement shown by users with
strong similarities and hence collected into few and high-populated clusters. Authors in [40] showed
the advantages of employing information theory metrics to study spatio-temporal trajectories,
providing a tool to identify and quantify behavioural aspects. This preliminary quantitative analysis
not only explored the similarities between users watching the same content but also investigated
the similarity of a given user across diverse content. A recent follow-up data analysis using such
information theory metrics and across several publicly available VR datasets has also unveiled
correlations between users head motion and trajectory predictability [41]. The importance of these

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 9, Article 254. Publication date: September 2025.



A Clustering Approach to Unveil User Similarities in 6 df XR Applications 254:5

behavioural insights has been proved to be crucial for different VR applications. A critical open
problem is the ability to predict users’ navigation trajectories within the virtual space. Being able
to anticipate viewers’ movement is essential to ensure high quality of experience and smooth
navigation during the immersive experience. For instance, in a tile-based adaptive streaming
scenario, each user receives at high quality only tiles that overlap the predicted displayed portion
of the content [39]. This strategy, while effective from both a bandwidth and quality perspective,
strongly depends on the performance of the selected prediction algorithm. An erroneous estimate
would immediately lead to re-transmissions, and hence, a possible stall or quality reduction effect.
Therefore, many new learning models have been proposed to anticipate users’ movements [7, 16,
19, 27, 29]. Finally, the analysis and understanding of user navigation in a VR environment have
also shown promising results in determining mental health issues (e.g., anxiety, autism spectrum
disorder, eating disorders, depression) and to help their treatment [14, 15, 26].

2.2 User Behaviour in 6 df Environment
Extending such behavioural analysis to a 6 df environment is not straightforward due to the change
from inward to outward viewing and the addition of translation in 3D space. In the past, user
navigation in 6 df scenarios was studied in the context of locomotion and display technology for
Cave Automatic Virtual Environment (CAVE) environments [33, 53]. A CAVE system is an
immersive room on which walls and floor are projected the video content and viewers are free to
move inside [11]. For instance, the study in [53] focused on task performance analysis in terms of
completion time and correct actions. Authors in [33] compared instead the effect of two different
immersive platforms such as CAVE and HMD on the user navigation. More traditional metrics,
such as angular distance and linear velocity, alongside completion time, were also used to compare
different navigation controllers (i.e., joystick-based vs. head-controlled navigation) in 6 df [8].
Similarly, the navigation with 6 df of users in the form of digital avatars has been also deeply
investigated to detect insights into how they behave and move in virtual worlds (e.g., Second Life)
[24]. Their focus was into both temporal and spatial dynamics of variations in avatar population
and the exploration of spatial distribution, movement patterns and contact interactions among
avatars. While the tools and methodologies mentioned above are highly informative to summarise
the interaction of users within a 6 df environment, they usually fail to provide other key insights:
which users navigate similarly, and which are the dominant interaction behaviour among users.

More recently, subjective quality assessment of both static [2] and dynamic [17, 52] volumetric
content has been presented along with general statistical analysis of user movements showing
an influence in the navigation given by the perceived content quality, and pointing out a user’s
preference to visualise volumetric objects from a close and frontal perspective. This last finding
was also confirmed in a behavioural navigation analysis conducted in an AR mobile application
[60]. Here, viewers movements were analysed in terms of distribution on the floor, viewing angles
and relative distance from the content. A behavioural analysis of user navigating in 6 df social
VR movie has been also presented in [43]. An investigation on how users are affected by virtual
characters and narrative elements of the movie has been conducted through objective metrics,
showing a more static behaviour when an interactive task was requested, and more exploratory
movements during dialogues. Another exploratory analysis shows user behaviour while displaying
volumetric content in a 6 df environment, examining the influence of content features, dynamics,
quality and users intrinsic disposition [42]. Specifically, these investigations have been based on
both traditional statistical metrics like distribution of viewing position and direction, exploratory
velocity and total viewing time, alongside adapted 3 df tools such as information theory metrics
[40] and clustering tools [36]. Given the importance of collecting navigation data in 6 df immersive
experiences, a novel tool was recently introduced [56].
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Fig. 2. Example of two 6 df trajectories projected in a 2D domain for user 8 and 9 . On the right side, a snapshot
at time C : coloured triangles represent viewing frustum per user.

The aforementioned studies are based on conventional metrics, which consider only one user
feature at a time, either position on the floor or viewing direction but not together. In this article,
we aim to overcome these limitations by proposing a general and efficient tool for detecting similar
viewers while experiencing 6 df content.

3 Challenges
Our main goal is to define a new pairwise metric able to capture the (dis)similarity between two 6 df
users (in terms of displayed content). This metric needs to be reliable and yet simple to compute.
In the following, we first define navigation trajectories in 6 df scenario comparing with its 3 df
counterpart and present our definition of similarity among users while navigating in a 6 df environ-
ment based on [44]. Then, we show an exact user similarity metric highlighting its limitations, and
therefore the need to find a simpler proxy for it. Finally, we emphasise the advantages of having
a similarity metric for behavioural analysis via a clique-based clustering approach presented in
[36], which detect users who are attending the same portion of an omnidirectional content. This
tool relies on a pairwise similarity metric, which is a solid metric in 3 df, but results to be poor
in 6 df. Hence, the need to develop a proper metric representative for 6 df system to extend the
applicability of such behavioural tool to 6 df scenario.

3.1 User Similarity in 6 df
Following [44, 45], we assume that users behave similarly when they observe the same portion of
volumetric content. The user behaviour can be identified by the spatio-temporal sequences of their
movements within the virtual environment, namely navigation trajectories.

In a 3 df scenario, the trajectory of a generic user 8 can be formally denoted by the sequence of
the user’s position and the corresponding viewing direction over time: {(G81, E81), (G82, E82), .., (G8=, E8=)}
where G8C is the user position while E8C is the vector representing the viewing direction at timestamp
C . In this context, however, users are positioned at the centre of the spherical content; thus, G8C is
constant and can be neglected. The vector of the viewing direction can be also approximated by ?8C ,
which is the centre of the viewport projected on the immersive content (i.e., spherical video), such
that the trajectory becomes {?81, ?82, .., ?8=} [44]. The viewport centre alone is highly informative of
the user behaviour, and it can be used as proxy of viewport overlap among users as shown in [36].
Specifically, the geodesic distance between viewport centres is highly reliable as similarity metric
to asses users’ similarity, namely a low value indicates high similarity between 3 df users.

In a 6 df setting, however, the added df lead to more challenges in the design of the sys-
tem and in the representation of user navigation. Figure 2 shows an example of two users
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navigating in a 6 df scenario. On the left side, there are navigation trajectories of two users 8
and 9 projected on a 2D domain (i.e., floor). Each point GC represents the spatial coordinates
(i.e., [x, y, z]) on the floor, while each associated vector symbolises the viewing direction EC .
The navigation trajectory of a generic user 8 can be represented as {(G81, E81), (G82, E82), .., (G8=, E8=)}
where G8C and E8C are the user position and viewing direction vector at timestamp C , respectively.
However, unlike the 3 df scenario, the users’ position changes over time; therefore their dis-
tance from the immersive content can also change over time. As a consequence, the viewport
centre alone is no longer sufficient to characterise the user behaviour [44]. On the right part
of Figure 2, there is indeed a snapshot at a specific time instant C . In more detail, the shaded
triangular areas represent the viewing frustum per user, which indicates the region within the
user viewport, and AC is the distance between the user and the volumetric content. We have also
depicted the viewport centre ?C projected on the displayed volumetric object. Given the two
users 8 and 9 at time C , in the case of A 8C � A

9
C , the user 9 (very close to the object) is visualis-

ing a very focused and detailed part of it; conversely, user 8 is pointing to the same area but
from a much further distance, thus the experienced content is different with less defined details.
Despite this difference, the small distance �C (8, 9) between viewport centres ?8C and ?

9
C might

suggest a high similarity between the users, which does not reflect the reality in the case of
A 8C � A

9
C . In this scenario, we cannot rely on the viewport centre alone to characterise the user

behaviour; the distance A and the spatial coordinates on the virtual floor G are also needed to
define the navigation trajectory for a generic 6 df user 8 . Thus, an alternative definition of navi-
gation trajectory is given by the following triple over time {(G81, ?81, A 81), (G82, ?82, A 82), . . . , (G8=, ?8=, A 8=)}.
This information is crucial to define a simple similarity metric among users in this new
setting.

3.2 Overlap Ratio as the Ground-Truth Metric
Since we are interested in capturing viewers that are attending similar volumetric content at the
same time instance, following the work presented in [45], the straightforward measure that could
show this behaviour is the overlap among viewports. Given the two users 8 and 9 in Figure 2, we
denote their displayed viewport at time C as S8

C and S 9
C , respectively, defined as the set of points

of the volumetric content falling within their viewing frustum. Then, we denote the overlap set
by S8

C ∩ S 9
C , the portion of points displayed by both users. Equipped with the above notation, we

can now introduce a key metric for the analysis: the overlap ratio $ (8, 9). This is defined as the
cardinality of the overlap set, normalised by the cardinality of the set containing all points of the
volumetric content visualised by both users. More formally, the overlap ratio in a specific time C is

$C (8, 9) =
|S8

C ∩ S 9
C |

|S8
C ∪ S8

C |
, (1)

where S8
C and S

9
C are the displayed viewport of users 8 and 9 , respectively. In particular, a high value

of overlap ratio means high similarity between users, and conversely. Even if this metric is exact
and a clear indicator of how much similar users are with respect to their displayed content, its
evaluation is not trivial as it is intensely time-consuming. For instance, the overlap ratio between
two users requires on average 0.8986 seconds per frame on an Intel R machine with CPU E5-4620 at
2.10 GHz. This operation needs to be computed for all the possible combinations of users, leading
to a large overhead which does not meet requirements for real-time and scalable applications. A
new measure is needed to perform real-time applications. In the rest of the article, we will use
this metric as the ground truth of overlap among users and investigate different weights that can
approximate viewport overlap between users, and thus being an indication of users’ (dis)similarity.
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Table 1. Definition of Distance Features and Measurements

Symbol Definition
D
is
ta
nc

e
Fe

at
ur

es 
G User position on the VR floor
? Viewport centre projected on the volumetric content
A Relative distance between user and volumetric content
E Vector of the viewing direction

D
is
ta
nc

e
M
ea

su
re
m
en

ts 
L(·, ·) Difference of relative distance between two users
E(·, ·) Euclidean distance
G(·, ·) Geodesic distance
\ (·, ·) Angle between two vectors

3.3 Clustering as a Tool for Behavioural Analysis
Being able to assess users’ similarities in an objective way is crucial to detect users with similar
behaviour thorough a clique-based clustering algorithm presented in [36]. This requires indeed a
reliable graph where only the nodes identifying similar users (i.e., who are displaying the same
portion of the content) are connected. Equipped with such a meaningful graph, the clique-based
clustering iteratively finds optimal sub-graphs of all interconnected nodes, ensuring the largest
cluster of users who all share a large viewport overlap. Specifically, given a set of users who are
experiencing the same content, we can represent their movements in a time-window ) as a set of
graphs {GC })C=1. Each unweighted and undirected graph GC = {V, EC ,AC } represents behavioural
similarities among users at time C , whereV and EC denote the node and edge sets of GC , respectively.
Each node in V corresponds to a user interacting with the content. Each edge in EC connects
neighbouring nodes defined by the binary adjacency matrix AC . Assuming that users are connected
if they are displaying similar content, we can formally define the adjacency matrix AC as follows:

AC (8, 9) =
{
1, if 6C (8, 9) ≥ �Cℎ

0, otherwise
, (2)

where 6C (8, 9) is a similarity metric between user 8 and 9 with �Cℎ as a threshold value. In [36], this
graph construction is based on a pairwise metric specific to 3 df trajectories. On this final graph,
the clique-based clustering can be applied to identify clusters of users with similar behaviour.

Identifying a general and reliable metric 6(8, 9) that approximates behavioural similarities among
users who experience the same 6 df content is a key step to extend the applicability of these exiting
behavioural tools, and it is the main focus of this article, aimed at formulating various multi-modal
metrics, and testing/validating them with real-world data from XR settings.

4 Proposed Metrics
In this section, we present 11 similarity metrics that will be the object of an exhaustive study in the
following to understand which one approximates at the best the viewport overlap. Those metrics
are expressed as a function of various distance features and measurements considering either users’
position on the floor (G) or users’ viewing direction in terms of the viewport centre projected on
the volumetric content (?) or viewing vector (E) or a combination of them. We divide the proposed
similarity metrics into two groups: single-feature andmulti-feature metrics. For the sake of notation,
we omit the temporal parameter C . Table 1 summarises the distance features and measurements
that we consider, while our proposed similarity metrics are reported in Table 2.
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Table 2. Similarity Metrics: Definitions, Included Distance Features and Measurements, Regulator and
Threshold Values

Symbol Definition Distance Feature and Metric Regulator Values (Cℎ

F1 :
(E)
U (G8 , G 9 ) E(G8 , G 9 ) U = 1 0.61

F2 :
(L)
U (A 8 , A 9 ) L(A 8 , A 9 ) U = 1 0.78

F3 :
(G)
U (?8 , ? 9 ) G(?8 , ? 9 ) U = 1 0.59

F4 :
(E)
U (?8 , ? 9 ) E(?8 , ? 9 ) U = 1 0.83

F5 :
(\ )
U (E8 , E 9 ) \ (E8 , E 9 ) U = 1 0.76

F6 :
(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (G)

W (?8 , ? 9 ) E(G8 , G 9 ), L(A 8 , A 9 ), G(?8 , ? 9 ) U = 0.5; V = 0.05; W = 0.2 0.59
F7 :

(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (E)

W (?8 , ? 9 ) E(G8 , G 9 ), L(A 8 , A 9 ), E(?8 , ? 9 ) U = 0.125; V = 0.05; W = 0.2 0.75
F8 :

(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (\ )

W (E8 , E 9 ) E(G8 , G 9 ), L(A 8 , A 9 ), \ (E8 , E 9 ) U = 0.125; V = 0.05; W = 0.1 0.75
F9 :

(E)
U (G8 , G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (G)

W (?8 , ? 9 ) E(G8 , G 9 ), A 8 ,A 9 , G(?8 , ? 9 ) U = 0.5; V = 0.5; W = 0.25 0.69
F10 :

(E)
U (G8 , G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (E)

W (?8 , ? 9 ) E(G8 , G 9 ), A 8 , A 9 , E(?8 , ? 9 ) U = 0.25; V = 0.5; W = 0.5 0.81
F11 :

(E)
U (G8 , G 9 ) · V [[ (A8 ) + [ (A 9 )] · : (\ )

W (E8 , E 9 ) E(G8 , G 9 ), A 8 , A 9 , \ (E8 , E 9 ) U = 0.5 ; V = 0.5; W = 0.1 0.76

4.1 Single-Feature Metrics to Assess Users’ Similarity
The first set of similarity metrics is based on one distance feature. We model the similarity functions
via radial basis function kernel. Specifically, we consider the following Gaussian kernel [49]:

:
(� )
U (8, 9) = 4−U� (8, 9 ) , (3)

where � (8, 9) is the selected distance between two generic users 8 and 9 , while U > 0 is a parameter
to better regularise the distance. The distance � (8, 9) can be evaluated in multiple ways and we
consider the distance features and measurements taken into account in [45]. In this work, we also
introduce metrics based on the angle between the vector of users viewing direction.

The first two similarity metricsF1 andF2 are based only on the location of users in the virtual
space with respect to the virtual object or other viewers.The former metric is based on the Euclidean
distance E(G8 , G 9 ) between user 8 and 9 on the virtual floor. Instead, F2 considers the difference
in terms of the relative distance of users to the centroid of the displayed content, L = | |A 8 − A 9 | |.
Specifically, we define them as follows:

F1 = 4−UE(G8 ,G 9 ) = :
(E)
U (G8 , G 9 ); (4)

F2 = 4−U | |A
8−A 9 | | = :

(L)
U (A 8 , A 9 ). (5)

The metricsF3 andF4 are instead based on the distance between the viewport centres ? of user 8
and user 9 projected on the volumetric content. To take into account the heterogeneous shape of
the volumetric content, the distance inF3 is measured in terms of the Geodesic distance G(?8 , ? 9 )
while inF4 in terms of the Euclidean distance E(?8 , ? 9 ). More formally, they are defined as

F3 = :
(G)
U (?8 , ? 9 ) = 4−UG(?8 ,? 9 ) , (6)

F4 = :
(E)
U (?8 , ? 9 ) = 4−UE(?8 ,? 9 ) . (7)

Finally, the metric F5 is based on the angular distance \ (E8 , E 9 ) between the two vectors of the
viewing direction of user 8 and user 9 . Specifically, it is defined as follows:

F5 = :
(\ )
U (E8 , E 9 ) = 4−U\ (E

8 ,E 9 ) . (8)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 9, Article 254. Publication date: September 2025.



254:10 S. Rossi et al.

4.2 Multi-Feature Metrics to Assess Users’ Similarity
As emerged in [44], both user viewing direction and position on the virtual floor are relevant to
detect similar behaviour among users. Thus, the last set of proposed similarity metrics considers a
combination of distance features and measurements. Appendix A depicts a further analysis of the
correlation among these selected distance features and measurements. Despite a general correla-
tion between the selected metrics, this does not result consistent across the different visualised
volumetric content. Thus, we consider all of them to propose novel multi-feature similarity metrics
and to determine which one best approximates the viewport overlap among users. Specifically,
we defineF6,F7 andF8 based on the previous similarity metricsF1 andF2, but include also the
distance of their viewport centres ? projected on the volumetric content in terms of Geodesic
distance G(?8 , ? 9 ), Euclidean distance E(?8 , ? 9 ) and angular distance \ (E8 , E 9 ), respectively. More
formally, we defineF6 as

F6 = :
(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (G)

W (?8 , ? 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−WG(?8 ,? 9 ) ; (9)

the second weight is equal to

F6 = :
(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (E)

W (?8 , ? 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−WE(?8 ,? 9 ) ; (10)

and finallyF7 is equal to

F7 = :
(E)
U (G8 , G 9 ) · : (L)

V
(A 8 , A 9 ) · : (\ )

W (E8 , E 9 )

= 4−UE(G8 ,G 9 ) · 4−V | |A 8−A 9 | | · 4−W\ (E8 ,E 9 ) . (11)

For the sake of clarity, V and W are regulators such as U .
The preliminary analysis presented in [44] has also highlighted a correlation between the viewport

overlap of two users and their relative distance from the volumetric content. The closer users are to
the volumetric content, the smaller and more detailed is the portion of the displayed content; the
farther they are, the bigger but with fewer details becomes the displayed portion. Thus, in the first
case, the high overlap between displayed areas of two different users is more difficult. To take into
consideration this behaviour, we model the relative distance via a hyperbolic tangent kernel. This
function captures the non-linear relationship between user distance and content overlap leading to
a better representation of the user interactions. Given the relative distance A8 between the user 8
and volumetric content, we evaluate it as follows:

[ (A8 ) = tanh (A8 ) . (12)

Thus modelling the relative distance of users with this function, metricsF9 andF10 are based on
both user distance in the virtual floor E(G8 , G 9 ), and on the volumetric content in terms of Geodesic
distance G(?8 , ? 9 ) and Euclidean distance E(?8 , ? 9 ), respectively; while F11 considers angular
distance \ (E8 , E 9 ) together with the user distance in the virtual floor E(G8 , G 9 ). More formally, we
defineF9 as follows:

F9 = :
(E)
U (G8 , G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (G)

W (?8 , ? 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
)]

· 4−WG(?8 ,? 9 ) ;
(13)
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whileF10 is

F10 = :
(E)
U (G8 , G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (E)

W (?8 , ? 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
)]

· 4−WE(?8 ,? 9 ) ;
(14)

and finally,F11 is

F11 = :
(E)
U (G8 , G 9 ) · V

[
[ (A 8 ) + [ (A 9 )

]
· : (\ )

W (E8 , E 9 )

= 4−UE(G8 ,G 9 ) · V
[
tanh (A8 ) + tanh

(
A 9
)]

· 4−W\ (E8 ,E 9 ) .
(15)

5 Experimental Setup
We now validate and test our proposed similarity metrics based on real navigation trajectories
collected in a VR setting and selected performance metrics. In the following, we first describe the
navigation dataset and how we evaluate the performance of our similarity metrics (Sections 5.1
and 5.2, respectively).

5.1 Dataset and Methodology
Dataset. Existing datasets with user navigation collected while displaying volumetric objects in
a 6 df environment are still very limited. In the following, we use the open dataset presented
in [51]. This is comprised of navigation trajectories of 26 users participating in a visual quality
assessment study in VR. For the study, four dynamic point cloud sequences were employed [23],
namely LongDress (PC1), Loot (PC2), Red and Black (PC3), Soldier (PC4) (Figure 1(a)). Each sequence
was distorted at four different bit rate points with two compression algorithms (i.e., MPEG anchor
codec and standard V-PCC). Hidden references were also employed in the test, for a total of 36
stimuli. Similarly to what is shown in Figure 2, a single object of interest was placed in the VR
scene, and users were instructed to focus on the volumetric content for the duration of the session
and rate its visual quality. Thus, the navigation data adhere to the assumptions listed in Section 3.
However, it is important to note that, since this was not a task-free experiment, user navigation
may have been influenced by the requirement to rate the content’s quality, which we leave to future
work for further investigation. Finally, in the experiments conducted in [51], each sequence was 5
seconds long and looped, allowing participants to watch the content as long as they wanted. In the
following analysis, to ensure data consistency across all participants, we decided to consider only
the first 5 seconds of the collected trajectories, which correspond to the first loop of the volumetric
content.
Graph Construction. To implement the graph-based clustering proposed in [36] based on our

proposed similarity metrics, we need to construct a binary graph following Equation (2), as described
in Section 3.3. To be noted, our proposed similarity metrics are based on distance measurements.
As shown in [36], the correlation between overlap and distance is inversely proportional. This
means that high values of overlap (and thus, high similarity) correspond to low distance. Therefore,
the condition to construct the adjacency metric AC based on our proposed similarity metrics
becomes the following:F (8, 9) ≤ (Cℎ whereF (8, 9) is one of the similarity metrics in Table 2. (Cℎ
is a threshold value which identifies similar users and thus, neighbours on the graph. In short,
users with a similarity metric below (Cℎ are neighbours in the graph. Hence, the first step now
is to identify (Cℎ . For each proposed similarity metric, we empirically evaluate the Receiver
Operating Characteristic (ROC) curves based on the navigation trajectories of the entire dataset
(i.e., navigation trajectories of both distorted and reference version of the content) described above
and select the best value of threshold as originally done in [36]. Specifically, we set the thresholding
values such that a good tradeoff between True-Positive Rate (TPR) and False-Positive Rate
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(FPR) is met. As ground truth for the ROC, we assumed that two users are attending the same
portion of the content, and thus are classified as similar, if their viewports overlap by at least 75%
of their total viewed area as in the original work [39]. The predicted event is instead evaluated
using the 11 metrics presented in the previous section, and the corresponding threshold values
are selected in order to have TPR equal to 0.75. For the sake of clarity, the ground-truth value
of viewport overlap has been set equal to 75% because this ensures per each similarity metric
a low probability to have a wrong classification (i.e., FPR below 0.4) without compromising the
probability of correctly classifying the similarity event (i.e., TPR) which remains above 0.75. In the
last column of Table 2, we provide the selected (Cℎ per each similarity metric that will be used in
the following. To tune the best set of regulator parameters, we also run an ablation study based on
the entire selected dataset of navigation trajectories which is presented in Appendix B. Table 2 also
reports all the final values selected after the ablation study and that will be used in the following.

5.2 Performance Evaluation Setup
To test our proposed similarity metrics, we consider three performance metrics: the averaged
overlap ratio per cluster, the relevant clustered population, and the precision. The first two are more
specific to our navigation trajectory in VR systems, while the last one is a popular index used to
evaluate clustering algorithm performance.
Overlap Ratio per Cluster. As defined in Section 3.2, the overlap ratio computes the portion in

common of displayed content between two users. Therefore, to compare the performance of our
detected clusters with the different similarity metrics, we average the overlap ratio among all
the pair of users who are put in the same group. More formally, given a detected cluster �: , the
corresponding overlap ratio $: is defined as follows:

$: =
1
=:

∑
8,9 ∈�:
8≠9

$ (8, 9), (16)

where 8 and 9 are two generic users, =: is the cardinality of elements bellowing to cluster �: and
$ (8, 9) is the overlap ratio as in Equation (1).

Relevant Clustered Population. The more users are clustered together with high viewport overlap,
the more meaningful our clusters become. We consider clusters with more than two elements as
relevant. Thus, the relevant clustered population is the ratio of users in these types of clusters.

Precision. In a classification task, this index evaluates the portion of elements that are classified
correctly and has values between 0 and 1 [13]. More formally:

% =
)%

)% + �%
, (17)

where True Positive (TP ) (False Positive (FP )) is the number of viewers classified correctly (incor-
rectly) together in a cluster. In our case, two users are identified positively if they are in the same
cluster and their viewport overlap is actually over the desired value (i.e., 75% of overlap).

6 Results
Equipped with the similarity metrics, the corresponding values of regulators and thresholds given
in Table 2, we now conduct our validation study. In this part of the study, we decided to focus
only on the analysis of the dataset experienced in VR, Figure 1(a). In particular, we investigate the
navigation trajectories experienced with non-distorted content to avoid any bias due to the quality
of the content. First, we consider our metrics in a frame-based scenario in which users are clustered
in one given frame at a time, then we test our proposed metrics over a time window of duration 1
second.
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Table 3. Results in Terms of Average and SD per Each Performance Metric across the Navigation
Trajectories Experienced with Not-Distorted Content in the Selected Dataset (Figure 1(a))

Metrics F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PC
1 Overlap 0.69 ± 0.03 0.64 ± 0.04 0.66 ± 0.04 0.68 ± 0.07 0.66 ± 0.04 0.68 ± 0.05 0.73 ± 0.05 0.67 ± 0.04 0.68 ± 0.05 0.72 ± 0.05 0.67 ± 0.04

Relevant Pop. 0.86 ± 0.05 0.94 ± 0.04 0.93 ± 0.05 0.87 ± 0.06 0.84 ± 0.05 0.85 ± 0.06 0.81 ± 0.09 0.89 ± 0.04 0.83 ± 0.06 0.82 ± 0.09 0.88 ± 0.07
Precision 0.42 ± 0.06 0.33 ± 0.05 0.38 ± 0.07 0.31 ± 0.06 0.34 ± 0.04 0.45 ± 0.06 0.47 ± 0.10 0.41 ± 0.05 0.43 ± 0.08 0.38 ± 0.08 0.40 ± 0.05

PC
2 Overlap 0.56 ± 0.08 0.54 ± 0.08 0.55 ± 0.10 0.55 ± 0.10 0.52 ± 0.08 0.58 ± 0.07 0.56 ± 0.09 0.57 ± 0.07 0.57 ± 0.09 0.60 ± 0.09 0.57 ± 0.07

Relevant Pop. 0.86 ± 0.06 0.92 ± 0.04 0.85 ± 0.07 0.91 ± 0.06 0.81 ± 0.08 0.82 ± 0.08 0.80 ± 0.06 0.83 ± 0.06 0.77 ± 0.10 0.69 ± 0.12 0.77 ± 0.07
Precision 0.43 ± 0.09 0.27 ± 0.07 0.31 ± 0.08 0.27 ± 0.08 0.36 ± 0.08 0.45 ± 0.09 0.39 ± 0.09 0.43 ± 0.09 0.50 ± 0.07 0.52 ± 0.07 0.51 ± 0.07

PC
3 Overlap 0.64 ± 0.05 0.59 ± 0.06 0.63 ± 0.05 0.68 ± 0.06 0.62 ± 0.06 0.64 ± 0.06 0.65 ± 0.05 0.64 ± 0.05 0.67 ± 0.06 0.71 ± 0.07 0.67 ± 0.06

Relevant Pop. 0.86 ± 0.06 0.93 ± 0.05 0.90 ± 0.07 0.84 ± 0.07 0.80 ± 0.06 0.84 ± 0.07 0.80 ± 0.09 0.82 ± 0.05 0.77 ± 0.06 0.59 ± 0.09 0.74 ± 0.07
Precision 0.47 ± 0.12 0.34 ± 0.09 0.39 ± 0.06 0.38 ± 0.06 0.42 ± 0.08 0.48 ± 0.11 0.49 ± 0.10 0.47 ± 0.10 0.51 ± 0.11 0.54 ± 0.12 0.51 ± 0.14

PC
4 Overlap 0.58 ± 0.04 0.52 ± 0.05 0.56 ± 0.03 0.59 ± 0.06 0.55 ± 0.06 0.59 ± 0.04 0.60 ± 0.04 0.58 ± 0.04 0.61 ± 0.04 0.66 ± 0.05 0.61 ± 0.05

Relevant Pop. 0.85 ± 0.06 0.92 ± 0.04 0.92 ± 0.06 0.88 ± 0.08 0.84 ± 0.06 0.85 ± 0.06 0.81 ± 0.07 0.84 ± 0.05 0.83 ± 0.07 0.67 ± 0.09 0.80 ± 0.06
Precision 0.35 ± 0.07 0.22 ± 0.04 0.31 ± 0.06 0.25 ± 0.07 0.28 ± 0.05 0.37 ± 0.07 0.36 ± 0.07 0.36 ± 0.07 0.40 ± 0.08 0.42 ± 0.10 0.39 ± 0.08

A
ll
PC

s Overlap 0.62 ± 0.05 0.57 ± 0.06 0.60 ± 0.06 0.62 ± 0.07 0.59 ± 0.06 0.62 ± 0.05 0.64 ± 0.06 0.61 ± 0.05 0.63 ± 0.06 0.67 ± 0.06 0.63 ± 0.06
Relevant Pop. 0.86 ± 0.06 0.93 ± 0.04 0.90 ± 0.06 0.88 ± 0.07 0.82 ± 0.06 0.84 ± 0.07 0.81 ± 0.08 0.84 ± 0.05 0.80 ± 0.07 0.69 ± 0.10 0.80 ± 0.07

Precision 0.42 ± 0.08 0.29 ± 0.06 0.35 ± 0.07 0.30 ± 0.07 0.35 ± 0.06 0.44 ± 0.08 0.43 ± 0.09 0.42 ± 0.08 0.46 ± 0.08 0.46 ± 0.09 0.45 ± 0.08

Bold represents best performance values per content.

6.1 Frame-Based Analysis
As a first step, we implement a frame-based analysis (i.e., frame-based clustering) on the entire
dataset taking into account navigation trajectories experienced only with not-distorted content in
the select dataset. In Table 3, we report the average and SD of performance metrics described in
Section 5.2 obtained by our proposed similarity metrics per each content. In the last row of the table,
we show also the final performance averaged across the volumetric contents. Clusters based onF2

include the majority of the population within relevant clusters across all the analysed PCs, reaching
the maximum value of 0.94 in PC1. However, this comes at the detriment of precision, which falls to
values between 0.22 and 0.34. In terms of overlap ratio and precision, the most promising similarity
metric is mainlyF10 followed byF9 andF11. These outperform the other weights in most of the
PCs, ensuring an overlap ratio within the same cluster with values in the range of 0.60 and 0.72 for
F10. The only exception is in PC1, where the best performing metric in terms of overlap ratio and
precision isF7, which for the other content cases is always performing worse. Finally, the values
of precision are always over 0.38, with an average value above 0.45, for all the three last metrics in
the group of multi-feature metrics.

We now visually compare some examples of detected clusters by the different similarity metrics.
Figure 3 shows the clusters obtained using the ground-truth metric $ to construct the graph
(Figure 3(a)), along with the ones based on each proposed similarity metric (Figure 3(b)–(l)) for
frame 50 of sequence PC1 (LongDress). In particular, each user is represented by a point on the
VR floor which is coloured based on the assigned ID cluster, whereas the volumetric content is
symbolised by a blue star. Per each relevant cluster (i.e., cluster with more than two users), we
provide in the legend the following results: the number of users inside the cluster, and the average
and variance of the overlap ratio among all users within the cluster. Finally, we represent the
remaining users which are in either single or couple-cluster as black points; the total number of
these users is also provided in the legend as ‘Small clusters (total number of non-relevant clusters)’.
We can notice that our ground truth (Figure 3(a)) generates five main clusters with an average
overlap ratio per cluster above 0.82. In particular, cluster ID 1 has the highest number of users
(eight), with a high overlap ratio (0.84). Only four users in this case are put in single clusters.
The goal is to find a similarity metric that can well approximate these results. In Figure 3(b)–(l),
we can notice that our proposed metrics tend to create three main clusters, very populated but
with a low overlap ratio. For instance,F3 andF7 generate a main big cluster with, respectively,
18 and 21 users, while the corresponding overlap ratio drops drastically to 0.62 and 0.64. Among
single-feature metrics, the only exceptions are given byF1 andF5, which generate a variable set of
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Fig. 3. Cluster results in frame 50 of sequence PC1 (LongDress). Each dot represents a user on the virtual floor
while the blue star stands for the volumetric content. In the legend in brackets, per each cluster with more
than two users are reported: the number of users in the same cluster, averaged pairwise viewport overlap and
corresponding variance within the cluster.

four clusters with consistent values of overlap ratio, over 0.64 and 0.66, respectively. Let us now
consider as an example the users 13, 15 and 17, which in the ground-truth case (Figure 3(a)) form
their own cluster (i.e., ID 5) with a high overlap ratio (0.83), as well as user 24, who is quite isolated
from other users and belongs to a single cluster. Among single-feature metrics (Figure 3(b)–(f)), we
can notice thatF2,F3 andF4 fail in detecting the group of users 13, 15 and 17 as similar, dividing
them instead in different clusters or merging them with existing big clusters. On the contrary,F1
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andF5 detect this group of participants as similar and assign them to the same cluster. From these
observations, we can notice that the viewport centre on the volumetric content, on whichF3 and
F4 are based, is not sufficient to correctly identify similar users. Analogously, considering only the
difference in terms of the relative distance between the user and volumetric content, as done in
F2, does not allow the detection of similarity among users. Thus, the most promising metrics in
the group of single-feature metrics seem to be F1 and F5, which are based on the user position
on the virtual floor and the vector of viewing direction, respectively. The second group of metrics
in Figure 3(g)–(l) shows clusters based on multi-feature similarity metrics. In this set of metrics,
users 13, 15 and 17 are identified within the same cluster only by three metrics, namelyF6,F9 and
F11, which also detect user 24 as a single cluster. On the contrary, the other two metricsF7 andF8

create a main cluster with users 17, 24 and 13 while user 15 is assigned to a different main cluster
with participants in a different location on the virtual floor; finally,F10 assigns most of these users
to small clusters. Considering also the analysis shown previously in Table 3, multi-feature metrics
appear to be overall better suited to detect similar users than previous single-feature ones. This is
expected, as the higher df are given to users, the more challenging the system, and thus detecting
users similarities.

Given the above remarks, in the following, we further analyse the selected dataset taking into
account only a subset of metrics, namely,F1,F5,F9,F10 andF11, based on the best-performing
similarity metrics in the previous investigation in terms of precision (F9,F10 andF11). To have a
fair comparison, we also keep the most promising among the single-feature metrics, namelyF1 and
F5. In Figure 4, we show a similar visual example of frame-based analysis frame 50 of PC2 (Loot).
In this case, it is interesting to notice how the ground-truth clusters in Figure 4(a) are very intricate.
A total of five main clusters are found, with an overlap ratio consistently over 0.79. A considerable
number of participants (seven) is instead put in small clusters. In this case, all the selected similarity
metrics fail to detect such a consistent group of participants in terms of overlap ratio. Except for
F9 andF10 that create five clusters, the remaining proposed metrics generate four main clusters.
However, in all these cases, the overlap ratio drops drastically in a range between 0.52 and 0.76.
In this example, the small group of participants located on the right side of the volumetric content,
specifically users 13, 15, 18 and 24, are assigned to single clusters in the ground-truth case, as
shown in Figure 4(a). On the contrary, users 13, 15 and 18 are assigned to the same cluster with an
overlap ratio equal to 0.52 from all the similarity metrics under investigation. We can also observe
that, in the case of the ground-truth clustering, users 5, 17, 21 and 23 are all assigned to different
clusters, with user 17 being in a small cluster; however, that is not the case in any of the metrics
under consideration; in fact, such users are more often not grouped in the same cluster. Among
all the metrics,F5 appears to be the most promising, as it is the only one identifying user 17 as a
separate small cluster, and grouping users 26 and 27 in the same cluster, as done by the ground truth.
However, the results are still far from adequately matching the ground truth clustering algorithm.
To conclude, this example shows also the complexity and critical aspects of addressing the open
problem of evaluating the (dis)similarity between 6 df users at each given time of an immersive
experience. Our proposed metrics represent a first step in this direction but further investigations
are needed to better understand the intricate nature of user navigation in XR systems.

6.2 Trajectory-Based Analysis
We now analyse the performance metrics over time (i.e., trajectory-based analysis). Specifically, we
compute clique-based clusters over a time window of 1 second (i.e., chunk) and a time similarity
threshold of 0.8 seconds (i.e., users should be similar in the 80% of the chunk length). At each chunk,
we evaluate the average overlap ratio per relevant cluster, the average of the relevant population
and the precision of detected clusters. In the following, we have as an example, we show in Figure 5
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Fig. 4. Cluster results in frame 50 of sequence PC2 (Loot). Each dot represents a user on the virtual floor
while the blue star stands for the volumetric content. In the legend in brackets, per each cluster with more
than two users are reported: the number of users in the same cluster, averaged pairwise viewport overlap and
corresponding variance within the cluster.

the performance results as functions of time per each selected similarity metric (F1,F5,F9,F10

andF11) per sequence PC1 (LongDress) in the first row and PC2 (Loot) in the second one. We also
add the performance of clusters detected by the ground-truth metric $ (i.e., red line); the goal is
indeed to find a metric able to perform similarly to our ground truth over time. In PC1, all the
similarity metrics reach an average overlap ratio within clusters between 0.6 and 0.75 (Figure 5(a)).
Metrics based on single features, such as F1 and F5, exhibit lower performance, while others
perform quite similarly, with a slight predominance ofF10. In the second example (Figure 5(d)), the
mean overlap ratio decreases to values between 0.35 and 0.75. However, also in PC2, we observe
that clusters based on F10 show a slightly better performance. In terms of relevant users, it is
worth noting that all the proposed similarity metrics, in both sequences, generate larger clusters
compared to the ground-truth metric. The latter considers only 50–70% (0.5–0.7) of the population
as relevant in PC1 (Figure 5(b)), and this drops to 0.2 in PC2 (Figure 5(e)). In more detail, the clusters
resulting from our proposed metrics consistently put in relevant clusters over 0.7 of the entire
population for all the time in both the volumetric sequences. Finally, in terms of precision, the only
similarity metric that generated clusters with P consistently over to 0.4 in most of the time of both
sequences isF9. However, it is interesting to notice that the clusters generated based onF11 have a
constant value of precision over time equal to 0.4. On the contrary, clusters based on F5 are on
average less performing in terms of precision in both PC1 (Figure 5(c)) and PC2 (Figure 5(f)). These
investigations show that similarity metrics based on multi-feature, such asF9 andF11, are more
promising for detecting with higher precision similar behaviour while experiencing volumetric
content.

From this validation analysis on the VR dataset shown in Figure 1, we can conclude the following:

—Overall, multi-feature metrics are more precise in detecting users with similar behaviour (in
terms of displayed content) both in a frame- and chunk-based analysis;
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Fig. 5. Clustering over time (chunk = 1 second) results per sequence PC1 (LongDress) and PC2 (Loot):
comparison between ground-truth $ and a subset of proposed metrics (F1,F5,F9,F10 andF11).

— In particular, in spite of the slightly more complex formulation multi-feature metrics, such
as F9, F10 and F11, are robust and easy-to-use metrics that ensure a robust and reliable
behavioural analysis via clustering tools;

—On the contrary, metrics based only on a single feature (i.e., single-feature metrics) are not
always sufficient to correctly identify similar users;

—The only exceptions among single-feature metrics areF1 andF5 which are based only on the
position of the user on the floor and the vector of viewing direction, respectively. Despite
their simplicity, these metrics are overall comparable with multi-feature metrics. Hence, they
can be used for an easy-to-implement preliminary behavioural analysis.

These outcomes are based on point clouds of human body and trajectories collected in a visual
quality assessment study. Thus, it is important to point out that these observations are valid for
similar volumetric contents (i.e., human body). The user navigation might be also affected by the
task to rate the quality of the content: For instance, participants might have checked only visual
impairments rather than freely explore the volumetric content. We leave further analysis across
multiple types of content and task-free datasets for future work.

7 Case Study: A Behavioural Analysis in AR Setting
We are now interested in understanding if the insights from the above study could be applied to
other human-like datasets. To show also the robustness of our proposed similarity metrics, we
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Fig. 6. Spherical clustering over time (chunk = 1 second) results per sequence VV1 (Nico) and VV2 (Sir
Fredrick): performance comparison between ground-truth, and a subset of proposed metrics (F1,F5,F9,F10

andF11).

therefore apply them to a different dataset. In particular, we select the dataset presented in [60].
Authors have collected in a task-free experiment the navigation trajectories of 20 users while
displaying volumetric content in an AR scenario. Similarly to the previously analysed dataset
presented in Section 5.1, a single object of interest was placed in the scene. Specifically, two
dynamic volumetric human body sequences represented as 3D meshes with texture information
were used: Nico (VV1) and Sir Frederic (VV2) in Figure 1(b). In order to conduct our study, both the
sequences were kindly made available by Volograms upon request [30, 58]. The navigation data
were collected in a remote scenario through an Android AR application, which allowed users to
display the volumetric content from any desired location and portable device (e.g., smartphone)
[60]. Participants were also free to display the volumetric content how they most preferred. Thus,
the main differences with the previously analysed dataset are the following: a different format of
volumetric content (3D mesh instead of point cloud), a different immersive scenario (AR instead
of VR application), a different aim of the experiment (task-free instead of a quality assessment)
and a heterogeneity of viewing devices (any smartphone device instead of a specific HMD). In
particular, the 3D mesh content does not allow for a simple formulation of the overlap ratio as
we have described it in Section 3.2. For consistency, we convert the sequences from 3D meshes to
point clouds by discarding edge information and only keeping vertices as points; we discuss the
inherent challenges to define our ground-truth metric in Section 8.

Similarly to our previous investigations, we now apply to this new scenario the spherical
clustering based on the subset of best-performing feature metrics, such as F1, F5, F9, F10 and
F11. We evaluate clusters in chunks of length 1 second with a time similarity threshold of 0.8
seconds and the threshold values �Cℎ reported in Table 2. At each chunk, we compute the average
overlap ratio per relevant cluster (i.e., cluster with at least two elements), the average of the relevant
population and the precision of the detected clusters. Figure 6 shows these results as a function
of time per each selected similarity metric, in particular, the first row refers to VV1 (Nico) while
the second one to VV2 (Sir Frederic). Since viewers were allowed to drop the AR experience at
any desired time, in the following we consider only the time window in which 75% of the user
population (15 out of 20 viewers) are still in the experiment: 63 and 83 seconds, respectively, for
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VV1 and VV2. We observe that both the sequences have an initial moment of adjustment where
viewers are displaying different portions of the content. This is detected by clusters based on the
overlap ratio (i.e., red line) which do not have a consistent pairwise overlap. For instance, Figure 6(a)
shows in the first 40 seconds of the immersive experience for VV1 the average of overlap ratio
within the main detected clusters has up and down for the ground-truth and is quite low for all the
selected similarity metrics. However, this behaviour stabilises around 40 seconds when the overlap
ratio for the ground-truth metric converges to 0.8. Similarly, the performance metric detected by
F1, F10 and F11 reaches values above 0.6 with a very low variance for both the metrics. On the
contrary, the overlap ratio of cluster detected byF5 andF9 has a more inconsistent variance over
time. Compared to other metrics and to the ground truth, these metrics in terms of relevant users
(Figure 6(b)) generate overall bigger clusters. In particular, it considers most of the time half of the
population in big clusters, which is quite the opposite behaviour to the ground-truth metric. This
metric indeed generates small relevant clusters most of the time; clusters based onF1,F10 andF11

follow a very similar trend. In this case, results based on F1 are the best performing in terms of
precision, as shown in Figure 6(c) with values close or above 0.4. A slightly different behaviour
is observable for VV2 in the second line of Figure 6. In this volumetric content, users explore the
scene more randomly during the first minute of the experience leading to such different behaviours
that the ground-truth fails in detecting relevant clusters between 18 and 39 seconds (Figure 6(d)).
This divergent user behaviour might be due to the task-free experiment which bring participants to
observe different parts of the content. We leave as future work further investigations to understand
the impact of structured tasks and not on the user behaviour. However in this case, similarity
metricsF10 andF11 are more precise in reflecting the ground-truth behaviour and thus, detecting
viewers with similar behaviour and putting them within the same clusters (Figure 6(f)). Finally,
it is worth noticing that all the similarity metrics reach a higher overlap ratio compared to the
ground-truth performance (Figure 6(f)). For example, some metrics as F1 in the first 10 seconds
or F11 around 50 seconds reach an overlap ratio of 40% and above 80%, respectively, while the
ground-truth has very lower values. This shows the ability of our proposed metrics in identifying
users with similar displayed viewports, however, raises new questions on the selected ground-truth
and how accurately it captures such similarities in different XR conditions.

From the behavioural analysis of this second dataset, which, although composed of only 20
navigation trajectories, was collected in an AR setting, we can conclude the following:

—Our proposed similarity metrics demonstrate flexibility and generality, proving their suitability
for analysing not only navigation trajectories in VR settings but also in AR conditions. This
suggests their robustness across different XR environments;

—Overall, multi-feature metrics, in particularF10 andF11, are more precise in identifying where
there is similarity between users in very eclectic behaviours such as in VV2 (the second line
of Figure 6);

— Interestingly, in this second analysis, our ground-truth similarity metric, designed to capture
consistent user similarity, exhibits low performance in terms of overlap ratio. This finding
suggests also inherent challenges in accurately capturing user similarity in dynamic AR
settings, paving the way for further investigation.

8 Discussion and Future Work
We presented the main challenges of user behavioural analysis in a 6 df system caused by the
new settings and the added locomotion functionalities. In particular, our main goal was to extend
the applicability of existing behavioural tool, such as clique-based clustering, [36] designed for
3 df scenario to its 6 df counterpart. However, behavioural analysis of 6 df users is not considered
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in the literature yet; as such, there is no reference metric available to detect viewers who are
displaying the same portion of the content. As first step, we had to define a general ground-truth
user similarity metric, namely the overlap ratio. To be as general as possible, we established the
overlap as the percent of points displayed in common by two users. This is fairly straightforward,
albeit time-consuming, to compute for point cloud contents, in which each point is rendered
separately. For other types of volumetric contents, determining the overlap ratio is not as simple.
Considering the number of vertexes that fall into a given frustum could lead to misleading results
when large faces between sparsely distributed vertexes are present. Moreover, the metric requires
to render each volumetric video at any given time and for each viewer, making its computation
not trivial and intensely time-consuming. To address this challenge and objectively assess users
similarity in a simple way, in this article we investigated various similarity metrics aimed at better
modelling behavioural similarities between users in a 6 df setting. Specifically, we were interested in
modelling similarities among users observing the same volumetric content. We defined and compared
11 different metrics based on different distance features (i.e., user positions in the 3D space, user
viewing directions) and distance measurements (i.e., Euclidean, Geodesic, angular distance). More
concretely, we considered user information, such as their location in the virtual floor and viewing
direction, which is consistently available in immersive systems. Our proposed metrics can be
computed in less than 10 milliseconds on average per frame, ensuring their applicability in real-time
applications. To test and validate our similarity metrics using a clique-based clustering tool proposed
for 3 df scenario, we employed real navigation trajectories collected in a 6 df VR environment
[51] (Figure 1(a)). Our extensive analysis showed that overall metrics based on a combination of
distance features (multi-feature metrics), such as F9, F10 and F11, exhibit encouraging values of
overlap ratio and superior precision in detecting users with similar behaviour, whether analysed
frame by frame or in chunks of data. On the contrary, metrics based solely on a single feature
(referred to as single-feature metrics) fall short in consistently identifying similar users accurately.
However, exceptions to this trend are found in F1 and F5, which leverage user position on the
floor and the vector of viewing direction, respectively. Remarkably, despite their simplicity, these
metrics perform comparably to multi-feature metrics, making them suitable for a straightforward
preliminary behavioural analysis.

To test the flexibility of our proposed metrics, we tested their performance on a different kind of
6 df navigation trajectories [60]. In this second dataset, viewers displayed volumetric content in
an AR scenario through smartphones. Therefore, even if users were enabled with the same 6 df
locomotion settings, the viewing device and the FoV were different. Despite these differences, our
proposed similarity metrics are still good at identifying viewers who are displaying similar content.
However, it is also worth mentioning that our ground-truth metric of similarity is very tight in
detecting similar users, especially in an AR scenario. As an example, Figure 7 shows the number
of single clusters detected over time by the overlap ratio (i.e., red line) and the subset of most
performing similarity metrics for both the volumetric sequences of the second analysed dataset.
In particular, in VV2 (Figure 7(b)), the clique-based clustering based on the overlap ratio does not
detect similar users such that the majority of the population are put in a single cluster. Therefore,
further analysis is needed to test if in this scenario a different overlap threshold better model
similarity among users. Finally, it is important to point out that these observations are currently
only valid for similar volumetric contents (i.e., human body). We leave further analysis across
multiple datasets and types of content for future work.

This work opens the gate to further investigations aimed at detecting user behavioural differences
in a 6 df experience done in VR and AR settings.These are indeed essential to be exploited in efficient
user-centric solutions for XR systems to enable, for example, new modalities of live streaming
services optimised for users’ profiles but also for user-based quality assessment methods.
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Fig. 7. Single-user cluster per sequence VV1 (Nico) and VV2 (Sir Fredrick) obtained via spherical clustering
based on overlap ratio, and a subset of proposed similarity metrics (F1,F5,F9,F10 andF11).

9 Conclusion
To conclude, this article contributes to advancing the field of behavioural analysis in XR scenarios.
By introducing novel similarity metrics tailored to the new physical settings and locomotion
functionalities of users in XR environments, we have addressed a critical aspect of user-centric
system development. Our behavioural investigation on 6 df navigation trajectories with behavioural
tool for 3 df trajectories provided insights into the distinctive features and challenges posed by the
former. The proposed 11 similarity metrics, based on various distance features and measurements,
were rigorously tested and validated using real navigation paths from both 6 df VR and AR
conditions. Our results showed that solutions that consider both user position and viewing direction
are promising to correctly detect users with similar behaviour while experiencing volumetric
content. Moreover, since these metrics are based on simple operations of data that are typically
already known in a multimedia system (i.e., user position in the virtual space and viewing direction),
they can be evaluated on average in less than 10 milliseconds. This makes our proposed metrics
not only robust but also suitable for real-time applications. Moreover, we have also demonstrated
the robustness and versatility of these metrics, which preserve good performance on navigation
trajectories collected both in a 6 df VR and AR scenario, showcasing their applicability across
diverse XR settings.
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Appendices
A Correlation Analysis of Distance Features and Measurements
We now investigate the correlation among the distance features on which we based the multi-feature
metrics presented in Section 4.2. Following the preliminary study presented in [44], we consider
the following distance features and measurements: the Euclidean distance E(G8 , G 9 ) between user 8
and 9 on the virtual floor, the relative distance of users to the centroid of the displayed content,
L = | |A 8 − A 9 | |, the distance between the viewport centres ? of user 8 and user 9 projected on the
volumetric content both in terms of Geodesic distance G(?8 , ? 9 ) and Euclidean distance E(?8 , ? 9 ),
and finally the angular distance \ (E8 , E 9 ) between the vectors of the viewing direction of user 8
and user 9 . To visually explore the relationships between the different distance features, we use
both multivariate scatter plots and Principal Component Analysis (PCA). We evaluate the
distance features based on the navigation trajectories experienced with non-distorted content of
the dataset presented in Section 5.1 and averaged over time. Figure A1 shows a multivariate scatter
plot to investigate the pairwise relationships between the different distance features. Specifically,
subplots in the diagonal show histograms for the distribution of each variables while the remaining
subplots presents a pairwise scatter plot of the analysed metrics. The histograms in the diagonal
provide insights on the distribution and variability of each distance feature. For instance, we can
notice that the Euclidean distance E(G8 , G 9 ) between users on the floor and the Geodesic distance
G(?8 , ? 9 ) between viewport centres projected on the volumetric content cover a quite large range
of values while the Euclidean distance E(?8 , ? 9 ) between viewport centres has a very concentrated
distribution around low values. However, the pairwise scatter plots among the different distance
features reveal correlations among all of them. In particular, E(G8 , G 9 ) and \ (E8 , E 9 ) show a clear
positive correlation, suggesting that users who are farther apart in terms of Euclidean distance tend
also to have a high angular distance between their viewing vectors. On the contrary, the relation
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Fig. A1. Multivariate scattering plot of the proposed distance features and measurements per each sequence
PC1 (LongDress), PC2 (Loot ), PC3 (Red and Black) and PC4 (Soldier ).

Fig. A2. Correlation plots via principal component analysis of the proposed distance features and measure-
ments per each analysed PC1 (LongDress), PC2 (Loot ), PC3 (Red and Black) and PC4 (Soldier ).
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between the Geodesic distance G(?8 , ? 9 ) and Euclidean distance E(G8 , G 9 ) between users’ position
on the floor is more sparse and a clear correlation cannot be detected. We take a step further in
Figure A2 showing correlation plots via PCA per each of the sequence of the analysed dataset. In
each subplot red dots represent a transformed data in the principal component space, while the
blue vectors indicate the direction and magnitude of the investigated metrics. From this analysis,
it is clear that the Geodesic distance G(?8 , ? 9 ) between viewport centre is not highly correlated
with the other metrics, in particular with the Euclidean distance E(G8 , G 9 ) between users’ position
on the floor. Indeed, in all the subplots the corresponding vectors have a right angle indicating no
correlation between them; furthermore a negative correlation is shown by the obtuse angle with
the relative distance L = | |A 8 −A 9 | | of users to the displayed content. A positive correlation is instead
confirmed among the remaining distance features and metrics. However, there are some differences
across the four sequences: the correlation between E(?8 , ? 9 ) and \ (E8 , E 9 ) is very strong in PC1 and
PC3 (Figure A2(a) and (c)) but less with E(G8 , G 9 ); while in PC2 and PC4 (Figure A2(b) and (d)) the
three vectors are more closely aligned, indicating a strong positive correlation among the metrics.
Despite a general correlation between the selected distance features and measurements, there is
some variability among the sequences that should be deeper investigated in future work.

B Ablation Study
In this section, we present an ablation study to tune the best set of regulator parameters that
maximise the performance of each similarity metric. Equipped with the threshold values given in
Table 2, we run a frame-based clustering to select the best regulators U , V and f per each metric. We
test their performance based on navigation trajectories collected in the entire dataset of trajectories
(i.e., navigation trajectories of both distorted and not-distorted version of the volumetric content)
presented in Section 5.1 in terms of the metrics given in Section 5.2 and considering the following
range of values [0, 0.05, 0.1, 0.125, 0.2, 0.25, 0.5, 1, 2]. For single-feature metrics (F1 −F5), we notice
a very small variance in terms of performance. Thus, we selected U = 1 for this set of metrics.

More challenging is the selection parameters for multi-feature metrics (F6 −F11). Each similarity
metric depends on three parameters: U , V and W . To overcome this, we first select three sets of
parameters: one group of parameters (set 1) based on the maximum overlap ratio, the second (set 2)
on the maximum relevant clustered population and the last group (set 3) as the one reaching the
highest precision. As an example, Figure B1 shows the selection of these three sets of parameters
for the metricF10. Then, we test these on the trajectories experienced with not-distorted version of
the volumetric content to finally select the best set of parameters. Table B1 provides the average of
all the performance of the multi-feature similarity metrics obtained by the three selected sets of

Fig. B1. Example of parameter selection forF10 with V = 0.5. Values set 1 selected based on max overlap, set
2 max clustered users, set 3 based on precision.
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Table B1. Parameter Selections and Their Performance for Multi-Feature Metrics (F5–F11)

F6 F7 F8 F9 F10 F11

se
t1

[U, V,W] [0.2, 0.05, 0.125] [0.125, 0.125, 0.5] [0.5, 0.1, 0.05] [0.25, 0.5, 0.1] [0.25, 0.5, 0.5] [0.25, 0.5, 0]
Overlap Ratio 0.64 0.66 0.63 0.66 0.69 0.65

Relevant Population 0.80 0.76 0.81 0.70 0.69 0.69
Precision 0.43 0.45 0.43 0.46 0.49 0.42

se
t2

[U, V,W] [0.05, 1, 0.05] [0.05, 2, 0.05] [0.05, 2, 0.05] [0.1, 0.5, 2] [0.05, 0.5, 2] [2, 0.5, 0.05]
Overlap Ratio 0.59 0.59 0.59 0.60 0.64 0.63

Relevant Population 0.91 0.93 0.93 0.88 0.83 0.81
Precision 0.32 0.30 0.30 0.36 0.35 0.43

se
t3

[U, V,W] [0.5, 0.05, 0.2] [0.125, 0.05, 0.2] [0.125, 0.05, 0.1] [0.5, 0.5, 0.25] [0.25, 0.5, 0.5] [0.5, 0.5, 0.1]
Overlap Ratio 0.64 0.66 0.63 0.65 0.69 0.64

Relevant Population 0.80 0.76 0.80 0.77 0.69 0.71
Precision 0.46 0.46 0.43 0.47 0.49 0.45

Bold represents best performance values per metric in each set.

parameters. Since there is no particular configuration that outperforms in terms of overlap ratio,
relevant population and precision, we decided to select set 3. This configuration, besides ensuring
the highest value of precision, also guarantees acceptable values of overlap ratio and relevant
population for all the similarity metrics. For example forF10, selecting values of set 3 means that
users are correctly clustered in almost the 50% of the time (precision equal to 0.49); at the same time
the 69% of the population is put in clusters with more than the two users (relevant population equal
to 0.69) and on average the overlap of viewport between users in the same cluster is consistent
(overlap ratio equal to 69%). It should also be noted that in Section 5.1 we assumed that users are
classified as similar if their viewports overlap by 75% of their total viewed area. Therefore, we find
it acceptable to ensure clusters with on average a consistent viewport overlap ratio of around 70%
which is very close to our threshold of similarity, even if the precision values are not very high.
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