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Abstract

Structural design for unconventional aircraft can be quite challenging and could undergo
many iterations until a solution is found for all load-cases such as static sizing, stability and
crashworthiness. Ultimately, all of the design aspect are integrated in the earliest design
changes for which Topology Optimization (TO) could provide the solution. The Flying-V is
one such aircraft with challenging crashworthiness design due to its small sub-floor volume.
However, a suitable formulation for aircraft crashworthiness and TO is yet to be found.

This thesis aimed at incorporating the conventional aircraft-crashworthiness characteristic
of plastic energy dissipation in plastic hinges in the energy based Hybrid Cellular Automata
framework. The HCA principle is to optimize on cellular level, using information of each cell’s
direct neighbors. For the proposed method, the inter-cell stress and strain information is used
to reconstruct the cellular bending energy throughout the non-linear dynamic crash-analysis,
providing greater stability than intra-level bending energy. The bending energy formulation
was based on the assumption of linearly varying stresses and strains in bending. Several
formulations have been formed to manipulate this energy promoting hinge-formation.

The framework has been tested on size optimization of a small-scale slender beam impact
model, representing the final design case. Results show peak force reduction and greater dis-
placements compared to the standard HCA crashworthiness model. However, improvements
can be made such as inclusion of the non-linear stress and strain variation in the bending
energy formulation, to more accurately account for large plastic strain.

Before testing whether the methodology improves the crashworthiness of aircraft, verification
of the voxel-mesh approach was required. An A350-like aircraft has been simplified and
idealized accordingly and compared with its detailed FEM crash-assessment. Simplifications
include modelling only one frame and replacing the cabin and floor with a rigid body to
reduce computational cost. Results show good agreement for the required level of detail of
conceptual design, although it is recommended to idealize the cabin and floor as well for
better agreement. Once verified, the framework has been applied to the entire domain.
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Chapter 1

Introduction

With the aim of cost-effective and sustainable aviation, unconventional aircraft with promis-
ing improved efficiencies are thoroughly being explored. Such as the Flying-V promising a
reduction of 20% of fuel burn compared to the Airbus A350-900 [17]. However, this unconven-
tional design poses unique challenges, particularly in crashworthiness—a critical aspect that
ensures passenger safety during impact scenarios. With the absence of a preliminary design,
there are topology optimization (TO) opportunities. However, understanding of appropri-
ate optimization formulations is minimal due to the small amount of research on aircraft
crashworthiness and TO [13].

This thesis introduces a new approach to crashworthiness design within the energy based
Hybrid Cellular Automata (HCA) framework, incorporating the aircraft plastic hinge char-
acteristic of bending energy absorption. In the HCA framework, communication between
neighboring cells is principle in finding the cell’s field variable. This framework exploits this
transfer of data in computation of the inter-level bending energy, using the inter-cell-level in-
ternal forces and deformations. On that scale, the stress and strain functions along neighbors
of the non-linear and dynamic crash-analysis are assumed linear.

To conclude on the applicability of the approach to aircraft crashworthiness, several tasks
had to be fulfilled. chapter 3 presents the methodology, which includes the derivation of the
bending energy, its application in Finite Element Method (FEM), inter-level integration and
its efforts to reduce peak forces through function manipulation. Next, the results of a small-
scale representative case from literature are presented in chapter 4, including the results of
the function manipulation efforts. Finally, the framework has been tested in chapter 5, which
also required verification of the voxelmesh approach to aircraft crashworthiness assessment.
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Chapter 2

Literature review

To contextualize the thesis work and its relevance to the aerospace industry, a literature study
had been performed. The first section presents the motivation and the gap for Topology
Optimization (TO) and aircraft crashworthiness. The second section dives into the state-of-
the-art of the relevant methods.

2.1 Unconventional aircraft Motivation and Objective

In recent years, unconventional aircraft concepts are being investigated more extensively,
aiming at making air-transportation more cost-efficient and sustainable. The Flying-V is one
such aircraft, increasing the Lift-drag ratio by eliminating the typical fuselage. Its structural
design was found to be challenging which has been presented in this section, followed by the
gap of topology optimization in unconventional aircraft structural design.

2.1.1 Unconventional aircraft structural design challenges: Flying-V

The commercial aviation industry has pushed air-transportation to become more cost effective
and sustainable. Additionally, this has also been achieved by concerns over environmental
impact and pollution. Higher efficiency in engine fuel consumption, structural mass and aero-
dynamic lift /drag ratio. Throughout these individual design efforts, the aircraft configuration
has consistently remained the same: a tube and a set of wings as can be seen in Figure 2.1.
Only small changes are made and progress is stalling. Its aerodynamic performance is one
aspect that has sought for unconventional design, such as the blended-wing-body. More and
more, with technological advances, recent innovations in aircraft design thus move away from
the standard.
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Figure 2.1: Main design changes of commercial airliners in the past and foreseen for the future [1]

One of such innovative unconventional aircraft is the Flying-V, which shows a promising
reduction of 20% of fuel burn compared to the Airbus A350-900 following the research by
Oosterom [18] on the Flying-V family design [17]. This unconventional aircraft, originally
designed by Benad [19] and being developed at TU Delft since 2017 [3], is a flying wing aircraft
that eliminates the need of a fuselage tube by accommodating the passengers in the wings.
Besides its aerodynamic advantage over the tube-and-wing configuration, it has a structural
efficiency gain as the weight and lift are distributed more equally with respect to each other.
In other words, less bending moment is developed. This unconventional configuration does
bring its own design challenges which need to be overcome. A review of the past design
changes and proposals is given in the following paragraphs.

First of all, the oval frames are less efficient in carrying pressurization loads (out-of-plane
loading introduced), which initially led to the addition of vertical (LE and TE) and horizontal
(ceiling and floor) panels to the Flying-V as demonstrated in 2012 for BWB by Vos [2]. See
Figure 2.2. The oval frame is assumed to consist of 3 identical arcs, and out-of-plane loads at
the intersections due to pressurization are hereby taken up by these spars/panels. However,
this design underwent some design changes in subsequent thesis work.

R 1
! i
A A i
Iy i
E H A
1 |
h |
R, -t |
& H : Y ]
B~ 4, [
I
|
R, i
< |
(a) Semi cross section (b) Force balance at A (c) Force balance at B

Figure 2.2: To avoid out of plane loads due to pressurization, the frames have been fortified
with a LE spar, a TE spar, a floor panel and a ceiling panel [2]
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Past thesis work on the Flying-V structural design started off here with van der Schaft (2017)
followed by Claeys (2018), whom both used ParaPy Knowledge-Based Engineering (KBE) to
generate the mass estimation and preliminary failure analysis’ [3,4]. The primary structure
layout was first given by van der Schaft based on existing structures of other flying wing
or existing aircraft, with an eye on the expected loads. The lay-out is presented below in
Figure 2.3. The frame spacing resembles the rib spacing in wing structures, except for the
central section. Some parameters, such as rib spacing, were inserted using data from Airbus.
However, no discussion or reference is given on the considered load cases or the applicability
to the Flying-V. Additionally, van der Schaft concludes that indeed this lay-out is not optimal,
with a reduced bending stiffness in the plane of symmetry (central joint) and high concentrated
loads [3]. Moreover, the primary load path runs from the leading edge of the outer wing to
the aft spar at the plane of symmetry, whereas a more distributed load path could lower the
required mass.

[] Pressure cabin
Il Passenger cabin
M Wing spars
M Frames/Ribs

Figure 2.3: The primary lay-out concept for the Flying-V proposed and used by van der Schaft [3]

Claeys [4] imposed some improvements, although surprisingly this non-optimal primary lay-
out was left unaltered. In his research, the Flying-V fuselage was found to twist a lot under
aerodynamic loads. This resulted in the proposal to add shear walls in the cabin (see Fig-
ure 2.4) to reduce the deformation.
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(a) Initial Deformation . A
(b) Structural Modification

Figure 2.4: Unconventional structure: Flying V central joint deformation and implemented
solution. Credits: M.P. Claeys [4]

Successive research by Dotman [5] resulted in a different methodology, by focusing on the
design of the constant cross-section fuselage. In this study, the desire to remove the front
spar has additionally been investigated, which resulted in only a slight increase of the mass.
This concept is called the No Leading Edge Spar concept (NLES), visualized in Figure 2.6 by
Voeten [6]. However, with investigating such sections, a lot of simplifications are made and
the global performance might be non-optimal. Additionally, the cabin design raised significant
doubt due to high sensitivity under small design changes (such as for the ceiling width/spars
under angle see Figure 2.5). It has therefore been recommended to perform a general study
on the sensitivity of all components, while a general redesign of the non-optimal primary
structure lay-out could prove more useful.
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Figure 9.8: Frame inner flange bending stresses for Figure 9.9: Frame inner flange bending stresses for
Welgar = Weeiling = 6.2m. Wilgor = 6.2M, Wepjling =5.9m.

Figure 2.5: Constant cabin-cross section studying the stress sensitivity under different ceiling
widths by Dotman [5]

Using the same approach as van der Schaft and Claeys, Nanninga developed a fully parametric
framework for weight (distribution) estimation of unconventional aircraft [20]. One relevant
improvement to earlier work (by van der Schaft and Claeys) is that sizing has been combined
with spacing of the components (compared to inputted from reference data), which is a step
into full optimization. Buckling was however excluded from the analysis, due to the relatively
large computational cost when compared to the linear static analysis. The goal was to more
efficiently compare concept designs of unconventional aircraft, such as the NLES option.
Unfortunately, the framework has not been expanded to the full Flying-V yet. However, the
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conceptual design of the constant cabin-section, as described above, can be improved and the
design of the central joint has not even had this assessment yet.

Figure 2.6: Unconventional structure: Flying-V oval fuselage impression without a leading edge
spar (the floor and ceiling have not been shown in the image). Credits: R. Voeten [6]

The current primary structural-configuration of the Flying-V can be seen in the figure below
(Figure 2.7. It is based on the NLES concept with only the aft spar and the design proposal
by Claeys [4] of the 3 additional primary shear walls/frames. Voeten [6] used the aft-spar to
mount the engines.

All of the above made structural design choices happened sequentially and the global optimally
can be challenged. Additionally, a different approach could be taken to also accommodate for
other design objectives such as aero-elasticity or crashworthiness. The latter will be discussed
in the next sections. Some other design challenges are the detailed design of the central joint,
the integration of cut-outs for doors and integration of the floor and ceiling into the aft spar
and/or frames. Furthermore, the transition of the oval fuselage frames into the nose cabin can
be determined more specifically as well, challenging the lay-out proposed by van der Schaft [3]
(see Figure 2.3).



8 Literature review

Figure 2.7: Unconventional structure: Flying V nose cabin structural layout with the central
joint. The orthogrid aft-spar has been shown in red. The addition of Claeys' design change
(Figure 2.4) has been shown in yellow.

2.1.2 Conceptual Structural Design Optimization and Topology Optimization

Aircraft design is an iterative process composed of the interaction between aerodynamics,
structures, propulsion and manufacturing. The structures with its manufacturing technique
are designed to carry the loads of the other disciplines, which are sized depending on the mass
estimate (distribution). This mass and stiffness distribution affects the aircraft performance
and the loop continues. For conventional aircraft, old designs and data can be used for the
mass estimations used in design feasibility studies, even making use of empirical formulas.

For unconventional aircraft, this data is limited or absent. Additionally, the inherent struc-
tural layout does not deviate much for conventional aircraft whereas unconventional aircraft
could produce drastically different geometries and mass distribution, adding also to uncer-
tainty in stability behaviour. The Flying-V [19] is a prime example. The benefits this concept
brings has to outweigh the risk associated with the lack in data and/or uncertainty in mass
and stability behaviour [1]. Recent work in the Flying-V have all performed mass estimation
through FEA sizing [3,4,20], with the (potential) inclusion of stability, stress, stiffness and
fatigue. In general, progress in high-performance computing and finite element analysis has
helped swift the use of high-fidelity modelling towards the conceptual phase [1], with the aim
to reduce the associated risks in later stages of (structural) design. Topics that are typically
investigated at later stages are for example damage tolerance and crashworthiness, since only
marginal changes are made to conventional aircraft.

From the above study, it is clear that aircraft design is moving towards full consideration of
all design objectives in the early design phases. The weight estimation in these early phases
rely on empirical relations for conventional aircraft, and when this is absent, FEA with KBE
provide the solution [3,4,20]. However, as for the Flying-V [3], initial lay-out of the primary
structures are being designed based on reference aircraft or engineering judgement, while
these can turn out to not be ideal. These lay-out are then optimized for size or shape.
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Ultimately, size and shape optimization are applied for the most efficient structural lay-
out. To find this optimal lay-out, the identified and proposed method is to use topology
optimization (TO). With complete freedom, this method should be able to find the most
efficient distribution of mass during conceptual structural design. The resultant TO solution
can then give valuable insight, which can be interpreted into a manufacturable design.

HINGE RIB 1

DRIVE RIB 1 INBOARD

DRIVE RIEB 1 OUTBOARD

DRIVE RIE 2 INBOARD
DRIVE RIE 2 OUTBOARD

HINGE RIE 2

INTERMEDIATE RIB
HINGE RIB 3

DRIVE RIE 3 INBOARD

DRIVE RIB 3 OUTBOARD

i DRIVE RIB 4INBOARD
= DRIVE RIB 4 OUTBOARD

HINGE RIB 4

Figure 2.8: TO applied to the LE rib design of the A380 [7]

Topology Optimization has already been applied in the structural design for a wide range of
aircraft components, such as brackets, engine pylons, door frames and more [21]. One of the
most famous examples is the design of the wing ribs of the A380 [7]. In this example, a total
of 13 droop LE edge ribs had been optimized and translated into real products, see Figure 2.8.
However, work on large-scale topology optimization is limited. Mainly since the conventional
aircraft is reliable and does not require any change. Large scale topology optimization is
therefore more applicable to unconventional aircraft. The same proposal has thus been found
for the blended wing body (BWB) concept [8]. With minimum compliance as the objective
and 3 critical load cases, yielding 3 different topology solutions. The design interpretation
result can be seen below and does show an unconventional lay-out in Figure 2.9. Although
the level of detail could have been better and the proper penalization could yield more a
more distinct design (see ?? for more information). More importantly for the example [§],
buckling and stress constraints are not imposed yet, while stability of TO solutions is quite
a concern due to the outputted slender solutions and stability is of major importance for
aircraft. Although Singh et al. (2016) [8] explains stability is tackled in later stages, it could
be useful to include it as early as possible and thus add this (and stress constraints) to the
TO process to avoid costly redesign.
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Figure 2.9: TO novel unconventional concept BWB and interpreted to a manufacturable design

[8]

2.1.3 Aircraft Crashworthiness and Topology Optimization

Crashworthiness poses a risk for unconventional aircraft as is noticeable for the Flying-V,
with its smaller volume beneath the cabin floor compared to conventional aircraft. The
smaller volume can result in more impact energy propagating into the cabin in the case of
emergency landing. On top of that, new designs require at least the same safety standards
concerning for example emergency landings [22], where regulations are set for certification
by EASA CS-25 for civil aircraft [23]. For conventional aircraft, aircraft airworthiness is
typically tested using for example drop tests. However, due to high cost and preparation
time, simulations are introduced for preliminary assessment [9]. Such as for the A340, which
has been validated using the test of the A320. In this analysis for conventional aircraft,
the material and connection failure are the dominant failure types [9]. Two main modes of
failure have been identified in the literature, namely unrolling and flattening. The bending
and formation of plastic hinges in the frame absorb the majority of the crash energy, through
destruction by zones (which can be seen in Figure 2.10).

Zone 1: x Zone 2:

\

«——»! F,_crushing
moment arm

X Zone 3:

Figure 2.10: energy absorption zones for conventional structures absorbing the majority of the
crash energy through rotation of the frames [9], Figure credits: [10]

One such detailed crashworthiness assessment has been performed by Gransden and Alderli-
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esten [11], developing a finite element model to compare the drop-test behaviour of metal and
composite fuselage sections. Although the assessment has been made on existing sections to
compare materials, the paper’s A320 model validation concerning hinge formation and overall
energy absorption capabilities of a FEM model is. For the A320, the deformation is governed
by the frame-struts cross-section making the response appear 2D. The damage is focused
in the 'pinch’ behaviour at A, and the plastic hinges at B and C (see Figure 2.11 for the
numbering). The hinge at location C was identified as critical in decreasing the accelerations
experienced by the occupants at floor level. One key difference was that the separation of the
cargo floor at the pinch A (through rivet failure following shearing of the brackets) from the
experiment was absent in the model. In terms of accelerations, it has been concluded that the
overall width, magnitude and duration of the accelerations show good agreement considering
variations in accelerometer locations [11]. The same crash-response of drop-test experiment
can thus to some extent be achieved by finite element models for existing conventional-aircraft.
Sub-floor designs can be optimized using FEM models by making sections more compliant or
stiffer to tailor the crash-response.
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Figure 2.11: A320 two frame FEM model and peak Von-Mises result [11]

For the Flying-V, there is no existing structure and its sub-floor space has less volume available
for energy absorption mechanisms due to its oval shape, seen in Figure 2.12. Desiderio [12] was
the first to address the uncertainty in crashworthiness structural mass for the unconventional
Flying-V by means of FEA crash simulations on the designed fuselage section by Dotman [5].
A significant portion of the aircraft did not have a preliminary structural design and as a result,
the performed assessment was limited to the designed typical section. One interesting finding
was that Desiderio’s objective was extremely sensitive to the already designed (for static
loading) frame height. This proves the importance of earlier inclusion of crashworthiness.
Above all of these challenges, it is not known whether the crash-response of the typical section
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is representative for the full aircraft, due to its sweep with respect to the crash-direction or
the large inertial forces of its surrounding structures or engines.

Figure 2.12: One of the sub-floor crash-structure configurations by Desiderio [12]

Nevertheless, Desiderio had to come up with new sub-floor crash configurations for the oval
shape of the Flying-V typical section, where the options are infinite in strut positions, ori-
entations, quantities and dimensions. One such unconventional structure has been presented
in Figure 2.12. These configurations should absorb most of the energy where plastic hinges
ultimately are to be formed. For all of the concepts, plastic hinges hardly formed along the
frame. For that reason, the study shifted towards energy absorption through plastic bending
of the sub-floor structure itself with the addition of many-sub-floor section, as seen in Fig-
ure 2.12. For unconventional aircraft, such as the Flying-V, there is thus a desire to include
crashworthiness earlier in the process by means of high-fidelity modelling as well. Performing
crashworthiness assessment earlier in the preliminary design (through simulations) can help
avoid costly and time-consuming redesign [22,24].

With infinite possibilities, topology optimization could be used to find the conceptual mass-
distribution that would result in plastic bending. However, there is limited research on aircraft
crashworthiness TO (except for the study on crush-able lattice structures [25]), with limited
insight in suitable optimization formulations as a result [13]. Das et al. very recently, in 2023,
introduced gradient-based topology optimization with for aircraft sub-floor structure [13]. In
their work, the objective was to minimize the acceleration, by discretizing the continuous non-
linear response and calculating the gradients analytically of a acceleration function. Although
the framework proved effective, the computation of derivatives remains costly and sensitive
to errors, to which their tested design domain consisted of a few number of elements, visible
in Figure 2.13.
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Figure 2.13: Design domain and solution to gradient-based SIMP TO for crash-acceleration
minimization [13]

Therefore, literature on crashworthiness typically computes the gradients on simplified re-
sponses (Equivalent Static Load, ESL) or even avoids the use of gradient-based optimization
at all, relying on heuristic approaches or the Hybrid Cellular Automata approach. More on
these in the topology optimization section. A suitable optimization formulation for aircraft
crashworthiness is thus yet to be found.

2.1.4 Research Objective

To conclude, the Flying-V is still in a very early preliminary stage with many aspects un-
touched such as its critical region the central joint. The structural design for the Flying-V
presented above (and possibly other unconventional aircraft) resulted in unconventional de-
sign choices spanning and affecting different projects over time. Additionally, a detailed
crash-assessment in this early phase of the Flying-V has been found challenging, where many
design choices still need to be made. Topology optimization could be used in the conceptual
structural design to give insight in the configuration’s most efficient distribution of structural
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mass for all load-cased, ultimately including a crashworthiness assessment. Early inclusion
of crashworthiness, for aircraft in general, has the potential to avoid costly redesign in later
stages or even termination.

With the absence of an efficient approach and optimization formulation for aircraft crash-
worthiness, this thesis aims at bringing topology optimization and aircraft crashworthiness
together as the first step towards a full-scale aircraft TO. Since aircraft crash-responses greatly
benefit from the formation of plastic hinges, it shall be included in the research objective:

To achieve aircraft crash topology optimization by developing a TO method which includes
plastic hinge formation

To achieve energy-absorbing plastic hinges in TO, energy-based methods and formulations
could prove useful and is included in the following study.

2.2 Topology Optimization and Crashworthiness

It has been found in the literature study above that, for aircraft in early design stages, the
conventional structural designs might be non-optimal in static and crashworthiness sizing.
Such as for the Flying-V, where the unconventional oval fuselage required the unconventional
design choices presented in subsection 2.1.1 and where the space below deck is limited for
crash energy absorption. To make the most efficient use of any design space such as this
unconventional belly, there is a need for TO and aircraft crashworthiness.

Crash responses are highly non-linear, for which the traditional optimization technique using
static load is not viable anymore. Gradient based TO contains numerical noise on the gradient
information of non-linear analysis [26,27]. Additionally, the cost of computing the sensitivities
of frame in the dynamic response can be too high [28]. Alternatively, there is the Equivalent
Static Load approach, which simplifies the full non-linear response to be used for linear
static optimization. Simplification of the displacement field can strain away too far from
reality. Therefore, gradient-free approaches are more suitable, such as genetic algorithms
(i.e. Evolutionary Algorithms), and converge to global optimum. However, the cost rises
exponentially with up-scaling. Other state-of-the art on the combination of continuum-based
TO and crashworthiness involves the heuristic approach of HCA. Both ESL and HCA have
been investigated and presented in this section.

2.2.1 Topology Optimization Background

In topology optimization, the material distribution is optimized under given objectives, con-
straints, loads and boundary conditions [21]. The main difference it has compared to shape
or size optimization is that no initial design is needed.

Topology optimization has known many forms, where the focus for this study lies only on
the approaches that are independent of initial choices. One of the unwanted approaches is
for example the ground structure approach, in which positions of nodes are inputted and the
goal is to find the optimum truss layout in this design space. This study thus focuses on



2.2 Topology Optimization and Crashworthiness 15

continuum based TO, that starts with a voxel-based block of material representing the design
space. The relevant methods can be grouped into three groups, hard-kill methods, boundary
variation method and the gradient-based method [29].

A common hard-kill method is called Evolutionary Structural optimization (ESO), which
differentiates the presence of an element as fully present or fully absent (0 or 1) based on
removing inefficient material using heuristic criteria [30] (for example low von-misses stress).
This method received some criticism, since element removal could also lead to failure of
the design. So a variation is the bi-directional ESO, in which material is allowed to be re-
introduced. However, this heuristic approach could lead to local-optima dependent on the
initial lay-out and has not proof of optimality. One benefit is that the solution is referred to
as a black-white design, meaning no grey elements are present and thus no post-processing
or filtering is needed, compared to gradient based optimization.

The most recent developed method is the level-set based method, which makes use of functions
to represent the design domain (compared to explicit parameterization) in optimization, such
that again a black-white solution is obtained but then with sharp and smooth edges [29].
The analysis is still performed using finite elements, requiring translation of the domain. In
optimization, voids are added/removed/merged and translated by adjusting the functions
using its shape derivatives (which can be considered a modified gradient approach).

The most widely used topology optimization method is the solid isotropic material with
penalty method (SIMP) [21]. In this method, a density value between 0 and 1 is assigned
to isotropic element material to gradually remove the material by removing its stiffness. The
intermediate densities allow for continuity calculations but should be pushed towards void or
solid in the final solution. This is achieved by using a penalization scheme [29], interpolating
the material properties at specific penalization rates to reach convergence faster. Continuation
strategies that vary the penalization scheme throughout optimization can be used to avoid
reaching a local but rather a global optima [29].

The SIMP method does have three drawbacks, namely checkerboarding, mesh-dependency
and low-density regions, which have been mitigated through different approaches through-
out the years. The phenomenon of checker-boarding (which is also present in the discrete
element approach of ESO/BESQO), where voids occur in-between solid elements resembling a
checkerboard. These regions are physically meaningless and result in faulty stiffness. Differ-
ent filtering schemes exist, which alleviate the issue by essentially using a ’blur’ filter on the
densities (or sensitivities) [29]. The current most widely used filter is the PDE-filter. Mesh-
dependency algorithms, which impose a minimum length scale, also solve the checkerboarding
issue [29].

For non-linear analysis, low-density regions can cause convergence issues (or even divergence)
[31]. The low density regions obtain negative tangent stiffness matrices causing unnatural
mesh distortion. This mesh distortion can be avoided by means of a threshold filter chosen for
the design variables volumes. After the nonlinear (NL) analysis, the FE model before filtering
is used for the next linear T'O cycle. Selection of threshold magnitudes is extremely important,
and it has been reported that, whereas large thresholds help in accelerating convergence, too
large thresholds result in unwanted ’checkerboard’ patterns. However, more recent work on
TO has utilized different filtering schemes exist where my preference in checkerboard solving
lies in ’blurring’ or averaging the densities, due to its ease of usage. Avoiding mesh-distortion
can also be achieved by imposing a minimum density, which is the most stable (with the least
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amount of discontinuities) but over-estimates the stiffness. An unconventional approach, by
Behrou et al. (2021) [32], has been found that even deletes low density elements and their
respective DOF from the system. Boundary conditions then need to be imposed on the
surrounding elements. Some other approaches include heaviside projection and penalization.

2.2.2 Equivalent Static Load (ESL) approach

Crashworthiness analysis in TO can be solved by means of the linear static formulation
of equivalent static load (ESL). The non-linear response is computed to get the non-linear
displacement field of the system. Inputting these displacements back into the linear static
system yields the equivalent static load force vector. This vector from the outer loop can then
be used for the optimization in the inner loop as a load case.

Lee and Park (2015) [31] discuss the challenge of the dynamic non-linear dynamic analysis in
the ESL method. For a dynamic response, the optimizer should find a TO solution for the
entire response. In the ESL method, each time-step has its own ESL vector and more than
one can thus be of importance. Typically, the individual time-step compliance’s are summed,
yielding a topology with minimum compliance but possibly peaks on local level [31]. Their
proposal is to only consider the time increments with the highest internal work and the
increments surrounding these peak(s). By this approach, they hope to reduce the average
and achieve a more evenly distributed compliance, or in other words, a stiff topology for all
increments. Other work proposes performing a design of experiments (DOE) on the weights
of each increment compliance [33] to gain insights in the behaviour.

To pick the peaks only (or even weighted with the neighbouring increments) has the potential
to exaggerate the loads for large (bending/plastic) deformations, because the ESL formulation
will find a solution to conform these deformations while neglecting the load history. Moreover,
numerical instabilities can cause termination of the optimizer since the linear static range
assumption is exceeded [34]. Another approah, by Bai et al. (2019) [34] is to scale the ESL’s
using energy ratio. The strain energy for the peak time increment is then taken and compared
to the computed ESL strain energy (computed with the deformations and the linear stiffness
matrix). The paper argues when the dynamic (for the peak) strain energy is 30% of the
computed static strain energy, the energy scaling method has to be applied and from 70%
on-wards the standard ESL loads are still applicable.
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Figure 2.14: The principal method of DiESL, following the deformations [14]

The current state-of-art for dynamic nonlinear TO has been identified as the work done
presented in 2022 by Triller et al. [14]. In their work, they successfully applied the method
of difference-based ESL (DiESL) to TO, to overcome the challenge of exaggerated loads
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(similar to [34]). The method splits the non-linear response into subdomains and stores the
deformation fields. The incremental/relative displacement fields can then easily be calculated,
which are then used as the 'undeformed’ matrices. Each increment will thus have its own ESL
based on the intermediate time increment. A schematic showing the sampling can be seen
in Figure 2.14. The ESL then are more meaningful and do not have the risk of exaggerated
magnitudes explained above. Additionally, they have shown that standard ESL solutions are
harder to interpret and 'neglect’ inertial effects, in contrast with DiESL. Different to standard
ESL multi-load approach (where loads are weighted, the undeformed matrices differ and so
different FEM models are needed for optimization. This has been solved by utilizing multi-
model optimization within optistruct. Another limitation of ESL is that the stiffness matrix
assumes linear elasticity, whereas plasticity can occur. As a result, the proposal consists of
updating the elemental stiffnesses due to strain hardening to get more accurate stresses and
stiffness representation.

Although the Di-ESL method is able to overcome most of the issues associated with the ESL
method, its applicability to aircraft is questionable. The high degree of material and geomet-
rical non-linearities would require careful selection of (and the number of) the subdomains.
Especially since we desire a large degree of plastic deformation. Besides, computation of the
sensitivities remains high.

2.2.3 Hybrid Cellular Automata (HCA) approach

Patel et al. [35] introduced the HCA approach to crashworthiness for continuum based TO.
The cellular automata is a bio-inspired methodology where, for a grid of cells, each individual
cell uses only information from its surrounding elements to determine its own state change
based on a set of rules. "Hybrid’ refers to the combination of this methodology with the global
response of a structural analysis’ using FEM (as opposed to the neighbouring cells). When
the HCA method is applied in density based TO, each element’s state holds information of
its density and its field variable. The field variable is decided upon for the objective and the
HCA approach strives for uniformity of the field variable. An example of the field variable
is the strain energy density, which is taken from the neighbors and used to determine the
center element’s state based on rules concerning the field variable set-point. Typically, the
average value of the surrounding responses are taken as the state and the set-point could
be the average value of the entire domain. Several neighborhood definitions exist in the
literature (see Figure 2.15 for a 2D example) where the most common is the von Neumann,
here only the elements directly adjacent are considered for each element. However, its small
size could be a source for instability, when extreme local responses cause significant jumps in
density changes (leading to oscilation) or checkerboarding. Too large neighborhoods have the
disadvantage that detail is lost. Fortunately, the neighborhood configurations are also used
to fix checkerboarding as the density is averaged, similar to a filter in SIMP TO.
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(a) (b) (c) (d) (e)

Figure 2.15: CA neighborhood definitions: (a) Empty, (b) von Neumann, (c) Moore, (d) radial,
(e) extended [15]

Patel et al. [35] assumes a crashworthy design is one in which deformation is minimized and
the whole structure contributes to the energy absorption, requiring uniform distribution of
plastic strain. Since not every element might show plasticity, the internal energy density is
commonly used as field variable. Aullig et al. [27] also use this assumption and required
uniform distribution of the total energy (including strain energy for static loads). Material
density then moves proportionally to its offset with neighboring elements. Uniform internal
energy for crashworthiness can however unnecessarily make the entire domain stiff. Whereas
for aircraft, most absorption needs to occur beneath the floor.

In this belief, Bandi et al. (2013) [16] developed the method of 'controlled energy absorption’.
Here, the domain is split at predefined ’output ports’ (see Figure 2.16) in a stiff domain
and a flexible domain, where the IED and Mutual Potential Energy (MPE) are optimized
respectively. The MPE is the work done by a so called dummy load, by using its stress
field with the actual impact strain field output. The objective is to maximize the mutual
potential energy for a compliant design in the flexible domain only, while driving the IED to
uniformity in the stiff domain. This 'non-existent’ load has a specified location with a specified
(preferred deformation) direction. Splitting the domain and deciding on the deformation
direction requires too much user input. This energy is therefore not ideal.
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Figure 2.16: A 2D beam under impact split in a compliant flexible subdomain (FSD) and a stiff
subdomain (SSD) [16]. The dummy loads are imposed to compute the work done (MPE) by
the FSD under the impact load. The SSD and FSD should obtain uniformity in internal energy
distribution and MPE respectively.

One advantage of the HCA over ESL is that the static and dynamic non-linear optimization
are more compatible since both cases can be expressed in energies. The research by Aullig et al.
[27] is one example where this has been conducted to find a multi-objective optimum. In their
research, the strain energy from static sizing with the internal energy from crash scenarios
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were summed with weights. This total energy is then sought to be uniformly distributed. One
issue is that static design only concerns one single equilibrium position while crash scenarios
are dynamic and thus time-variant. Typically, in this case, the time-increment at maximum
total internal energy is taken for optimization [27]. HCA is then applied to distribute this
accumulated and weighted sum.

An improved method by Afrousheh et al. [36] has been dedicated to plastic strain distribution
for maximum energy absorption and peak load constraint, including setting a allowable strain
limit to avoid rupture. Additionally, the entire collision time history is used (to compute the
plastic strain), compared to the peak energy increment explained for the ESL.

Nevertheless, the HCA approach is familiar with the large non-linearity involved in aircraft
crash-scenario (and thus the high energy absorption involved) and could therefore still be
very useful in forming a TO method for aircraft crashworthiness alone (compared to the
gradient-based approach of the elastic ESL method). Buckling could be tackled in further
studies.

de-facto hinges
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Chapter 3

Methodology

With the objective to achieve aircraft crash topology optimization, the energy-based topol-
ogy optimization method of Hybrid Cellular Automata (HCA) is aimed to incorporate plastic
hinge characteristics that can lead to their formation. This chapter outlines the methodologi-
cal framework designed to achieve this goal. First, the fundamentals of topology optimization
and the HCA approach is presented. This is followed by the the proposed bending energy
definition and its integration into the Cellular Automata framework. Finally, the valida-
tion strategy with the test-case called 'proof-of-concept’ is presented. This proof-of-concept
showcased the need for a new energy-based HCA framework in chapter 5.

3.1 Hypothesis and Research Questions

Does bending optimization in HCA allow plastic hinge formation in topology optimization
(TO) to improve the crashworthiness of aircraft?

To answer the hypothesis above, the following three research questions have been composed.

1. RQ1l. How can detailed FEM aircraft crashworthiness assessment reliably
be approximated by voxel-mesh models?
In the literature study, it has been found that traditional absorption mechanisms, such
as frame folding, cannot easily be enforced in structural design. A alternative aim has
been developed by Desiderio [12] to introduce hinges in the sub-floor structure itself.
With infinite design possibilities, topology optimization has been proposed in this thesis.
However, how consistent are voxelmesh elements with detailed aircraft crash analysis?

2. RQ2. What is the effect of inter-level based bending energy on crashworthi-
ness TO using the HCA?
Bending of the frame and the associated plastic hinges have been the inspiration to
isolate the bending energy in the energy based TO approach of HCA. Similar to gen-
eral bending analysis, multiple adjacent elements are needed to accurately model the
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bending deformation. Therefore, it is necessary verify the reconstruction method based
on the HCA principle.

3. RQ3. How does the bending-energy objective in HCA influence the crash-
worthiness performance of a sub-floor structure?
Finally, the framework shall be used in designing a sub-floor structure, which is to be
compared to the standard HCA algorithm.

3.2 HCA Crashworthiness Model Framework

The basic HCA algorithm that is used as a starting point has been presented in this section.
Furthermore, implementation and main test-case are presented to complete the framework.

3.2.1 HCA principles

For this thesis, the baseline of the TO crashworthiness HCA method was the paper by Bandi
et al. [16], building the basis of this thesis’ model and identities given below.

In topology optimization, an elements presence is defined by its density for solid element and
thickness for shell element. This state is called the design variable x;. The element i its
material properties are scaled accordingly and can have specific penalization p and gq.

Pi(%’) = T;pPo
Ez(a:z) = .’L‘?EO

__q _yield
Ti) = x;0

O_Ez'/ield(
The value of the design variable thus ranges from 0 to 1 and depends on the elements field
variable \S; and of its neighbors S; in the HCA principle. Typically, the state variables are
averaged over their neighborhoods. This average S; of each element i is computed for N;
number of neighbours.

_ 1
| VG|

S

> 8

JEN;

Different neighborhood definitions exist, where adjacent elements can be used or more ex-
tended neighborhoods, see Figure 2.15. With extending, each element has more information
of its surrounding, but detail is lost.

In static HCA, the strain energy is used as field variable [28] while for crashworthiness the
internal energy density (IED) is more commonly used [16].The difference is that the plastic
energy is included which is computed using FEM non-linear explicit crash analysis. The
principle of HCA is to drive the entire domain towards a uniform distribution of this field
variable. Therefore, local (cellular - CA) control rules use these field variables to increase or
decrease the element’s design variable x; based on the global field variable target S* (hence
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the name hybrid in HCA). The optimization objective is thus a minimization problem of the
error between the global average field variable S and its target:

minimize H§ — S
xT

1 n
b = = M
S ;xl ! (3.1)

In Equation 3.1 above, the design variable constraints are presented for which the total shall
be smaller than the desired target mass fraction M. This mass fraction is chased by adjusting

the field variable target based on the previous average field variable S and the previous mass

fraction M} for every iteration.
(k=1)
g+(k) _ g(k=1) (Mf )

My

The local control rule (for an iteration k) on the element design variable z; to bring its
state variable to the target is given below. Typically, not only the field variable is averaged
but also the design variables. This obtains a continuous density field that good in avoiding
explicit-solver failure. Checker-boarding is eliminated as well. However, the level of detail is
lost.

—(k %
Arl? = K, (51 — 5*®) (3.2)

Here, K, is the proportional control gain, which is a chosen constant. Too large and the
topology will oscillate. Too small and convergence will take many iterations. The convergence
criteria is met if the sum of all changes of design variable is less than a specified tolerance.

n

S (jAz ) <8

i=1

There are some parameters that took a look time to decide on. There is the option to limit the
maximum global change in design variable (to for example 5%) to avoid that large fluctuations
in the field variable target cause unexpected radically different designs or oscillation. It was
found that the limiter also has an effect on the final solution. Alternatively, the proportional
gain can be lowered such that these fluctuations are less severe, but convergence will take
longer or not occur.

3.2.2 Implementation

Two Altair packages have been used, namely Radioss as the non-linear solver and Compose
to execute the HCA algorithm above. Their products are integrated well, with easy and fast
access to the solver output. Additionally, Altair has built in topology optimization keywords
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which are used by another package called Optistruct. Optistruct does not include the HCA
method (it uses the ESL method for non-linear TO) so it had to be built ourselves. However,
its command lines for Radioss were exploited to streamline the whole optimization within
their Python post-processing application ’Compose’.

Radioss allows element assignment of thicknesses or filling percentages for shell and brick el-
ements respectively. Scaling the latter results in equal scaling of the element density, internal
forces, yield strength and Young’s modulus. Unfortunately, this material interpolation is not
possible for the shell elements in Radioss, only the thickness is reduced. Intermediate (and
minimum) thicknesses thus retain their stiffness. However, reduced thicknesses do experience
increased internal stresses, leading to weaker elements post-yielding. Moreover, the total en-
ergy is used for shell elements (as opposed to energy density for brick), integrating the bending
energy density over the thickness, thereby compensating for the increased deformations.

3.2.3 HCA Crashworthiness: compression beam

The standard HCA algorithm above has as field variable the averaged local IED (or @;) for
crashworthiness. In Bandi et al. [16], distributing this variable is compared to their proposed
controlled energy absorption method for a variety of test-cases.

The test case that has been used in this thesis is the compression beam, of which the com-
pressive impact loading resembles a drop-test of an aircraft sub-floor structure. The standard
HCA algorithm returns a thick column which is all but compliant or energy absorbing. Ulti-
mately, for this simple case, the ideal solution would have plastic hinge formation. Therefore,
the new method has been tested on this design case.

200 mm

N

Design Domain
80X120 mesh

600 mm

[T T T
400 mm

Figure 3.1: Schematic of a 2D compression beam design case with impact of a rigid pole [16]

Figure 3.1 presents the design domain, the mesh-size and impactor properties. The impactor
has a mass of 15.7 kg and can slide with a friction coefficient of 0.3. The plane stress condition
has been applied to be consistent with the reference.

Two adjustments have been made with respect to Bandi et al. [16]. First of all, the model
(and the impactor mass) are halved. The mesh is halved along the vertical line of symmetry.
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This has been decided to reduce the model size and to achieve a symmetric design. The
line of symmetry only allows translation along the line of loading, constraining rotation and
transverse translation. Secondly, the material model has been replaced with a Johnson-Cook
model for better accuracy, presented in Figure 3.2. The values for A and B of this curve have
been found through curve-fitting with a coefficient of determination of 0.9546. Other material
properties have been added as well in Table 3.1.

o=A+ Bey (3.3)

Table 3.1: Material properties used for the compression beam [16]

Value unit
p | 2700 kg/m3
E |70 GPa
v | 0.33
A | 180 MPa,
B | 108.35 MPa
n | 0.417

The target mass fraction, initial density distribution, minimum density and convergence tol-
erance are respectively:

M} =03 20=0.3 Znin=0.05 6=64

Since the aim was to force bending structures, hourglass control was necessary. With large
expected and preferred plasticity, Radioss shell type 3 elements have been used (Q4, elasto-
plastic hourglass with orthogonality).

Additionally, the implementation presented in subsection 3.2.2 can be verified for the standard
HCA algorithm of distributing the IED by using the results in Bandi et al. [16]. This has
been presented in chapter 4.
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Figure 3.2: Johnson-Cook fitting of the material model used in [16]
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3.3 Bending Energy

Bandi et al. [16] has shown that the original Hybrid Cellular Automata method for crashwor-
thiness is unfit for energy absorption. Only a small portion of the kinetic energy is dissipated.
When the crash behaviour of an aircraft was analyzed, most of the dissipated energy was
stored in the plastically deformed elements under bending loads. Therefore, instead of aiming
for uniform total strain energy, isolating its bending component might be more interesting.
This section contains the bending energy derivation.

3.3.1 Strain Energy Density definition

The strain energy density u (SED, strain energy per unit volume) of an element is given in
Equation 3.4. Here, the tensors are used for the stress o and strain e (elastic and plastic
strain E and P respectively).

w— / o : (dep + dep) (3.4)

This integral can also be rewritten when using time samples, where the average stress states
of two subsequent timesteps is used and the total change of strain as shown in Equation 3.5.
Here, i represents the timestep between the start time ¢y and the total crash duration t.,q
(N = tena/At).

u = i (%) (gi —€i—1) (3.5)

i=1
The SED thus has 3 contributions for a shell element in plane stress, namely the normal

directions xx and yy and the shear direction xy. The latter is doubled for isotropic material
(or the engineering strain has to be used).

U = Ugg + Uyy + 2Ugy (3.6)
N
Opgi+ Opwi
Upy = Z <:t:cz2mz]_> (Exwi — Eamit) (3.7)
i=1
N
Oyyi + Oyyi—1
Uyy = (M) “(yy,i — Eyyi-1) (3.8)
i=1

( % > ey — Eayint) (3.9)

i=1

3.3.2 Strain gradient definition using FEM

Now that we have a definition for the internal energy density, the next step is to find the stress
and strain function. For an bilinear quadrilateral element as shown in Figure 3.3, the strain
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function can be derived from the displacements u,v. The corresponding shape functions in
local coordinates given in Equation 3.10 and Equation 3.11 are used.

»v

(us,v3) ‘ (Ug,Vs)

X, Uu
(ug,vq) (uz,v3) ’

Figure 3.3: A bilinear square quadrilateral element of height and width h

U= c1 + cox + c3y + caxy (3.10)
v =c5 + cgx + cry + cgxry (3.11)
Solving for the constants gives:
U =uj + %(UQ —uy)r + %(u;; —u1)y + %(ul — Uy — u3 + Ug)TY

Gather all nodal displacements wu7..u4:

z ) Z Y Y € Ly
=(1—-=)(1—= +-(1—-= +=(1—-— + —=
“ ( h)( h) “ h( h> 42 h< h) s h2u4

Changing the coordinate system to natural coordinates (see Figure 3.4) we require the change
of coordinate functions through normalization using width h:

2z
=— -1 3.12
r=2 (3.12)

2y
=1 3.13
5= (3.13)

Resulting in the final bilinear equation for the displacements u and v as:

1 1 1 1
u= Z(l—r—s—krs)ul—kZ(1+r—s—7‘s)u2+Z(l—r—ks—rs)u;;—kZ(1+r+s+rs)U4 (3.14)
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1 1 1 1
v = 1(1—T—S—i-rs)vl+1(1+r—s—rs)v2+1(1—r+s—rs)v3+1(1+r+s+rs)v4 (3.15)

Moving from displacements to strains, we can make use of the Lagrangian finite strain tensor.

To simplify the model, the infinitesimal strain tensor is used, meaning that we remove the
non-linear part as we assume that the strains are small. However, with large plasticity, the
non-linear part is best included.

1 8u2 8Uj
fij =5 (830]- + 813) (3.17)

For Equation 3.17, we can derive the normal and shear strains as:

Egz = % (3.18)
ov
Eyy = aiy (319)
1 /0u Ov

The strain for such elements are (where dr/dy = ds/dx = 0):

Ou_ouor  uds _ou2
Or Ordx 9Jsdxr Orh
Lo ov0s _dv2
W oy ordy 0sdy  Osh
1 (8u 81}) 1 (8u or Ouds Ovor Ov 88) 1 (8u ds Ov 37”) 1 (8u
Eoy = = = ettt =t = (=
2 2\0rdy 0sdy Ordx 0sOx 2\ 0s0y Orox h

6$I -

aiy—i_ax ds

Plugging in u and v gives:

ou 2 1( . . )+1( )
Epg = —— = —(—u; +uUs —uz +u —(up —u9 —us +uq)s
w = 50 = 5 1 2 3 4 o7, U1 2 3 4
ov 2 1

1
S = B ﬁ(_vl — v +v3 +vg) + 5 (v1 —v2 — vz +vg)r

2h

5 _((‘3u+8v>1_1<(_u —ug + ug + ug) + (u1 — ug — ug + ug)r
w=\os o) n T 1 1— U2 +uz + ug 1 — U2 — Uz + uyg

+ (—v1 +v2 — vz +v4) + (v1 — V2 — V3 + v4)S)

As can be concluded, the strains are linear functions of s or r. The gradients of these functions
are the derivatives as given below:

ov

or

)
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Figure 3.4: A bilinear square quadrilateral element of height and width h in natural coordinates

The displacements in the expressions above can be grouped for each side of the quadrilateral

element. This has been visualized in Figure 3.5. By replacing these identities in the gradients
we get the final expressions:

Degg  £TOP — cBOTTOM 321)
Ay h ’
RIGHT _ _LEFT
Ogyy _ Eyy ~Cyy (3.22)
ox h
Desy 8£yOP B 6§yOTTOM
oy h

(3.23)
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RIGHT _ _LEFT

(9E$y _ E:z:y €my (3 24)
ox h
F.'LEFT _ (11.3*1{1) STOP _ (u4iu3)
= h e h
i (ug,vyq)
= S,V
P = % (usz, va)
grerr _ (a0 grichr — (Va—v2)
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Figure 3.5: A deformed element with infinitesimal strains

3.3.3 Bending Energy definition

In subsection 3.3.2, the small strain deformation has been assumed allowing the usage of
the infinitesimal strain tensor. This tensor neglects the non-linear terms presented in Equa-
tion 3.16. As a result, the derived strains are linearly varying across the element, see Equa-
tion 3.21-Equation 3.24. The corresponding stress gradient approximations are then also
linear.

Looking back at Equation 3.6, the strain energies u;;, uy, and 2u,, are now functions of x,
y and (x,y) respectively under the small strain assumption, presented in Equation 3.25. The
shear term can be split in a variation along x or a variation along y with the gradient functions
defined in Equation 3.24 and Equation 3.23.

U = uwm(y) + uyy@) + umy(x) + uxy(y) (3'25)

We want to isolate the energy stemming from bending deformation in the internal energy
function. Since first order linear elements cannot follow the curvature of a bend, shear stress
is introduced in the element under shear-locking. Therefore, the full expression including the
shear terms is used for the bending energy derivation. The use of linear elements for bending
maximization can be questioned, since linear elements are stiffer in bending together with the
aforementioned shear-locking. However, if topology solutions consist of bending sections of
at least 3 elements thick, the issue can be neglected.

The linear functions for the energy portion that represent the pure bending deformation are
presented below for the strain. Interchange e for o for the stress field functions.
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de gy

€ (y) dy y + € Y 0 ( )
de

5yy($) = fo + Eyy,z=0 (3.27)
dey

Exy (y) = dyy Y+ Exyy=0 (3.28)

de,
Exy(T) = d:vy

=0 (329)

The SED equation in Equation 3.4 needs to be integrated over the element volume to find
the total element internal energy.

U:/ udV:///udzdyd:n (3.30)
\% zJyJz

When we consider the variations along the y-axis, the integrals over x and z can be replaced
with their respective widths. For a shell with square elements, the widths along x and y are
h and t for z. The internal energy for the two normal stresses and strains is thus:

Upz = ht/ Uz (y)dy (3.31)
Y

Uyy = ht/uyy(x)dx (3.32)

Ugy = ht /y Uay(y)dy (3.33)

Upy2 = ht/ Ugy(x)dx (3.34)

Inserting Equation 3.26 and its stress function counterpart (interchanging epsilon with sigma)
in Equation 3.7 and integrating as shown in Equation 3.31 (for element width h) gives in the
internal energy function:

1 do do de de
st = gt ( (), + ( “) (T, (5).L) 7
[3< dy /; dy /i dy /; dy /i
1 doge doge
dy dy i (Ezl'yy:()i - €x$vy:0i—1)+

T3
dExz dfsm
< dy ) ) (sz,y:()i + Uzw,in—1)>Z/2
h)2

+ (Um,yZOZ' + Uzz,y:0¢71)(5m,y=0i - Em,y=0i1)y] (3.35)
—h/2

The same applies to the other equations from Equation 3.32, Equation 3.33 and Equation 3.34.
What can be seen is that the equation is composed of three parts.
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1. Integrated quadratic TED distribution: Average stress gradient multiplied with the
change in strain gradient

2. Integrated linear IED distribution: The inner product of the previous one and the next
one

3. Integrated uniform IED distribution: The average mean stress multiplied with the
change in mean strain

The third part resembles the general internal energy from Equation 3.5 for reduced-integration
elements, where the strain gradient is smeared out to be 0 as the mean strain is taken at the
integration point. This can be seen in the left figure of Figure 3.6. In terms of Equation 3.35,
the linear part (that integrated to y?) in Equation 3.36 disappears due to its bounds as its
energy is considered in the third part. However, we want to isolate this energy (right figure
in Figure 3.6) and thus the mean value is removed as presented in Equation 3.36.

y y

Figure 3.6: Internal energy distribution (direction xx) if the stress distribution is uniform with
a linear strain distribution. Left would be the generalized internal energy, right figure showcases
the desired bending energy fraction.

Figure 3.6 presents the fraction that remains (right side) for the second part. Note that
the internal energy function would also have the quadratic term (that integrated to y> in
Equation 3.36) if we assume linearity in the stress distribution, however it has not been
plotted for clarity on part and its bounds.

111 do do e -
AUBend ze = =ht| = ( xz) +< :cx) < :L‘:v) _( xz) \
Bend, 2|3 ( dy /i dy /i dy ), @y ).,)Y
1 do do
+ 5 ((( d;m) . + ( d;z) 1) (&r:c,y:oi — Emff,y=0¢,1)+
7 i
h/2

dez:r dsm )
<< dy >z - ( dy >21> (Oa,y=0; +‘7m,y=0i1)>y] (3.36)

—h/2




3.3 Bending Energy 33

The bending energy of the linear part (presented as U, p in Figure 3.6) is found by changing
its bounds to [0, h], such that it does not cancel out. The quadratic IED function keeps its
original bounds. Working this out for Equation 3.36 and (as presented in Figure 3.6) the
total incremental change in bending energy is given as:

<dam> n <dam> <dam) B <d5m> !
dy /; dy /i1 dy /; dy /i1

1 dgzz) (dazrz)

4<<( dy i+ dy )i (Easy=0, — Eamy=0.)F

de de
Tx . Tx O, 0, th3 3.37
<< dy )z ( dy )i—1> (G y=0: o 7y—021)> ( )

Only its component for the xx-direction is shown above, yy and xy are also used as seen below
following Equation 3.25.

AU'Bend = AUbend,xm + A(Jbend,yy + AUvbend,acy,l + AUbend,xy,? (338)

For the final expression of the bending energy Equation 3.37, the change in bending energy
shall be computed using an incremental process. For each timestep, the following four states
are computed for each of the four terms in Equation 3.38:

1. Strain gradient
degy deyy degy degy

dy ' dr ' dy ' dx

2. Stress gradient
degzy deyy degy degy

dy ' dxr ' dy ' dx

3. Strain at the element center

Exx,y=0, Eyy,x=0, Exy,y=0 = Exy,x=0
4. Stress at the element center

Ozxz,y=0, Oyy,2=0, Oxy,y=0 — Oxy,x=0

Note that the shear terms (stress or strain) at the element center are equal in both directions.

3.3.4 Linear internal energy density (L-IED) to physical energy formulations

For the linear part of the IED function, which is quadratic once integrated to total IE as given
below, sign convention needs to be put in order. Namely, what does a positive or negative,
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stress or strain gradient mean?

4 dy 7 dy i—1 Fxe.y=0; Era,y=0;—1
de de
xx B xx N _— th3
<< dy )z ( dy )i—l) (O20,y=0: + Oy 01_1)>

These incremental changes are simplified to:

1(/do de
a5 L A Tx,Y= A = xx,y=0/av, thg
2<< dy )avg : ’y0+< dy )(U v=0) g)

A positive stress gradient and negative change of mean strain would result in nonphysical
negative energy.

Several solutions have been found that each gave different results. This section presents the
logical solution first, followed by two fictional definitions that could lead to more excessive
bending and finally one for post-yielding.

The goal is to find the best definition for plastic hinge formation.

Option L-IED-1: Loading specified gradient

Suppose the average stress gradient is positive due to oiop > Opottom- This could have two
possible meanings as shown in Figure 3.7.

1. The stress at the top is in tension while the bottom is less in tension (or even compres-
sion)

2. The stress at the top is in compression while the bottom is even more in compression
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A,y

Figure 3.7: Sign convention of gradients: Uniform change in strain distribution with a linear
stress distribution example |

This average stress gradient is multiplied with the change in mean strain (the strain of the
center integration point). For this option, the sign of the stress gradient is removed and given
the sign of the average stress, which is equal to what is underneath the gradient.

(5 e~ ()
dy avg, NEW dy avg

Energy will accumulate for any gradient direction as long as its stress underneath is in line
with the change in strain.

(Umz,y=0)avg
|(Uwz,y=0)avg|

Similarly for the other part:
d Tx d Tx

(2% ) s =12
dy ) NEw dy

Option L-IED-2: Single-bend maximization

AExw,y:O

|A€gz,y=0

The linear IED function can also be manipulated such that elements that bend in one direction
only are prioritized, maximizing this single-sided bending. This can be achieved by keeping
the sign of the gradient and removing the sign of its product:

1(/do de
5 L A TT,Y= A = zx,y=0/av th3
(%) 18wl (A% e

Once the gradient direction flips, or the stress gradient is not in-line with the change in strain
gradient, energy is ’lost’ in this manipulated form. Negative energies (gained from negative
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bending deformation) are made positive after summation:

N N N N
UBend = ’Z AUbend,x:c‘ + ‘Z AUvbend,yy’ + ’Z AUbend,xy,l’ + |Z AUbend,xy,Z’
i=1 i=1 =1 =1

Elements that deformed primarily in one direction have higher energies and will thus be
prioritized to keep.

Option L-IED-3: Full single-load maximization

This method returns the energy in a single deformation direction. The energy due to the
change in mean stress, irrespective of compression or tension, is accumulated until its direction
flips. The same is enforced on the change in strain gradient: energy is lost if the element

bends back.
. 1) |(‘7m,y=0)avg|>th3

A C%)
2 dy avg

Basically, the above behaves like an elastic material where energy is lost when unloading.

de gy
dy

de gy
dy

(|5xx,y:0i’ - |5xx,y:0i,1 |) + (

i

Option L-IED-4: Plasticity corrected L-IED-3

L-IED-3 can be altered to include plasticity, although still considering linear gradient ap-
proximation. When an element reaches plasticity, its accumulated energy is set and can only
increase. Thus L-IED-3 is used until plasticity:

gp>0:

dezy
dy

A g yol + \A

1 4 o o 3
The above equation neglects elastic spring-back and loss of energy, however, this loss is
negligible against the plastic work from large strains.

3.3.5 L-IED comparison and preference study

Above, 4 formulations are given for the L-IED function. A study has been performed on the
solutions each of these formulations delivered. The one that is optimized for bending is used
in subsequent studies.

The L-IED is only half of the equation of Equation 3.37, with the quadratic distribution of
the internal energy (Q-IED) as the counterpart. It was believed that a pure bending section
is not necessarily loaded in additional shear, compression or tension. This latter is present in
the L-IED functions and overshadows the first Q-IED functions.

The relative influence of the two halves can be manipulated to optimize for bending. These
results have been given in the preference study.
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3.4 Bending Optimization in HCA

While the derivation of the gradients presented in subsection 3.3.2 can be used to compute the
bending energy of a single FEM element, it is expected to be too detailed to be useful. Topol-
ogy optimization using the true bending energy of each element is expected to give sections
that are 1 element wide and loaded in bending. As a result, the neutral axis of the bend is
exactly at the element center for which the strain would be 0. For an efficient crash-analysis,
reduced order element are preferred but these are unstable to such deformation modes leading
to hourglassing. While most solver have hourglass controls to overcome this issue, the required
resisting loads are non-phyisical and should thus be minimized. Therefore, it is preferred to
extend the domain on which the strain gradients are computed, with the expectation that
local (1 cell) bending deformations are filtered out since they are not detected. Only bending
deformations that span multiple cells are detected. This could potentially construct bending
sections of the size of the extended domain.

3.4.1 Gradients in HCA

Using the Hybrid Cellular Automata principle, the adjacent elements are used to extend the
domain and compute the gradients. With the infinitesimal strain assumption, the strain
remains linear into these adjacent elements. Therefore, we can extract the neighboring mean
strains (evaluated at their centers) to compute the gradients presented in Equation 3.21-
Equation 3.24. Figure 3.8 presents one of these gradients computed from the mean strain
values of the adjacent elements.

Oega

Figure 3.8: Gradient computation using the HCA principle showcased for o

By extending the domain of the gradient computation, the height increases to 2h. The integra-
tion over y (as presented in Equation 3.36) is still performed over height h(y = —h/2,y = h/2)
as is depicted using the yellow box in Figure 3.9.
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For corner or edges, the element’s own mean strain (center strain) is used to compute the
gradients, as shown in Figure 3.9.

in a corner

Oeen
5]

Figure 3.9: Gradient computation using the HCA principle showcased for

Following the procedures of the strain-gradient definition, the stress gradients can be derived
from the neighboring elements as well. The result can be seen below in Equation 3.39.

TOP BOTTOM
Aoy 047 —O

Ay = o (3.39)

3.4.2 Gradients in HCA: Voxelmesh material interpolation

For the brick elements in the sub-floor structure case, one adjustment had to be made in the
BOHCA framework with respect to the shell model application. In subsection 3.2.2, it has
been discussed briefly that Radioss does not yet include material-interpolation for thickness
optimization of shell elements, although the results do not significantly differ (Appendix B).
Stiffness interpolation is required in gradient-based optimization. In the HCA algorithm, the
heuristic rules only require a decreasing relation between the considered energy and the design
variable, which is obtained since thinner absorb less energy. By integrating the IED over the
thickness, convergence can still be reached.

Contrary to shell elements, the reduction of volume in brick elements cannot be implemented
in the FEM model. Material interpolation is thus required for the optimization to take affect
in the non-linear dynamic analysis. The material degradation, as shown in section 3.2, ensures
the lower density elements result in less energy dissipation.
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Figure 3.10: Thickness gradient along bending direction with hypothetical strains

Now suppose adjacent elements of different densities are bending as shown in Figure 3.10.
Both will strain in the direction of deformation, leading to a consistent strain gradient. How-
ever, the reduced density element will have a lower stress state due to its decreased young’s
Modulus and yield strength. The stress distribution can become non-representative of the
loading as the gradients become smaller or possibly even opposite towards the direction of
bending. Especially once in the plastic domain, looking at Figure 3.11, the different densities
would hypothetically result in an opposite stress gradient.
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Figure 3.11: Yield stress for different values of element density

Alternatively, suppose these three elements are all plastically extending uniformly (equal plas-
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tic strains). Their density gradient result in non-uniform stress distribution leading towards
non-existent bending energy.

To correct the stress gradient to be in-line with the deformation direction, the stresses need to
be normalized. Following this, the gradient magnitude is then brought back to its degraded
state by the center elements density.

00z (Z=)rop — (¥2)porTOM
= = z : 4

Proving the necessity of this correction has been presented in Appendix A, including topology
solutions.

To Do; show non-linear plasticity plot and approximate function

3.4.3 Bending-energy optimization algorithm

The procedure of the bending-energy optimization is similar to that of the standard HCA
seeking for uniform IED distribution. The main difference is that the IED is displaced by the
bending energy (BE).

minimize Hm — Uz;kendH
x

1 n
b =S a; =M}
o ;xﬂ ! (3.41)

Tmin < XTj < 1

The objective formulation from section 3.2 now drives the newly composed bending energy
towards uniformity. For clarity, here is the bending energy equation for N evaluations within
the timeframe. The set timeframe is found separately for each iteration k and is picked at the
peak internal energy. This ensures all of the possible dissipated energy has been captured.

N N N N
UBendj = Z AUbend,a}xij + Z AUbend,yyij + Z AUvbend,alcy,lij + Z AUbend,xy,Qij (342)
=1 =1 =1 =1

This bending energy per element j is averaged with its neighbors before computing its error

with the global target.

3.5 Sub-floor structure ldealization and Topology Optimization

To answer the hypothesis, it is necessary to ensure the crash-responses of TO solutions are
reliable. This led to the first research question. One way would be to find the topology,
translate it to a manufacturable design and perform a detailed crash-analysis. This final
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crash-performance is hypothetical and would be best validated with a experiment. For the
duration of this thesis, a shorter route has been designed by starting from a validated design.

In Figure 2.11, the A320 FEM model crash-deformation has been shown which was extracted
from Gransden and Alderliesten [11]. This deformation was generally consistent with exper-
imental results in terms of hinge formation and in passenger accelerations, considering the
variations between several seating locations [11]. Therefore, these results are used to validate
the crash-behaviour reliability of a voxel-mesh representation. Reasoning and results of the
detailed model idealization are presented in this section.

3.5.1 Idealization Assumptions

Topology optimization in the form presented in this thesis, to find the optimal distribution
of material in earliest design phases, would not produce thin-walled structures of the papers
presented in subsection 2.1.3 without requiring millions of brick-elements. The major defor-
mation mode present in the literature for drop testing happened in planar bending. Several
assumptions have been made in the translation of a thin-walled several-frame model to a
voxel-mesh planar model:

1. Tt is assumed that small-scale deformation modes (buckling of the thin-walled structures)
of the sections are negligible compared to the large-scale planar bending behaviour
described above. Therefore, it is assumed that the hinge-formation capabilities will
be unaffected. However, the global energy absorption capabilities will be affected, as
shown by Gransden and Alderliesten [11] where the cargo floor structure does plastically
deform under the buckling loads.

2. The crash-response seen for the A350-like six-frame (half-barrel) model in Gransden and
Alderliesten [11] (and in Figure 2.11) is constant along the fuselage section. Therefore,
it can be assumed that a planar model consisting of only 1 layer of elements in depth
direction can achieve the same response. Additionally, the out-of-plane sections can be
removed such as the tracks and stringers as their influence to the planar bending is
assumed negligible.

3. The deformation seen in the cabin in Figure 2.11 and the absorbed energy of its floor in
7?7 are very small, therefore it is assumed its influence on the occurrence of plastic hinge
formation is negligible. This allows for model size reduction by replacing the cabin with
a rigid-coupling constraint. Again, the amount of energy absorbed per hinge and their
exact location might be affected.

4. Following the results from ?7. It is assumed that the frame assembly’ bending response
and energy capability is dominated by the stiff and large frame. Therefore, the thin
skin and its brackets are neglected.

5. It is assumed that every aircraft, conventional and unconventional, will always include
frames. The frame of the A350-like aircraft has thus been taken out of the design space.
As a result, the load impact load will be distributed more evenly into the design space.
Additionally, in !!!, the optimization in displacement maximization resulted in removal
of mass closest to the impact site, reducing cargo-hold volume. This design choice
maintains the outer shape of the aircraft.
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6. Since the large scale crash-response is bending dominated, it is assumed that the bending
stiffness of the thin-walled structural sections can be used to replace them with solid
brick-sections (voxel-mesh).

3.5.2 Section idealization results of the A350-like aircraft

The A350 sub-floor structure is very detailed and consists of thin-walled elements. Following
assumptions 1 and 6 above, the goal is to replicate the response of the thin-walled sub-floor
structure in a crash event with a voxel-mesh model, by idealizing the sections with solid
3D elements (see Figure 3.13 for the idealized cross-sections). Since the crash response is
bending dominated, the choice has been made to idealize the thin-walled sections based on
their moment of inertia’s (compared to cross sectional area for axial/shear forces).

The FEM model of the A350-like aircraft six-frame model (see Figure 3.12) and its approxi-
mate dimensions have been used to idealize the sections.

Fuselage Skin

Frame

Frame Bracket

Stringer

Floor Strut

6-02m Floor Track

Floor Spar

Cargo Floor and Strut

Cargo Rail

Ground

Figure 3.12: Half-barrel six-frame model of the A350-like aircraft from Gransden and Alderliesten
[11]

From assumption number 2, 3 and 4, only the sub-floor structure will be modelled and the
floor-cabin domain will be replaced with a rigid body. The left-over sections and dimensions
can be found in Table 3.2.
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Table 3.2: A350-like thin-walled sectional dimensions and MOI

Section | t{mm] | huwer[mm] | wtiange s [mm] | wsiange2[mm] | Ly [mm?]
Frame Z 3 132 45 14 1.31 % 10°
Floor strut C 3 60 30 30 2.08 % 10°
Cargo floor C 3 40 22 8 4.84 % 10*
Cargo fl. strut | C 3 40 8 8 3.16 * 107

A section under bending should at least have 3-4 elements. So the desired mesh sizes of size
(h x h x t) can be found using I, = $5t(3h)3. However, each section requires its own mesh
size. Thus elements will be either over or under approximated for 1 uniform mesh size.

Cubic elements are unfit for this purpose when a mesh-study is to be performed, due to the
design choice to only model 1 layer following assumption 2. Different mesh-sizes will have
different thicknesses of the layer and thus a different total volume. Therefore cuboid elements
are used with a fixed thickness t and mesh-study sizes of h.

tuniform

45 mm

14 mm
Preferred Rounded

|
I -
|
I

Figure 3.13: Section idealization using MOI (not to scale). Section will either be over or under
approximated (red)

This thickness has to be constant for the entire model and the different mesh-sizes. So for
a range in thicknesses (2-10mm has acceptable widths for aspect ratio<3), each section’s
preferred width is calculated. Additionally, to perform a mesh-study, all the mesh-sizes of the
study should result models of equal total volumes (example: meshing a section of 169x13xt
can only be meshed with sizes h = 13, h = 6.5, h = 3.25. Modelling it with size 5 mm will give
a bigger section.). It is therefore decided to round these preferred widths to tens, allowing a
study on the element mesh sizes 10 mm, 5 mm, 2.5 mm and 2 mm. For each combination of
rounded widths and thickness, the section’s MOI are recalculated and compared to those in
Table 3.2.
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Table 3.3: Final section dimensions for a thickness of 5 mm with relevant errors
height [mm]| | I, error[%)] | height error [mm] | Acg error[%]
Frame 150 7.61 18 30.1
Floor strut 80 2.61 20 11.1
Cargo floor 50 7.61 10 19.0
Cargo floor strut | 40 -15.6 0 19.0

The combination with minimum error was a thickness of 5 mm. The corresponding rounded
section heights are then as shown in Table 3.3.Unfortunately, the MOI’s still deviate signifi-
cantly, by which the frame and cargo-floor have become stiffer in bending and the cargo floor
strut more compliant. This should be considered when comparing the crash-responses. Fur-
thermore, the section heights are affected which could have an effect on the spatial response
of the crash. However, the maximum error is 10mm on either side while the half-barrel has a
radius of approximately 3000mm so it is assumed negligible. Finally, the cross sectional area
of all 4 sections increased significantly, meaning the sections have become stiffer in tension
or compression and the volumes are greater. It is therefore important to note that no direct
comparison can be made between the thin-walled response and the idealized response. The
comparison only serves in concluding on the hinge-formation similarities.

3.5.3 Material, loads and boundary conditions

In the A350-like model of Figure 3.12, the floor strut, cargo floor and cargo floor strut assigned
material was Al-Li A8090 while the frame was assigned with Al-2024 [11]. Both with piece-
wise linear plasticity consisting of only 1 linear plastic step. Modelling two materials for a
voxelmesh would be rather complicated and with the similar Young’s moduli and yield stress
(73.1 - 71.7 GPa and 324-370 MPa respectively), only one material model will suffice. Al-2024
has been chosen since the frame was found to be absorb most energy in literature (see 77).
The material properties of the piecewise linear-plastic Al-2024 has been presented below in
Table 3.4. The last four rows corresponds to the 2 points of the piecewise-linear stress-strain
curve.

Table 3.4: Al-2024 material properties as used in [11]

Value unit
P 2780 kg/m3
E 73.1 GPa
v 0.33
ovield | 324 MPa
evield | 443 x1073
Omaz | 998.11 MPa
€ ww | 0.166

Assumption number 3 led to the rigid body coupling constraint substituting the cabin and
floor (see Figure 3.14. This rigid body is constrained to only translate along z, removing any
rotation. As a result, the experienced acceleration is uniform along the cabin width with a
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value similar to the seat closest to the frame. However, rotation of the floor would dissipate
energy elsewhere, so the experienced forces can be greater meaning it is conservative. A
rigid wall has been used to model the floor for contact analysis, using sliding with friction
coefficient of 0.5. A symmetry constraint has been imposed to limit the model size, where
again only translation along z is allowed.

RIGID BODY
m=443.1kg, T, = wy =0

|
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=
|
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1555 mm .Eo V:7E
Xl s
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3 g=981—=
fS i :
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12 40 mm
500mm 1500 mm

80 mm 750 mm

Floor
u = 0.5 (fric)

/1T

Figure 3.14: Half-barrel, sub-floor, single frame schematic of the A350-like aircraft with loads,
symmetry and boundary constraints

A gravity load and initial velocity are imposed on the entire model, including the rigid body.
The velocity should be 7 m/s with a total mass 1/6th of 2658.7 kg since only 1 frame is
modelled here alternative to 6 in [11] (neglecting the single frame mass of Figure 3.14). This
mass was distributed over the cabin floor and cargo floor, but to later include the cargo-hold in
the design space, all mass has been moved to the cabin floor for consistency. Fully integrated
shear-locking free solid elements (Isolid=18, Radioss), with full geometrical-non-linearities,
have been used in Altair Radioss using explicit non-linear analysis. The final mesh-size will
then be used and checked for reduced integration applicability.
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Chapter 4

Bending Energy Results

In this chapter, the bending energy formulations have been tested on the compression beam
using the HCA method. The goal was to compare the energy-absorption capabilities to
find the optimized formulation. First, the implementation of the HCA algorithm has been
verified using the standard case. Next, the comparison of the different L-IED formulations
are presented. To optimize the formulation even more, the contributions of the two halves
have been manipulated. This can be found in the preference study. Finally, the alternative
stress function formulation have been shown.

4.1 HCA verification

The compression beam test case, presented in subsection 3.2.3, has been used to verify the
correct implementation of the HCA algorithm and the integration of the software packages
(Radioss and Compose). Only the standard algorithm is tested of which the results have been
extracted from Bandi et al. [16] for comparison.

By doing so, the compression beam modelling in Radioss and its symmetry replacement can
also be verified. Four potential causes for discrepancies are given below:

1. The proportional gain had not been presented, which thus needed to be found.

2. the Von-Neumann neighborhood definition has been used instead of the Moore (see
Figure 2.15).

3. Finally, the piece-wise linear plasticity curve has been replaced by a Johnson-Cook
model.

4. As mentioned earlier, material interpolation cannot be included for shell elements in
Radioss.
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Figure 4.1: Topology solution (mirrored) for the standard HCA method applied to the compres-
sion beam
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Figure 4.2: Force displacement curve of the compression beam’s final topology solution (force
doubled for symmetry)

The magnitude and profile of the force displacement curves shows good agreement. Al-
though, the time increment for data-sampling was far more larger as can be seen from the
loss in smoothness. The designs also slightly differ but that can be explained by the different
neighborhood definition or the different found proportional gain.
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Figure 4.3: Verification results from Bandi et al. [16] for the compression beam using the standard
HCA framework

The implementation has been verified successfully, considering the changes made.

4.1.1 Inter-level gradient approximations verification

Obviously, the dynamic non-linear nature of crash-analysis would better use the full La-
grangian strain derivation in the derivation of element’ bending energy. Large plasticity (or
plasticity gradients in thickness/density gradients) are non-linear, resulting in lower accuracy
on the true bending energy with the linear approximation. Nevertheless, the small strain
assumption has significantly reduced the complexity of this framework, with the majority of
the energy being consistent with the bending deformation. In this section, verification of the
inter-level gradient approach is performed.

Identified inconsistencies

Two cases have been identified where non-representing energies were found in the linear
approximation using the neighboring elements (inter-level) field variables.

1. Density gradients in bending

2. Stepped thickness/density gradients in bending

Firstly, it has been shown in Appendix A that material interpolation in density gradients can
alter the severity and possibly orientation of the stress-gradient. As a result, the computed
bending energy can be erroneous. The correction presented in subsection 3.4.2 ensured these
gradient are correctly in line with the intra-level loading.
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Contour Plot
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Figure 4.4: Shear stress in the shear-deformed stepped thickness gradients

Secondly, for stepped thickness/density gradients in bending, not only the stress gradient
approximations are inconsistent, but even the inter-level strain gradients can be out-of-line
with the intra-level deformation and bending energy. Thinner /softer elements in stiffer corners
deform in shear, creating strain and stress discontinuities (see Figure 4.4). Additionally, the
stiffness discontinuity is worsened after the thinner elements enter the plastic regime, lowering
their relative stiffness even more.

The latter inconsistency thus remains in this framework. However, the effect might be neg-
ligible on the total bending energy, since the induced (or non-representative) shear stress
and strain gradients might compensate for the actual (intra-) bending energy. These shear
gradients are namely consistent relative to each other.

Intra- and inter-level gradients and bending energy comparison

Ideally, to compute the intra- and inter-level strain and stress gradients of the bilinear 4-node
elements, the corner date of full integration is used. Unfortunately, these corner values cannot
be exported in Radioss.

Alternatively, in subsection 3.3.2, the derivation of the strain gradient led to one where the
gradients are a function of the nodal displacements. Appendix C verifies the reconstruction
of the true strains from the true displacements when neglecting rotation and the non-linear
shear terms.
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Figure 4.5: Inter-level linear strain gradient approximation at peak internal energy for the solution
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Figure 4.6: Intra-level linear strain gradient approximation at peak internal energy for the solution

of L-IED2 (Figure 4.19)

The intra- and inter- level strain gradients show good agreement, although the intra-gradients
indeed differs along the edges of the sharp design in Figure 4.19, correlating to the thickness
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gradients. More local peaks are found for the intra-level strain gradients of xx and yy, while
indeed the stepped regions show less variations in the xy figures.

In Appendix D, a formulation has also been presented for the stress gradient based on the
strain gradients. These two combined would allow for the computation of the intra-level
bending energy reconstruction. Figure 4.7 and Figure 4.8 are presented below for inter- and
intra-level bending energy. As is clear, the overall distribution of the bending energy is quite
consistent. The stepped regions is indeed not affected by the strain discontinuities. Intra-level
does create localized peaks, as is expected for the smaller scale.

Iteration 100

o
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o
>

Bending Energy [J]

o
w

Figure 4.7: Intra-level linear bending energy at peak internal energy for the solution of L-IED2
(Figure 4.19)



4.1 HCA verification 53

Iteration 100

=
N

=
=)

o
©

Bending Energy [J]

o
o

Figure 4.8: Intra-level bending energy at peak internal energy for the solution of L-IED2 (Fig-
ure 4.19)

However, the magnitude is little over a factor two larger. This could be due to the chosen time
discretization in the stress gradient computation (Appendix D) or since an offset in the strain
gradient propogates further in the stress gradient. Nevertheless, the algorithm normalizes the
energies with the average (as will be explained in subsection 4.2.2).

4.1.2 HCA necessity verification

When the intra-level bending energy above would be used, the only function of the cellu-
lar automata approach would be to average the energies and thicknesses. However, as was
explained in subsection 3.3.3, such a small level of detail can be unstable or result in very
thin sections of only 1 element wide. For reduced-integration elements, the response would
become nonphysical.
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Figure 4.9: Intra-level L-IED2: Checkerboarding in the topology solution (mirrored)

To prove this, the gradients have been computed as such instead of extracting them from the
neighbors. As expected, optimizing this quantity from such local levels is impossible. Fig-
ure 4.9 demonstrates the unstable and non-physical checkerboarding result of such a method-
ology. Bending and 1 element cannot go hand in hand. Therefore, not only is the HCA
necessary in communication the field-variable (bending energy) states, it is even necessary in
deriving the states for better stability and wider sections. For comparison, the same iteration
(using same control and averaging parameters) of inter-level LIED-2 is given in Figure 4.10.
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Figure 4.10: Inter-level L-IED2

4.2 Resolution and control modifications

The FEM model and the HCA framework are now used for the bending energy formulation.
This section presents the modifications needed to reach convergence for the 4 formulations
of the IED (presented in subsection 3.3.4) within the whole bending energy functions of
Equation 3.37 and Equation 3.38.

4.2.1 Averaging modification

In the standard HCA example, averaging was not only applied on the field variable (IED),
but also on the design variable (thickness). Averaging of the bending energy had been im-
plemented, however, thickness averaging results in similar topology solutions for all 4 L-IED.
Each returning a single diagonal column under bending, as can be seen in Figure 4.11. This
is because the mesh size was too coarse to return multiple bendable sections. The baseline
turns-off averaging if the convergence criteria reaches a certain value (48) to attain a ’crisp’
solution [16], however the columns would become hollow again and strain away from conver-
gence. Averaging thus had initially been turned off fully, to which some design would run into
solver issues (squeezed elements that decrease the time-step for example), causing L-IED-2
and 3 to be stuck at iteration 66 and 54 respectively. Moreover, Some sections are only 1
element wide, causing reliability concerns of their stiffness in bending.

Therefore, to keep the same mesh-size, thickness averaging has only partially been removed
by scaling the influence of the neighboring elements to an arbitrary number of 0.025. In other
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Figure 4.11: Topology outputs for the 4 L-IED functions using full averaging or no averaging
(for a K}, = 0.05 in Equation 4.1)

words, the element thickness is dictated for approximately 10% by its neighbours. Larger
values have been tried as well and were found too large for this mesh-size to have a significant

effect.

@i + 3 jen, 0.0252;
v 0.025N; + 1

4.2.2 Control-gain modification for Convergence

The bending-energy optimization algorithm behaves rather different from the standard HCA
algorithm. Several key-events can be identified for the Bending-Energy HCA.
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Figure 4.12: Bending Energy (for L-IED-4) for the uniform thickness distribution of 0.3mm (left),
the fortification of the site-of-impact (middle) and the corresponding Bending energy (right)

1. First, the uniform distribution (input=0.3) of the field variable absorbs significant
amount of energy through bending, presented in Figure 4.12 (left). In the initial reor-
ganisation, the site or impact is fortified (middle) and non-bending regions are removed,
causing the bending energy to plunge (right, check energy bar range).

2. Once, the site of impact has been formed, the material between the floor and site-of-
impact slowly takes its shape and bending energy gradually increases with it.

3. Oscillation of the thickness changes and bending energy.

This third point is discussed below in more detail.
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Figure 4.13: Energy and convergence criteria evolution for L-IED-4 using a relatively stable value
of K, = 0.0016 in Equation 3.2(without thickness averaging for clarity)

It was found that the constant proportional control gain (presented in section 3.2) was insuffi-
cient in reaching convergence for a bending-energy governed structure. As a topology becomes
more defined/sharper (elements reaching the minimum density or maximum), the crash en-
ergy can become concentrated in a few local regions (Figure 4.14), drawing the bending-energy
away from previously formed regions (Figure 4.15). These high-energy regions resemble plas-
tic hinges while the solution is far from converged (many intermediate densities present).
Although hinges are desired, the convergence will not be reached due to oscillation in the
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design: The high-energy local regions are fortified at the cost of other regions. The above
explanation can be drawn from the energy and convergence criteria plot in Figure 4.13.
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Figure 4.14: Local bending deformation in an non-converged design (for L-IED-4 K, = 0.0016
without averaging)
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Figure 4.15: Oscillation of thickness due to the local bending deformation presented in Fig-
ure 4.14 without control gain modification for L-IED-4 using K, = 0.0016 (not converged)

A smaller control gain can be used to reduce the severity of the oscillation, at the cost of
more number of iterations (and thus more non-linear analysis’). Another option would be
constraining the maximum change of density of each element. However, oscillation cannot
be avoided once local-failure occurs, as the energy absorbing hinges drive the target bending
energy up resulting in the removal of existing structure. Therefore, once the algorithm has
reached this point, a different formulation of the objective is required. For a fair comparison
of the four L-IED functions, a single modification is used that was easy to implement.

The proportional control gain parameter has been made inversely related to the average error
between the bending energy and the target for all iterations. Equation 3.2 is altered to:

(4.1)

When the design sharpens and the total (and average) bending energy increases, the target
bending energy S*(*) increases and as a result the error of any (small or) non-bending element
increases. The error of each element is thus normalized to the average error, such that the
total change in density between iterations is less affected by the individual responses, reducing
or even eliminating the likelihood of diverging.

Alternatively, new local control rules can be formed (such as local bending-targets) or the
history in density of each element is tracked. However, due to the higher complexity in
implementation (determining new rules, mass control, zone-identification), this can be done
in the future.
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Finally, the convergence tolerance and its criteria have been altered as well. To filter out
the remaining oscillation between iterations, the error is computed as the average net change
over the period of two iterations. With the averaging and control gain modifications put
in place, the design are less susceptible to divergence and oscillation dampens out, as can
be in Figure 4.16 (Using L-IED-4 for example). The bending energy does reduce over time
compared to the solution without any averaging and control gain alteration in Figure 4.13.
This is due to detail loss caused by averaging, when comparing Figure 4.16 and Figure 4.17.
A higher level of detail has more smaller sections which are easier to bend causing a higher
(possibly non-physical) bending energy.
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Figure 4.16: Thickness averaging: Energy and convergence criteria evolution for L-IED-4 using
the modified control gain function of Equation 4.1 with a relatively stable value of K, = 0.05
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Figure 4.17: No thickness averaging: Energy and convergence criteria evolution for L-IED-4 using
the modified control gain function of Equation 4.1 with a relatively stable value of K, = 0.05

The corresponding tolerance § has been increased with a factor of 4 from 6.4 to 25.6 (ap-
proximately a global thickness change of 0.5%) due to the higher detail under less thickness
averaging.

4.3 L-IED Comparison

With these modifications in place, the 4 formulations have been compared in terms of geom-
etry and response.
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4.3.1 Topology solutions

The four models converged after 45, 100, 63 and 43 iterations in the order of L-IED-1 to 4.
Since L-IED failed to converge as soon, all of the solutions have been compared for iteration

100 as well.

Iteration 45 Iteration 100 1.0
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thickness [mm]
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Figure 4.18: L-IED-1 topology solutions for the larger convergence criteria (left) and for iteration
100 (right)



62 Bending Energy Results
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Figure 4.19: L-IED-2 topology solutions for the larger convergence criteria
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Figure 4.20: L-1ED-3 topology solutions for the larger convergence criteria (left) and for iteration
100 (right)
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Figure 4.21: L-IED-4 topology solutions for the larger convergence criteria (left) and for iteration
100 (right)

Most solutions did not change much after the large convergence tolerance had been met,
except L-IED-3. The effect of partial averaging can be seen when comparing the solutions to
those in Figure 4.11. Some detail is lost compared to 0 thickness averaging (top), while the
level of detail is far more greater than full averaging (bottom). Partial thickness averaging did
result in some intermediate densities (lighter blue) inside thicker sections. These are undesired
and ultimately removed. However, either full thickness averaging needs to be applied or no-
averaging. The latter will give very questionable coarse designs, thus for a greater mesh size,
averaging will be the solution. For the relative comparison, the influence of the intermediate
densities are assumed negligible.

Returning to the expectations of these four approaches (subsection 3.3.4) to half of the full
bend equation:

e L-IED-1: Considered the real bending-energy approach

e L-IED-2: Single-bend maximization approach: expects to return sections with 1 main
bend direction throughout the full impact to promote hinge formation.

e L-IED-3: Single-loading maximization approach: expects single-bending sections with
additionally unidirectional-loading throughout the full impact (bend in one direction
with only growing (no sign flip, either positive or negative) compressive/tensile/shear
stresses and strain)

e L-TED-4: L-TED-3 until plasticity: expected to be similar to function 1 while neglecting
elastic spring-back.
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Figure 4.18 (L-IED-1) and Figure 4.21 (L-IED-4) do indeed look similar. Figure 4.19 and
Figure 4.20 are both composed of multiple paths running to the ground, possibly stemming
from prioritizing the outer elements of a section under bending (removing the inner elements).
The difference between these latter two in formulation is also visible, where L-IED-2 allows
sign-changes in the stresses and strains by only considering the gradient direction during the
full response. Once an element bends under compression, the compressive normal forces move
towards the positive side. L-IED-3 would avoid eliminate these 'unloading’ elements while
L-IED-2 promotes these higher gradient elements. The curvier section showcase this, while
L-TED-3 has rather straight sections with a slight curve in one direction.

4.3.2 Crashworthiness

The Force-displacement curves have been plotted together with the plastic energy curve.
What is immediately noticeable is that the responses are not significantly better than the
straight column of the baseline. Initially it was believed that this was due to the absence of
material interpolation in my shell model. However, this has been disproven in Appendix B.
The peak forces are almost as high as the baseline and the final plastic energy is surprisingly
the same.
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Figure 4.22: Force-displacement curves of the 4 L-IED formulations (within the total bending-
energy functions) for the converged iterations



4.3 L-TIED Comparison

65

le3

1.75

1.50

1.25

Energy [J1
—
o
o

©
N
a

0.50

0.25

Iteration 45 LIED-1
Iteration 100 LIED-2
Iteration 63 LIED-3
Iteration 43 LIED-4
Standard HCA

0.00
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

Figure 4.23: The plastic-energy profiles of the 4 L-IED formulations (within the total bending-

energy functions) for the same iteration
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The inability of all formulations to significantly reduce the peak stress and increase the dis-
sipated energy could stem from the objective formulation. Fortifying high-bending regions
makes the design strong enough for the specific load case. Alternatively, a variable target can
be set that does not stiffen regions with large bending-deformation.
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Figure 4.24: The force-displacement curves of the 4 L-IED formulations (within the total bending-
energy functions) for the converged iterations
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Figure 4.25: The plastic-energy profiles of the 4 L-IED formulations (within the total bending-

energy functions) for the same iterations
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4.3.3 Conclusion

The objective of uniform bending-energy distribution does give new topology solutions, but
the overall performance is the same. The same amount of energy is captured for this load-case,
although this energy is now distributed in bending instead of only compression.

Nonetheless, it can be concluded that bendable-sections are formed using a bending-energy
quantity. When increasing the load, hinges can (and will) be formed compared to thick
column of the standard HCA algorithm.

Moreover, the different formulations do meet the expectations. The single-bend maximization
(L-IED-2) is most likely to form multiple plastic-hinges for an increased load. On this ground
and due to its lower peak load, L-IED-2 has been used in the subsequent sections.

Recommendations chapter: Optimize for smaller impact, test on required impact Variable
target to avoid stiffening bending regions of above average energies (but under bending limit)

4.4 Preference study

The full bending energy equation does not only include the L-IED function (L-IED-2), but
also the quadratic part (Q-IED). This part stem from the (assumed) linear stress and strain
gradients. Its relative presence has been small (1/24 compared to 1/4 for L-IED in Equa-
tion 3.37). However, the final magnitude difference is not 6 but in the range of 10-30. This
section studies the effect of function weight manipulation on compliant design.

By weighting, either the L-IED function or the Q-IED function receives a factor. Although this
alters the total energy, the normalization of the energy offset (to the objective (Equation 4.1)
makes convergence and stability unaffected. Therefore, the K, value can be kept at 0.05,
which helps limit this study.
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On average, for (A=1,B=1), the final energies differ by a factor 10-30 (including the factors
1/24 and 1/4). Therefore, A is increased by steps of 20.

4.4.1 Topology Results

The results have been presented below from only L-IED (A=0, B=1) to only Q-IED (A=1,
B=0) in increasing A. The normal solution (A=1, B=1) from Figure 4.19 is added again for
completeness.
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Figure 4.26: Preference study solution (A=0, B=1): only L-IED
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Figure 4.27: Preference study solution (A=1, B=1): no factor manipulation
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Figure 4.28: Preference study solution (A=20, B=1)
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Figure 4.29: Preference study solution (A=40, B=1)
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Figure 4.30: Preference study solution (A=60, B=1)
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Figure 4.31: (no-convergence) Preference study solution (A=80, B=1)
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Figure 4.32: Preference study solution (A=1, B=0): Only Q-IED (not converged) showing de-
facto hinge characteristic

As is clear, for increasing A the number of hollow regions (called bubbles henceforth) increases.
Additionally, for the highest values of A, spurious mass is gathered along the edge. Looking
at Figure 4.32 might explain why.

When B=0, only the Q-IED function is present in the function. This quantity only considers
both gradients and thus the magnitude of the loading (compression, tension and shear) are
not taken into account. As a result, low bending elements that are in the line of load are
removed. For the compression beam, this lead to a very compliant model which does not
absorb energy in compression. An iteration of this run can be seen in Figure 4.32. The non-
linear solver would not complete without material in the bottom half for the first 20 iterations,
thus the minimum thickness had to be gradually lowered (0.15 to 0.05 in steps of 0.0025) and
the thickness averaging was scaled up (0.025 to 0.2). In the end, convergence could not be
reached due to the de-facto-like hinges that occurred. Considering this and the optimization
modifications, this solution is not directly comparable to the other outputs. However, it is
still presented to explain the progress of increasing constant A. Solution A=80, B=1 did not
need the thickness degradation but the inability to reach convergence was evident here too.

The effect of the Q-IED functions thus leads to the formation of bubbles and material moving
outward from the line-of-loading. This is why intermediate factors include spurious materials
on the side which are barely loaded. The reason the stress and strain gradients are both
non-zero is a direct result of using a continuous mesh. As thick material bends outward,
the ’deleted’ elements are pushed outward as well. It is recommended for future work to
implement an effective element removal framework, which allows element reintroduction.

Whether these bubbles make the design more compliant and promote plastic hinge formation,
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is discussed in the following section.

4.4.2 Response Results

In Figure 4.33, there is a clear downward trend of the peak force during crash-analysis when
adding preference to the Q-IED function. However, too large of a preference (A=80 with B=1
or A=1 with B=0) and convergence is not reached or the design is almost too compliant.
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Figure 4.33: The force-displacement curves of the Preference Study for the converged iterations
(and not-converged NC)

Figure 4.34 does show that the bubble-like structure deforms in bending. When looking at its
plastic strain, 1 hot-spot is visible with unrealistic magnitudes. Although, this is caused by
the intermediate densities in that region (see Figure 4.31), which have negligible stiffness and
thus negligible influence on the response. When we filter the plastic strain, more hot-spots
are visible that do lay in maximum thickness regions.
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Figure 4.34: The deformed and un-deformed solution with plasticity for (A=80,B=1)!
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Figure 4.35: The plastic-energy profiles of the Preference Study for the same iterations
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Chapter 5

Proof-of-concept (POC)

In this chapter, the results of the voxel-mesh reliability study have been presented to be able
to answer the first research question. Furthermore, the outcomes of the basic HCA and the
bending-optimized HCA are presented.

5.1 Idealization validation

The energy profile, acceleration profile and general damage analysis could help answer the
first research question whether a voxel-mesh can give meaningful results.

5.1.1 Deformation and damage analysis comparison

Firstly, before analyzing the energies or accelerations, the deformation and possible damage
has been analyzed. Damage analysis had been included using the strain limit as was done by
Gransden and Alderliesten [11] (€42 = 0.166, 0 ez = 558.11M Pa).

In [11] shown in Figure 5.1 below, a plastic hinge formed at A, although far less 'hinged’
than point C in the A320 of Figure 2.11. Furthermore, the cargo-floor region B has some
considerable plastic deformation. Location C below indicates a high stress region on the frame
close to the floor spar.
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Figure 5.1: Von-Mises stress distribution (a) and plastic strain distribution (b) at maximum
stress (t=0.125s) for the metal A350-like aircraft from [11]

In the voxel-mesh approximation of Figure 5.2 , the plastic hinge in the frame is missing.
Region B in Figure 5.2 points at the more concentrated (compared to region B in Figure 5.1)
deformation and stresses in the cargo floor region. The high stress and strain region of C is
more pronounced in the image below as well although now it is below the floor spar.

The cause for this high stress at C' in the voxel-mesh approximation is the rigid body replace-
ment for the floor-cabin structure, which blocks the translation and rotation of this end of
the frame. The disappearance of the hinge at A in Figure 5.1 can have the same explanation,
since little rotation is allowed in the triangle construction. Instead, the stress and strain
build-up in a weak spot nearby labelled with A in Figure 5.2. Hypothetically, A and C from
Figure 5.1 and A and C from Figure 5.1 are related (thus the equal labelling).



5.1 Idealization validation i

Contour Plot

Von Mises(Scalar value)

Simple Average (Var. <= 75%)
4.578E+02

l 4.069E+02
3.561E+02

— 3.053+02

o 2544E402

2 2.036E+02

1.5276+02
1.0196+02
5.105E+01

Contour Plot
Plastic Strain(Scalar value)
Simple Average (Var. <= 75%)
1.192€:01
[ 1.060E-01
9.275€-02
— 7.950E-02
5 6.625602
£ s5.300e02

3.975E-02
2.650E-02
1.3256-02

2.050€-01 B 0.000E+00

No Result No Result
Max = 4.578E+02 Max = 1.192E01
SOLID 59293 SOLID 62346
Min = 2.050E-01 Min = 0.000E+00
SOLID 42145 - SOLID 1778

z | ol z

\ -
@ el
Y mES A Y

(@) (b)

Figure 5.2: Von-Mises stress distribution (a) and plastic strain distribution (b) at maximum
stress (t=0.055s) for the 10 mm voxel-mesh approximation

Above, the results for 10 mm of the voxel-mesh approximation of Figure 5.2 has been shown
and discussed. A similar response was given by 5 mm and both experienced little damage.
Despite that, the meshes of 2.5 mm and 2 mm fully split in the introduced stress concentrations
at location C' and at the root of the cargo-floor. Location A partially split for 2.5 mm and
also fully split here for 2 mm. See Figure 5.3.
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Figure 5.3: Ruptures in the 2 mm voxel-mesh approximation

Mesh-study on peak-stresses are a problem in FEM as the peak values tend to increase
in refinement. Therefore, these high introduced stress-concentrations (as explained from the
previous section) in combination with a very fine mesh could be the cause for crack nucleation
(and thus damage progression). Gransden and Alderliesten [11] have not presented their mesh
size for verification. Secondly, more energy could have entered the critical region due to:

 the absence of small-scale deformation modes (assumption 1 and removal of skin and
brackets in assumption 2)

o the absence of a more compliant floor due to the rigid-body replacement (assumption
3). Figure 5.1 deformed significantly as opposed to the A320 in Figure 2.11.
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Additionally, the voxel-mesh is stepped along the boundaries, creating or increasing stress
concentration here.

Since damage is limited for the detailed model [11], avoiding the use of element deletion in
the voxel-mesh could overcome the introduced higher stresses.

5.1.2 Energy profile comparison

The 4 mesh size models have been loaded in with a mass 1/6th of the half-barrel six-frame
mass since hese represent 1 frame. To be able to compare the energy response, the normalized
energies have been computed (see Figure 5.4 and Figure 5.5) and compared to those in
Figure 5.6. A fair comparison can be made since the starting kinetic energies are equal.
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Figure 5.4: Kinetic Energy profile of the A350-like voxel-mesh approximation for different element
widths (for thickness 5 mm)
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Figure 5.5: Plastic Energy profile of the A350-like voxel-mesh approximation for different element
widths (for thickness 5 mm)

Kinetic energy comparison between materials during drop test
T T T T

o
T
~

Metal
=% ) e Quasi-lsofy
SUs e Laminate []

- o N

o O O,
T
U

| S T | — = Bl Ty sy
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Mass—Normalised
Energy [J/kg]

T ==

n
(=]
T

|}
P |
1
1
1
1
1
1
1
I
1
1
1

Mass—Normalised
Energy [J/kg]
>
T
X
X
|

(=]

0.05 0.1 0.15 0.2 0.25 0.3 0.35

o

Figure 5.6: Plastic and kinetic Energy profile of the A350-like aircraft for different materials
from [11]

Comparing the kinetic energy profile, it is evident that the crash-response is more elongated
for the detailed baseline model (metal curve in Figure 5.6) with a duration of 150 ms before
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bouncing back up. The voxel-mesh approximation for the meshes that do not rupture (10
and 5 mm) bounce back up after approximately 60 ms (Figure 5.4). This shorter crash-
response can be explained by the stiffer (in bending) sections and the rigid-floor replacement.
Unfortunately, as explained above, element deletion due to the high stress-concentration in
critical regions caused sudden rupture for the fine meshes 2.5 and 2 mm. These curves (red
and green) thus have a more prolonged crash-response, although the deformation is nowhere
near the baseline (Figure 5.3 versus Figure 5.1).

The plastic energy of the baseline (metal curve in Figure 5.6) amounts to roughly 20 J/kg
within the first 150 ms and converges to roughly 22 J/kg over the coarse of 350 ms. For the
coarse (10 and 5 mm in Figure 5.5) voxel-mesh approximation, 22 J/kg is reached within
the first 60 ms and 5 mm then converges at 23 J/kg. Therefore, besides the shorter crash
response, the dissipated energies are very similar. For the finer meshes, failure at different
timesteps led to greater frame bending followed by increased energy dissipation.

5.1.3 Passenger safety

Below, the two crash-response accelerations are presented to be compared, Figure 5.8 for
the baseline and Figure 5.7 for the approximate voxel-mesh representations. Both have been
filtered using 60 Hz Butterworth filtering. For the voxel-mesh approximations, the accelerom-
eter is placed in the rigid body representing the floor. The baseline has its accelerometer in
center of the section on the deformable floor.

— 10mm

Acceleration [g]

Figure 5.7: The resultant accelerations (100 Hz cut-off frequency, 4-pole Butterworth filtering)
of the voxel-mesh approximations experienced by the rigid body

Butterworth filtered (60 Hz) acceleration on aisle PAX
30 I | - I I | I

Acceleration [g]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [s]

Figure 5.8: The resultant accelerations of the A350-like aircraft for different materials from [11]
(black corresponds to metal)

Immediately it can be seen that, again, the crash-duration is shorter for the voxel-mesh
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approximations and shows less variation during impact. Additionally, some oscillation is
visible after 100 ms due to the elastic vibration mid-air of the structure after bounce. The
meshes 10 and 5 mm peak at 15 g during spring-back at 60 ms, while progressive damage in
2.5 and 2 mm result in drop of acceleration and no spring-back. The baseline peaks at about
22 g during spring-back at 150 ms.

The voxel-mesh approximations have shown to not reach the same peak value, even though
its floor is not able to dampen any motion (due to the rigid constraint). The difference of 7g
is significant, but the least, the order of magnitudes are equal. On the other hand, the 10
mm and 5 mm mesh models have a sustained peak lasting almost 90-100 ms. This is in the
same range of impact severity in the Eiband plot of Figure 5.9 [11]. Here, the voxel-meshes
10 and 5 mm ar represented by the red dot.

100
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£ Quasi-lso

Moderate Injury |
1 +% Laminate

Acceleration [g]

1 10 100 1000

Duration [ms]

Figure 5.9: The injury severity of the crash response from [11]

5.1.4 Conclusion comparison and research question 1

It has been argued that multiple assumptions led to higher stress concentrations in all 4
meshes. The absence of energy dissipation in the floor-cabin or crippling in the skin brackets
and the inability of the floor connections to rotate. These higher stress concentrations led
to rupture for the fine meshes 2 and 2.5 mm which was not present in the metallic model
of Gransden and Alderliesten [11]. The following solutions could make the voxel-mesh more
representative of the detailed model:

1. The energy dissipated in brackets and skin should be removed from the input kinetic
energy.

2. The cabin-floor structure should be idealized as well or replaced by a representative
spring. By doing so, the hinge formation can be achieved in the voxel-mesh as well
since translation and rotation is not obstructed.

Nevertheless, the 10 mm mesh and 5 mm mesh did not experience rupture (due to low
detect-ability of stress peaks in coarser meshes) to which their crash-responses were in good
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agreement in terms of plastic energy dissipation and injury severity. Their energy and ac-
celeration profiles were far off still, as the duration until spring-back was almost three times
shorter and the accelerations did not fluctuate as much.

RQ 1. How can detailed FEM aircraft crashworthiness assessment reliably be approximated
by voxel-mesh models?

The suggestions named above are believed to make the voxel-mesh crash-responses represen-
tative for detailed models. In its current state, the approximation is reliable enough for the
conceptual design stage.

For the duration of this thesis, hinge formation is forced by a removing element deletion and
increases the impact kinetic energy. The stress concentrations do not result in failure and
therefore the normal hinges can be formed.

5.2 Sub-floor structure crashworthiness TO using HCA: set-up

The aim of the proof-of-concept is to prove that standard crashworthiness TO is not suitable
for aircraft such that a new method is to be found. The sub-floor structure of the previous
section will be turned into a design space and optimized in this section.

5.2.1 Material, loads and boundary conditions Il

The aforementioned progressive damage and element deletion has the potential to cause rup-
tures for intermediate densities in a topology optimization run. Lower thickness or density
elements namely experience greater deformation. Three problems had been found for rupture
in TO:

e Once an element is deleted, progressive damage can propagate through elements that
have been 'removed’ (at the minimum density /thickness) to functional elements. Addi-
tionally, it requires self-contact modelling.

e The response discontinuity between the subsequent iterations cause drastic topology
changes and avoids convergence.

e A deleted element only holds a piece of the history of the crash duration.

Additionally, damage modelling had also not been included in the Controlled Energy Absorp-
tion research (the HCA baseline) by Bandi [16]. Therefore, considering all these arguments
and the fact that there is no clear damage in the metal A350-like sub-floor structure FEM
model [11], the strain limit has been removed from the material model.

By doing so, the entire model becomes stiffer so a compensation in kinetic energy is required.
The aforementioned mass (1/6th of 2658.6 kg) and velocity (7 m/s) in Figure 3.14 have been
increased such that the hinge characteristics can be observed, deviating from the baseline
loads. The velocity of 9 m/s has been chosen following the research by Xue et al. [37]. The
mass increased to 1250 kg. By doing so, a direct comparison between the A350-like crash
response of Gransden and Alderliesten [11] and its voxel-mesh counterpart cannot be made



82 Proof-of-concept (POC)

anymore, especially not with the nonphysical strains. The crash response of the voxel-mesh
idealization can however be used to compare with the topology optimization output under
the same conditions.

V =—-9m/s,m = 1.250

Finally, the material model has been made more continuous by utilizing a Johnson-Cook
plasticity model of the strain-rate insensitive A12024-T3. At room temperature, the following
parameters remain as presented in Table 5.1. The Johnson-Cook model in Equation 3.3 is a
function of the plastic strain, A is the yield strength and B is the hardening modulus.

Table 5.1: Al-2024 T3 material properties

Value unit
p | 2700 kg/m3
E |70 GPa
v | 0.33
A | 369 MPa,
B | 684 MPa,
n | 0.73

5.2.2 Sub-floor structure mesh study

Four mesh sizes had been used so far and only one will be used in this thesis, which shall be
found using a mesh-size study on the existing structure. These 4 sizes resulted in voxel-mesh
approximations of equal total volume, such that they can be compared rightfully. Additionally,
the coarsest size (10 mm) still guarantees that the existing sections of the A350-like aircraft
are modelled with at least 4 elements in bending to avoid shear-locking.

Contour Plot
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Figure 5.10: Plastic strain on the deformed voxel-mesh representation for mesh-size 5 mm

As can be seen in Figure 5.10, the increase in mass, velocity, change of material model and no
of element deletion gives a deformation similar to that of the A320 in Figure 2.11. Especially
the hinge at B is evident again. The hinge at C is still in the weaker strut due to the the
inability of the strut and frame to translate and rotate from their floor connection point (the
rigid body). The maximum plastic strain does exceed the earlier used 0.166 limit greatly as
expected, however these are very localized points. The surrounding regions 1 or 2 elements
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away show less than 0.2 plasticity. All the mesh sizes have the same deformation as shown in
Figure 5.10.
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Figure 5.11: Internal energy profiles in the mesh-study
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Figure 5.12: Kinetic energy profiles in the mesh-study
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Figure 5.14: Plastic energy profiles in the mesh-study
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The elastic, plastic, internal and kinetic energy are computed for each mesh size, these have
been presented in Figure 5.11-Figure 5.14. The two kinks in each curves, between 150 ms and
200 ms, correlate to the frame hitting the ground at a second location (below the floor strut)
and bouncing back up. It is clear that each mesh size is able to capture the exact same crash
response. The only significant difference can be found close to 150 ms for the elastic energy,
where mesh size 10 shows some delay. When computing the error between the elastic energy
peaks between mesh 10 and mesh 2 (correcting the delay), the error is only 3.9%. A mesh of
10x10x5 mm is thus fine enough, moreover going from 10 mm to 5 mm costs roughly 4 times
as much computational power.

On that note, fully-integrated elements are costly, thus it is preferred to move towards reduced
integration. The default reduced integration element of radioss (Isolid =24) is used, with
physical hourglass control since the structure is loaded in bending. Again full geometric non-
linearities are used. The results had been added in each graph, showcasing good agreement
with the finer 2 mm mesh.

It is important to note different mesh-sizes result in different levels of detail in a HCA topology
solution. However, this study is removed from the scope of this thesis. The minimal resolution
of 10 mm has been chosen to make sure that the level of detail of the current A350-like aircraft
can be attained, since the narrowest section is 40 mm high with a minimum of 3-4 elements
along the bend. A larger mesh size was thus not added in the study.

5.2.3 Sub-floor structure HCA crashworthiness TO: Design domain

The sub-floor structure is now fully filled as a starting point. The frame shall always be
present (as stated in the assumptions) and is taken out of the design domain.
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Figure 5.15: The design domain to be optimized using the HCA (the velocity and gravity are
imposed on the whole model)

The final mass goal is to be the same as the A350-like voxel-mesh approximation, such that
the comparison is fair. The number of elements that the floor strut, cargo-floor spar and
cargo-floor strut have combined has been divided by the number of elements in the design
domain to find the target mass fraction:

Miarger = 0.0461

5.3 Sub-floor structure HCA and BOHCA solutions

In order to prove the in-applicability of the original HCA method, it has been applied to a
A350-like sub-floor design-space, aiming to present the need for plastic hinge formation in
topology optimization. Secondly, the new HCA method has been applied and compared to
the A350-like voxel-mesh approximation.

5.3.1 Standard HCA

The Figure 5.15 for 10 mm mesh resulted in 46182 elements. Using the basic principles
presented in section 3.2 on Delftblue HPC (24 CPU 4Gb/CPU for 15 min per iterations) gave
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the following results.
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Figure 5.16: Sub-floor topology solution for iteration 140
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Figure 5.17: Sub-floor IED distribution for iteration 139: basic HCA

Between iteration 140 and iteration 50 there is little difference, the convergence tolerance was
too small or the control parameter gain should have been increased.
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Figure 5.18: Sub-floor topology solution for iteration 50: Basic HCA

The IED plot as shown in Figure 5.17 demonstrates that the HCA principle indeed acquires
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a structure of which every element contributes in carrying the internal energy. However,
you can already see that, in terms of passenger safety, this design is far from optimal. The
accelerations are not shown as the input mass is not representative anymore. Instead, the
force displacement curve has be shown.

800 —— standard HCA
—— A350-like voxel-mesh

0 200 400 600 800 1000
Displacement [mm]

Figure 5.19: Force displacement curves of the standard HCA and the baseline voxel-mesh rep-
resentation

As expected, the standard HCA proves insufficient as the force propagating to the floor far
exceeds the baseline with minimal displacement. Negligible energy is dissipated, therefore,
the energy profiles are not shown for this design.

5.3.2 Bending-Optimized HCA

The boundary condition applied resembling plane-strain caused inconsistencies with the plane-
stress shell model. It has been derived that this is due to the low-density elements straining
excessively. With the inability to expand out-of-plane, the mass shift in other directions,
creating bending energies.

Therefore, in the sub-floor model, this out-of-plane deformation constraint has been relaxed,
resulting in very small out-of-plane stress (resembling the shell model again).

Four solutions are provided in this order, all using the L-IED2 function and full averaging of
the bending energy:

1. Preference: [A=B=1], full averaging of the densities

2. Preference: [A=60, B=1], full averaging of the densities



88 Proof-of-concept (POC)

. 10
Iteration 60

| |

. \ 0.8

02

Figure 5.20: Sub-floor topology solution for L-IED2, Preference: [A=B=1], full averaging of the
densities
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Figure 5.21: Bending Energy: sub-floor topology solution for L-IED2, Preference: [A=60, B=1],
full averaging of the densities

The relatively straight columns of Figure 5.22 appear to be hinge about the stiffened intere-
sects, with increased bending energies as shown in Figure 5.23.
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Figure 5.22: Sub-floor topology solution for L-IED2, Preference: [A=B=1], full averaging of the
densities
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Figure 5.23: Bending Energy: sub-floor topology solution for L-IED2, Preference: [A=60, B=1],
full averaging of the densities

As expected, adding a preference to the Q-IED function is consistent with the compression
beam case presented in Figure 4.30, creating bubble like sections that resemble large-scale
spinodal structures.
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Chapter 6

Conclusion and Recommendations

It has been envisioned that unconventional aircraft structural design can make good use of
topology optimization in the conceptual design phase, finding the most efficient distribution
of mass for all load-cases without going back and forth. One of such cases is crashworthiness
design and assessment, which can be a complication for the Flying-V with its reduced sub-
floor hold volume. Therefore, a methodology has been developed that optimizes the sub-floor
structure domain in terms of bending-energy. The method proved effective in creating sections
that are loaded in bending for a representative small scale model.

Plastic hinges are a direct consequence of bending, leading towards the objective of uniform
bending energy distribution in the Hybrid Cellular Automata framework. Reconstructing
the bending energy functions on inter-cell-level using the Hybrid Cellular Automata principle
showed good agreement with intra-level computations, while increasing the stability. The
derived bending energy function assumed linear distribution of strains and stresses in the
plane of bending. Although thickness/density gradients were found non-adhering to this
assumption, the formulation proved successful in returning sections loaded in bending. The
objective function with the standard formulation however was found incapable of exploiting
these sections to form hinges, as hinges are being fortified resulting in stiff bending sections.

The assumption of both a linear stress and strain distribution in elastic and plastic deforma-
tion resulted in a quadratic (Q-IED) and a linear (L-IED) term in the bending energy density
formulation. This L-IED function had been interpreted or manipulated in four ways. A
comparison study found that L-IED-2, which favours coherence between the strain and stress
gradient in a single direction, has the highest potential in leading towards hinge-formation,
due to the greater curvatures in the sections. A study on the relative contribution of the
L-IED-2 and its Q-IED counterpart to the total energy has shown that the structure can
become more compliant by favoring Q-IED, resulting in effective peak force reduction. An
optimal number should be found to avoid convergence issues and de-facto hinge occurence.
Thus, for the first part of the hypothesis below, it can be concluded that plastic hinge forma-
tion and compliant mechanisms can be achieved in HCA by manipulating the bending-energy
formulation.
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Does bending optimization in HCA allow plastic hinge formation in topology optimization
(TO) to improve the crashworthiness of aircraft?

Finally, to test the applicability of the framework for aircraft crashworthiness, a sub-floor
structure had been optimized. The validity of a voxel-mesh model for aircraft crash-analysis
needed to be proven. The A350-like aircraft voxel-mesh approximation showed good agree-
ment with a detailed analysis, considering the simplifications made and the envisioned design
phase usage. This conclusion had been drawn from deformation, acceleration and energy
analysis. The rigid-floor coupling should be removed and replaced by the actual cabin-floor
(stiffness). The framework was then applied on the entire sub-floor volume to conclude on
the second part of the hypothesis.

Recommendations bending energy

1. Include the non-linear terms in the Lagrange strain tensor in deriving the bending
energy

2. Derive the corresponding non-linear stress distribution function

3. Find a new objective function that does not bring the whole domain to an equal state
of bending, but rather exploit some hinges that are formed.

Recommendations aircraft crashworthiness and TO

1. Set-up an element reintroduction scheme to be able to remove them from the non-linear
analysis. The minimum value of 0.001 absorbs a neglighle amount of energy, although
the response is altered once they have been completely removed

2. Reduce the input kinetic energy with a factor that corresponds to energy dissipating in
rivet failure and plasticity in the skin-panel.

3. Include the static case of supporting the floor in the topology run. Use the standard
HCA with strain energy density (elastic) and combine with the crash-scenario through
weighting.

4. Do not replace the cabin-floor structure with a rigid body for computational cost saving,
as rotation along the frame-hinge is comprised and the accelerations are uniform along
the seating span. Idealize both the cabin-frame and floor or limit the computational cost
through replacement with a very-stiff material (replicating the cabin-floor stiffness).

5. Remove the cargo-hold from the design domain to force a load around the hold.
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Appendix A

Stress gradient with material
interpolation: proof

The necessity of the stress gradient correction for material interpolation TO presented in
subsection 3.4.2 will be shown in this Appendix.

A.1 Stress and strain linear-gradient approximation comparison

For the solution of L-IED-2 presented in Figure 4.19, the gradients have been computed for the
shell model without material interpolation and the brick model with material interpolation.

For comparison, the bounds of the brick gradients (Figure A.2) are from the shell model
bounds (Figure A.1).
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Figure A.1: Shell model (no material interpolation) linear strain gradient approximation at peak
internal energy
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Figure A.2: Brick model (with material interpolation) linear strain gradient approximation at
peak internal energy

As expected, the distribution of the strain gradient approximations are equal. The magnitudes
of the brick model, with material interpolation are slightly larger due to the degraded stiffness
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of intermediate densities.

Material interpolation results lower stress magnitudes, scaling the bending energy density
for brick elements. In the shell model, the total energy is scaled through the thickness
(Equation 3.37. Therefore, since the strains are considered identical, the shell thickness
scaling is included in its stress gradient (see Figure A.3).
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Figure A.3: Shell model (no material interpolation) linear stress gradient approximation at peak
internal energy
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Figure A.4: Brick model (with material interpolation) linear stress gradient approximation at
peak internal energy

LINEAR APPROXIMATION OF STRESS GRADIENT (corrected)
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Figure A.5: Brick model (with material interpolation) corrected linear stress gradient approxi-
mation at peak internal energy

The uncorrected stress gradient approximations of the brick model (Figure A.4) clearly follow
the outline of the design, hinting at correlation to the density gradients. These inconsistent
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gradients induce increased non-physical bending energy, avoiding sharpening (black-white) of
the design. Correction as presented in subsection 3.4.2 has been shown in Figure A.5. The
inconsistent gradients along the boundaries are filtered and the peak gradients are equal to
those in Figure A.3.

A.2 Result comparison

Below, in Figure A.6 in can indeed be seen that even after 117 iterations, the boundaries are
not refined. With correction (Figure A.7), convergence can be reached.

Iteration 117

1.0

0.8

thickness [mm]

0.4

0.2

Figure A.6: Topology solution (not converged) for the brick model (with material interpolation)
without stress gradient correction
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Iteration 84
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Figure A.7: Topology solution for the brick model (with material interpolation) with stress
gradient correction



Appendix B

Shells thickness optimization without
material interpolation: analysis

Shell thickness optimization as performed in this thesis has assumed that material inter-
polation is not necessary for the HCA algorithm, following the inability of shell material
interpolation in Radioss. The algorithm is not gradient-based, rather local rules on the field
variable (bending energy in this case) are used in optimization. However, minimum thickness
elements could influence the response. This chapter compares brick elements with material
interpolation with that of shell elements without material interpolation.
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B.1 Comparison with brick model including material interpolation

—— L-IED2 shell solution
—— L-IED2 shell solution: brick re-run
—— L-IED2 brick solution
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Figure B.1: Internal energy profiles of the L-IED2 (iteration 100) shell solution and its material-
interpolated brick re-run

Comparing the shell analysis with the brick re-run of the same topology solution (?7) in
Figure B.1, it is visible that the thin elements with unaltered stiffness and yield strength do
not absorb significantly deviating energy. In fact, at t= 0.018, 11.0% of the absorbed energy
dissipated in the elements thinner than 10% of the maximum thickness. In the brick re-run,
that is 11.6% composed by the same elements.

The brick-rerun has a little more elastic energy stored at peak internal energy, due to the
reduced stiffness’. Furthermore, when looking at Figure B.2, material interpolation resulted
in less indentation of the impactor, while increasing the peak load all the while. A potentional
cause for this mismatch might be that the material interpolation (in Radioss) also includes
scaling of the internal forces (besides scaling of the density, stiffness and yield strength),
possibly slightly altering the load path. Other reasons could be the plane-stress simplification
of the shells or the different forms of hourglass stabilization.
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—— L-IED2 shell solution
—— L-IED2 shell solution: brick rerun
30/ — LIED2 brick solution
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Figure B.2: Force-displacement curves of the L-IED2 (iteration 100) shell solution and its
material-interpolated brick re-run

The solution of a full optimization run on the brick model with material interpolation had
been presented in Figure A.7. Its results have been added to the plots, leading towards the
conclusion that (for 2D cases) this HCA framework might work better using shells without
material interpolation. The naturally continuous stress field, as opposed to correcting the
stress gradients, might play a role in this.

B.2 conclusion

Altogether, material interpolation does indeed not necessarily need to be included in the
HCA framework for shells since the thickness is incorporated in the total energy computation.
However, the responses can differ, resulting in different topology solutions.
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Appendix C

Intra-level strain gradient verification:
Small-strain verification

Some inconsistencies were found with the intra-level deformation (see subsection 4.1.1) which
require verification of the inter-level bending energies. A simplified model has been used to
find the element strains along the edges, which neglects the geometrical non-linearities. This
section verifies the simplified model by comparing the strains with the true (fully non-linear
geometrical) strains from Radioss.

C.1 Verification case

An intermediate result of L-IED2 has been taken, experiencing large displacements and rota-
tions due to the intermediate thicknesses. See Figure 4.10.

C.2 Strain comparison

The true strains for the analysis using full geometrical non-linearities is shown in Figure C.1.
Reconstruction of the true strains using its displacement field and neglecting the non-linear
terms and rotations is given in Figure C.2. Note that the bounds of the true strains are
projected on the reconstruction.
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Figure C.1: Strains at peak energy using full geometrical non-linearity
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Figure C.2: Strain reconstructing from the true strain displacement field at peak energy using
small strains on global reference
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The figures show good agreement, while only the regions with excessive distortion (Figure C.3)
are significantly different.
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Figure C.3: Distorted elements visible in the ¢, plot
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Appendix D

Alternative stress-gradient
approximation

To avoid using the stress states of plastically deformed thinner adjacent neighbors, the internal
stress gradient of the center element can be reconstructed from the strain gradients.

The stress state of a plane stress shell element in Radioss is computed using explicit time
integration using the strain rate. This elastic stress is presented in Equation D.1.

o (t + At) = o(t) + LAt (D.1)

Here, L is the plane stress stiffness matrix:

vE 0
1752 1EV2
L = IILVQ 1_]/2 0 (D.2)
0 0 £

1

J’_

v

Suppose for a small enough value of delta t, LEAt = LAe.

The element von-mises stress for a plane stress shell element is given Equation D.3. The yield
stress is calculated using the Johnson-cook plasticity model presented in Equation D.4, where
a is the material yield stress, b is the hardening modulus, €, the true plastic strain and n the
hardening exponent.

VM 2 2 2
0" =04, + 0y — Oua0Oyy + 303, (D.3)

oVl (L) = a + bep(t) (D.4)

Once an element starts yielding (oV > g¥*d) its (elastic) von-mises stress needs to be
brought back to the yielding surface called the plastic admissible stress (oP*. This turns
Equation D.1 in:

o_yield
ofl, = - (0; + LAe) (D.5)
0if1
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Now, when we want to compute the top or bottom stress, we simply have:

yield
TOoP _ 9i+1 TOP TOP
i+1

Then the gradient of Equation 3.39 becomes:

TOP BOTTOM yield TOP BOTTOM TOP BOTTOM
Tit1 — %yl Tit1 (Uz' —0; —|—LA€ — Ae )
- VM
2h ol 2h 2h
or:
TOP BOTTOM yield TOP BOTTOM TOP TOP BOTTOM BOTTOM

01 — 01 _ %+ o; —0; 4 L(€i+1 —& ") — (5z‘+1 — & )

2h erj\l/[ 2h 2h

Grouping the strain terms to gradients:

TOP BOTTOM yteld TOP BOTTOM TOP BOTTOM TOP BOTTOM
011 — 0,341 _ i+ o; —0; i L(€i+1 — &1 ) — (& —&; )
2h a}f‘f 2h 2h

(D.7)

As can be seen, Equation D.7 is an accumulating function which is in-line with the change in
strain gradient. The change in strain gradient is the bending deformation direction. However,
this function is sensitive to the considered time-step, where a too large interval could result
in big jumps in the von-mises stress requiring heavy returns to the yielding surface and thus
non-representative stress gradients.

However, all of the above is based on a linear stress distribution as shown from the starting
equation Equation 3.39. While for plastic deformation, the stress distribution is non-linear.

)
)
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